TASKING.

TASKING Embedded Profiler
User Guide

MA160-857 (v1.1r1) September 23, 2021

Copyright © 2021 TASKING BV.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of TASKING BV. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. TASKING
and its logo are registered trademarks of TASKING Germany GmbH. All other registered or unregistered trademarks
referenced herein are the property of their respective owners and no trademark rights to the same are claimed.

Table of Contents

Manual PUIPOSE AN STTUCTUIE ...ttt e e e e et e e e e e enans \Y
1. INStalliNg the SOfWAIEt e e aa e 1
1.1, Installation fOr WINAOWSuieiii e e eeaas 1

2 IR o713 =Y oo [PP PTSPPPRP 1
1.2.1. ObtainiNg @ LICENSE . .uvniiiiiii e 3

1.2.2. Frequently Asked QUESEIONS (FAQ) ...uiuiuiuiiiiie e 3

1.2.3. INStalling @ LICENSEvtiiii i e 3

2. Introduction to the TASKING Embedded Profiler ... 9
DN O I = Lo =1] Lo o S 11
2. 0. L M DS ittt e 13

2.1.2. MINIMECDS .o 14

2.1.3. MCDS LIGNLt ..o 14

2.2.TrACE LIMILALIONS ... vttt 14

B N 111 o 4T | P 17
3.1. Prepare Demo Project iN ECIIPSEviviiiiiiii e 18

3.2. Analyze Project in TASKING Embedded Profilerccoooiiiiiiiiiiiie e 20

3.3 FIX the Problem ... 31

3.4. Verify Fix in TASKING Embedded Profileroooiiiiiiiccc e 32

3.5, COMPArE RESUILS ...ttt e e e e 34

3.6, EXPOIrt RESUIS ...utiii i e 35

4, Effects on Profiling AnalysisS RESUILSouiriiii e 37
4.1. Differences in Analysis Results Due to Compiler and Linker Optimizations 37
4.1.1. Tail Call OptiMIZALIONeii e e e e aaaas 37

4.1.2. Code Compaction (Reverse INlNiNg)ccooviiiiiiiii e 39

4.1.3. Automatic Function INININGoouiiii e 39

4.1.4. Delete Duplicate Code and Delete Duplicate Constant Dataccoevevenns 39

4.2. Effects of Interrupt Handlers on Interrupted FUNCLIONSccoiiiiiiiiiiiieee, 40

5. Using the TASKING Embedded Profilercoiiiii e 41
5.1. Run the Embedded Profiler in Interactive Modeccovviiiiiiiiiii e, 41

5.2. Run the Embedded Profiler from the Command Linecooiiiiiiiiiiniiieen, 42
5.2.1. Command Line TULOIAlo.viniiiii e 43

5.3. What to Do if Your Application Does not Starton a Board?ccocvvviiiiiiiiiiiiiiiinnnn. 45

B. REIBIEINCE ... e 47
6.1, SENGS DIAlOgvvitititit et a7

6.2. ANAIYSIS SCOPE PagE ... vttt 48

6.3. Run DMA Load AnalysisS Dialogouiuiiiiiiiiie e 52

6.4, Progress DIalig . ..ouiuieiiiii i 53

6.5, SUMMANY Tab ..o e 54
6.5. 1. CONfIQUIALIONue e e e e 56

B.5.2, INFO et 56

6.5.3. Performance HotSPots CIOCKScuiuiuiiii i 58

B.5.4. SOUICE COVBIAGE .ttt ittt et ettt et e et et a e e e e eaanens 59

6.5.5. 1CACNE MISS COUNL ...ttt 59

6.5.6. DCACHE MISS COUNL ...euitiitii et ea e 59

B.5.7. IMEBIMOIY ACCESS ..ttt ettt ettt ettt ettt e e n e e e aanens 60

6.5.8. MemOry CoNnfliCtS ... 61

B.5.0. DM A o 61

6.5.10. DMA ChanNElviuiiiiiiiii e e e e 62

TASKING Embedded Profiler User Guide

B.5.11. DMA PEI PEIOM .. .viiiii i e 63

6.5.12. DMA Channel Per POouuiniiiii e et 63
B.6. FUNCHONS Tab ..oviitiii i e e 64
B.7. SOUICE LINES Tab .ot 65
B.8. INSIIUCHIONS Tab ...ttt e e e ettt aas 66
6.9. MEMOIY ACCESS TaAD ... euiteieete e et 66
6.10. MemOory CONFIICES TADuiiie e 68
B, SOUICE Tab ottt e e 68
6.12. DiSASSEMDBIY TAD .. .eei i 69
B.13. RAW TraCe Data Taboviiiiii ittt et eeeeas 71
(ST S B 1Y AN I Y- T I =1 o 74
B.05. TIMEBINE Ta .ot e s 75

Manual Purpose and Structure

Manual Purpose
You should read this manual if you want to know:
* how to use the TASKING Embedded Profiler

 the features of the TASKING Embedded Profiler

Manual Structure

Chapter 1, Installing the Software

Explains how to install and license the TASKING Embedded Profiler.

Chapter 2, Introduction to the TASKING Embedded Profiler

Contains an introduction to the TASKING Embedded Profiler and contains an overview of the features.
Chapter 3, Tutorial

Contains a step-by-step tutorial how to use the demo projects with the TASKING Embedded Profiler.
Chapter 4, Effects on Profiling Analysis Results

Describes the differences in analysis results due to compiler optimizations and explains the effects of
interrupt handlers on interrupted functions.

Chapter 5, Using the TASKING Embedded Profiler

Explains how to use the TASKING Embedded Profiler. You can run the TASKING Embedded Profiler in
two ways, via an interactive graphical user interface (GUI) or via the command line.

Chapter 6, Reference

Contains an overview of all the fields and columns in an analysis result output.

Related Publications

» Getting Started with the TASKING VX-toolset for TriCore

» TASKING VX-toolset for TriCore User Guide

e AURIX™ TC21x/TC22x/TC23x Family User's Manual, V1.1 [2014-12, Infineon]
* AURIX™ TC26x A-Step User's Manual, V1.1 [2013-12, Infineon]

* AURIX™ TC26x B-Step User's Manual, V1.2 [2014-02, Infineon]

e AURIX™ TC27x User's Manual, V1.4 [2013-11, Infineon]

TASKING Embedded Profiler User Guide

Vi

AURIX™ TC27x B-Step User's Manual, V1.4.1 [2014-02, Infineon]
AURIX™ TC27x C-Step User's Manual, V2.2 [2014-12, Infineon]
AURIX™ TC27x D-Step User's Manual, V2.2 [2014-12, Infineon]
AURIX™ TC29x A-Step User's Manual, V1.1.1 [2014-01, Infineon]
AURIX™ TC29x B-Step User's Manual, V1.3 [2014-12, Infineon]
AURIX™ TC3xx Target Specification, V2.5.1 [2018-04, Infineon]
AURIX™ TC3xx User's Manual, V2.0.0 [2021-02, Infineon]

AURIX™ TC33xEXT User's Manual Appendix, V1.6.0 [2020-08, Infineon]
AURIX™ TC35x User's Manual Appendix, V1.6.0 [2020-08, Infineon]
AURIX™ TC37x User's Manual Appendix, V1.6.0 [2020-08, Infineon]
AURIX™ TC37xEXT User's Manual Appendix, V1.6.0 [2020-08, Infineon]
AURIX™ TC38x User's Manual Appendix, V1.6.0 [2020-08, Infineon]

AURIX™ TC39x-B User's Manual Appendix, V1.6.0 [2020-08, Infineon]

Chapter 1. Installing the Software

This chapter guides you through the installation process of the TASKING® Embedded Profiler. It also
describes how to license the software.

In this manual, TASKING Embedded Profiler and Embedded Profiler are used as synonyms.

1.1. Installation for Windows

System Requirements

Before installing, make sure the following minimum system requirements are met:
* 64-bit version of Windows 7 or higher

e 2 GHz Pentium class processor

* 4 GB memory

» 500 MB free hard disk space

» Screen resolution: 1024 x 768 or higher

Installation
1. |If you received a download link, download the software and extract its contents.
-or-
If you received an USB flash drive, insert it into a free USB port on your computer.
2. Run the installation program (setup.exe).

The TASKING Setup dialog box appears.

3. Select a product and click on the Install button. If there is only one product, you can directly click on

the Install button.

4. Follow the instructions that appear on your screen. During the installation you need to enter a license

key, this is described in Section 1.2, Licensing.

1.2. Licensing

TASKING products are protected with TASKING license management software (TLM). To use a TASKING

product, you must install that product and install a license.

The following license types can be ordered from TASKING.

TASKING Embedded Profiler User Guide

Node-locked license

A node-locked license locks the software to one specific computer so you can use the product on that
particular computer only.

For information about installing a node-locked license see Section 1.2.3.2, Installing Server Based Licenses
(Floating or Node-Locked) and Section 1.2.3.3, Installing Client Based Licenses (Node-Locked).

Floating license

A floating license is a license located on a license server and can be used by multiple users on the network.
Floating licenses allow you to share licenses among a group of users up to the number of users (seats)
specified in the license.

For example, suppose 50 developers may use a client but only ten clients are running at any given time.
In this scenario, you only require a ten seats floating license. When all ten licenses are in use, no other

client instance can be used. Also a linger time is in place. This means that a license seat is locked for a

period of time after a user has stopped using a client. The license seat is available again for other users
when the linger time has finished.

For information about installing a floating license see Section 1.2.3.2, Installing Server Based Licenses
(Floating or Node-Locked).

License service types

The license service type specifies the process used to validate the license. The following types are
possible:

 Client based (also known as 'standalone"). The license is serviced by the client. All information necessary
to service the license is available on the computer that executes the TASKING product. This license
service type is available for node-locked licenses only.

» Server based (also known as 'network based’). The license is serviced by a separate license server
program that runs either on your companies' network or runs in the cloud. This license service type is
available for both node-locked licenses and floating licenses.

Licenses can be serviced by a cloud based license server called "Remote TASKING License Server".
This is a license server that is operated by TASKING. Alternatively, you can install a license server
program on your local network. Such a server is called a "Local TASKING License Server". You have
to configure such a license server yourself. The installation of a local TASKING license server is not
part of this manual. You can order it as a separate product (SW000089).

The benefit of using the Remote TASKING License Server is that product installation and configuration
is simplified.

Unless you have an IT department that is proficient with the setup and configuration of licensing systems
we recommend to use the facilities offered by the Remote TASKING License Server.

Installing the Software

1.2.1. Obtaining a License

You need a license key when you install a TASKING product on a computer. If you have not received
such a license key follow the steps below to obtain one. Otherwise, you cannot install the software.

Obtaining a server based license (floating or node-locked)
» Order a TASKING product from TASKING or one of its distributors.
A license key will be sent to you by email or on paper.

If your node-locked server based license is not yet bound to a specific computer ID, the license server
binds the license to the computer that first uses the license.

Obtaining a client based license (node-locked)

To use a TASKING product on one particular computer with a license file, TASKING needs to know the
computer ID that uniquely identifies your computer. You can do this with the getcid program that is
available on the TASKING website. The detailed steps are explained below.

1. Download the getcid program from http://www.tasking.com/support/tim/downloads.

2. Execute the getcid program on the computer on which you want to use a TASKING product. The
tool has no options. For example,

C:.\ Taski ng\ getci d_versi on
Conputer I D: 5Dzm L9+Z- WbO aMkU- 5Dzm L9+Z- WFbhO aMkU- MDAy - Y2Zm

The computer ID is displayed on your screen.
3. Order a TASKING product from TASKING or one of its distributors and supply the computer ID.
A license key and a license file will be sent to you by email or on paper.

When you have received your TASKING product, you are now ready to install it.

1.2.2. Frequently Asked Questions (FAQ)

If you have questions or encounter problems you can check the support page on the TASKING website.
http://www.tasking.com/support/tim/fags

This page contains answers to questions for the TASKING license management system TLM.

If your question is not there, please contact your nearest TASKING Sales & Support Center or Value
Added Reseller.

1.2.3. Installing a License

The license setup procedure is done by the installation program.

http://www.tasking.com/support/tlm/downloads
http://www.tasking.com/support/tlm/faqs

TASKING Embedded Profiler User Guide

If the installation program can access the internet then you only need the license key. Given the license
key the installation program retrieves all required information from the remote TASKING license server.

The install program sends the license key and the computer ID of the computer on which the installation
program is running to the remote TASKING license server, no other data is transmitted.

If the installation program cannot access the internet the installation program asks you to enter the required
information by hand. If you install a node-locked client based license you should have the license file at
hand (see Section 1.2.1, Obtaining a License).

Floating licenses are always server based and node-locked licenses can be server based. All server
based licenses are installed using the same procedure.

1.2.3.1. Configure the Firewall in your Network

For using the TASKING license servers the TASKING license manager tries to connect to the Remote
TASKING servers | i cl.tasking.comlic2.tasking.comlic3.tasking.com

Iic4.taski ng. comat the TCP ports 8080, 8936 or 80. Make sure that the firewall in your network is
transparently enabled for one of these ports.

1.2.3.2. Installing Server Based Licenses (Floating or Node-Locked)
If you do not have received your license key, read Section 1.2.1, Obtaining a License before you continue.

1. If you want to use a local license server, first install and run the local license server before you
continue with step 2. You can order a local license server as a separate product (SW000089).

2. Install the TASKING product and follow the instructions that appear on your screen.

The installation program asks you to enter the license information.

TASKING < product> - InstallShield Wizard *

License key Information

Specify your license key TASK’”G@

Flease enter the license key that you have received from TASKING. The key has the format like
aaa-bbbb-ccoc-dddd. If you do not have a key, please contact TASKING through
licensing @tasking. com, or contact your TASKING representative.

License Key:

Licensing Support. < Back Mext = Cancel

3. Inthe License Key field enter the license key you have received from TASKING and click Next to
continue.

6.

Installing the Software

The installation program tries to retrieve the license information from a remote TASKING license
server. Wait until the license information is retrieved. If the license information is retrieved successfully
subsequent dialogs are already filled-in and you only have to confirm the contents of the dialogs by
clicking the Next button. If the license information is not retrieved successfully you have to enter the
information by hand.

Select your License Type and click Next to continue. If the license type is already filled in and grayed
out, you can just click Next to continue.

You can find the license type in the email or paper that contains the license key.

(For floating licenses only) Select Remote TASKING license server to use one of the remote
TASKING license servers, or select Local TASKING license server for a local license server. The
latter requires optional software.

(For local license server only) specify the Server name and Server port of the local license server.
Note that a Node-locked server based license always uses the Remote TASKING license server.

Click Next and follow the rest of the instructions to complete the installation.

1.2.3.3. Installing Client Based Licenses (Node-Locked)

If you do not have received your license key and license file, read Section 1.2.1, Obtaining a License
before continuing.

1.

Install the TASKING product and follow the instructions that appear on your screen.

The installation program asks you to enter the license information.

TASKING <product> - InstallShield Wizard b4

License key Information

Specify your licenses key TASKI ” G ®

Please enter the license key that you have received from TASKING. The key has the format like
aaa-bbbb-cccc-dddd. If you do not have a key, please contact TASKING through
licensing @tasking.com, or contact your TASKING representative,

License Key:

Licensing Support < Back Mext = Cancel

In the License Key field enter the license key you have received from TASKING and click Next to
continue.

TASKING Embedded Profiler User Guide

The installation program tries to retrieve the license information from a remote TASKING license
server. Wait until the license information is retrieved. If the license information is retrieved successfully
subsequent dialogs are already filled-in and you only have to confirm the contents of the dialogs by
clicking the Next button. If the license information is not retrieved successfully you have to enter the
information by hand.

TASKING <product> - InstallShield Wizard >

License Type Information

Chaose your license type TAS.K’”G ®

License Type

MNode-ocked server based license
(®) Nodeocked dient based license

() Floating license

Licensing Support < Back Cancel

3. Select Node-locked client based license and click Next to continue.

TASKING =product> - InstallShield Wizard >
Hode-locked Client Based

Spedify your license file content TASK’”G@

License File Contents:

Licensing Support < Back Mext = Cancel

Installing the Software

In the License File Contents field enter the contents of the license file you have received from
TASKING.

The license data is stored in the file licfile.txt in the etc directory of the product (<install_dir>\etc).

Click Next and follow the rest of the instructions to complete the installation.

TASKING Embedded Profiler User Guide

Chapter 2. Introduction to the TASKING
Embedded Profiler

After your application has been verified, thoroughly tested and debugged, and by itself behaves correctly,
you may still run into performance and timing issues. Many timing issues can be addressed simply by
improving the performance of the applications that caused a missed deadline. Furthermore, by reducing
the core load of your applications you may be able to go for a device that is cheaper because it has fewer
cores. A way to address these issues is performance tuning.

With performance tuning we refer to optimizing your application for a specific target device. Common
situations where performance tuning of your application makes sense are:

* You are using self-made libraries that are called a lot and thus have a big impact on overall application
performance.

* You develop/adapt low level drivers and basic software (BSW) components.
* You are close to or above your core load budget limit.

» You have a timing problem in your schedule that could be fixed by speeding up specific tasks but want
to avoid changing the schedule.

