TASKING VX-toolset for
RH850 User Guide

MA150-800 (v2.1) June 23, 2014

Copyright © 2014 Altium BV.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of Altium BV. Unauthorized duplication of this work may also be prohibited by local statute.
Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, TASKING,
and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other
registered or unregistered trademarks referenced herein are the property of their respective owners and no trademark
rights to the same are claimed.

Table of Contents

I O 1= T o > T TS 1
L1 DALA TYPES e 1
1.2, ACCESSING MEBMIOIY ..ottt e e e e e e e e e e e 2

1.2.2. Memory QUANITIEISiuie e 3
1.2.2. Data Allocation Options and Pragmasc.ouiuiririiiiiiii i aeaeaes 4
1.2.3. Allocation of Uninitialized CONSIANTSouiiiiiiiiie e 5
1.2.4. Placing an Object at an Absolute Address: __ at()oveveiiiiniiiiiiiiiieeeaeans 5
1.3, SEALIC ASSEITIONS ...eeniti ittt et ettt et e 6
1.4, Shift JIS Kanji SUPPOIT . ..eeitititii e e e e e e e a s 6
1.5. Using Assembly in the C SOUIrCe: _ aSM() .uvuiuinininitititi e e s 7
LB, AHTIDULES et 12
1.7. Pragmas to Control the ComPIiler ... e 17
1.8. Predefined PreproCesSOr MACIOSu.i.iiiiiii ettt aaaas 22
1.9, SWILCH STAIEMIENT ...t et 23
O 0 Tod 1o o O P P 26
0 T B @ {1 To T @] 01Y7=T i o] o PPN 26
1.10.2. Inlining FUNCHONS: INIINEuut e 27
1.10.3. Floating-Point Unit Support: __ fpu, _ nofpucooiiii e 28
1.10.4. INterrupt FUNCHIONS ...uieitit i e ean 29
1.20.5. INtrNSIC FUNCHIONS ..ottt e et 35
I Y=Y i {0 A= T o PP 38

2. ASSEMBIY LANQUAGE ... vttt e e e e e e ettt aas 41
2.0 ASSEMDBIY SYNAX .ttt e 41
2.2. Assembler Significant CharaCterscouiiiiiiiii e 42
2.3. Operands of an Assembly INSTIUCHIONoviiii e 43
b2 S V1] o Yo I NN =T = 43

2.4.1. Predefined Preprocessor SYmbBOISc.ouiuiiiiii e 44
BT =T 1] 1= £ 45
2.6. ASSEMDBIY EXPIrESSIONS .ottt e e 46
2.6.1. NUMEIIC CONSLANESeuitiiitiiite ettt 47
b S (13 T 1 PPN a7
2.6.3. EXPression OPEIatOrSc.iuiuieitiiiiet ettt e e aaaans 48
2.7. WOrKiNg With SECHONS ... vttt e 49
2.8. Built-in Assembly FUNCLIONS ..o e 50
2.9. ASSEMDIET DIFECHIVES ...ttt e et 55
2.9.1. Overview of Assembler DIFECHVESovuiiiiiii e 55
2.9.2. Detailed Description of Assembler DIireCtivesccovviiiiiiiiiiiiiiiiiieeeenn 57
b2 (O IV - Vo (o T @ o =Y - i [0 1 PP 102
2.10.1. DEfiNING @ MACIO ...iuiiiiiiiic e 102
2.10.2. CalliNg @ MACKO ...ouiiii it e e e e e 102
2.10.3. Using Operators for Macro ArgumeENntsc.ouiuiriiiiieiiieiiieneneeeieaenaaens 103
2.11. GENENIC INSIIUCLIONS ... ettt ettt e e e enenas 106

3. USING the € COMPIIET ..ot 109
B0 B @0 T4] o1 F= L1 o I = (T =P 109
3.2. Calling the € ComMPIIET ...ueiee e aees 110
IR T I o oI OS] - T 1] I o o = 112
3.4. How the Compiler Searches Include FIlescooiiiiiiiiii 112
3.5. Compiling fOr DEDUGGING ... vnenieiiee e 113

TASKING VX-toolset for RH850 User Guide

3.6. Compiler OPtIMIZAtIONSuieit e 114
3.6.1. Generic Optimizations (frontend)cc.ovuiiiiii e 115
3.6.2. Core Specific Optimizations (backend)cooviiiiiiiii e 116
3.6.3. Optimize for Code Size or Execution Speedccoovviriiiiiiiiiiieeen 117

3.7. StAtiC COUE ANAIYSIS ...ttt 119
3.7.1. C Code Checking: CERT C ...ttt 120
3.7.2. C Code Checking: MISRA C . ..uiiiiiie e 122

3.8. C Compiler ErrOr MESSAQES .. .uvueenetiit et ettt ettt 124

4. USING the ASSEMDIET ...t 127

4.1, ASSEMDBIY PrOCESS ...t e e 127

4.2. Calling the ASSEMDIETo e 128

4.3. How the Assembler Searches Include Filescooiiiiiiiii e 129

4.4, Assembler OPtMIZALIONS c.uieit e e neenas 130

4.5.Generating a LISt File ... 131

4.6. ASSEMDIET ErTOr MESSAGES .. enietet ettt et et ettt et 131

5. USING the LINKET ...ttt et 133

5.1, LINKING PIOCESS ...ttt ettt e 133
5.1.1. Ph@ase 1: LINKING .. euentiiee et et 135
5.1.2. PhaSe 2: LOCALNG ... tteinitetee ettt e e 136

5.2. CalliNg the LINKET ... e e 137

5.3. LinKing With LIDraries ... 138
5.3.1. How the Linker Searches LIbrariescoooiiiiiiiii e 140
5.3.2. How the Linker Extracts Objects from Librariescoooveiiiiiiiiiniiiniennen. 140

5.4. Incremental LINKINGo.ein e e 141

5.5.Importing BiNAry FilESouirii i 142

5.6. LINKer OPtMIZALIONSvieeiiieieeie et es 142

5.7. Controlling the Linker With @ SCHPLouiiii e 143
5.7.1. Purpose of the Linker Script Languagecoouviiiiiiiiniiiiiieneeeeeeen 144
5.7.2. EClIPSE @NA LSL ...eiiit e 144
5.7.3. Structure of a Linker SCript Filecooeiiii e 146
5.7.4. The Architecture Definitioncooiiriiiii e 149
5.7.5. The Derivative Definition ..o 151
5.7.6. The Processor Definitioncc.ovuiriiiiii e 152
5.7.7.The Memory Definitionc.ouiiiii e 153
5.7.8. The Section Layout Definition: Locating SeCtionscccoveviriiieinnienieninnn. 154

5.8, LINKEr LADEIS ... 156

5.9.Generating @aMap File ..o 158

5.10. LINKEr ErrOr MESSAUESuuviiieiiet ettt ettt ettt eene e 158

6. USING the ULIIIIES ..ottt nene e 161

Lo o] p1 (o] I =l (o £=T 1 o H PP 161

6.2. Make ULIlItY 8IMK ...t e 163
6.2.1. MaKefile RUIES ..ot e 163
6.2.2. MAKETIlE DIFECHIVES ...t e 165
6.2.3. MacCro DEfINItIONSceeie e 165
6.2.4. MaKefile FUNCHIONSiuirie e e 168
6.2.5. ConditioNal PrOCESSINGvuieiiit e 168
6.2.6. MAKETIlE PAISINGceeieiiei e 169
6.2.7. Makefile Command ProCESSINGuuvuriiiiiietie et 170
6.2.8. Calling the amk Make ULIlItYcovuiriiii e 170

8.3, ATCNIVET o e 172

TASKING VX-toolset for RH850 User Guide

6.3.1. Calling the ArChIVETcuii e 172
6.3.2. ArChiVEr EXAMPIES ..o e 174

6.4. HLL ODbjJECE DUMIPET ...ttt et et et naeaes 176
B.4. 1. INVOCALION ...ttt et et 176
6.4.2. HLL DUMP OUPUL FOIMALeueneieii e 176

6.5. EXPIre Cache ULIlILYc.ouiiiniii e e 182
7. USING the DEDUGOET ... ettt et ettt et et e e e naeaes 183
7.1. Reading the Eclipse DOCUMENTALIONvuiriiieiiiie et 183
7.2. Creating a Customized Debug Configurationccoooviiiiiiiiiii e 183
7.3. TrOUDIESNOOUING . ..veieet e e 189
7.4. TASKING DebUQ PEISPECLIVEvieiiiiiiei e e 189
T4 1. DEDUG VIBW .ottt e et 190
7.4.2. BreakpOointS VIEBWuiieiiieie ettt e 192
7.4.3. File System Simulation (FSS) VIEWcciiiiiiiiiiii e 193
7.4.4. DiSaSSEMDBIY VIBW ...t 194
745, EXPrESSIONS VIBW .. .ucuiiitiit ettt 194
T.4.6. MEMOTY VIBW ...ttt et et 195
7.4.7. Compare APPlICAtION VIBWouieii i 196
T.4.8. HEAP VIBW .ot 196
T.4.9. LOGUING VIBW .ttt ettt e 197
T.4.20. RTOS VIBW ...ttt ettt ettt et et e s 197
7411 REQISIEIS VIBW ..ottt ettt e 197

T4 L2, TrACE VIBW ..ottt et e et et 198

R [oTe] @] o] (o] o1 PRSPPI 199
8.1. Configuring the Command Line ENVIFONMENToviiiiieiiiiiiiee e 204
8.2. C COMPIIEr OPLIONS .. .veeitiet ettt et et 205
8.3. ASSEMDIET OPLIONSiietii e e 270
8.4, LINKET OPLIONS ...ttt ettt et et 313
8.5. CoNtrol Program OPLIONSc..vuieiteiitet ettt 361
8.6. Parallel Make ULility OPLIONSeuiteit et eenas 409
8.7. ArChIVEN OPLIONS ...eetieit ettt et et et e 423
8.8. HLL ODbject DUMPET OPLIONSviiiiteiieeee ettt e 438
8.9. Expire Cache ULility OPLIONSueuieiiie et neenes 458
9. Influencing the Build TiMe ... e 469
9.1. OPtIMIZALION OPLIONS ...vuetiteet et et enenes 469
9.2. AULOMALIC INNINING ... et 469
9.3. COdE COMPACTION ...enieeteeet ettt ettt et 469
9.4, CoMPIIEr CACNE ... e 469
9.5, Header FlES ...t 470
9.6. Parallel BUIIL ... 470
L0, LIDIAIIES ettt e 473
10.1. LIBrary FUNCHONS ...ttt et es 474
F0. 1.0, @SSO N et 474
10.1.2. COMPIEX.N oo 474
F0.1.3. CStANT N Lo e 476
10.1.4. ctype.h and WCLYPE.N ..o 476
10,15, dBG.N e 477

F0. 1.6, ITNO.N L 477
10,0, 7. EXCEPLIN o 478

F0. 1.8, FCNELN L e 478

TASKING VX-toolset for RH850 User Guide

10.1.9. OV L 478
10.1.20. FOAEN ot 479
10.1.11. inttypes.h and Stdint.h ... 479

L0, L2, 10 e 480
10.1.13.0S0646.1 .ot 480
L0104, IMIES. N e e e 481
10.1.15. 10CAIE.N oo 481
10.1.26. MAIIOC.H .ot 481
10.1.17. math.h and tgmath.h ... 482
10,108, SEUMP.N e 486
10.1.29. SIgNALIN o 486
10.1.20. SEAAIG.N e 487
10.1.22. SADOOLN .o 487
10.1.22. StAAEf.N oo 487
10.1.23. SEAINEN oo 488
10.1.24. stdio.h @and WChar.h ... 488
10.1.25. stdlib.h @and Wehar.h ... 495
10.1.26. string.h and Weharh ... 498
10.1.27. time.h and WCharh 500
10.1.28. UNISEA.N oot 503
10.1.29. WCNAIN oo 503
10,130, WOEYPE. N o 504

10.2. C Library REENIIANCYuuiiitiiet e et 505
L0, LISt I8 FOIMALS ..ottt ettt ettt et et 517
11.1. Assembler List File FOrMALoouieiei e 517
11.2. Linker Map File FOIMAL et 518
12. ODJECt File FOIMALS .. . it ettt nas 527
12.1. ELF/DWARF ODJECT FOMMALo.iieieieiee et 527
12.2. Intel HEX RECOIA FOIMALueeitiit e e 527
12.3. Motorola S-ReCOrd FOMMALiuitiiiieie e e 530
13. Linker SCript LANGUAGE (LSL) .. euruinitieet ettt et et 533
13.1. Structure of @ Linker SCript File ... 533
13.2. Syntax of the Linker SCript LANQUAGEovuirieieiiieiiie e 535
13,20, PrePIrOCESSING . veuttttietee ettt et ettt ettt 535
13.2.2. LEXICAI SYNIAX ..ttt et 536
13.2.3. 1dentifiers @nd TAGScverieirieei e 536
13,24, EXPIESSIONS ...ttt ettt et 537
13.2.5. BUIlt-IN FUNCLONSvieieieie e e 537
13.2.6. LSL Definitions in the Linker Script Filec.cooiiiii e 540
13.2.7. Memory and Bus Definitionsc.oviuieiiiii e 540
13.2.8. Architecture Definitioncoveririiii e 542
13.2.9. Derivative Definitionc.ouiiniriiii e 545
13.2.10. Processor Definition and Board Specificationccocovoviiiiiiiiniennenne. 546
13.2.10. SECHON SEIUD . oniteitiet et et ettt 546
13.2.12. Section Layout Definitionc.oeiiiniiii e 546

13.3. EXPression EVAIUALIONvuiriiteie et 551
13.4. Semantics of the Architecture Definitioncooiiiiiii 552
13.4.1. Defining an ArChitECIUIEiuirie i 553
13.4.2. Defining INtErnal BUSESou i 554
13.4.3. Defining AAAreSS SPACESucviinieiiieeeie e 554

Vi

TASKING VX-toolset for RH850 User Guide

13044, MAPPINGS ettt et et et 558

13.5. Semantics of the Derivative Definitioncooiiiiii 561
13.5.1. Defining @ DErVALIVEouiiiiiii e 561
13.5.2. Instantiating Core ArChitECIUIrESoovuiuiiiiiie e 562
13.5.3. Defining Internal Memory and BUSEScc.veiiiiiiiiiiiiiiieenee e 562

13.6. Semantics of the Board SpecifiCationcocoviiiiiiiii e 564
13.6.1. DefiniNg @ PrOCESSONuuieitetite e e 564
13.6.2. Instantiating DEerVALIVESc.iiuiiiiii e 565
13.6.3. Defining External Memory and BUSEScoviiiiiiiiiiiiiieeeee e 565

13.7. Semantics of the Section Setup Definition ..o 566
13.7.1. SEttiNg UP 8 SECHIONvutiiit ettt ettt 567

13.8. Semantics of the Section Layout Definitionccovviiiiiiiii e 567
13.8.1. Defining @ SECHON LAYOULvuiiieiiitc e 568
13.8.2. Creating and Locating Groups Of SECHONSccuveiiiiiiiiiiieiieeeeene 569
13.8.3. Creating or Modifying Special SECHONSoeiviiiiiiiiiii e 575
13.8.4. Creating SYMDOIS ..o 579
13.8.5. Conditional Group StateMENTSereniiieiii e 579

14. Debug Target Configuration FilESiuiiiieiiiiii e 581
14.1. CuStOM BOArd SUPPOIT ...ttt ettt et 581
14.2. Description of DTC Elements and AUMNDULESoviiiiiiiii e 582
15. CERT C Secure CodiNg StanCardc.veiuiniiiait et 585
15.1. PreproCeSSOr (PRE)cu ittt e 585
15.2. Declarations and Initialization (DCL)c.vuiriiiiii e 586
15.3. EXPreSSiONS (EXP) ..ottt e e 587
15,4, INEEOEIS (INT) oottt et ettt e 588
15.5. Floating POINt (FLP) ... e 588
15.6. AITAYS (ARR) .ottt 589
15.7. Characters and StringS (STR)euiueiie e 589
15.8. Memory Management (MEM) ... 589
15.9. ENVIONMENt (ENV) ..o e e 590
15.10. SIGNAIS (SIG) +.utiiitiee e 590
15.11. MiISCEllaN@0US (MSC) ...niiitiiiiii i e 591
16. MISRA C RUIBS ...ttt 593
16.1. MISRA C:L1998 ...ttt et 593
16.2. MISRA C:2004 ..ot et e 597
16.3. MISRA Ci2002 ..ot et 605

Vil

TASKING VX-toolset for RH850 User Guide

viii

Chapter 1. C Language

This chapter describes the target specific features of the C language, including language extensions that
are not standard in ISO-C. For example, pragmas are a way to control the compiler from within the C
source.

The TASKING VX-toolset for RH850 C compiler complies to the document RH850 Compiler ABI
Specification, fully supports the ISO-C standard and adds extra possibilities to program the special
functions of the target.

In addition to the standard C language, the compiler supports the following:

» keywords to specify memory types for data and functions

« attribute to specify absolute addresses

« intrinsic (built-in) functions that result in target specific assembly instructions

» pragmas to control the compiler from within the C source

 predefined macros

« the possibility to use assembly instructions in the C source

» keywords for inlining functions and programming interrupt routines

* libraries

All non-standard keywords have two leading underscores (__).

In this chapter the target specific characteristics of the C language are described, including the above
mentioned extensions.

1.1. Data Types

The C compiler supports the ISO C99 defined data types. The sizes of these types are shown in the
following table.

CType Size Align Limits
_Bool 1 8 Oorl
signed char 8 8 [-27, 27-1]
unsigned char 8 8 [0, 28—1]
short 16 16 [-2°, 2151
unsigned short 16 16 [0, 216-1]
int 32 32 [-2%%, 2%
unsigned int 32 32 [0, 232-1]

TASKING VX-toolset for RH850 User Guide

CType Size Align Limits

enum 32 32 [-2%%, 2%

long 32 32 [-2°, 2%1.1)

unsigned long 32 32 [0, 232-1]

long long 64 64 [-263, 263-1]

unsigned long long 64 64 [0, 264-1]

float (23-bit mantissa) 32 32 [-3.402E+38, —1.175E-38]
[+1.175E-38, +3.402E+38]

double 64 64 [-1.797E+308, -2.225E-308]

long double (52-bit mantissa) [+2.225E-308, +1.797E+308]

_Imaginary float 32 32 [-3.402E+38i, —1.175E-38i]
[+1.175E-38i, +3.402E+38i]

_Imaginary double 64 64 [-1.797E+308i, -2.225E-308i]

_Imaginary long double [+2.225E-308i, +1.797E+308i]

_Complex float 64 32 real part + imaginary part

_Complex double 128 64 real part + imaginary part

_Complex long double

pointer to data or function 32 32 [0, 232-1]

Bit-field types

Structures and unions can contain bit-fields. The C compiler allows the following types for bit-field members:
_Bool , char,short,int,long,| ong | ong and their unsigned types and enum Bit-field data types
behave like any normal data type. So, i nt is treated as si gned i nt.

Pointers

Pointers are always 32-bit. Conversions of pointers are allowed.

1.2. Accessing Memory

There are two ways to allocate a variable in a particular memory space. They are listed below, the method
with the highest priority is listed first.

1. Memory qualifiers.
2. Allocation options or pragmas.

When one of the above methods does not apply to an object, it will be allocated in the __sdat a memory
for normal data or in __zdat a memory for constant data.

In addition, you can place variables at absolute addresses with the keyword __at ().

C Language

1.2.1. Memory Qualifiers
In the C language you can specify that a variable or function must lie in a specific part of memory. You

can do this with a memory qualifier. If you do not specify a memory qualifier, data objects and functions
get a default memory type.

Memory qualifiers for functions

You can specify the following memory qualifiers for functions:

Qualifier |Description [Location Section name
__hear " |Near functions Anywhere, accessible through jr/jarl+disp22|. t ext
__far Far functions |Anywhere, accessible through jr/jarl+disp32|. t ext

"I you do not use an explicit qualifier, the default depends on the C compiler option --default-code, or
if the option is not used, the defaultis __near .

Memory qualifiers for data

You can specify the following memory qualifiers for data:

Qualifier Description Addressing mode|Section name

__data ’ normal initialized/cleared data 32-bit absolute .data/. bss

__data const ’ normal constant data 32-bit absolute . const

__sdata __near near gp-relative initialized/cleared | [gp]+disp16 .sdata/. sbss
data

__sdata __far far gp-relative initialized/cleared |[gp]+disp23 . sdat a23/. shss23
data

__sdata __near near tp-relative constant data [tp]+displ6 . sconst

const

__sdata __far const |far tp-relative constant data [tp]+disp23 . sconst 23

__zdata __near near rO-relative initialized/cleared |[r0]+disp16 .zdata/. zbss
data

__zdata __far far rO-relative initialized/cleared |[rO]+disp23 .zdat a23/. zbss23
data

__zdata __near near rO-relative constant data [rO]+disp16 .zconst

const

__zdata __far const |far rO-relative constant data [rO]+disp23 .zconst 23

"You can use the __near and __f ar qualifiers only on data objects that are implicitly or explicitly
qualified with __sdat a or __zdat a. If you do not specify __near or __f ar, the compiler selects
a default based on the C compiler option --default-data, or if the option is not used, the default
is__far.Ifyouuse _near or __far on an object that has an explicit __dat a qualifier, the

compiler issues an error.

TASKING VX-toolset for RH850 User Guide

All these memory qualifiers are related to the object being defined, they influence where the object will
be located in memory. They are not part of the type of the object defined. Therefore, you cannot use
these qualifiers in typedefs, type casts or for members of a struct or union.

If you do not specify a memory qualifier for data, a default memory type is assigned based on the allocation
options as explained in Section 1.2.2, Data Allocation Options and Pragmas.

Examples using memory qualifiers

int i = 1234; /1l int reserved in .sdata23 (by default)
const int j = 1234; /1l int reserved in .zconst23 (by default)
__zdata __near int k = 1234; /1 int reserved in .zdata

const __sdata _ _far int | = 1234; /1 int reserved in .sconst23

The memory qualifiers are treated like any other data type specifier (such as unsigned). This means the
examples above can also be declared as:

int __zdata __near k = 1234;
const int _ sdata _ _far | = 1234;

You cannot use memory qualifiers in structure declarations:

struct S {
__data int i; [/* put an integer in data
nmenory: |ncorrect ! */
__sdata int * p; [/* put an integer pointer in
sdata nmenory: |ncorrect ! */
s

1.2.2. Data Allocation Options and Pragmas

When an object does not have an explicit memory qualifier, you can use one of the following options or
pragmas to assign a memory space.

» C compiler option --data-memory / pragma dat a_nmenory
» C compiler option --const-data-memory / pragma const _dat a_nenory
« C compiler option --string-literal-memory / pragmastring_literal nenory

Note that you cannot explicitly qualify string literals, you can only place string literals in a particular memory
space with C compiler option --string-literal-memory or with pragma string_l i teral _nenory.

If a variable has an explicit __near or __f ar qualifier, but no explicit __data, _sdataor__zdata
qualifier, the compiler adds a __sdat a or __zdat a qualifier depending on the current type and the value
of the related option/pragma:

 const data: value of --const-data-memory

« initialized data: value of --data-memory

C Language

* uninitialized data: value of --data-memory.

1.2.3. Allocation of Uninitialized Constants
Uninitialized constant data is treated like it is initialized with O (zero).

For example:

const int i;

is treated as:

const int i = 0;

With the default compiler settings, the example above will be allocated as:

.section .const.t.i
.global i
.align 4
.size i, 4
_i: .type obj ect
.db
.db
.db
.db

. endsec

[eNeNeoNo]

When #pr agna nocl ear is used, normally the nocl ear attribute is added to a section. However, this
does not apply to sections in ROM. With #pr agma. const _i ni t the constant data is placed in RAM
(. bss), in that case you can use the #pr agnma nocl ear .

1.2.4. Placing an Object at an Absolute Address: __ at()

Just like you can declare a variable in a specific part of memory (using memory qualifiers), you can also
place an object or a function at an absolute address in memory.

With the attribute __at () you can specify an absolute address. Instead of __at () you can also use
__attribute__((at())).The address is a 32-bit linear address.

Examples
unsi gned char Display[80*24] __at(0x2000);

The array Di spl ay is placed at address 0x2000. In the generated assembly, an absolute section is
created. On this position space is reserved for the variable Di spl ay.

int i __at(0x1000) = 1;
void f(void) __at(0xa0001000) { _ _nop(); }

The function f is placed at address 0xa0001000.

TASKING VX-toolset for RH850 User Guide

Restrictions
Take note of the following restrictions if you place a variable at an absolute address:
» The argument of the __at () attribute must be a constant address expression.

» You can place only global variables at absolute addresses. Parameters of functions, or automatic
variables within functions cannot be placed at absolute addresses.

» Avariable that is declared ext er n, is not allocated by the compiler in the current module. Hence it is
not possible to use the keyword __at () on an external variable. Use __at () at the definition of the
variable.

» You cannot place structure members at an absolute address.

» Absolute variables cannot overlap each other. If you declare two absolute variables at the same address,
the assembler and/or linker issues an error. The compiler does not check this.

1.3. Static Assertions

The TASKING VX-toolset for RH850 C compiler supports the ISO/IEC 9899:2011 (E) feature
_Static_assert() as alanguage extension to the ISO C99 standard.

The syntax is:
_Static_assert(constant-expression,string-literal);

The constant expression must be an integer constant expression. If the value of the constant expression
compares unequal to 0, the declaration has no effect. Otherwise, the C compiler produces a diagnostic
message that includes the text of the string literal.

For example,

void foo(void)

{

_Static_assert(1,"1 is non-zero"); // no effect
_Static_assert(1-1,"0 is zero"); /] _Static_assert failed (0 is zero)

}

1.4. Shift JIS Kanji Support

In order to allow for Japanese character support on non-Japanese systems (like PCs), you can use the
Shift JIS Kanji Code standard. This standard combines two successive ASCII characters to represent
one Kaniji character. A valid Kanji combination is only possible within the following ranges:

* First (high) byte is in the range 0x81-0x9f or Oxe0-0Oxef.

» Second (low) byte is in the range 0x40-0x7e or 0x80-0xfc

C Language

Compiler option -Ak enables support for Shift JIS encoded Kanji multi-byte characters in strings and
(wide) character constants. Without this option, encodings with 0x5c as the second byte conflict with the
use of the backslash (\ ') as an escape character. Shift JIS in comments is supported regardless of this
option.

Note that Shift JIS also includes Katakana and Hiragana.
Example:

/! Exanpl e usage of Shift JIS Kanji
/1 Do not switch off option -Ak
/1 At the position of the italic text you can
/1 put your Shift JI'S Kanji code
int i; // put Shift JIS Kanji here
char cl;
char c2;
unsi gned int ui;
const char mes[]="put Shift JIS Kanji here";
const unsigned int ar[5]={"K ,"a",
SRR Y
/1 5 Japanese array

n.,

voi d mai n(voi d)

{
i=(int)cl;
i++, /* put Shift JIS Kanji here\
conti nuous conment */
c2=nes[9];
ui =ar[0];
}

1.5. Using Assembly in the C Source: __asm()

With the keyword __asmyou can use assembly instructions in the C source and pass C variables as
operands to the assembly code. Be aware that C modules that contain assembly are not portable and
harder to compile in other environments.

The compiler does not interpret assembly blocks but passes the assembly code to the assembly source
file; they are regarded as a black box. So, it is your responsibility to make sure that the assembly block
is syntactically correct. Possible errors can only be detected by the assembler.

You need to tell the compiler exactly what happens in the inline assembly code because it uses that for
code generation and optimization. The compiler needs to know exactly which registers are written and
which registers are only read. For example, if the inline assembly writes to a register from which the
compiler assumes that it is only read, the generated code after the inline assembly is based on the fact
that the register still contains the same value as before the inline assembly. If that is not the case the
results may be unexpected. Also, an inline assembly statement using multiple input parameters may be
assigned the same register if the compiler finds that the input parameters contain the same value. As
long as this register is only read this is not a problem.

TASKING VX-toolset for RH850 User Guide

General syntax of the __asm keyword

__asn("instruction_tenplate”
[: output_paramli st
[@ input_param.li st
[: register_reserve_list]]]);

instruction_template

Y%parm_nr
output_param_list
input_param_list

&

constraint _char
C_expression

register_reserve_list
register_name

Assembly instructions that may contain parameters from the input
list or output list in the form: %parm_nr

Parameter number in the range 0 .. 9.
[["=[&]constraint_char" (C_expression)],...]
["constraint_char" (C_expression)],...]

Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.

Constraint character: the type of register to be used for the
C_expression. See the table below.

Any C expression. For output parameters it must be an Ivalue, that
is, something that is legal to have on the left side of an assignment.

["register_name"],...]

Name of the register you want to reserve. For example because this
register gets clobbered by the assembly code. The compiler will not
use this register for inputs or outputs. Note that reserving too many
registers can make register allocation impossible.

Specifying registers for C variables

With a constraint character you specify the register type for a parameter.

You can reserve the registers that are used in the assembly instructions, either in the parameter lists or
in the reserved register list (register_reserve_list). The compiler takes account of these lists, so no
unnecessary register saves and restores are placed around the inline assembly instructions.

Constraint Type Operand Remark

character

r general purpose register |rl..r31

number type of operand it is same as %number | Input constraint only. The number must

associated with

refer to an output parameter. Indicates
that %number and number are the
same register.

If an input parameter is modified by the inline assembly then this input parameter must also be
added to the list of output parameters (see Example 6). If this is not the case, the resulting code
may behave differently than expected since the compiler assumes that an input parameter is not
being changed by the inline assembly.

C Language

Loops and conditional jumps

The compiler does not detect loops with multiple __asn{) statements or (conditional) jumps across
__asn() statements and will generate incorrect code for the registers involved.

If you want to create a loop with __asn{() , the whole loop must be contained in a single __asm()
statement. The same counts for (conditional) jumps. As a rule of thumb, all references to a label in an
__asn{) statement must be in that same statement. You can use numeric labels for these purposes.

Example 1: no input or output

A simple example without input or output parameters. You can use any instruction or label. When it is
required that a sequence of __asn() statements generates a contiguous sequence of instructions, then
they can be best combined to a single __asn() statement. Compiler optimizations can insert instruction(s)
in between __asn{) statements. Use newline characters ‘\n’ to continue on a new lineina __asn{()
statement. For multi-line output, use tab characters '\t' to indent instructions.

__asm("nop\n"
"\t nop");

Example 2: using output parameters

Assign the result of inline assembly to a variable. A register is chosen for the parameter because of the
constraint r ; the compiler decides which register is best to use. The %0 in the instruction template is
replaced with the name of the variable. The compiler generates code to assign the result to the output
variable.

char initone(void)

{
char out;
_asn("mov 1,9%9" : "=r"(out));
return out;

}

Generated assembly code:

_initone: .type func
mov 1,r10

jmo [1p]
Example 3: using input parameters

Assign a variable to a register. A register is chosen for the parameter because of the constraint r ; the
compiler decides which register is best to use. The %8 in the instruction template is replaced with the
name of this register. The compiler generates code to move the input variable to the input register. Because
there are no output parameters, the output parameter list is empty. Only the colon has to be present.

int in;
voi d addone(void)

{

TASKING VX-toolset for RH850 User Guide

__asn("addi 1,%,r1"

r(in));
}

Generated assembly code:

ld.w @aserel 23(_in)[gp],ril
addi 1,r11,r1

Example 4: using input and output parameters

Shift right one C variable a number of times as specified by a second variable and assign the result to a
third C variable. Registers are necessary for the input and output parameters (constraint r , %9 for out ,
% for i n, 92 for cnt in the instruction template).

int shiftright(int in, int cnt)
{ .
int out;
__asn("shr 0w, %, %"
"=r" (out)
"r" o (in), "r" (cnt));
return out;

}

Generated assembly code:

shr r7, r6, rl10

Example 5: reserving registers

Sometimes an instruction knocks out certain specific registers. The most common example of this is a
function call, where the called function is allowed to do whatever it likes with some registers. If this is the
case, you can list specific registers that get clobbered by an operation after the inputs.

Same as Example 4, but now register r 6 is a reserved register. You can do this by adding a reserved
register list (: "r6"). As you can see in the generated assembly code, register r 6 is not used (register
r 11 is used instead).

int shiftright(int in, int cnt)

{ .
int out;
__asm("shr 0w, %, %"
"=r" (out)
"r" (in), "r" (cnt)
"r6")
return out;
}

Generated assembly code:

10

C Language

shr r7, ri1l, ri10

Example 6: use the same register for input and output

As input constraint you can use a number to refer to an output parameter. This tells the compiler that the
same register can be used for the input and output parameter. When the input and output parameter are
the same C expression, these will effectively be treated as if the input parameter is also used as output.
In that case it is allowed to write to this register. For example:

inline int foo(int parl, int par2)
{

int retval ue;

__asn(
"mul hi 7, 9%, %d\n\t"
"mul hi 5, %, %®R\n\t"
" mov %, 9o\n\t"
"add ", %"
"=&" (retvalue), "=r" (parl), "=r" (par?2)
"1" (parl), "2" (par2)
)
return retval ue;

}

int func(void)
{
return foo(1000, 1000);

}

In this example the "1" constraint for the input parameter par 1 refers to the output parameter par 1, and
similar for the "2" constraint and par 2. In the inline assembly %4 (par 1) and %2 (par 2) are written. This
is allowed because the compiler is aware of this.

This results in the following generated assembly code:

ori 1000,r0,r11
nmov rl1,r12

mul hi 7, r11, rl11
mul hi 5, r12, r12
nmov rl1, r10
add r12, r10

However, when the inline assembly would have been as given below, the compiler would have assumed
that %4 (par 1) and 92 (par 2) were read-only. Because of the i nl i ne keyword the compiler knows that
par 1 and par 2 both contain 1000. Therefore the compiler can optimize and assign the same register to
% and 9%2. This would have given an unexpected result.

__asn(
"mulhi 7, %, %d\n\t"

11

TASKING VX-toolset for RH850 User Guide

"mul hi 5, %, 9%2\n\t"
" nmov %W, YO\n\t"
"add w, 90"
. "=&" (retval ue)
"r" (parl), "r" (par2)
)

Generated assembly code:

ori 1000,r0,r11

mul hi 7, r11, rl1l

mulhi 5, rl11, rl1l1 ; sane register, but is expected read-only
nov ri1, r1o0

add ri2, r10 ; contains unexpected result

1.6. Attributes

You can use the keyword __att ri but e__ to specify special attributes on declarations of variables,
functions, types, and fields.

Syntax:
__attribute_ ((nane,...))
or:

nane

The second syntax allows you to use attributes in header files without being concerned about a possible
macro of the same name. This second syntax is only possible on attributes that do not already start with
an underscore.

alias("symbol")

Youcanuse __attribute__ ((alias("synmbol"))) to specify that the function declaration appears
in the object file as an alias for another symbol. For example:

void __f() { /* function body */; }
void f() __attribute_ ((weak, alias("__f")));

declares 'f ' to be a weak alias for'__f".
align(value), aligned(value)
By default the RH850 compiler aligns objects as specified in the table in Section 1.1, Data Types. You

canuse __attribute__((align(n))) toincrease the alignment of objects. The alignment must be
a power of two. If you decrease the alignment the compiler issues an error.

12

C Language

Example:

short gl obalvar __attribute_ ((align(4))); /* changed to 4 bytes alignnent
i nstead of default 2 bytes */

Instead of al i gn() you can also use the GNU compatible attribute al i gned() .

at(address)

Youcanuse __attribute__((at(address))) toplace anobjectorafunction at an absolute address
in memory. See Section 1.2.4, Placing an Object at an Absolute Address: __at().

const

Youcanuse __attribute__ ((const)) to specify that a function has no side effects and will not
access global data. This can help the compiler to optimize code. See also attribute pur e.

The following kinds of functions should not be declared __const __:
A function with pointer arguments which examines the data pointed to.

» A function that calls a non-const function.

enable

Specifies that the compiler also generates code to re-enable interrupts of the same El exception level.
For more information see Section 1.10.4, Interrupt Functions.

export

Youcanuse __attribute__ ((export)) to specify that a variable/function has external linkage and
should not be removed. During MIL linking, the compiler treats external definitions at file scope as if they
were declared st at i c. As a result, unused variables/functions will be eliminated, and the alias checking
algorithm assumes that objects with static storage cannot be referenced from functions outside the current
module. During MIL linking not all uses of a variable/function can be known to the compiler. For example
when a variable is referenced in an assembly file or a (third-party) library. With the export attribute the
compiler will not perform optimizations that affect the unknown code.

int i __attribute__((export)); /* 'i' has external |inkage */

flatten

Youcanuse __attribute__ ((flatten)) toforce inlining of all function calls in a function, including
nested function calls.

Unless inlining is impossible or disabled by __attri bute__((noi nline)) for one of the calls, the
generated code for the function will not contain any function calls.

13

TASKING VX-toolset for RH850 User Guide

format(type,arg_string_index,arg_check_start)

Youcanuse __attribute_ ((format(type,arg_string_index,arg_check_start))) to
specify that functions take pri ntf, scanf, strfti me or st rf non style arguments and that calls to
these functions must be type-checked against the corresponding format string specification.

type determines how the format string is interpreted, and should be pri ntf, scanf,strfti me or
strfnon.

arg_string_index is a constant integral expression that specifies which argument in the declaration of the
user function is the format string argument.

arg_check_start is a constant integral expression that specifies the first argument to check against the
format string. If there are no arguments to check against the format string (that is, diagnostics should only
be performed on the format string syntax and semantics), arg_check_start should have a value of 0. For
strfti me-style formats, arg_check_start must be 0.

Example:
int foo(int i, const char * ny format, ...) _ _attribute__((format(printf, 2, 3)));

The format string is the second argument of the function f oo and the arguments to check start with the
third argument.

interrupt([vector])

Youcanuse _attribute_ ((interrupt(vector))) toindicate that the specified function is an
interrupt handler. The C compiler generates function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present.

For more information see Section 1.10.4, Interrupt Functions.

leaf

Youcanuse __attribute__ ((Ieaf)) tospecify that a function is a leaf function. A leaf function is
an external function that does not call a function in the current compilation unit, directly or indirectly. The
attribute is intended for library functions to improve dataflow analysis. The attribute has no effect on
functions defined within the current compilation unit.

malloc

Youcanuse __attribute__ ((rmalloc)) toimprove optimization and error checking by telling the
compiler that:

» The return value of a call to such a function points to a memory location or can be a null pointer.

» On return of such a call (before the return value is assigned to another variable in the caller), the memory
location mentioned above can be referenced only through the function return value; e.g., if the pointer
value is saved into another global variable in the call, the function is not qualified for the malloc attribute.

14

C Language

» The lifetime of the memory location returned by such a function is defined as the period of program
execution between a) the point at which the call returns and b) the point at which the memory pointer
is passed to the corresponding deallocation function. Within the lifetime of the memory object, no other
calls to malloc routines should return the address of the same object or any address pointing into that
object.

nested

Specifies a nested El level interrupt function. For more information see Section 1.10.4, Interrupt Functions.

noinline

Youcanuse __attribute__((noinline)) toprevent afunction from being considered for inlining.
Same as keyword __noi nl i ne or #pragnma noi nl i ne.

always_inline

With __attribute__((al ways_inline)) you force the compiler to inline the specified function,
regardless of the optimization strategy of the compiler itself. Same as keyword i nl i ne or #pr agna
i nline.

noreturn

Some standard C function, such as abort and exit cannot return. The C compiler knows this automatically.
Youcanuse __attribute__((noreturn)) to tell the compiler that a function never returns. For
example:

void fatal () __attribute__((noreturn));

void fatal (/* ... */)

{
/* Print error nessage */
exit(1l);

}

The function f at al cannot return. The compiler can optimize without regard to what would happen if
fat al everdid return. This can produce slightly better code and it helps to avoid warnings of uninitialized
variables.

protect

Youcanuse _attribute__ ((protect)) toexclude avariable/function from the duplicate/unreferenced
section removal optimization in the linker. When you use this attribute, the compiler will add the "protect"”
section attribute to the symbol's section. Example:

int i __attribute__ ((protect));

Note that the protect attribute will not prevent the compiler from removing an unused variable/function
(see the used symbol attribute).

15

TASKING VX-toolset for RH850 User Guide

pure

Youcanuse __attribute__ ((pure)) to specify that a function has no side effects, although it may
read global data. Such pure functions can be subject to common subexpression elimination and loop
optimization. See also attribute const .

section("section_name")

Youcanuse __attribute__((section("nanme"))) to specify that a function must appear in the
object file in a particular section. For example:

extern void foobar(void) __attribute__ ((section("bar")));
puts the function f oobar in the section named bar .

See also #pragnma secti on.

used

Youcanuse __attribute__((used)) to prevent an unused symbol from being removed, by both the
compiler and the linker. Example:

static const char copyright[] __attribute_ ((used)) = "Copyright 2012 Al tium BV";

When there is no C code referring to the copyri ght variable, the compiler will normally remove it. The
__attribute__((used)) symbol attribute prevents this. Because the linker should also not remove
this symbol, __attribute__ ((used)) implies__attribute__((protect)).

unused

Youcanuse __attribute__((unused)) to specify that a variable or function is possibly unused. The
compiler will not issue warning messages about unused variables or functions.

weak

Youcanuse __attribute__ ((weak)) tospecify that the symbol resulting from the function declaration
or variable must appear in the object file as a weak symbol, rather than a global one. This is primarily
useful when you are writing library functions which can be overwritten in user code without causing
duplicate name errors.

See also #pragnma weak.

16

C Language

1.7. Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options. Put pragmas in your C source where you want them to take effect. Unless stated
otherwise, a pragma is in effect from the point where it is included to the end of the compilation unit or
until another pragma changes its status.

The syntax is:
#pragma [| abel :] pragma-spec pragnma-argunents [on | off | default | restore]

or:

_Pragma("[I| abel :] pragma-spec pragma-argunments [on | off | default | restore]"”)

Some pragmas can accept the following special arguments:

on switch the flag on (same as without argument)
of f switch the flag off

def aul t set the pragma to the initial value

restore restore the previous value of the pragma

Label pragmas

Some pragmas support a label prefix of the form "label:" between #pr agma and the pragma name. Such
a label prefix limits the effect of the pragma to the statement following a label with the specified name.
The r est or e argument on a pragma with a label prefix has a special meaning: it removes the most
recent definition of the pragma for that label.

You can see a label pragma as a kind of macro mechanism that inserts a pragma in front of the statement
after the label, and that adds a corresponding #pragma ... rest ore after the statement.

Compared to regular pragmas, label pragmas offer the following advantages:

» The pragma text does not clutter the code, it can be defined anywhere before a function, or even in a
header file. So, the pragma setting and the source code are uncoupled. When you use different header
files, you can experiment with a different set of pragmas without altering the source code.

» The pragma has an implicit end: the end of the statement (can be a loop) or block. So, no need for
pragma restore / endoptimize etc.

Example:
#pragnme | abl:optim ze P
volatile int v;

void f(void)
{

17

TASKING VX-toolset for RH850 User Guide

a = 42;
labl: for(i=1; i<10; i++)
{
/* the entire for loop is part of the pragma optim ze */
a +=i;
}
VvV = a;

}
Supported pragmas

The compiler recognizes the following pragmas, other pragmas are ignored. Pragmas marked with (*)
support a label prefix.

STDC FP_CONTRACT [on | off | default | restore] (*)

This is a standard 1ISO C99 pragma. With this pragma you can control the +contract flag of C compiler
option --fp-model.

alias symbol=defined_symbol
Define symbol as an alias for defined_symbol. It corresponds to an equate directive (. EQU) at assembly

level. The symbol should not be defined elsewhere, and defined_symbol should be defined with static
storage duration (not extern or automatic).

clear / noclear [on | off | default | restore] (*)

By default, uninitialized global or static variables are cleared to zero on startup. With pragma nocl ear,
this step is skipped. Pragma cl ear resumes normal behavior. This pragma applies to constant data as
well as non-constant data.

See C compiler option --no-clear.
code_init [on | off | default | restore] (*)
This pragma sets the i ni t section attribute for . t ext sections. Use this pragma when you want to place

code in RAM instead of in ROM. As a result, the startup code will copy code from ROM to RAM, from
where the code will be executed.

const_init [on | off | default | restore] (*)

With this pragma const variables are allocated in an initialized data section (. dat a) or in a cleared
uninitialized data section (. bss). Use this pragma when you want to place const data in RAM instead
of in ROM.

For example, after

18

C Language

#pragnma const_init

const int i;

const int j=2;

#pragnma const_init restore

variable i is placed in a. bss section instead of in a. const section and variable j is placed ina. dat a
section instead of in a . const section.

const_data_memory {space | default | restore} (*)

Controls the allocation of constant data objects. Same as C compiler option --const-data-memory.
data_memory {space | default | restore} (*)

Controls the allocation of non-constant data objects. Same as C compiler option --data-memory.

default_code {_ near | __far | default | restore} (*)

Controls whether functions are by default __near or __f ar If you do not use an explicit qualifier. Same
as C compiler option --default-code. If you do not use the pragma or option, the defaultis __near .

default_data{ near | __ far | default | restore} (*)

Controls whether __sdat a or __zdat a objects are by default __near or __f ar. Same as C compiler
option --default-data. If you do not use the pragma or option, the defaultis __f ar.

extension isuffix [on | off | default | restore] (*)

Enables a language extension to specify imaginary floating-point constants. With this extension, you can
use an "i" suffix on a floating-point constant, to make the type _| magi nary.

float 0.5i
extern symbol
Normally, when you use the C keyword ext er n, the compiler generates an . EXTERN directive in the

generated assembly source. However, if the compiler does not find any references to the ext er n symbol
in the C module, it optimizes the assembly source by leaving the . EXTERN directive out.