* You want to try and target a smaller electronic control unit (ECU) in order to save costs.

» You care about easily and cost effectively tracking and improving the performance of your code on
target devices.

 You want your tests to cover most of your source code to lower the probability of undetected software
bugs.

Embedded hardware platforms are too complex for the average software developer to predict or understand
the performance of his code. In order to optimize code for a specific platform (cores plus peripherals),
developers need feedback from the hardware on which specific part of their code is suboptimal (in terms
of memory consumption, jitter, execution time, ...) and what is the root cause of the performance impact.
The TASKING Embedded Profiler is a smart profiling tool that provides this feedback.

The TASKING Embedded Profiler communicates with an embedded processor (CPU) to gather real-time
tracing and performance data. The tool gives an overview over the current clock settings — no need to
get an oscilloscope to verify that the clocks are configured properly for a benchmark run. After verification
of correct clock setup, you are guided through a few easy steps that pinpoint the source lines that have
the greatest performance impact. The tool indicates the root cause of the performance impact and gives
simple instructions on how to address the problem. The data is presented in graphics and tables and into
computer readable formats.

TASKING Embedded Profiler User Guide

TASKING Embedded Profiler vi.yrz - demo_dspr_tc39 - MemAnalysis-1 - Result-1 - [m] x
Project Analysis Result Help
ar

v (= demo_dspr_tc39

Summary Functions Memory Access Memory Conflicts Source Disassembly
@ Perfhnalysis-1

~
5 MemAnalysis-1 Configuration
& Result-1 Processor TC39ED
Trace settings: Core=[0], Memory=TCM (tile 0-7), Mode=Reset-OneShot
Info
Started at: May 26, 2021 5:57:46 PM

Consumed time:
Clock frequencies (MHz):

CPU data/program cache:

CPU clock count:

24 secends
CPUD=100, CPU1=100, CPU2=100, CPU3=100, CPU4=100, CPU5=100, SRI=100, SPB=50, BBB=100

DCACHED=0, PCACHEO=0, DCACHET=0, PCACHE1=0, DCACHE2=0, PCACHE2=0, DCACHE3=0, PCACHE3=0, DCACHE4=0,

PCACHE4=0, DCACHE5=0, PCACHE3=0
317,964

DCache misses: 4138
Local Data Scratch Pad RAM accesses: 600
CPUO0 Data Scratch Pad RAM accesses: 133
%

Local Memory Unit accesses: 33322
: b o

FR accesses:

| High number of inefficient accesses (compared to local DSPR accesses) to Local Memory Unit

Performance Hotspots Clocks

0 20,000 40,000 60,000 80,000 100,000 120,000

DCache Miss Count

main _c_init

_c_init_entry main

_start(.\cstart.c) _dbg_trap_tc

_flsbuf _emitchar

_doprint _doclose

_dbg_cacheawi felose

_dbg_trap_tc _doprint

_putstring .cocofun_1{0x20000016)
_doclose _#flush

clock '

T T
0 500 1,000

T T
1,500 2,000

After applying the suggested mitigation, you can use the TASKING Embedded Profiler to confirm that the
problem has indeed been fixed. With the default settings of the tool this all happens non-intrusively with
real data collected from the application running on the real device. Using such a performance tuning tool,
non-expert users can often highly speed up untuned applications.

Features of the TASKING Embedded Profiler

» Performance analysis

* Flow analysis

* Memory access analysis
 Function-level analysis

» DMA load analysis

» Compare analysis runs of the same kind
» Organize analyses and results in projects
» Load/store analysis results

» Graphical user interface (GUI) and command line support

10

Introduction to the TASKING Embedded Profiler

» Support for the latest Device Access Server driver (DAS, see www.infineon.com/das) and support for
all Device Access Port (DAP) miniWigglers that are supported by the DAS drivers. All debug interfaces
supported by the Infineon miniwWigger can be used to connect to the target hardware. This can be 10-pin
DAP / 20-pin Automotive JTAG connector or 10-pin DAP / 16-pin OCDSL1, depending on which
miniWiggler version is used.

Performance analysis
This type of analysis traces instructions and performance events. It measures the CPU clock count and
it finds branch misses, cache misses and stalls due to memory access delays or pipeline hazards. It also

provides detailed coverage information. You can run this type of analysis on the whole application or
select specific functions.

Flow Analysis

This type of analysis traces all flow changes, including all branches, function calls and function returns.
This is the fastest analysis to have detailed coverage information.

Memory access analysis

This type of analysis traces function calls, function returns and data accesses. You can run this type of
analysis on the whole application or select specific functions.

Function-level analysis

This type of analysis traces all function calls and function returns. It also provides brief coverage information
about functions by means of functions invoked or not. This is the fastest analysis.

DMA load analysis
This type of analysis traces both DMA (Direct Memory Access) load and flow changes. For the DMA trace

hardware is needed that supports OTGB (OCDS Trigger/Trace Bus on product chip) or OTGM (OCDS
Trigger/Trace Multiplexer on product chip). For the flow trace a free CPU on a Trace Source is needed.

2.1. Trace Support

The standard TriCore/AURIX™ processors (production devices) lack debug trace functionality. However,
this functionality is very useful when you develop and test your application.

The TASKING Embedded Profiler uses the Multi-Core Debug Solution (MCDS) for on-chip trace support.
The following table shows the devices that are supported by the TASKING Embedded Profiler.

11

http://www.infineon.com/das

TASKING Embedded Profiler User Guide

Device MCDS type Trace memory DMA Load supported
TC23xED MCDS TCM/ XTM Yes

TC26xED MCDS TCM/ XTM Yes

TC27xED MCDS TCM Yes

TC29x miniMCDS TRAM No

TC29xED MCDS TCM/ XTM Yes

TC33XEXT MCDSLight TCM/ XTM Yes

TC35x MCDSLight TCM / XTM Yes

TC37x miniMCDS TRAM No

TC37XEXT MCDS TCM/ XTM Yes

TC38x miniMCDS TRAM No

TC39xAED MCDS TCM / XTM Yes, but CPUO cannot be used
TC39xED MCDS TCM/ XTM Yes

TC33xED is sometimes used in Infineon documentation for TC33xEXT.
TC37xED is sometimes used in Infineon documentation for TC37xEXT.

TC39xED is sometimes used in Infineon documentation for TC39x.

Naming convention

You can see by the name on the processor what type of device it is. For example, with SAK-TC299TE
the last letter indicates the "Feature Package". If this letter is an 'E' or 'F' you have an Emulation Device.
For the TC3xx devices, if the "Feature Package" letter is an 'E' you have an Emulation Device.

For a detailed naming convention see the Infineon website:

* AURIX™ Product Naming

Trace memory

Trace information is stored in a dedicated trace buffer. With an Emulation Device (ED) you can allocate
part of the Emulation Memory (EMEM) as trace buffer memory. The Emulation Memory is divided in RAM
blocks, the so-called 'tiles', which can be used as Calibration or Trace memory. These memory tiles
consists of TCM, XCM and XTM. TCM (Trace Calibration Memory) can be used for Trace memory or
Calibration, XCM (Extended Calibration Memory) can only be used for Calibration memory and XTM
(Extended Trace Memory) can only be used for Trace memory.

Production Devices that are equipped with miniMCDS use TRAM for trace memory.

Which trace memory you can select depends on the selected processor.

12

https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/

Introduction to the TASKING Embedded Profiler

Tile memory range

For TCM, you can choose which part of the Emulation Memory should be used for tracing. For XTM
always both tiles are used for tracing.

Be careful that the same tile memory range used for tracing is not used by the target application, as this
can lead to unexpected trace results. The number of tiles vary per Emulation Device.

Trace mode

When you run a trace analysis in the TASKING Embedded Profiler, you can set the trace mode:

* One shot mode. In this mode the analysis will run until the trace buffer is full, or when the application
finishes or when you stop the analysis manually. This is non-intrusive, meaning that the trace does not
interfere the running processor. After the trace has stopped the Embedded Profiler reads the collected
data.

« Continuous trace. In this mode the analysis will run until the application finishes or when you stop the
analysis manually. This mode is intrusive, meaning that the processor is stopped temporarily every
time the trace buffer has been filled, so that the Embedded Profiler can read the collected data. After
that the processor continues execution and continues writing to the trace buffer.

Raw trace data

Raw trace data is included as a service to advanced users who are familiar with the Infineon Multi-Core
Debug Solution and who want to examine program flow. Raw trace data is useful, for example, to see
why stall cycles are assigned to instructions that do not access memory. This can be the case when an
instruction is target of a branch. Raw trace data is displayed in a separate tab. The Raw Trace Data tab
has a search field that you can use to search through the address column. It has buttons to search the
Next, Previous, First and Last occurrence of the specified address. It does not support wildcards or regular
expressions.

Attach mode

When you run a trace analysis in the TASKING Embedded Profiler, you can set the attach mode:
» Reset device. In this mode the device is reset first and then the analysis starts.

» Hot attach. In this mode the analysis will start at the current execution position of the running application.

2.1.1. MCDS

MCDS (Multi-Core Debug Solution) uses ED (Emulation Devices). An Emulation Device has an Emulation
Extension Chip (EEC) added to the same silicon, which is accessible through the JTAG or DAP interface
(EEC is only for devices that have tile range supports like MCDS and MCDSLight.). The TASKING
Embedded Profiler supports the on-chip trace feature of the Emulation Device.

The MCDS has support for a maximum of three processor observation blocks (POBs). This means that,
depending on the device, up to three cores can be traced at once. For the hardware that can trace three

13

TASKING Embedded Profiler User Guide

cores at the same time one of the three cores must be core 0. For detailed information about MCDS we
recommend that you read the processor documentation.

2.1.2. miniMCDS

Some devices that do not have MCDS come with miniMCDS. miniMCDS is a subset of the on-chip trace
feature that is available on Emulation Devices. The mini-MCDS memory is not suitable for safety related
data and must not be used for data storage by safety applications.

The miniMCDS devices have no EEC and therefore only TRAM memory. These kind of devices have
only one POB, this means that only one core can be traced at the same time. See the processor
documentation for detailed information about the device.

2.1.3. MCDS Light

In AURIX 2G devices a new type of Multi-Core Debug Solution is introduced, called MCDS Light. MCDS
Light is a subset of MCDS. The difference with MCDS is that MCDS Light has a maximum of two POBs,
which means that a maximum of two cores can be traced at once.

One of the advantages of MCDS Light over miniMCDS is that it comes with EMEM and thus is not limited
to the very small TRAM memory.

2.2.Trace Limitations

The MCDS reports events with a timestamp resolution of half of the CPU clock. This means that even
when every instruction is traced it is not always 100% possible to know to which instruction the reported
clock cycles belong. Beyond that there are cases where the MCDS summarizes its reports even though
a report per instruction was requested.

See the following worst case example for the start of a function with multiple 1 cycle instructions, where
it looks as if clock cycles are missing:

LineMo Source Clocks Coverage % Branch Misses |Cache Misses DCache Misses Stalls
1 file |
2
3 #include <stdioc.h>
4 #include <time.h>
5
6 void func 1{woid)
7 {
8 _nop()s
0x80000£72 nop 15 o - 1 - 12
9 _mop()s
0x80000£74 nop 1 v
10 _nop(}7 Although the trace hardware did not assign clocks
0x80000£76 nop -| the instruction was reported as processed
n _nop():
0x80000£78 nop 2 +
12 _ nop();
0x80000f7a nop - o

The first nop() has a high number of clocks reported, caused by instruction cache miss and the pipeline
penalty of the call. The MCDS cannot report on the second and third nop() . It is important to realize that

14

Introduction to the TASKING Embedded Profiler

the clocks spent in those were reported as part of the count for the first nop() and not somehow dropped.
Instructions without clocks that can still be covered have a help popup explanation when you hover the
mouse over the empty clock.

Tracing regions

When you are tracing regions, the entry/exit from a region misses clocks which are detected before the

MCDS detects the region has been entered, or after the region has been left. This is a hardware limitation
and in practice means counts for instructions will be zero. For a short function this can mean the whole

function is being reported as covered without any clocks being assigned at all.

Differences between different analysis types on the same embedded
program

When you run different analysis types on the same embedded program, the output can be different:

» Performance analysis vs. flow analysis will not differ that much. Mostly clocks assigned to performance
events (stalls, cache misses) will sometimes move between caller/callee.

» Function analysis can differ more, especially as it does not see tail call optimizations and interrupts.
See Chapter 4, Effects on Profiling Analysis Results.

15

TASKING Embedded Profiler User Guide

16

Chapter 3. Tutorial

The profiler\tutorial s directory of the TASKING Embedded Profiler installation contains several
examples. They serve as a good starting point for your own profiling analysis project. All examples are
present for the TC29xB and the TC39xB.

» deno_dspr - A project demonstrating how defaulting to the wrong scratch pad memory results in a
penalty in stalls.

» deno_dcache - A project demonstrating how multiple passes over a large buffer can cause many data
cache misses.

» denp_concurrent - A project demonstrating how accessing the same memory from multiple cores
causes stalls.

» denp_tail call - A project demonstrating a possible difference in analysis results between a
performance analysis and a memory analysis or function analysis. This is due to the tail call elimination
optimization of the C compiler. Tail call elimination is part of the peephole optimization of the C compiler.
See Section 4.1.1, Tail Call Optimization.

» deno_dme_si npl e - A project demonstrating DMA transfers for four channels in a row that is repeated
four times.

When the Timeline check box is set when the DMA analysis is started the channel activity will be shown
in a 'Timeline' view. See Section 6.15, Timeline Tab.

The DMA simple example uses DMA channel 1, 2, 3 and 4 with a relative payload in size 1, 2, 3 and
4. When looking at the 'DMA Load' view this payload size can be seen as the amount of time spent
transferring data for channel 1 is half that of channel 2, a third of channel 3 and a quarter of channel
4. See Section 6.14, DMA Load Tab.

The DMA transfers of this example do not overlap nor interrupt each other so the number of activations
will be 4 for each channel. Note: on TriCore the highest DMA channel number has the highest priority
and interrupts DMA transfers of channels with a lower number.

All examples come with TASKING Embedded Profiler projects (files with the . EnbPr of extension), with
pre-run analyses. You can open a project in the TASKING Embedded Profiler to inspect the various
analysis results, without having to run the examples on a target board.

All examples also contain an ELF file (. el f) and an Intel Hex file (. hex), so that you can also use the
TASKING Embedded Profiler, TASKING Embedded Debugger or a flash tool to flash an example
application on a target board. Note that these files are for the original example, without any fixes.

In this tutorial we will use the denop_dspr example for the TC39xB to go through the process of preparing
your project from scratch, running a profiling analysis, fixing the problem and rerunning a profiling analysis
to see the improvement. After this tutorial you can use the other tutorials yourself in a similar way.

17

TASKING Embedded Profiler User Guide

3.1. Prepare Demo Project in Eclipse

Before you can use the TASKING Embedded Profiler, you must have an application ELF file with debug
information.

The example projects delivered with the TASKING Embedded Profiler are Eclipse projects suitable for

the TASKING VX-toolset for TriCore v6.2r1 or newer. For this part of the tutorial it is assumed that you
have this toolset version or newer installed.

Connect the target board

» Connect the Infineon TriBoard TC39xB to your computer. See the documentation that came with the
board for more information.

Import an example project
1. Start the TASKING VX-toolset for TriCore Eclipse IDE.
2. From the File menu, select Import.

The Import dialog appears.

& import m] *
Select
\J
Create new projects from an archive file or directory. E 5

Select an import source:

type filter text

~ (= General

& Archive File
(=5 Existing Projects into Workspace
() File System
[Preferences
CiC++

cvs

Install
Run/Debug
TASKING C/C++
Tearn

PRRRPY

(?:' < Back Finish Cancel

3. Select General » Existing Projects into Workspace and click Next.

The Import Projects dialog appears.

18

Tutorial

{ﬁ Import m] »
Import Projects /
Select a directory to search for existing Eclipse projects. ; ;‘J
(O Select root directory: Browse...
(®) Select archive file: C\Program Files\TASKING'\prof v yrz\profileritutonials\demo_dspr_te39.zip ~ Browse...
Projects:
demo_dspr_tc3d (demo_dspr_tc39) Select All
Deselect All
Refresh
Options

Search for nested projects
Copy projects into workspace

[Hide projects that already exist in the workspace

Working sets
[]Add project to working sets
Seleeis
'(?;' < Back Mext = Cancel

Click Select archive file and browse to the example ZIP file delivered with the TASKING Embedded
Profiler.

Leave the other settings in this dialog as is and click Finish.

The project will be added to your workspace.

You can now examine the source files, build the project (for your target) and flash the application.

Examine source file

1.

In the C/C++ Projects view double-click on the source file deno_dspr. c.

The file will be opened in the source editor.

Examine the source file and make sure that the following define has the value 0:
#define FIXED O

This define is used to demonstrate the different profiler results before and after fixing the source file.

19

TASKING Embedded Profiler User Guide

Set project options

The resulting application ELF file must contain debug information. The demo projects already have
debugging enabled by default. So, for the demo projects you can skip this step. For your own project,
make sure that debugging is enabled.

1. Fromthe Project menu, select Properties for. Alternatively, you can click the /= button.

The Properties for demo_dspr_tc39 dialog appears.
2. If not selected, expand C/C++ Build and select Settings to access the TriCore tool settings.

3. On the Tool Settings tab, expand C/C++ Compiler » Debugging, set option Generate symbolic
debug information to Default or Full and click OK.

{5J Properties for demo_dspr_tc39 [m] x
type filter text Settings e T
Resource
A
Builders
w C/C++ Build Configuration: Debug [Active] ~ | | Manage Configurations...

Build Variables
Environment

Logging & Tool Settings & Build Steps Build Artifact Binary Parsers @ Error Parsers

Memery

Processor (% Global Optiens Generate symbolic debug information: | Default ~
Settings v 8 C/Cr+ Compiler [Generate control flow information

Stack/Heap (% Preprocessing

[static profiling

Startup Configuration (2 Include Paths

Startup Registers
C/C++ General
Project References
Run/Debug Settings

@ Precompiled C++ Headers
(2 Language

(22 Floating-Point

(22 Code Generation

[Generate profiling information for block counters
] Generate profiling information to build a call graph
[C] Generate profiling information for function counters

[[] Generate profiling information for function timers

2 Allocation
~ (2 Optimization
(Custom Optimization
(5 Compilation Speed
(2 Debugging
v (3 MISRA C
(& Custom 2012
2 Custom 2004
% Custom 1998
~ (% CERTC Secure Coding
(5 Custom CERTC
(2 Diagnostics
(2 Miscellaneous v

3
@

Exclude time spent in interrupt functions
[Generate code for bounds checking
[Generate code to detect unhandled case in a switch
[] Generate code for malloc consistency checks

[[] Generate code for stack overflow checks

Cancel

Build the project

From the Project menu, select Build demo_dspr_tc39, or click 1 from the toolbar.

3.2. Analyze Project in TASKING Embedded Profiler

Now it is time to start analyzing the demo project.

Create a project

1. Start the TASKING Embedded Profiler.

20

TASKING Embedded Profiler viyrz
Project Analysis Result Help
N S

Mo open project Na analysis result selected

Tutorial

The TASKING Embedded Profiler window is divided into two panes. The left pane is reserved for

the project tree and the right pane is reserved for analysis results.
From the Project menu, select New Project.

The New Project dialog appears.

Mew Project

Directory: | Ch\Users\name\workspace_profideme_dspr_tc39 | Browse...

Mames | demo_dspr_tc39 |

Executable file: | Debugdemo_dspr_tc3d.elf | Browse...
Verify embedded image [_] Always flash if different

Source code path: | | Browse...

(Path only required if executable file contains insufficient information)

Processor: TC30ED

Device server: |

JTAG frequency: MHz

x

21

TASKING Embedded Profiler User Guide

10.

11.

In the Directory field, specify the directory where you want to store the Embedded Profiler project
file (file with extension . EmbPr of).

In the Name field, enter the name of the project, for example deno_dspr _t ¢39. By default, the
name is derived from the selected directory, but you can change it.

In the Executable file field, specify the name of the ELF file. For standard TASKING projects this
file is usually in the Debug directory relative to the project directory. If the executable file is stored in
another directory, the full path name is shown.

Enable Verify embedded image to compare the contents of the flash image to the ELF file before
arun is started. If there is a difference you are asked if the flash should be updated before the run
starts, unless you also enable Always flash if different.

Optionally specify a Source code path (a semi-colon separated directory list). Normally, the location
of the source files is taken from the ELF file.

Select the Processor. For example, TC39xED.

For the Device server, enter the name or address of a remote PC that the TriCore hardware is
connected to (leave blank for | ocal host). See also the DAS documentation.

Optionally specify the JTAG frequency in MHz.
Leave the rest of the dialog as is and click Create.

The new project is created and opened.

[= demo_dspr_tc39

Create a Performance analysis

1.

22

From the Analysis menu, select New Analysis.

The New Analysis wizard appears.

2.

Tutorial

MNew Analysis

Analysis Type

Select the type of analysis:

(®) Performance Analysis
(O Flow Analysis

(O Function-level Analysis

Traces instructions and performance events: branch misses, cache misses and stalls, Optionally limited to selected functions,
Medium detailed trace, traces all program flow. Optienally limited to selected functions.

Fastest analysis, traces only function calls/returns.

(O Memory Access Analysis Traces function calls/returns and data accesses. Optionally limited to selected functions.

) DMA Load Analysis

Traces DMA channel load and function entry/exit. Optionally limited to selected functions,

Finish Cancel

Several types of analyses are possible. Select Performance Analysis and click Next.

The Analysis Scope page appears.

Mew Analysis

Analysis Scope

Application functions:

Tracing full address range

| Filter

<~ Filter 0x00000000

_trapmmu [0x80002bb6-0x 80002bcT] A
_trapnmi [(%30002bc8-0x20002bdb]

_trapprotection [0x80002bd c-0x 80002bef]

_trapsystem [(x80002bf0-0x80002bfb]

_weakstub [0x800020f6-(x800020f7]

clock [0x80002bfc-0x80002c1d]

exit [k 80002f2a- 0 B0002F3f]

felose [0xB80002f40-0x80002f67]

fputc [0xB0002f62-0x80002f27]

main [0x80002ef0-0:x80002f29]

printf [0x80002f28-Cx 80002fad]

setclockpersec(.\cstart.c) [T80002e88-0xB0002eef]

setfoschz [(xB0002fae-(B0002fbb]

strlen [0xB0002fbc-0x80002fch] v

Add -»

<- Remove

Invert all

Address region: |

| ‘ Add -= <- Set OxfEFEEEEE

<- Back Finish Cancel

23

TASKING Embedded Profiler User Guide

For this tutorial leave this page as is, this means that the whole application will be analyzed (the full
address range). If you select one or more Application functions or specify an Address region and
click Add, tracing is limited to those functions and address ranges.

For details about the Analysis Scope page see Section 6.2, Analysis Scope Page.

Note that the number of trace ranges is limited by the hardware. Usually, you can select a
maximum of 4 trace ranges. A trace range can contain several functions and address regions.

Click Next.
The Analysis Name page appears.

Specify the analysis name. A default name has already been filled in based on the analysis type and
a sequence number, but you can specify your own name.

Click Finish.

The new analysis is created and is visible in the project tree.

w = derno_dspr_tc39
g PerfAnalysis-1

Run the analysis

1.

2.

24

In the project tree select the analysis you want to run.
From the Analysis menu, select Run Analysis.

The Run Analysis dialog appears.

Tutorial

Run Performance Analysis X
[0} Start a new run
Project
Processor TC39ED
Executable file: Debug\demo_dspr_tc39.elf
Device server: <localhost>

Analysis Configuration

Scope: (full address range)

Core: Core-0 ~

Trace Configuration
Buffer mode: (®) One shot mode () Continuous trace
Attach mode: (® Reset device () Hot attach

Memaory: TEM | Tile range: E - (total range = 0..7, tile size = 256 kB)

Trace buffer size = 2,048 kB

Save

MName: | Rezult-1

Additional data: | Raw trace

Run Cancel

In the Core field, select the TriCore core(s) for which you want to run the analysis.

Select a trace Buffer mode. A One shot mode trace ends when the hardware trace buffer is full,
or when the application finishes or when you stop the analysis manually. A Continuous trace ends
when the application finishes or when you stop the analysis manually. This mode is intrusive, meaning
that the processor is stopped temporarily every time the trace buffer has been filled, so that the
profiler can read the collected data. After that the processor continues execution and continues writing
to the trace buffer.

Select an Attach mode. With Reset device, tracing starts by running the program in the embedded
device from the reset vector. With Hot attach, tracing starts by continuing tracing from the current
program counter location.

Select the type of Memory that should be used for tracing, TCM (Trace Calibration Memory) or XTM
(Extended Trace Memory). Production Devices that are equipped with mini-MCDS always use TRAM
for trace memory.

For trace calibration memory (TCM) on emulation devices only, enter a trace memory Tile range.
Trace calibration memory (TCM) of emulation devices consists of a consecutive number of tiles.

25

TASKING Embedded Profiler User Guide

10.

Select the first and last tile index you want to use for trace memory. The tile size and trace buffer
size are listed as information.

Enter an analysis result Name (default Resul t - and a sequence number).

Optionally Save additional Raw trace data. Raw trace data is for advanced users who want to
examine program flow. Raw trace data is useful, for example, to see why stall cycles are assigned
to instructions that do not access memory. If you enable this option, an extra Raw Trace Data tab
appears in the analysis result.

Click Run.

The default setting is that before a run is started the contents of the flash is compared to the ELF file
and you are asked if the flash should be updated before the run starts. You can change this in the
project settings. When the ELF file is flashed, the analysis starts. After the analysis is finished the
result is present in the project tree.

w = demo_dspr_tc39
w [PerfAnalysis-1
=4 Result-1

Inspect the result of the Performance analysis

1.

26

In the project tree select the result you want to inspect (Per f Anal ysi s- 1, Resul t - 1).

The result appears in several tabs.

Tutorial

TASKING Embedded Profiler viiyrz - demo_dspr_tc39 - PerfAnalysis-1 - Result-1
Project Analysis Result Help
G P

~ (= demo_dspr_tc39
v [PerfAnalysis-1
[Result-1

Summary Functions Sourcelines Instructions Source Disassembly
Configuration
Processor: TC39%ED

Trace settings: Core=[0], Memory=TCM (tile 0-7), Mode=Reset-OneShot

Info

Started at: May 26, 2021 4:31:46 PM

24 seconds

CPUD=100, CPU1=100, CPU2=100, CPU3=100,
CPU4=100, CPU5=100, SRI=100, SPB=50, BBB=100
DCACHED=0, PCACHED=0, DCACHET=0,
PCACHET1=0, DCACHE2=0, PCACHE2=0,
DCACHE3=0, PCACHE3=0, DCACHE4=0,
PCACHE4=0, DCACHES=0, PCACHES=0

Consumed time:

Clock frequencies (MHz):

CPU data/program cache:

CPU clock count: 315,786
Stalls: 108,927
Average stalls per clock: 034
ICache misses: 20
DCache misses: 4138
Total coverage (34): 62
Source coverage (%): 38

Performance Hotspots Clacks
main

_c_init_entry
_start(.\cstart.c)

_flsbuf

_doprint

_dbg_cacheawi

_dbg_trap_tc

fputc

_emitchar

_io_putc

0 20000 40,000 60,000 80,000 100,000 120,000

Source Coverage

clock

exit

felose

fputc

printf

setfoschz

strlen
setclockpersec(..\cstart.c)

main

T T T T T
0% 20% 40% B0% 80% 100%

ICache Miss Count
_doprint
_start{.\cstart.c)
_putnumber
_c_init_entry

_flsbuf

_dbg_trap_tc
setclockpersec(..\cstart.c)
_fflush

clock

_putstring

=
o
2
@

On the Summary tab, notice the number of CPU clock counts (311,408), Stalls (107,106),Average

stalls per clock (0.34) and DCache misses (4,138).

If the value is marked red or not depends on a threshold. For the average stalls per clock, the default
threshold is 0.7. You can change this threshold value in the Settings dialog (Project » Settings).

See Section 6.1, Settings Dialog.

On the Functions tab, notice the high number of Stalls with functions mai n, _c_init_entry and

_start.

27

TASKING Embedded Profiler User Guide

@ TASKING Embedded Profiler vx.yrz - demo_dspr_tc39 - PerfAnalysis-1 - Result-1 - O X
Project Analysis Resut Help
& b
v (& demo_dsprtc3d Summary Functions Source Lines Instructions Source ~Disassembly
V8 Pttt | funcion source Address Coversge% Clocks V% Of Total Time Clocks With Children Entries Avg. Clocks/Entry Mo Clocks/Entry Min Clocks/Entry Jiter/Entry Branch Misses [Cache Misses DCacheMisses Stals A
i demo dipre OcED003eR0 |73 09 A 555 C—T THSE z [E I 7 708
_cnit_entey odeo00z2te 34 e 27 250852 2 s 111,36 5 o 4 6
_start(..\cstart.c) Acstart.c: 273 0x80002c7e 82 64,542 2044 3,101,348 23 2,806 62,148 2 62,146 1 2 -
sout oc00zes 52 192 osl 904 e 152 2 150 3 s 1 3
doprint ooz 24 1@ 0w 56510 0 2 ' 2 a8 s 15 3 %
Zdbg_cacheawi o003z 83 ™ 0z 1000 I 2 8 P - 1 159
“dbg tptc o005 63 526 o1 22 2 2 116 2 114 4 1
foutc ocaooozss 38 P 015 320 a E " 2 1 2
_emitchar oca0026tc 60 @5 013 3088 a1 s 1 “ 2 153
Jo.putc o026 |23 @ on 358 7 n u 2 2 2 i »
“putnumber ooz |22 us on e [118 2 6 3 ’ - 138
Zdoclose o002t 90) o1 4 s @ 20 2 2 2 - s 129
“putsting 0002600 47 20 007 ey u o @ 2 @ 1 2 . 7
dock ocao0zbic 88 2 007 Py P 124 s 6 . 2 - %
_Itoa 0x800028fa 81 22 007 1,346 2 m 20 2 218 - 2 57
iush o002 39 w 006 1008 6 n 125 5 12 3 3 1 P
hostwrite A\Adbgds 000024 B8 14 006 158 01 % 2 “ - 2 2 5
feose ocao0z40 64 m 005 45 ® 9 u = u 1 &
_hostclose A\Adbg.cT0 00002225 85 150 005 136 50 = 2 % 1 . 3 s
setclockpersec(.\cstatc) Acstarc 1361 0B0002ee 37 128 oot 10 T 128 18 - 3 54
cocofun 40E002cke) Acstarci 273 00002cke 66 i) 004 se732 PR Fy 2 F 1 1 st
slen oceo00zibe 85 114 o 1692 PR 55 2 s 1 0
pintt ocaoo02es 84 106 003 18274 PR 2 2 @ 1 z
cocofun.s At 116 0cB0002CSe 66 102 o0 1565 : m 10 2 % - '
«cocofun_1(0x80002c1e) .\cstart.c: 91 0x80002c1e 66 100 003 630,748 4 25 64 2 62 2
.cocofun_2(0x80002c2€) .\cstart.c: 92 0x80002c2e 66 2 003 567,704 4 23 56 2 54 2 36
cocofun 3 \ctsra 27 00002 66 & 002 629714 P 2 2 0 1 u
cocofun_I(0XEO00001) A\\\dba.ci23 0xB00000T6 66 @ o0 148 0 s 2 2 0 2 2 v
TASKING Embedded Profiler vxyrz - demo_dspr_tc39 - PerfAnalysis-1 - Result-1 - O X
Project Analysis Result Help
% P
~ (= demo_dspr_tc39 Summary Functions Sourcelines Instructions Source Disassembly
v & PerfAnalysis-1
[Result-1 Browse.. | .\demo_dspr.c (loaded C:\Users\name\workspace_profidemo_dspr_tc39idemo_dspr.c from from Nov 3, 2020 1:38:44 PM) [show disassembly
LineNo Source Clocks Coverage % Branch Misses ICacheMisses DCache Misses Stalls ~
0
Ell 4zlse
32
33 // this is tl f line
34 // we allocate x[] in DSPRO to avoid the 1ty in stalls
35 wvolatile int private0 x[ARRAY SIZE]:
%
37 #endif
38
39 int main(void) 3 100 - - - 3
40 i
41 printf("Start\n®): 2 50 - - - -
42
43 clock_t clockstart = clock(); 12 100 = - - 6
44
i £or (int 1= 0; i < ARRAY SIZE; ++1) 30,884 178 B - 048 4583
46 1
a7 x[i] = 15 8 3 - 1 - 21
4 3
49
50 int duration = (int) (clock{) - clockstart); 2 100 = = = 6
51 printf("duration i ticks\n", duration); 20 60 - - -]
52 } 12 100 - - - 6
53
v

5. Notice the high number of stalls is in the f or loop.

6. Enable Show disassembly on the Source tab to show disassembly intermixed with the source lines,
or open the Disassembly tab. When you double-click on an assembly instruction in the Source tab,
the Disassembly tab is opened automatically at the right position. Notice that the stalls are related
to memory access.

28

Create and run a Memory access analysis

1.

2.