With this pragma you can force an external reference (. EXTERN assembler directive), even when the
symbol is not used in the module.

fp_negzero [on | off | default | restore] (*)

With this pragma you can control the +negzero flag of C compiler option --fp-model.

fp_nonan [on | off | default | restore] (*)

With this pragma you can control the +nonan flag of C compiler option --fp-model.

19

TASKING VX-toolset for RH850 User Guide

fp_rewrite [on | off | default | restore] (*)

With this pragma you can control the +rewrite flag of C compiler option --fp-model.

inline / noinline / smartinline [default | restore] (*)

See Section 1.10.2, Inlining Functions: inline.

inline_max_incr {value | default | restore} (*)
inline_max_size {value | default | restore} (*)

With these pragmas you can control the automatic function inlining optimization process of the compiler.
It has effect only when you have enabled the inlining optimization (C compiler option --optimize=+inline).

See C compiler options --inline-max-incr / --inline-max-size.
macro [default | restore] / nomacro [on | off | default | restore] (*)

Turns macro expansion on or off. By default, macro expansion is enabled.

message "message" ...

Print the message string(s) on standard output.

nomisrac [nr,...] [default | restore] (*)

Without arguments, this pragma disables MISRA C checking. Alternatively, you can specify a
comma-separated list of MISRA C rules to disable.

See C compiler option --misrac and Section 3.7.2, C Code Checking: MISRA C.

optimize [flags] / endoptimize [default | restore] (*)

You can overrule the C compiler option --optimize for the code between the pragmas opti m ze and
endopt i m ze. The pragma works the same as C compiler option --optimize.

See Section 3.6, Compiler Optimizations.

runtime [flags | default | restore] (*)

With this pragma you can control the generation of additional code to check for a number of errors at
run-time. The pragma argument syntax is the same as for the arguments of the C compiler option --runtime.
You can use this pragma to control the run-time checks for individual statements. In addition, objects
declared when the "bounds" sub-option is disabled are not bounds checked. The "malloc" sub-option
cannot be controlled at statement level, as it only extracts an alternative malloc implementation from the
library.

20

C Language

section [[type=|whitespace][format_string],...] / endsection [default |
restore] (*)

Rename sections by adding a format_string to all section names specified with .type, or restore default
section naming. If you specify only a format_string (without a type), the suffix is added to all section names.

See Section 1.11, Section Naming, C compiler option --rename-sections and assembler directive
. SECTI ON for more information.

source / nosource [on | off | default | restore] (*)

With these pragmas you can choose which C source lines must be listed as comments in assembly output.
See C compiler option --source.

stdinc [on | off | default | restore] (*)

This pragma changes the behavior of the #i ncl ude directive. When set, the C compiler options
--include-directory and --no-stdinc are ignored.

string_literal_memory {space | default | restore} (*)

Controls the allocation of string literals. Same as C compiler option --string-literal-memory.

switch auto | jump_tab | linear | default | restore (*)

With these pragmas you can overrule the C compiler chosen switch method.

See Section 1.9, Switch Statement and C compiler option --switch.

tradeoff {level | default | restore} (*)

Specify tradeoff between speed (0) and size (4). See C compiler option --tradeoff

warning [number,...] [default | restore] (*)

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed.

weak symbol

Mark a symbol as "weak" (. WEAK assembler directive). The symbol must have external linkage, which
means a global or external object or function. A static symbol cannot be declared weak.

A weak external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference. When a weak external reference cannot be resolved, the null pointer is substituted.

A weak definition can be overruled by a normal global definition. The linker will not complain about the
duplicate definition, and ignore the weak definition.

21

TASKING VX-toolset for RH850 User Guide

1.8. Predefined Preprocessor Macros

The TASKING C compiler supports the predefined macros as defined in the table below. The macros are
useful to create conditional C code.

Macro Description

__BUILD__ Identifies the build number of the compiler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
compiler, __ BUILD__ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

__C850__ Identifies the compiler. You can use this symbol to flag parts of the source
which must be recognized by the TASKING ¢850 compiler only. It expands
to 1.

_ DATE___ Expands to the compilation date: “mmm dd yyyy”.

__FILE__ Expands to the current source file name.

__FPU__ Expands to 1 when the selected core has a floating-point unit and the option
--fp-model=+soft is not used. Otherwise unrecognized as a macro.

_ FPU_DOUBLE__ Expands to 1 if you used option --fpu=double (single/double precision FPU),
otherwise unrecognized as macro.

__FPU_SINGLE___ Expands to 1 if you used option --fpu=single (single precision FPU),
otherwise unrecognized as macro.

__ LINE__ Expands to the line number of the line where this macro is called.

_ MISRAC_VERSION_

Expands to the MISRA C version used 1998, 2004 or 2012 (option
--misrac-version). The default is 2004.

_ REVISION__ Expands to the revision number of the compiler. Digits are represented as
they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0rl -> 1, v1.0rb -> -1

__STDC__ Identifies the level of ANSI standard. The macro expands to 1 if you set

option --language (Control language extensions), otherwise expands to 0.

_ STDC_HOSTED__

Always expands to 0, indicating the implementation is not a hosted
implementation.

__STDC_VERSION__

Identifies the ISO-C version number. Expands to 199901L for ISO C99 or
199409L for ISO C90.

__TASKING__ Identifies the compiler as a TASKING compiler. Expands to 1 if a TASKING
compiler is used.

__TIME__ Expands to the compilation time: “hh:mm:ss”

__VERSION__ Identifies the version number of the compiler. For example, if you use version
2.1r1 of the compiler, _ VERSION__ expands to 2001 (dot and revision
number are omitted, minor version number in 3 digits).

VX Identifies the VX-toolset C compiler. Expands to 1.

22

C Language

Example

#ifdef _ FPU

/* this part is only valid if an FPU is present */

#endi f

1.9. Switch Statement

The TASKING C compiler supports two ways of code generation for a switch statement: a jump chain
(linear switch) or a jump table.

A jump chain is comparable with an if/else-if/else-if/else construction. A jump table is a table filled with
target addresses for each possible switch value. The switch argument is used as an index within this
table.

By default, the compiler will automatically choose the most efficient switch implementation based on code
and data size and execution speed. With the C compiler option --tradeoff you can tell the compiler to put
more emphasis on speed than on ROM size.

The jump table has a predictable behavior in execution speed: independent of the switch argument, every
case is reached in the same execution time. However, when the case labels are distributed far apart, the
jump table becomes sparse, wasting code memory. The compiler will not use the jump table method
when the waste becomes excessive.

With a small number of cases, the jump chain method can be faster in execution and shorter in size.

Example
The following example is used to explain the different switch statement implementations:

i nt g;
void f(int c)
{
switch (¢)
{
case 1:
g =3
br eak;
case 2:
g =5
br eak;
case 10:
g = 2
br eak;
defaul t:
g=-1
br eak;

23

TASKING VX-toolset for RH850 User Guide

return;

}

Jump chain

With C compiler option --switch=linear the example is generated as:

_f: .type func
cnp 1,16 ; conparable if/else construction
be .L2
cnp 2,16
be . L3
cnp 10,r6
be . L4
br . L5

.L2:
nov 3,r11
br . L6

. L3:
nov 5,ri11
br . L7

. L4:
nov 2,rl11
br .L8

. L5:
nov -1,r11

. L8:

L7

. L6:
st.w ri11, @aserel 23(_g)[gp]
jm [Ip]

Jump table

When a switch is implemented using a jump table, the switch argument is used as an index into a table
which holds the target address.

With C compiler option --switch=jumptab the example is generated as:

_f: .type func
mv -1, r11
add re,rll
cnp 0,r11
bl t . L3
cnp 9,r11
bgt . L3
shl 2,rl11
mv .L2,r12
add ril1,ri12

ld.w O[r12],r12

24

. L2:

. L4:

. L5:

. L6:

. L3:

. L9:

. L8:
.L7:

jmp
.align
. dw
. dw
. dw
. dw
. dw
. dw
. dw
. dw
. dw
. dw

nov
br

nov
br

nov
br

st.w
jm

[r12]
4

. L4
. L5
. L3
. L3
. L3
. L3
. L3
. L3
. L3
. L6

3,r11
. L7

5rl11
. L8

2,r11
. L9

-1,r11

C Language

junp table wi th absol ute addresses

ri1, @aserel 23(_g)[gp]

[P

Automatic mode

With --switch=auto (this is the default), the compiler automatically selects the best method to implement
a switch statement. The method is chosen based upon the properties of a switch statement and the
selected setting for the speed/size tradeoff.

How to overrule the default switch method

You can overrule the compiler chosen switch method by using a pragma:

#pragna
#pragma
#pragma
#pragma

switch |inear

switch junptab

switch auto

switch restore

force jump chain code
force jump table code
let the compiler decide the switch method used (this is the default)

restore previous switch method

The switch pragmas must be placed before the swi t ch statement. Nested swi t ch statements use the
same switch method, unless the nested swi t ch is implemented in a separate function which is preceded
by a different switch pragma.

25

TASKING VX-toolset for RH850 User Guide

Example:

/* place pragma before function body */
#pragma switch junptab

voi d test(unsigned char val)

{ /* function containing the switch */

switch (val)

{
}

/* use junmp table */

}

On the command line you can use C compiler option --switch.

1.10. Functions

1.10.1. Calling Convention

Parameter passing

A lot of execution time of an application is spent transferring parameters between functions. The fastest
parameter transport is via registers. Therefore, function parameters are first passed via registers. If no
more registers are available for a parameter, the compiler pushes parameters on the stack, starting at
the address pointed by SP towards higher addresses.

Parameter Register
Arithmetic 8-bit r6-r9
Arithmetic 16-bit ré-r9
Arithmetic 32-bit r6-r9
Arithmetic 64-bit rér7, r8r9
Pointer r6-r9
_Complex double rér7r8r9

Registers available for parameter passing are r6-r9. Up to 4 arithmetic types and/or 4 pointers can be
passed this way. A 64-bit argument is passed in an even/odd data register pair. Parameter registers
skipped because of alignment for a 64-bit argument are not used by subsequent 32-bit arguments. Any
remaining function arguments are passed on the stack.

Structures are passed via the stack.
The compiler uses the EP register as the frame pointer to access data on the stack.

Examples:

26

C Language

void funcl(int i, char * p, char c); /* r6 r7 rg */
void func2(int i1, double d, int i2); /* r6 r8r9 stack */

Function return values

The C compiler uses registers to store C function return values, depending on the function return types.

Return Type Register
Arithmetic and structures |r10

8-hit

Arithmetic and structures |r10

16-bit

Arithmetic and structures |r10

32-hit

Arithmetic and structures |r10rl1l

64-bit

_Complex double ri0r11r12rl13

Objects larger than 64 bits are returned via the stack. For structures larger than 64 bits, the first parameter
register (r6) contains a pointer to the return buffer.

1.10.2. Inlining Functions: inline

With the C compiler option --optimize=+inline, the C compiler automatically inlines small functions in
order to reduce execution time (smart inlining). The compiler inserts the function body at the place the
function is called. The C compiler decides which functions will be inlined. You can overrule this behavior
with the two keywords i nl i ne (ISO-C) and __noi nl i ne.

With the i nl i ne keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)

{
unsigned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

If a function with the keyword i nl i ne is not called at all, the compiler does not generate code for it.

You must define inline functions in the same source module as in which you call the function, because
the compiler only inlines a function in the module that contains the function definition. When you need to
call the inline function from several source modules, you must include the definition of the inline function
in each module (for example using a header file).

With the __noi nl i ne keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)

{

27

TASKING VX-toolset for RH850 User Guide

unsi gned i nt abs_val
if (val < 0) abs_val
return abs_val;

val ;
-val ;

}
Using pragmas: inline, noinline, smartinline

Instead of the i nl i ne qualifier, you can also use #pr agma i nl i ne and #pr agma noi nl i ne to inline
a function body:

#pragma inline
unsi gned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

#pragma noi nline
void main(void)
{ . .

int i;

i = abs(-1);
}

If a function has ani nl i ne/__noi nl i ne function qualifier, then this qualifier will overrule the current
pragma setting.

With the #pr agma noi nl i ne/#pragnma smartinl i ne you can temporarily disable the default behavior
that the C compiler automatically inlines small functions when you turn on the C compiler option
--optimize=+inline.

With the C compiler options --inline-max-incr and --inline-max-size you have more control over the
automatic function inlining process of the compiler.

Combining inline with __asm to create intrinsic functions

With the keyword __asmit is possible to use assembly instructions in the body of an inline function.
Because the compiler inserts the (assembly) body at the place the function is called, you can create your
own intrinsic function. See Section 1.10.5, Intrinsic Functions.

1.10.3. Floating-Point Unit Support: _ fpu, __ nofpu

By default hardware floating-point instructions are supported if a floating-point unit (FPU) is available on
your selected processor core. With the C compiler option --fp-model=+soft you can turn FPU support
off. With the function qualifiers __f pu and __nof pu you can overrule this behavior for a specific function.
Example:

__nof pu voi d no_fpufunc(voi d)

/'l hardware floating-point instructions are not used

28

C Language

}
__fpu void fpu_func(void)
{
/'l hardware floating-point instructions can be used
}

When a function has an explicit __f pu qualifier and option --fpu=none is used, the compiler issues an
error.

1.10.4. Interrupt Functions

By default the C compiler generates normal (non-interrupt) functions. To create an interrupt function the
C compiler supports a number of function attributes. They are described in the following sections.

For more information on interrupts see chapter Exceptions and Interrupts in the Architecture Specification.

Defining an interrupt function

You can use the attribute i nt er r upt ([vector]) to declare a function as an interrupt function. You can
usethe __attribute__(()) keyword for this, or you can use __i nt er r upt ([vector]) . With the
optional vector argument you can bind the interrupt function to a specific vector. Depending on the vector
number the interrupt function is an El-level, FE-level or DB level interrupt. Without the vector the function
is an El-level interrupt and is not bound to an interrupt vector. You can assign an unbound function to an
interrupt vector in the linker LSL file. The linker generates sections with the vectors of the specified interrupt
numbers (. vect or _vector).

For information on locating the interrupt vector table and the possibility to copy the vector tables from
ROM to RAM at startup, see subsection Vector table in Section 13.4.3, Defining Address Spaces in
Chapter 13, Linker Script Language (LSL).

For example:

void isr(void) __attribute__((interrupt()))

{
return;
}
Or you can use:
void isr(void) __interrupt__()
{
return;
}

This example creates an El-level interrupt function, but the C compiler does not bind it to an interrupt
vector. This has to be done by application code.

29

TASKING VX-toolset for RH850 User Guide

When you use the vector argument, the C compiler generates code to bind the function to an interrupt
vector. For example:

void isr(void) __attribute__((interrupt(16)))

{
return;
}
results into:
.section .text.interrupt.isr ; interrupt function
. gl obal _isr
.align 2
_isr: .type func
eiret ; return fromEl-1Ilevel interrupt
.size _isr,$- _isr
. endsec
.gl obal .vector_16 ; interrupt vector |abe
.vector_16 .equ _isr
.calls ' _isr','",0
.end

The C compiler generates code to save and restore the used resources in the interrupt function. An
interrupt function has an alignment of 2 bytes and is allocated in a code section with the following standard
section hame:

e .text

As is the case with code sections for normal functions, the standard section name is extended by default
with the module name and symbol name. You can overrule the default extension with C compiler option

--rename-sections and/or #pr agma sect i on. Like for normal functions, the section type must be set

tot ext . See Section 1.11, Section Naming for details.

An interrupt function cannot return a value and cannot have parameters. It is also not possible to call an
interrupt function directly from an application.

Exception levels

The C compiler supports the following exception levels and corresponding attributes:

Exception Description Attribute [Return Save-restore

level instruction |registers

El level User interrupt, FPU exception, system call, El level | ei eiret EIPC, EIPSW,
trap. ElC

30

C Language

Exception Description Attribute [Return Save-restore

level instruction |registers

FE level FENMI interrupt, system error, FEINT interrupt, |fe feret FEPC,
memory protection exception, TLB exception, FEPSW, FEIC

reserved instruction exception, coprocessor
unusable exception, privilege instruction exception,
misalignment exception, Hypervisor trap/call, FE

level trap.
DB level Debug exception. db dbret DBPC,
DBPSW,
DBIC

You can attach an exception level attribute to an interrupt function withthe __attribute__ (()) keyword.
The ei , f e or db attribute overrides the exception level if the i nt er r upt ([vector]) is specified explicitly.
You cannot mix exception level attributes. For example:

void fe_isr(void) __attribute__((interrupt(16),fe))
{

}

This overrides the El-level interrupt and creates an FE-level interrupt handler and binds the handler to
vector 16:

return;

.section .text.interrupt.fe_isr
.global _fe_isr

; interrupt function

.align 2
_fe_isr: .type func

feret ; return fromFI-1evel interrupt

.size _fe_isr,$- _fe_isr

. endsec

.global .vector_16 ; interrupt vector |abe
.vector_16 .equ _fe_isr

.calls ' fe_isr','",0

.end

When you specify an exception level attribute without the i nt er r upt () attribute the C compiler assumes
an interrupt function of the specified exception level that is not bound to a vector. When you use the

i nterrupt () attribute without specifying an exception level, the exception level is determined by the
vector number or is El if you do not specify a vector. Thus:

Declaration Equivalent

void isr (void) void isr (void)

__attribute_ ((ei)); __attribute_ ((interrupt(),ei));
void isr (void) void isr (void)
__attribute__((fe)); __attribute__((interrupt(),fe));

31

TASKING VX-toolset for RH850 User Guide

Declaration Equivalent

void isr (void)
_attribute__((interrupt(),db));
void isr (void)
_attribute__((interrupt(),ei));

void isr (void)
attribute ((db));

void isr (void)
__attribute_ ((interrupt()));

void isr (void) void isr (void)
__attribute__((interrupt([vector]))); __attribute__((interrupt([vector]), level));
where level is ei , f e or db depending on the vector.

Nested interrupts

It is possible to re-enable interrupts of the same El-level from an interrupt handler, so that the interrupt
handler itself can be interrupted again. This is called a nested interrupt function. Before the interrupts are
re-enabled the save-restore registers must be preserved. For this purpose you can use the nest ed
attribute. When you specify this attribute for an interrupt function, the C compiler saves and restores the
appropriate save-restore registers (as listed in the table above) in the interrupt frame to make the use of
nested interrupts safe. The C compiler does not generate code (El and DI instructions) to re-enable the
interrupts. This must be done by the application itself. You can use the nest ed attribute on El-level
interrupts only. An example of a nested interrupt function is:

extern void foo(void);

void nestisr(void) __attribute__ ((interrupt(16),ei,nested))

{
}

The generated code for this function is:

foo();

.section .text.isr.nestisr

. gl obal _nestisr
.align 2

_nestisr: .type func
novea -24,sp, sp al l ocate stack frame
st.w r 18, O[sp]
st.w ri19, 4[sp]
stsr ei psw, r19 save ei psw register
stsr ei pc, rl18 save eipc register
st.w r18, 8[sp]
st.w ri19, 12[spj
stsr eiic,rl8 save eiic register
st.w r18, 16[sp]
pushsp ri-r18 stack delta: 72 bytes
prepare I p, 4 stack delta: 8 bytes
jarl @crel 22(_foo),Ip
di spose 4,1p stack delta: 8 bytes
popsp ri-r18 stack delta: 72 bytes
ld.w 16[sp],r18
| dsr rl8,eiic restore eiic register

32

C Language

ld.w 8[sp],ris8
ld.w 12[sp],r19
| dsr ri19, ei psw ; restore eipsw register
| dsr ri18, ei pc ; restore eipc register
ld.w O[sp],r18
ld.w 4[sp],r19
novea 24, sp, sp ; release stack franme
eiret
.size _nestisr,$-_nestisr
. endsec
. gl obal .vector_16
.vector_16 . equ _nestisr
.calls ' _nestisr',' _foo'
.calls ' _nestisr','',80
.extern _foo
.end

You cannot use the nest ed attribute for non-interrupt functions.

Enable interrupts

The enabl e attribute is similar to the nest ed attribute. The only difference is that the C compiler also
generates code to re-enable the interrupts of the same class. It does so right after the save-restore
registers have been preserved. Right before the save-restore registers are restored, the interrupts are
disabled again. Example:

extern void foo(void);
void eisr(void) __attribute_ ((interrupt(16),ei,enable))

foo();
}

The generated code for this function is:

.section .text.isr.eisr

. gl obal _eisr
.align 2

_eisr: .type func
novea -24,sp, sp ; allocate stack franme
st.w r18, O] sp]
st.w ri19, 4[sp]
stsr ei psw, r19 ; save eipsw register
stsr ei pc,rls8 ; save eipc register
st.w r18, 8[sp]
st.w r19, 12[sp]
stsr eiic,rls8 ; save eiic register
st.w r18, 16[sp]

33

TASKING VX-toolset for RH850 User Guide

ei ; enable interrupts
pushsp ri-r18 ; stack delta: 72 bytes
prepare I p, 4 ; stack delta: 8 bytes
jarl @crel 22(_foo),Ip
di spose 4,1p ; stack delta: 8 bytes
popsp ri-r18 ; stack delta: 72 bytes
synce ; wait for synchronizati on of exceptions
di ; disable interrupts
ld.w 16[sp],r18
| dsr ri8,eiic ; restore eiic register
ld.w 8[sp],ri8
ld.w 12[sp],r19
| dsr ri19, ei psw ; restore eipsw register
| dsr ri18, ei pc ; restore eipc register
ld.w O[sp],ri8
ld.w 4[sp],r19
novea 24, sp, sp ; release stack frame
eiret
. Size _eisr,$-_eisr
. endsec
. gl obal .vector_16

.vector_16 .equ _eisr
.calls '_eisr',' _foo
.calls ' _eisr','"',80
.extern _foo
.end

You cannot use the enabl e attribute for non-interrupt functions.

Note that to avoid redundant interrupts, for some interrupts the software must take actions to clear the
exception status before re-enabling interrupts. Refer to your processor manual for more information on
this subject. When the exception status must be cleared first, it is not possible to use the enabl e attribute.
In this case, use the nest ed attribute and re-enable interrupts in your application code once the exception
status has been cleared. There are intrinsic functions available to enable/disable interrupts.

Pointers to an interrupt function

You must use the type qualifier __i sr to create a pointer to an interrupt function. This prevents that an
interrupt function is accidentally called directly from an application through a function pointer. Examples:

extern void isr(void) __attribute_ ((db));
extern void f(void);

voi d (*fp_a)(void);
voi d (*fp_b)(void);
voi d (*fp_c)(void);
void __isr (*fp_isr_a)(void);

void __isr (*fp_isr_b)(void);

34

C Language

int main(void)

{
fp_a = f; /* ok, non-interrupt function, non-interrupt pointer */
fp_isr_a = isr; /* ok, interrupt function, interrupt pointer */
fp_b = isr; /* warning, interrupt function, non-interrupt pointer */
fp_isr_b =f; /* ok, non-interrupt function, interrupt pointer */
fp_c =fp_isr_a; /* warning, interrupt pointer assigned to non-interrupt

pointer */

isr(); /* error, cannot call an interrupt function */
(*fp_isr_a)(); /* error, cannot call an interrupt function */
return O

}

Protect interrupt functions

Interrupt functions may be removed from your application by the linker when they are not referenced.
They will reappear once the vector initialization code references the interrupt function. Alternatively, it is
possible to use the pr ot ect attribute:

void isr(void) __attribute__((interrupt(),protect));

1.10.5. Intrinsic Functions

Some specific assembly instructions have no equivalence in C. Intrinsic functions give the possibility to
use these instructions. Intrinsic functions are predefined functions that are recognized by the compiler.
The compiler generates the most efficient assembly code for these functions.

The compiler always inlines the corresponding assembly instructions in the assembly source (rather than
calling it as a function). This avoids parameter passing and register saving instructions which are normally
necessary during function calls.

Intrinsic functions produce very efficient assembly code. Though it is possible to inline assembly code by
hand, intrinsic functions use registers even more efficiently. At the same time your C source remains very
readable.

You can use intrinsic functions in C as if they were ordinary C (library) functions. All intrinsics begin with
a double underscore character (__).

The TASKING C compiler for RH850 recognizes the following intrinsic functions:
Intrinsics used by the compiler

__alloc

void * volatile __alloc(__size_t size);

Used by the compiler to allocate space on the stack for a VLA (Variable length array). Returns a pointer
to space in external memory of si ze bytes length. NULL if there is not enough space left.

35

TASKING VX-toolset for RH850 User Guide

__free
void volatile _ _free(void * ptr);

Used by the compiler to free the allocated space pointed to by pt r for a VLA (Variable length array). pt r
must point to memory earlier allocated by a callto __al | oc() .

User intrinsics

__get_return_address

__codeptr volatile __get_return_address(void);
Returns the return address of a function.

__get_reg

unsigned int volatile __get _reg(void);

Return the value of the specified register. reg is one of the system registers psw, eipsw, fepsw, dbpsw,
eipc, fepc, dbpc, eiic, fpsr, fpepc.

__set_reg
void volatile __set_reg(unsigned int value);

Set a register to the specified value. reg is one of the system registers psw, eipsw, fepsw, dbpsw, eipc,
fepc, dbpc, eiic, fpsr, fpepc, or one of the regular registers sp, ep, gp, tp.

For example:

unsi gned int ui;

void main(void)

{
__set_psw ui);
u = __get_psw);
}
results in:
ld.w @aserel 23(_ui)[gp],rll
| dsr ril, psw
stsr psw, r11
st.w rll, @aserel 23(_uit)[gp]
__ldsr_rh
void volatile __Idsr_rh(unsigned int reglD, unsigned int sellD,

unsi gned int value);

36

Load value to the system register specified by the system register number (reglD) and group number

(sellD).

__stsr_rh

unsigned int volatile __stsr_rh(unsigned int

regl D, unsigned int

C Language

Returns the system register contents specified by the system register number (reglD) and group number

(sellD).

__nhop

void volatile __nop(void);
Generate a NOP instruction.

__halt

void volatile __halt(void);

Generate a hal t instruction.

ei

void volatile __ei(void);

Generate an enable interrupt (ei) instruction.

_ di

void volatile _ di(void);
Generate a disable interrupt (di) instruction.
__synce

void volatile __sycne(void);
Generate a sycne instruction.

__synci

void volatile __sycni(void);
Generate a sychni instruction.
__syncm

void volatile __syncm(void);

Generate a sycnminstruction.

37

TASKING VX-toolset for RH850 User Guide

__syncp

void volatile __sycnp(void);
Generate a sycnp instruction.
__dptrap

void volatile __dbtrap(void);

Generate a dbt r ap instruction.

__syscall
void volatile __syscall(unsigned int vector);

Generate a system call (sysal |) instruction.

__trap
void volatile __trap(wunsigned int vector);

Generate a t r ap instruction.

__fetrap
void volatile _ _fetrap(unsigned int vector);

Generate a f et r ap instruction.

1.11. Section Naming

By default the compiler generates section names that start with a dot ('.") and the section type, extended
with the module name and the name of the symbol that is allocated in the section. Each component is
separated by a dot ('."):

. type. nodul e- nane. synbol - nane

The section types are: t ext , dat a, sdat a, sdat a23, zdat a, zdat a23, bss, sbss, shss23, zbss,
zbss?23, const, sconst, sconst 23, zconst, zconst 23.

Section names are case sensitive. By default, the sections are not concatenated by the linker. This means
that multiple sections with the same name may exist. At link time sections with different attributes can be
selected on their attributes. The linker may remove unreferenced sections from the application.

You can change the default section name extension (using the module name and symbol name) with a
pragma or with a command line option.

--renane-sections[=[type[.attribute]=][format_string]],...

#pragma section [[type[.attribute] = whitespace][format_string]],...

38

C Language

Note that the pragma has a slightly different syntax because the equal sign ('=") may be replaced by
whitespace.

With the section type and attribute you select which sections will be renamed. When the type and attributes
of a section match, the section name will be set to a dot ('.") and the section type, extended with the
specified format string. The compiler will add a dot ('.") between the section type and the format string
automatically.

The following attributes are allowed: i ni t, nocl ear, r ondat a.

When you specify an optional attribute, only sections that have the attribute will be renamed. When you
do not specify an attribute, only sections that do not have any of the listed attributes will be renamed.
Note that the listed attributes are mutually exclusive; if a section uses one of the attributes, the other
attributes will not be used.

When the type and attribute are omitted, or type "all" is used, all sections will be renamed.

The format string can contain characters and may contain the following format specifiers:

{attrib} section attributes, separated by dots
{nodul e} module name
{nane} object name, name of variable or function

Within format specifier expansions, dots (*.") will be replaced by dollars ('$').

When the format string is omitted, a section will have a name that consist of a dot ('.") and the section
type only. Note that #pr agma. secti on ,, dat a=speci al will give all sections a name consisting of
just the section type, except for data sections, which will be named ". dat a. speci al ". The reason for
this is that the double comma is interpreted as: --rename-sections or #pr agma sect i on, without
arguments.

Some examples (file t est . c):

#pragma secti on bss={nodul e}
__data int x;
/* Section name: .bss.test */

#pragnmae section sdat a=nynane. { nane}
__sdata int status=1;
/* Section name: .sdata.nynane.status */

With #pr agna endsect i on the naming convention of the previous level is restored, while with #pr agna
section defaul t the command line state of the --rename-sections option is restored, or when the
--rename-sections option was not used, the default section naming convention is restored. Nesting of
pragma section/endsection pairs will save the status of the previous level.

Examples (file exanpl e. c)

char a; /1 allocated in '.sbss.exanple.a'
#pragma section sbss=Mysect1l
char b; /1 allocated in '.sbss. Mysectl'

39

TASKING VX-toolset for RH850 User Guide

#pragnma section sbss=Mysect 2

char c; /1 allocated in '.sbss. Mysect2
#pragma endsection

char d; /1 allocated in '.sbss. Mysectl
#pragma endsection

char e; /1 allocated in '.sbss.exanple.e

40

Chapter 2. Assembly Language

This chapter describes the most important aspects of the TASKING assembly language for RH850. For
a complete overview of the architecture you are using, refer to the target's Architecture Specification. For
a description of the assembly instruction set, refer to the RH850 Family User's Manual.

2.1. Assembly Syntax

An assembly program consists of statements. A statement may optionally be followed by a comment.
Any source statement can be extended to more lines by including the line continuation character (\) as
the last character on the line. The length of a source statement (first line and continuation lines) is only
limited by the amount of available memory.

Mnemonics, directives and other keywords are case insensitive. Labels, symbols, directive arguments,
and literal strings are case sensitive.

The syntax of an assembly statement is:

[label [:]] [instruction | directive | macro_call] [;conmment]

label A label is a special symbol which is assigned the value and type of the current
program location counter. A label can consist of letters, digits and underscore
characters (). The first character cannot be a digit. The label can also be a
number. A label which is prefixed by whitespace (spaces or tabs) has to be
followed by a colon (:). The size of an identifier is only limited by the amount of
available memory.

number is a number ranging from 1 to 255. This type of label is called a numeric
label or local label. To refer to a numeric label, you must put an n (next) or p
(previous) immediately after the label. This is required because the same label
number may be used repeatedly.

Examples:
LABl1: ; This label is followed by a colon and
; can be prefixed by whitespace
LAB1 ; This label has to start at the beginning
. of aline
1: b 1p ; This is an endl ess | oop

; using nuneric |abels

41

TASKING VX-toolset for RH850 User Guide

instruction

directive

macro_call

comment

An instruction consists of a mnemonic and zero, one or more operands. It must
not start in the first column.

Operands are described in Section 2.3, Operands of an Assembly Instruction.
The instructions are described in the RH850 Family User's Manual.

The instruction can also be a so-called 'generic instruction’. Generic instructions
are pseudo instructions (no instructions from the instruction set). Depending on
the situation in which a generic instruction is used, the assembler replaces the
generic instruction with appropriate real assembly instruction(s). For a complete
list, see Section 2.11, Generic Instructions.

With directives you can control the assembler from within the assembly source.
Except for preprocessing directives, these must not start in the first column.
Directives are described in Section 2.9, Assembler Directives.

A call to a previously defined macro. It must not start in the first column. See
Section 2.10, Macro Operations.

Comment, preceded by a ; (semicolon).

You can use empty lines or lines with only comments.

2.2. Assembler Significant Characters

You can use all ASCII characters in the assembly source both in strings and in comments. Also the
extended characters from the 1ISO 8859-1 (Latin-1) set are allowed.

Some characters have a special meaning to the assembler. Special characters associated with expression
evaluation are described in Section 2.6.3, Expression Operators. Other special assembler characters

are:

Character [Description

; Start of a comment

\ Line continuation character or macro operator: argument concatenation
? Macro operator: return decimal value of a symbol

% Macro operator: return hex value of a symbol

N Macro operator: override local label

Macro string delimiter or quoted string . DEFI NE expansion character

String constants delimiter

@ Start of a built-in assembly function
$ Location counter substitution

++ String concatenation operator

[1 Substring delimiter

Note that macro operators have a higher precedence than expression operators.

42

Assembly Language

2.3. Operands of an Assembly Instruction

In an instruction, the mnemonic is followed by zero, one or more operands. An operand has one of the
following types:

Operand Description

symbol A symbolic name as described in Section 2.4, Symbol Names. Symbols can also occur
in expressions.

register Any valid register as listed in Section 2.5, Registers.

expression Any valid expression as described in Section 2.6, Assembly Expressions.

address A combination of expression, register and symbol.

Addressing modes

The RH850 assembly language has several addressing modes. These are described in detail in section
Instruction Addressing in the RH850 Family User's Manual.

2.4. Symbol Names

User-defined symbols
A user-defined symbol can consist of letters, digits and underscore characters (). The first character
cannot be a digit. The size of an identifier is only limited by the amount of available memory. The case

of these characters is significant. You can define a symbol by means of a label declaration or an equate
or set directive.

Predefined preprocessor symbols

These symbols start and end with two underscore characters, __symbol__, and you can use them in your
assembly source to create conditional assembly. See Section 2.4.1, Predefined Preprocessor Symbols.

Labels

Symbols used for memory locations are referred to as labels. It is allowed to use reserved symbols as
labels as long as the label is followed by a colon.

Reserved symbols

Symbol names and other identifiers beginning with a period (.) are reserved for the system (for example
for directives or section names). Instructions are also reserved. The case of these built-in symbols is
insignificant.

Examples

Valid symbol names:

43

TASKING VX-toolset for RH850 User Guide

| oop_1
ENTRY
aBc
_aBC

Invalid symbol names:

1 | oop ; starts with a nunber
. DEFI NE ; reserved directive nanme

2.4.1. Predefined Preprocessor Symbols

The TASKING assembler knows the predefined symbols as defined in the table below. The symbols are
useful to create conditional assembly.

Symbol

Description

_ AS850__

Identifies the assembler. You can use this symbol to flag parts of the source
which must be recognized by the as850 assembler only. It expands to 1.

__BUILD__

Identifies the build number of the assembler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
assembler, _ BUILD___ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

__REVISION__

Expands to the revision number of the assembler. Digits are represented
as they are; characters (for prototypes, alphas, betas) are represented by
-1. Examples: v1.0r1 -> 1, v1.0rb -> -1

__TASKING__

Identifies the assembler as a TASKING assembler. Expands to 1 if a
TASKING assembler is used.

__VERSION__

Identifies the version number of the assembler. For example, if you use
version 2.1r1 of the assembler, _ VERSION___ expands to 2001 (dot and
revision number are omitted, minor version number in 3 digits).

Example

.if @efined('__AS850__")
; this part is only for the as850 assenbl er

.endif

44

Assembly Language

2.5. Registers

The following register names, either uppercase or lowercase, should not be used for user-defined symbol
names in an assembly language source file:

Program registers

rO .. r31 (32 general purpose registers)
sp (alias for r3)
gp (alias for r4)
tp (alias for rb)
ep (alias for r30)
Ip (alias for r31)

System registers

El PC EIPSW FEPC FEPSW
PSW

FPSR FPEPC FPST FPCC FPCFG FPEC
SESR

EIIC FEIC

CTPC CTPSW CTBP
ElWR FEWR

BSEL

MCFQD MCFGL

RBASE EBASE

| NTBP

MCTL

PI D

FPI PR

TCSEL

SCCFG

SCBP

HVCCFG

HVCBP

VCSEL

VVPRTO .. VMPRT2
VIVBCCTL

VVBCTBLO .. VMSCTBL3
HTCF& HTCTL

MVEA

ASI D

VEI

I SPR

PMR

I CSR

I NTCFG

HTCTL

HTSCTBLO .. HTSCTBL7

45

TASKING VX-toolset for RH850 User Guide

TLBCFG TLBI DX TLBSCH

TELOO TELOL TEHO TEH 1
BWERRL BWERRH BRERRL BRERRH
| CTAGL | CTAGH | CDATL | CDATH
DCTAGL DCTAGH DCDATL DCDATH
| CCTRL DCCTRL

| CCFG DCCFG

| CERR DCERR

MPM MPRC MPBRGN MPTRGN
MCA MCS MmcC MCR
MPPRTO MPPRT1 MPPRT2

MPLAO .. MPLA15

MPUAO .. MPUAL5

MPATO .. MPAT15

2.6. Assembly Expressions

An expression is a combination of symbols, constants, operators, and parentheses which represent a
value that is used as an operand of an assembler instruction (or directive).

Expressions can contain user-defined labels (and their associated integer or floating-point values), and
any combination of integers, floating-point numbers, or ASCII literal strings.

Expressions follow the conventional rules of algebra and boolean arithmetic.

Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker. Relocatable expressions can only
contain integral functions; floating-point functions and numbers are not supported by the ELF/DWARF
object format.

The assembler evaluates expressions with 64-bit precision in two's complement.
The syntax of an expression can be any of the following:

* numeric constant

* string

* symbol

» expression binary_operator expression

* unary_operator expression

 (expression)

» function call

46

Assembly Language

All types of expressions are explained in separate sections.

2.6.1. Numeric Constants

Numeric constants can be used in expressions. If there is no prefix, by default the assembler assumes

the number is a decimal number. Prefixes can be used in either lowercase or uppercase.

Base Description Example
Binary A Ob prefix followed by binary digits (0,1). Or use a b suffix. 0B1101
11001010b
Hexadecimal A 0x prefix followed by hexadecimal digits (0-9, A-F, a-f). Or use |Ox12FF
a h suffix. 0x45
0f al0h
Decimal integer Decimal digits (0-9). 12
1245

2.6.2. Strings

ASCII characters, enclosed in single (') or double (") quotes constitute an ASCII string. Strings between
double quotes allow symbol substitution by a . DEFI NE directive, whereas strings between single quotes
are always literal strings. Both types of strings can contain escape characters.

Strings constants in expressions are evaluated to a number (each character is replaced by its ASCII
value). Strings in expressions can have a size of up to 8 characters or less depending on the operand of
an instruction or directive; any subsequent characters in the string are ignored. In this case the assembler
issues a warning. An exception to this rule is when a string is used in a . DB assembler directive; in that
case all characters result in a constant value of the specified size. Null strings have a value of 0.

Square brackets ([]) delimit a substring operation in the form:
[string, of fset, | ength]

offset is the start position within string. length is the length of the desired substring. Both values may not
exceed the size of string.

Examples
' ABCD 7 (0x44434241)
79 ; to enclose a quote double it
"Al"BC ; or to enclose a quote escape it
"AB +1 ; (0x4341) string used in expression
v ; null string
. DW "' abcdef" ; (0x64636261) 'ef' are ignored

; warning: string value truncated
"ab' ++' cd' ; you can concatenate

; two strings with the '++' operator.

TASKING VX-toolset for RH850 User Guide

; This results in 'abcd'
[" TASKI NG , 0, 4] ; results in the substring ' TASK

2.6.3. Expression Operators

The next table shows the assembler operators. They are ordered according to their precedence. Operators
of the same precedence are evaluated left to right. Parenthetical expressions have the highest priority
(innermost first).

Valid operands include numeric constants, literal ASCII strings and symbols.

Most assembler operators can be used with both integer and floating-point values. If one operand has
an integer value and the other operand has a floating-point value, the integer is converted to a floating-point
value before the operator is applied. The result is a floating-point value.

Type Operator Name Description
O parenthesis Expressions enclosed by parenthesis are evaluated
first.
Unary + plus Returns the value of its operand.
- minus Returns the negative of its operand.

~ one's complement Integer only. Returns the one’s complement of its
operand. It cannot be used with a floating-point
operand.

! logical negate Returns 1 if the operands' value is O; otherwise 0.
For example, if buf is 0 then ! buf is 1. If buf has
a value of 1000 then ! buf is 0.

Arithmetic * multiplication Yields the product of its operands.

/ division Yields the quotient of the division of the first operand
by the second. For integer operands, the divide
operation produces a truncated integer result.

% modulo Integer only. This operator yields the remainder from
the division of the first operand by the second.
+ addition Yields the sum of its operands.
- subtraction Yields the difference of its operands.
Shift << shift left Integer only. Causes the left operand to be shifted

to the left (and zero-filled) by the number of bits
specified by the right operand.

>> shift right Integer only. Causes the left operand to be shifted
to the right by the number of bits specified by the
right operand. The sign bit will be extended.

48

Assembly Language

Type Operator Name Description
Relational < less than Returns an integer 1 if the indicated condition is
-— less than or equal TRUE or an integer 0 if the indicated condition is
FALSE.
> greater than
o= greater than or equal For example, if D has a value of 3 a_nd E ha§ avalue
of 5, then the result of the expression D<Eis 1, and
== equal the result of the expression D>E is 0.
I= not equal o))]
Use tests for equality involving floating-point values
with caution, since rounding errors could cause
unexpected results.
Bitwise & AND Integer only. Yields the bitwise AND function of its
operand.
[OR Integer only. Yields the bitwise OR function of its
operand.
A exclusive OR Integer only. Yields the bitwise exclusive OR function
of its operands.
Logical && logical AND Returns an integer 1 if both operands are non-zero;
otherwise, it returns an integer 0.
I logical OR Returns an integer 1 if either of the operands is
non-zero; otherwise, it returns an integer 1

The relational operators and logical operators are intended primarily for use with the conditional assembly
. i f directive, but can be used in any expression.

2.7.Working with Sections

Sections are absolute or relocatable blocks of contiguous memory that can contain code or data. Some
sections contain code or data that your program declared and uses directly, while other sections are
created by the compiler or linker and contain debug information or code or data to initialize your application.
These sections can be named in such a way that different modules can implement different parts of these
sections. These sections are located in memory by the linker (using the linker script language, LSL) so
that concerns about memory placement are postponed until after the assembly process.

All instructions and directives which generate data or code must be within an active section. The assembler
emits a warning if code or data starts without a section definition. The compiler automatically generates
sections. If you program in assembly you have to define sections yourself.

For more information about locating sections see Section 5.7.8, The Section Layout Definition: Locating
Sections.

Section definition

Sections are defined with the . SECTI ON. ENDSEC directive and have a name. The names have a special
meaning to the locating process and have to start with a predefined name, optionally extended by a dot

49

TASKING VX-toolset for RH850 User Guide

'."and a user defined name. Optionally, you can specify the at () attribute to locate a section at a specific
address.

. SECTI ON nane[, at (addr ess)]
; instructions etc.
. ENDSEC

See the description of the . SECTI ON directive for more information.

Examples
. SECTI ON . dat a ; Declare a .data section
. ENDSEC

. SECTI ON . data. abs, at(0x0) ; Declare a .data.abs section at

; an absol ute address

. ENDSEC

2.8. Built-in Assembly Functions

The TASKING assembler has several built-in functions to support data conversion, string comparison,
and math computations. You can use functions as terms in any expression.

Syntax of an assembly function

@ unction_nane([argunent[,argunment]...])

Functions start with the '@' character and have zero or more arguments, and are always followed by
opening and closing parentheses. White space (a blank or tab) is not allowed between the function name

and the opening parenthesis and between the (comma-separated) arguments.

The names of assembly functions are case insensitive.

Overview of assembly functions

Function Description

@A\RG ' symbol' | expr) Test whether macro argument is present

@BASEREL16(expr) Force 16-bit base register relative addressing

@BASEREL23(expr) Force 23-bit base register relative addressing

@CNT() Return number of macro arguments

@EF!I NED(' symbol' | symbol) Test whether symbol exists

@HA(expr) Returns upper 16 bits of expression value, adjusted for signed
addition

@H (expr) Returns upper 16 bits of expression value

50

Assembly Language

Function Description

@ expr) Returns lower 16 bits of expression value

@.-SB(expr) Least significant byte of the expression

@-SH(expr) Least significant half word of the absolute expression
@.SW(expr) Least significant word of the expression

@/BB(expr) Most significant byte of the expression

@vBH(expr) Most significant half word of the absolute expression
@vBW expr) Most significant word of the expression

@PCREL22(expr) Force 22-bit PC relative addressing

@PCREL32(expr) Force 32-bit PC relative addressing

@TRCAT(strl, str2) Concatenate strl and str2

@TRCMP(strl, str2) Compare strl with str2

@BTRLEN(string) Return length of string

@TRPOS(strl, str2[, start]) Return position of str2 in strl

Detailed Description of Built-in Assembly Functions

@ARG('symbol' | expression)

Returns integer 1 if the macro argument represented by symbol or expression is present, 0 otherwise.
You can specify the argument with a symbol hame (the hame of a macro argument enclosed in single
guotes) or with expression (the ordinal number of the argument in the macro formal argument list). If you
use this function when macro expansion is not active, the assembler issues a warning.