Tutorial

TASKING Embedded Profiler viiyrz - demo_dspr_tc39 - PerfAnalysis-1 - Result-1 — [m]
Project Analysis Result Help
a »
~ = demo dsprtc3% || Summary Functions Source Lines Instructions Source Disassembly
h @;':;:jt"jH Function Address Disassembly Clocks Covered Branch Misses ICache Misses DCache Misses Stalls
0x80002ee2 and dls, #0x£ - - - -
0x80002eed diwv d0/dl,d0,d1s 4 v 1 3
0x80002ee8 mow d4/ds,do 2 v =
Ox80002eec i 0x30002fas 20 v 9
main
0x80002ef0 sub.a sp, #0x8 8 v 3
0x20002ef2 lea a4, 0xE0000000 = = =
0% B80002ef6 call 0x80002£88 2 v -
0x80002efa call 0x80002bfc 12 v 6
0x80002efe mow ds,d2 16 v 6
0%80002f00 movh.a al5,#0x%004 - - - -
0x80002f04 1lea als, [al5]0x14 32 v 1 15
0x80002f08 mow dl1s, $0xl 2 v = =
0% 80002f0a lea a2, 0x3££ff - - - -
0x80002f0e st.w [al5+]0x4,d15 114,496 v 1 40,863
0x80002f10 loop a2, 0x80002£0e 16,386 v 2,047 =
0x80002f12 call 0x30002bEc 8 v 6
0x80002f16 sub dz2,ds 16 v 9
0x80002(18 st.w [sp],d2 = =
0x80002f 13 movh.a a4, #0x8000 - -
0xB0D02f1e lea ad, [a4]0x3054 2 4
0x80002f22 call 0x80002£88 2 v =
0x80002f26 mow d2, #0x0 8 v 3
(x80002f28 ret 4 v 3
exit

0x80002f2a mow dis,d4 4 v
0x80002f2c call 0xE00020£6 = v =
0x80002f30 call 0x300023d4 12 v 6

~

Repeat the steps described above with Create a Performance analysis, but in Step 2 select Memory

Access Analysis.

Run the new analysis similar as described above with Run the analysis.

Inspect the result of the Memory access analysis

1.

In the project tree select the result you want to inspect (MemAnal ysi s- 1, Resul t - 1).

The result appears in several tabs.

29

TASKING Embedded Profiler User Guide

30

TASKING Embedded Profiler v.yrz - demo_dspr_tc39 - MemAnalysis-1 - Result-1 — m] hd
Project Analysis Result Help
& P
v (= demo_dspr tc39 Summary Functions Memory Access Memory Conflicts Source Disassembly
4 PerfAnalysis-1 Configuration 2
v & MemAnalysis-1
] Result-1 Processor. TC39xED
Trace settings: Core=[0], Memory=TCM tile 0-7), Mode=Reset-OneShot
Info
Started at: WMay 26, 2021 5:57:46 PM
Consumed time: 24 seconds
Clock frequencies (MHz): CPU0=100, CPU1=100, CRU2=100, CPU3=100, CPU4=100, CPUS=100, SRI=100, SPB=50, BBB=100
CPU data/program cache: DCACHE=0, PCACHED=0, DCACHE1=0, PCACHE1=0, DCACHE2=D, PCACHE2=0, DCACHE3=0, PCACHE3=0, DCACHEA4=0,
PCACHE4=0, DCACHES=0, PCACHE5=0
CPU clock count: 317,964
DCache misses: 4,138
Local Data Scratch Pad RAM accesses: 600
CPUO Data Scratch Pad RAM accesses: 193
[PFLASHD accesses: 95
3322
SFR accesses: L - e -
| High number of inefficient accesses (compared to local DSPR accesses) to Local Memory Unit
Performance Hotspots Clocks DCache Miss Count
main _c_init
_c_init_entry main
_start(.\cstart.c) _dbg_trap_tc
_flsbuf _emitchar
_doprint _doclose
_dbg_cacheawi felose
_dbg_trap_tc _doprint
_putstring .cocofun_1(0x80000016)
_doclose _fflush
clock : j ' ' N
| H ; ; H ; ; 0 500 1,000 1,500 2,000
0 20,000 40,000 60,000 80,000 100,000 120,000 v

On the Summary tab, notice the high number of Local Memory Unit accesses (33,322). When you
hover the mouse over a value that is marked, a context sensitive help box with additional information
can appeatr.

If the value is marked red or not depends on a threshold factor. The default threshold factor is 0.05.
The threshold for LMU memory access is calculated as: factor * Local Data Scratch Pad RAM
accesses. In this case 0.05*600=30. You can change this threshold factor in the Settings dialog
(Project » Settings). See Section 6.1, Settings Dialog.

On the Memory Access tab and notice that maei n and _c_i ni t both access variable x in LMU.

4,

Project Analysis Result Help

TASKING Embedded Profiler viyrz - demo_dspr_tc39 - MemAnalysis-1 - Result-1

@ B
~ (= demo_dspr_tc39 Summary Functions Memory Access Memory Conflicts Source Disassembly
5 Perffnalysis-1 Function Variable Region Access Origin CountV DCache Misses
~ & MemAnalysis-1
4 Result-1 "main X Livill W CPUO 16384 2048

_c_init x LMU w CPUD 16,384 2048
_start(.\estart.c) (:SCU) SFR R CPUD 2,677 -
_emitchar _iob LMu R CPUO 268 2
_emitchar (LOCALDSPR) DSPR w CPUD 108 -
_emitchar _ioh LMU w cPUD 81 -
_c_init (.PFO) PFLASHD R CPUD B8 12
_start(.\estart.c) (LOCALDSPR) DSPR w CPUD 66 -
_emitchar (CPUD.DSPR) DSPRO R CPUD 54 -
_emitchar (LOCALDSPR) DSPR R cPUD 51 1
_c_init _iob LMy w CPUO 50 6
_c_init (LMUORAM) MU w CPUD 40 4
_doprint (LOCALDSPR) DSPR w cPUOD 33 -
_dbg_trap_tc (LOCALDSPR) DSPR w cPUOD 33 -
_dbg_cacheawi (LOCALDSPR) DSPR w cPUD 32
_cinit (CPUD.DSPR) DSPRO W cPUOD 32 -
_emitchar (CPUDDSPR) DSPRO W cPUD 28 -
_doprint (LOCALDSPR) DSPR R CPUD 28 -
_emitchar (LMUORAM) LMU w cPUD 27 -
_doprint (.PFO) PFLASHD R cPUO 27 1
_dbg_trap_tc (LOCALDSPR) DSPR R CPUD 25 5
fclose (LOCALDSPR) DSPR w cPUoD 21 -
_dbg_cacheawi (LOCALDSPR) DSPR R cPUD 16 -
flose (LOCALDSPR) DSPR R CPUD 15 2
strlen (CPUDDSPR) DSPRO R CPUD 12 -
_ltoa [CPUDDSPR) DSPRO W cPUOD 12 -
_fflush (LOCALDSPR) DSPR w cPUD 12 -
_startl.Aestart.d) (SCU) SFR w cPUD 11 -

Hover the mouse over LMU in mai n.

A context sensitive help box appears with a suggestion to solve the problem.

Summary Functions Memory Access

Memory Confli

cts Source Disassembly

COrigin - Count ¥
CPUD 16,384

Cache Misses

2,048

Tutorial

ry Unit region. Access to this memory region is ineffecient, consider moving data to scratch-pad memory.

Function Variable Region Access
main x LMU W
~einit x LMU | Local Meme
_start(.\cstart.c) (SCU) SFR ™
_emitchar _ioh LM R

3.3. Fix the Problem

CFOU U7

CPUD 268

2

Now that we have analyzed the problem, we can fix it.

1.

In the TASKING TriCore Eclipse IDE, double-click on the source file deno_dspr. c.

The file will be opened in the source editor.

Change the following source line:

#define FIXED O
into:

#defi ne FI XED 1

31

TASKING Embedded Profiler User Guide

3.

From the Project menu, select Rebuild demo_dspr_tc39 (@-") to generate a new ELF file.

3.4. Verify Fix in TASKING Embedded Profiler

Now that we have fixed the problem, we can use the TASKING Embedded Profiler to rerun both the
Performance analysis and the Memory access analysis mentioned in Section 3.2, Analyze Project in
TASKING Embedded Profiler and see the new results of the analyses.

Rerun the Performance analysis and inspect the result

1.

2.

32

In the TASKING Embedded Profiler, select Per f Anal ysi s- 1.

From the Analysis menu, select Run Analysis.

Click Run.

This creates a Result-2.

Select Resul t - 2 and notice that on the Summary tab, the number of CPU clock counts,
Stalls,Average stalls per clock and DCache misses have reduced significantly.

Project Analysis Result Help
s

v [= demo_dspr_tc39
~ [PerfAnalysis-1

8

Configuration

1 Result-1
= Result-2 Processor: TCI%ED
MemAnalysis-1
Infa
Started at:

Consumed time:

Clock frequencies (MHz):

CPU data/program cache:

CPU cleock count:
Stalls:

Average stalls per clock:
ICache misses:

DCache misses:

Total coverage (%):

Source coverage (%):

main
_start(.\cstart.c)
_c_init_entry
_flsbuf
_doprint
_dbg_cacheawi
_dbyg_trap_tc
fputc

_emitchar

_io_putc

TASKING Embedded Profiler vic.yrz - demo_dspr_tc39 - PerfAnalysis- 1 - Result-2

Summary Functions Sourcelines Instructions Source Disassembly

Trace settings: Core=[0], Memory=TCM (tile 0-7), Mode=Reset-OneShot

May 26, 2021 6:40:50 PM
24 seconds

CPU0=100, CPU1=100, CPU2=100, CPU3=100,
CPU4=100, CPU3=100, SRI=100, SPB=350, BBB=100

DCACHED=0, PCACHED=0, DCACHE1=0,
PCACHE1=0, DCACHE2=0, PCACHEZ2=0,
DCACHE3=0, PCACHE3=0, DCACHE4=0,
PCACHE4=0, DCACHES=0, PCACHES=0

170,734
28,404
017

a1

33

62

38

Performance Hotspots Clocks

0 10,000 20,000 30,000 40,000 50,000 60,000

Source Coverage

clock

exit

felose

fpute

print

setfoschz

strlen
setclockpersec(.\cstart.c)

main

T T T T T
0% 20% 40% 60% 80% 100%

ICache Miss Count
_doprint
_start(.\cstart.c)
_putnumber

_flsbuf

_dbg_trap_tc
setclockpersec(. \cstart.c)
_c_init_entry

_fflush

main

_putstring

Tutorial

5. Also inspect the other tabs yourself to see the results.

Rerun the Memory access analysis
1. Inthe TASKING Embedded Profiler, select MemAnal ysi s- 1.
2. From the Analysis menu, select Run Analysis.
3. Click Run.
This creates a Result-2.

4. Select Resul t - 2 and notice that on the Summary tab, the accesses are now in DSPRO. And notice
that on the Memory Access tab _c_i ni t and mai n now both access variable x in DSPRO.

TASKING Embedded Profiler vicyrz - demo_dspr_te39 - MemAnalysis-1 - Result-2 - a

Project Analysis Result Help
o b B

v (= demo_dspr tc39

& PerfAnalysis-1
v MemAnalysis-1

Summary Functions Memaory Access Memory Conflicts Source Disassembly

Configuration

5 Result-1 Processor TC39xED
= Result-2 Trace settings: Core=[0], Memory=TCM (tile 0-7), Mode=Reset-OneShot
Info
Started at: May 26, 2021 6:48:34 PM
Consumed time: 24 seconds
Clack frequencies (MHz): CPUD=100, CPU1=100, CPU2=100, CPU3=100, CPU4=100, CPU5=100, SRI=100, SPB=50, BEB=100

DCACHED=0, PCACHEO=0, DCACHE1=0, PCACHE1=0, DCACHE2=0, PCACHE2=0, DCACHE3=0, PCACHE3=0,
DCACHE4=0, PCACHE4=0, DCACHES=0, PCACHES=0

CPU clock count: 170,730

CPU dsta/program cache:

DCache misses: 33
Local Data Scratch Pad RAM accesses: 600
CPUD Data Scratch Pad RAM accesses: 32,961
%
554
SFR accesses: 2,546

Performance Hotspots Clecks DCache Miss Count
main _c_init
_start(.\cstart.c) _dbg_trap_tc
_c_init_entry
_flsbuf

_doprint

_fflush

-doprint _emitchar

_dbg_cacheawi T T T T T

_dbg_trap_tc
_putstring
clock
_fflush

0 10,000 20,000 30,000 40,000 50,000 60,000

33

TASKING Embedded Profiler User Guide

TASKING Embedded Profiler vioyrz - demo_dspr_tc39 - MeméAnalysis-1 - Result-2 — [m]
Project Analysis Result Help
o b 4B
~ (= demo_dspr tc39 Summary Functions Memory Access Memory Conflicts Source Disassembly
5 Perfhnalysis1 Function Variable Region Access Origin Count™ DCache Misses
~ & MemAnalysis-1 . o
= Result-1 Lag.init X DSPRO....... ..EPU0 18384
& Result2 main x DSPRO W CPUD 16383

_start{.\cstart.c) ((SCU) SFR R CPUD 2,497 =
_emitchar _iob LMU R CPUD 268 1
_emitchar (LOCALDSPR) DSPR w CPUD 108
_emitchar _iob LMU w CPUD 81 =
_c_init (.PFO) PFLASHD R CPUD T2 12
_start[.\cstart.c) (LOCALDSPR) DSPR w CPUD 86
_emitchar (.CPUD.DSPR) DSPRO R CPUD 54
_emitchar (LOCALDSPR] DSPR R CPUD 51
_c_init _iob LMU w CPUO 50 6
_c_init (.LMUD.RAM) LMU w CPUD 40 4
_doprint (LOCALDSPR] DSPR w CPUD 33 =
_dbg_cacheawi (LOCALDSPR) DSPR w CPUD 33
_dbg_trap_tc (LOCALDSPR) DSPR w CPUD 32
_c_init (.CPUQ.DSPR) DSPRO w CPUD 32
_emitchar (.CPUO.DSPR) DSPRO w CPUD 28
_doprint (LOCALDSPR) DSPR R CPUD 28
_emitchar (.LMUD.RAM) LMU w CPUD 27
_doprint (.PFO) PFLASHD R CPUD 27 =
_dbg_trap_tc (LOCALDSPR) DSPR R CcPUD 24 5
fclose (LOCALDSPR) DSPR w CPUD 21
_dbg_cacheawi (LOCALDSPR) DSPR R CPUD 17
felose (LOCALDSPR) DSPR R CPUD 15
strlen (.CPUD.DSPR) DSPRO R CPUD 12
_ltea (.CPUQ.DSPR) DSPRO w CPUD 12
_fflush (LOCALDSPR] DSPR w CPUD 12
_start{.\cstart.c) (SCU) SFR w CPUD 11 -
_fflush _iob LMU R CPUD 10 1
_doclose _iob LMU R CPUD 10
_dbg_trap_tc _dbg_request MU w cPUD 10

3.5. Compare Results

The Embedded Profiler has a feature to compare results. This is very useful to see the differences before
and after a fix. Note that you can only compare results from the same analysis.

1. Inthe TASKING Embedded Profiler, select a result. For example, Resul t - 2 of Per f Anal ysi s- 1.
2. From the Result menu, select Compare Results.
3. Select another result, for example Resul t - 1. The results you can select are marked yellow.

The comparison starts and a difference report is created. The numbers in the report are calculated
as the "first selected result" minus the "second selected result".

34

Tutorial

TASKING Embedded Profiler vi yrz - deme._dspr_tc39 - PerfAnalysis-1 - Result-2 - compared to Result-1 - o %
Project Analysis Result Help
@ P
~ (= demo_dspr tc39 Summary Diff Functians Diff
v B PerfAnalysis-1 Configuration Diff Source Coverage Diff *
[Result-1
« & Result-2 Processor TC3%ED fputc u
[Compared to Result-1 Trace settings: Core=[0], Memory=TCM (tile 0-7), Mode=Reset-OneShot nain .
MemAnalysis-1 oDt ; H : ; H
-100% -50% 02 50% 100%
Started at: May 26, 2021 6:40:50 PM / May 26, 2021 4:31:46 PM
CPU clack count: 144,992
Average stalls per clock: -0.18
ICache misses: .
DCache misses: 4105
Performance Hotspots Clocks Diff ICache Miss Count Diff
_c init_entry I ctclockpersec. \cstart.c) I
main Y B | _host_write 1 |
_start{.\cstart.c) B _emitchar | ——
_doclose | _dbgtrap.tc) I
cocofun_4{0x80002¢5¢) | cocofun_4(0x80002¢5¢) | I
cocofun_4{0xB0002cde) | | strlen h ——
cocofun_1(0xB0002c2¢) | main h ——
cocofun_1(0x80002c1e) | | felose 7 e
_doprint) | it] —
_host_write 1 clock 1 I
. . . T . : : : .
0000 40000 20000 0 2 1 0 1 2
v

3.6. Export Results

You can export analysis results and comparison results to comma separated values (CSV) files. You can
choose to export instructions, functions or memory depending on the analysis type.

1. Inthe TASKING Embedded Profiler, select a result. For example, Resul t - 1 of Per f Anal ysi s- 1.
2. From the Result menu, select Export to CSV.

The Export to CSV dialog appears.

Export to CSV *
Instructions CSV file: | ChUsers\nametworkspace_profidemo_dspr_tc3instructions.csv | Browse...
Functions CSV file: | ChUsers\nametworkspace_profidemo_dspr_tc3®functions.csv | Browse...

3. Enter the filename(s) and click Export.

35

TASKING Embedded Profiler User Guide

36

Chapter 4. Effects on Profiling Analysis
Results

This chapter describes the differences in analysis results due to compiler optimizations and explains the
effects of interrupt handlers on interrupted functions.