Example:

JF @RQ'TWDDLE') ;is argument tw ddle present?
I F @GARG(1) ;is first argunent present?

@BASEREL16(expression)

Forces 16-bit base register relative addressing of an instruction. The expression is treated as a 16-bit
offset.

Example:

I d.b @ASEREL16(| abl)[ep], r2

51

TASKING VX-toolset for RH850 User Guide

@BASEREL23(expression)

Forces 23-bit base register relative addressing of an instruction. The expression is treated as a 23-bit
offset.

Example:

| d. b @ASEREL23(|l abl)[ep], r2

@CNT()

Returns the number of macro arguments of the current macro expansion as an integer. If you use this
function when macro expansion is not active, the assembler issues a warning.

Example:

ARGCOUNT . SET @NT() ; reserve argunent count

@DEFINED('symbol' | symbol)

Returns 1 if symbol has been defined, O otherwise. If symbol is quoted, it is looked up as a . DEFI NE
symbol; if it is not quoted, it is looked up as an ordinary symbol, macro or label.

Example:
. | F @EFI NED(' ANGLE') ;1S symbol ANGLE defined?
. | F @EFI NED(ANGLE) ;does | abel ANGLE exist?

@HA(expression)

Returns the upper 16 bits of a value, adjusted for a signed addition. @HA(expr essi on) is equivalent to
(((expressi on+0x800) >>16) & Oxffff).expressioncan be any relocatable or absolute expression.

Example:
nmovhi @a(_world),r0,rl1
@HI(expression)

Returns the upper 16 bits of a value. @1l (expr essi on) is equivalent to ((expr essi on>>16) &
Oxf f f f) . expression can be any relocatable or absolute expression.

@LO(expression)

Returns the lower 16 bits of a value. @Q.O(expr essi on) is equivalent to (expressi on & Oxffff).
expression can be any relocatable or absolute expression.

52

Assembly Language

@LSB(expression)

Returns the least significant byte of the result of the expression. The result of the expression is calculated
as 16 bits.

Example:
.DB @SB(0x1234) ; stores 0x34
.DB @BB(0x1234) ; stores 0x12

@LSH(expression)

Returns the least significant half word (bits 0..15) of the result of the absolute expression. The result of
the expression is calculated as a word (32 bits).

Example:
.DH @SH(0x12345678) ; stores 0x7856
.DH @/BH(0x123456) ; stores 0x1200

@LSW(expression)

Returns the least significant word (bits 0..31) of the result of the expression. The result of the expression
is calculated as a double-word (64 bits).

Example:
.DW @SW 0x123456789abcdef) ;. stores OxEFCDAB89
.DW @/mBW 0x123456789a) ; stores 0x12000000

@MSB (expression)

Returns the most significant byte of the result of the expression. The result of the expression is calculated
as 16 bits.

@MSH(expression)
Returns the most significant half word (bits 16..31) of the result of the absolute expression. The result of

the expression is calculated as a word (32 bits). @/SH(expr essi on) is equivalent to
((expression>>16) & Oxffff).

@MSW/(expression)

Returns the most significant word of the result of the expression. The result of the expression is calculated
as a double-word (64 bits).

@PCREL22(expression)

Forces 22-bit PC relative addressing of an instruction. The expression is treated as a 22-bit offset.

53

TASKING VX-toolset for RH850 User Guide

@PCREL32(expression)

Forces 32-bit PC relative addressing of an instruction. The expression is treated as a 32-bit offset.

@STRCAT(string1,string2)

Concatenates stringl and string2 and returns them as a single string. You must enclose stringl and
string2 either with single quotes or with double quotes.

Example:

.DEFINE ID "@TRCAT(' TAS' ,'KING)" ; ID = "'TASKI NG

@STRCMP(stringl,string2)

Compares string1 with string2 by comparing the characters in the string. The function returns the difference
between the characters at the first position where they disagree, or zero when the strings are equal:

<0 if stringl < string2
0 if stringl == string2
>0 if stringl > string2
Example:

.IF (@TRCWP(STR 'MAIN))==0 ; does STR equal ' MAIN ?

@STRLEN(string)

Returns the length of string as an integer.
Example:

SLEN . SET @TRLEN(' string') . SLEN = 6

@STRPOS(stringl,string?2[,start])

Returns the position of string2 in string1 as an integer. If string2 does not occur in stringl, the last string
position + 1 is returned.

With start you can specify the starting position of the search. If you do not specify start, the search is
started from the beginning of string1.

Example:
ID.set @TRPOS(' TASKING ,"ASK') ; ID=1
ID.set @TRPOS(' TASKING ,'BUG) ; ID=7

54

Assembly Language

2.9. Assembler Directives

An assembler directive is simply a message to the assembler. Assembler directives are not translated
into machine instructions. There are three main groups of assembler directives.

» Assembler directives that tell the assembler how to go about translating instructions into machine code.
This is the most typical form of assembly directives. Typically they tell the assembler where to put a
program in memory, what space to allocate for variables, and allow you to initialize memory with data.
When the assembly source is assembled, a location counter in the assembler keeps track of where
the code and data is to go in memory.

The following directives fall under this group:

* Assembly control directives

« Symbol definition and section directives

< Data definition / Storage allocation directives
« High Level Language (HLL) directives

« Directives that are interpreted by the macro preprocessor. These directives tell the macro preprocessor
how to manipulate your assembly code before it is actually being assembled. You can use these
directives to write macros and to write conditional source code. Parts of the code that do not match the
condition, will not be assembled at all.

» Some directives act as assembler options and most of them indeed do have an equivalent assembler
(command line) option. The advantage of using a directive is that with such a directive you can overrule
the assembler option for a particular part of the code. Directives of this kind are called controls. A typical
example is to tell the assembler with an option to generate a list file while with the directives . NOLI ST
and . LI ST you overrule this option for a part of the code that you do not want to appear in the list file.
Directives of this kind sometimes are called controls.

Each assembler directive has its own syntax. Some assembler directives can be preceded with a label.
If you do not precede an assembler directive with a label, you must use white space instead (spaces or
tabs). You can use assembler directives in the assembly code as pseudo instructions. The assembler
recognizes both uppercase and lowercase for directives.

2.9.1. Overview of Assembler Directives

The following tables provide an overview of all assembler directives. For a detailed description of these
directives, refer to Section 2.9.2, Detailed Description of Assembler Directives.

Overview of assembly control directives

Directive Description

. END Indicates the end of an assembly module

. FPU_DQOUBLE Allow double precision FPU instructions and single precision FPU instructions
. FPU_SI NGLE Allow single precision FPU instructions

55

TASKING VX-toolset for RH850 User Guide

Directive Description

. HAS_ MwWJ Allow MMU instructions

. HAS SI MD Allow SIMD instructions

. HAS_THREAD Allow hardware thread support instructions
. HAS VI RTUAL Allow virtualization instructions

. | NCLUDE Include file

. MESSACE Programmer generated message

Overview of symbol definition and section directives

. SECTI ON, . ENDSEC
. SET

. SI ZE

. SOURCE

. TYPE

. VEAK

Directive Description

. EQU Set permanent value to a symbol

. EXTERN Import global section symbol

. GLOBAL Declare global section symbol

. RESUME Resume a previously defined section

Start a new section

Set temporary value to a symbol

Set size of symbol in the ELF symbol table
Specify name of original C source file

Set symbol type in the ELF symbol table
Mark a symbol as 'weak’

Overview of data definition / storage allocation directives

Directive

Description

. ALI GN

. BS,. BSB, . BSH, . BSW
. BSD

. DB
. DH
. DW
. DD

. DS, . DSB, . DSH, . DSW
. bSD

Align location counter
Define block storage (initialized)

Define byte

Define half word (16 bits)
Define word (32 bits)

Define double-word (64 bits)
Define storage

Overview of macro preprocessor directives

Directive

Description

. DEFI NE

56

Define substitution string

Assembly Language

Directive Description

. BREAK Break out of current macro expansion

. REPEAT, . ENDREP Repeat sequence of source lines

. FOR, . ENDFOR Repeat sequence of source lines n times
.IF,.ELIF,.ELSE Conditional assembly directive

. ENDI F End of conditional assembly directive

. MACRO, . ENDM Define macro

. UNDEF Undefine . DEFI NE symbol or macro

Overview of listing control directives

Directive Description

. LI ST, . NOLI ST Print / do not print source lines to list file

. PAGE Set top of page/size of page

. STI TLE Set program subtitle in header of assembly list file
.TITLE Set program title in header of assembly list file

Overview of HLL directives

Directive Description
. CALLS Pass call tree information and/or stack usage information
. M SRAC Pass MISRA C information

2.9.2. Detailed Description of Assembler Directives

57

TASKING VX-toolset for RH850 User Guide

ALIGN

Syntax

. ALI GN expression

Description

With the . ALI GNdirective you instruct the assembler to align the location counter. By default the assembler
aligns on one byte.

When the assembler encounters the . ALI GN directive, it advances the location counter to an address
that is aligned as specified by expression and places the next instruction or directive on that address.
The alignment is in minimal addressable units (MAUs). The assembler fills the ‘gap’ with NOP instructions
for code sections or with zeros for data sections. If the location counter is already aligned on the specified
alignment, it remains unchanged. The location of absolute sections will not be changed.

The expression must be a power of two: 2, 4, 8, 16, ... If you specify another value, the assembler changes
the alignment to the next higher power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value occurring in that section.
A label is not allowed before this directive.
Example

. SECTI ON . text

.ALIGN 2 ; the assenbler aligns
instruction ; this instruction at 2 MAUs and

; fills the "gap' with NOP instructions.
. ENDSEC
. SECTION .text
.ALIGN 3 ; WRONG not a power of two, the
instruction ; assenbler aligns this instruction at

; 4 MAUs and issues a warning.
. ENDSEC

58

Assembly Language

.BREAK

Syntax

. BREAK

Description

The . BREAK directive causes immediate termination of a macro expansion, a . FOR loop expansion or a
. REPEAT loop expansion. In case of nested loops or macros, the . BREAK directive returns to the previous

level of expansion.

The . BREAK directive is, for example, useful in combination with the . | F directive to terminate expansion
when error conditions are detected.

The assembler does not allow a label with this directive.

Example

. FOR MYVAR I N 10 TO 20

; assenbly source lines
I F MYVAR > 15
. BREAK

. ENDI F
. ENDFOR

59

TASKING VX-toolset for RH850 User Guide

.BS, .BSB, .BSH, .BSW, .BSD

Syntax

[label] .BS count[, val ue]

[l abel] .BSB count[, val ue]
[l abel] .BSH count[, val ue]
[l abel] .BSW count[, val ue]
[l abel] .BSD count[, val ue]

Description

With the . BS directive the assembler reserves a block of memory. The reserved block of memory is
initialized to the value of value, or zero if omitted.

With count you specify the number of minimum addressable units (MAUs) you want to reserve, and how
much the location counter will advance. The expression must be an integer greater than zero and cannot
contain any forward references to address labels (labels that have not yet been defined).

With value you can specify a value to initialize the block with. Only the least significant MAU of value is
used. If you omit value, the default is zero.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

You cannot initialize a block of memory in sections with prefix . shss or . bss. In those sections,
the assembler issues a warning and only reserves space, just as with . DS.

The . BSB, . BSH, . BSWand . BSDdirectives are variants of the . BS directive. The difference is the number
of bits that are reserved for the count argument:

Directive Reserved bits
. BSB 8

. BSH 16

. BSw 32

. BSD 64

Example

The . BSB directive is for example useful to define and initialize an array that is only partially filled:

.section .data

.DB 84,101, 115,116 ; initialize 4 bytes
. BSB 96, OxFF ; reserve another 96 bytes, initialized with OXFF
. endsec

60

Assembly Language

Related Information
. DB (Define Memory)

. DS (Define Storage)

61

TASKING VX-toolset for RH850 User Guide

.CALLS

Syntax
.CALLS "caller’,’ callee’
or

. CALLS "caller’,’’, stack_usage[,...]

Description

The first syntax creates a call graph reference between caller and callee. The linker needs this information
to build a call graph. caller and callee are names of functions.

The second syntax specifies stack information. When callee is an empty name, this means we define the
stack usage of the function itself. The value specified is the stack usage in bytes at the time of the call
including the return address. A function can use multiple stacks.

This information is used by the linker to compute the used stack within the application. The information
is found in the generated linker map file within the Memory Usage.

This directive is generated by the C compiler. Use the . CALLS directive in hand-coded assembly when
the assembly code calls a C function. If you manually add . CALLS directives, make sure they connect
to the compiler generated . CALLS directives: the name of the caller must also be named as a callee in
another directive.

A label is not allowed before this directive.

Example
. CALLS ' _main',' _nfunc'

Indicates that the function _mai n calls the function _nf unc.
.CALLS ' _main',"'"',8

The function _nai n uses 8 bytes on the stack.

62

Assembly Language

.DB, .DH, .DW, .DD

Syntax

[label] .DB argument[,argunent]. ..
[label] .DH argument[,argunent]. ..
[label] .DWargument[,argument]. ..
[label] .DD argument[,argument]. ..

Description

With these directive you can define memory. With each directive the assembler allocates and initializes
one or more bytes of memory for each argument.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

An argument can be a single- or multiple-character string constant, an expression or empty. Multiple
arguments must be separated by commas with no intervening spaces. Empty arguments are stored as
0 (zero).

The following table shows the number of bits initialized.

Directive Bits
. DB 8

. DH 16

. DW 32

. DD 64

The value of the arguments must be in range with the size of the directive; floating-point numbers are not
allowed. If the evaluated argument is too large to be represented in a half word / word / double-word, the
assembler issues a warning and truncates the value.

String constants

Single-character strings are stored in a byte whose lower seven bits represent the ASCII value of the
character, for example:

.DB 'R ;= 0x52

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like \n’ are permitted.

.DB "AB',,'C ; = 0x41420043 (second argunent is enpty)
Example

When a string is supplied as argument of a directive that initializes multiple bytes, each character in the
string is stored in consecutive bytes whose lower seven bits represent the ASCII value of the character,
starting at the most significant byte (little-endian). For example:

63

TASKING VX-toolset for RH850 User Guide

HTBL: .DH 'ABC ,,'D ; results in 0x424100004400, the 'C is truncated
WIBL: . DW' ABC ; results in 0x43424100
DTBL: .DD ' ABCEFGH ' ; results in 0x4847464544434241, the 'I' is truncated

Related Information
. BS (Block Storage)

. DS (Define Storage)

64

Assembly Language

.DEFINE

Syntax

. DEFI NE synmbol string

Description

With the . DEFI NE directive you define a substitution string that you can use on all following source lines.
The assembler searches all succeeding lines for an occurrence of symbol, and replaces it with string. If
the symbol occurs in a double quoted string it is also replaced. Strings between single quotes are not
expanded.

This directive is useful for providing better documentation in the source program. A symbol can consist
of letters, digits and underscore characters (_), and the first character cannot be a digit.

Macros represent a special case. . DEFI NE directive translations will be applied to the macro definition
as it is encountered. When the macro is expanded, any active . DEFI NE directive translations will again
be applied.

The assembler issues a warning if you redefine an existing symbol.

A label is not allowed before this directive.

Example

Suppose you defined the symbol LEN with the substitution string "32":
. DEFI NE LEN " 32"

Then you can use the symbol LEN for example as follows:

. DS LEN
. MESSACE "The length is: LEN'

The assembler preprocessor replaces LEN with "32" and assembles the following lines:

.DS 32
. MESSACE "The length is: 32"

Related Information
. UNDEF (Undefine a .DEFINE symbol)

. MACRO, . ENDM(Define a macro)

65

TASKING VX-toolset for RH850 User Guide

.DS, .DSB, .DSH, .DSW, .DSD

Syntax

[l abel] .DS expression

[l abel] .DSB expression
[l abel] .DSH expression
[1abel] .DSW expression
[l abel] .DSD expression

Description

With the . DS directive the assembler reserves a block in memory. The reserved block of memory is not
initialized to any value.

With the expression you specify the number of MAUs (Minimal Addressable Units) that you want to
reserve, and how much the location counter will advance. The expression must evaluate to an integer
greater than zero and cannot contain any forward references (symbols that have not yet been defined).

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

The . DSB, . DSH, . DSWand . DSDdirectives are variants of the . DS directive. The difference is the number
of bits that are reserved per expression argument:

Directive Reserved bits
. DSB 8

. DSH 16

. DSwW 32

. bSD 64

Example

.section .bss
RES: .DS 5+3 ; allocate 8 bytes
. endsec

Related Information
. BS (Block Storage)

. DB (Define Memory)

66

Assembly Language

.END

Syntax

. END

Description

With the optional . END directive you tell the assembler that the end of the module is reached. If the
assembler finds assembly source lines beyond the . END directive, it ignores those lines and issues a
warning.

You cannot use the . END directive in a macro expansion.

The assembler does not allow a label with this directive.

Example

.section .text
; source |lines
. endsec
. END ; End of assenbly nodul e

67

TASKING VX-toolset for RH850 User Guide

.EQU

Syntax

synmbol . EQU expression

Description

With the . EQU directive you assign the value of expression to symbol permanently. The expression can
be relative or absolute. Once defined, you cannot redefine the symbol. With the . GLOBAL directive you
can declare the symbol global.

Example

To assign the value 0x400 permanently to the symbol MYSYMBOL:

MYSYMBOL . EQU 0x4000

You cannot redefine the symbol MYSYMBOL after this.

Related Information

. SET (Set temporary value to a symbol)

68

Assembly Language

.EXTERN
Syntax

. EXTERN synbol [, synbol]. ..
Description

With the . EXTERNdirective you define an external symbol. It means that the specified symbol is referenced
in the current module, but is not defined within the current module. This symbol must either have been
defined outside of any module or declared as globally accessible within another module with the . GLOBAL
directive.

If you do not use the . EXTERN directive and the symbol is not defined within the current module, the
assembler issues a warning and inserts the . EXTERN directive.

A label is not allowed with this directive.

Example

. EXTERN AA, CC, DD ;defined el sewhere
Related Information

. GLOBAL (Declare global section symbol)

69

TASKING VX-toolset for RH850 User Guide

.FOR, .ENDFOR

Syntax

[label] .FOR var IN expression[,expression]...
. ENDFOR
or:

[label] .FOR var IN start TO end [STEP st ep]
. ENDFOR
Description

With the . FOR/ . ENDFOR directive you can repeat a block of assembly source lines with an iterator. As
shown by the syntax, you can use the . FOR/ . ENDFOR in two ways.

1. In the first method, the block of source statements is repeated as many times as the number of
arguments following | N. If you use the symbol var in the assembly lines between . FORand . ENDFOR,
for each repetition the symbol var is substituted by a subsequent expression from the argument list. If
the argument is a null, then the block is repeated with each occurrence of the symbol var removed. If
an argument includes an embedded blank or other assembler-significant character, it must be enclosed
with single quotes.

2. In the second method, the block of source statements is repeated using the symbol var as a counter.
The counter passes all integer values from start to end with a step. If you do not specify step, the
counter is increased by one for every repetition.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

In the following example the block of source statements is repeated 4 times (there are four arguments).
With the . DB directive you allocate and initialize a byte of memory for each repetition of the loop (a word
for the . DWdirective). Effectively, the preprocessor duplicates the . DB and . DWdirectives four times in
the assembly source.

.FOR VARL IN 1,2+3, 4,12
. DB VARL
. DW (VARL* VAR1)

. ENDFOR

In the following example the loop is repeated 16 times. With the . DWdirective you allocate and initialize
four bytes of memory for each repetition of the loop. Effectively, the preprocessor duplicates the . DW
directive 16 times in the assembled file, and substitutes VAR2 with the subsequent numbers.

_FOR VAR2 IN 1 to 0x10
. DW (VARL* VAR1)
. ENDFOR

70

Assembly Language

Related Information

. REPEAT, . ENDREP (Repeat sequence of source lines)

71

TASKING VX-toolset for RH850 User Guide

.FPU_DOUBLE

Syntax

. FPU_DQOUBLE

Description

With the . FPU_DOUBLE directive you tell the assembler that the processor used supports double precision
and single precision FPU. With this directive you can use double precision FPU instructions and single
precision FPU instructions in the assembly file. This is the same as specifying --fpu=double on the
command line.

The assembler does not allow a label with this directive.
Related Information
. FPU_SI NGLE (Core implements FPU single precision)

Assembler option --fpu

72

Assembly Language

.FPU_SINGLE

Syntax

. FPU_SI NGLE

Description

With the . FPU_SI NGLE directive you tell the assembler that the processor used supports single precision
FPU. With this directive you can use single precision FPU instructions in the assembly file. This is the
same as specifying --fpu=single on the command line.

The assembler does not allow a label with this directive.

Related Information
. FPU_DOUBLE (Core implements FPU double and single precision)

Assembler option --fpu

73

TASKING VX-toolset for RH850 User Guide

.GLOBAL
Syntax

. GLOBAL synbol [, synbol]. ..
Description

All symbols or labels defined in the current section or module are local to the module by default. You can
change this default behavior with assembler option --symbol-scope=global.

With the . GLOBAL directive you declare one of more symbols as global. It means that the specified
symbols are defined within the current section or module, and that those definitions should be accessible
by all modules.

To access a symbol, defined with . GLOBAL, from another module, use the . EXTERN directive.

Only program labels and symbols defined with . EQU can be made global.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.
The assembler does not allow a label with this directive.

Example

LOOPA .EQU 1 ; definition of synbol LOOPA
.GLOBAL LOCPA ; LOOPA will be globally
; accessi bl e by other nodul es
Related Information

. EXTERN (Import global section symbol)

74

Assembly Language

HAS_MMU

Syntax
. HAS_ MW
Description

With the . HAS_MWUJ directive you tell the assembler that the processor used implements an MMU. With
this directive you can use MMU instructions in the assembly file. This is the same as specifying --has-mmu
on the command line.

The assembler does not allow a label with this directive.

Related Information

Assembler option --has-mmu

75

TASKING VX-toolset for RH850 User Guide

.HAS_SIMD

Syntax

. HAS_SI MD

Description

With the . HAS_SI MD directive you tell the assembler that the processor used implements SIMD. With
this directive you can use SIMD instructions in the assembly file. This is the same as specifying --has-simd
on the command line.

The assembler does not allow a label with this directive.

Related Information

Assembler option --has-simd

76

Assembly Language

.HAS_THREAD

Syntax

. HAS_ THREAD

Description

With the . HAS_THREAD directive you tell the assembler that the processor used implements hardware
thread support. With this directive you can use hardware thread support instructions in the assembly file.
This is the same as specifying --has-thread on the command line.

The assembler does not allow a label with this directive.

Related Information

Assembler option --has-thread

77

TASKING VX-toolset for RH850 User Guide

.HAS_VIRTUAL

Syntax

. HAS_VI RTUAL

Description

With the . HAS_VI RTUAL directive you tell the assembler that the processor used implements virtualization
support. With this directive you can use virtualization instructions in the assembly file. This is the same
as specifying --has-virtualization on the command line.

The assembler does not allow a label with this directive.

Related Information

Assembler option --has-virtualization

78

Assembly Language

IF, .ELIF, .ELSE, .ENDIF

Syntax

.1 F expression

[.ELIF expression] ; the .ELIF directive is optional
[. ELSE] ; the .ELSE directive is optional
. ENDI F

Description

With the . | F/. ENDI F directives you can create a part of conditional assembly code. The assembler
assembles only the code that matches a specified condition.

The expression must evaluate to an absolute integer and cannot contain forward references. If expression
evaluates to zero, the IF-condition is considered FALSE, any non-zero result of expression is considered
as TRUE.

If the optional . ELSE and/or . ELI F directives are not present, then the source statements following the
. | Fdirective and up to the next . ENDI F directive will be included as part of the source file being assembled
only if the expression had a non-zero result.

If the expression has a value of zero, the source file will be assembled as if those statements between
the . | F and the . ENDI F directives were never encountered.

If the . ELSE directive is present and expression has a nonzero result, then the statements between the
. | Fand . ELSE directives will be assembled, and the statement between the . ELSE and . ENDI F directives
will be skipped. Alternatively, if expression has a value of zero, then the statements between the . | F and
. ELSE directives will be skipped, and the statements between the . ELSE and . ENDI F directives will be
assembled.

You can nest . | F directives to any level. The . ELSE and . ELI F directive always refer to the nearest
previous . | F directive.

A label is not allowed with this directive.
Example

Suppose you have an assemble source file with specific code for a test version, for a demo version and
for the final version. Within the assembly source you define this code conditionally as follows:

I F TEST
. ; code for the test version
. ELI F DEMO

. ; code for the denp version
. ELSE

79

TASKING VX-toolset for RH850 User Guide

; code for the final version
. ENDI F

Before assembling the file you can set the values of the symbols TEST and DEMOin the assembly source
before the . | F directive is reached. For example, to assemble the demo version:

TEST .SET 0O
DEMO . SET 1

Related Information

Assembler option --define (Define preprocessor macro)

80

Assembly Language

.INCLUDE

Syntax

. I NCLUDE "fil ename" | <fil enane>

Description

With the . | NCLUDE directive you include another file at the exact location where the . | NCLUDE occurs.
This happens before the resulting file is assembled. The . | NCLUDE directive works similarly to the

#i ncl ude statement in C. The source from the include file is assembled as if it followed the point of the
. | NCLUDE directive. When the end of the included file is reached, assembly of the original file continues.

The string specifies the filename of the file to be included. The filename must be compatible with the
operating system (forward/backward slashes) and can contain a directory specification. If you omit a
filename extension, the assembler assumes the extension . asm

If an absolute pathname is specified, the assembler searches for that file. If a relative path is specified
or just a filename, the order in which the assembler searches for include files is:

1. The current directory if you use the "filename" construction.
The current directory is not searched if you use the <filename> syntax.
2. The path that is specified with the assembler option --include-directory.
3. The path that is specified in the environment variable AS8501 NC when the product was installed.
4. The default i ncl ude directory in the installation directory.
The assembler does not allow a label with this directive.

The state of the assembler is not changed when an include file is processed. The lines of the include file
are inserted just as if they belong to the file where it is included.

Example
Suppose that your assembly source file t est . sr ¢ contains the following line:
. I NCLUDE "c:\ nyi ncl udes\ nyi nc. i nc"
The assembler issues an error if it cannot find the file at the specified location.
. I NCLUDE "nyi nc.inc"
The assembler searches the file myi nc. i nc according to the rules described above.
Related Information

Assembler option --include-directory (Add directory to include file search path)

81

TASKING VX-toolset for RH850 User Guide

.LIST, .NOLIST
Syntax
. NOLI ST

; assenbly source lines
.LIST

Description

If you generate a list file with the assembler option --list-file, you can use the directives . LI ST and
. NOLI ST to specify which source lines the assembler must write to the list file. Without the assembler
option --list-file these directives have no effect. The directives take effect starting at the next line.

The assembler prints all source lines to the list file, until it encounters a . NOLI ST directive. The assembler
does not print the . NOLI ST directive and subsequent source lines. When the assembler encounters the
. LI ST directive, it resumes printing to the list file.

It is possible to nest the . LI ST/. NOLI ST directives.

Example
Suppose you assemble the following assembly code with the assembler option --list-file:

. SECTI ON . t ext
.. ; source line 1
. NOLI ST

.. ; source line 2
.LIST

.. ; source line 3
. ENDSEC

The assembler generates a list file with the following lines:

. SECTI ON . t ext

; source line 1
.. ; source line 3
. ENDSEC

Related Information

Assembler option --list-file (Generate list file)

82

Assembly Language

.MACRO, .ENDM

Syntax

macr o_nhame . MACRO [argument [, argument]...]
rracr o_definition_statenents
. ENDM

Description

With the . MACROdirective you define a macro. Macros provide a shorthand method for handling a repeated
pattern of code or group of instructions. You can define the pattern as a macro, and then call the macro
at the points in the program where the pattern would repeat.

The definition of a macro consists of three parts:

» Header, which assigns a name to the macro and defines the arguments (. MACRO directive).
» Body, which contains the code or instructions to be inserted when the macro is called.

« Terminator, which indicates the end of the macro definition (. ENDMdirective).

The arguments are symbolic names that the macro processor replaces with the literal arguments when
the macro is expanded (called). Each formal argument must follow the same rules as symbol names: the
name can consist of letters, digits and underscore characters (_). The first character cannot be a digit.
Argument names cannot start with a percent sign (%).

Macro definitions can be nested but the nested macro will not be defined until the primary macro is
expanded.

You can use the following operators in macro definition statements:

Operator [Name Description

\ Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

? Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

A Macro local label override Prevents name mangling on labels in macros.

Example
The macro definition:

macro_a .MACRO argl, arg2 ; header
.db argl ; body

83

TASKING VX-toolset for RH850 User Guide
.dw (argl*arg2)
. ENDM
The macro call:
.section .data
macro_a 2,3
. endsec

The macro expands as follows:

.db 2
Cdw (2*3)

Related Information
Section 2.10, Macro Operations

. DEFI NE (Define a substitution string)

84

;term nator

Assembly Language

.MESSAGE

Syntax

. MESSACGE type [{str]|exp}[,{str]|exp}]...]

Description

With the . MESSAGE directive you tell the assembiler to print a message to st der r during the assembling
process.

With type you can specify the following types of messages:

| Information message. Error and warning counts are not affected and the assembler continues
the assembling process.

W Warning message. Increments the warning count and the assembler continues the assembling
process.

Error message. Increments the error count and the assembler continues the assembling process.

F Fatal error message. The assembler immediately aborts the assembling process and generates
no object file or list file.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated message. If you use expressions,
the assembler outputs the result. The assembler outputs a space between each argument.

The error and warning counts will not be affected. The . MESSAGE directive is for example useful in
combination with conditional assembly to indicate which part is assembled. The assembling process
proceeds normally after the message has been printed.

This directive has no effect on the exit code of the assembler.
A label is not allowed with this directive.
Example

. MESSAGE | 'Generating tables'

ID.EQU 4
.MESSAGE E ' The value of IDis',ID

. DEFI NE LONG " SHORT"
.MESSACE | 'This is a LONG string'
.MESSACE | "This is a LONG string"

Within single quotes, the defined symbol LONGis not expanded. Within double quotes the symbol LONG
is expanded so the actual message is printed as:

This is a LONG string
This is a SHORT string

85

TASKING VX-toolset for RH850 User Guide

.MISRAC

Syntax

.M SRAC string

Description

The C compiler can generate the . M SRAC directive to pass the compiler's MISRA C settings to the object
file. The linker performs checks on these settings and can generate a report. It is not recommended to
use this directive in hand-coded assembly.

Example

.M SRAC ' M SRA- C: 2004, 64, e2, Ob, e, el1, 27, 6, ef 83, el, ef , 66, cb75, af 1, ef f, e7,
e7f, 8d, 63, 87ff7,6ff3, 4

Related Information
Section 3.7.2, C Code Checking: MISRA C

C compiler option --misrac

86

Assembly Language

.PAGE

Syntax

. PAGE [pagewi dt h[, pagel engt h[, bl ankt op[, bl ankbt n{, bl ankl eft]]]]
Default

. PAGE 132,72,0,0,0
Description

If you generate a list file with the assembler option --list-file, you can use the directive . PAGE to format
the generated list file.

The arguments may be any positive absolute integer expression, and must be separated by commas.

pagewidth Number of columns per line. The default is 132, the minimum is 40.

pagelength Total number of lines per page. The default is 72, the minimum is 10.
As a special case, a page length of 0 turns off page breaks.

blanktop Number of blank lines at the top of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

blankbtm Number of blank lines at the bottom of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

blankleft Number of blank columns at the left of the page. The default is 0, the
minimum is 0, and the maximum must maintain the relationship: blankleft
< pagewidth.

If you use the . PAGE directive without arguments, it causes a 'formfeed': the next source line is printed
on the next page in the list file. The . PAGE directive itself is not printed.

You can omit an argument by using two adjacent commas. If the remaining arguments after an argument
are all empty, you can omit them.

Example
. PAGE ; fornfeed, the next source line is printed
; on the next page in the list file.
. PAGE 96 ; set page width to 96. Note that you can

; omt the last four arguments.
.PAGE ,,3,3 ; use 3 line top/bottom nargins.

Related Information

. TI TLE (Set program title in header of assembler list file)

87

TASKING VX-toolset for RH850 User Guide

Assembler option --list-file

88

Assembly Language

.REPEAT, .ENDREP

Syntax

[l abel] . REPEAT expression
. ENDREP

Description

With the . REPEAT/. ENDREP directive you can repeat a sequence of assembly source lines. With expression
you specify the number of times the loop is repeated. If the expression evaluates to a number less than
or equal to O, the sequence of lines will not be included in the assembler output. The expression result
must be an absolute integer and cannot contain any forward references (symbols that have not already
been defined). The . REPEAT directive may be nested to any level.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

In this example the loop is repeated 3 times. Effectively, the preprocessor repeats the source lines (. DB
10) three times, then the assembler assembles the result:

. REPEAT 3
.DB 10 ; assenbly source |ines
. ENDFOR

Related Information

. FOR, . ENDFOR (Repeat sequence of source lines n times)

89

TASKING VX-toolset for RH850 User Guide

.RESUME

Syntax

. RESUME nane[, attribute]...

Description

With the . SECTI ON you always start a new section. With the . RESUME directive you can reactivate a
previously defined section. See the . SECTI ON directive for a list of available section attributes. If you
omit the attribute, the previously defined section with the same name is reactivated (ignoring the
attribute(s)). If you specify an attribute you reactivate the section with that same attribute. If multiple
previously defined sections match, the matching section that was active last before the . RESUME directive
is reactivated.

Example
. SECTI ON .t ext ; First .text section
.éEéTIG\I.data ; First .data section
. SECTI ON . text ; Second .text section
. SECTI ON . data, at(0x0) ; Second .data section
RESUI\/E . text ; Resume in the second .text section
.i?iE.SUI\/E.data ; Resume in the first .data section
RESUI\/E .data, at(0x0) ; Resunme in the second .data section

Related Information

. SECTI ON (Start a new section)

90

Assembly Language

.SECTION, .ENDSEC

Syntax

.SECTION nane [, attribute]... [,at(address)]

. ENDSEC

Description

With the . SECTI ON directive you define a new section. Each time you use the . SECTI ON directive, a
new section is created. It is possible to create multiple sections with exactly the same name.

To resume a previously defined section, use the . RESUME directive.

If you define a section, you must always specify the section name. The names have a special meaning
to the locating process and have to start with a predefined name, optionally extended by a dot'." and a
user defined name. The predefined section name also determines the type of the section (code, data or
debug). Optionally, you can specify the at () attribute to locate a section at a specific address.

You can use the following predefined section names:

onTP

Section name Description Section type

text Code section code

.const Constant data in ROM, addressed with 32-bit absolute data
addressing

.sconst Constant data in ROM, addressed with 16-bit displacement on |data
TP

.sconst23 Constant data in ROM, addressed with 23-bit displacement on|data
TP

.zconst Constant data in ROM, addressed with 16-bit displacement on |data
RO

.zconst23 Constant data in ROM, addressed with 23-bit displacement on |data
RO

.data Initialized data, addressed with 32-bit absolute addressing data

.sdata Initialized data, addressed with 16-bit displacement on TP data

.sdata23 Initialized data, addressed with 23-bit displacement on TP data

.zdata Initialized data, addressed with 16-bit displacement on RO data

.zdata23 Initialized data, addressed with 23-bit displacement on RO data

.bss Uninitialized data (cleared), addressed with 32-bit absolute |data
addressing

.Sbss Uninitialized data (cleared), addressed with 16-bit displacement|data
onTP

.Sbss23 Uninitialized data (cleared), addressed with 23-bit displacement |data

91

TASKING VX-toolset for RH850 User Guide

Section name Description Section type
.zbss Uninitialized data (cleared), addressed with 16-bit displacement|data
on RO
.zbss23 Uninitialized data (cleared), addressed with 23-bit displacement|data
on RO
.debug Debug section debug

The section attributes are case insensitive. The defined attributes are:

Attribute

Description

Allowed on type

ALIGN(value)

Align the section to the value specified. value must be a power
of two.

CODE, DATA

AT(address)

Locate the section at the given address.

CODE, DATA

CLEAR

Sections are zeroed at startup.

DATA

CLUSTER(‘name")

Cluster code sections with companion debug sections. Used
by the linker during removal of unreferenced sections. The
name must be unique for this module (not for the application).

CODE, DATA,
DEBUG

INIT

Defines that the section contains initialization data, which is
copied from ROM to RAM at program startup.

CODE, DATA

LINKONCE ‘tag’

For internal use only.

MAX

When data sections with the same name occur in different
object modules with the MAX attribute, the linker generates
a section of which the size is the maximum of the sizes in the
individual object modules.

DATA

data is not executable.

NOCLEAR Sections are not zeroed at startup. This is a default attribute | DATA
for data sections. This attribute is only useful with BSS
sections, which are cleared at startup by default.
NOINIT Defines that the section contains no initialization data. CODE, DATA
PROTECT Tells the linker to exclude a section from unreferenced section | CODE, DATA
removal and duplicate section removal.
ROMDATA Section contains data to be placed in ROM. This ROM area |DATA

Sections of a specified type are located by the linker in a memory space. The space names are defined
in a so-called 'linker script file' (files with the extension . | sl) delivered with the product in the directory
instal | ati on-dir\include.lsl.

Example

. SECTI ON . dat a ;

. ENDSEC

. SECTI ON . sdat a,

92

Declare a .data section

rondat a ;

Decl are a .sdata section in ROM

Assembly Language

. ENDSEC

. SECTI ON . data. abs, at(0x0) ; Declare a .data.abs section at
; an absol ute address
. ENDSEC

Related Information

. RESUME (Resume a previously defined section)

93

TASKING VX-toolset for RH850 User Guide

SET

Syntax

symbol . SET expression
.SET synbol expression

Description

With the . SET directive you assign the value of expression to symbol temporarily. If a symbol was defined
with the . SET directive, you can redefine that symbol in another part of the assembly source, using the
. SET directive again. Symbols that you define with the . SET directive are always local: you cannot define
the symbol global with the . GLOBAL directive.

The . SET directive is useful in establishing temporary or reusable counters within macros. expression
must be absolute and cannot include a symbol that is not yet defined (no forward references are allowed).

Example

COUNT .SET O ; Initialize count. Later on you can
; assign other values to the synbol

Related Information

. EQU (Set permanent value to a symbol)

94

Assembly Language

SIZE

Syntax

.Sl ZE synbol , expression

Description
With the . SI ZE directive you set the size of the specified symbol to the value represented by expression.

The . Sl ZE directive may occur anywhere in the source file unless the specified symbol is a function. In
this case, the . S| ZE directive must occur after the function has been defined.

Example
.section . text
.global _main
.align 2

; Function _main

_main: .type func

.SIZE _main,$ _main
. endsec

Related Information

. TYPE (Set symbol type)

95

TASKING VX-toolset for RH850 User Guide

.SOURCE
Syntax

. SOURCE string
Description

With the . SOURCE directive you specify the name of the original C source module. This directive is
generated by the C compiler. You do not need this directive in hand-written assembly.

Example

. SOURCE "nai n. c"

96

Assembly Language

STITLE

Syntax

.STITLE ["string"]
Default
No subtitle line is printed.
Description

If you generate a list file with the assembler option --list-file, you can use the . STI TLE directive to specify
the program subtitle which is printed at the top of each page in the assembiler list file. You can use the

. STI TLE directive only in combination with a . Tl TLE directive to add an extra program title line. Without
a . Tl TLE directive any . STI TLE directive is ignored.

If you use the . STI TLE directive without the argument, the subtitle becomes empty. The specified subtitle
is valid until the assembler encounters a new . STI TLE directive.

The . STI TLE directive itself will not be printed in the source listing.
If the page width is too small for the title to fit in the header, it will be truncated.
Example

.TITLE "This is the title"
.STITLE "This is the subtitle"

Related Information
. TI TLE (Set program title in header of assembler list file)

Assembler option --list-file

97

TASKING VX-toolset for RH850 User Guide

.TITLE

Syntax

.TITLE ["string"]
Default

.TITLE ""
Description

If you generate a list file with the assembler option --list-file, you can use the . TI TLE directive to specify
the program title which is printed at the top of each page in the assembler list file.

If you use the . TI TLE directive without the argument, the title becomes empty. This is also the default.
The specified title is valid until the assembler encounters a new . Tl TLE directive.

The . Tl TLE directive itself will not be printed in the source listing.
If the page width is too small for the title to fit in the header, it will be truncated.
Example
.TITLE "This is the title"
Related Information
. PACE (Format the assembler list file)
. STI TLE (Set program subtitle in header of assembler list file)

Assembler option --list-file

98

Assembly Language

.TYPE
Syntax
synbol .TYPE typeid

Description

With the . TYPE directive you set a symbol's type to the specified value in the ELF symbol table. Valid
symbol types are:

FUNC The symbol is associated with a function or other executable code.
OBJECT The symbol is associated with an object such as a variable, an array, or a structure.
FILE The symbol name represents the filename of the compilation unit.

Labels in code sections have the default type FUNC. Labels in data sections have the default type OBJECT.
Example
Afunc: .type func

Related Information

. Sl ZE (Set symbol size)

99

TASKING VX-toolset for RH850 User Guide

.UNDEF

Syntax

. UNDEF synbol

Description

With the . UNDEF directive you can undefine a substitution string that was previously defined with the
. DEFI NE directive. The substitution string associated with symbol is released, and symbol will no longer
represent a valid . DEFI NE substitution or macro.

The assembler issues a warning if you redefine an existing symbol.
The assembler does not allow a label with this directive.
Example

The following example undefines the LEN substitution string that was previously defined with the . DEFI NE
directive:

. UNDEF LEN
Related Information
. DEFI NE (Define a substitution string)

. MACRO, . ENDM (Define a macro)

100

Assembly Language

WEAK

Syntax

. EEAK synbol [, synbol J. ..

Description

With the . VEAK directive you mark one or more symbols as 'weak'. The symbol can be defined in the
same module with the . GLOBAL directive or the . EXTERN directive. If the symbol does not already exist,
it will be created.

A 'weak' external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference.

You can overrule a weak definition with a . GLOBAL definition in another module. The linker will not
complain about the duplicate definition, and ignore the weak definition.

Only program labels and symbols defined with . EQU can be made weak.
Example

LOOPA . EQU 1 ; definition of synbol LOOPA
.GLOBAL LOOPA ; LOOPA will be globally
; accessi bl e by other nodul es
. VEAK LOGPA ; mark synbol LOOPA as weak

Related Information
. EXTERN (Import global section symbol)

. GLOBAL (Declare global section symbol)

101

TASKING VX-toolset for RH850 User Guide

2.10. Macro Operations

Macros provide a shorthand method for inserting a repeated pattern of code or group of instructions. You
can define the pattern as a macro, and then call the macro at the points in the program where the pattern
would repeat.

Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly.

When a macro is called, the assembler executes the macro and replaces the call by the resulting in-line
source statements. 'In-line' means that all replacements act as if they are on the same line as the macro
call. The generated statements may contain substitutable arguments. The statements produced by a
macro can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions as any
other statements.

Macros can be nested. The assembler processes nested macros when the outer macro is expanded.

2.10.1. Defining a Macro
The first step in using a macro is to define it.
The definition of a macro consists of three parts:
» Header, which assigns a name to the macro and defines the arguments (. MACROdirective).
» Body, which contains the code or instructions to be inserted when the macro is called.
» Terminator, which indicates the end of the macro definition (. ENDMdirective).
A macro definition takes the following form:
nmacro_nanme . MACRO [argunent[, argunent]...]
lm-a;:ro_defi nition_statenents
- ENDM
For more information on the definition see the description of the . MACRO directive.

2.10.2. Calling a Macro

To invoke a macro, construct a source statement with the following format:

[l abel] macro_name [argunent[,argunment]...] [; comment]

where,

label An optional label that corresponds to the value of the location counter
at the start of the macro expansion.

macro_name The name of the macro. This may not start in the first column.

102

Assembly Language

argument One or more optional, substitutable arguments. Multiple arguments

must be separated by commas.

comment An optional comment.

The following applies to macro arguments:

Each argument must correspond one-to-one with the formal arguments of the macro definition. If the
macro call does not contain the same number of arguments as the macro definition, the assembler
issues a warning.

If an argument has an embedded comma or space, you must surround the argument by single quotes
0-

You can declare a macro call argument as null in three ways:

enter delimiting commas in succession with no intervening spaces

macronane ARGL, , ARG3 ; the second argunent is a null argunent

terminate the argument list with a comma, the arguments that normally would follow, are now
considered null

macr onane ARGL, ; the second and all follow ng argunents are null

declare the argument as a null string

No character is substituted in the generated statements that reference a null argument.

2.10.3. Using Operators for Macro Arguments

The assembler recognizes certain text operators within macro definitions which allow text substitution of
arguments during macro expansion. You can use these operators for text concatenation, numeric
conversion, and string handling.

Operator [Name Description

\

Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

n Macro local label override Prevents name mangling on labels in macros.

103

TASKING VX-toolset for RH850 User Guide

Example: Argument Concatenation Operator -\
Consider the following macro definition:

MAC A . MACRO val , reg
mov val,r\reg
. ENDM

The macro is called as follows:

MAC A 3,1

The macro expands as follows:
nmov 3,r1l

The macro preprocessor substitutes the character '3’ for the argument val , and the character '1' for the
argument r eg. The concatenation operator (\) indicates to the macro preprocessor that the substitution
characters for the arguments are to be concatenated with the characters 'r'.

Without the '\' operator the macro would expand as:
mov 3,rreg

which results in an assembler error (invalid operand).

Example: Decimal Value Operator - ?

Instead of substituting the formal arguments with the actual macro call arguments, you can also use the
value of the macro call arguments.

Consider the following source code that calls the macro MAC_A after the argument AVAL has been set to
1.

AVAL . SET 3
MAC_A AVAL, 1

If you want to replace the argument val with the value of AVAL rather than with the literal string ' AVAL' ,
you can use the ? operator and modify the macro as follows:

MAC_A . MACRO val , reg
mov ?val ,r\reg
. ENDM

Example: Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator (?) except that it returns the
hexadecimal value of a symbol.

104

Assembly Language

Consider the following macro definition:

GEN_LAB . MACRO LAB, VAL, STMI
LAB\ %/AL STMT
. ENDM

The macro is called after NUMhas been set to 10:

NUM . SET 10
GEN_LAB HEX, NUM NCP

The macro expands as follows:
HEXA NOP

The %/AL argument is replaced by the character 'A’ which represents the hexadecimal value 10 of the
argument VAL.

Example: Argument String Operator - "

To generate a literal string, enclosed by single quotes ('), you must use the argument string operator (*)
in the macro definition.

Consider the following macro definition:

STR_MAC . MACRO STRI NG
. DB " STRI NG’
. ENDM

The macro is called as follows:
STR_MAC ABCD

The macro expands as follows:
. DB ' ABCD

Within double quotes . DEFI NE directive definitions can be expanded. Take care when using constructions
with single quotes and double quotes to avoid inappropriate expansions. Since . DEFI NE expansion
occurs before macro substitution, any . DEFI NE symbols are replaced first within a macro argument string:

. DEFI NE LONG 'short'

STR_MAC . MACRO STRI NG
.MESSAGE | 'This is a LONG STRI NG
.MESSAGE | "This is a LONG STRI NG'
. ENDM

If the macro is called as follows:

STR_MAC sentence

105

TASKING VX-toolset for RH850 User Guide

it expands as:

.MESSAGE | 'This is a LONG STRI NG
.MESSAGE | 'This is a short sentence'

Macro Local Label Override Operator -~

If you use labels in macros, the assembler normally generates another unique name for the labels (such
as LOCAL__M_L000001).

The macro ~-operator prevents name mangling on macro local labels.
Consider the following macro definition:

INNT . MACRO addr
LOCAL: nmovhi @a(”addr),r0,r11
ld.w @o("addr)[r11],r11
. ENDM

The macro is called as follows:

LOCAL:
INI T LOCAL

The macro expands as:

LOCAL__M L0O00001: novhi @a(LOCAL),r0,r11
ld.w @o(LOCAL)[r11],r11

If you would not have used the * operator, the macro preprocessor would choose another name for LOCAL
because the label already exists. The macro would expand like:

LOCAL__M L000001: novhi @a(LOCAL__M L000001),r0,r11
ld.w @o(LOCAL__M L0O00001)[r11],r11

2.11. Generic Instructions
The assembler supports so-called 'generic instructions'. Generic instructions are pseudo instructions (no

instructions from the instruction set). Depending on the situation in which a generic instruction is used,
the assembler replaces the generic instruction with appropriate real assembly instruction(s).

ADDI generic

An immediate value is added to the first register and the result is placed in the second register. If both
registers are the same and the immediate value fits in 5 bits, the assembler will rewrite the ADDI.

Instruction Replacement Remarks
ADDI imm,rA,rB ADD immrB If rA and rB are the same register and imm
fits in 5 bits

106

Assembly Language

Bcond inversion generic

The PC-relative conditional branch instruction has a range of 9 bits or 17 bits. The PC of the branch
destination is the sum of the current PC value and the 9-bit/17-bit displacement. The unconditional version
has a range of 22 bits or 32 bits. If the conditional branch target is out-of-range, the assembler will rewrite
the conditional branch instruction with an inversed conditional branch and an unconditional branch.

Instruction |[Replacement Remarks
Bcond label Bi nv_cond ~1 If target label out-of-range
JR | abel
~1:
For example:
BLE | abl

is replaced by the following code if | ab1 is out-of-range:

BGT __T4294967295
JR labl
__T4294967295:

BR generic

The PC-relative unconditional branch instruction has a range of 9 bits. The PC of the branch destination
is the sum of the current PC value and the 9-bit displacement. The unconditional jump version has a
range of 22 bits. If the branch target is out-of-range, the assembler will rewrite the unconditional branch
instruction with an unconditional jump.

Instruction |Replacement Remarks
BR label JR | abel If target label out-of-range
For example:

BR | abl

is replaced by the following code if | ab1l is out-of-range:
JR labl
MOV 16-bit generic

An immediate value is moved into a register. If the immediate value is larger than 5 bits but smaller than
16 bits, the assembler will rewrite the move with a move effective address.

Instruction |Replacement Remarks
MOV imm,rA MOVEA immrO, rA If rA cannot be r0

107

TASKING VX-toolset for RH850 User Guide

PREPARE, DISPOSE function generics

With the function prepare and dispose generic instructions you can specify a list of registers. The assembler
will rewrite the list of registers with a 32-bit register list mask.

Instruction Replacement

PREPARE list,imm5 PREPARE list12,imm5
PREPARE list,imm5,sp PREPARE list12,imm5,sp
PREPARE list,imm5,imm |PREPARE list12,imm5,imm
DISPOSE immb5,list DISPOSE immb5,list12
DISPOSE imm5,list,[reg1] [DISPOSE immb5,list12,[reg1]

For example:
PREPARE r20,r21,r23, 16, sp
is replaced by the following code:

PREPARE (128| 64| 16), 16, sp

108

Chapter 3. Using the C Compiler

This chapter describes the compilation process and explains how to call the C compiler.

The TASKING VX-toolset for RH850 under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire embedded project, from C source till the final
ELF/DWARF object file which serves as input for the debugger.

Although in Eclipse you cannot run the C compiler separately from the other tools, this section discusses
the options that you can specify for the C compiler.

On the command line it is possible to call the C compiler separately from the other tools. However, it is
recommended to use the control program for command line invocations of the toolset (see Section 6.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line.

The C compiler takes the following files for input and output:

Csource file
.C
1 .
compiler
Ccompiler intermediate file
|] - .mil
assembly file

. 8IC

This chapter first describes the compilation process which consists of a frontend and a backend part.
Next it is described how to call the C compiler and how to use its options. An extensive list of all options
and their descriptions is included in Section 8.2, C Compiler Options. Finally, a few important basic tasks
are described, such as including the C startup code and performing various optimizations.

3.1. Compilation Process

During the compilation of a C program, the C compiler runs through a number of phases that are divided
into two parts: frontend and backend.

The backend part is not called for each C statement, but starts after a complete C module or set of modules
has been processed by the frontend (in memory). This allows better optimization.

The C compiler requires only one pass over the input file which results in relative fast compilation.
Frontend phases

1. The preprocessor phase:

The preprocessor includes files and substitutes macros by C source. It uses only string manipulations
on the C source. The syntax for the preprocessor is independent of the C syntax but is also described
in the ISO/IEC 9899:1999(E) standard.

109

TASKING VX-toolset for RH850 User Guide

. The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

. The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs a syntactic and semantic
analysis of the program, and generates an intermediate representation of the program. This code is
called MIL (Medium level Intermediate Language).

. The frontend optimization phase:

Target processor independent optimizations are performed by transforming the intermediate code.

Backend phases

1.

Instruction selector phase:

This phase reads the MIL input and translates it into Low level Intermediate Language (LIL). The LIL
objects correspond to a processor instruction, with an opcode, operands and information used within
the C compiler.

. Peephole optimizer/instruction scheduler/software pipelining phase:

This phase replaces instruction sequences by equivalent but faster and/or shorter sequences, rearranges
instructions and deletes unnecessary instructions.

. Register allocator phase:

This phase chooses a physical register to use for each virtual register.

. The backend optimization phase:

Performs target processor independent and dependent optimizations which operate on the Low level
Intermediate Language.

. The code generation/formatter phase:

This phase reads through the LIL operations to generate assembly language output.

3.2. Calling the C Compiler

The TASKING VX-toolset for RH850 under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire project. After you have built your project, the
output files are available in a subdirectory of your project directory, depending on the active configuration
you have set in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

110

Using the C Compiler

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (“2). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behaviour tab of the C/C++ Build page of the Project » Properties for dialog.

See also Chapter 9, Influencing the Build Time.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file. This is a regular
include file which enables you to use virtual registers that are located in memory.

1.

3.

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

From the Processor selection list, select a processor.

To access the C compiler options

1.

From the Project menu, select Properties for
The Properties dialog appears.
In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

111

TASKING VX-toolset for RH850 User Guide

3. On the Tool Settings tab, select C Compiler.
4. Select the sub-entries and set the options in the various pages.
Note that the C compiler options are used to create an object file from a C file. The options you

enter in the Assembler page are not only used for hand-coded assembly files, but also for
intermediate assembly files.

You can find a detailed description of all C compiler options in Section 8.2, C Compiler Options.

Invocation syntax on the command line (Windows Command Prompt):

c850 [[option]... [file]...]...

3.3.The C Startup Code

You need the run-time startup code to build an executable application. The startup code consists of the
following components:

« Initialization code. This code is executed when the program is initiated and before the function mai n()
is called. It initializes the stack pointer, processor's registers and the application C variables.

» Exit code. This controls the close down of the application after the program's main function terminates.

To add the C startup code to your project

The startup code is present in the files | i b/ src/cstart.c andi ncl ude/ cstart. h.You can make
copies of these files and add them to your project.

3.4. How the Compiler Searches Include Files

When you use include files (with the #i ncl ude statement), you can specify their location in several ways.
The compiler searches the specified locations in the following order:

1. If the #i ncl ude statement contains an absolute pathname, the compiler looks for this file. If no path
or a relative path is specified, the compiler looks in the same directory as the source file. This is only
possible for include files that are enclosed in ™.

This first step is not done for include files enclosed in <>.

2. When the compiler did not find the include file, it looks in the directories that are specified in the C
Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-I)).

3. When the compiler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable C8501 NC.

112

Using the C Compiler

4. When the compiler still did not find the include file, it finally tries the default include directory relative
to the installation directory (unless you specified option --no-stdinc).

Example
Suppose that the C source file t est . ¢ contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nmnyinc. h"

You can call the compiler as follows:
c850 -Inyinclude test.c

First the compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current directory.
If it was not found, the compiler searches in the environment variable C8501 NC and then in the default
i ncl ude directory.

The compiler now looks for the file nyi nc. h, in the directory where t est . ¢ is located. If the file is not
there the compiler searches in the directory myi ncl ude. If it was still not found, the compiler searches
in the environment variable C8501 NC and then in the default i ncl ude directory.

3.5. Compiling for Debugging

Compiling your files is the first step to get your application ready to run on a target. However, during
development of your application you first may want to debug your application.

To create an object file that can be used for debugging, you must instruct the compiler to include symbolic
debug information in the source file.

To include symbolic debug information

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select C Compiler » Debugging.

4. Select Default in the Generate symbolic debug information box.

Debug and optimizations

Due to different compiler optimizations, it might be possible that certain debug information is optimized
away. Therefore, if you encounter strange behavior during debugging it might be necessary to reduce

the optimization level, so that the source code is still suitable for debugging. For more information on
optimization see Section 3.6, Compiler Optimizations.

113

TASKING VX-toolset for RH850 User Guide

Invocation syntax on the command line (Windows Command Prompt)
The invocation syntax on the command line is:

c850 -g file.c

3.6. Compiler Optimizations

The compiler has a number of optimizations which you can enable or disable.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » Optimization.
4. Select an optimization level in the Optimization level box.
or:

In the Optimization level box select Custom optimization and enable the optimizations you want
on the Custom optimization page.

Optimization levels

The TASKING C compiler offers four optimization levels and a custom level, at each level a specific set
of optimizations is enabled.

» Level 0 - No optimization: No optimizations are performed. The compiler tries to achieve a 1-to-1
resemblance between source code and produced code. Expressions are evaluated in the order written
in the source code, associative and commutative properties are not used.

* Level 1 - Optimize: Enables optimizations that do not affect the debug-ability of the source code. Use
this level when you encounter problems during debugging your source code with optimization level 2.

* Level 2 - Optimize more (default): Enables more optimizations to reduce the memory footprint and/or
execution time. This is the default optimization level.

* Level 3 - Optimize most: This is the highest optimization level. Use this level when your
program/hardware has become too slow to meet your real-time requirements.

» Custom optimization: you can enable/disable specific optimizations on the Custom optimization page.

114

Using the C Compiler

Optimization pragmas

If you specify a certain optimization, all code in the module is subject to that optimization. Within the C
source file you can overrule the C compiler options for optimizations with #pr agna opti m ze fl ag
and #pragma endopti m ze. Nesting is allowed:

#pragma optim ze e /* Enabl e expression
sinplification */
C source ...
#pragma optim ze c /* Enabl e common expression
C. elimnation. Expression
C source ... sinplification still enabled */

#pragma endoptinize /* Disable comopn expression

elimnation */
#pragma endoptinize /* Disable expression
. sinplification */

The compiler optimizes the code between the pragma pair as specified.

You can enable or disable the optimizations described in the following subsection. The command line
option for each optimization is given in brackets.

3.6.1. Generic Optimizations (frontend)

Common subexpression elimination (CSE) (option -Oc/-OC)
The compiler detects repeated use of the same (sub-)expression. Such a "common" expression is replaced

by a variable that is initialized with the value of the expression to avoid recomputation. This method is
called common subexpression elimination (CSE).

Expression simplification (option -Oe/-OE)

Multiplication by 0 or 1 and additions or subtractions of 0 are removed. Such useless expressions may
be introduced by macros or by the compiler itself (for example, array subscripting).

Constant propagation (option -Op/-OP)
A variable with a known value is replaced by that value.
Automatic function inlining (option -Oi/-Ol)

Small functions that are not too often called, are inlined. This reduces execution time at the cost of code
size.

Control flow simplification (option -Of/-OF)

A number of techniques to simplify the flow of the program by removing unnecessary code and reducing
the number of jumps. For example:

115

TASKING VX-toolset for RH850 User Guide

» Switch optimization: A number of optimizations of a switch statement are performed, such as removing
redundant case labels or even removing an entire switch.

* Jump chaining: A (conditional) jump to a label which is immediately followed by an unconditional jump
may be replaced by a jump to the destination label of the second jump. This optimization speeds up
execution.

» Conditional jump reversal: A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the code size and the execution
time.

» Dead code elimination: Code that is never reached, is removed. The compiler generates a warning
messages because this may indicate a coding error.

Subscript strength reduction (option -Os/-OS)

An array or pointer subscripted with a loop iterator variable (or a simple linear function of the iterator
variable), is replaced by the dereference of a pointer that is updated whenever the iterator is updated.

Loop transformations (option -OI/-OL)

Transform a loop with the entry point at the bottom, to a loop with the entry point at the top. This enables
constant propagation in the initial loop test and code motion of loop invariant code by the CSE optimization.

Forward store (option -Oo/-O0)
A temporary variable is used to cache multiple assignments (stores) to the same non-automatic variable.
3.6.2. Core Specific Optimizations (backend)

Coalescer (option -Oa/-OA)

The coalescer seeks for possibilities to reduce the number of moves (MOV instruction) by smart use of
registers. This optimizes both speed and code size.

Interprocedural register optimization (option -Ob/-OB)
Register allocation is improved by taking note of register usage in functions called by a given function.
Peephole optimizations (option -Oy/-QY)

The generated assembly code is improved by replacing instruction sequences by equivalent but faster
and/or shorter sequences, or by deleting unnecessary instructions.

Generic assembly optimizations (option -Og/-OG)

A set of target independent optimizations that increase speed and decrease code size.

116

Using the C Compiler

3.6.3. Optimize for Code Size or Execution Speed

You can tell the compiler to focus on execution speed or code size during optimizations. You can do this
by specifying a size/speed trade-off level from O (speed) to 4 (size). This trade-off does not turn optimization
phases on or off. Instead, its level is a weight factor that is used in the different optimization phases to
influence the heuristics. The higher the level, the more the compiler focusses on code size optimization.
To choose a trade-off value read the description below about which optimizations are affected and the
impact of the different trade-off values.

Note that the trade-off settings are directions and there is no guarantee that these are followed. The
compiler may decide to generate different code if it assessed that this would improve the result.

To specify the size/speed trade-off optimization level:
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » Optimization.
4. Select a trade-off level in the Trade-off between speed and size box.

See also C compiler option --tradeoff (-t)

Instruction Selection

Trade-off levels 0, 1 and 2: the compiler selects the instructions with the smallest number of cycles.
Trade-off levels 3 and 4: the compiler selects the instructions with the smallest number of bytes.

Loop Optimization

For a top-loop, the loop is entered at the top of the loop. A bottom-loop is entered at the bottom. Every
loop has a test and a jump at the bottom of the loop, otherwise it is not possible to create a loop. Some
top-loops also have a conditional jump before the loop. This is only necessary when the number of loop
iterations is unknown. The number of iterations might be zero, in this case the conditional jump jumps

over the loop.

Bottom loops always have an unconditional jump to the loop test at the bottom of the loop.

Trade-off value Try to rewrite top-loops to [Optimize loops for
bottom-loops size/speed

0 no speed

1 yes speed

2 yes speed

3 yes size

117

TASKING VX-toolset for RH850 User Guide

Trade-off value Try to rewrite top-loops to [Optimize loops for
bottom-loops sizelspeed

4 yes size
Example:
int a;
voidi(int I, int m)
{

int i;

for (i =m i <|1; i++)

{

a++;

}

return;
}

Coded as a bottom loop (compiled with --tradeoff=4) is:

nov hi @a(_a),ro,r11
ld.w @o(_a)[r11],r11
L2

br ;; unconditional junmp to |oop test at bottom
.L3:

add 1,r11

add 1,r7
.L2: ;; loop entry point

cnp re, r7

bl t . L3

Coded as a top loop (compiled with --tradeoff=0) is:

nov hi @a(_a),ro,r11
ld.w @o(_a)[r11],r11

cnp re,r7 ;; test for at least one loop iteration

bge . L2 ;; can be omtted when nunber of iterations is known
.L3: ;; loop entry point

add 1,r11

add 1, r7

cnp re, r7

bl t . L3

.L2:

Automatic Function Inlining

You can enable automatic function inlining with the option --optimize=+inline (-Oi) or by using #pr agna
optim ze +inline.This option is also part of the -O3 predefined option set.

When automatic inlining is enabled, you can use the options --inline-max-incr and --inline-max-size (or
their corresponding pragmas i nl i ne_max_i ncr / inline_nmax_si ze) to control automatic inlining.

118

Using the C Compiler

By default their values are set to -1. This means that the compiler will select a value depending upon the
selected trade-off level. The defaults are:

Trade-off value inline-max-incr inline-max-size
0 100 50

1 50 25

2 20 20

3 10 10

4 0 0

For example with trade-off value 1, the compiler inlines all functions that are smaller or equal to 25 internal
compiler units. After that the compiler tries to inline even more functions as long as the function will not
grow more than 50%.

When these options/pragmas are set to a value >= 0, the specified value is used instead of the values
from the table above.

Static functions that are called only once, are always inlined, independent of the values chosen for
inline-max-incr and inline-max-size.

3.7. Static Code Analysis

Static code analysis (SCA) is a relatively new feature in compilers. Various approaches and algorithms
exist to perform SCA, each having specific pros and cons.

SCA Implementation Design Philosophy
SCA is implemented in the TASKING compiler based on the following design criteria:

» An SCA phase does not take up an excessive amount of execution time. Therefore, the SCA can be
performed during a normal edit-compile-debug cycle.

» SCA is implemented in the compiler front-end. Therefore, no new makefiles or work procedures have
to be developed to perform SCA.

» The number of emitted false positives is kept to a minimum. A false positive is a message that indicates
that a correct code fragment contains a violation of a rule/recommendation. A number of warnings is
issued in two variants, one variant when it is guaranteed that the rule is violated when the code is
executed, and the other variant when the rules is potentially violated, as indicated by a preceding
warning message.

For example see the following code fragment:

extern int some_condition(int);
void f(void)
{

char buf[10];

int i;

119

TASKING VX-toolset for RH850 User Guide

for (i =0; i <=10; i+4)
{
if (some_condition(i))

{
}

buf[i] = 0; /* subscript may be out of bounds */

}

As you can see in this example, if i =10 the array buf [] might be accessed beyond its upper boundary,
depending on the result of sone_condi ti on(i).If the compiler cannot determine the result of this
function at run-time, the compiler issues the warning "subscript is possibly out of bounds" preceding
the CERT warning "ARR35: do not allow loops to iterate beyond the end of an array". If the compiler
can determine the result, or ifthe i f statement is omitted, the compiler can guarantee that the "subscript
is out of bounds".

» The SCA implementation has real practical value in embedded system development. There are no real
objective criteria to measure this claim. Therefore, the TASKING compilers support well known standards
for safety critical software development such as the MISRA guidelines for creating software for safety
critical automotive systems and secure "CERT C Secure Coding Standard" released by CERT. CERT
is founded by the US government and studies internet and networked systems security vulnerabilities,
and develops information to improve security.

Effect of optimization level on SCA results
The SCA implementation in the TASKING compilers has the following limitations:

» Some violations of rules will only be detected when a particular optimization is enabled, because they
rely on the analysis done for that optimization, or on the transformations performed by that optimization.
In particular, the constant propagation and the CSE/PRE optimizations are required for some checks.
It is preferred that you enable these optimizations. These optimizations are enabled with the default
setting of the optimization level (-02).

» Some checks require cross-module inspections and violations will only be detected when multiple
source files are compiled and linked together by the compiler in a single invocation.

3.7.1. C Code Checking: CERT C

The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities. The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

For details about the standard, see the CERT C Secure Coding Standard web site. For general information
about CERT secure coding, see www.cert.org/secure-coding.

120

https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard
http://www.cert.org/secure-coding

Using the C Compiler

Versions of the CERT C standard

Version 1.0 of the CERT C Secure Coding Standard is available as a book by Robert C. Seacord
[Addison-Wesley]. Whereas the web site is a wiki and reflects the latest information, the book serves as
a fixed point of reference for the development of compliant applications and source code analysis tools.

The rules and recommendations supported by the TASKING compiler reflect the version of the CERT
web site as of June 1 2009.

The following rules/recommendations implemented by the TASKING compiler, are not part of the book:
PRE11-C, FLP35-C, FLP36-C, MSC32-C

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 15, CERT C Secure Coding Standard.

Priority and Levels of CERT C

Each CERT C rule and recommendation has an assigned priority. Three values are assigned for each
rule on a scale of 1 to 3 for

* severity - how serious are the consequences of the rule being ignored
1. low (denial-of-service attack, abnormal termination)
2. medium (data integrity violation, unintentional information disclosure)
3. high (run arbitrary code)

« likelihood - how likely is it that a flaw introduced by ignoring the rule could lead to an exploitable
vulnerability

1. unlikely
2. probable
3. likely
» remediation cost - how expensive is it to comply with the rule
1. high (manual detection and correction)
2. medium (automatic detection and manual correction)
3. low (automatic detection and correction)

The three values are then multiplied together for each rule. This product provides a measure that can be
used in prioritizing the application of the rules. These products range from 1 to 27. Rules and
recommendations with a priority in the range of 1-4 are level 3 rules (low severity, unlikely, expensive to
repair flaws), 6-9 are level 2 (medium severity, probable, medium cost to repair flaws), and 12-27 are
level 1 (high severity, likely, inexpensive to repair flaws).

The TASKING compiler checks most of the level 1 and some of the level 2 CERT C recommendations/rules.

121

http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html
http://doc.tasking.com/cert/msc32.html

TASKING VX-toolset for RH850 User Guide

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 15, CERT C Secure Coding Standard.

To apply CERT C code checking to your application
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » CERT C Secure Coding.
4. Make a selection from the CERT C secure code checking list.

5. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

On the command line you can use the option --cert.
c850 --cert={all | name [-nane],...]

With --diag=cert you can see a list of the available checks, or you can use a three-letter mnemonic to
list only the checks in a particular category. For example, --diag=pre lists all supported checks in the
preprocessor category.

3.7.2. C Code Checking: MISRA C

The C programming language is a standard for high level language programming in embedded systems,
yet it is considered somewhat unsuitable for programming safety-related applications. Through enhanced
code checking and strict enforcement of best practice programming rules, TASKING MISRA C code
checking helps you to produce more robust code.

MISRA C specifies a subset of the C programming language which is intended to be suitable for embedded
automotive systems. It consists of a set of rules, defined in MISRA-C:2004, Guidelines for the Use of the
C Language in Critical Systems (Motor Industry Research Association (MIRA), 2004).

The compiler also supports MISRA C:1998, the first version of MISRA C and MISRA C: 2012, the latest
version of MISRA C. You can select the version with the following C compiler option:

--m srac-versi on=1998

--m srac-versi on=2004

--m srac-version=2012

In your C source files you can check against the MISRA C version used. For example:
#if __MSRAC VERSI ON__ == 1998

#elif __ M SRAC VERSION__ == 2004

122

Using the C Compiler

#elif __ M SRAC _VERSION_ _ == 2012

#endi f

For a complete overview of all MISRA C rules, see Chapter 16, MISRA C Rules.
Implementation issues

The MISRA C implementation in the compiler supports nearly all rules. Only a few rules are not supported
because they address documentation, run-time behavior, or other issues that cannot be checked by static
source code inspection, or because they require an application-wide overview.

During compilation of the code, violations of the enabled MISRA C rules are indicated with error messages
and the build process is halted.

MISRA C rules are divided in mandatory rules, required rules and advisory rules. If rules are violated,
errors are generated causing the compiler to stop. With the following options warnings, instead of errors,
are generated:

--m srac- nandat or y- war ni ngs

--m srac-required-warni ngs
--m srac-advi sory-war ni ngs

Note that not all MISRA C violations will be reported when other errors are detected in the input
source. For instance, when there is a syntax error, all semantic checks will be skipped, including
some of the MISRA C checks. Also note that some checks cannot be performed when the
optimizations are switched off.

Quality Assurance report

To ensure compliance to the MISRA C rules throughout the entire project, the TASKING linker can
generate a MISRA C Quality Assurance report. This report lists the various modules in the project with
the respective MISRA C settings at the time of compilation. You can use this in your company's quality
assurance system to provide proof that company rules for best practice programming have been applied
in the particular project.

To apply MISRA C code checking to your application
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » MISRA C.

4. Select the MISRA C version (1998, 2004 or 2012).

123

TASKING VX-toolset for RH850 User Guide

5. Inthe MISRA C checking box select a MISRA C configuration. Select a predefined configuration
for conformance with the required rules in the MISRA C guidelines.

6. (Optional) In the Custom 1998, Custom 2004 or Custom 2012 entry, specify the individual rules.
On the command line you can use the option --misrac.

c850 --misrac={all | nunber [-nunber],...]

3.8. C Compiler Error Messages

The C compiler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the compiler immediately aborts compilation.

E (Errors)

Errors are reported, but the compiler continues compilation. No output files are produced unless you have
set the C compiler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)
Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the compiler for a situation which may not be correct. You can control warnings

in the C/C++ Build » Settings » Tool Settings » C Compiler » Diagnostics page of the Project »
Properties for menu (C compiler option --no-warnings).

| (Information)

Information messages are always preceded by an error message. Information messages give extra
information about the error.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

SO##: internal consistency check failed - please report

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics
1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

124

Using the C Compiler

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the C compiler option --diag to see an explanation of a diagnostic
message:

c850 --diag=[format:]{all | nunber,...]

125

TASKING VX-toolset for RH850 User Guide

126

Chapter 4. Using the Assembler

This chapter describes the assembly process and explains how to call the assembler.

The assembler converts hand-written or compiler-generated assembly language programs into machine
language, resulting in object files in the ELF/DWARF object format.

The assembler takes the following files for input and output:

assembly file
:n
assembly file . asm ﬁ |
thand codedd ——s listfille . 1st
assembler

[~ —— M EBITOr messages ers

relocatahle objectfile
.0

The following information is described:
* The assembly process.

» How to call the assembler and how to use its options. An extensive list of all options and their descriptions
is included in Section 8.3, Assembler Options.

» The various assembler optimizations.
» How to generate a list file.

» Types of assembler messages.

4.1. Assembly Process

The assembler generates relocatable output files with the extension . 0. These files serve as input for
the linker.

Phases of the assembly process

 Parsing of the source file: preprocessing of assembler directives and checking of the syntax of
instructions

* Instruction grouping and reordering
» Optimization (instruction size and generic instructions)
» Generation of the relocatable object file and optionally a list file

The assembler integrates file inclusion and macro facilities. See Section 2.10, Macro Operations for more
information.

127

TASKING VX-toolset for RH850 User Guide

4.2. Calling the Assembler

The TASKING VX-toolset for RH850 under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire project. After you have built your project, the
output files are available in a subdirectory of your project directory, depending on the active configuration
you have set in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (“), This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behaviour tab of the C/C++ Build page of the Project » Properties for dialog.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file. This is a regular
include file which enables you to use virtual registers that are located in memory.

1.

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

From the Processor selection list, select a processor.

128

Using the Assembler

To access the assembler options
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler.
4. Select the sub-entries and set the options in the various pages.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

You can find a detailed description of all assembler options in Section 8.3, Assembler Options.

Invocation syntax on the command line (Windows Command Prompt):
as850 [[option]... [file]...]...

The input file must be an assembly source file (. asmor . sr c).

4.3. How the Assembler Searches Include Files

When you use include files (with the . | NCLUDE directive), you can specify their location in several ways.
The assembler searches the specified locations in the following order:

1. If the . | NCLUDE directive contains an absolute path name, the assembler looks for this file. If no path
or a relative path is specified, the assembler looks in the same directory as the source file.

2. When the assembler did not find the include file, it looks in the directories that are specified in the
Assembler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-1)).

3. When the assembler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable AS8501 NC.

4. When the assembler still did not find the include file, it finally tries the default include directory relative
to the installation directory.

Example
Suppose that the assembly source file t est . asmcontains the following lines:

. I NCLUDE ' nyi nc.inc'

129

TASKING VX-toolset for RH850 User Guide

You can call the assembler as follows:
as850 -1 nyinclude test.asm

First the assembler looks for the file nyi nc. asm in the directory where t est . asmis located. If the file
is not there the assembler searches in the directory nmyi ncl ude. If it was still not found, the assembler
searches in the environment variable AS8501 NC and then in the default i ncl ude directory.

4.4. Assembler Optimizations

The assembler can perform various optimizations that you can enable or disable.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » Optimization.
4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Allow generic instructions (option -Og/-0OG)

When this option is enabled, you can use generic instructions in your assembly source. The assembler
tries to replace instructions by faster or smaller instructions.

By default this option is enabled. Because shorter instructions may influence the number of cycles, you

may want to disable this option when you have written timed code. In that case the assembler encodes
all instructions as they are.

Optimize jump chains (option -Oj/-0J)
When this option is enabled, the assembler replaces chained jumps by a single jump instruction. For
example, a jump from a to b immediately followed by a jump from b to c, is replaced by a jump from a to

c. Note that this optimization has no effect on compiled C files, because jump chains are already optimized
by the compiler. By default this option is disabled.

Optimize instruction size (option -Os/-0S)

When this option is enabled, the assembler tries to find the shortest possible operand encoding for
instructions. By default this option is enabled.

130

Using the Assembler

4.5. Generating a List File

The list file is an additional output file that contains information about the generated code. You can
customize the amount and form of information.

If the assembler generates errors or warnings, these are reported in the list file just below the source line
that caused the error or warning.

To generate a list file

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler » List File.

4. Enable the option Generate list file.

5. (Optional) Enable the options to include that information in the list file.

Example on the command line (Windows Command Prompt)
The following command generates the listfile t est . | st :
as850 -1 test.asm

See Section 11.1, Assembler List File Format, for an explanation of the format of the list file.

4.6. Assembler Error Messages
The assembler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the assembler immediately aborts the assembly process.

E (Errors)

Errors are reported, but the assembler continues assembling. No output files are produced unless you
have set the assembler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the assembler for a situation which may not be correct. You can control

131

TASKING VX-toolset for RH850 User Guide

warnings in the C/C++ Build » Settings » Tool Settings » Assembler » Diagnostics page of the Project
» Properties for menu (assembler option --no-warnings).

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the assembler option --diag to see an explanation of a diagnostic
message:

as850 --diag=[format:]{all | nunber,...]

132

Chapter 5. Using the Linker

This chapter describes the linking process, how to call the linker and how to control the linker with a script
file.

The TASKING linker is a combined linker/locator. The linker phase combines relocatable object files (. 0
files, generated by the assembler), and libraries into a single relocatable linker object file (. out). The

locator phase assigns absolute addresses to the linker object file and creates an absolute object file which
you can load into a target processor. From this point the term linker is used for the combined linker/locator.

The linker can simultaneously link and locate all programs for all cores available on a target board. The

target board may be of arbitrary complexity. A simple target board may contain one standard processor

with some external memory that executes one task. A complex target board may contain multiple standard
processors and DSPs combined with configurable IP-cores loaded in an FPGA. Each core may execute
a different program, and external memory may be shared by multiple cores.

The linker takes the following files for input and output:
relocatahle objectfiles . o

relocatahle linker object file . out —‘ ’— relocatable object library . a
linkerscriptfile . 151 ———n] inker ——=- linker map file . map
----- = errormessages . elk
relocatable linker objectfile . cut J I—' mermaory definition
file .mdf
{ ~ }
Intel Hex ELFIDWARF Motarola 5-record
abszolute ohjectfile ahsolute objectfile ahsolute objectfile
Chex .elf =]

This chapter first describes the linking process. Then it describes how to call the linker and how to use
its options. An extensive list of all options and their descriptions is included in Section 8.4, Linker Options.

To control the link process, you can write a script for the linker. This chapter shortly describes the purpose
and basic principles of the Linker Script Language (LSL) on the basis of an example. A complete description
of the LSL is included in Linker Script Language.

5.1. Linking Process

The linker combines and transforms relocatable object files (. 0) into a single absolute object file. This
process consists of two phases: the linking phase and the locating phase.

In the first phase the linker combines the supplied relocatable object files and libraries into a single
relocatable object file. In the second phase, the linker assigns absolute addresses to the object file so it
can actually be loaded into a target.

133

TASKING VX-toolset for RH850 User Guide

Terms used in the linking process

Term

Definition

Absolute object file

Address
Address space

Architecture

Copy table

Core
Derivative

Library

Logical address

LSL file
MAU

Object code
Physical address
Processor

Relocatable object
file

Relocation

134

Object code in which addresses have fixed absolute values, ready to load into a
target.

A specification of a location in an address space.

The set of possible addresses. A core can support multiple spaces, for example in
a Harvard architecture the addresses that identify the location of an instruction
refer to code space, whereas addresses that identify the location of a data object
refer to a data space.

A description of the characteristics of a core that are of interest for the linker. This
encompasses the address space(s) and the internal bus structure. Given this
information the linker can convert logical addresses into physical addresses.

A section created by the linker. This section contains data that specifies how the
startup code initializes the data and BSS sections. For each section the copy table
contains the following fields:

« action: defines whether a section is copied or zeroed
» destination: defines the section's address in RAM
* source: defines the sections address in ROM, zero for BSS sections

« length: defines the size of the section in MAUs of the destination space

An instance of an architecture.

The design of a processor. A description of one or more cores including internal
memory and any number of buses.

Collection of relocatable object files. Usually each object file in a library contains
one symbol definition (for example, a function).

An address as encoded in an instruction word, an address generated by a core
(CPU).

The set of linker script files that are passed to the linker.

Minimum Addressable Unit. For a given processor the number of bits between an
address and the next address. This is not necessarily a byte or a word.

The binary machine language representation of the C source.
An address generated by the memory system.

An instance of a derivative. Usually implemented as a (custom) chip, but can also
be implemented in an FPGA, in which case the derivative can be designed by the
developer.

Object code in which addresses are represented by symbols and thus relocatable.

The process of assigning absolute addresses.

Using the Linker

Term Definition

Relocation Information about how the linker must modify the machine code instructions when

information it relocates addresses.

Section A group of instructions and/or data objects that occupy a contiguous range of
addresses.

Section attributes Attributes that define how the section should be linked or located.

Target The hardware board on which an application is executing. A board contains at least
one processor. However, a complex target may contain multiple processors and
external memory and may be shared between processors.

Unresolved A reference to a symbol for which the linker did not find a definition yet.

reference

5.1.1. Phase 1: Linking

The linker takes one or more relocatable object files and/or libraries as input. A relocatable object file, as
generated by the assembler, contains the following information:

» Header information: Overall information about the file, such as the code size, name of the source file
it was assembled from, and creation date.

» Object code: Binary code and data, divided into various named sections. Sections are contiguous
chunks of code that have to be placed in specific parts of the memory. The program addresses start
at zero for each section in the object file.

» Symbols: Some symbols are exported - defined within the file for use in other files. Other symbols are
imported - used in the file but not defined (external symbols). Generally these symbols are names of
routines or names of data objects.

» Relocation information: A list of places with symbolic references that the linker has to replace with
actual addresses. When in the code an external symbol (a symbol defined in another file or in a library)
is referenced, the assembler does not know the symbol's size and address. Instead, the assembler
generates a call to a preliminary relocatable address (usually 0000), while stating the symbol name.

» Debug information: Other information about the object code that is used by a debugger. The assembler
optionally generates this information and can consist of line numbers, C source code, local symbols
and descriptions of data structures.

The linker resolves the external references between the supplied relocatable object files and/or libraries
and combines the files into a single relocatable linker object file.

The linker starts its task by scanning all specified relocatable object files and libraries. If the linker
encounters an unresolved symbol, it remembers its name and continues scanning. The symbol may be
defined elsewhere in the same file, or in one of the other files or libraries that you specified to the linker.
If the symbol is defined in a library, the linker extracts the object file with the symbol definition from the
library. This way the linker collects all definitions and references of all of the symbols.

Next, the linker combines sections with the same section name and attributes into single sections. The
linker also substitutes (external) symbol references by (relocatable) numerical addresses where possible.

135

TASKING VX-toolset for RH850 User Guide

At the end of the linking phase, the linker either writes the results to a file (a single relocatable object file)
or keeps the results in memory for further processing during the locating phase.

The resulting file of the linking phase is a single relocatable object file (. out). If this file contains unresolved
references, you can link this file with other relocatable object files (. 0) or libraries (. a) to resolve the
remaining unresolved references.

With the linker command line option --link-only, you can tell the linker to only perform this linking phase
and skip the locating phase. The linker complains if any unresolved references are left.

5.1.2. Phase 2: Locating

In the locating phase, the linker assigns absolute addresses to the object code, placing each section in
a specific part of the target memory. The linker also replaces references to symbols by the actual address
of those symbols. The resulting file is an absolute object file which you can actually load into a target
memory. Optionally, when the resulting file should be loaded into a ROM device the linker creates a
so-called copy table section which is used by the startup code to initialize the data and BSS sections.

Code modification

When the linker assigns absolute addresses to the object code, it needs to modify this code according
to certain rules or relocation expressions to reflect the new addresses. These relocation expressions are
stored in the relocatable object file. Consider the following snippet of x86 code that moves the contents
of variable a to variable b via the eax register:

Al 3412 0000 nov a, %eax (a defined at 0x1234, byte reversed)
A3 0000 0000 rmov %ax, b (b is inported so the instruction refers to
0x0000 since its |location is unknown)

Now assume that the linker links this code so that the section in which a is located is relocated by 0x10000
bytes, and b turns out to be at 0x9A12. The linker modifies the code to be:

Al 3412 0100 nov a, %eax (0x10000 added to the address)
A3 129A 0000 nov %ax, b (0x9A12 patched in for b)

These adjustments affect instructions, but keep in mind that any pointers in the data part of a relocatable
object file have to be modified as well.

Output formats

The linker can produce its output in different file formats. The default ELF/DWARF format (. el f) contains
an image of the executable code and data, and can contain additional debug information. The Intel-Hex
format (. hex) and Motorola S-record format (. sr €) only contain an image of the executable code and
data. You can specify a format with the options --output (-0) and --chip-output (-c).

Controlling the linker

Via a so-called linker script file you can gain complete control over the linker. The script language is called
the Linker Script Language (LSL). Using LSL you can define:

» The memory installed in the embedded target system:

136

Using the Linker

To assign locations to code and data sections, the linker must know what memory devices are actually
installed in the embedded target system. For each physical memory device the linker must know its
start-address, its size, and whether the memory is read-write accessible (RAM) or read-only accessible
(ROM).

» How and where code and data should be placed in the physical memory:

Embedded systems can have complex memory systems. If for example on-chip and off-chip memory
devices are available, the code and data located in internal memory is typically accessed faster and
with dissipating less power. To improve the performance of an application, specific code and data
sections should be located in on-chip memory. By writing your own LSL file, you gain full control over
the locating process.

» The underlying hardware architecture of the target processor.

To perform its task the linker must have a model of the underlying hardware architecture of the processor
you are using. For example the linker must know how to translate an address used within the object
file (a logical address) into an offset in a particular memory device (a physical address). In most linkers
this model is hard coded in the executable and can not be modified. For the TASKING linker this
hardware model is described in the linker script file. This solution is chosen to support configurable
cores that are used in system-on-chip designs.

When you want to write your own linker script file, you can use the standard linker script files with
architecture descriptions delivered with the product.

See also Section 5.7, Controlling the Linker with a Script.

5.2. Calling the Linker

In Eclipse you can set options specific for the linker. After you have built your project, the output files are
available in a subdirectory of your project directory, depending on the active configuration you have set
in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

* Build Individual Project (&T),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (“). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...

2. Enable the option Start a build immediately and click OK.

137

TASKING VX-toolset for RH850 User Guide
 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended, but to enable this feature select Project » Build Automatically
and ensure there is a check mark beside the Build Automatically menu item. In order for this option
to work, you must also enable option Build on resource save (Auto build) on the Behaviour tab of
the C/C++ Build page of the Project » Properties for dialog.

To access the linker options
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker.
4. Select the sub-entries and set the options in the various pages.

You can find a detailed description of all linker options in Section 8.4, Linker Options.

Invocation syntax on the command line (Windows Command Prompt):
| k850 [[option]... [file]l...]...

When you are linking multiple files, either relocatable object files (. o) or libraries (. a), it is important to
specify the files in the right order. This is explained in Section 5.3, Linking with Libraries.

You can find a detailed description of all linker options in Section 8.4, Linker Options.
Example:
| k850 -ddefault.lsl test.o

This links and locates the file t est . 0 and generates the filet est . el f.

5.3. Linking with Libraries

There are two kinds of libraries: system libraries and user libraries.
System library

System libraries are stored in the directory:

<installation path>\Iib\v850e3 (RH850 v850e3 I|ibraries)

An overview of the system libraries is given in the table in Chapter 10, Libraries.

138

Using the Linker

Sources for the libraries are present in the directories | i b\ src, | i b\ src. * in the form of an executable.
If you run the executable it will extract the sources in the corresponding directory.

To link the default C (system) libraries

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Enable the option Link default libraries.

When you want to link system libraries from the command line, you must specify this with the option
--library (-1). For example, to specify the system library | i bc. a, type:

| k850 --library=c test.o

User library

You can create your own libraries. Section 6.3, Archiver describes how you can use the archiver to create
your own library with object modules.

To link user libraries

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Add your libraries to the Libraries box.

When you want to link user libraries from the command line, you must specify their filenames on the
command line:

| k850 start.o nylib.a
If the library resides in a sub-directory, specify that directory with the library name:
| k850 start.o nylibs\nylib.a

If you do not specify a directory, the linker searches the library in the current directory only.

139

TASKING VX-toolset for RH850 User Guide

Library order

The order in which libraries appear on the command line is important. By default the linker processes
object files and libraries in the order in which they appear at the command line. Therefore, when you use
a weak symbol construction, like pri nt f, in an object file or your own library, you must position this
object/library before the C library.

With the option --first-library-first you can tell the linker to scan the libraries from left to right, and extract
symbols from the first library where the linker finds it. This can be useful when you want to use newer
versions of a library routine:

| k850 --first-library-first a.a test.o b.a

If the file t est . o calls a function which is both present in a. a and b. a, normally the function in b. a
would be extracted. With this option the linker first tries to extract the symbol from the first library a. a.