4.1. Differences in Analysis Results Due to Compiler and Linker
Optimizations

4.1.1. Tail Call Optimization

Analysis results may be different for functions in a performance analysis or flow analysis compared to a
memory analysis or function analysis. This can happen due to the tail call optimization of the C compiler,
which is part of the peephole optimization of the C compiler (option -Oy). This optimization is enabled by
default for the TASKING VX-toolset for TriCore.

This optimization replaces the call to the leaf function with a jump instruction. The leaf function's return
instruction then performs the return that the calling function would have done.

The function analysis and memory analysis do see that the return belongs to the leaf function, but do not
know about the jump instruction to a leaf function. The cycles up to the return instruction are added to
the leaf function. Therefore the number of cycles for the calling function are less than expected.

Without the tail call optimization, the normal function flow is: f unc_a() calls f unc_b() which calls
func_c().func_c() returnsto func_b() which returnsto func_a() .

func_a()

|
| _ func_b()

| _ func_c()

With tail call optimization, the function flow becomes: f unc_a() calls f unc_b() which jumps to
func_c().func_c() returnstofunc_a().

For an example of this behavior, see the deno_t ai | cal | tutorial.

1. Importthe deno_t ai | cal | tutorial for the TC29x or TC39x the same way as explained for
deno_dspr in Section 3.1, Prepare Demo Project in Eclipse. For this tutorial we use
deno_tail cal | _t c39.The tutorial already contains an Embedded Profiler project file.

2. Start the TASKING Embedded Profiler.

3. From the Project menu, select Open Project, and select deno_t ai | cal | _t ¢39. EnbPr of .

4. Inspectthe Functions tabin Resul t - 1 of Per f Anal ysi s- 1, MemAnal ysi s- 1,FuncAnal ysi s-1
and Fl owAnal ysi s- 1.

37

TASKING Embedded Profiler User Guide

For the Performance Analysis Per f Anal ysi s- 1 and the Flow Analysis FI owAnal ysi s- 1, you
can see there are 4902 clocks for functiont ai | _t est _1() and 3856 clocks for function | en() .

TASKING Embedded Profiler viyrz - demo_tailcall_tc39 - PerfAnalysis-1 - Result-1 — [m] x
Project Analysis Result Help
@ b &
v = demo_taileall_te39 Summary Functions Source Lines Instructions Source Disassembly
h @;';’::::'j's'w Function Source Address Coverage% Clocks ¥ % OfTotal Time Clocks With Children Entries Avg. Clocks/Entry
= Result-2 _start(.\estart.c) Jestarte 273 0x80002328 100 63,612 77.52 82,014 1 63,612
« B Mermnalysis-1 tail_test_1 Ademo_tailca.. 0x80002672 100 597 9,268 0 49
& Result-1 fill_array .Ademo_tailca.. 0x8000261a 100 3,050 421 6,008 1 3,950
5 Result-2 len JAreport.c:28 0x800026b2 100 a7 3,856 00 38
~ g FuncAnalysis-1 rand 0x80002630 100 2058 251 2,058 %9 20
= Result-1 main Ademo_tailca.. 0x30002648 100 1,636 205 16,908 1 1,66
1 Result-2 _c_init_entry 0x80002120 42 784 096 784 1 784
v i FlowAnalysis-1 report Areport.cr 15 DxBODO26cO 92 510 0.62 510 10 51
4 Resule-1 setclockpersec(.\cstart.c) .\cstart.c: 1381 0xB00025b2 46 134 0.16 172 1 134
4 Result-2 .cocofun_4{0x80002378) .\cstart.c:273 0x80002378 100 116 0.14 116 2 58
.cocofun_1 Aestartc: 91 0x80002348 100 98 0.12 98 z 49
.cocofun_2 Acstart.c 92 0x80002358 100 28 011 28 2 44
.cocefun_3 Aestartc 272 0x80002268 100] 0.08 64 2 2
_init_sp(.\cstart.c) JAestartc 213 0x80002392 100 50 0.06 82,064 1 50
.cocofun_5 Acstartc 116 0x80002388 100 33 0.05 33 1 33
srand 0x20002678 100 36 0.04 2 1 2
_c_init 0x80002114 100 36 0.04 820 1 36
.cocofun_4(0xE0000014) 080000014 100 24 0.03 24 1 2
setfoschz 0x200026ea 100 14 0.02 33 1 14
_Exit 020000010 50 2 001 2 1 2 o
< >

For the Memory Analysis MemAnal ysi s- 1 and the Function-level Analysis FuncAnal ysi s- 1, you
can see there are 8890 clocks for function | en() and 548 clocks for functiont ai | _test_1().

TASKING Embedded Profiler vi.yrz - demo_tailcall_tc39 - FuncAnalysis-1 - Result-1 — [m] x
Project Analysis Result Help
5 b 4ap
v (= demo taileall_te39 Summary Functions Source Disassembly
h @;';’:jﬁ's'w Function Source Address Covered Clocks v % OfTotal Time Clocks With Children Entries Avg. Clocks/Entry
= Result-2 _start{.\estart.c) Jestartc 273 (xB0002328 62,496 76,96 81,208 1 62,496
v & MemAnalysis-1 len Jreport.c28 Ox300026b2 10.95 8,300 100 88
& Result-1 rand 0x80002630 375 3,048 2 0
) Result-2 fill_array JAdemo_tailca.. 0x8000267a 3.65 6,014 1 2,966
~ 5§ FuncAnalysis-1 main A\demo_tailca... (x80002648 1.08 17,006 1 a76
[Result-1 _c_init_entry 0x20002120 1.02 a32 1 a32
[Result-2 report JAreporte 15 0x800026c0 0.78 630 10 63
v [t FlowAnalysis-1 tail_test_1 A\demo_tailea... 0x80002672 067 10,068 100 5
4 Result-1 .cocofun_4(0xB0002378) .\cstart.c: 273 (x30002378 025 204 2 102
& Result-2 .cocofun_1 start.c: 91 0xg0002348 162 02 162 H Ll
.cocofun_2 JAestart.c: 92 0x80002358 152 0.19 152 2 76
setfoschz 0x800026ea 144 0.18 178 1 144
.cocofun_3 Jestart.e 273 0x80002368 136 0.17 136 2 68
srand 0x800026f8 48 0.06 43 1 48
.cocofun_3 Acstart.c: 116 0x80002388 42 0.05 42 1 42
.cocofun_4{0x280000014) 0x20000014 34 0.04 4 1 4
setclockperseci.\cstart.c) .\cstart.c: 1381 0x800025b2 - - - 178 1
_c_init 0x80002114 - - - 832 1
_trapsystem 0x8000233c - - - -
_trapprotection 0x80002328 - = = = = = “
< >

5. Rebuild the example in the TriCore VX-toolset for TriCore with the peephole optimization disabled
(C compiler option -QY, or in Eclipse select Project » Properties for » C/C++ Build » Settings »
Tool Settings » C/C++ Compiler » Optimization » Optimization level » Custom Optimization

38

Effects on Profiling Analysis Results

and in the Custom Optimization tab disable Peephole optimizations), and run the analyses again
in the Embedded Profiler to see the differences.

4.1.2. Code Compaction (Reverse Inlining)

The compiler optimization Code Compaction (C compiler option -Or) is the opposite of inlining functions:
chunks of code that occur more than once, are transformed into a function. This reduces code size at the
cost of execution speed.

For profiling results this will make functions that in source do not do function calls show up having a higher
value for clocks with children.

These effects should be considered when looking at profiling results. Turn off code compaction with C
compiler option -OR, or in Eclipse select Project » Properties for » C/C++ Build » Settings » Tool
Settings » C/C++ Compiler » Optimization » Optimization level » Custom Optimization and in the
Custom Optimization tab disable Code compaction), and run the analyses again in the Embedded
Profiler to see the differences.

4.1.3. Automatic Function Inlining

The compiler optimization Automatic Function Inlining (C compiler option -Oi) will inline small functions
that are not too often called. This reduces execution time at the cost of code size.

For profiling results this will make functions that in the source do function calls show up as not doing the
functions calls. Instead the 'Clocks' count for that function becomes higher than it would when the actual
function was not inlined. This also results in a lower than expected value for 'Clocks With Children'.

These effects should be considered when looking at profiling results. Turn off automatic function inlining
with C compiler option -Ol, or in Eclipse select Project » Properties for » C/C++ Build » Settings »
Tool Settings » C/C++ Compiler » Optimization » Optimization level » Custom Optimization and in
the Custom Optimization tab disable Automatic function inlining), and run the analyses again in the
Embedded Profiler to see the differences.

4.1.4. Delete Duplicate Code and Delete Duplicate Constant Data

The linker optimizations Delete Duplicate Code (linker option -Ox) and Delete Duplicate Constant Data
(linker option -Oy) remove code and constant data that is defined more than once from the resulting object
file.

For profiling results this may result in a function call or a data reference that looks unexpected but is
actually correct. The same code or the same data just another name.

These effects should be considered when looking at profiling results. Turn off these linker optimizations

with linker option -OXY, or in Eclipse select Project » Properties for » C/C++ Build » Settings » Tool

Settings » Linker » Optimization and disable Delete duplicate code and Delete duplicate date), and
run the analyses again in the Embedded Profiler to see the differences.

39

TASKING Embedded Profiler User Guide

4.2. Effects of Interrupt Handlers on Interrupted Functions

Interrupt handlers that do not call any functions (user functions, run-time functions and functions generated
for code compaction) are not visible in function analyses and memory analyses and their clock cycles
are added to the interrupted function. For performance analyses the interrupt function is visible and its
cycles are added to the interrupted function, except for the first few instructions that are part of the interrupt
vector table; the interrupt handler and children are visible and have cycles accounted to them.

Interrupt handlers that do call function(s) are visible for all three analysis types. For function and memory
analyses, the interrupt handler and its children are visible and have cycles accounted to them. These
cycles are not added to the clocks with children of the interrupted function. For performance analyses,
the interrupt handler cycles (including children) are added to clocks with children of the interrupted function,
except for the cycles accounted to the interrupt vector table; the interrupt handler and children are visible
and have cycles accounted to them.

40

Chapter 5. Using the TASKING Embedded
Profiler

You can run the TASKING Embedded Profiler in two ways, via an interactive graphical user interface
(GUI) or via the command line. The GUI variant is useful in showing graphical analysis results with hints
how to improve the code. The command line interface is useful in automated scripts and makefiles to
generate analysis results in comma separated values (CSV) files.

5.1. Run the Embedded Profiler in Interactive Mode

To start the Embedded Profiler select Embedded Profiler from the Windows Start menu. The program
starts with an empty window except for a menu bar and a toolbar at the top. The area below that consists
of two panes. The left pane is used to display a project tree, with a project name, one or more analysis
names and one or more result names. The right pane is used to display an analysis result. You can resize
a pane by dragging one of its four corners and you can move a pane by dragging its title. You can drag
the button toolbar to another place, for example vertically to the left side or even detach it from the main
window.

TASKING Embedded Profiler vi.yrz

Project Analysis Result Help

Mo open project Mo analysis result selected

Normal project management is available. You can create, open, edit, close or delete a project. A project
filename will have the extension . EnbPr of .

41

TASKING Embedded Profiler User Guide

The steps to:
 create a project
 create an analysis

* run an analysis

are described in Section 3.2, Analyze Project in TASKING Embedded Profiler.

See also Section 3.5, Compare Results and Section 3.6, Export Results. For details about the Results

see Chapter 6, Reference.

5.2. Run the Embedded Profiler from the Command Line

To run the Embedded Profiler from the command line use the EmbProfCmd batch file in a Windows
Command Prompt. Enter the following command to see the usage:

EnbProf Cnd - - hel p

The general invocation syntax is:

EnbPr of Cnd options project. EnbPr of

where, pr oj ect . EnbPr of refers to an existing Embedded Profiler project file.

The following opt i ons are available:

Option

Description

-? | --help

This option causes the program to display an overview of all command
line options.

--compare=result

This option allows you to compare the results of a run with another result.

-mresult You must specify the name of an existing reference result. Option --run
should be used together with this option.

--continuous This option allows you to run the analysis in continuous trace mode.

-C Without this option, the default is one shot mode.

--core=core-nr

This option allows you to specify the core index number. Without this
option, the default is core 0.

--flash
-f

This option flashes the new ELF file if it differs from the loaded ELF file.

--frequency=frequency

This option allows you to specify the core frequency in Mhz. Without this
option, the previously measured frequency is used.

--jtag=speed
-jspeed

This option allows you to set the JTAG speed in MHz.

--memorytype=type
-ttype

This option allows you to specify the trace memory type. type can be TCM,
XTM or TRAM.

42

Using the TASKING Embedded Profiler

Option

Description

--periodclocks=clocks

This option allows you to specify the duration of the trace in number of
CPU clocks.

--periodcount=count

This option allows you to set the number of periods that the analysis should
run.

--periodseconds=seconds

This option allows you to specify the duration of the trace in seconds.

--run=analysis
-ranalysis

This option allows you to run an existing analysis.

--server=hostname
-shostname

This option allows you to specify the device server name. If you omit this
option, the default is | ocal host .

--tilerange=from-to

This option allows you to specify the tile memory range for the TCM

-xfrom-to memory type.
--version This option shows the program version header.
-V

To run an existing analysis

Use the following syntax to run an existing analysis from the command line:

EnbPr of Cnd - - run=anal ysi s proj ect. EnbPr of

where, pr oj ect . EnbPr of refers to an existing Embedded Profiler project file.

To run and compare an existing analysis

Use the following syntax to run an existing analysis and compare the results with a previous result from

the command line:

EnbPr of Cd - -run=anal ysi s --conpare=result project.EnbProf

where, pr oj ect . EnbPr of refers to an existing Embedded Profiler project file.

5.2.1. Command Line Tutorial

In this section we use tutorial deno_dspr _t ¢39 with the delivered deno_dspr _t ¢39. EnbPr of to
illustrate the use of the command line options of the Embedded Profiler.

Prepare command line

Before you run the Embedded Profiler from the command line, follow these steps to configure the Windows

command prompt.

1. Start the Windows Command Prompt and go to the workspace directory containing the tutorial

deno_dspr_t ¢c39.

43

TASKING Embedded Profiler User Guide

B Command Prompt - O X

C:\Users\name\workspace_profi\demo_dspr_t«

Add the executable directory of the Embedded Profiler to the environment variable PATH. The
executable directory is the pr of i | er directory in the installation directory. Substitute version with
the correct version number.

set PATH=YPATHY% " C. \ Program Fi | es\ TASKI NG\ pr of version\profiler"

Command line examples

1.

44

To run a performance analysis on deno_dspr _t ¢39 using one shot trace mode, enter:
EnbPr of Cd - - run=Per f Anal ysi s-1 deno_dspr _t c39. EnbPr of

The results are exported to the CSV files denp_dspr _t ¢39_functi ons. csv and
deno_dspr_tc39_instructions. csv.You can inspect these files with any text editor. The first
line in a CSV file shows the columns that are used.

Note that the command line invocation does not add a new result entry to the
deno_dspr _t ¢39. EnbPr of file.

To run a performance analysis on denp_dspr _t ¢39 using one shot trace mode and compare the
results with or i gi nal , enter:

EnmbPr of Cd - - run=Per f Anal ysi s-1 --conpare=origi nal deno_dspr_t c39. EnbPr of

The results of the comparison are exported to the CSV file
deno_dspr_tc39 _di ff_functions. csv.Ifall value fields are zero, this indicates that the results
are identical.

Using the TASKING Embedded Profiler

3. Torun a performance analysis on derno_dspr _t ¢39 using one shot trace mode and compare the
results with f i xed, enter:

EnbPr of Cnd - -run=Perf Anal ysi s-1 --conpare=fi xed deno_dspr _t c39. EnbPr of

The results of the comparison are exported to the CSV file

deno_dspr_tc39_di ff_functions. csv. Fields that contain zeros indicate no change. Fields
with negative values indicate an improvement, fields with positive values indicate worse performance.
In this example the comparison is worse, because we compare the original result (non-fixed sources)
with a version where the sources have been fixed. Normally, you compare your results with a previous
result.

4. To run an analysis using continuous trace mode use option --continuous. Be aware that this mode
requires that the application ends and does not contain endless whi | e loops. Otherwise an analysis
run will not end.

EnbPr of Cnd - -run=Perf Anal ysi s-1 --conpare=fixed --continuous
deno_dspr _t ¢39. EnbPr of

5. To run an analysis on a specific core, use option --core=core-nr. For the TC39xB derivative your
can use the values 0 to 5. Be aware that a core needs to be enabled in the startup code of the
application. Otherwise the analysis run will not terminate.

EnmbPr of Crd - - run=Per f Anal ysi s-1 --conpare=fixed --continuous
--core=0 deno_dspr_t c39. EnbPr of

6. To specify a remote host to connect to the target, use option --server=hostname. The default, if you
do not specify this option, is | ocal host .

EnbPr of Crd - -run=Per f Anal ysi s-1 --conpare=fixed --continuous
--core=0 --server=nyservername deno_dspr_tc39. EnbPr of

5.3.What to Do if Your Application Does not Start on a Board?