Note that routines in b. a that call other routines that are present in both a. a and b. a are now also
resolved from a. a.

5.3.1. How the Linker Searches Libraries

System libraries

You can specify the location of system libraries in several ways. The linker searches the specified locations
in the following order:

1. The linker first looks in the Library search path that are specified in the Linker » Libraries page in
the C/C++ Build » Settings » Tool Settings tab of the Project Properties dialog (equivalent to the
option --library-directory (-L)). If you specify the -L option without a pathname, the linker stops
searching after this step.

2. When the linker did not find the library (because it is not in the specified library directory or because
no directory is specified), it looks in the path(s) specified in the environment variable LI B850.

3. When the linker did not find the library, it tries the default | i b directory relative to the installation
directory (or a processor specific sub-directory).

User library

If you use your own library, the linker searches the library in the current directory only.

5.3.2. How the Linker Extracts Objects from Libraries

A library built with the TASKING archiver ar850 always contains an index part at the beginning of the
library. The linker scans this index while searching for unresolved externals. However, to keep the index
as small as possible, only the defined symbols of the library members are recorded in this area.

When the linker finds a symbol that matches an unresolved external, the corresponding object file is
extracted from the library and is processed. After processing the object file, the remaining library index
is searched. If after a complete search of the library unresolved externals are introduced, the library index
will be scanned again. After all files and libraries are processed, and there are still unresolved externals

140

Using the Linker

and you did not specify the linker option --no-rescan, all libraries are rescanned again. This way you do
not have to worry about the library order on the command line and the order of the object files in the

libraries. However, this rescanning does not work for ‘weak symbols'. If you use a weak symbol construction,
like pri nt f, in an object file or your own library, you must position this object/library before the C library.

The option--verbose (-v) shows how libraries have been searched and which objects have been extracted.

Resolving symbols

If you are linking from libraries, only the objects that contain symbols to which you refer, are extracted
from the library. This implies that if you invoke the linker like:

| k850 nylib.a

nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through nyl i b. a.

It is possible to force a symbol as external (unresolved symbol) with the option --extern (-e):
| k850 --extern=main nylib.a

In this case the linker searches for the symbol rmrai n in the library and (if found) extracts the object that
contains mmai n.

If this module contains new unresolved symbols, the linker looks again in myl i b. a. This process repeats
until no new unresolved symbols are found.

5.4. Incremental Linking

With the TASKING linker it is possible to link incrementally. Incremental linking means that you link some,
but not all . 0 modules to a relocatable object file . out . In this case the linker does not perform the locating
phase. With the second invocation, you specify both new . o files as the . out file you had created with
the first invocation.

Incremental linking is only possible on the command line.

| k850 --increnental testl.o -otest.out
| k850 test2.0 test.out

This links the file t est 1. 0 and generates the file t est . out . This file is used again and linked together
with t est 2. o to create the file t est . el f (the default name if no output filename is given in the default
ELF/DWARF 2 format).

With incremental linking it is normal to have unresolved references in the output file until all . o files are
linked and the final . out or . el f file has been reached. The option --incremental (-r) for incremental
linking also suppresses warnings and errors because of unresolved symbols.

141

TASKING VX-toolset for RH850 User Guide

5.5. Importing Binary Files

With the TASKING linker it is possible to add a binary file to your absolute output file. In an embedded
application you usually do not have a file system where you can get your data from. With the linker option
--import-object you can add raw data to your application. This makes it possible for example to display
images on a device or play audio. The linker puts the raw data from the binary file in a section. The section
is aligned on a 4-byte boundary. The section name is derived from the filename, in which dots are replaced
by an underscore. So, when importing a file called ny. np3, a section with the name my_np3 is created.
In your application you can refer to the created section by using linker labels.

For example:

#i ncl ude <stdio. h>
__data extern char _lc_ub_ny_np3; /* linker |abels */
__data extern char _lc_ue_ny_np3;
char* mp3 = & | c_ub_ny_np3;
voi d mai n(voi d)
{

int size = &lc_ue_nmy_m3 - & Ilc_ub_ny_np3;

int i;

for (i=0;i<size;i++)

put char (mp3[i]);

Because the compiler does not know in which space the linker will locate the imported binary, you
have to make sure the symbols refer to the same space in which the linker will place the imported
binary. You do this by using the memory qualifier __dat a, otherwise the linker cannot bind your
linker symbols.

If you want to use the export functionality of Eclipse, the binary file has to be part of your project.

5.6. Linker Optimizations

During the linking and locating phase, the linker looks for opportunities to optimize the object code. Both
code size and execution speed can be optimized.

To enable or disable optimizations
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

142

Using the Linker

3. On the Tool Settings tab, select Linker » Optimization.
4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Delete unreferenced sections (option -Oc/-OC)

This optimization removes unused sections from the resulting object file.

First fit decreasing (option -OI/-OL)

When the physical memory is fragmented or when address spaces are nested it may be possible that a
given application cannot be located although the size of the available physical memory is larger than the
sum of the section sizes. Enable the first-fit-decreasing optimization when this occurs and re-link your
application.

The linker's default behavior is to place sections in the order that is specified in the LSL file (that is, working
from low to high memory addresses or vice versa). This also applies to sections within an unrestricted
group. If a memory range is partially filled and a section must be located that is larger than the remainder
of this range, then the section and all subsequent sections are placed in a next memory range. As a result
of this gaps occur at the end of a memory range.

When the first-fit-decreasing optimization is enabled the linker will first place the largest sections in the

smallest memory ranges that can contain the section. Small sections are located last and can likely fit in
the remaining gaps.

Compress copy table (option -Ot/-OT)

The startup code initializes the application's data areas. The information about which memory addresses
should be zeroed and which memory ranges should be copied from ROM to RAM is stored in the copy
table.

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

Delete duplicate code (option -Ox/-OX)

Delete duplicate constant data (option -Oy/-QY)

These two optimizations remove code and constant data that is defined more than once, from the resulting
object file.

5.7. Controlling the Linker with a Script

With the options on the command line you can control the linker's behavior to a certain degree. If you
want more control over the locating process you can supply a script to the linker, in which you can specify

143

TASKING VX-toolset for RH850 User Guide
where your sections will be located, how much memory is available, which sorts of memory are available,
and so on.

The language for the script is called the Linker Script Language, or shortly LSL. You can specify the script
file to the linker, which reads it and locates your application exactly as defined in the script. If you do not
specify your own script file, the linker always reads a standard script file which is supplied with the toolset.

5.7.1. Purpose of the Linker Script Language
The Linker Script Language (LSL) serves three purposes:

1. It provides the linker with a definition of the target's core architecture. This definition is supplied with
the toolset.

2. It provides the linker with a specification of the memory attached to the target processor.

3. It provides the linker with information on how your application should be located in memory. This gives
you, for example, the possibility to create overlaying sections.

The linker accepts multiple LSL files. You can use the specifications of the core architectures that Altium
has supplied in the i ncl ude. | sl directory. Do not change these files.

If you use a different memory layout than described in the LSL file supplied for the target core, you must
specify this in a separate LSL file and pass both the LSL file that describes the core architecture and your
LSL file that contains the memory specification to the linker. Next you may want to specify how sections
should be located and overlaid. You can do this in the same file or in another LSL file.

LSL has its own syntax. In addition, you can use the standard C preprocessor keywords, such as #i ncl ude
and #def i ne, because the linker sends the script file first to the C preprocessor before it starts interpreting
the script.

The complete LSL syntax is described in Chapter 13, Linker Script Language (LSL).

5.7.2. Eclipse and LSL

In Eclipse you can specify the size of the stack and heap; the physical memory attached to the processor;
identify that particular address ranges are reserved; and specify which sections are located where in
memory. Eclipse translates your input into an LSL file that is stored in the project directory under the
name project_name. | s| and passes this file to the linker. If you want to learn more about LSL you can
inspect the generated file project_name. | sl .

To add a generated Linker Script File to your project
1. From the File menu, select File » New » TASKING RH850 C Project.
The New C Project wizard appears.

2. Fillin the project settings in each dialog and click Next > until the following dialog appears.

144

Using the Linker

thewCProject F= @
RH850 Project Settings p—

@ Select a processor te continue

Processor selection

» [Core Architecture Expand All

- [[] RH850/F1H

+ [C] RH8S0/FLL Expand Selected
. [[] RH850/P1x
» [] RHB50/R1x Collapse All

Actions
[] Add startup file(s) to the project
[#] Add linker script file to the project

?) i
| acl NE > nis ancel
@ s [

3. Enable the option Add linker script file to the project and click Finish.
Eclipse creates your project and the file "project_name. | sl " in the project directory.

If you do not add the linker script file here, you can always add it later with File » New » Linker Script
File (LSL)

To change the Linker Script File in Eclipse
There are two ways of changing the LSL file in Eclipse.
» You can change the LSL file directly in an editor.

1. Double-click on the file project_name. | sl .

The project LSL file opens in the editor area.

145

TASKING VX-toolset for RH850 User Guide

b1l myproject.lsl 52 = 8

=

template.lsl

Version : @(#)template.ls1 1.1 14/86/63

Description : Eclipse project linker script file

Copyright 2@13-2014 Altium BV

#if defined(_ PROC_V85BE3_)
#include “"vE58e3.1s1"

derivative my_wB85@e3 extends vB5@e3
1

}

#else

#include <cpu.lsl:>
#endif

2. You can edit the LSL file directly in the project_name. | sl editor.
A * appears in front of the name of the LSL file to indicate that the file has changes.

3. Click [=] or select File » Save to save the changes.

» You can also make changes to the property pages Memory and Stack/Heap.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Memory or Stack/Heap.
In the right pane the corresponding property page appears.
3. Make changes to memory and/or stack/heap and click OK.

The project LSL file is updated automatically according to the changes you make in the pages.

You can quickly navigate through the LSL file by using the Outline view (Window » Show View » Outline).
5.7.3. Structure of a Linker Script File
A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each

146

Using the Linker

space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the interrupt vector table.

This specification is normally written by Altium. Altium supplies LSL files in the i ncl ude. | s| directory.
The file v850_ar ch. | s| defines the base architecture for all cores. The files def aul t. | s| and
v850e3. | sl extend the base architecture for each RH850 core.

The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

The linker uses the architecture name in the LSL file to identify the target. For example, the default library
search path can be different for each core architecture.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

Altium supplies LSL files for each derivative (deri vati ve. | sl). When you build an ASIC or use a
derivative that is not (yet) supported by the TASKING tools, you may have to write a derivative definition.

The processor definition

The processor definition describes an instance of a derivative. A processor definition is only needed in a
multi-processor embedded system. It allows you to define multiple processors of the same type.

If for a derivative 'A' no processor is defined in the LSL file, the linker automatically creates a processor
named 'A’ of derivative 'A". This is why for single-processor applications it is enough to specify the derivative
in the LSL file.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems. The board specification describes all characteristics of your target board's system buses, memory
devices, 1/0 sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

147

TASKING VX-toolset for RH850 User Guide

» convert a logical address to an offset within a memory device
* locate sections in physical memory

* maintain an overall view of the used and free physical memory within the whole system while locating

The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given address, to place sections in a
given order, and to overlay code and/or data sections.

Example: Skeleton of a Linker Script File

A linker script file that defines a derivative "X™ based on the V850 architecture, its external memory and
how sections are located in memory, may have the following skeleton:

architecture V850
{

/1 Specification of the V850 core architecture.
/1 Witten by Altium

}

derivative default_derivative // derivative name is arbitrary

{

/1 Specification of the derivative.
/1 Witten by Altium

core v850 /1 always specify the core
{
architecture = V850;
}
bus system /1 internal bus
{
/1 maps to bus "system in "v850" core
}
/1 internal menory
}
processor spe /] processor nane is arbitrary
{
derivative = default_derivative;
/1 You can omt this part, except if you use a
/1 multi-core system
}

menory ext_name

/1 external menory definition

148

Using the Linker

}

section_l ayout spe:v850:1inear /'l section |ayout

{ /'l section placenent statenments
/] sections are located in address space 'linear’
/1 of core v850 of processor 'spe'

}

Overview of LSL files delivered by Altium

Altium supplies the following LSL files in the directory i ncl ude. | sl .

LSL file Description

v850_arch. | sl Defines the base architecture (V850) for all cores. Contains a section layout.

v850e3. | sl Defines the generic derivative v850e3 for all VB50E3 cores and defines a single
processor. Contains a memory definition. It includes the file v850_ar ch. | sl .

cpu. | sl This file includes a processor specific LSL file based on the selected processor.

derivative. sl Defines the derivative and defines a single processor. Contains a memory

definition. It includes the file v850_ar ch. | sl . The selection of the derivative
is based on your CPU selection.

templ ate. | sl This file is used by Eclipse as a template for the project LSL file. It includes
the file cpu. | sl .

defaul t. | sl Default LSL file. It includes the file v850e3. | sl . The file def aul t. | sl is
used on a command line invocation of the tools, when no CPU is selected (no
option --cpu).

When you select to add a linker script file when you create a project in Eclipse, Eclipse makes a copy of
the file t enpl at e. | s| and names it "project_name. | sl ". On the command line, the linker uses the file
def aul t. | sl , unless you specify another file with the linker option --Isl-file (-d).

5.7.4.The Architecture Definition

Although you will probably not need to write an architecture definition (unless you are building your own
processor core) it helps to understand the Linker Script Language and how the definitions are interrelated.

Within an architecture definition the characteristics of a target processor core that are important for the
linking process are defined. These include:

» space definitions: the logical address spaces and their properties
* bus definitions: the 1/O buses of the core architecture

* mappings: the address translations between logical address spaces, the connections between logical
address spaces and buses and the address translations between buses

149

TASKING VX-toolset for RH850 User Guide

Address spaces

A logical address space is a memory range for which the core has a separate way to encode an address
into instructions. Most microcontrollers and DSPs support multiple address spaces. For example, separate
spaces for code and data. Normally, the size of an address space is 2N, with N the number of bits used
to encode the addresses.

The relation of an address space with another address space can be one of the following:
* one space is a subset of the other. These are often used for "small" absolute or relative addressing.

* the addresses in the two address spaces represent different locations so they do not overlap. This
means the core must have separate sets of address lines for the address spaces. For example, in
Harvard architectures we can identify at least a code and a data memory space.

Address spaces (even nested) can have different minimal addressable units (MAU), alignment restrictions,
and page sizes. All address spaces have a number that identifies the logical space (id). The following
table lists the different address spaces for the architecture 850 as defined in 850_ar ch. | sl .

Space |ld [MAU |Description

linear |1 (8 Linear address space.

The architecture in LSL notation

The best way to write the architecture definition, is to start with a drawing. The following figure shows a
part of the architecture 850:

space linear bus systern
00— —
il =1 rad = 8
mau = & width = 32
4G — —

The figure shows one address spaces called | i near . The address space has attributes like a number
that identifies the logical space (id), a MAU and an alignment. In LSL notation the definition of these
address spaces looks as follows:

space |inear

{

id=1;

mau = 8;

map (size=4G dest =bus: systen);
}

The keyword map corresponds with the arrows in the drawing. You can map:
» address space => address space (not shown in the drawing)

» address space => bus

150

Using the Linker

* memory => bus (not shown in the drawing)
* bus => bus (not shown in the drawing)
Next the internal bus, named syst emmust be defined in LSL:

bus system

{

mau

= 8;
width =

32; [/ there are 32 data |ines on the bus

}

This completes the LSL code in the architecture definition. Note that all code above goes into the
architecture definition, thus between:

architecture V850
{

}

/1 Al code above goes here.

5.7.5.The Derivative Definition

Although you will probably not need to write a derivative definition (unless you are using multiple cores
that both access the same memory device) it helps to understand the Linker Script Language and how
the definitions are interrelated.

A derivative is the design of a processor, as implemented on a chip (or FPGA). It comprises one or more
cores and on-chip memory. The derivative definition includes:

» core definition: an instance of a core architecture
* bus definition: the 1/0O buses of the core architecture

* memory definitions: internal (or on-chip) memory

Core

Each derivative must have at least one core and each core must have a specification of its core architecture.
This core architecture must be defined somewhere in the LSL file(s).

core v850

{
}

architecture = V850;

Bus

Each derivative can contain a bus definition for connecting external memory. In this example, the bus
syst emmaps to the bus syst emdefined in the architecture definition of core v850:

bus system

{

151

TASKING VX-toolset for RH850 User Guide

mau = 8;

width = 32;

map (dest=bus:v850:system dest_offset=0, size=4Q;
}
Memory

Memory is usually described in a separate memory definition, but you can specify on-chip memory for a
derivative. For example:

nenory code_fl ash

{

mau = 8;

type = rom

priority = 3;

size = 512k;

map(si ze = 512k, dest=bus:v850: system exec_priority=2,

dest _offset = 0x00000000); // src_offset is zero by default)

}

This completes the LSL code in the derivative definition. Note that all code above goes into the derivative
definition, thus between:

derivative default_derivative /1 name of derivative

/1 Al'l code above goes here

}

5.7.6.The Processor Definition

The processor definition is only needed when you write an LSL file for a multi-processor embedded
system. The processor definition explicitly instantiates a derivative, allowing multiple processors of the
same type.

processor nane

{
}

If no processor definition is available that instantiates a derivative, a processor is created with the same
name as the derivative.

derivative = derivative_nang;

Altium defines a “single processor environment” (spe) in each deri vati ve. | sl file. For example:

processor spe

{
}

derivative = default _derivative;

152

Using the Linker

5.7.7.The Memory Definition

Once the core architecture is defined in LSL, you may want to extend the processor with external (or
off-chip) memory. You need to specify the location and size of the physical external memory devices in
the target system.

The principle is the same as defining the core's architecture but now you need to fill the memory definition:

nenory nane

{
}

/1 menory definitions

FAErmory Brom

ul
-y —— 32k
FREFMarY Hiy_Hiradn

Suppose your embedded system has 128kB of external ROM, named xr om 128kB of external RAM,
named xr amand 32kB of external NVRAM, named my_nvr am(see figure above.) All memories are
connected to the bus syst em In LSL this looks like follows:

menory xrom

{
mau = 8§;
type = rom
size = 0x20000;
map (size = 0x20000, dest_of fset=0x00100000, dest=bus: spe:systen);
}
Menory Xram
{
mau = 8§;
type = ram
size = 0x20000;
map (size = 0x20000, dest_of fset=0x00120000, dest=bus: spe:systen);
}
mMenory ny_nvram
{
mau = 8§;
type = ram
size = 32k;
map (size = 32k, dest_of fset=0x00140000, dest=bus: spe:systen;
}

153

TASKING VX-toolset for RH850 User Guide

If you use a different memory layout than described in the LSL file supplied for the target core, you can
specify this in Eclipse or you can specify this in a separate LSL file and pass both the LSL file that describes
the core architecture and your LSL file that contains the memory specification to the linker.

To add memory using Eclipse
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Memory.
In the right pane the Memory page appears.
3. Open the Memory tab and click on the Add... button.
The Add new memory dialog appears.
4. Enter the memory name (for example my_nvr am, type (for example nvr am and size.
5. Click on the Add... button.
The Add new mapping dialog appears.

6. You have to specify at least one mapping. Enter the mapping name (optional), address, size and
destination and click OK.

The new mapping is added to the list of mappings.
7. Click OK.

The new memory is added to the list of memories (user memory).
8. Click OK to close the Properties dialog.

The updated settings are stored in the project LSL file.

If you make changes to the on-chip memory as defined in the architecture LSL file, the memory is copied
to your project LSL file and the line #defi ne __ REDEFI NE_ON_CHI P_I TEMS is added. If you remove
all the on-chip memory from your project LSL file, also make sure you remove this define.

5.7.8.The Section Layout Definition: Locating Sections

Once you have defined the internal core architecture and optional memory, you can actually define where
your application must be located in the physical memory.

During compilation, the compiler divides the application into sections. Sections have a name, an indication
(section type) in which address space it should be located and attributes like writable or read-only.

In the section layout definition you can exactly define how input sections are placed in address spaces,
relative to each other, and what their absolute run-time and load-time addresses will be.

154

Using the Linker

Example: section propagation through the toolset

To illustrate section placement, the following example of a C program (bat . c) is used. The program
saves the number of times it has been executed in battery back-upped memory, and prints the number.

#def i ne BATTERY_BACKUP_TAG O0xa5f0
#i ncl ude <stdio. h>

int uninitialized_data;

int initialized_data = 1;
#pragma section non_volatile
__data int battery_backup_tag;
__data int battery_backup_i nvok;
#pragma endsection

void nain (void)

{
if (battery_backup_tag != BATTERY_BACKUP_TAG)
{
/1 battery back-upped nenory area contains invalid data
Il initialize the nenory
battery_backup_tag = BATTERY_BACKUP_TAG
battery_backup_i nvok = 0;
}
printf("This application has been invoked % tines\n",
battery_backup_i nvok++);
}

The compiler assigns names and attributes to sections. With the #pr agna secti on and #pr agma
endsect i on the compiler's default section naming convention is overruled and a section with the name
non_vol ati | e appended is defined. In this section the battery back-upped data is stored.

By default the compiler creates the section . shss to store uninitialized data objects. With the __dat a
qualifier this is . bss. This section name tells the linker to locate the section in address space | i near
and that the section content should be filled with zeros at startup.

As a result of the #pr agna secti on non_vol ati | e, the data objects between the pragma pair are
placed in a section with the name ”. bss. non_vol ati | e". Note that ". bss" sections are cleared at
startup. However, battery back-upped sections should not be cleared and therefore we will change this
section attribute using the LSL.

Section placement

The number of invocations of the example program should be saved in non-volatile (battery back-upped)
memory. This is the memory nmy_nvsr amfrom the example in Section 5.7.7, The Memory Definition.

To control the locating of sections, you need to write one or more section definitions in the LSL file. At
least one for each address space where you want to change the default behavior of the linker. In our
example, we need to locate sections in the address space | i near:

155

TASKING VX-toolset for RH850 User Guide

section_layout ::linear

{
}

To locate sections, you must create a group in which you select sections from your program. For the
battery back-up example, we need to define one group, which contains the section . bss. non_vol ati | e.
All other sections are located using the defaults specified in the architecture definition. Section

. bss. non_vol ati | e should be placed in non-volatile ram. To achieve this, the run address refers to
our non-volatile memory called ny_nvsr am Furthermore, the section should not be cleared and therefore
the attribute s (scratch) is assigned to the group:

/1 Section placenent statenments

group (ordered, run_addr = memnmy_nvsram attributes = rws)

{
}

This completes the LSL file for the sample architecture and sample program. You can now invoke the
linker with this file and the sample program to obtain an application that works for this architecture.

sel ect ".bss.non_volatile";

For a complete description of the Linker Script Language, refer to Chapter 13, Linker Script Language
(LSL).

5.8. Linker Labels

The linker creates labels that you can use to refer to from within the application software. Some of these
labels are real labels at the beginning or the end of a section. Other labels have a second function, these
labels are used to address generated data in the locating phase. The data is only generated if the label
is used.

Linker labels are labels starting with __| c_. The linker assigns addresses to the following labels when
they are referenced:

Label Description

__lc_ub_name Begin of section name. Also used to mark the begin of the stack or heap or
copy table.

__lc_b_nane

__lc_ue_nane End of section name. Also used to mark the end of the stack or heap.

__lc_e_nanme

__lc_cb_nane Start address of an overlay section in ROM.

__lc_ce_nane End address of an overlay section in ROM.

__lc_gb_nane Begin of group name. This label appears in the output file even if no reference
to the label exists in the input file.

__lc_ge_name End of group name. This label appears in the output file even if no reference
to the label exists in the input file.

156

Using the Linker

The linker only allocates space for the stack and/or heap when a reference to either of the section labels
exists in one of the input object files.

At C level, all linker labels start with one leading underscore (the compiler adds an extra
underscore).

If you want to use linker labels in your C source for sections that have a dot (.) in the name, you
have to replace all dots by underscores.

Example: refer to a label with section name with dots from C
Suppose the C source file f 00. ¢ contains the following:

int myfunc(int a)
{

/* some source lines */
return 1;

}

This results in a section with the name . t ext . f oo. nyf unc.
In the following source file mai n. c all dots of the section name are replaced by underscores:

#i ncl ude <stdio. h>
extern void * _lc_ub__text_foo_nyfunc;

voi d mai n(voi d)
{
printf("The function nyfunc is |located at %)\n",
& I c_ub__text_foo_nyfunc);
}

Example: refer to the stack

Suppose in an LSL file a stack section is defined with the name "st ack” (with the keyword st ack). You
can refer to the begin and end of the stack from your C source as follows:

#i ncl ude <stdio. h>

extern char _lc_ub_stack[];
extern char _lc_ue_stack[];
voi d main()

{
printf("Size of stack is %\n",
_lc_ue_stack - _lc_ub_stack);
/* stack grows fromlow to high */
}

From assembly you can refer to the end of the stack with:

157

TASKING VX-toolset for RH850 User Guide

.extern __lc_ue_stack ; end of stack

5.9. Generating a Map File

The map file is an additional output file that contains information about the location of sections and symbols.
You can customize the type of information that should be included in the map file.

To generate a map file
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Map File.
4. Enable the option Generate XML map file format (.mapxml) for map file viewer.
5. (Optional) Enable the option Generate map file (.map).

6. (Optional) Enable the options to include that information in the map file.

Example on the command line (Windows Command Prompt)
The following command generates the map file t est . map:

| k850 --map-file test.o

With this command the map file t est . map is created.

See Section 11.2, Linker Map File Format, for an explanation of the format of the map file.

5.10. Linker Error Messages

The linker reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the linker immediately aborts the link/locate process.

E (Errors)

Errors are reported, but the linker continues linking and locating. No output files are produced unless you
have set the linker option--keep-output-files.

158

Using the Linker

W (Warnings)

Warning messages do not result into an erroneous output file. They are meant to draw your attention to
assumptions of the linker for a situation which may not be correct. You can control warnings in the C/C++
Build » Settings » Tool Settings » Linker » Diagnostics page of the Project » Properties for menu
(linker option --no-warnings).

| (Information)

Verbose information messages do not indicate an error but tell something about a process or the state
of the linker. To see verbose information, use the linker option--verbose.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

S6##. nessage

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

Display detailed information on diagnostics
On the command line you can use the linker option --diag to see an explanation of a diagnostic message:

| k850 --diag=[format:]{all | nunber,...]

159

TASKING VX-toolset for RH850 User Guide

160

Chapter 6. Using the Utilities

The TASKING VX-toolset for RH850 comes with a number of utilities:

cc850 A control program. The control program invokes all tools in the toolset and lets you quickly
generate an absolute object file from C and/or assembly source input files.

amk A make utility which supports parallelism and utilizes the multiple cores found on modern
host hardware.

ar850 An archiver. With this utility you create and maintain library files with relocatable object
modules (. 0) generated by the assembler.

hldump850 A high level language (HLL) object dumper. With this utility you can dump information about
an absolute object file (. el f). Key features are a disassembler with HLL source intermixing
and HLL symbol display and a HLL symbol listing of static and global symbols.

expire850 A utility to limit the size of the cache by removing all files older than a few days or by
removing older files until the total size of the cache is smaller than a specified size.

6.1. Control Program

The control program is a tool that invokes all tools in the toolset for you. It provides a quick and easy way
to generate the final absolute object file out of your C sources without the need to invoke the compiler,
assembler and linker manually.

The invocation syntax is:

cc850 [[option]... [file]l...]...

Recognized input files
* Files with a . ¢ suffix are interpreted as C source programs and are passed to the compiler.

 Files with a . asmsuffix are interpreted as hand-written assembly source files which have to be passed
to the assembler.

» Files with a . sr ¢ suffix are interpreted as compiled assembly source files. They are directly passed to
the assembler.

» Files with a . a suffix are interpreted as library files and are passed to the linker.
» Files with a . o suffix are interpreted as object files and are passed to the linker.

» Files with a . out suffix are interpreted as linked object files and are passed to the locating phase of
the linker. The linker accepts only one . out file in the invocation.

» Fileswith a . | sl suffix are interpreted as linker script files and are passed to the linker.

161

TASKING VX-toolset for RH850 User Guide

Options

The control program accepts several command line options. If you specify an unknown option to the
control program, the control program looks if it is an option for a specific tool. If so, it passes the option
directly to the tool. However, it is recommended to use the control program options --pass-* (-Wc, -Wa,
-WI) to pass arguments directly to tools.

For a complete list and description of all control program options, see Section 8.5, Control Program
Options.

Example with verbose output
cc850 --verbose test.c

The control program calls all tools in the toolset and generates the absolute object file t est . el f . With
option --verbose (-v) you can see how the control program calls the tools:

+ "pat h\ ¢850" --fp-nmodel =cFl nrSTz --fpu=none -0 cc3248a.src test.c
+ "pat h\ as850" -0 cc3248b. 0 cc3248a.src
+ "path\| k850" -0 test.elf --dv850e2.1sl --map-file cc3248b.o

-lc -1fp -Irt "-Lpath\lib\v850e2"

The control program produces unigue filenames for intermediate steps in the compilation process (such
as cc3248a. src and cc3248b. o in the example above) which are removed afterwards, unless you
specify command line option --keep-temporary-files (-t).

Example with argument passing to a tool
cc850 --pass-conpiler=-Cc test.c

The option -Oc is directly passed to the compiler.

162

Using the Utilities

6.2. Make Utility amk

amk is a make utility that you can use to maintain, update, and reconstruct groups of programs. amk
features parallelism which utilizes the multiple cores found on modern host hardware, hardening for path
names with embedded white space and it has an (internal) interface to provide progress information for
updating a progress bar. It does not use an external command shell (/ bi n/ sh, cnd. exe) but executes
commands directly.

The primary purpose of any make utility is to speed up the edit-build-test cycle. To avoid having to build
everything from scratch even when only one source file changes, it is necessary to describe dependencies
between source files and output files and the commands needed for updating the output files. This is
done in a so called "makefile”.

6.2.1. Makefile Rules

A makefile dependency rule is a single line of the form:
[target ...] : [prerequisite ...]

where target and prerequisite are path names to files. Example:
test.o : test.c

This states that target t est . o depends on prerequisite t est . ¢. So, whenever the latter is modified the
first must be updated. Dependencies accumulate: prerequisites and targets can be mentioned in multiple
dependency rules (circular dependencies are not allowed however). The command(s) for updating a
target when any of its prerequisites have been modified must be specified with leading white space after
any of the dependency rule(s) for the target in question. Example:

test.o :
cc850 test.c # | eadi ng white space

Command rules may contain dependencies too. Combining the above for example yields:

test.o : test.c
cc850 test.c

White space around the colon is not required. When a path name contains special characters such as
"', '#' (start of comment), '=" (macro assignment) or any white space, then the path name must be enclosed
in single or double quotes. Quoted strings can contain anything except the quote character itself and a
newline. Two strings without white space in between are interpreted as one, so it is possible to embed
single and double quotes themselves by switching the quote character.

When a target does not exist, its modification time is assumed to be very old. So, amk will try to make it.
When a prerequisite does not exist possibly after having tried to make it, it is assumed to be very new.
So, the update commands for the current target will be executed in that case. amk will only try to make
targets which are specified on the command line. The default target is the first target in the makefile which
does not start with a dot.

163

TASKING VX-toolset for RH850 User Guide

Static pattern rules

Static pattern rules are rules which specify multiple targets and construct the prerequisite names for each
target based on the target name.

[target ...] : target-pattern : [prerequisite-patterns ...]

The target specifies the targets the rules applies to. The target-pattern and prerequisite-patterns specify
how to compute the prerequisites of each target. Each target is matched against the target-pattern to
extract a part of the target name, called the stem. This stem is substituted into each of the
prerequisite-patterns to make the prerequisite names (one from each prerequisite-pattern).

Each pattern normally contains the character '%' just once. When the target-pattern matches a target,
the '%' can match any part of the target name; this part is called the stem. The rest of the pattern must
match exactly. For example, the target f 00. 0 matches the pattern '% o', with 'f 00" as the stem. The
targets f 00. ¢ and f 0o. el f do not match that pattern.

The prerequisite names for each target are made by substituting the stem for the '%' in each prerequisite
pattern.

Example:

objects =test.o filter.o

all: $(objects)

$(objects): %o %c
cc850 -¢ $< -0 $@

echo the stemis $*

Here '$<' is the automatic variable that holds the name of the prerequisite, '$@is the automatic variable
that holds the name of the target and '$*' is the stem that matches the pattern. Internally this translates
to the following two rules:

test.o: test.c
cc850 -c test.c -0 test.o
echo the stemis test

filter.o: filter.c
cc850 -c filter.c -o filter.o
echo the stemis filter

Each target specified must match the target pattern; a warning is issued for each target that does not.

Special targets

There are a number of special targets. Their names begin with a period.

Target Description

. DEFAULT If you call the make utility with a target that has no definition in the makefile, this
target is built.

164

Using the Utilities

Target Description

. DONE When the make utility has finished building the specified targets, it continues with
the rules following this target.

JANT The rules following this target are executed before any other targets are built.

. PHONY The prerequisites of this target are considered to be phony targets. A phony target

is a target that is not really the name of a file. The rules following a phony target are
executed unconditionally, regardless of whether a file with that name exists or what
its last-modification time is.

For example:

. PHONY: cl ean

cl ean:
rm*.o

With ank cl ean, the command is executed regardless of whether there is a file
named cl ean.

6.2.2. Makefile Directives

Directives inside makefiles are executed while reading the makefile. When a line starts with the word

"i ncl ude" or "-i ncl ude" then the remaining arguments on that line are considered filenames whose
contents are to be inserted at the current line. "- i ncl ude" will silently skip files which are not present.
You can include several files. Include files may be nested.

Example:
i ncl ude nakefil e2 nakefile3

White spaces (tabs or spaces) in front of the directive are allowed.

6.2.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lowercase or uppercase characters, uppercase is an accepted convention.
When a line does not start with white space and contains the assignment operator '=', ":=' or '+=' then the
line is interpreted as a macro definition. White space around the assignment operator and white space
at the end of the line is discarded. Single character macro evaluation happens by prefixing the name with
'$'. To evaluate macros with names longer than one character put the name between parentheses ‘()" or
curly braces '{}'. Macro names may contain anything, even white space or other macro evaluations.
Example:

DI NNER = $(FOOD) and $(BEVERAGE)
FOOD = pi zza

BEVERAGE = sparkling water

FOOD += with cheese

165

TASKING VX-toolset for RH850 User Guide

With the += operator you can add a string to an existing macro. An extra space is inserted before the
added string automatically.

Macros are evaluated recursively. Whenever $(DI NNER) or ${ DI NNER} is mentioned after the above,

it will be replaced by the text "pi zza wi th cheese and sparkling water". The left hand side in

a macro definition is evaluated before the definition takes place. Right hand side evaluation depends on
the assignment operator:

= Evaluate the macro at the moment it is used.
1= Evaluate the replacement text before defining the macro.

Subsequent '+=' assignments will inherit the evaluation behavior from the previous assignment. If there
is none, then '+='is the same as '=". The default value for any macro is taken from the environment. Macro
definitions inside the makefile overrule environment variables. Macro definitions on the amk command
line will be evaluated first and overrule definitions inside the makefile.

166

Using the Utilities

Predefined macros

Macro Description

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent
a single "$".

@ The name of the current target. When a rule has multiple targets, then it is the name

of the target that caused the rule commands to be run.

* The basename (or stem) of the current target. The stem is either provided via a static
pattern rule or is calculated by removing all characters found after and including the
last dot in the current target name. If the target name is 't est . ¢' then the stem is

't est ' (if the target was not created via a static pattern rule).

< The name of the first prerequisite.

MAKE The amk path name (quoted if necessary). Optionally followed by the options -n and
-S.

ORIG N The name of the directory where amk is installed (quoted if necessary).

SUBDI R The argument of option -G. If you have nested makes with -G options, the paths are

combined. This macro is defined in the environment (i.e. default macro value).

The @, * and < macros may be suffixed by 'D' to specify the directory component or by 'F' to specify the
filename component. $(@) evaluates to the directory name holding the file$(@) . $(@) / $(@) is
equivalent to $@ Note that on MS-Windows most programs accept forward slashes, even for UNC path
names.

The result of the predefined macros @, * and < and 'D' and 'F' variants is not quoted, so it may be necessary
to put quotes around it.

Note that stem calculation can cause unexpected values. For example:

$@ $*

/ home/ . wi ne/ t est / home/

/ home/ test/. proj ect / home/ test/
/.. /file /.

Macro string substitution
When the macro name in an evaluation is followed by a colon and equal sign as in
$(MACRO stringl=string2)

then amk will replace stringl at the end of every word in $(MACRO) by string2 during evaluation. When
$(MACRO) contains quoted path names, the quote character must be mentioned in both the original string
and the replacement stringl. For example:

$(MACRO. . 0" =. d")

1Intemally, amk tokenizes the evaluated text, but performs substitution on the original input text to preserve compatibility here with
existing make implementations and POSIX.

167

TASKING VX-toolset for RH850 User Guide

6.2.4. Makefile Functions
A function not only expands but also performs a certain operation. The following functions are available:

$(filter pattern ...,item ...)

The filt er function filters a list of items using a pattern. It returns items that do match any of the pattern
words, removing any items that do not match. The patterns are written using '%,

${filter %c %h, test.c test.h test.o readne.txt .project output.c}
results in:

test.c test.h output.c

$(filter-out pattern ...,item ...)

Thefilter-out function returns all items that do not match any of the pattern words, removing the
items that do match one or more. This is the exact opposite of the fi | t er function.

${filter-out %c %h, test.c test.h test.o readne.txt .project output.c}
results in:

test.o readne.txt .project

$(foreach var-name, item ..., action)

The f or each function runs through a list of items and performs the same action for each item. The
var-name is the name of the macro which gets dynamically filled with an item while iterating through the
item list. In the action you can refer to this macro. For example:

${foreach T, test filter output, ${T}.c ${T}.h}
results in:

test.c test.h filter.c filter.h output.c output.h

6.2.5. Conditional Processing

Lines containing i f def , i f ndef, el se or endi f are used for conditional processing of the makefile.
They are used in the following way:

i fdef macro-nane

if-lines
el se

el se-1ines
endi f

The if-lines and else-lines may contain any number of lines or text of any kind, even otheri f def ,i f ndef,
el se and endi f lines, or no lines at all. The el se line may be omitted, along with the else-lines following
it. White spaces (tabs or spaces) in front of preprocessing directives are allowed.

168

Using the Utilities

First the macro-name after the i f def command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an el se line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the i f ndef line instead of i f def , the macro is tested for not being defined. These
conditional lines can be nested to any level.

You can also add tests based on strings. With i f eq the result is true if the two strings match, with i f neq
the result is true if the two strings do not match. They are used in the following way:

i feq(stringl, string2)

if-lines
el se

el se-1ines
endi f

6.2.6. Makefile Parsing

amk reads and interprets a makefile in the following order:

1. When the last character on a line is a backslash (\) (i.e. without trailing white space) then that line and
the next line will be concatenated, removing the backslash and newline.

2. The unquoted '#' character indicates start of comment and may be placed anywhere on a line. It will
be removed in this phase.

this cooment |ine is continued\
on the next line
3. Trailing white space is removed.

4. When a line starts with white space and it is not followed by a directive or preprocessing directive, then
it is interpreted as a command for updating a target.

5. Otherwise, when a line contains the unquoted text '=', '+="' or ':=' operator, then it will be interpreted as
a macro definition.

6. Otherwise, all macros on the line are evaluated before considering the next steps.
7. When the resulting line contains an unquoted ":' the line is interpreted as a dependency rule.

8. When the first token on the line is "i ncl ude" or "-i ncl ude" (which by now must start on the first
column of the line), amk will execute the directive.

9. Otherwise, the line must be empty.

Macros in commands for updating a target are evaluated right before the actual execution takes place
(or would take place when you use the -n option).

169

TASKING VX-toolset for RH850 User Guide

6.2.7. Makefile Command Processing

A line with leading white space (tabs or spaces) without a (preprocessing) directive is considered as a
command for updating a target. When you use the option -j or -J, amk will execute the commands for
updating different targets in parallel. In that case standard input will not be available and standard output

and error output will be merged and displayed on standard output only after the commands have finished
for a target.

You can precede a command by one or more of the following characters:

@ Do not show the command. By default, commands are shown prior to their output.
- Continue upon error. This means that amk ignores a non-zero exit code of the command.
+ Execute the command, even when you use option -n (dry run).

Execute the command on the foreground with standard input, standard output and error
output available.

Built-in commands

Command Description

true This command does nothing. Arguments are ignored.

fal se This command does nothing, except failing with exit code 1. Arguments are
ignored.

echo arg... Display a line of text.

exit code Exit with defined code. Depending on the program arguments and/or the extra

rule options '-' this will cause amk to exit with the provided code. Please note
that 'exi t 0" has currently no result.

argfil e file arg... Create an argument file suitable for the --option-file (-f) option of all the other
tools. The first ar gf i | e argument is the name of the file to be created.
Subsequent arguments specify the contents. An existing argument file is not
modified unless necessary. So, the argument file itself can be used to create
a dependency to options of the command for updating a target.

r m[option]... file... Remove the specified file(s). The following options are available:
-r, --recursive Remove directories and their contents recursively.
-f, --force Force deletion. Ignore non-existent files, never prompt.
-i, --interactive Interactive. Prompt before every removal.
-v, --verbose Verbose mode. Explain what is being done.
-m file Read options from file..
-?, --help Show usage.

6.2.8. Calling the amk Make Utility

The invocation syntax of amk is:

170

ank [option]...

For example:

ank test.elf

target

macro=def

option

Exit status

Using the Utilities

[target]... [rmacro=def]...

You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

Macro definition. This definition remains fixed for the amk invocation. It overrides any
regular definitions for the specified macro within the makefiles and from the
environment. It is not inherited by subordinate amk's

For a complete list and description of all amk make utility options, see Section 8.6,
Parallel Make Utility Options.

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an

exit status of 0.

171

TASKING VX-toolset for RH850 User Guide

6.3. Archiver

The archiver ar850 is a program to build and maintain your own library files. A library file is a file with
extension . a and contains one or more object files (. 0) that may be used by the linker.

The archiver has five main functions:

» Deleting an object module from the library

» Moving an object module to another position in the library file

» Replacing an object module in the library or add a new object module
» Showing a table of contents of the library file

» Extracting an object module from the library

The archiver takes the following files for input and output:

assemhbler

T
l—— relocatable ohjectfile
—= .o

|

archiver

relocatable object library
.a linker

The linker optionally includes object modules from a library if that module resolves an external symbol
definition in one of the modules that are read before.

6.3.1. Calling the Archiver

You can create a library in Eclipse, which calls the archiver or you can call the archiver on the command
line.

To create alibrary in Eclipse

Instead of creating a RH850 absolute ELF file, you can choose to create a library. You do this when you
create a new project with the New C Project wizard.

1. From the File menu, select New » TASKING RH850 C Project.
The New C Project wizard appears.
2. Enter a project name.
3. Inthe Project type box, select TASKING RH850 Library and clickNext >.
4. Follow the rest of the wizard and click Finish.

5. Add the files to your project.

172

Using the Utilities

6. Build the project as usual. For example, select Project » Build Project (1),

Eclipse builds the library. Instead of calling the linker, Eclipse now calls the archiver.

Command line invocation
You can call the archiver from the command line. The invocation syntax is:
ar 850 key_option [sub_option...] library [object_file]

key_option With a key option you specify the main task which the archiver should perform. You
must always specify a key option.

sub_option Sub-options specify into more detail how the archiver should perform the task that is
specified with the key option. It is not obligatory to specify sub-options.

library The name of the library file on which the archiver performs the specified action. You
must always specify a library name, except for the options -? and -V. When the library
is not in the current directory, specify the complete path (either absolute or relative) to
the library.

object_file The name of an object file. You must always specify an object file name when you
add, extract, replace or remove an object file from the library.

Options of the archiver utility

The following archiver options are available:

Description Option Sub-option
Main functions (key options)

Replace or add an object module -r -a-b-c-u-v
Extract an object module from the library -X -v

Delete object module from library -d -v

Move object module to another position -m -a-b-v
Print a table of contents of the library -t -s0-sl
Print object module to standard output -p

Sub-options

Append or move new modules after existing module name -a name

Append or move new modules before existing module name -b name

Create library without notification if library does not exis -C

Preserve last-modified date from the library -0

Print symbols in library modules -s{0|1}

Replace only newer modules -u

Verbose -v

Miscellaneous

173

TASKING VX-toolset for RH850 User Guide

Description Option Sub-option
Display options -?

Display version header -V

Read options from file -f file

Suppress warnings above level n -wn

For a complete list and description of all archiver options, see Section 8.7, Archiver Options.
6.3.2. Archiver Examples

Create a new library

If you add modules to a library that does not yet exist, the library is created. To create a new library with
the name nyl i b. a and add the object modules cstart. o and cal c. o to it:

ar850 -r nylib.a cstart.o calc.o

Add a new module to an existing library

If you add a new module to an existing library, the module is added at the end of the module. (If the
module already exists in the library, it is replaced.)

ar850 -r nylib.a nbd3.0

Print a list of object modules in the library
To inspect the contents of the library:

ar850 -t nylib.a

The library has the following contents:

cstart.o

calc.o
nod3. o

Move an object module to another position

To move nod3. o to the beginning of the library, position it just before cstart . o:
ar850 -nmb cstart.o nylib.a npd3.0

Delete an object module from the library

To delete the object module cst art . o from the library nyl i b. a:

ar850 -d nylib.a cstart.o

174

Using the Utilities

Extract all modules from the library
Extract all modules from the library myl i b. a:

ar850 -x nylib.a

175

TASKING VX-toolset for RH850 User Guide

6.4. HLL Object Dumper

The high level language (HLL) dumper hldump850 is a program to dump information about an absolute
object file (. el f). Key features are a disassembler with HLL source intermixing and HLL symbol display
and a HLL symbol listing of static and global symbols.

6.4.1. Invocation

Command line invocation

You can call the HLL dumper from the command line. The invocation syntax is:
hl dump850 [option]... file...

The input file must be an ELF file with or without DWARF debug info (. el f).

The HLL dumper can process multiple input files. Files and options can be intermixed on the command
line. Options apply to all supplied files. If multiple files are supplied, the disassembly of each file is preceded
by a header to indicate which file is dumped. For example:

========== fj|le.elf ==========

For a complete list and description of all options, see Section 8.8, HLL Object Dumper Options. With
hl dunp850 - - hel p you will see the options on st dout .

6.4.2. HLL Dump Output Format

The HLL dumper produces output in text format by default, but you can also specify the XML output format
with --output-type=xml. The XML output is mainly for use in the Eclipse editor. The output is printed on
st dout , unless you specify an output file with --output=filename.

The parts of the output are dumped in the following order:
1. Module list

2. Section list

3. Section dump (disassembly)

4, HLL symbol table

5. Assembly level symbol table

6. Note sections

With the option --dump-format=flag you can control which parts are shown. By default, all parts are
shown.

176

Using the Utilities

Example

Suppose we have a simple "Hello World" program in a file called hel | 0. c. We call the control program
as follows:

cc850 -g -t hello.c

Option -g tells to include DWARF debug information. Option -t tells to keep the intermediate files. This
command results (among other files) in the file hel | 0. el f (the absolute output file).

We can dump information about the object file with the following command:
hl dump850 hell o. el f

---------- Module list ----------

Narme Ful | path
hello.c hello.c

---------- Section list ----------

Address Size Al'ign Type Narme

00000400 16 2 text .text.hello.main
00000024 6 1 rondata .zconst23. hello. 1str

f edec0c8 4 4 bss .sdata23. hello.world
0000002a 11 1 rondata .zconst23. hello. $2%$str
00000000 36 2 text .text.cstart._ START
00000210 68 2 text .text.printf.printf

f edec0dO 24 8 bss . sbss23. dbg. _dbg_request
f edec188 8192 8 bss st ack

ff2000cc 48 4 rondata table

ff2000c8 4 4 rondata [.sdata23. hello.world]

---------- Section dunp ----------

.section .zconst23. hello.1str, at(0x24)
.db 77,6f, 72, 6¢c, 64, 00 world
. endsec

.section .zconst23. hello.2str, at(0x2a)
.db 48, 65, 6c, 6¢, 6f, 20, 25, 73, 21, O0a, 00 ; Hello 9! ..
. endsec

.section .text.hello. main, at(0x400)

00000400 26 06 2a 00 00 00 _main: mv 0Ox2a,r6
00000406 84 07 89 3c 01 00 ld.w 0oxc8[gp].r7
0000040c bf 07 04 fe jr _printf

. endsec

.section [.sdata23. hello.world], at(O0xff2000c8)

177

TASKING VX-toolset for RH850 User Guide

.db 24, 00, 00, 00 ;5.
. endsec

---------- HLL synbol table ----------

Addr ess Size HLL Type Nane

00000000 36 void _START()

00000210 68 int printf(const char * restrict format,
00000400 16 void mai n()

fedecOc8 4 char * world [hello.c]

f edec0dO 24 struct _dbg_request [dbg.c]

f edecOe8 80 static char stdin_buf[80] [_iob.c]

fedecl138 80 static char stdout _buf[80] [_iob.c]

---------- assenbly | evel synbol table ----------

Address Si ze Type Nane

00000000

00000000 [.sdata23. hel | 0. wor | d]
00000000 hel l o.src

00000000 36 code __ START

00000400 16 code _mmin

fedecOc8 4 data _world

f edec0dO 24 data __dbg_request

f edecOe8 80 data _stdin_buf

fedecl138 80 data _stdout_buf

---------- .note sections ----------
Section .note, section 36:

00000000 type: ALTI UM ASSEMBLER NAVE
0000000c nane: Altium

00000014 desc: as850

Module list

This part lists all modules (C files) found in the object file(s). It lists the flename and the complete path
name at the time the module was built.

Section list

This part lists all sections found in the object file(s).

Address The start address of the section. Hexadecimal, 8 digits, 32-bit.

Size The size (length) of the section in bytes. Decimal, filled up with spaces.

Align The alignment of the section in number of bytes. Decimal, filled up with spaces.
Type The section type.

Name The name of the section.

With option --sections=name[,name]... you can specify a list of sections that should be dumped.

178

Using the Utilities

Section dump

This part contains the disassembly. It consists of the following columns:

address column Contains the address of the instruction or directive that is shown in the disassembly.
If the section is relocatable the section start address is assumed to be 0. The
address is represented in hexadecimal and has a fixed width. The address is
padded with zeros. No Ox prefix is displayed. For example, on a 32-bit architecture,
the address 0x32 is displayed as 00000032.

encoding column Shows the hexadecimal encoding of the instruction (code sections) or it shows the
hexadecimal representation of data (data sections). The encoding column has a
maximum width of eight digits, i.e. it can represent a 32-bit hexadecimal value.
The encoding is padded to the size of the data or instruction. For example, a 16-bit
instruction only shows four hexadecimal digits. The encoding is aligned left and
padded with spaces to fill the eight digits.

label column Displays the label depending on the option --symbols=[hlljasm|none]. The default
is asm, meaning that the low level (ELF) symbols are used. With hll, HLL (DWARF)
symbols are used. With none, no symbols will be included in the disassembly.

disassembly column For code sections the instructions are disassembled. Operands are replaced with
labels, depending on the option --symbols=[hlljasm|none].

The contents of data sections are represented by directives. A new directive will
be generated for each symbol. ELF labels in the section are used to determine
the start of a directive. ROM sections are represented with . db, . dh, . dw, . dd
kind of directives, depending on the size of the data. RAM sections are represented
with . ds directives, with a size operand depending on the data size. This can be
either the size specified in the ELF symbol, or the size up to the next label.

With option --hex, no directives will be generated for ROM data sections and no disassembly dump will
be done for code sections. Instead a hex dump is done with the following format:

AAAAAAAA HO HI H2 H3 H4 H5 H6 H7 H8 H9 HA HB HC HD HE HF RRRRRRRRRRRRRRRR
where,

A = Address (8 digits, 32-bit)

Hx = Hex contents, one byte (16 bytes max)

R = ASCII representation (16 characters max)

For example:

section 7 (.zconst23.hello. $2%str):
0000002a 48 65 6¢c 6¢ 6f 20 25 73 21 0Oa 00 Hello %s!..

With option --hex, RAM sections will be represented with only a start address and a size indicator:
AAAAAAAA Space: 24 bytes

With option --disassembly-intermix you can intermix the disassembly with HLL source code.

179

TASKING VX-toolset for RH850 User Guide

HLL symbol table

This part contains a symbol listing based on the HLL (DWARF) symbols found in the object file(s). The
symbols are sorted on address.

Address The start address of the symbol. Hexadecimal, 8 digits, 32-bit.
Size The size of the symbol from the DWARF info in bytes.

HLL Type The HLL symbol type.

Name The name of the HLL symbol.

HLL arrays are indicated by adding the size in square brackets to the symbol name. For example:
f edecOe8 80 static char stdi n_buf[80] [_iob.c]

With option --expand-symbols=+basic-types HLL struct and union symbols are listed including all fields.
Array members are expanded in one array member per line regardless of the HLL type. For example:

f edecOe8 80 static char stdin_buf[80] [_iob.c]
f edec0e8 1 char
f edec0e9 1 char
f edecOea 1 char
fedecl137 1 char

HLL struct and union symbols are listed by default without fields. For example:
f edec0dO 24 struct _dbg_request [dbg.c]

With option --expand-symbols all struct, union and array fields are included as well. For the fields the
types and names are indented with two spaces. For example:

f edec0dO 24 struct _dbg_request [dbg.c]
f edec0dO 4 i nt _errno

f edec0d4 4 enum nr

f edec0d8 16 uni on u

f edec0d8 4 struct exit

f edec0d8 4 i nt status

f edec0d8 8 struct open

f edec0d8 4 const char * pat hnanme

f edecOdc 2 unsi gned short int flags

Functions are displayed with the full function prototype. Size is the size of the function. HLL Type is the
return type of the function. For example:

00000210 68 int printf(const char * restrict format,

The local and static symbols get an identification between square brackets. The filename is printed if and
if a function scope is known the function name is printed between the square brackets as well. If multiple
files with the same name exist, the unique part of the path is added. For example:

180

Using the Utilities

00004100 4 int count [file.c, somefunc()]
00004104 4 int count [x\a.c]
00004108 4 int count [y\a.c, foo()]

Global symbols do not get information in square brackets.
Assembly level symbol table

This part contains a symbol listing based on the assembly level (ELF) symbols found in the object file(s).
The symbols are sorted on address.

Address The start address of the symbol. Hexadecimal, 8 digits, 32-bit.

Size The size of the symbol from the ELF info in bytes. If this field is empty, the size is
zero.

Type Code or Data, depending on the section the symbol belongs to. If this field is empty,
the symbol does not belong to a section.

Name The name of the ELF symbol.

181

TASKING VX-toolset for RH850 User Guide

6.5. Expire Cache Utility

With the utility expire850 you can limit the size of the cache (C compiler option --cache) by removing all
files older than a few days or by removing older files until the total size of the cache is smaller than a
specified size. See also Section 9.4, Compiler Cache.

The invocation syntax is:
expi re850 [option]... cache-directory
The compiler cache is present in the directory c850cache under the specified cache-directory.

For a complete list and description of all options, see Section 8.9, Expire Cache Ultility Options. With
expi re850 - -hel p you will see the options on st dout .

Examples

To remove all files older than seven days, enter:

expi re850 --days=7 "installation-dir\nproject\.cache"

To reduce the compiler cache size to 4 MB, enter:

expi re850 --negabytes=4 "installation-dir\nproject\.cache"
Older files are removed until the total size of the cache is smaller than 4 MB.
To clear the compiler cache, enter:

expi re850 --nmegabytes=0 "installation-dir\nproject\.cache"

182

Chapter 7. Using the Debugger

This chapter describes the debugger and how you can run and debug a C application. This chapter only
describes the TASKING specific parts.

7.1. Reading the Eclipse Documentation

Before you start with this chapter, it is recommended to read the Eclipse documentation first. It provides
general information about the debugging process. This chapter guides you through a number of examples
using the TASKING debugger with simulation as target.

You can find the Eclipse documentation as follows:
1. Start Eclipse.
2. From the Help menu, select Help Contents.
The help screen overlays the Eclipse Workbench.
3. Inthe left pane, select C/C++ Development User Guide.
4. Open the Getting Started entry and select Debugging projects.

This Eclipse tutorial provides an overview of the debugging process. Be aware that the Eclipse
example does not use the TASKING tools and TASKING debugger.

7.2. Creating a Customized Debug Configuration

Before you can debug a project, you need a Debug launch configuration. Such a configuration, identified
by a name, contains all information about the debug project: which debugger is used, which project is
used, which binary debug file is used, which perspective is used, ... and so forth.

You can create a debug launch configuration when you create a new project with the New C Project
wizard. If you have not done this you have to create a debug launch configuration.

To debug a project, you need at least one opened and active project in your workbench. In this
chapter, it is assumed that the mypr oj ect is opened and active in your workbench.

Create or customize your debug configuration

To create or change a debug configuration follow the steps below.
1. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.

2. Select TASKING C/C++ Debugger and click the New launch configuration button (L7

183

TASKING VX-toolset for RH850 User Guide

) to add a new configuration.

Or: In the left pane, select the configuration you want to change, for example, TASKING C/C++

Debugger » myproject.simulator.

3. Inthe Name field enter the name of the configuration. By default, this is the name of the project, but
you can give your configuration any name you want to distinguish it from the project name. For
example enter mypr oj ect . si mul at or to identify the simulator debug configuration.

4. Onthe Target tab, select the RH850 Simulator.

The dialog shows several tabs.

Target tab

On the Target tab you can select on which target the application should be debugged. An application
can run on an external evaluation board, or on a simulator using your own PC. On this tab you can also
select the connection settings (USB, TCP/IP). The information in this tab is based on the Debug Target
Configuration (DTC) files as explained in Chapter 14, Debug Target Configuration Files.

{7} Debug Configurations

Create, manage, and run configurations
TASKING C/C++ Debugger

g

==

eI Name: | myproject
type filter text
4 ¥ TASKING C/C++ Debugger

Target settings
5 myproject

) Show all targets ©) Show targets for VBS0E3

Target . := Initialization| 5] Project| 69= Arguments| B Source| £ Miscellaneous

Target: RHB50 Simulator

Configuration:

Connection settings

Connection: | Simulator

e Field Value

Filter matched 2 of 2 items.

@ Debug

Initialization tab

On the Initialization tab enable one or more of the following options:

184

Using the Debugger

{23 Debug Configurations =5

Create, manage, and run configurations F <
TASKING C/C++ Debugger J
TBX| B3

Name: myproject

type filter text i= Initialization ", [5] Project| 9: Arguments| % Source | E] Miscellaneous

a ¥ TASKING C/C++ Debugger

F
 myproject | Verify download of program

Program flash when downloading
] Reset target
7] Goto main
V| Break on exit
Reduce target state polling
5

Flash seitings

Filter matched 2 of 2 items.

@] Debug Close

Initial download of program

If enabled, the target application is downloaded onto the target. If disabled, only the debug information
in the file is loaded, which may be useful when the application has already been downloaded (or flashed)
earlier. If downloading fails, the debugger will shut down.

Verify download of program

If enabled, the debugger verifies whether the code and data has been downloaded successfully. This
takes some extra time but may be useful if the connection to the target is unreliable.

Program flash when downloading

If enabled, also flash devices are programmed (if necessary). Flash programming will not work when
you use a simulator.

Reset target
If enabled, the target is immediately reset after downloading has completed.
Goto main

If enabled, only the C startup code is processed when the debugger is launched. The application stops
executing when it reaches the first C instruction in the function mai n() . Usually you enable this option
in combination with the option Reset Target.

Break on exit
If enabled, the target halts automatically when the exi t () function is called.

Reduce target state polling

185

TASKING VX-toolset for RH850 User Guide
If you have set a breakpoint, the debugger checks the status of the target every number of seconds to
find out if the breakpoint is hit. In this field you can change the polling frequency.
* Monitor file (Flash settings)
Filename of the monitor, usually an Intel Hex or S-Record file.
» Sector buffer size (Flash settings)
Specifies the buffer size for buffering a flash sector.
» Workspace address (Flash settings)

The address of the workspace of the flash programming monitor.

Project tab

On the Project tab, you can set the properties for the debug configuration such as a name for the project
and the application binary file which are used when you choose this configuration.

{2} Debug Configurations ==
Create, manage, and run configurations K <
TASKING C/C++ Debugger J
SEX| B3~ Name: | myproject
typefilter text Target | i= Initialization | [5] Project (9= Arguments | & Source| =] Miscellaneous
Y JCor
4 5 TASKING C/Cos Debugger | | oo
5 myproject
myproject Browse...
C/C++ application:
${build_confighmyproject.eff Search Project.. Browse..
Filter matched 2 of 2 items

* In the Project field, you can choose the project for which you want to make a debug configuration.
Because the project nypr oj ect is the active project, this project is filled in automatically. Click the
Browse... button to select a different project. Only the opened projects in your workbench are listed.

* Inthe C/C++ Application field, you can choose the binary file to debug. The file nyproj ect. el f is
automatically selected from the active project.

Arguments tab
If your application's mai n() function takes arguments, you can pass them in this tab. Arguments are

conventionally passed in the ar gv[] array. Because this array is allocated in target memory, make sure
you have allocated sufficient memory space for it.

186

(.} Debug Configurations

YR X|E 3

type filter text

2 {5 TASKING C/C
&5 myproject

Filter matched 2 of 2 items.

®@

Target | := Initialization | || Project [£9: Arguments . %/ Source|] Miscellaneous
++ Debugger

Create, manage, and run configurations
TASKING C/C++ Debugger

Name: myproject

C/C++ program arguments
argl arg2
arg3 argd

Working directory
Use default working directory
S{workspace loc:myproject}
Workspace.. | | File System... Variables...
Apply Revert

Source tab

for debug data.

(.} Debug Configurations

TASKING C/C++ Debugger

YR X|E 3
type filter text

2 {5 TASKING C/C++ Debugger
&5 myproject

Create, manage, and run configurations

=

Name: myproject

Target | := Initialization | [] Project | 9: Arguments [Source
Source Lookup Path:

13 Default

] Miscellaneous

Add...

Edit..
Up

Down

Restore Default

[Se:

arch for duplicate source files on the path

Filter matched 2 of 2 items.

Revert
@

Apply

» Usually, the default source code location is correct.

Miscellaneous

On the Miscellaneou

tab

s tab you can specify several file locations.

Using the Debugger

On the Source tab, you can add additional source code locations in which the debugger should search

187

TASKING VX-toolset for RH850 User Guide

(L} Debug Configurations

Create, manage, and run configurations

TASKING C/C++ Debugger

@%@

B Y
Il Name: | myproject

type filter ted Target | := Initialization | [E] Project | (9: Arguments % Source [=] Miscellaneous

a ¥ TASKING C/C++ Debugger

- Debugger location: Ci/Program Files/ TASKING/RHES0 vxyrz/ bin
5 myproject

FSS root directory: §{project_loch\${build_config} Browse...

ORTIfile: Browse...
KSM module: Defau Browse...

GDl log file:

Debug instrument log file (if applicable)

Browse...

I

Cache target access
Launch in background

Use linker/locator memery map file (.mdf) for memory map

Filter matched 2 of 2 items.

» Debugger location

The location of the debugger itself. This should not be changed.

FSS root directory

The initial directory used by file system simulation (FSS) calls. See the description of the FSS view.

ORTI file and KSM module

If you wish to use the debugger's special facilities for kernel-aware debugging, specify the name of a
Kernel Debug Interface (KDI) compatible KSM module (shared library) in the appropriate edit box. See
also the description of the RTOS view.

GDl log file and Debug instrument log file

You can use the options GDI log file and Debug instrument log file (if applicable) to control the generation
of internal log files. These are primarily intended for use by or at the request of Altium support personnel.

+ Cache target access

Except when using a simulator, the debugger's performance is generally strongly dependent on the
throughput and latency of the connection to the target. Depending on the situation, enabling this option
may result in a noticeable improvement, as the debugger will then avoid re-reading registers and
memory while the target remains halted. However, be aware that this may cause the debugger to show
the wrong data if tasks with a higher priority or external sources can influence the halted target's state.

e Launch in background

When this option is disabled you will see a progress bar when the debugger starts. If you do not want
to see the progress bar and want that the debugger launches in the background you can enable this
option.

188

Using the Debugger

» Use linker/locator memory map file (.mdf) for memory map

You can use this option to find errors in your application that cause access to non-existent memory or
cause an attempt to write to read-only memory. When building your project, the linker/locator creates
a memory description file (. ndf) file which describes the memory regions of the target you selected
in your project properties. The debugger uses this file to initialize the debugging target.

This option is only useful in combination with a simulator as debug target. The debugger may fail to
start if you use this option in combination with other debugging targets than a simulator.

7.3. Troubleshooting

If the debugger does not launch properly, this is likely due to mistakes in the settings of the execution
environment or to an improper connection between the host computer and the execution environment.
Always read the notes for your particular execution environment.

Some common problems you may check for, are:

Problem Solution

Wrong device name in the launch |Make sure the specified device name is correct.
configuration

Invalid baud rate Specify baud rate that matches the baud rate the execution
environment is configured to expect.

No power to the execution Make sure the execution environment or attached probe is powered.
environment.

Wrong type of RS—232 cable. Make sure you are using the correct type of RS-232 cable.

Cable connected to the wrong port |Some target machines and hosts have several ports. Make sure
on the execution environment or host. |you connect the cable to the correct port.

Conflict between communication A device driver or background application may use the same
ports. communications port on the host system as the debugger. Disable
any service that uses the same port-number or choose a different
port-number if possible.

Port already in use by another user. | The port may already be in use by another user on some UNIX
hosts, or being allocated by a login process. Some target machines
and hosts have several ports. Make sure you connect the cable to
the correct port.

7.4. TASKING Debug Perspective

After you have launched the debugger, you are either asked if the TASKING Debug perspective should
be opened or it is opened automatically. The Debug perspective consists of several views.

To open views in the Debug perspective:

1. Make sure the Debug perspective is opened

189

TASKING VX-toolset for RH850 User Guide

2. From the Window menu, select Show View »

3. Select a view from the menu or choose Other... for more views.

By default, the Debug perspective is opened with the following views:

4

tj TASKING Debug - myproject/mypreject.c - RHE50 Eclipse IDE vicyrz EI@
File Edit Source Refactor Mavigate Search Project Debug Window Help
i’ |Biig-E-E-@- P E - D@D F-iREASH 8T RD R | B -
- AL o | = Quick Access : | [TASKING C/C++ (35 TASKING Debug
%5 Debug 52 |3 7 = O |[td= Variables 32 . % Breakpoints = [][44 Registers &2 $ = 0
4 & myproject [TASKING C/C++ Debugger] =% B | ‘ Wil || Group:
.a &2 RH850 Simulator - VB50E3 (5/19/14 11:45 AM) (Sus
o Name Value
4 o Thread [RH850] (Suspended) . Camnot read o N Name WValue Usage
= 1 mainQ myproject.c:3 0x00000834 b annot read variable, nost.. || 5 00 -
= 2 _STARTQ 0x0000001¢ 1 00
r2 (2]
[Oxfedeel80
e Oxfedec000 i
< [K C Zl 4
[€] myproject.c £2 = 0 Disassembly 22 . 5% Outline = O
#include <stdio.h> -
Address: 000000834
int main(wvoid) R R R
int main(wvoid) -
int i3 0x00000834 0780 0821 prepare r20,1p, 0x
for (i=1; i<=3; i++) for (i=1; i<=3; i++)
= 0x00000838 2201 mov ox1,r20
printf("%d\n",i); printf("sd\n",i };

. . . 0x0000083a 0626 0024 0000 mov 0x24,716
printf("Hello world, ™); 0x00000840 3814 mov r20,x7
printf('this is n”) 0x00000842 f£f80 003, 1 intf (0
printf("a small ¥dst\n",i-3); * = ‘__ = a jJar prin {
printf("debugging example.\n"); for (i=1r i<=3; i++)

; 1 0x00000846 a241 add 0x1,r20
- -] [ro-
B Console £ 2 Tasks w Bl o4 B~ 5+ 0D Memory $rd I EE G- ~=8

Debug [myproject]

Starting Debugger...

TASKING VX-toolset for RH85@: debugger,
Copyright 2814 Altium BV

Launching configuration: myproject

T

Monitors ga

Build eie

7.4.1. Debug View

The Debug view shows the target information in a tree hierarchy shown below with a sample of the
possible icons:

instance

Icon Session item Description

. Launch instance |Launch configuration name and launch type

Debugger instance | Debugger name and state

P @ g8 |Thread instance |Thread number and state

= = |Stack frame Stack frame number, function, file name, and file line number

The number beside the thread label is a reference counter, not a thread identification number (TID).

190

Using the Debugger

Stack display

During debugging (running) the actual stack is displayed as it increases or decreases during program
execution. By default, all views present information that is related to the current stack item (variables,
memory, source code etc.). To obtain the information from other stack items, click on the item you want.

The Debug view displays stack frames as child elements. It displays the reason for the suspension beside
the thread, (such as end of stepping range, breakpoint hit, and signal received). When a program exits,
the exit code is displayed.

The Debug view contains numerous functions for controlling the individual stepping of your programs and
controlling the debug session. You can perform actions such as terminating the session and stopping the
program. All functions are available from the right-click menu, though commonly used functions are also
available from the toolbar.

Controlling debug sessions

Icon Action Description
% Remove all Removes all terminated launches.
o Reset target Resets the target system and restarts the application.
system
<& Restart Restarts the application. The target system is not reset.
b Resume Resumes the application after it was suspended (manually, breakpoint,
signal).
0o Suspend Suspends the application (pause). Use the Resume button to continue.
) Right-click menu. Restarts the selected debug session when it was
Q, Relaunch terminated. If the debug session is still running, a new debug session is
launched.
4 Reload current Reloads the current application without restarting the debug session. The
: application application does restart of course.
. Ends the selected debug session and/or process. Use Relaunch to restart
= Terminate :) ;
this debug session, or start another debug session.
[| Terminate all Right-click menu. As terminate. Ends all debug sessions.

@ |Terminate and Right-click menu. Ends the debug session and removes it from the Debug
*lremove view.

@ |Terminate and Right-click menu. Ends the debug session and relaunches it. This is the
*|Relaunch same as choosing Terminate and then Relaunch.

Detaches the debugger from the selected process (useful for debugging

= Disconnect attached processes).

191

TASKING VX-toolset for RH850 User Guide

Stepping through the application

Icon Action Description
= Step into Steps to the next source line or instruction.
_ Steps over a called function. The function is executed and the application
Ly Step over . .
suspends at the next instruction after the call.
Executes the current function. The application suspends at the next
- Step return . ; X
instruction after the return of the function.
i Instruction Toggle. If enabled, the stepping functions are performed on instruction level
stepping instead of on C source line level.
I Interrupt aware | Toggle. If enabled, the stepping functions do not step into an interrupt when
stepping it occurs.

Miscellaneous

Icon Action Description
Right-click menu. Copies the stack as text to the windows clipboard. You
Copy Stack)) . .
can paste the copied selection as text in, for example, a text editor.
5 Edit project... Right-click menu. O‘pens.the debug configuration dialog to let you edit the
current debug configuration.
B Edit Source Right-click menu. Opens the Edit Source Lookup Path window to let you
Lookup... edit the search path for locating source files.

7.4.2. Breakpoints View

You can add, disable and remove breakpoints by clicking in the marker bar (left margin) of the Editor
view. This is explained in the Getting Started manual.

Description

The Breakpoints view shows a list of breakpoints that are currently set. The button bar in the Breakpoints
view gives access to several common functions. The right-most button — opens the Breakpoints menu.

Types of breakpoints

To access the breakpoints dialog, add a breakpoint as follows:

1. Click the Add TASKING Breakpoint button (&).

The Breakpoints dialog appears.

Each tab lets you set a breakpoint of a special type. You can set the following types of breakpoints:

» File breakpoint

192

Using the Debugger

The target halts when it reaches the specified line of the specified source file. Note that it is possible
that a source line corresponds to multiple addresses, for example when a header file has been included
into two different source files or when inlining has occurred. If so, the breakpoint will be associated with
all those addresses.

¢ Function

The target halts when it reaches the first line of the specified function. If no source file has been specified
and there are multiple functions with the given name, the target halts on all of those. Note that function
breakpoints generally will not work on inlined instances of a function.

* Address

The target halts when it reaches the specified instruction address.
e Stack

The target halts when it reaches the specified stack level.
+ Data

The target halts when the given variable or memory location (specified in terms of an absolute address)
is read or written to, as specified.

¢ Instruction
The target halts when the given number of instructions has been executed.
* Cycle
The target halts when the given number of clock cycles has elapsed.
o Timer
The target halts when the given amount of time elapsed.
In addition to the type of the breakpoint, you can specify the condition that must be met to halt the program.

In the Condition field, type a condition. The condition is an expression which evaluates to 'true' (non-zero)
or 'false' (zero). The program only halts on the breakpoint if the condition evaluates to 'true'.

In the Ignore count field, you can specify the number of times the breakpoint is ignored before the program
halts. For example, if you want the program to halt only in the fifth iteration of a while-loop, type '4": the
first four iterations are ignored.

7.4.3. File System Simulation (FSS) View

Description

The File System Simulation (FSS) view is automatically opened when the target requests FSS input or
generates FSS output. The virtual terminal that the FSS view represents, follows the VT100 standard. If
you right-click in the view area of the FSS view, a menu is presented which gives access to some
self-explanatory functions.

193

TASKING VX-toolset for RH850 User Guide

VT100 characteristics

The queens example demonstrates some of the VT100 features. (You can find the queens example in
the <i nstal | ati on pat h>\ exanpl es directory from where you can import it into your workspace.)
Per debugging session, you can have more than one FSS view, each of which is associated with a positive
integer. By default, the view "FSS #1" is associated with the standard streams st di n, st dout , st derr
and st daux. Other views can be accessed by opening a file named "terminal window <number>", as
shown in the example below.

FILE * f3 = fopen("term nal w ndow 3", "rw');
fprintf(f3, "Hello, wi ndow 3.\n");
fcl ose(f3);

You can set the initial working directory of the target application in the Debug configuration dialog (see
also Section 7.2, Creating a Customized Debug Configuration):

1. On the Debugger tab, select the Miscellaneous sub-tab.
2. In the FSS root directory field, specify the FSS root directory.

The FSS implementation is designed to work without user intervention. Nevertheless, there are some
aspects that you need to be aware of.

First, the interaction between the C library code (in the files dbg*. ¢ and dbg*. h; see Section 10.1.5,
dbg.h) and the debugger takes place via a breakpoint, which incidentally is not shown in the Breakpoints
view. Depending on the situation this may be a hardware breakpoint, which may be in short supply.

Secondly, proper operation requires certain code in the C library to have debug information. This debug
information should normally be present but might get lost when this information is stripped later in the
development process.

7.4.4. Disassembly View

The Disassembly view shows target memory disassembled into instructions and / or data. If possible, the
associated C source code is shown as well. The Address field shows the address of the current selected
line of code.

To view the contents of a specific memory location, type the address in the Address field. If the address
is invalid, the field turns red.

7.4.5. Expressions View

The Expressions view allows you to evaluate and watch regular C expressions.
To add an expression:

Click OK to add the expression.

1. Right-click in the Expressions View and select Add Watch Expression.

The Add Watch Expression dialog appears.

194

Using the Debugger

2. Enter an expression you want to watch during debugging, for example, the variable name "i"

If you have added one or more expressions to watch, the right-click menu provides options to Remove
and Edit or Enable and Disable added expressions.

» You can access target registers directly using #NAME. For example "ar r [#R0 << 3] " or "#TI MER3
= mt+". If a register is memory-mapped, you can also take its address, for example, "&#ADC| N'.

» Expressions may contain target function calls like for example "gl + i nvert (&g2)". Be aware that
this will not work if the compiler has optimized the code in such a way that the original function code
does not actually exist anymore. This may be the case, for example, as a result of inlining. Also, be
aware that the function and its callees use the same stack(s) as your application, which may cause
problems if there is too little stack space. Finally, any breakpoints present affect the invoked code in
the normal way.

7.4.6. Memory View

Use the Memory view to inspect and change process memory. The Memory view supports the same
addressing as the C language. You can address memory using expressions such as:

* 0x0847d3c

« (&y)+1024

s *ptr

Monitors

To monitor process memory, you need to add a monitor:

1. Inthe Debug view, select a debug session. Selecting a thread or stack frame automatically selects
the associated session.

2. Click the Add Memory Monitor button in the Memory Monitors pane.
The Monitor Memory dialog appears.
3. Type the address or expression that specifies the memory section you want to monitor and click OK.

The monitor appears in the monitor list and the Memory Renderings pane displays the contents of
memory locations beginning at the specified address.

To remove a monitor:
1. Inthe Monitors pane, right-click on a monitor.

2. From the popup menu, select Remove Memory Monitor.

195

TASKING VX-toolset for RH850 User Guide

Renderings

You can inspect the memory in so-called renderings. A rendering specifies how the output is displayed:
hexadecimal, ASCII, signed integer, unsigned integer or traditional. You can add or remove renderings
per monitor. Though you cannot change a rendering, you can add or remove them:

1. Click the New Renderings... tab in the Memory Renderings pane.
The Add Memory Rendering dialog appears.

2. Select the rendering you want (Traditional, Hex, ASCII, Signed Integer, Unsigned Integer or Hex
Integer) and click Add Rendering(s).

To remove a rendering:
1. Right-click on a memory address in the rendering.

2. From the popup menu, select Remove Rendering.

Changing memory contents

In a rendering you can change the memory contents. Simply type a new value.

Warning: Changing process memory can cause a program to crash.

The right-click popup menu gives some more options for changing the memory contents or to change the
layout of the memory representation.

7.4.7. Compare Application View

You can use the Compare Application view to check if the downloaded application matches the application
in memory. Differences may occur, for example, if you changed memory addresses in the Memory view.

» To check for differences, click the Compare button.

7.4.8. Heap View

With the Heap view you can inspect the status of the heap memory. This can be illustrated with the
following example:

string = (char *) malloc(100);
strcpy (string, "abcdefgh");
free (string);

If you step through these lines during debugging, the Heap view shows the situation after each line has
been executed. Before any of these lines has been executed, there is no memory allocated and the Heap
view is empty.

« After the first line the Heap view shows that memory is occupied, the description tells where the block
starts, how large it is (100 MAUs) and what its content is (Ox0, 0xO0, ...).

196

Using the Debugger
» After the second line, "abcdef gh" has been copied to the allocated block of memory. The description
field of the Heap view again shows the actual contents of the memory block (0x61, 0x62,...).

» The third line frees the memory. The Heap view is empty again because after this line no memory is
allocated anymore.

7.4.9. Logging View

Use the Logging view to control the generation of internal log files. This view is intended mainly for use
by or at the request of Altium support personnel.

7.4.10. RTOS View

The debugger has special support for debugging real-time operating systems (RTOSs). This support is

implemented in an RTOS-specific shared library called a kernel support module (KSM) or RTOS-aware
debugging module (RADM). You have to create your own OSEK Run Time Interface (ORTI) and specify
this file on the Miscellaneous tab while configuring a customized debug configuration (see also Section 7.2,
Creating a Customized Debug Configuration):

1. From the Debug menu, select Debug Configurations...
The Debug Configurations dialog appears.

2. Inthe left pane, select the configuration you want to change, for example, TASKING C/C++ Debugger
» myproject.simulator.

Or: click the New launch configuration button (L) to add a new configuration.
3. Open the Miscellaneous tab
4. Inthe ORTI file field, specify the name of your own ORTI file.
5. Inthe KSM module field, specify the name of a KSM shared library file suitable for OSEK kernels.

The debugger supports ORTI specifications v2.0 and v2.1.

7.4.11. Registers View

In the Registers view you can examine the value of registers while stepping through your application. The
registers are organized in a number of register groups, which together contain all known registers. You
can select a group to see which registers it contains. This view has a number of features:

* While you step through the application, the registers involved in the step turn yellow. If you scroll in the
view or switch groups, some registers may appear on a lighter yellow background, indicating that the
debugger does not know whether the registers have changed because the debugger did not read the
registers before the step began.

197

TASKING VX-toolset for RH850 User Guide

il Registers &7 y = O
Group: | Core -
MName Value Usage
i 0 -
rl 0 3
r2 0
3 Oxfedec180
rd Oxfedfa000
r5 02000000
1 Oxa
7 0 -

» You can change each register's value.

» You can search for a specific register: right-click on a register and from the popup menu select Find
Register.... Enter a group or register name filter, click the register you want to see and click OK. The
register of your interest will be shown in the view.

7.4.12. Trace View

If tracing is enabled, the Trace view shows the code was most recently executed. For example, while you
step through the application, the Trace view shows the executed code of each step. To enable tracing:

 Right-click in the Trace view and select Trace.
A check mark appears when tracing is enabled.

The view has three tabs, Source, Instruction and Raw, each of which represents the trace in a different
way. However, not all target environments will support all three of these. The view is updated automatically
each time the target halts.

198

Chapter 8. Tool Options

This chapter provides a detailed description of the options for the compiler, assembler, linker, control
program, make utility, archiver and the HLL object dumper.

Tool options in Eclipse (Menu entry)

For each tool option that you can set from within Eclipse, a Menu entry description is available. In Eclipse
you can customize the tools and tool options in the following dialog:

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. Open the Tool Settings tab.
You can set all tool options here.

Unless stated otherwise, all Menu entry descriptions expect that you have this Tool Settings tab
open.

The following tables give an overview of all tool options on the Tool Settings tab in Eclipse with the
corresponding command line options (if available).

Global Options

Eclipse option Description or option

Use global 'product directory' preference Directory where the TASKING toolset is
installed

Treat warnings as errors Control program option --warnings-as-errors

Keep temporary files Control program option
--keep-temporary-files (-t)

Verbose mode of control program Control program option --verbose (-v)

C Compiler

Eclipse option Description or option

Preprocessing

Store preprocessor output in <file>.pre Control program option --preprocess (-E) /
--no-preprocessing-only

199

TASKING VX-toolset for RH850 User Guide

Eclipse option

Description or option

Keep comments in preprocessor output

Control program option
--preprocess=+comments

Keep #line info in preprocessor output

Control program option
--preprocess=-noline

Defined symbols

C compiler option --define

Pre-include files

C compiler option --include-file

Include Paths

Include paths

C compiler option --include-directory

Language

Comply to C standard

C compiler option --iso

Allow GNU C extensions

C compiler option --language=+gcc

Allow // comments in ISO C90 mode

C compiler option --language=+comments

Check assignment of string literal to non-'const' string
pointer

C compiler option --language=-strings

Treat ‘char' variables as unsigned

C compiler option --uchar

Allow optimization across volatile access

C compiler option --language=-volatile

Allow Shift JIS Kanji in strings

C compiler option --language=+kaniji

Floating-Point

Floating-point model

|Contr0| program option --fp-model

Code Generation

Algorithm for switch statements

|C compiler option --switch

Allocation

Rename sections

C compiler option --rename-sections

Clear uninitialized global and static variables

C compiler option --no-clear

Data model

C compiler option --default-data

For non-constant data use

C compiler option --data-memory

For constant data use

C compiler option --const-data-memory

For string literals use

C compiler option --string-literal-memory

For code use

C compiler option --default-code

Optimization

Optimization level

C compiler option --optimize

Trade-off between speed and size

C compiler option --tradeoff

Always inline function calls

C compiler option --inline

Maximum size increment when inlining (in %)

C compiler option --inline-max-incr

Maximum size for functions to always inline

C compiler option --inline-max-size

Custom Optimization

C compiler option --optimize

200

Tool Options

Eclipse option

Description or option

Compilation Speed

C compiler option --cache

Debugging

Generate symbolic debug information

C compiler option --debug-info

Generate code for bounds checking

C compiler option --runtime=+bounds

Generate code to detect unhandled case in a switch

C compiler option --runtime=+case

Generate code for malloc consistency checks

C compiler option --runtime=+malloc

MISRA C

MISRA C checking

C compiler option --misrac

MISRA C version

C compiler option --misrac-version

Warnings instead of errors for mandatory rules

C compiler option
--misrac-mandatory-warnings

Warnings instead of errors for required rules

C compiler option
--misrac-required-warnings

Warnings instead of errors for advisory rules

C compiler option
--misrac-advisory-warnings

Custom 1998 / Custom 2004 / Custom 2012

C compiler option --misrac

CERT C Secure Coding

CERT C secure code checking

C compiler option --cert

Warnings instead of errors

C compiler option --warnings-as-errors

Custom CERT C

C compiler option --cert

Diagnostics

Suppress C compiler warnings

C compiler option --no-warnings=num

Suppress all warnings

C compiler option --no-warnings

Perform global type checking on C code

C compiler option --global-type-checking

Miscellaneous

Merge C source code with generated assembly

C compiler option --source

Additional options

C compiler options, Control program options

Assembler

Eclipse option

Description or option

Preprocessing

Use TASKING preprocessor

Assembler option --preprocessor-type

Defined symbols

Assembler option --define

Pre-include files

Assembler option --include-file

Include Paths

201

TASKING VX-toolset for RH850 User Guide

Eclipse option

Description or option

Include paths

Assembler option --include-directory

Symbols

Generate symbolic debug

Assembler option --debug-info

Case insensitive identifiers

Assembler option --case-insensitive

Emit local EQU symbols

Assembler option --emit-locals=+equ

Emit local non-EQU symbols

Assembler option --emit-locals=+symbols

Set default symbol scope to global

Assembler option --symbol-scope

Optimization

Optimize generic instructions

Assembler option --optimize=+generics

Optimize jump chains

Assembler option --optimize=+jumpchains

Optimize instruction size

Assembler option --optimize=+instr-size

List File
Generate list file Control program option --list-files
List ... Assembler option --list-format

List section summary

Assembler option --section-info=+list

Diagnostics

Suppress warnings

Assembler option --no-warnings=num

Suppress all warnings

Assembler option --no-warnings

Display section summary

Assembler option --section-info=+console

Maximum number of emitted errors

Assembler option --error-limit

Miscellaneous

Allow nested sections

Assembler option --nested-sections

Allow Shift JIS Kanji in strings

Assembler option --kanji

Additional options

Assembler options

Linker

Eclipse option

Description or option

Output Format

Generate Intel Hex format file

Linker option --output=file:IHEX

Generate S-records file

Linker option --output=file:SREC

Create file for each memory chip

Linker option --chip-output

Size of addresses (in bytes) for Intel Hex records

Linker option --output=file:IHEX:size

Size of addresses (in bytes) for Motorola S records

Linker option --output=file: SREC:size

Emit start address record

Linker option --hex-format=s

Libraries

202

Tool Options

Eclipse option

Description or option

Link default libraries

Control program option --no-default-libraries

Rescan libraries to solve unresolved externals

Linker option --no-rescan

Libraries

The libraries are added as files on the
command line.

Library search path

Linker option --library-directory

Data Objects

Data objects

Linker option --import-object

Script File

Defined symbols

Linker option --define

Linker script file

Linker option --Isl-file

Optimization

Delete unreferenced sections

Linker option --optimize=c

Use a 'first-fit decreasing' algorithm

Linker option --optimize=I

Compress copy table

Linker option --optimize=t

Delete duplicate code

Linker option --optimize=x

Delete duplicate data

Linker option --optimize=y

Map File

Generate map file (.map)

Control program option --no-map-file

Generate XML map file format (.mapxml) for map file viewer

Linker option --map-file=file.mapxml: XML

Include ...

Linker option --map-file-format

Diagnostics

Suppress warnings

Linker option --no-warnings=num

Suppress all warnings

Linker option --no-warnings

Maximum number of emitted errors

Linker option --error-limit

Miscellaneous

Strip symbolic debug information

Linker option --strip-debug

Link case insensitive

Linker option --case-insensitive

Do not use standard copy table for initialization

Linker option
--user-provided-initialization-code

Show link phases during processing

Linker option --verbose

Additional options

Linker options

203

TASKING VX-toolset for RH850 User Guide

8.1. Configuring the Command Line Environment

If you want to use the tools on the command line (using a Windows command prompt), you can set
environment variables.

You can set the following environment variables:

Environment
variable

Description

AS850INC

With this variable you specify one or more additional directories in which the
assembler looks for include files. See Section 4.3, How the Assembler Searches
Include Files.

C850INC

With this variable you specify one or more additional directories in which the C
compiler looks for include files. See Section 3.4, How the Compiler Searches Include
Files.

CC850BIN

When this variable is set, the control program prepends the directory specified by
this variable to the names of the tools invoked.

LIB850

With this variable you specify one or more additional directories in which the linker
looks for libraries. See Section 5.3.1, How the Linker Searches Libraries.

PATH

With this variable you specify the directory in which the executables reside. This
allows you to call the executables when you are not in the bi n directory. Usually
your system already uses the PATH variable for other purposes. To keep these
settings, you need to add (rather than replace) the path. Use a semicolon (;) to
separate path names.

TMPDIR

With this variable you specify the location where programs can create temporary
files. Usually your system already uses this variable. In this case you do not need
to change it.

See the documentation of your operating system on how to set environment variables.

204

Tool Options

8.2. C Compiler Options

This section lists all C compiler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the compiler via the control program. Therefore, it uses the syntax of
the control program to pass options and files to the C compiler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, you have to precede the option with -Wc to pass the
option via the control program directly to the C compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -n sends output to stdout instead of a file and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

c850 -Cac test.c
c850 --optinm ze=+coal esce, +cse test.c

When you do not specify an option, a default value may become active.

205

TASKING VX-toolset for RH850 User Guide

C compiler option: --cache

Menu entry
1. Select C Compiler » Optimization » Compilation Speed.
2. Enable the option Cache generated code to improve the compilation speed.

3. Inthe Directory for cached files field, enter the name for the location of the cache.

Command line syntax
--cache[=di rectory]
Default on command line: . (current directory)

Default in Eclipse: . cache directory under project directory

Description

This option enables a cache for output files in the specified directory. When the source code after
preprocessing and relevant compiler options and the compiler version are the same as in a previous
invocation, the previous result is copied to the output file. The cache only works when there is a single C
input file and a single output file.

You can also enable the cache and specify the cache directory with the environment variable C850CACHE.
This option takes precedence over the environment variable.