When you profile an application and you encounter the error message:

Trace error: cannot find code at address address
Do you want to continue the run?

it might be the case that the application does not include a valid Boot Mode Header 0 (BMHDO)
configuration, or that the start address in the Boot Mode Header on the target does not match the start
address of the application. In order to fix this you need to initialize a Boot Mode Header for your target.
But be careful, you need to know what you are doing, because wrong use of the Boot Mode Headers
might brick the device. Therefore, we advice you to first read chapter 4 TC29x BootROM Content of the
AURIX™ TC29x B-Step User's Manual, or similar chapter in the User's Manual for other devices. Also
read sections 7.9.13 Boot Mode Headers, and section 9.7.1. Boot Mode Headers in the TriCore User
Guide.

45

TASKING Embedded Profiler User Guide

To initialize the Boot Mode Header using Eclipse in the TASKING VX-toolset for TriCore:

1.

3.

46

From the Project menu, select Properties for » C/C++ Build » Memory, and open the Boot Mode

Headers tab.

In Boot Mode Header 0, from the Boot Mode Header configuration, select Generate Boot Mode

Header.

ﬁj Properties for myproject

type filter text

Resource
Builders
v C/C++ Build

Build Variables
Environment
Logging
Memory
Processor
Settings
Stack/Heap
Startup Configuration
Startup Registers

C/C++ General

Project References

Run/Debug Settings

Memory

Configuration: | Debug [Active]

Memory Reserved MCS Macros Special Areas Boot Mode Headers

Boot Mode Header 0 (0xaf400000)
Boot Mode Header cenfiguration:
Hardware configuration start-up
[Lockstep for CPU O
[Lockstep for CPU 1
[Lockstep for CPU 2
[Lockstep for CPU 3

User code start address:

Boot Mode Header 2 (0xaf400400]

Boot Mode Header cenfiguration:

Lockstep for CPU 0
Lockstep for CPU 1
Lockstep for CPU 2
Lockstep for CPU 2

Generate Boot Mode Heac

Internal start frem Flash ~ ~

Mode selection by HWCFG pins

[LBIST execution start by SSW

"_START"

Reserve Boot Mode Heade

Internal start from Flash

Mode selection by

LBIST execution start by

“_START"

(@) Settings are stored in the project lsl file: myproject |

FG pins

Boot Mode Header 1 (0xaf400200)

Boot Mode Header configuration:

Lockstep for CPU 0
Lockstep for CPU 1
Lockstep for CPU 2
Lockstep for CPU 3

Boot Mode Header 3 (0xaf400600)

Boot Mode Header configuration:

Lockstep for CPU D
Lockstep for CPU 1
Lockstep for CPU 2
Lockstep for CPU 3

| | Manage Configurations...

Reserve Boot Mode Heade ~

Internal start from Flash

Mode selection b

WCFG pins

LBIST execution star

"_START"

Reserve Boot Mode Heade

Internal start from Flash
Mode selection by HWEFG pins
LBIST execution start by /

"_START"

Restore Defaults Apply

Cancel

Leave the other default settings untouched and select OK.

This will initialize the Boot Mode Header to allow for stand-alone execution of the target.

Chapter 6. Reference

Every analysis result shows a number of tabs with information. What information is shown depends on
the type of the analysis: performance analysis, memory access analysis or function-level analysis.

Furthermore there is a Settings dialog where you can specify values that influence the way information
is shown in the analysis results. Also the Analysis Scope page of the New Analysis wizard is described
in more detail.

This chapter contains a description of the Settings dialog and contains an overview of all the fields and
columns in an analysis result.

6.1. Settings Dialog

In the Settings dialog you can specify values that influence the way information is shown in the analysis
results.

To open the Settings dialog
1. From the Project menu, select Settings.

The Settings dialog appears.

Settings 4
Io\ Edit settings
Analysis thresholds
Threshold for average stalls per clock:
Threshold factor for memory access:
Load colors
Load low: Threshold % -
Load average: [
Load high: Threshold % [
Graph colors
Line 1: []
Line 2:
Line 3: [|
Line 4: [|
Line 3: -
Bar minimum: -
Bar: -
Bar maximum: [

Defaults Cancel

2. Change the values and/or colors and click OK.

All results will be updated to reflect the new thresholds.

47

TASKING Embedded Profiler User Guide
When you click the Defaults button all the values of the Settings dialog are reset to there initial values.
By clicking on a color a color selector pops up where you can change the color.

When you run a Performance analysis, the value of Threshold for average stalls per clock determines
when the Average stalls per clock value is marked red.

The Threshold factor for memory access is used to calculate the threshold for memory access in a
Memory analysis:

Threshold factor for memory access * Local Data Scratch Pad RAM accesses = Threshold for memory
access

This means, for example, when Local Data Scratch Pad RAM accesses is 32000, and the value of DSPR2
of 31950 will be marked red because it is higher than 0.05*32000=1600. Also other memory accesses
that are higher than 1600 will be marked red.

In the Graph colors group you can change the colors of the graph lines.

When you run a DMA Load analysis, the settings in the Load colors group are visible on the DMA Load
tab in the Load column. The load threshold values determine when the cells on the DMA Load tab in the
Load column are changing their colors.

6.2. Analysis Scope Page

On the Analysis Scope page in the New Analysis wizard you can specify the application functions and
address ranges you want to trace. If you do not specify anything, the whole application will be analyzed
(the full address range).

48

Reference

Mew Analysis >
"

Application functions: Tracing 4 ranges (max 4)
| 0x80002f3a-Dx80002¢98 x| | < Fiiter | 0200000000
0x00002EEE
exit [0xB0002f3a-0x B0002FAf] 1 x00002000
felose [0 B0O0D2F50-0xB0002FTT) | 000005000

fputc [0x80002f78-0x 80002F97] 0200005001

OxTEEEEEEE

)

0x80000000

0x30002£00

main 028000235

Add ->

- 0x80002£98
<- Remove printf 0:20002£kd

0x20002000

0x80003001

texttraptab0.trapvec.000 gi:gg:gggg

Oxal0fcOal

texttraptabO.trapvec.005 577 27070

H

Invert all

Address region: | | Add -» <- Set OxffEEFEEE

<- Back Mext -» Finish Cancel

The Analysis Scope page consists of two sides. On the left side you can select the Application functions
or specify a (user defined) address region. The right side reflects the result of the selection and shows
the resulting trace ranges. The bar in front of the right side indicates if the function or region is part of the
trace (green color) or excluded from the trace (white color).

Hover the mouse over a field or button or area to get additional help information.

A function region is defined by a selected function from the ELF file, the actual address range is read
from the ELF file upon start of the trace run. Their ranges cannot overlap.

A user region has a fixed address range defined by the user. Their ranges cannot overlap.

You can mark each function or user region on the right side as exclude (white box) or trace (blue box for
user region, green box for function). A gray area means that no selection has been made.

Optionally, you can extend each function or user region to encompass the address range extending from
its end to the next begin or end border of any other function or user range.

The resulting trace ranges are based on all (possibly extended) function regions and user regions, where
for overlapping address ranges the function region exclude/trace status takes precedence over the user
region. The ranges are shown as numbered dark green bars in front of the right side of the dialog, A
dialog finish is only possible if the number of ranges does not exceed the hardware capabilities.

49

TASKING Embedded Profiler User Guide

To filter the list of Application functions

Either

* enter part of the function name, or

» enter an address range, or

« click on a function or range on the right side and click Filter to get an initial filter which you can change
afterwards.

The Application functions list will show the filtered list.

To add a function to the trace range

1.

Select a function from the list of Application functions. You can use a filter first to make your
selection easier

Click Add.

The function will be part of the trace range.

To add a user region to the trace range

1.

In the Address region fields, enter the begin and end address of the region you want to be part of
the trace. You can first click on a function or region on the right side and click Set, to have an initial
range you can edit.

Click Add.

The region will be part of the trace range.

To extend a function or user region

1.

2.

Hover the mouse over an area on the right side to see which part can be extended.

Either double-click on the extension part, or select it first and then hit the spacebar to toggle the
extension.

For example, see the figure above. If you double-click on the part between rmai n and pri nt f, function
mai n will be extended and a (+) appears next to the function.

50

Reference

(=]

Q20000000

02x20002£00
0x30002£35

Extended region for main
printf double-click to disable extending

0230003000

main (+]

To include/exclude a function or user region from the trace range

1. Hover the mouse over an area on the right side to see which part can be excluded. Blue and green
parts are part of the trace.

2. Either double-click on the function or region, or select it first and then hit the spacebar to toggle the
exclude/trace.

The box/area turns white to indicate that it is no longer part of the trace.

Note that you can use the Invert all button to toggle all exclude/trace parts.

Final address range

Note that the final address range of a function is only retrieved on trace start. Theoretically functions can
swap order or move in or out of user ranges since the last time you have seen the wizard Analysis scope
page. On the Run Analysis dialog the configured trace scope is shown without function addresses, only
when the trace is started the ELF memory layout is retrieved and used to configure the trace ranges for
that run.

51

TASKING Embedded Profiler User Guide

Run Performance Analysis b4

e
‘.0_' Start a new run

Project

Processon TC39xED

Executable file: Debug'demo_dspr_tc30.elf
Device serven <localhost>

Analysis Configuration

Scope: [D5c4000-05¢5000]
[0:80000000-0520003000]
main (extended to next beundary)
printf
text.traptab0.trapvec.000
text.traptab0.trapvec.003

Core: Core-0 ~

Trace Configuration
Buffer mode: (®) One shot mode () Continuous trace
Attach mode: (®) Reset device () Hot attach

Memory: TEM | Tile range: IZI - (total range = 0..7, tile size = 256 kB)

Trace buffer size = 2,048 kB

Save

Mame: ‘ Result-1

Additional data: [| Raw trace

CEHCEI

6.3. Run DMA Load Analysis Dialog

In the tutorial in section Section 3.2, Analyze Project in TASKING Embedded Profiler is explained how
to run an analysis. When you run a DMA Load analysis, the Run DMA Load Analysis dialog contains
some extra fields which are described here.

52

Reference

Run DMA Load Analysis b

) Start a new run

Project
Processon: TC39ED
Executable file: Debughdemo_dma_simple_tc39.elf

Device serven =localhost>

Analysis Configuration

Scope: (full address range)

Period size: 1,000 @ CPU cycles (O Seconds
Mumber of periods:

Core: Core-0 ~

Frequency: Measured User specified

Trace Configuration

Buffer mode: (®) One shot mode () Continuous trace
Attach mode: (®) Reset device (_) Hot attach

Memory: TEM | Tile range: E = (total range = 0..7, tile size = 236 kB)

Trace buffer size = 2,048 kB

Save

Mame: | Result-1
Additional data: [|Rawtrace [Timeline

Run Cancel

In the Analysis Configuration your can specify a Period size in CPU cycles or Seconds and the Number
of periods that is suitable for your application. After each period information is collected. If you select
Seconds you can specify the User specified core Frequency in MHz. Measured means that the
previously measured frequency is used.

Additionally you can choose to generate Timeline data. See Section 6.15, Timeline Tab.

6.4. Progress Dialog

The Progress dialog shows what is going on after you started a run. When tracing the Process dialog
shows the number of clocks being traced.

Running Trace d

Waiting for trace data

Cancel

53

TASKING Embedded Profiler User Guide

Running Trace X

Receiving and processing trace data 200,696

Running Trace X

Processing pending trace data 10,988,064

The button can show the following texts:

* Cancel

No trace data has been received yet. Clicking the Cancel button will end tracing without saving any
result.

* Stop

Trace data is being received. Clicking the Stop button will stop tracing but continue analyzing all data
already traced by the hardware. This is the only way to halt a continuous trace for
performance/flow/function/memory analysis if the embedded program does not end its main function
or halt the processor. A DMA analysis could also end if a specific number of periods was requested.

e Abort
Tracing has been halted but trace data received is still being analyzed. Clicking the Abort button will

ask for confirmation to discard any traced data not analyzed yet, a result will be saved with only the
analyzed data.

6.5. Summary Tab

On the Summary tab the following information is available for the different analysis types
Performance analysis

» Configuration

* Info

» Performance Hotspots Clocks

54

Source Coverage
ICache Miss Count

DCache Miss Count

Flow analysis

Configuration
Info
Performance Hotspots Clocks

Source Coverage

Memory access analysis

Configuration

Info

Performance Hotspots Clocks
DCache Miss Count

Memory Access

Memory Conflicts

Function-level analysis

Configuration
Info

Performance Hotspots Clocks

DMA Load analysis

Configuration

Info

DMA Load

DMA Channel Load

DMA Load Per Period (only visible if there are multiple periods)

DMA Channel Load Per Period (only visible if there are multiple periods)

Reference

55

TASKING Embedded Profiler User Guide

6.5.1. Configuration

The Configuration part of the Summary tab contains the following information.

Cenfiguration

Processon TC39xED

Trace settings: Core=[0], Mermory=TCM (tile 0-7), Mode=Reset-OneShot

Trace periods: 60x1,000=60,000 cycles

Information

Description

Processor

The name of the selected processor device

Trace settings

The trace configuration settings (e.g. selected cores, buffer mode, attach mode,
memory type, memory range, etc.)

Trace periods

visible for DMA Load analysis.

The period configuration settings (e.g. number of periods, period size, etc.). Only

Items that are marked red have additional information, hover the mouse over a value to see this additional

information.

6.5.2. Info

The Info part of the Summary tab contains the following information.

Info

Started at:
Consumed time:

Clock frequencies (MHz):
CPU data/program cache:

CPU clock count:

DCache misses:

May 26, 2021 6:48:34 PM
24 seconds

CPUQ=100, CPU1=100, CPU2=100, CPU3=100, CPU4=100, CPU5=100, 5RI=100, 5PB=50, EBE=100

DCACHED=0, PCACHED=0, DCACHE1=0, PCACHE1=0, DCACHE2=0, PCACHE2=0, DCACHE3=0,
PCACHE3=0, DCACHE4=0, PCACHE4=0, DCACHE=0, PCACHES=0

170,790
33

Local Data Scratch Pad RAM accesses: 600
CPUO Data Scratch Pad RAM accesses: 32,901

PFLASHD accesses: 99
Local Memory Unit accesses: 554

SFR accesses: 2,546
Information Description Perf Flow Mem Func |DMA
Load
Started at The date and time the analysis was | O O ad O
run
Consumed time The time (in seconds) it took for the |O ad O ad ad

analysis to complete

56

Reference

Information

Description

Perf

Flow

Mem

Func

DMA
Load

Clock frequencies
(MHz)

The values of several clock
frequencies. The values are read at
the start of the analysis before any
reset. If the CPU was reset or halted
at analysis start, the clock
frequencies are not measured.

g

CPU data/program
cache

The CPU 0, 1, 2, ... data cache
(DCache) and program cache
(PCache) settings. DCACHEO=1
means CPUO.DCACHE is enabled,
PCACHE1=0 means
CPU1.PCACHE is disabled. The
values are read at the start of the
analysis before any reset.

CPU clock count

The number of CPU clock cycles on
the board it took to run the analysis

ad

Trace periods

The actual number of trace periods

Period duration

The trace period size in cycles

Stalls

The number of clock cycles the CPU
stalls on branch misses, ICache
misses and/or DCache misses

ad

Average stalls per
clock

The average of stalls / CPU clock
count

g

ICache misses

The number of failed attempts to
read or write instructions from the
instruction cache (ICache)

d

DCache misses

The number of failed attempts to
read or write data from the data
cache (DCache)

ad

Total coverage %

Application coverage percentage,
which indicates the number of
executed instructions of the total
number of instructions.

ad

Source coverage %

Source coverage percentage, which
indicates the number of executed
instructions of the total number of
instructions belonging to source files.

ad

Local Data Scratch
Pad RAM accesses

The number of read or write
accesses to Data Scratch Pad RAM,
where the core could not be
determined

57

TASKING Embedded Profiler User Guide

Information Description Perf Flow |Mem |Func |DMA
Load

CPUx Data Scratch [The number of read or write a
Pad RAM accesses |accesses to Data Scratch Pad RAM
X, where x canbe 0 ..5

PFLASHXx accesses|The number of read or write O
accesses to flash memory
External Bus Unit |The number of read or write O
memory accesses |accesses to the EBU
Local Memory Unit |The number of read or write O
accesses accesses to the LMU
Program Memory |The number of read or write O
Unit accesses accesses to the PMU
SFR accesses The number of read or write O
accesses to Special Function
registers

Items that are marked red are high values that may be improved. Hover the mouse over a value to see
additional information. You can influence the thresholds in the Settings dialog. See Section 6.1, Settings
Dialog.

6.5.3. Performance Hotspots Clocks

The Performance Hotspots Clocks part of the Summary tab shows the functions with the highest clock
count. This chart is available for all analysis types. As you can see in the following example, most of the
time is spent in the functions and mai n, _start and _c_init_entry.

Performance Hotspots Clocks

main

_start(.\cstart.c)

_c_init_entry

_flsbuf

_deoprint

_dbg_cacheawi

_dbg_trap_tc

_putstring

clock

_fflush

0 10,000 20,000 30,000 40,000 50,000 &0,000

58

Reference

If you double-click on a function, the Source tab opens at the selected function.