The cache directory may be shared, for instance by placing it on a network drive. You can control the
maximum size and/or age of the cache directory with the separate expiration tool expire850.

The compiler creates a directory c850cache in the directory specified with the option --cache or the
environment variable C850CACHE. The directory is only created when it does not yet exist. The cache
files are stored in this directory.

Example

To improve the compilation speed and put cached files in directory . cache, enter:
€850 --cache=. cache test.c

Related information

Section 9.4, Compiler Cache

Section 6.5, Expire Cache Utility

206

Tool Options

C compiler option: --cert

Menu entry
1. Select C Compiler » CERT C Secure Coding.
2. Make a selection from the CERT C secure code checking list.

3. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

Command line syntax
--cert={all | nane[-nane],...}
Default format: all

Description

With this option you can enable one or more checks for CERT C Secure Coding Standard
recommendations/rules. When you omit the argument, all checks are enabled. name is the name of a
CERT recommendation/rule, consisting of three letters and two digits. Specify only the three-letter
mnemonic to select a whole category. For the list of names you can use, see Chapter 15, CERT C Secure
Coding Standard.

On the command line you can use --diag=cert to see a list of the available checks, or you can use a

three-letter mnemonic to list only the checks in a particular category. For example, --diag=pre lists all
supported preprocessor checks.

Example

To enable the check for CERT rule STR30-C, enter:
c850 --cert=str30 test.c

Related information

Chapter 15, CERT C Secure Coding Standard

C compiler option --diag (Explanation of diagnostic messages)

207

TASKING VX-toolset for RH850 User Guide

C compiler option: --check

Menu entry

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler reports any warnings and/or errors.
This option is available on the command line only.
Related information

Assembler option --check (Check syntax)

208

C compiler option: --const-data-memory

Menu entry

1. Select C Compiler » Allocation.

2. From the For constant data use list, select an allocation.

Command line syntax
- - const - dat a- nenor y=space

You can specify the following space arguments:

__data
__zdata
__sdata

Default: __sdata

Description

Tool Options

With this option you can control the allocation of constant data objects. Constant data objects are const
variables and automatic initializers. Constant data objects that are not explicitly qualified, are allocated

in the space specified by this option.
Related information

Pragma const _dat a_nenory

C compiler option --data-memory (Assign memory to non-constant data objects)

C compiler option --string-literal-memory (Assign memory to string literals)

209

TASKING VX-toolset for RH850 User Guide

C compiler option: --data-memory

Menu entry

1. Select C Compiler » Allocation.

2. From the For non-constant data use list, select an allocation.
Command line syntax

- - dat a- menor y=space

You can specify the following space arguments:

__data
__zdata
__sdata

Default: __sdata

Description

With this option you can control the allocation of non-constant data objects. Data objects that are not
explicitly qualified, are allocated in the space specified by this option.

Related information
Pragma dat a_nenory
C compiler option --const-data-memory (Assigh memory to constant data objects)

C compiler option --string-literal-memory (Assign memory to string literals)

210

Tool Options

C compiler option: --debug-info (-g)
Menu entry

1. Select C Compiler » Debugging.

2. Togenerate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax
- -debug-i nf o[=subopt i on]
- g[subopti on]

You can set the following suboptions:

small 1l/c Emit small set of debug information.
default 2/d Emit default symbolic debug information.
all 3/a Emit full symbolic debug information.

Default: - - debug- i nf o (same as - - debug- i nf o=def aul t)

Description

With this option you tell the compiler to add directives to the output file for including symbolic information.
This facilitates high level debugging but increases the size of the resulting assembler file (and thus the
size of the object file). For the final application, compile your C files without debug information.

The DWARF debug format allows for a flexible approach as to how much symbolic information is included,
as long as the structure is valid. Adding all possible DWARF data for a program is not practical. The
amount of DWARF information per compilation unit can be huge. And for large projects, with many object
modules the link time can grow unacceptably long. That is why the compiler has several debug information
levels. In general terms one can say, the higher the level the more DWARF information is produced.

The DWARF data in an object module is not only used for debugging. The toolset can also do "type
checking" of the whole application. In that case the linker will use the DWARF information of all object
modules to determine if every use of a symbol is done with the same type. In other words, if the application
is built with type checking enabled then the compiler will add DWARF information too.

Small set of debug information

With this suboption only DWARF call frame information and type information are generated. This enables
you to inspect parameters of nested functions. The type information improves debugging. You can perform
a stack trace, but stepping is not possible because debug information on function bodies is not generated.
You can use this suboption, for example, to compact libraries.

211

TASKING VX-toolset for RH850 User Guide

Default debug information

This provides all debug information you need to debug your application. It meets the debugging
requirements in most cases without resulting in oversized assembler/object files.

Full debug information

With this suboption extra debug information is generated about unused typedefs and DWARF "lookup
table sections". Under normal circumstances this extra debug information is not needed to debug the
program. Information about unused typedefs concerns all typedefs, even the ones that are not used for
any variable in the program. (Possibly, these unused typedefs are listed in the standard include files.)
With this suboption, the resulting assembler/object file will increase significantly.

In the following table you see in more detail what DWARF information is included for the debug option

levels.

Feature -g1 |[-g2 |[-g3 |[type check Remarks

basic info + + + + info such as symbol name and type

call frame + + + + this is information for a debugger to compute
a stack trace when a program has stopped
at a breakpoint

symbol lifetime + + this is information about where symbols live
(e.g. on stack at offset so and so, when the
program counter is in this range)

line number info + + + file name, line number, column number

"lookup tables" + DWAREF sections ... this is an optimization
for the DWARF data, it is not essential

unused typedefs + in the C code of the program there can be

(many) typedefs that are not used for any
variable. Sometimes this can cause
enormous expansion of the DWARF data and
thus it is only included in -g3.

Related information

212

Tool Options

C compiler option: --default-code

Menu entry

1. Select C Compiler » Allocation.

2. From the For code use list, select __near or __ far.
Command line syntax

--defaul t-code=qualifier

You can specify the following qualifier arguments:

__hear Function calls/branches to a function with this qualifier are done via jr/jarl+disp22
_ far Function calls/branches to a function with this qualifier are done via jr/jarl+disp32

Default: __near

Description
With this option you can control whether a function gets the __near or __f ar qualifier.

For __near functions the linker supports long branch veneers in order to call functions that are placed
too far apart (for example , a function in ROM calls a function in RAM).

Related information

Section 1.2.1, Memory Qualifiers

213

TASKING VX-toolset for RH850 User Guide

C compiler option: --default-data

Menu entry
1. Select C Compiler » Allocation.

2. From the Data model list, select __near or __far.

Command line syntax
--defaul t-data=qualifier
You can specify the following qualifier arguments:

__near Unqualified objects are implicitly qualified with __near
__far Unqualified objects are implicitly qualified with __f ar

Default: _ far

Description
With this option you can control whether unqualified data gets the __near or __f ar qualifier.

If a variable has an explicit __sdat a or __zdat a qualifier, but no explicit __near or __f ar qualifier,
the compiler adds a __near or __f ar qualifier depending on the value of this option.

If a variable has an explicit __dat a qualifier, the compiler does not add a __near or __f ar qualifier.
Related information

Section 1.2.1, Memory Qualifiers

C compiler option --const-data-memory (Assign memory to constant data objects)

C compiler option --data-memory (Assign memory to hon-constant data objects)

214

Tool Options

C compiler option: --define (-D)

Menu entry
1. Select C Compiler » Preprocessing.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)
Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax
- -defi ne=macr o_name[=macr o_defi ni tion]

- Dmacr o_name[=nacr o_defini tion]

Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1".

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, you can use the option --define (-D) multiple times. If the command line exceeds
the limit of the operating system, you can define the macros in an option file which you then must specify
to the compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

Example
Consider the following C program with conditional code to compile a demo program and a real program:

void main(void)

{
#i f DEMO

deno_func(); /* conpile for the deno program */
#el se

real _func(); /* conpile for the real program*/
#endi f
}

You can now use a macro definition to set the DEMO flag:

215

TASKING VX-toolset for RH850 User Guide
c850 --define=DEMO test.c

c850 --define=DEMO=1 test.c

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

c850 --define="MAX(A B)=((A) > (B) ? (A : (B))" test.c
Related information
C compiler option --undefine (Remove preprocessor macro)

C compiler option --option-file (Specify an option file)

216

Tool Options

C compiler option: --dep-file

Menu entry

Eclipse uses this option in the background to create a file with extension . d (one for every input file).
Command line syntax

--dep-file[=file]

Description

With this option you tell the compiler to generate dependency lines that can be used in a Makefile. In
contrast to the option --preprocess=+make, the dependency information will be generated in addition to
the normal output file.

By default, the information is written to a file with extension . d (one for every input file). When you specify
a filename, all dependencies will be combined in the specified file.

Example
c850 --dep-file=test.dep test.c

The compiler compiles the file t est . ¢, which results in the output file t est . sr ¢, and generates
dependency lines in the file t est . dep.

Related information

C compiler option --preprocess=+make (Generate dependencies for make)

217

TASKING VX-toolset for RH850 User Guide

C compiler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.
Command line syntax
--diag=[format:]{all | nmsg[-nBQg],...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The compiler does
not compile any files. You can specify the following formats: html, rtf or text (default). To create a file
with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given (except for the CERT checks). If
you want the description of one or more selected error messages, you can specify the error message
numbers, separated by commas, or you can specify a range.

With --diag=cert you can see a list of the available CERT checks, or you can use a three-letter mnemonic
to list only the checks in a particular category. For example, --diag=pre lists all supported preprocessor
checks.

Example
To display an explanation of message number 282, enter:
c850 --di ag=282

This results in the following message and explanation:

218

Tool Options

E282: unterm nated conment

Make sure that every comment starting with /* has a matching */.
Nest ed coments are not possible.

To write an explanation of all errors and warnings in HTML format to file cer r or s. ht m , use redirection
and enter:

c850 --diag=htm:all > cerrors.htm

Related information
Section 3.8, C Compiler Error Messages

C compiler option --cert (Enable individual CERT checks)

219

TASKING VX-toolset for RH850 User Guide

C compiler option: --eabi-deviations

Menu entry

Command line syntax
- - eabi - devi ati ons=f| ags

You can set the following flags:

+/-address-class a/A allow alternative address class codes
+/-edata elE allow alternative use of element pointer (ep)
+/-float fIF allow use of non-strict floating-point execution model

Default: - - eabi - devi at i ons=aef

Description

With this option you control the deviation of the EABI. By default, all exceptions are enabled, that is, not
EABI compliant. When the generated code needs to be completely EABI compliant use option
--eabi-compliant.

With --eabi-deviations=+address-class, alternative DWARF address class codes are used. They are
required for global type checking.

With --eabi-deviations=+edata, it is allowed to use the element pointer (ep) for alternative purposes
than accessing ep-relative global data. With --eabi-deviations=-edata the compiler uses ep only to
access ep-relative global data. You can mix modules compiled with different settings for this option, as
long as ep-relative global data is not used.

With --eabi-deviations=+float, you can select the floating-point execution model with option --fp-model
or one of the associated pragmas. With --eabi-deviations=-float, the floating-point execution model is
forced to --fp-model=CFLNRtZ. This model selects IEEE-754 conforming results.

Related information
C compiler option --eabi-compliant (code needs to be completely EABI compliant)

C compiler option --fp-model (floating-point model)

220

Tool Options

C compiler option: --eabi-compliant

Menu entry

Command line syntax

- -eabi -conpl i ant

Description

Use this option when the generated code needs to be completely EABI compliant.
This option is an alias for --eabi-deviations=AEF.

Related information

C compiler option --eabi-deviations (control EABI deviations)

221

TASKING VX-toolset for RH850 User Guide

C compiler option: --error-file

Menu entry
Command line syntax
--error-file[=file]
Description

With this option the compiler redirects error messages to a file. If you do not specify a filename, the error
file will be named after the output file with extension . err.

Example
To write errors to error s. err instead of st derr, enter:

c850 --error-file=errors.err test.c

Related information

222

Tool Options

C compiler option: --fp-model

Menu entry

1. Select C Compiler » Floating-Point.

2. Make a selection from the Floating-point model list.

3. If you selected Custom, enable one or more individual options.

Command line syntax
--f p-nodel =f | ags

You can set the following flags:

+/-contract c/C
+/-float fIF
+/-fastlib I/L
+/-nonan n/N
+/-rewrite r’R
+/-soft SIS
+/-trap t/T
+/-negzero z/Z
strict 0
precise 1
fast-double 2
fast-single 3

Default: - - f p- nodel =cFl nr STz

Description

allow expression contraction

treat 'double’ as 'float'

allow less precise library functions
allow optimizations to ignore NaN/Inf
allow expression rewriting

use software floating-point library
support trapping on exceptions
ignore sign of -0.0

alias for --fp-model=CFLNRStZ
alias for --fp-model=cFLNRSTZ
alias for --fp-model=cFInrSTz
alias for --fp-model=cfinrSTz

With this option you select the floating-point execution model.

With --fp-model=+contract you allow the compiler to contract multiple float operations into a single
operation, with different rounding results. A possible example is fused multiply-add.

With --fp-model=+float you tell the compiler to treat variables and constants of type doubl e as f | oat .
Because the f | oat type takes less space, execution speed increases and code size decreases, both at
the cost of less precision. Make sure you specify the corresponding libraries to the linker.

With --fp-model=+fastlib you allow the compiler to select faster but less accurate library functions for

certain floating-point operations.

223

TASKING VX-toolset for RH850 User Guide
With --fp-model=+nonan you allow the compiler to ignore NaN or Inf input values. An example is to
replace multiply by zero with zero.

With --fp-model=+rewrite you allow the compiler to rewrite expressions by reassociating. This might
result in rounding differences and possibly different exceptions. An example is to rewrite (a*c)+(b*c) as
(at+b)*c.

With --fp-model=+soft no hardware floating-point instructions are generated, only calls to the software
floating-point library.

By default, the floating-point unit (FPU) is used if the selected core supports one. If an FPU is present,
the macro __FPU__ is defined in the C source file. Use this option to disable the use of the FPU.

Functions that have the __f pu function qualifier are not affected by this option. You can also disable the
FPU for specific functions by using the __nof pu function qualifier.

With --fp-model=+trap operations trap on floating-point exceptions. Make sure you specify the
corresponding trapping floating-point library to the linker.

With --fp-model=+negzero you allow the compiler to ignore the sign of -0.0 values. An example is to
replace (a-a) by zero.

Related information

Pragmas STDC FP_CONTRACT, f p_negzero,fp_nonanandfp_rewi te in Section 1.7, Pragmas to
Control the Compiler.

C compiler option --eabi=+float (control level of EABI compliancy)

Section 1.10.3, Floating-Point Unit Support: __ fpu, _ nofpu

224

Tool Options

C compiler option: --fpu

Menu entry

Eclipse automatically sets the correct option based on the selected processor.
Command line syntax

--fpu=type

You can specify the following arguments:

double Double/single precision FPU
single Single precision FPU
none No FPU available

Default: - - f pu=none

Description
With this option you can select the hardware floating-point configuration of the used processor.

With double the compiler generates hardware floating-point instructions for single and double precision
floating-point.

With single the compiler generates hardware floating-point instructions for single precision floating-point
and software floating-point instructions for double precision floating-point.

With none the compiler generates software floating-point instructions for single and double precision
floating-point.

Related information

C compiler option --fp-model (Floating-point execution model)

225

TASKING VX-toolset for RH850 User Guide

C compiler option: --global-type-checking
Menu entry

1. Select C Compiler » Diagnostics.

2. Enable the option Perform global type checking on C code.
Command line syntax

--gl obal -t ype-checki ng

Description

The C compiler already performs type checking within each module. Use this option when you want the
linker to perform type checking between modules.

Related information

226

Tool Options

C compiler option: --help (-?)
Menu entry
Command line syntax

--help[=item

-2

You can specify the following arguments:

intrinsics i Show the list of intrinsic functions

options o] Show extended option descriptions

pragmas p Show the list of supported pragmas

typedefs t Show the list of predefined typedefs
Description

Displays an overview of all command line options. With an argument you can specify which extended
information is shown.

Example
The following invocations all display a list of the available command line options:

c850 -?

c850 --help

c850

The following invocation displays a list of the available pragmas:
c850 - - hel p=pr agnas

Related information

227

TASKING VX-toolset for RH850 User Guide

C compiler option: --include-directory (-I)

Menu entry
1. Select C Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...

-lpath, ...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the compiler searches for include files is:

1. The pathname in the C source file and the directory of the C source (only for #include files that are
enclosed in ")

2. The path or paths that are specified with this option. Multiple paths/options are handled by the C
compiler from left to right.

3. The path that is specified in the environment variable C8501 NC when the product was installed.

4. The default directory $(PRODDI R) \ i ncl ude (unless you specified option --no-stdinc).

Example
Suppose that the C source file t est . ¢ contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the compiler as follows:
c850 --include-directory=nyinclude test.c

First the compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

228

Tool Options

The compiler now looks for the file myi nc. h in the directory where t est . ¢ is located. If the file is not
there the compiler searches in the directory myi ncl ude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information

C compiler option --include-file (Include file at the start of a compilation)

C compiler option --no-stdinc (Skip standard include files directory)

229

TASKING VX-toolset for RH850 User Guide

C compiler option: --include-file (-H)
Menu entry
1. Select C Compiler » Preprocessing.
The Pre-include files box shows the files that are currently included before the compilation starts.
2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax
--include-file=file,...
-Hile,...

Description

With this option you include one or more extra files at the beginning of each C source file, before other
includes. This is the same as specifying #i ncl ude "fil e" atthe beginning of each of your C sources.

Example

€850 --include-file=stdio.h testl.c test2.c

The file st di 0. h is included at the beginning of botht est 1. ¢ and t est 2. c.
Related information

C compiler option --include-directory (Add directory to include file search path)

230

Tool Options

C compiler option: --inline

Menu entry

1. Select C Compiler » Optimization.

2. Enable the option Always inline function calls.

Command line syntax

--inline

Description

With this option you instruct the compiler to inline calls to functions without the __noi nl i ne function

qualifier whenever possible. This option has the same effect as a #pr agnma i nl i ne at the start of the
source file.

Example
To always inline function calls:

c850 --inline test.c

Related information

Section 1.10.2, Inlining Functions: inline

231

TASKING VX-toolset for RH850 User Guide

C compiler option: --inline-max-incr / --inline-max-size
Menu entry

1. Select C Compiler » Optimization.

2. Inthe Maximum size increment when inlining field, enter a value (default -1).

3. Inthe Maximum size for functions to always inline field, enter a value (default -1).

Command line syntax

--inline-max-incr=percentage (default: -1)
--inline-max-si ze=threshol d (default: -1)

Description

With these options you can control the automatic function inlining optimization process of the compiler.
These options have only effect when you have enabled the inlining optimization (option --optimize=+inline
or Optimize most).

Regardless of the optimization process, the compiler always inlines all functions that have the
function qualifier i nl i ne.

With the option --inline-max-size you can specify the maximum size of functions that the compiler inlines
as part of the optimization process. The compiler always inlines all functions that are smaller than the
specified threshold. The threshold is measured in compiler internal units and the compiler uses this
measure to decide which functions are small enough to inline. The default threshold is -1, which means
that the threshold depends on the option --tradeoff.

After the compiler has inlined all functions that have the function qualifier i nl i ne and all functions that
are smaller than the specified threshold, the compiler looks whether it can inline more functions without
increasing the code size too much. With the option --inline-max-incr you can specify how much the code
size is allowed to increase. The default value is -1, which means that the value depends on the option
--tradeoff.

Example
c850 --optimize=+inline --inline-max-incr=40 --inline-max-size=15 test.c

The compiler first inlines all functions with the function qualifier i nl i ne and all functions that are smaller
than the specified threshold of 15. If the code size has still not increased with 40%, the compiler decides
which other functions it can inline.

Related information
C compiler option --optimize=+inline (Optimization: automatic function inlining)

Section 1.10.2, Inlining Functions: inline

232

Tool Options

Section 3.6.3, Optimize for Code Size or Execution Speed

233

TASKING VX-toolset for RH850 User Guide

C compiler option: --iso (-c)

Menu entry

1. Select C Compiler » Language.

2. From the Comply to C standard list, select ISO C99 or ISO C90.
Command line syntax

--is0={90| 99}

-¢{90] 99}

Default: - - i s0=99

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99
refers to the newer ISO/IEC 9899:1999 (E) standard. C99 is the default.

Example
To select the ISO C90 standard on the command line:

c850 --is0=90 test.c

Related information

C compiler option --language (Language extensions)

234

Tool Options

C compiler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the . sr ¢ file when errors occur during compilation.

Command line syntax
--keep-output-files
-k

Description

If an error occurs during compilation, the resulting . sr ¢ file may be incomplete or incorrect. With this
option you keep the generated output file (. sr ¢c) when an error occurs.

By default the compiler removes the generated output file (. sr c) when an error occurs. This is useful
when you use the make utility. If the erroneous files are not removed, the make utility may process corrupt
files on a subsequent invocation.

Use this option when you still want to inspect the generated assembly source. Even if it is incomplete or
incorrect.

Example
c850 --keep-output-files test.c

When an error occurs during compilation, the generated output file t est . sr ¢ will not be removed.

Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

235

TASKING VX-toolset for RH850 User Guide

C compiler option: --language (-A)

Menu entry

1. Select C Compiler » Language.

2. Enable or disable one or more of the following options:
» Allow GNU C extensions

Allow // comments in ISO C90 mode

» Check assignment of string literal to non-'const’ string pointer

Allow optimization across volatile access

Allow Shift JIS Kanji in strings

Command line syntax
- -l anguage=[f | ags]
- Al flags]

You can set the following flags:

+/-gcc g/G enable a number of gcc extensions
+/-kanji k/K support for Shift JIS Kanji in strings
+/-comments p/P /I comments in ISO C90 mode
+/-volatile viV don't optimize across volatile access
+/-strings XIX relaxed const check for string literals

Default: - AGKpVx

Default (without flags): - AGKPVX

Description

With this option you control the language extensions the compiler can accept.

The option --language (-A) without flags disables all language extensions.

GNU C extensions

The --language=+gcc (-Ag) option enables the following gcc language extensions:
» The identifier __ FUNCTION__ expands to the current function name.

« Alternative syntax for variadic macros.

236

Tool Options

 Alternative syntax for designated initializers.

» Allow zero sized arrays.

» Allow empty struct/union.

 Allow unnamed struct/union fields.

* Allow empty initializer list.

« Allow initialization of static objects by compound literals.

» The middle operand of a ? : operator may be omitted.

» Allow a compound statement inside braces as expression.
 Allow arithmetic on void pointers and function pointers.

» Allow a range of values after a single case label.

» Additional preprocessor directive #war ni ng.

» Allow comma operator, conditional operator and cast as Ivalue.
 Aninline function without "st at i c" or "ext er n" will be global.
e An"extern inline"function will not be compiled on its own.

 An__attribute__ directly following a struct/union definition relates to that tag instead of to the
objects in the declaration.

For a more complete description of these extensions, you can refer to the UNIX gcc info pages (info
gce).

Shift JIS Kanji support

With --language=+kanji (-Ak) you tell the compiler to support Shift JIS encoded Kanji multi-byte characters
in strings, (wide) character constants and / / comments. Without this option, encodings with Ox5c as the
second byte conflict with the use of the backslash as an escape character. Shift JISin/ *. . . */ comments
is supported regardless of this option. Note that Shift JIS also includes Katakana and Hiragana.

Comments in ISO C90 mode

With --language=+comments (-Ap) you tell the compiler to allow C++ style comments (//) in ISO C90
mode (option --is0=90). In ISO C99 mode this style of comments is always accepted.

Check assighnment of string literal to non-const string pointer

With --language=+strings (-Ax) you disable warnings about discarded const qualifiers when a string
literal is assigned to a non-const pointer.

char *p;
void main(void) { p = "hello"; }

237

TASKING VX-toolset for RH850 User Guide

Example

c850 --1anguage=-comments, +strings --iso=90 test.c
c850 -APx -c90 test.c

The compiler compiles in ISO C90 mode, accepts assignments of a constant string to a non-constant
string pointer and does not allow C++ style comments.

Optimization across volatile access

With the --language=+volatile (-Av) option, the compiler will block optimizations when reading or writing
a volatile object, by treating the access as a call to an unknown function. With this option you can prevent
for example that code below the volatile object is optimized away to somewhere above the volatile object.

Example:

extern unsigned int variable;
extern volatile unsigned int access;

voi d Test Func(unsigned int flag)

{
access = 0;
variable | = fl ag;
if(variable == 3)
{

variable = 0;

}
variabl e | = 0x8000;
access = 1;

}

Result with --language=-volatile (default):

_Test Func: .type func
mv 0,r11
nov hi @a(_access),r0,r12 ;. <== Vol atil e access
st.w r0, @o(_access)[rl12]
nov hi @a(_variable),ro,r12
ld.w @o(_variable)[r12],r12

or rl2,r6
cnp 3,r6
bne . L2
mv rll, r6
.L2:
ori 32768,r6,r11
mv 1,r12
nov hi @a(_access),r0,r13 ; <== Vol atile access
st.w rl2, @o(_access)[r13]
nov hi @a(_variable),ro,r12 ;. <== Mbved across vol atil e access
st.w rll, @o(_variable)[rl12]
jmp [1p]

238

Result with --language=+volatile:

_Test Func:

nov
novhi
st.w
novhi
ld.w
or
cnp
bne
nov
.L2:
ori
novhi
st.w
nov
novhi
st.w

jm

.type func

0,r11
@a(_access),r0,r12

r0, @o(_access)[r12]
@a(_variable),r0,r12
@o(_variable)[r12],r12
rl2,r6

3, r6

.L2

rll, r6

32768,r6,r11
@a(_variable),r0,r12
rll, @o(_variable)[r12]
1,r11
@a(_access),r0,r12
rll, @o(_access)[r12]

(el

Tool Options

; <== Vol atile access

; <== Vol atil e access

Note that the volatile behavior of the compiler with option --language=-volatile or --language=+volatile
is ISO C compliant in both cases.

Example
c850 --1anguage=-comments, +strings --iso=90 test.c
c850 -APx -c90 test.c

The compiler compiles in ISO C90 mode, accepts assignments of a constant string to a hon-constant
string pointer and does not allow C++ style comments.

Related information

C compiler option --iso (ISO C standard)

Section 1.4, Shift JIS Kanji Support

239

TASKING VX-toolset for RH850 User Guide

C compiler option: --make-target

Menu entry

Command line syntax
- -make-t ar get =nane
Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file. The default target name is the basename of the input
file, with extension . o.

Example

c850 --preprocess=+make --make-target=nytarget.o test.c

The compiler generates dependency lines with the default target name nyt ar get . o instead of t est . 0.
Related information

C compiler option --preprocess=+make (Generate dependencies for make)

C compiler option --dep-file (Generate dependencies in a file)

240

Tool Options

C compiler option: --misrac

Menu entry
1. Select C Compiler » MISRA C.
2. Make a selection from the MISRA C checking list.

3. Ifyou selected Custom, expand the Custom 1998, Custom 2004 or Custom 2012 entry and enable
one or more individual rules.

Command line syntax
--misrac={all | nr[-nr]},...
Description

With this option you specify to the compiler which MISRA C rules must be checked. With the option
--misrac=all the compiler checks for all supported MISRA C rules.

Example
c850 --misrac=9-13 test.c

The compiler generates an error for each MISRA C rule 9, 10, 11, 12 or 13 violation in file t est . c.

Related information

Section 3.7.2, C Code Checking: MISRA C

C compiler option --misrac-mandatory-warnings
C compiler option --misrac-advisory-warnings
C compiler option --misrac-required-warnings

Linker option --misrac-report

241

TASKING VX-toolset for RH850 User Guide

C compiler option: --misrac-advisory-warnings / --misrac-required-warnings
/ --misrac-mandatory-warnings

Menu entry

1. Select C Compiler » MISRA C.

2. Make a selection from the MISRA C checking list.

3. Enable one or more of the options:
Warnings instead of errors for mandatory rules
Warnings instead of errors for required rules
Warnings instead of errors for advisory rules.

Command line syntax
--m srac-advi sory-war ni ngs

--m srac-required-warni ngs
--m srac- mandat or y- war ni ngs

Description
Normally, if an advisory rule, required rule or mandatory rule is violated, the compiler generates an error.

As a consequence, no output file is generated. With this option, the compiler generates a warning instead
of an error.

Related information
Section 3.7.2, C Code Checking: MISRA C
C compiler option --misrac

Linker option --misrac-report

242

C compiler option: --misrac-version

Menu entry

1. Select C Compiler » MISRA C.

2. Select the MISRA C version: 1998, 2004 or 2012.

Command line syntax
--m srac-version={1998| 2004| 2012}

Default: 2004

Description

Tool Options

MISRA C rules exist in three versions: MISRA C:1998, MISRA C:2004 and MISRA C:2012. By default,
the C source is checked against the MISRA C:2004 rules. With this option you can select which version

to use.

Related information
Section 3.7.2, C Code Checking: MISRA C

C compiler option --misrac

243

TASKING VX-toolset for RH850 User Guide

C compiler option: --no-clear

Menu entry

1. Select C Compiler » Allocation.

2. Disable the option Clear uninitialized global and static variables.
Command line syntax

--no-cl ear

Description

Normally uninitialized global/static variables are cleared at program startup. With this option you tell the
compiler to generate code to prevent uninitialized global/static variables from being cleared at program
startup.

This option applies to constant as well as non-constant variables.

Related information

Pragmas cl ear/ nocl ear

244

Tool Options

C compiler option: --no-stdinc

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --no-stdinc to the Additional options field.

Command line syntax

--no-stdinc

Description

With this option you tell the compiler not to look in the defaulti ncl ude directory relative to the installation

directory, when searching for include files. This way the compiler only searches in the include file search
paths you specified.

Related information
C compiler option --include-directory (Add directory to include file search path)

Section 3.4, How the Compiler Searches Include Files

245

TASKING VX-toolset for RH850 User Guide

C compiler option: --no-warnings (-w)
Menu entry
1. Select C Compiler » Diagnostics.
The Suppress C compiler warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas or as a range, of the warnings you want to suppress (for
example 537, 538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.
Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- - no- war ni ngs[=nunber [- nunber], ...]

-w nunber [- nunber],...]

Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

* If you do not specify this option, all warnings are reported.

« If you specify this option but without numbers, all warnings are suppressed.

* If you specify this option with a number or a range, only the specified warnings are suppressed. You
can specify the option --no-warnings=number multiple times.

Example

To suppress warnings 537 and 538, enter:

c850 test.c --no-warni ngs=537, 538

Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

Pragma war ni ng

246

Tool Options

C compiler option: --optimize (-O)

Menu entry

1. Select C Compiler » Optimization.

2. Select an optimization level in the Optimization level box.
Command line syntax

--optimze[=fl ags]

-Ofl ags

You can set the following flags:

+/-coalesce a/lA Coalescer: remove unnecessary moves
+/-ipro b/B Interprocedural register optimizations
+/-cse c/C Common subexpression elimination
+/-expression e/lE Expression simplification

+/-flow fIF Control flow simplification

+/-glo g/G Generic assembly code optimizations
+/-inline il Automatic function inlining

+/-loop I/L Loop transformations

+/-forward o/O Forward store

+/-propagate p/P Constant propagation

+/-subscript s/S Subscript strength reduction
+/-peephole ylIY Peephole optimizations

Use the following options for predefined sets of flags:

--optimize=0 -O0 No optimization
Alias for OaBCEFGILOPSY

No optimizations are performed except for the coalescer (to allow better debug information). The compiler
tries to achieve an optimal resemblance between source code and produced code. Expressions are
evaluated in the same order as written in the source code, associative and commutative properties are
not used.

--optimize=1 -O1 Optimize
Alias for -OabcefgILOPSy

Enables optimizations that do not affect the debug ability of the source code. Use this level when you
encounter problems during debugging your source code with optimization level 2.

247

TASKING VX-toolset for RH850 User Guide

--optimize=2 -02 Optimize more (default)
Alias for -OabcefgllopSy

Enables more optimizations to reduce code size and/or execution time. This is the default optimization
level.

--optimize=3 -O3 Optimize most
Alias for -OabcefgilopSy

This is the highest optimization level. Use this level to decrease execution time to meet your real-time
requirements.

Default: - - opti m ze=2
Description

With this option you can control the level of optimization. If you do not use this option, the default
optimization level is Optimize more (option --optimize=2 or --optimize).

When you use this option to specify a set of optimizations, you can overrule these settings in your C
source file with #pragma optim ze flag/#pragnma endoptini ze.

In addition to the option --optimize, you can specify the option --tradeoff (-t). With this option you specify

whether the used optimizations should optimize for more speed (regardless of code size) or for smaller
code size (regardless of speed).

Example
The following invocations are equivalent and result all in the default optimization set:

c850 test.c

c850 --optimize=2 test.c
c850 -2 test.c

c850 --optimze test.c
c850 -Otest.c

c850 - CabcefgllopSy test.c

c850 --optinm ze=+coal esce, +i pro, +cse, +expr essi on, +f | ow, +gl o,
-inline, +l oop, +f orwar d, +pr opagat e, +subscri pt, +peephol e test.c

Related information

C compiler option --tradeoff (Trade off between speed and size)

Pragma opt i m ze/ endopti m ze

Section 3.6, Compiler Optimizations

248

Tool Options

C compiler option: --option-file (-f)

Menu entry
1. Select C Compiler » Miscellaneous.
2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the C compiler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the compiler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

* Multiple arguments on one line in the option file are allowed.

» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a double quote " enbedded'
'"This has a double quote " and a single quote '"' enbedded"
» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
li ne"

-> "This is a continuation |ine"

249

TASKING VX-toolset for RH850 User Guide

* Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myopt i ons contains the following lines:

--debug-info
- - def i ne=DEMO=1
test.c

Specify the option file to the compiler:
c850 --option-fil e=myoptions
This is equivalent to the following command line:

c850 --debug-info --define=DEMO=1 test.c

Related information

250

Tool Options

C compiler option: --output (-0)

Menu entry

Eclipse names the output file always after the C source file.
Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the compiler. Without this option
the basename of the C source file is used with extension . src.

Example
To create the file out put . src instead of t est . src, enter:

c850 --output=output.src test.c

Related information

251

TASKING VX-toolset for RH850 User Guide

C compiler option: --preprocess (-E)

Menu entry

1. Select C Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.
4. (Optional) Enable the option Keep #line info in preprocessor output.
Command line syntax

- - preprocess[=fl ags]

-E[fl ags]

You can set the following flags:

+/-comments c/C keep comments

+/-includes i/l generate a list of included source files
+/-list I/L generate a list of macro definitions
+/-make m/M generate dependencies for make
+/-noline p/P strip #line source position information

Default: - ECI LIMP

Description

With this option you tell the compiler to preprocess the C source. Under Eclipse the compiler sends the
preprocessed output to the file nane. pr e (where name is the name of the C source file to compile).
Eclipse also compiles the C source.

On the command line, the compiler sends the preprocessed file to stdout. To capture the information in
a file, specify an output file with the option --output.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+includes the compiler will generate a list of all included source files. The preprocessor
output is discarded.

With --preprocess=+list the compiler will generate a list of all macro definitions. The preprocessor output
is discarded.

With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The preprocessor output is discarded. The default target name is the basename of the input file, with the
extension . 0. With the option --make-target you can specify a target name which overrules the default

target name.

252

Tool Options

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #l i ne). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example

c850 --preprocess=+coments, +i ncl udes, -1ist, -nmake,-noline test.c
--output=test.pre

The compiler preprocesses the file t est . ¢ and sends the output to the file t est . pr e. Comments and
a list of all included source files are included but no list of macro definitions and no dependencies are
generated and the line source position information is not stripped from the output file.

Related information

C compiler option --dep-file (Generate dependencies in a file)

C compiler option --make-target (Specify target name for -Em output)

253

TASKING VX-toolset for RH850 User Guide

C compiler option: --rename-sections (-R)

Menu entry
1. Select C Compiler » Allocation

The Rename sections box shows the sections that are currently renamed.
2. Torename a section, click on the Add button in the Rename sections box.

3. Type the rename rule in the format type=format or format (for example, dat a={ nrodul e} _{attri b})
Use the Edit and Delete button to change a section renaming or to remove an entry from the list.

Command line syntax
--renane-sections[=[type[.attribute]=][format_string]],...
-R[type[.attribute]=]format_string,...

Default section name: .type.{module}.{name}

Description

By default the compiler extends the standard ELF section nhames with the module name and the name
of the symbol that is allocated in the section. You can use this option to create your own unigue section
names to ease selection in linker script files for locating.

With the type and attribute you can select which sections will be renamed. When the type and attributes
of a section match, the section name will get the specified format string as suffix. The following section
types are allowed: "text", "data”, "bss", "const”, "sdata23", "sbss23", "sconst23", "sdata", "sbss", "sconst",
"zdata23", "zbss23", "zconst23", "zdata", "zbss", "zconst" and "all". You cannot use the "all" section type
in combination with an attribute.

The following attributes are allowed: init, noclear.

When you specify an optional attribute, only sections that have the attribute will be renamed. When you
do not specify an attribute, only sections that do not have any of the listed attributes will be renamed.
Note that the listed attributes are mutually exclusive; if a section uses one of the attributes, the other
attributes will not be used.

When the type and attribute are omitted or type "all" is used, all sections will be renamed.

With the format_string you specify the string that extends the ELF section name. The format string can
contain characters and may contain the following format specifiers:

{attrib} section attributes, separated by underscores. The cluster attribute, used when debug
information is enabled, is not included.

{ nodul e} module name

254

Tool Options

{nane} object name, name of variable or function

In format specifier expansions, dots are replaced with dollars ($).

When the format_string is omitted, only the section type will be used as the section name.

Example
To rename sections of memory type dat a to . dat a. ¢850. variable_name:
c850 --renane-sections=dat a=c850. {nane} test.c

To generate the section name .type. NEWinstead of the default section name
.type.module_name.symbol_name, enter:

c850 -RNEWtest.c

To generate the section name section_type_prefix instead of the default section name
section_type_prefix.module_name.symbol_name, enter:

c850 -Rtest.c

Related information

Section 1.11, Section Naming

255

TASKING VX-toolset for RH850 User Guide

C compiler option: --runtime (-r)

Menu entry

1. Select C Compiler » Debugging.

2. Enable or disable one or more of the following run-time error checking options:
» Generate code for bounds checking
» Generate code to detect unhandled case in a switch

» Generate code for malloc consistency checks

Command line syntax
--runtime[=flag,...]
-r[flags]

You can set the following flags:

+/-bounds b/B bounds checking
+/-case c/C report unhandled case in a switch
+/-malloc m/M malloc consistency checks

Default (without flags): - r bcm

Description

This option controls a number of run-time checks to detect errors during program execution. Some of
these checks require additional code to be inserted in the generated code, and may therefore slow down
the program execution. The following checks are available:

Bounds checking

Every pointer update and dereference will be checked to detect out-of-bounds accesses, null pointers
and uninitialized automatic pointer variables. This check will increase the code size and slow down the
program considerably. In addition, some heap memory is allocated to store the bounds information. You
may enable bounds checking for individual modules or even parts of modules only (see #pr agna
runtime).

Report unhandled case in a switch

Report an unhandled case value in a switch without a default part. This check will add one function call
to every switch without a default part, but it will have little impact on the execution speed.

256

Tool Options

Malloc consistency checks

This option enables the use of wrappers around the functions malloc/realloc/free that will check for common
dynamic memory allocation errors like:

* buffer overflow

* write to freed memory

» multiple calls to free
 passing invalid pointer to free

Enabling this check will extract some additional code from the library, but it will not enlarge your application
code. The dynamic memory usage will increase by a couple of bytes per allocation.

Related information

Pragmarunti nme

257

TASKING VX-toolset for RH850 User Guide

C compiler option: --source (-S)

Menu entry

1. Select C Compiler » Miscellaneous.

2. Enable the option Merge C source code with generated assembly.
Command line syntax

--source

-s

Description

With this option you tell the compiler to merge C source code with generated assembly code in the output
file. The C source lines are included as comments.

Related information

Pragmas sour ce/ nosour ce

258

Tool Options

C compiler option: --static

Menu entry

Command line syntax

--static

Description

With this option, the compiler treats external definitions at file scope (except for mai n) as if they were
declared st at i c. As a result, unused functions will be eliminated, and the alias checking algorithm
assumes that objects with static storage cannot be referenced from functions outside the current module.

This option only makes sense when you specify all modules of an application on the command line.

To overrule this option for a specific function or variable, you can use the export attribute. For example,
when a variable is accessed from assembly:

int i __attribute__((export));, /* 'i' has external |inkage */

With the export attribute the compiler will not perform optimizations that affect the unknown code.

Example

c850 --static nodul el.c nodul e2.c nodule3.c ...

Related information

259

TASKING VX-toolset for RH850 User Guide

C compiler option: --stdout (-n)

Menu entry

Command line syntax
- - stdout

-n

Description

With this option you tell the compiler to send the output to st dout (usually your screen). No files are
created. This option is for example useful to quickly inspect the output or to redirect the output to other
tools.

Related information

260

Tool Options

C compiler option: --string-literal-memory

Menu entry
1. Select C Compiler » Allocation.

2. From the For string literals use list, select an allocation.

Command line syntax
--string-literal - menory=space
You can specify the following space arguments:

__data
__zdata
__sdata

Default: __sdata

Description

With this option you can control the allocation of string literals. String literals are allocated in __sdat a
by default.

In the context of this option, a string literal used to initialize an array, as in:
char array[] = "string";

is not considered a string literal; i.e. this is an array initializer written as a string, equivalent to:

char array[] ={ 's", "t", 'r', "i', 'n", 'g", "\O0 },
Strings literals as used in:

char * s = "string";

or:

printf("formatter %\n", "string");

are affected by this option.

Example
To allocate string literals in __zdat a memory:

c850 --string-literal-menory=__zdata test.c

261

TASKING VX-toolset for RH850 User Guide

Related information
Pragmastring_literal _nenory
C compiler option --const-data-memory (Assigh memory to constant data objects)

C compiler option --data-memory (Assign memory to non-constant data objects)

262

Tool Options

C compiler option: --switch

Menu entry
1. Select C Compiler » Code Generation.

2. Select an Algorithm for switch statements.
Command line syntax
--switch==arg

You can give one of the following arguments:

auto Choose most optimal code
jumptab Generate jump tables
linear Use linear jump chain code

Default; - - swi t ch=aut o

Description

With this option you tell the compiler which code must be generated for a switch statement: a jump chain
(linear switch) or a jump table. By default, the compiler will automatically choose the most efficient switch
implementation based on code and data size and execution speed. This depends on the option --tradeoff.

Instead of this option you can use the following pragma:

#pragma switch arg

Example

To use a table filled with target addresses for each possible switch value, enter:

c850 --switch=junptab test.c

Related information
Section 1.9, Switch Statement

C compiler option --tradeoff (Trade off between speed and size)

263

TASKING VX-toolset for RH850 User Guide

C compiler option: --tradeoff (-t)

Menu entry
1. Select C Compiler » Optimization.

2. Select a trade-off level in the Trade-off between speed and size box.

Command line syntax
--tradeof f ={ 0] 1] 2| 3| 4}
-t{0] 1| 2| 3| 4}
Default: - - t r adeof f =4
Description

If the compiler uses certain optimizations (option --optimize), you can use this option to specify whether
the used optimizations should optimize for more speed (regardless of code size) or for smaller code size
(regardless of speed).

By default the compiler optimizes for code size (--tradeoff=4).

If you have not specified the option --optimize, the compiler uses the default Optimize more
optimization. In this case it is still useful to specify a trade-off level.

Example
To set the trade-off level for the used optimizations:
c850 --tradeoff=2 test.c

The compiler uses the default Optimize more optimization level and balances speed and size while
optimizing.

Related information
C compiler option --optimize (Specify optimization level)

Section 3.6.3, Optimize for Code Size or Execution Speed

264

C compiler option: --uchar (-u)

Menu entry

1. Select C Compiler » Language.

2. Enable the option Treat 'char’ variables as unsigned.

Command line syntax
- - uchar
-u

Description

Tool Options

By default char is the same as specifying si gned char . With this option char is the same as unsi gned

char.

Related information

Section 1.1, Data Types

265

TASKING VX-toolset for RH850 User Guide

C compiler option: --undefine (-U)
Menu entry
1. Select C Compiler » Preprocessing
The Defined symbols box shows the symbols that are currently defined.

2. Toremove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax
--undefi ne=nmacr o_nane

- Uracr o_nane

Description

With this option you can undefine an earlier defined macro as with #undef . This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

__FILE__ current source filename

__LINE__ current source line number (int type)
_TIME__ hh:mm:ss

__DATE__ Mmm dd yyyy

__STDC__ level of ANSI standard

Example

To undefine the predefined macro __ TASKI NG__:

c850 --undefine=_ TASKING test.c

Related information
C compiler option --define (Define preprocessor macro)

Section 1.8, Predefined Preprocessor Macros

266

Tool Options

C compiler option: --verbose (-v)

Menu entry
Command line syntax
--verbose

-V

Description

With this option you put the C compiler in verbose mode. The C compiler performs its tasks while it prints
the steps it performs to st dout .