6.5.4. Source Coverage

The Source Coverage part of the Summary tab shows the functions with source and with the lowest
coverage percentage. This chart is only available for performance analyses and flow analyses.

Source Coverage
rnain

setclockpersec(. \estart.c)

0% 20% 40% 60% 280%% 100%

If you double-click on a function, the Source tab opens at the selected function.

6.5.5. ICache Miss Count

The ICache Miss Count part of the Summary tab shows the functions with the highest number of instruction
cache (ICache) misses. This chart is available for performance analyses only.

ICache Miss Count

_doprint

_start(.\cstart.c)

_putnumber

_c_init_entry

_flsbuf

_dbg_trap_tc

setclockpersec(, \cstart.c)

_fflush

clock

_putstring

6.5.6. DCache Miss Count

The DCache Miss Count part of the Summary tab shows the functions with the highest number of data
cache (DCache) misses. This chart is available for performance analyses and memory access analyses.

59

TASKING Embedded Profiler User Guide

DCache Miss Count

_c_init_entr}r =
rmain

_doclose
_host_close
_doprint

_host_write
scocofun_1{Te800000716)]
_io_pute]
_flsbuf

_fflush

0 500 1,000 1,500 2,000

6.5.7. Memory Access

The Memory Access part of the Summary tab shows the functions with the highest number of data
accesses to memory. This chart is available for memory access analyses only.

Hover the mouse over a value to see additional information.

Mernory Access
main
_start(..\cstart.c)
_emitchar
_c_init
_doprint
clock
strlen
_ltoa
_putstring
_dbg_trap_tc

O 1,000 2000 23000 4000 5000 6,000

60

Reference

6.5.8. Memory Conflicts

The Memory Conflicts part of the summary tab shows the total number of access conflicts where two
variables from different cores access the same memory at the same time. This is called concurrent access.
The denp_concur r ent tutorial delivered with the product demonstrates this problem. This chart is
available for memory access analyses only.

The global variable name that accesses the memory, the core from which the conflicting access originated
and the type of access read (R) or write (W) is listed for the two conflicting variables.

Hover the mouse over a value to see additional information.

Memory Conflicts
warl-CPUD-Rvar3-CPUS-W
warl-CPUD-W/var3-CPUS-W
warl-CPUD-W/vard-CPU4-W
ward-CPU4-Wivars-CPUS-W
warl-CPUD-Wvarl-CPUT-W
var2-CPU2-W/var5-CPUS-W
war2-CPU2-W/vard-CPU4-W
varl-CPUT-W/var5-CPUS-W
warl-CPUT-W/var3-CPU3-W
varl-CPU1-W/var2-CPL2-W

0 200 400 600 200

6.5.9. DMA

The DMA part of the Summary tab shows the total DMA load percentage or activations as an average of
both engines. This chart is available for DMA load analyses only.

61

TASKING Embedded Profiler User Guide

DMA (average of both engines)
(® Load () Activations

DA F W Min load
. B Avg load

0% 20% 0% B0% 80% 1003 B Max load

Hover the mouse over a bar to see additional information.

If you double-click on a bar, the DMA Load tab opens.

6.5.10. DMA Channel

The DMA Channel part of the Summary tab shows the DMA load percentage or activations for the top
most DMA channels. This chart is available for DMA load analyses only.

DMA Channel
® Load () Activations

Channel 3—_

Channeld mm

i M Min load
Channel 2 = B Avg load

B B Max load
Channel 1 —

I T T T T

0% 0% 100% 130% 200%

Hover the mouse over a bar to see additional information.

If you double-click on a bar, the DMA Load tab opens at the selected channel.

62

Reference

6.5.11. DMA Per Period

The DMA Per Period part of the Summary tab shows the total DMA load average or activations on both
engines per period. This chart is available for DMA load analyses only.

DMA Per Pericd (average of both engines)
(® Load () Activations
100% -

30%
— Load

0% ; . —r ;

Hover the mouse over a part of the line to see the load percentage.

If you double-click on a line, the DMA Load tab opens at the selected channel.

6.5.12. DMA Channel Per Period

The DMA Channel Per Period part of the Summary tab shows the DMA load percentage or activations
for the top most DMA channel per period. This chart is available for DMA load analyses only.

DMA Channel Per Period
(® Load () Activations

200%
= Channel 3 lbad
100% ~ Channel 4 bad
— Channel 2 lbad
. { i) — Channel 1 load
o T T T 1 T

0 20 30 40 50 &0

Hover the mouse over a part of the line to see the load percentage.

You can click on a channel line to bring that channel forward. If you double-click on a line, the DMA Load
tab opens at the selected channel.

63

TASKING Embedded Profiler User Guide

6.6. Functions Tab

The Functions tab shows a list with all the measured functions. This tab is available in all analysis types.
The performance analysis contains the most columns. Click on a column to sort the list according to the
information in that column. If you double-click on a function, the Source tab opens at the selected function.
If no source lines can be displayed, the Disassembly tab opens. Hover the mouse over a column to see
additional information.

The Functions tab contains the following information:

Column Description Perf Flow Mem Func

Function The name of the measured function. a a 0 0
Information about static functions is
displayed where available, depending
on the information in the ELF file:

« static functions with a known source
file name. For example:
_start(..\cstart.c)

« static functions without a known
source file name having one
implementation in the ELF file. For
example: . cocofun_3

« static functions without a known
source file name having multiple
implementations in the ELF file. For
example:

. cocofun_1(0x80002c1le)

Source The relative path to the source fileas |0 d d d
stored in the application ELF file
Address The address of the function in the O d d d

application ELF file

Coverage % The function coverage as a percentage |0 d
of total function instructions. Note that
the tool tip in this column shows the
number of covered instructions versus
the number of instructions.

Covered The function is called or not. 0

Clocks The total number of CPU clocks spent | ad ad ad
in the function

% Of Total Time The application execution time spent in [0 ad ad ad
the function as a percentage of the total
application execution time

64

Reference

Column

Description Perf Flow Mem Func

Clocks With Children

The total number of CPU clocks spent |0 d d d
in the function and call tree descendents

Entries The total number of times the function |O ad ad ad
is called

Avg. Clocks/Entry The average number of CPU clocks O ad ad ad
spent in a function per function entry

Max Clocks/Entry The highest number of CPU clocks spent | ad O O

in a function per function entry

Min Clocks/Entry The lowest number of CPU clocks spent | g g g
in a function per function entry
Jitter/Entry The difference between the highest and | O ad ad ad

lowest number of CPU clocks spent in
a function. This is the difference of the
previous two columns.

Branch Misses

The total number of branch misses O

ICache Misses

The total number of instruction cache |0
misses

DCache Misses

The total number of data cache misses | 0

Stalls

The total number of stalls due to memory | O
access delays or pipeline hazards

6.7. Source Lines Tab

The Source Lines tab shows a list with all the source lines of the measured functions where branch misses,
instruction cache misses, data cache misses and/or stalls appear. This tab is available for performance
analyses only. Click on a column to sort the list according to the information in that column. Hover the
mouse over a column to see additional information.

If you double-click on a row, the Source tab opens at the selected source line.

The Source Lines tab contains the following information:

Column Description

Source The source line number, function name and relative path to the source file
where the problem occurred

Clocks The total number of CPU clocks spent on the source line

Coverage %

The source line coverage as a percentage of total source line instructions. Note
that the tool tip in this column shows the number of covered instructions versus
the number of instructions.

Branch Misses

The total number of branch misses

ICache Misses

The total number of instruction cache misses

65

TASKING Embedded Profiler User Guide

Column

Description

DCache Misses

The total number of data cache misses

Stalls

The total number of stalls due to memory access delays or pipeline hazards

6.8. Instructions Tab

The Instructions tab shows a list with all the instructions of the measured functions where branch misses,
instruction cache misses, data cache misses and/or stalls appear. This tab is available for performance
analyses only. Click on a column to sort the list according to the information in that column. Hover the
mouse over a column to see additional information.

If you double-click on a row, the Disassembly tab opens at the selected instruction.

The Instructions tab contains the following information:

Column Description
Address The instruction address and function name where the problem occurred
Clocks The total number of CPU clocks spent on the instruction

Branch Misses

The total number of branch misses

ICache Misses

The total number of instruction cache misses

DCache Misses

The total number of data cache misses

Stalls

The total number of stalls due to memory access delays or pipeline hazards

6.9. Memory Access Tab

The Memory Access tab shows the functions and variables and their data accesses to memory. This tab
is available for memory access analyses only.

Hover the mouse over a value to see additional information.

66

Reference

B

~ (= demo_dspr_tc39
% Perfhnalysis-1
v & MemAnalysis-1
[Result-1

Project Analysis Result Help

TASKING Embedded Profiler viyrz - demo_dspr_tc39 - MemAnalysis-1 - Result-1 — [m] x
Summary Functions Memory Access Memory Conflicts Source Disassembly
Function Variable Region Access Origin - Count V DCache Misses @
main X iy W CPUD. 16,384 2048
_c_init x LMU W CPUD 16,384 2,048
_start{.\cstart.) (.SCU) SFR R CPUD 2,677
_emitchar _iob LMu R CPUO 268 2
_emitchar (LOCALDSPR) DSPR W CPUD 108
_emitchar _ich LMU w CPUD 81 =
_c_init (.PF0) PFLASHO R CPUD B8 12
_start[.\cstart.c) (LOCALDSPR) DSPR w CPUD 6 5
_emitchar (.CPUD.DSPR) DSPRD R CPUD 54 =
_emitchar (LOCALDSPR) DSPR R CPUD 51 1
_c_init _iob LMy w CPUO 50 6
_c_init (.LMUO.RAM) LMuU W CPUD 40 4
_doprint (LOCALDSPR) DSPR w CPUD 33 =
_dbg_trap_tc (LOCALDSPR) DSPR W CPUD 33
_dbg_cacheawi (LOCALDSPR) DSPR W CPUD 32
_c_init (.CPUD.DSPR) DSPRO w CPUD 32
_emitchar (.CPUD.DSPR) DSPRO W CPUD 29
_doprint (LOCALDSPR) DSPR R CPUD 28
_emitchar (.LMUO.RAM) LMU w CPUD 27 =
_doprint (.PF0) PFLASHO R CPUD 27 1
_dhg_trap_tc (LOCALDSPR) DSPR R cPUD 25 5
fclose (LOCALDSPR) DSPR w CPUD 21 =
_dbg_cacheawi (LOCALDSPR) DSPR R CPUD 16 =
fclose (LOCALDSPR) DSPR R CPUD 15 2
strlen (.CPUD.DSPR) DSPRO R CPUD 12
_ltoa (.CPUD.DSPR) DSPRO w CPUD 12
_fflush (LOCALDSPR) DSPR W CPUD 12
_start(.\estart.c) (SCU) SFR W CPUD 11 - v

The Memory Access tab contains the following information:

Column

Description

Function

The name of the function that contains the global variable. Information about
static functions is displayed where available, depending on the information in
the ELF file:

« static functions with a known source file name. For example:
_start(..\cstart.c)

« static functions without a known source file name having one implementation
in the ELF file. For example: . cocof un_3

* static functions without a known source file name having multiple
implementations in the ELF file. For example: . cocof un_1(0x80002c1le)

Variable

The name of the global variable, if the address is associated with a variable,
otherwise "(unidentified)" is shown. This may be because of function stack
area, csa area, peripheral SFR area or another unknown area. Another
possibility is that it is a local static variable which is not shown. In order to have
static variables listed in the profiling analysis results, when building your
application specify the assembler option --emit-locals=+symbols, orin Eclipse
select Project » Properties for » C/C++ Build » Settings » Tool Settings »
Assembler » Symbols » Emit local non-EQU symbols.

Region

The name of the memory

67

TASKING Embedded Profiler User Guide

Column Description

Access The type of access read (R) or write (W)

Origin The core from which the conflicting access originated
Count The number of accesses

DCache Misses

The number of cache misses for this specific access

6.10. Memory Conflicts Tab

The Memory Conflicts tab shows the conflicts where two variables from different cores access the same
memory at the same time. This is called concurrent access. The deno_concur r ent tutorial delivered
with the product demonstrates this problem. This tab is available for memory access analyses only.

Hover the mouse over a value to see additional information.

Summary Functions Memory Access Memory Conflicts Source Disassembly Raw Trace

Function-1 & Variable-1 Region-1 Access-1 Origin-1 Functien-2 Variable-2 Region-2 Access-2 Origin-2 Count ”
i main varl LMU R CPUD main vars LMU w CPUS 952 ;
main varl LMU w CPUD main varl LMU R CPLA 1

main varl) LU W CPUO main varl Lmu w CPU1 945

main varl LMU w CPUD main vard LMU R CPU2 2

main varl) LU W CPUO main var2 Lmu w CcPu2 G44

main varl LMu w CPUD main var3 LMuU R CPU3 1

The Memory Conflicts tab contains the following information:

Column

Description

Function-1 / Function-2

The name of the first/second function that contains the global variable.

Variable-1 / Variable-2

The name of the first/second global variable

Region-1/ Region-2

The name of the first/second memory

Access-1 / Access-2

The type of access read (R) or write (W) for the first/second variable

Origin-1/ Origin-2

The core of the first/second variable from which the conflicting access originated

Count

The number of access conflicts

6.11. Source Tab

The Source tab shows the source code for the selected function. For performance analyses only, trace
data is also present grouped by source line. For performance and flow analyses only, coverage data is

also present.

68

Reference

TASKING Embedded Profiler vx.yrz - demo_dspr_tc39 - PerfAnalysis-1 - Result-1 - [m] X

Project Analysis Result Help

W
v (= demo_dsprte3% || Symmary Functions Sourcelines Instructions Source Disassembly
v @ PerfAnalysis-1
= Result-1 Browse.. | .\demo_dspr.c (loaded C:\Users\name\workspace_profidemo_dspr_te39\demo_dspr.c from from Mov 3, 2020 1:58:44 PM) [Show disassembly
LineNo Source Clocks Coverage % Branch Misses |Cache Misses DCache Misses Stalls -
30
31 #else
32
3
34 n D te aveid the penalty in stalls
£ volatile int _ private0 x[ARRAY SIZE]:
36
37 #endif
38
39 int main(void) 8 100
20 {
il printf({ "Start\n" }; 2 50
2
23 clock_t clockstart = clock(); 12 100 = = = 6
a4
{57 for (int 1 = 0F 1 ¢ BRRAY STZE: 441} 30,864 75 = = 3048 40,883
6 {
47 x[i] = 17 4 66 - 1 - 21
48 }
49
50 int duration = (int) (clock{) - clockstart): 8 100 - - -]
51 printf("duration $i ticks\n", duration): 20 60 - - - 9
52 } 12 100 6
53

The columns are the same as explained in Section 6.7, Source Lines Tab. Red values indicate a miss or
a stall. Light red fields in the coverage columns indicate uncovered lines or instructions. Hover the mouse
over a value to see additional information.

With the Browse button you can open another source file.

When you enable Show disassembly, the disassembly will be intermixed with the source lines.

6.12. Disassembly Tab

The Disassembly tab shows the instructions for the selected function. For performance analyses only,
trace data is also present grouped by instruction address. For performance and flow analyses only,
coverage data is also present.

69

TASKING Embedded Profiler User Guide

TASKING Embedded Profiler vi.yrz - demo_dspr_tc39 - PerfAnalysis-1 - Result-1 - a x
Project Analysis Result Help

ar P

v (= demo dsprte38 1| Summary Functions Source Lines Instructions Source Disassembly
v B PerthnalysisT | o tion Address Disassembly Clocks Covered Branch Misses |CacheMisses DCache Misses Stalls ~
4 Result-1
0x80002ee2 and dls, #0xf
Ox30002eed div d0/dl1,dd,dls 4 v - 1 - 3
0x80002ee8 mov d4/ds,do 2 v -
0x20002eec 3 0xB80002fae 20 v - - - 9
main
0x30002ef0 sub.a sp, $0x8 8 v = o = 3
0x80002ef2 lea a4,0x80000000 -
0x20002ef6 call Ox80002£38 2 v -
0x80002efa call 0x80002bfc 12 v 6
080002 efe mov ds,dz2 16 v 6
0x20002f00 movh.a al5,#0x9004 - -
0x 30002104 lea als, [al5]0x14 32 v - 1 - 13
0x20002f08 mov d15, #0x1 2 v
0x80002f0a lea a2, 0x3fff - - -
0x20002f0e St.wW [al5+] 0x4,d15 114,496 v 1 40,863
0x80002f10 loop a2,0x80002f0e 16,386 v 2047 -
0xB80002f12 call 0x80002bfc 8 v - 6
0x20002f16 sub d2,ds 16 v 9
0x 30002118 ST.W [sp],d2 - -
0x20002f1a movh.a ad,#0x3000 - -
0x80002f1e lea ad, [a4]0x3054 2 v
0x 20002122 call 0xBO002£88 2 v -
0x 30002126 mov dz2,#0x0 8 v 3
0x20002128 ret 4 v 3
exit

0x20002f2a mov dls,d4 4 v
0x20002f2¢ call 0x800020f6 - v
0x80002130 call 0xB800023d4 12 v 6 v

The Disassembly tab contains the following information:

Column Description

Address The instruction address and function name where the problem occurred

Clocks The total number of CPU clocks spent on the instruction

Covered Instruction is executed or not

Branch Misses The total number of branch misses

ICache Misses The total number of instruction cache misses

DCache Misses The total number of data cache misses

Stalls The total number of stalls due to memory access delays or pipeline hazards

Red values indicate a miss or a stall. Light red fields in the Covered column indicate uncovered lines or
instructions. Hover the mouse over a value to see additional information.

If you double-click on a row, the Raw Trace Data tab, if present, opens at the selected address.

Note that due to hardware constraints, a miss or a stall cannot always be linked to the exact
assembly instruction.

70

6.13. Raw Trace Data Tab

Reference

The Raw Trace Data tab is included as a service to advanced users who are familiar with the Infineon
Multi-Core Debug Solution and who want to examine program flow. Raw trace data is useful, for example,
to see why stall cycles are assigned to instructions that do not access memory. This tab is available for
all analysis types, but only when you enable Save Raw trace data in the Run Analysis dialog.

Hover the mouse over a value to see additional information.

nf B &2

w = demo_dspr_tc39
~ g PerfAnalysis-1
4 Result-1
[Result-2
= Raw Trace Data
& MemAnalysis-1

Project Analysis Result Help

TASKING Embedded Profiler vx.yrz - demo_dspr_tc39 - PerfAnalysis-1 - Raw Trace Data

Summary Functions Sourcelines Instructions Source Disassembly Raw Trace

~

v

G 4 & | §F Search: | 0x20002d88 % | ChUsers\name\workspace_profidemo_dspr_tc3%demo_dspr_tc3%\rawtrace-381-0.EmbProf
No Timestamp Ticks OPoint QOrigin Operation Data Address Function/Variable Disassembly
33 1,578 3 MCDS MCDS_COUNTER COQUNTER_3 (stall) 0x3 0
32 1,584 3 MCDS MCDS_COUNTER COUNTER_3 (stall) 0x3 0x0
333 1,590 3 MCDS MCDS_COUNTER COUNTER_3 (stall) 0x3 0x0
334 1,596 3 MCDS MCDS_COUNTER COUNTER_3 (stall) 0x3 0x0
335 1,602 3 MCDS MCDS_COUNTER COUNTER_3 (stall) 0x3 0x0
336 1,608 3 MCDS MCDS_COUNTER COQUNTER_3 (stall) 0x3 0x0
337 1,614 3 MCDS MCDS_COUNTER COUNTER_3 (stall) 0x3 0x0
338 1,620 3 MCDS MCDS_COUNTER COUNTER_3 (stall) 0x3 0x0
339 1,626 3 MCDS MCDS_COUNTER COUNTER_3 (stall) 3 0x0
240 1,632 3 MCDS MCDS_COUNTER COUNTER_3 (stall) 03 0x0
341 1,638 3 MCDS MCDS_COUNTER COUNTER_3 (stall) 0x3 0x0
1342 1,644 2 CPUD CcPUo [} 0x0 0x80002d88 _start(..\cstart.c) jz.t d15:0x1, 0x80002d84 ;
243 1,648 3 MCDS MCDS_COUNTER COUNTER_3 (stall) 0x3 0x0
344 1,654 3 MCDS MCDS_COUNTER COQUNTER_3 (stall) 0x3 0
345 1,660 3 MCDS MCDS_COUNTER COUNTER_3 (stall) 0x3 0x0
46 1,666 3 CPUD CPUD P Ox0 0:x80002d24 _start(.\cstart.c) ld.bu dl5, [a2]0x6010
347 1,672 1 MCDS MCDS_COUNTER COUNTER_3 (stall) 0x3 0x0
ELL 1,674 1 CPUD CcPUD P 0x0 0x80002d88 _start(.\cstart.c) izt d15:0x1, 0x80002d84
343 1,676 3 MCDS MCDS_COUNTER COQUNTER_3 (stall) 0x3 0x0
350 1,682 3 MCDS MCDS_COUNTER COUNTER_3 (stall) 0x3 0x0
351 1,688 3 MCDS MCDS_COUNTER COUNTER_3 (stall) 0x3 0x0
352 1,694 1 CPUD CPUD P Ox0 0:x80002d84 _start(.\cstart.c) ld.bu dl5, [a2] 0x6010

In the Search field you can enter an address to search for. All matches are marked with a gray bar. With
the buttons you can navigate to the Next, Previous, First or Last occurrence.

If you double-click on a row, the Disassembly tab opens at the selected address.

The Raw Trace Data tab contains the following information:

Column Description

No The sequence number for every raw trace operation.

TimeStamp The amount of clocks since the first traced IP record. O is start of analysis.

Ticks The MCDS clock Ticks between trace messages. Please note that one Tick is
equal to two CPU cycles.

OPoint Displays the Observation Point of the trace data. The observation point is the
physical data acquisition point inside the SoC (System-on-Chip). For example
the CPUO, CPU1, SRI bus, and so on.

Origin The origin of the activity. In most cases this is the same as OPoint.

71

TASKING Embedded Profiler User Guide

Column Description

Operation The operation being executed but not on the level of assembler mnemonics
for program trace. It displays a more abstract type of the operation. For example,
IP_CALL, IP_RET, MEMORY_READ, MEMORY_WRITE or one of the internal
performance counters COUNTER_x.

Data The data written or read.

Address The pointer of the instruction (IP) which is being executed. If the Operation

column displays an R/W Operation, the Address column displays the address
where data is read or written to.

Function/Variable

The function or variable at the given address.

Disassembly

The disassembly at the given address.

Example how to use raw trace data for analysis

1. Importthe deno_concurrent example.

2. Run a One shot mode performance analysis with Save additional data Raw trace enabled.

3. Open the Instructions tab and sort the Stalls column.

Notice that near the topisal oop a4, 0x800022be instruction with a value of 123 stalls at address
0x800022c2.

Summary Functions Source Lines Instructions Source Disassembly Raw Trace

Address Disassembly Clocks Covered Branch Misses |Cache Misses DCache Misses Stalls v 2
(x80002eb0 1d.bu dl15, [a2]0x6010 53,300 v 24204
(x80002ebd jz.t dl15:0x1, 0x30002eb0 10,806 v 2,718
(x80003766 loop al5, 0x80003760 3,996 v 999
(x80003760 1d.w dl5, [a2]0x0 3,998 v 999
(x800022be 1d.w dl, [a2+]0x4 384 v 129
{x800022c2 loop ad, 0x800022be 326 u" 13 123
(x80002798 extr.u d4,dd4,#0x0,#0x8 200 V' 8

4. Inthe Raw Trace Data tab, enter the address 0x800022c?2 in the Search box and search for the
first occurrence.

When searching through the raw trace data, it shows that the previous executed instruction is at
address 0x800022c0.

72

5.

Summary Functions SourceLines Instructions Source Disassembly Raw Trace

Reference

~

T | & | Search: | (x800022c2 X ‘ C\Users\name\workspace_profidemo_concurrent_tc3%demo_concurrent_tc3%\rawtrace-1-0.EmbProfRaw

Mo Timestamp Ticks OPoint Origin Operation Data Address Function/Variable Disassembly
15872 69,920 3 MCDS MCDS_COUNTER COUNTER 3 (stall) Ox3 ox0
15873 69,926 3 MCDS MCDS_COUNTER COUNTER_3 (stall] (3 ox0
15,874 69,932 3 MCDS MCDS_COUNTER COUNTER_3 (stall) 0x3 0x0
15875 69,938 3 MCDS MCDS_COUNTER COUNTER_2 (stall) 0x3 0x0

115,876 69,944 1 CPUD CPUD P 0x0 0x800022c0 _c_init_entry st.w [212+]0x4,d1
15,877 69,946 3 MCDS MCDS_COUNTER COUNTER_3 (stall) 0x3 Ox0
15,878 69,952 2 CPUD CPUD 1P 00 0x800022c2 _c_imit_entry loop ad,0x800022be
15879 69,956 1 CPUD CPUO 13 0x0 0x800022be _c_init_entry ld.w dl, [a2+]0x4
15,880 69,958 1 MCDS MCDS_COUNTER COUNTER O (deac... Ox1 ox0
15,881 69,960 CPUO CPUO P 00 0x800022c2 _c_init_entry loop a4, 0x800022be
15,882 69,960 2 CPUD (@211 P 0x0 0x200022be _c_init_entry ld.w dl, [a2+]0x4
15,883 69,964 1 MCDS MCDS_COUNTER COUNTER_3 (stall) 0x3 0x0
15,884 69,966 3 MCDS MCDS_COUNTER COUMNTER_3 (stall) 0x3 0x0
15,885 69,972 3 MCDS MCDS_COUNTER COUMTER_3 (stall) 0xc3 0x0

Double-click on the address and the view will switch to the Disassembly tab at the specified address,
in this case st . w [al2+] 0x4, d1.

Summary Functions

Source Lines Instructions Source Disassembly Raw Trace

~

Function Address Disassembly Clocks Covered Branch Misses |Cache Misses DCache Misses Stalls
0x800022ac and do,dlz, #0x3 = - - - = -
(x800022b0 sh d415,d12, $-0x2 10 " = . - 3
0x800022b4 jz d15,0xB800022cé 2 v - - = =
0x800022b6 mov dl,d1s 2 o - - = -
0%x800022b8 mov.aa a2,al3 10 v - - - 3
0x800022ba add dl, #-0xl 2 -a" = = 1 =
0%800022bc mov.a ad,dl 2 o = - - =
0x800022be 1d.w dl, [a2+]Ox4 384 g - = = 129
0x800022c0 st.w [al2+]0x4d,dl 34 o - - - 18
0x800022c2 loop ad,0x800022be 326 + - - 13 123
0x800022c4 addsc.a al3,al3,dls,#0x2 2 + - = - -
0x800022c6 mov dlz,do 2 + - = = -
0x800022c8 jeq dlz, #0x0, 0xB0002285 2 "y - = = -
0x800022cc add dlz, #-0xl - - = = -

73

TASKING Embedded Profiler User Guide

6.14. DMA Load Tab

The DMA Load tab shows a table with all the measured clocks and load percentages for a DMA Load
analysis.

Summary DMALoad Timeline
[Details [Totals

Channel Period Activations Clocks ¥ Min Load % Max Load % Load % Load Remarks “
aaa 4 208009 - 57.8 6.93 () I (*) average of both engines
1 18 - 614 61.4 B

0 45 1 578 57.8 []

0 18 - 542 54.2 []

1 46 - 538 53.8 [

1 45 1 506 50.6 []

0 17 1 494 494 []

0 46 - 66 4656 []

1 17 1 422 422 []

0 1

0 2

Click on a column to sort the table according to the information in that column. For sub sorting keep the
Ctrl key pressed while clicking on another column.

Uncheck the Details check box to hide the detail information. Uncheck the Totals check box to hide the
totals (at least one of the 2 check boxes must be enabled, this will be forced by the program).

The totals over channels average the clocks and the load over both DMA engines. Which means
a period with channel 1 50% busy on engine 1 and 25% on engine 2 shows as 75% total load for
the channel, and as 37.5% load for DMA. Background info: a channel can only be busy on one
engine at the time, while the DMA has a total capacity of two engines. Meaning that a single
permanently busy channel uses 50% of the DMA.

Hover the mouse over a column to see additional information.

The DMA Load tab contains the following information:

Information Description

Channel The measured channel

Period The measured period

Activations The number of times a channel becomes active in a period
Clocks The measured total clocks

Min Load % The lowest measured load in percentage

Max Load % The highest measured load in percentage

Load % The average measured load in percentage

Load The average measured load displayed as color in percentage

74

Reference

Information Description

Remarks Remarks

6.15. Timeline Tab

The Timeline tab shows timing information for a DMA Load analysis. It is only available if you enabled
the Timeline checkbox in the Run DMA Load Analysis dialog.

Summary DMA Load Timeline

Select: | Visible | MNone Shows (DA (O Selected (@) Active Hla o B ¥

e I TN S 1) 88 GRS €) © SETA S 0 G O 0) © SET O
oo————— |
wwe | b L R e e
e [T W EL R e
Sl ST A IRIREREE R AR T | TR ARRRRE U RESEETEL A
epwe @4 @obmm
we L R TR

printf : : : : | [fputc: 16,758-16,776 (duration 18) |

—

- DMA ---4{0 40, 1)

<idle> i

Channel 0 ---J:|

Channel 1 ---J;- :

16500 16,550 16600 16,650 16700 758| 16,800 16,850 16900 16950 17,000 17,050 17,100 17150 17,200 17,25
L4 >

Hover all buttons for information. Hover or click the top right question mark for all non-button options. Use
the Select and Show buttons to filter on what you want to see.

There are two different sort of lines:
» group lines - Show active values on the CPU or DMA. A group line shows as a diamond-shaped line.

» value lines - Each line shows the value being active or not on the parent CPU or DMA. A value line
shows as an n-shaped light grey active zone.

If you click on a line it becomes blue, meaning that it is the current line. With the green buttons you can
jump to events on the current line.

A vertical blue line indicates the position on the timeline. Zoom in to make it more precise.

Depending on the zoom level there is detailed information about an event. Hovering will display time
information for the event (or multiple events if events are really happening simultaneously for that
CPU/DMA). Citrl-left-click displays the information in a separate window. If zooming out leads to multiple

75

TASKING Embedded Profiler User Guide

consecutive events in a column, only the values are known, any order/timing/frequency information is
lost (group line and value line both show as closed medium-gray box). Hovering will only display the
values becoming active at least once in the column.

To measure the distance between events
1. Left-click on the first event you want to be part of the measurement.
The event becomes blue.
2. Right-click on the second event you want to be part of the measurement.

The event becomes green and between red lines the result of the measurement is shown.

Summary DMA Load Timeline

Select: | Visible | Mone Show: (AN (O Selected (@) Active (D |

- CPU IFxDmaBasicDemao_run pr. L fsbuf W d.., f i flsbut

[fxDmaBasi

[] [

_doprint

il

=

_emitchar

_flsbuf

J
a

_io_putc

fputc

printf

|

-DMA ------ %0 W0, 1

T
!

.

<idle> ------ 4 !
: T

. !

Channel 0 ------ J|

Channel 1 ------ J'—;_I

16,500 16,550 16600 16,650(16.892p0 16750 16,800 16)16,230 (+198)

16,950

76

	TASKING Embedded Profiler User Guide
	Table of Contents
	Manual Purpose and Structure
	Chapter 1. Installing the Software
	1.1. Installation for Windows
	1.2. Licensing
	1.2.1. Obtaining a License
	1.2.2. Frequently Asked Questions (FAQ)
	1.2.3. Installing a License
	1.2.3.1. Configure the Firewall in your Network
	1.2.3.2. Installing Server Based Licenses (Floating or Node-Locked)
	1.2.3.3. Installing Client Based Licenses (Node-Locked)

	Chapter 2. Introduction to the TASKING Embedded Profiler
	2.1. Trace Support
	2.1.1. MCDS
	2.1.2. miniMCDS
	2.1.3. MCDS Light

	2.2. Trace Limitations

	Chapter 3. Tutorial
	3.1. Prepare Demo Project in Eclipse
	3.2. Analyze Project in TASKING Embedded Profiler
	3.3. Fix the Problem
	3.4. Verify Fix in TASKING Embedded Profiler
	3.5. Compare Results
	3.6. Export Results

	Chapter 4. Effects on Profiling Analysis Results
	4.1. Differences in Analysis Results Due to Compiler and Linker Optimizations
	4.1.1. Tail Call Optimization
	4.1.2. Code Compaction (Reverse Inlining)
	4.1.3. Automatic Function Inlining
	4.1.4. Delete Duplicate Code and Delete Duplicate Constant Data

	4.2. Effects of Interrupt Handlers on Interrupted Functions

	Chapter 5. Using the TASKING Embedded Profiler
	5.1. Run the Embedded Profiler in Interactive Mode
	5.2. Run the Embedded Profiler from the Command Line
	5.2.1. Command Line Tutorial

	5.3. What to Do if Your Application Does not Start on a Board?

	Chapter 6. Reference
	6.1. Settings Dialog
	6.2. Analysis Scope Page
	6.3. Run DMA Load Analysis Dialog
	6.4. Progress Dialog
	6.5. Summary Tab
	6.5.1. Configuration
	6.5.2. Info
	6.5.3. Performance Hotspots Clocks
	6.5.4. Source Coverage
	6.5.5. ICache Miss Count
	6.5.6. DCache Miss Count
	6.5.7. Memory Access
	6.5.8. Memory Conflicts
	6.5.9. DMA
	6.5.10. DMA Channel
	6.5.11. DMA Per Period
	6.5.12. DMA Channel Per Period

	6.6. Functions Tab
	6.7. Source Lines Tab
	6.8. Instructions Tab
	6.9. Memory Access Tab
	6.10. Memory Conflicts Tab
	6.11. Source Tab
	6.12. Disassembly Tab
	6.13. Raw Trace Data Tab
	6.14. DMA Load Tab
	6.15. Timeline Tab