Related information

267

TASKING VX-toolset for RH850 User Guide

C compiler option: --version (-V)

Menu entry

Command line syntax

--version
-V
Description

Display version information. The compiler ignores all other options or input files.

Related information

268

Tool Options

C compiler option: --warnings-as-errors

Menu entry
1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs-as-errors[=nunber[-nunber],...]

Description

If the compiler encounters an error, it stops compiling. When you use this option without arguments, you
tell the compiler to treat all warnings not suppressed by option --no-warnings (or #pr agna war ni ng)
as errors. This means that the exit status of the compiler will be non-zero after one or more compiler
warnings. As a consequence, the compiler now also stops after encountering a warning.

You can limit this option to specific warnings by specifying a comma-separated list of warning numbers
or ranges. In this case, this option takes precedence over option --no-warnings (and #pr agna war ni ng).

Related information
C compiler option --no-warnings (Suppress some or all warnings)

Pragma war ni ng

269

TASKING VX-toolset for RH850 User Guide

8.3. Assembler Options

This section lists all assembler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the assembler via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the assembiler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.
Because Eclipse uses the control program, Eclipse automatically precedes the option with -Wa to

pass the option via the control program directly to the assembler.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -V displays version header information and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

as850 -1 -LeMtest.src
as850 --list-file --list-format=+synbol,-macro test.src

When you do not specify an option, a default value may become active.

270

Assembler option: --case-insensitive (-¢)

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.
Command line syntax

--case-insensitive

-C

Default: case sensitive

Description

Tool Options

With this option you tell the assembler not to distinguish between uppercase and lowercase characters.
By default the assembler considers uppercase and lowercase characters as different characters.

Assembly source files that are generated by the compiler must always be assembled case sensitive.
When you are writing your own assembly code, you may want to specify the case insensitive mode.

Example

When assembling case insensitive, the label Label Nane is the same label as | abel nane.

as850 --case-insensitive test.src

Related information

271

TASKING VX-toolset for RH850 User Guide

Assembler option: --check

Menu entry

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application.

The assembler reports any warnings and/or errors.
This option is available on the command line only.
Related information

C compiler option --check (Check syntax)

272

Tool Options

Assembler option: --debug-info (-g)

Menu entry
1. Select Assembler » Symbols.

2. Select an option from the Generate symbolic debug list.
Command line syntax

- -debug-i nf o[=f | ags]

-g[flags]

You can set the following flags:

+/-asm a/lA Assembly source line information

+/-hll h/H Pass high level language debug information (HLL)
+/-local I/L Assembler local symbols debug information
+/-smart s/S Smart debug information

Default: - - debug- i nf o=+hl |

Default (without flags): - - debug- i nf o=+smart

Description
With this option you tell the assembler which kind of debug information to emit in the object file.

You cannot specify --debug-info=+asm,+hll. Either the assembler generates assembly source line
information, or it passes HLL debug information.

When you specify --debug-info=+smart, the assembler selects which flags to use. If high level language
information is available in the source file, the assembler passes this information (same as
--debug-info=-asm,+hll,-local). If not, the assembler generates assembly source line information (same
as --debug-info=+asm,-hll,+local).

With --debug-info=AHLS the assembler does not generate any debug information.

Related information

273

TASKING VX-toolset for RH850 User Guide

Assembler option: --define (-D)

Menu entry
1. Select Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)
Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_nane[=macr o_defi ni ti on]
- Dmacr o_name[=nacr o_defini tion]
Description

With this option you can define a macro and specify it to the assembler preprocessor. If you only specify
a macro name (no macro definition), the macro expands as '1'".

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
assembler with the option --option-file (-f) file.

Defining macros with this option (instead of in the assembly source) is, for example, useful in combination
with conditional assembly as shown in the example below.

This option has the same effect as defining symbols via the . DEFI NE, . SET, and . EQU directives.
(similar to #def i ne in the C language). With the . MACROdirective you can define more complex
macros.

Example

Consider the following assembly program with conditional code to assemble a demo program and a real
program:

.| F DEMO ==

; instructions for deno application

. ELSE

; instructions for the real application
. ENDI F

274

You can now use a macro definition to set the DEMO flag:

as850 --define=DEMO test.src
as850 --define=DEMO=1 test.src

Note that both invocations have the same effect.
Related information

Assembler option --option-file (Specify an option file)

Tool Options

275

TASKING VX-toolset for RH850 User Guide

Assembler option: --dep-file

Menu entry
Command line syntax
--dep-file[=file]
Description

With this option you tell the assembler to generate dependency lines that can be used in a Makefile. The
dependency information will be generated in addition to the normal output file.

By default, the information is written to a file with extension . d. When you specify a filename, all
dependencies will be combined in the specified file.

Example
as850 --dep-file=test.dep test.src

The assembler assembles the file t est . sr c, which results in the output file t est . 0, and generates
dependency lines in the file t est . dep.

Related information

Assembler option --make-target (Specify target name for --dep-file output)

276

Tool Options

Assembler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 244, enter:
as850 --di ag=244

This results in the following message and explanation:

W244: additional input files will be ignored

The assenbl er supports only a single input file. Al other input files are ignored.

277

TASKING VX-toolset for RH850 User Guide

To write an explanation of all errors and warnings in HTML format to file aser r or s. ht m , use redirection
and enter:

as850 --diag=htm:all > aserrors.htnl

Related information

Section 4.6, Assembler Error Messages

278

Assembler option: --dwarf-version

Menu entry

Command line syntax
--dwar f -versi on={ 2| 3}
Default: 3

Description

Tool Options

With this option you tell the assembler which DWARF debug version to generate, DIWARF2 or DWARF3

(default).

Related information

Section 12.1, ELF/DWARF Object Format

279

TASKING VX-toolset for RH850 User Guide

Assembler option: --emit-locals

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable one or both of the following options:
* Emit local EQU symbols

» Emit local non-EQU symbols

Command line syntax
--emt-locals[=flag,...]
You can set the following flags:

+/-equs elE emit local EQU symbols
+/-symbols s/S emit local non-EQU symbols

Default: - - eni t -1 ocal s=+synbol s

Description

With the option --emit-locals=+equs the assembler also emits local EQU symbols to the object file.
Normally, only global symbols and non-EQU local symbols are emitted. Having local symbols in the object
file can be useful for debugging.

Related information

Assembler directive . EQU

280

Tool Options

Assembler option: --error-file

Menu entry
Command line syntax
--error-file[=file]
Description

With this option the assembler redirects error messages to a file. If you do not specify a filename, the
error file will be named after the output file with extension . er s.

Example
To write errors to error s. er s instead of st der r, enter:

as850 --error-file=errors.ers test.src

Related information

Section 4.6, Assembler Error Messages

281

TASKING VX-toolset for RH850 User Guide

Assembler option: --error-limit

Menu entry

1. Select Assembler » Diagnostics.

2. Enter avalue in the Maximum number of emitted errors field.

Command line syntax

--error-1limt=nunber

Default: 42

Description

With this option you tell the assembler to only emit the specified maximum number of errors. When 0

(null) is specified, the assembler emits all errors. Without this option the maximum number of errors is
42.

Related information

Section 4.6, Assembler Error Messages

282

Tool Options

Assembler option: --fpu

Menu entry

Eclipse automatically sets the correct option based on the selected processor.
Command line syntax

--fpu=type

You can specify the following arguments:

double Double/single precision FPU
single Single precision FPU
none No FPU available

Default: - - f pu=none

Description
With this option you can select the hardware floating-point configuration of the used processor.
With double you can use hardware floating-point instructions for single and double precision floating-point.

With single you can use hardware floating-point instructions for single precision floating-point and software
floating-point instructions for double precision floating-point.

With none you can only use software floating-point instructions for single and double precision
floating-point.

Related information
Assembler directive . FPU_SI NGLE

Assembler directive . FPU_DOUBLE

283

TASKING VX-toolset for RH850 User Guide

Assembler option: --has-mmu

Menu entry

Command line syntax

- -has- mu

Description

With this option you specify that the used processor supports MMU instructions.

Related information

Assembler directive . HAS_ VWU

284

Tool Options

Assembler option: --has-simd

Menu entry

Command line syntax

--has-sinmd

Description

With this option you specify that the used processor supports SIMD instructions.

Related information

Assembler directive . HAS_SI MD

285

TASKING VX-toolset for RH850 User Guide

Assembler option: --has-thread

Menu entry

Command line syntax

--has-thread

Description

With this option you specify that the used processor supports hardware thread instructions.
Related information

Assembler directive . HAS_ THREAD

286

Tool Options

Assembler option: --has-virtualization

Menu entry

Command line syntax

--has-virtualization

Description

With this option you specify that the used processor supports virtualization instructions.

Related information

Assembler directive . HAS_VI RTUAL

287

TASKING VX-toolset for RH850 User Guide

Assembler option: --help (-?)

Menu entry

Command line syntax
--help[=item

-?

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
as850 -?

as850 --help

as850

To see a detailed description of the available options, enter:

as850 --hel p=options

Related information

288

Tool Options

Assembler option: --include-directory (-)

Menu entry
1. Select Assembler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...
-lpath, ...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the assembler searches for include files is:

1. The pathname in the assembly file and the directory of the assembly source.

2. The path that is specified with this option.

3. The path that is specified in the environment variable AS8501 NC when the product was installed.
4. The default directory $(PRODDI R) \ i ncl ude.

Example

Suppose that the assembly source file t est . sr ¢ contains the following lines:

. I NCLUDE ' nyi nc. i nc'

You can call the assembler as follows:

as850 --include-directory=c:\proj\include test.src

First the assembler looks for the file nyi nc. i nc in the directory where t est . sr c is located. If it does
not find the file, it looks in the directory c: \ pr oj \ i ncl ude (this option). If the file is still not found, the
assembler searches in the environment variable and then in the default include directory.

289

TASKING VX-toolset for RH850 User Guide

Related information

Assembler option --include-file (Include file at the start of the input file)

290

Tool Options

Assembler option: --include-file (-H)

Menu entry
1. Select Assembler » Preprocessing.

The Pre-include files box shows the files that are currently included before the assembling starts.
2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.
Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax
--include-file=file,...
-Hile,...

Description

With this option (set at project level) you include one extra file at the beginning of the assembly source
file. The specified include file is included before all other includes. This is the same as specifying . | NCLUDE
"file' atthe beginning of your assembly source.

Example
as850 --include-file=nyinc.inc test.src

The file nyi nc. i nc is included at the beginning of t est . sr ¢ before it is assembled.

Related information

Assembler option --include-directory (Add directory to include file search path)

291

TASKING VX-toolset for RH850 User Guide

Assembler option: --kanji

Menu entry

1. Select Assembler » Miscellaneous.

2. Enable the option Allow Shift JIS Kanji in strings.

Command line syntax

--kanj i

Description

With this option you tell the assembler to support Shift JIS encoded Kanji multi-byte characters in strings.
Without this option, encodings with Ox5c¢ as the second byte conflict with the use of the backslash as an
escape character. Shift JIS in comments is supported regardless of this option.

Note that Shift JIS also includes Katakana and Hiragana.

Related information

C compiler option --language=+kanji (Allow Shift JIS Kanji in strings)

292

Tool Options

Assembler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the object file when errors occur during assembling.
Command line syntax

--keep-output-files

-k

Description

If an error occurs during assembling, the resulting object file (. 0) may be incomplete or incorrect. With
this option you keep the generated object file when an error occurs.

By default the assembler removes the generated object file when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated object. For example when you know that a
particular error does not result in a corrupt object file.

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

293

TASKING VX-toolset for RH850 User Guide

Assembler option: --list-file (-I)

Menu entry
1. Select Assembler » List File.
2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.

Command line syntax
--list-file[=file]

I [file]

Default: no list file is generated
Description

With this option you tell the assembler to generate a list file. A list file shows the generated object code
and the relative addresses. Note that the assembler generates a relocatable object file with relative
addresses.

With the optional file you can specify an alternative name for the list file. By default, the name of the list
file is the basename of the output file with the extension . | st .

Related information

Assembler option --list-format (Format list file)

294

Tool Options

Assembler option: --list-format (-L)

Menu entry
1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.

Command line syntax
--list-format=flag,...
-Lfl ags

You can set the following flags:

+/-section d/D
+/-symbol elE
+/-generic-expansion a/G
+/-generic il
+/-line I/L
+/-macro m/M
+/-empty-line n/N
+/-conditional p/P
+/-equate q/Q
+/-relocations r'IR
+/-hll s/S
+/-equate-values viV
+/-wrap-lines w/W
+/-macro-expansion x/X
+/-cycle-count yIY
+/-define-expansion z/Z

List section directives (. SECTI ON)

List symbol definition directives

List expansion of generic instructions

List generic instructions

List C preprocessor #line directives

List macro definitions

List empty source lines and comment lines (newline)
List conditional assembly

List equate and set directives (. EQU, . SET)
List relocations characters ('r')

List HLL symbolic debug informations

List equate and set values

Wrap source lines

List macro expansions

List cycle counts

List define expansions

Use the following options for predefined sets of flags:

--list-format=0 -LO All options disabled
Alias for --list-format=DEGILMNPQRSVWXYZ
--list-format=1 -L1 All options enabled

Alias for --list-format=degilmnpqrsvwxyz

Default: - - 1 i st - f or mat =dEG | MhPgr sVwXyZ

295

TASKING VX-toolset for RH850 User Guide

Description
With this option you specify which information you want to include in the list file.

On the command line you must use this option in combination with the option --list-file (-1).

Related information
Assembler option --list-file (Generate list file)

Assembler option --section-info=+list (Display section information in list file)

296

Tool Options

Assembler option: --make-target

Menu entry

Command line syntax
- -make-t ar get =nane
Description

With this option you can overrule the default target name in the make dependencies generated by the
option --dep-file. The default target name is the basename of the input file, with extension . o.

Example

as850 --dep-file --nmake-target=../nytarget.o test.src

The assembler generates dependency lines with the default target name . . / nyt ar get . o instead of
test.o.

Related information

Assembler option --dep-file (Generate dependencies in a file)

297

TASKING VX-toolset for RH850 User Guide

Assembler option: --nested-sections (-N)

Menu entry
1. Select Assembler » Miscellaneous.

2. Enable the option Allow nested sections.

Command line syntax
--nested-sections
-N

Description

With this option it is allowed to have nested sections in your assembly source file. When you use this
option every . SECTI ON directive must have a corresponding . ENDSEC directive.

Example

. SECTION . data
; section
. SECTION . dat a
; nested section
. ENDSEC
. ENDSEC

Related information

Assembler directive . SECTI ON

298

Tool Options

Assembler option: --no-macs

Menu entry

Command line syntax

--No-nmacs

Description

By default floating-point multiply-accumulate instructions are supported. Use this option to make these
instructions invalid.

Related information

299

TASKING VX-toolset for RH850 User Guide

Assembler option: --no-warnings (-w)

Menu entry
1. Select Assembler » Diagnostics.

The Suppress warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
201, 202). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- - no-war ni ngs[=nunber, .. .]
-w nunber, .. .]
Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

* If you do not specify this option, all warnings are reported.

« If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example
To suppress warnings 201 and 202, enter:

as850 test.src --no-warni ngs=201, 202

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

300

Assembler option: --optimize (-O)

Menu entry

1. Select Assembler » Optimization.

2. Select one or more of the following options:

» Optimize generic instructions

* Optimize jump chains

» Optimize instruction size

Command line syntax
--optinze=flag, ...
-Ofl ags

You can set the following flags:

+/-generics g/G
+/-jumpchains i1
+/-instr-size s/S

Default: - - opti m ze=gJs

Description

Allow generic instructions
Optimize jump chains
Optimize instruction size

Tool Options

With this option you can control the level of optimization. For details about each optimization see
Section 4.4, Assembler Optimizations.

Related information

Section 4.4, Assembler Optimizations

301

TASKING VX-toolset for RH850 User Guide

Assembler option: --option-file (-f)

Menu entry
1. Select Assembler » Miscellaneous.
2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the assembler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the assembler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility. You can specify the option
--option-file multiple times.

Format of an option file
» Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a doubl e quote " enbedded
"This has a double quote " and a single quote '"' enbedded"
» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
i ne"

-> "This is a continuation |ine"

302

* Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myopt i ons contains the following lines:

- - debug=+asm - | ocal
test.src

Specify the option file to the assembler:
as850 --option-fil e=nyoptions
This is equivalent to the following command line:

as850 --debug=+asm -local test.src

Related information

Tool Options

303

TASKING VX-toolset for RH850 User Guide

Assembler option: --output (-0)

Menu entry

Eclipse names the output file always after the input file.
Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the assembler. Without this option,
the basename of the assembly source file is used with extension . o.

Example
To create the file r el obj . o instead of asm o, enter:

as850 --output=relobj.o asmsrc

Related information

304

Assembler option: --page-length

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-length to the Additional options field.

Command line syntax
- - page- | engt h=nunber
Default: 72

Description

Tool Options

If you generate a list file with the assembler option --list-file, this option sets the number of lines in a page
in the list file. The default is 72, the minimum is 10. As a special case, a page length of O turns off page

breaks.

Related information
Assembler option --list-file (Generate list file)

Assembler directive . PAGE

305

TASKING VX-toolset for RH850 User Guide

Assembler option: --page-width

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-width to the Additional options field.
Command line syntax

- - page-w dt h=numnber

Default: 132

Description

If you generate a list file with the assembler option --list-file, this option sets the number of columns per
line on a page in the list file. The default is 132, the minimum is 40.

Related information
Assembler option --list-file (Generate list file)

Assembler directive . PAGE

306

Tool Options

Assembler option: --preprocess (-E)

Menu entry
Command line syntax
- - preprocess

-E

Description

With this option the assembler will only preprocess the assembly source file. The assembler sends the
preprocessed file to stdout.

Related information

307

TASKING VX-toolset for RH850 User Guide

Assembler option: --preprocessor-type (-m)

Menu entry

1. Select Assembler » Preprocessing.

2. Enable or disable the option Use TASKING preprocessor.
Command line syntax

- - preprocessor-type=type

-ntype

You can set the following preprocessor types:

none n No preprocessor
tasking t TASKING preprocessor

Default: - - pr epr ocessor - t ype=t aski ng

Description

With this option you select the preprocessor that the assembler will use. By default, the assembler uses
the TASKING preprocessor.

When the assembly source file does not contain any preprocessor symbols, you can specify to the
assembler not to use a preprocessor.

Related information

308

Tool Options

Assembler option: --section-info (-t)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable the option List section summary.
and/or

1. Select Assembler » Diagnostics.

2. Enable the option Display section summary.
Command line syntax
--section-info[=flag,...]

-t[flags]

You can set the following flags:

+/-console c/C Display section summary on console
+/-list I/L List section summary in list file

Default: - - sect i on-i nf o=CL

Default (without flags): - - sect i on-i nf o=cl

Description

With this option you tell the assembler to display section information. For each section its memory space,
size, total cycle counts and name is listed on stdout and/or in the list file.

The cycle count consists of two parts: the total accumulated count for the section and the total accumulated

count for all repeated instructions. In the case of nested loops it is possible that the total supersedes the
section total.

Example
To writes the section information to the list file and also display the section information on stdout, enter:

as850 --list-file --section-info asmsrc

Related information

Assembler option --list-file (Generate list file)

309

TASKING VX-toolset for RH850 User Guide

Assembler option: --symbol-scope (-i)

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable the option Set default symbol scope to global.
Command line syntax

- - synbol - scope=scope

-i scope

You can set the following scope:

global g Default symbol scope is global
local | Default symbol scope is local

Default: - - synbol - scope=I ocal

Description

With this option you tell the assembler how to treat symbols that you have not specified explicitly as global
or local. By default the assembler treats all symbols as local symbols unless you have defined them
explicitly as global.

Related information

Assembler directive . GLOBAL

310

Tool Options

Assembler option: --version (-V)

Menu entry

Command line syntax

--version

-V

Description

Display version information. The assembler ignores all other options or input files.

Related information

311

TASKING VX-toolset for RH850 User Guide

Assembler option: --warnings-as-errors

Menu entry
1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber, ...]

Description
If the assembler encounters an error, it stops assembling. When you use this option without arguments,
you tell the assembler to treat all warnings as errors. This means that the exit status of the assembler will

be non-zero after one or more assembler warnings. As a consequence, the assembler now also stops
after encountering a warning.

You can limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Assembler option --no-warnings (Suppress some or all warnings)

312

Tool Options

8.4. Linker Options

This section lists all linker options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the linker via the control program. Therefore, it uses the syntax of the
control program to pass options and files to the linker. If there is no equivalent option in Eclipse, you can
specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, Eclipse automatically precedes the option with -WI to
pass the option via the control program directly to the linker.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option --keep-output-files keeps files after an error occurred. When you specify this option
in Eclipse, it will have no effect because Eclipse always removes the output file after an error had occurred.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

| k850 -nfkl test.o
| k850 --map-file-format=+files, +link, +l ocate test.o

When you do not specify an option, a default value may become active.

313

TASKING VX-toolset for RH850 User Guide

Linker option: --case-insensitive

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Link case insensitive.
Command line syntax
--case-insensitive

Default: case sensitive

Description

With this option you tell the linker not to distinguish between uppercase and lowercase characters in
symbols. By default the linker considers uppercase and lowercase characters as different characters.

Assembly source files that are generated by the compiler must always be assembled and thus linked
case sensitive. When you have written your own assembly code and specified to assemble it case
insensitive, you must also link the . o file case insensitive.

Related information

Assembler option --case-insensitive

314

Tool Options

Linker option: --chip-output (-c)

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file and/or Generate S-records file.
3. Enable the option Create file for each memory chip.

4. Optionally, specify the Size of addresses.

Eclipse always uses the project name as the basename for the output file.

Command line syntax

--chi p- out put =[basenane] : f or mat [: addr _si ze], ...
-c[basenane] : format [: addr _si ze], . ..

You can specify the following formats:

IHEX Intel Hex
SREC Motorola S-records

The addr_size specifies the size of the addresses in bytes (record length). For Intel Hex you can use the
values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records) or 4 bytes
(S3 records, default).

Description

With this option you specify the Intel Hex or Motorola S-record output format for loading into a
PROM-programmer. The linker generates a file for each ROM memory defined in the LSL file, where
sections are located:

nenory nmemane
{ type=rom }

The name of the file is the name of the memory device that was emitted with extension . hex or . sre.

Optionally, you can specify a basename which prepends the generated file name.

The linker always outputs a debugging file in ELF/DWARF format and optionally an absolute
object file in Intel Hex-format and/or Motorola S-record format.

Example
To generate Intel Hex output files for each defined memory, enter the following on the command line:

| k850 --chip-output=nyfile:lHEX test.o

315

TASKING VX-toolset for RH850 User Guide

In this case, this generates the file nyf i | e_memname. hex.
Related information

Linker option --output (Output file)

316

Tool Options

Linker option: --define (-D)
Menu entry
1. Select Linker » Script File.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)
Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_name[=macr o_defi ni tion]
- Dmacr o_name[=nacr o_defini tion]
Description

With this option you can define a macro and specify it to the linker LSL file preprocessor. If you only
specify a macro name (no macro definition), the macro expands as '1'".

You can specify as many macros as you like; just use the option --define (-D) multiple times. If the
command line exceeds the limit of the operating system, you can define the macros in an option file which
you then must specify to the linker with the option --option-file (-f) file.

The definition can be tested by the preprocessor with #i f , #i f def and #i f ndef , for conditional locating.

Example

To define the RESET vector, which is used in the linker script file 850_ar ch. | sl , which is included in
defaul t. | sl, enter:

| k850 test.o -otest.elf --Isl-file=default.|lsl --define=RESET=0x00000000

Related information

Linker option --option-file (Specify an option file)

317

TASKING VX-toolset for RH850 User Guide

Linker option: --dep-file

Menu entry

Eclipse uses this option in the background to create a file with extension . d (one for every input file).
Command line syntax

--dep-file[=file]

Description

With this option you tell the linker to generate dependency lines that can be used in a Makefile. The
dependency information will be generated in addition to the normal output file.

By default, the information is written to the file | k850. d. When you specify a filename, all dependencies
will be combined in the specified file.

Example
| k850 --dep-file=test.dep test.o

The linker links the file t est . o, which results in the output file t est . el f, and generates dependency
lines in the file t est . dep.

Related information

Linker option --make-target (Target to use in dependencies file)

318

Tool Options

Linker option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

With this option the linker does not link/locate any files.
Example

To display an explanation of message number 106, enter:
| k850 --di ag=106

This results in the following message and explanation:
E106: unresol ved external: <nessage>

The linker could not resolve all external synbols.

319

TASKING VX-toolset for RH850 User Guide

This is an error when the increnmental |inking option is disabled.
The <nessage> indicates the synbol that is unresol ved.

To write an explanation of all errors and warnings in HTML format to file | kerr or s. ht ml , use redirection
and enter:

| k850 --diag=htm:all > |lkerrors.htm

Related information

Section 5.10, Linker Error Messages

320

Tool Options

Linker option: --error-file

Menu entry
Command line syntax
--error-file[=file]
Description

With this option the linker redirects error messages to a file. If you do not specify a filename, the error file
is | k850. el k.

Example
To write errors to error s. el k instead of st der r, enter:

| kB50 --error-file=errors.elk test.o

Related information

Section 5.10, Linker Error Messages

321

TASKING VX-toolset for RH850 User Guide

Linker option: --error-limit

Menu entry
1. Select Linker » Diagnostics.

2. Enter avalue in the Maximum number of emitted errors field.
Command line syntax

--error-1limt=nunber

Default: 42

Description

With this option you tell the linker to only emit the specified maximum number of errors. When 0 (null) is
specified, the linker emits all errors. Without this option the maximum number of errors is 42.

Related information

Section 5.10, Linker Error Messages

322

Tool Options

Linker option: --extern (-e)

Menu entry

Command line syntax
--extern=synbol , ...

-esynbol , . ..

Description

With this option you force the linker to consider the given symbol as an undefined reference. The linker
tries to resolve this symbol, either the symbol is defined in an object file or the linker extracts the
corresponding symbol definition from a library.

This option is, for example, useful if the startup code is part of a library. Because your own application
does not refer to the startup code, you can force the startup code to be extracted by specifying the symbol
__START as an unresolved external.

Example
Consider the following invocation:
| k850 nylib.a

Nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through nyl i b. a.

| k850 --extern=_START nylib.a

In this case the linker searches for the symbol _START in the library and (if found) extracts the object that
contains _START, the startup code. If this module contains new unresolved symbols, the linker looks
again in nyl i b. a. This process repeats until no new unresolved symbols are found.

Related information

Section 5.3, Linking with Libraries

323

TASKING VX-toolset for RH850 User Guide

Linker option: --first-library-first

Menu entry

Command line syntax
--first-library-first
Description

When the linker processes a library it searches for symbols that are referenced by the objects and libraries
processed so far. If the library contains a definition for an unresolved reference the linker extracts the
object that contains the definition from the library.

By default the linker processes object files and libraries in the order in which they appear on the command
line. If you specify the option --first-library-first the linker always tries to take the symbol definition from
the library that appears first on the command line before scanning subsequent libraries.

This is for example useful when you are working with a newer version of a library that partially overlaps
the older version. Because they do not contain exactly the same functions, you have to link them both.
However, when a function is present in both libraries, you may want the linker to extract the most recent
function.

Example

Consider the following example:

| k850 --first-library-first a.a test.o b.a

If the file t est . o calls a function which is both present in a. a and b. a, normally the function in b. a

would be extracted. With this option the linker first tries to extract the symbol from the first library a. a.

Note that routines in b. a that call other routines that are present in both a. a and b. a are now
also resolved from a. a.

Related information

Linker option --no-rescan (Rescan libraries to solve unresolved externals)

324

Tool Options

Linker option: --global-type-checking
Menu entry

Command line syntax
--gl obal -t ype-checki ng
Description

Use this option when you want the linker to check the types of variable and function references against
their definitions, using DWARF 2 or DWARF 3 debug information.

This check should give the same result as the C compiler when you use MIL linking.

Related information

C compiler option --global-type-checking (Global type checking)

325

TASKING VX-toolset for RH850 User Guide

Linker option: --help (-?)

Menu entry

Command line syntax
--help[=item

-?

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
| k850 -?

| k850 --help

| k850

To see a detailed description of the available options, enter:

| k850 - -hel p=options

Related information

326

Tool Options

Linker option: --hex-format

Menu entry
1. Select Linker » Output Format.
2. Enable the option Generate Intel Hex format file.
3. Enable or disable the optionEmit start address record.
Command line syntax
--hex-format=flag,...
You can set the following flag:
+/-start-address s/S Emit start address record

Default; - - hex- f or mat =s

Description

With this option you can specify to emit or omit the start address record from the hex file.
Related information

Linker option --output (Output file)

Section 12.2, Intel Hex Record Format

327

TASKING VX-toolset for RH850 User Guide

Linker option: --hex-record-size

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file.

3. Select Linker » Miscellaneous.

4. Add the option --hex-record-size to the Additional options field.
Command line syntax

--hex-record-si ze=si ze

Default: 32

Description

With this option you can set the size (width) of the Intel Hex data records.

Related information
Linker option --output (Output file)

Section 12.2, Intel Hex Record Format

328

Tool Options

Linker option: --import-object
Menu entry
1. SelectLinker » Data Objects.
The Data objects box shows the list of object files that are imported.
2. To add a data object, click on the Add button in the Data objects box.

3. Type or select a binary file (including its path).
Use the Edit and Delete button to change a filename or to remove a data object from the list.

Command line syntax

--inmport-object=file,...

Description

With this option the linker imports a binary file containing raw data and places it in a section. The section
name is derived from the filename, in which dots are replaced by an underscore. So, when importing a

file called nmy. j pg, a section with the name nmy_j pg is created. In your application you can refer to the
created section by using linker labels.

Related information

Section 5.5, Importing Binary Files

329

TASKING VX-toolset for RH850 User Guide

Linker option: --include-directory (-I)

Menu entry

Command line syntax
--include-directory=path,...
-lpath, ...

Description

With this option you can specify the path where your LSL include files are located. A relative path will be
relative to the current directory.

The order in which the linker searches for LSL include files is:

1. The pathname in the LSL file and the directory where the LSL file is located (only for #include files that
are enclosed in ")

2. The path that is specified with this option.

3. The default directory $(PRODDI R) \'i ncl ude. | sl .

Example

Suppose that your linker script file nyl sl . | sl contains the following line:

#i ncl ude "nyinc.inc"

You can call the linker as follows:

| k850 --include-directory=c:\proj\include --Isl-file=nylsl.lsl test.o

First the linker looks for the file myi nc. i nc in the directory where nyl sl . | sl is located. If it does not
find the file, it looks in the directory c: \ pr oj \ i ncl ude (this option). Finally it looks in the directory
$(PRODDI R)\i ncl ude. | sl .

Related information

Linker option --Isl-file (Specify linker script file)

330

Tool Options

Linker option: --incremental (-r)

Menu entry

Command line syntax
--incremental

-r

Description

Normally the linker links and locates the specified object files. With this option you tell the linker only to
link the specified files. The linker creates a linker output file . out . You then can link this file again with
other object files until you have reached the final linker output file that is ready for locating.

In the last pass, you call the linker without this option with the final linker output file . out . The linker will
now locate the file.

Example
In this example, the filest est 1. o, t est 2. 0 and t est 3. o are incrementally linked:
1.1k850 --incremental testl.o test2.0 --output=test. out
testl.0 and test2.0 are linked
2.1k850 --incremental test3.0 test.out
test3.0 and test.out are linked, taskl.out is created
3.1 k850 taskl. out

taskl.out is located

Related information

Section 5.4, Incremental Linking

331

TASKING VX-toolset for RH850 User Guide

Linker option: --keep-output-files (-k)
Menu entry

Eclipse always removes the output files when errors occurred.

Command line syntax
--keep-output-files
-k

Description

If an error occurs during linking, the resulting output file may be incomplete or incorrect. With this option
you keep the generated output files when an error occurs.

By default the linker removes the generated output file when an error occurs. This is useful when you use
the make utility. If the erroneous files are not removed, the make utility may process corrupt files on a
subsequent invocation.

Use this option when you still want to use the generated file. For example when you know that a particular
error does not result in a corrupt object file, or when you want to inspect the output file, or send it to Altium
support.

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

332

Tool Options

Linker option: --library (-1)
Menu entry
1. Select Linker » Libraries.
The Libraries box shows the list of libraries that are linked with the project.
2. To add a library, click on the Add button in the Libraries box.
3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.
Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax

--library=nane

-l nane

Description

With this option you tell the linker to use system library | i bname. a, where name is a string. The linker

first searches for system libraries in any directories specified with --library-directory, then in the directories
specified with the environment variable LI B850, unless you used the option --ignore-default-library-path.

Example
To search in the system library | i bc. a (C library):
| k850 test.o nylib.a --library=c

The linker links the file t est . o and first looks in library myl i b. a (in the current directory only), then in
the system library | i bc. a to resolve unresolved symbols.

Related information
Linker option --library-directory (Additional search path for system libraries)

Section 5.3, Linking with Libraries

333

TASKING VX-toolset for RH850 User Guide

Linker option: --library-directory (-L) / --ignore-default-library-path

Menu entry
1. SelectLinker » Libraries.
The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path, ...
-Lpath, ...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-1), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is $(PRODDI R) \ | i b\ v850e3.

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variable LI B850.
So, the linker ignores steps 2 and 3 as listed below.

The priority order in which the linker searches for system libraries specified with the option --library ()
is:

1. The path that is specified with the option --library-directory.
2. The path that is specified in the environment variable LI B850.

3. The default directory $(PRODDI R)\ | i b\ v850e3.

Example
Suppose you call the linker as follows:

| k850 test.o --library-directory=c:\nylibs --library=c

334

Tool Options

First the linker looks in the directory c: \ nmyl i bs for library | i bc. a (this option). If it does not find the
requested libraries, it looks in the directory that is set with the environment variable LI B850. Then the
linker looks in the default directory $(PRODDI R)\ | i b\ v850e3 for libraries.

Related information
Linker option --library (Link system library)

Section 5.3.1, How the Linker Searches Libraries

335

TASKING VX-toolset for RH850 User Guide

Linker option: --link-only
Menu entry

Command line syntax
--link-only

Description

With this option you suppress the locating phase. The linker stops after linking and informs you about
unresolved references.

Related information

Control program option --create=relocatable (-cl) (Stop after linking)

336

Tool Options

Linker option: --Isl-check

Menu entry

Command line syntax

--1sl-check

Description

With this option the linker just checks the syntax of the LSL file(s) and exits. No linking or locating is
performed. Use the option --Isl-file to specify the name of the Linker Script File you want to test.

Related information
Linker option --Isl-file (Linker script file)
Linker option --Isl-dump (Dump LSL info)

Section 5.7, Controlling the Linker with a Script

337

TASKING VX-toolset for RH850 User Guide

Linker option: --Isl-dump

Menu entry

Command line syntax
--1'sl -dunp[=fil €]
Description

With this option you tell the linker to dump the LSL part of the map file in a separate file, independent of
the option --map-file (generate map file). If you do not specify a filename, the file | k850. | df is used.

Related information

Linker option --map-file-format (Map file formatting)

338

Tool Options

Linker option: --Isl-file (-d)
Menu entry
An LSL file can be generated when you create your project in Eclipse:
1. From the File menu, select File » New » TASKING RH850 C Project.
The New C Project wizard appears.
2. Fillin the project settings in each dialog and click Next > until the RH850 Project Settings appear.
3. Enable the optionAdd linker script file to the project and click Finish.
Eclipse creates your project and the file project. | sl in the project directory.
The LSL file can be specified in the Properties dialog:
1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.Isl) field (default . . / ${ Pr oj Nane}. | sl).

Command line syntax
--Isl-file=file
-dfile

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

« the architecture definition describes the core's hardware architecture.
 the memory definition describes the physical memory available in the system.
* the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file to the linker. If you do not specify this option, the linker uses
a default script file. You can specify the existing file target. | sI or the name of a manually written linker
script file. You can use this option multiple times. The linker processes the LSL files in the order in which
they appear on the command line.

Related information
Linker option --Isl-check (Check LSL file(s) and exit)

Section 5.7, Controlling the Linker with a Script

339

TASKING VX-toolset for RH850 User Guide

Linker option: --make-target

Menu entry
Command line syntax
- -make-t ar get =nane
Description

With this option you can overrule the default target name in the make dependencies generated by the
option --dep-file. The default target name is the basename of the input file, with extension . el .

Example
| k850 --nake-target=nytarget.elf test.o

The linker generates dependency lines with the default target name nyt ar get . el f instead oft est . el f.

Related information

Linker option --dep-file (Generate dependencies in a file)

340

Tool Options

Linker option: --map-file (-M)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.
3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax
--map-file[=file][:XM]
-Mfile]l[:XM]

Default (Eclipse): XML map file is generated

Default (linker): no map file is generated

Description

With this option you tell the linker to generate a linker map file. If you do not specify a filename and you
specified the option --output, the linker uses the same basename as the output file with the extension
. map. If you did not specify the option --output, the linker uses the file t ask1. map. Eclipse names the
. map file after the project.

In Eclipse the XML variant of the map file (extension . mapxnl) is used for graphical display in the map
file viewer.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (. 0) to the linked object file. A locate part shows the absolute position of each section.
External symbols are listed per space with their absolute address, both sorted on symbol and sorted on
address.

The control program by default invokes the linker with the option --map-file.

Related information
Linker option --map-file-format (Format map file)

Section 11.2, Linker Map File Format

341

TASKING VX-toolset for RH850 User Guide

Linker option: --map-file-format (-m)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.
3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax
--map-file-format=flag, ...
-nfl ags

You can set the following flags:

+/-callgraph c/C Include call graph information

+/-removed d/D Include information on removed sections
+/-files fIF Include processed files information
+/-invocation i/l Include information on invocation and tools
+/-link k/K Include link result information

+/-locate IIL Include locate result information
+/-memory m/M Include memory usage information
+/-nonalloc n/N Include information of non-alloc sections
+/-overlay 0/0O Include overlay information

+/-statics g/Q Include module local symbols information
+/-crossref r'R Include cross references information

+/-Isl s/S Include processor and memory information
+/-rules u/U Include locate rules

Use the following options for predefined sets of flags:

--map-file-format=0 -mO0 Link information

Alias for -mcDfikLMNoQrSU
--map-file-format=1 -m1 Locate information

Alias for -mCDfiKIMNoQRSU
--map-file-format=2 -m2 Most information

Alias for -mcdfikimNoQrSu

Default: - - map-fi |l e- f or mat =2

342

Tool Options

Description
With this option you specify which information you want to include in the map file.

On the command line you must use this option in combination with the option --map-file (-M).

Related information
Linker option --map-file (Generate map file)

Section 11.2, Linker Map File Format

343

TASKING VX-toolset for RH850 User Guide

Linker option: --misra-c-report

Menu entry

Command line syntax

--msra-c-report[=file]

Description

With this option you tell the linker to create a MISRA C Quality Assurance report. This report lists the
various modules in the project with the respective MISRA C settings at the time of compilation. If you do

not specify a filename, the file basename. ntr is used.

Related information

C compiler option --misrac (MISRA C checking)

344

Tool Options

Linker option: --non-romable

Menu entry

Command line syntax

--non-ronabl e

Description

With this option you tell the linker that the application must not be located in ROM. The linker will locate
all ROM sections, including a copy table if present, in RAM. When the application is started, the data
sections are re-initialized and the BSS sections are cleared as usual.

This option is, for example, useful when you want to test the application in RAM before you put the final
application in ROM. This saves you the time of flashing the application in ROM over and over again.

Related information

345

TASKING VX-toolset for RH850 User Guide

Linker option: --no-rescan

Menu entry
1. SelectLinker » Libraries.

2. Disable the option Rescan libraries to solve unresolved externals.

Command line syntax

--Nno-rescan

Description

When the linker processes a library it searches for symbol definitions that are referenced by the objects
and libraries processed so far. If the library contains a definition for an unresolved reference the linker
extracts the object that contains the definition from the library. The linker processes object files and
libraries in the order in which they appear on the command line.

When all objects and libraries are processed the linker checks if there are unresolved symbols left. If so,
the default behavior of the linker is to rescan all libraries in the order given at the command line. The
linker stops rescanning the libraries when all symbols are resolved, or when the linker could not resolve
any symbol(s) during the rescan of all libraries. Notice that resolving one symbol may introduce new
unresolved symbols.

With this option, you tell the linker to scan the object files and libraries only once. When the linker has
not resolved all symbols after the first scan, it reports which symbols are still unresolved. This option is
useful if you are building your own libraries. The libraries are most efficiently organized if the linker needs
only one pass to resolve all symbols.

Related information

Linker option --first-library-first (Scan libraries in given order)

346

Linker option: --no-rom-copy (-N)

Menu entry

Command line syntax
--no-rom copy

-N

Description

Tool Options

With this option the linker will not generate a ROM copy for data sections. A copy table is generated and
contains entries to clear BSS sections. However, no entries to copy data sections from ROM to RAM are

placed in the copy table.

The data sections are initialized when the application is downloaded. The data sections are not re-initialized

when the application is restarted.

Related information

347

TASKING VX-toolset for RH850 User Guide

Linker option: --no-warnings (-w)
Menu entry
1. Select Linker » Diagnostics.
The Suppress warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
135, 136). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- - no-war ni ngs[=nunber, .. .]
-w nunber, .. .]
Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

* If you do not specify this option, all warnings are reported.

« If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example
To suppress warnings 135 and 136, enter:

| k850 --no-warnings=135, 136 test.o

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

348

Tool Options

Linker option: --optimize (-O)
Menu entry
1. Select Linker » Optimization.
2. Select one or more of the following options:
» Delete unreferenced sections
* Link-time global optimizations
» Use a "first-fit decreasing' algorithm
» Compress copy table

» Delete duplicate code

Command line syntax
--optinze=flag, ...
-Ofl ags

You can set the following flags:

+/-delete-unreferenced-sections c/C Delete unreferenced sections from the output
file

+/-first-fit-decreasing I/IL Use a 'first-fit decreasing' algorithm to locate
unrestricted sections in memory

+/-copytable-compression t/T Emit smart restrictions to reduce copy table size

+/-delete-duplicate-code x/X Delete duplicate code sections from the output
file

+/-delete-duplicate-data y/Y Delete duplicate constant data from the output
file

Use the following options for predefined sets of flags:

--optimize=0 -O0 No optimization
Alias for -OCLTXY
--optimize=1 -O1 Default optimization

Alias for -OcLtxy

--optimize=2 -02 All optimizations
Alias for -Ocltxy

Default: - - opti m ze=1

349

TASKING VX-toolset for RH850 User Guide

Description
With this option you can control the level of optimization.
Related information

For details about each optimization see Section 5.6, Linker Optimizations.

350

Tool Options

Linker option: --option-file (-f)

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the linker options you have set in the other
pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the linker.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility. You can specify the option
--option-file multiple times.

Format of an option file
* Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a double quote " enbedded’
'"This has a double quote " and a single quote '"' enbedded"
* When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
l'i ne"

-> "This is a continuation |ine"

351

TASKING VX-toolset for RH850 User Guide

* Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myopt i ons contains the following lines:

--map-fil e=ny. map (generate a map file)

test.o (input file)

--library-directory=c:\nylibs (additional search path for systemlibraries)
Specify the option file to the linker:

| k850 --option-file=nyoptions

This is equivalent to the following command line:

| k850 --map-file=my.map test.o --library-directory=c:\nylibs

Related information

352

Tool Options

Linker option: --output (-0)
Menu entry
1. Select Linker » Output Format.
2. Enable one or more output formats.
For some output formats you can specify a number of suboptions.

Eclipse always uses the project name as the basename for the output file.

Command line syntax
--output=[filenane][:format[:addr_size][, space_nane]]...
-o[filename][:format[:addr_size][, space_nane]]...

You can specify the following formats:

ELF ELF/DWARF

IHEX Intel Hex

SREC Motorola S-records
Description

By default, the linker generates an output file in ELF/DWARF format, with the name t askl1. el f .

With this option you can specify an alternative filename, and an alternative output format. The default
output format is the format of the first input file.

You can use the --output option multiple times. This is useful to generate multiple output formats. With
the first occurrence of the --output option you specify the basename (the filename without extension),
which is used for subsequent --output options with no filename specified. If you do not specify a filename,
or you do not specify the --output option at all, the linker uses the default basename t askn.

IHEX and SREC formats

If you specify the Intel Hex format or the Motorola S-records format, you can use the argument addr_size
to specify the size of addresses in bytes (record length). For Intel Hex you can use the values: 1, 2, and
4 (default). For Motorola S-records you can specify: 2 (S1 records), 3 (S2 records, default) or 4 bytes (S3
records). Note that if you make the addr_size too small, the linker might give a fatal object writer error
indicating an address overflow.

With the argument space_name you can specify the name of the address space. The name of the output
file will be filename with the extension . hex or . sr e and contains the code and data allocated in the
specified space. If they exist, any other address spaces are also emitted whereas their output files are
named filename_spacename with the extension . hex or. sre.

If you do not specify space_name, or you specify a non-existing space, the default address space is filled
in.

353

TASKING VX-toolset for RH850 User Guide

Use option --chip-output (-c) to create Intel Hex or Motorola S-record output files for each chip defined
in the LSL file (suitable for loading into a PROM-programmer).

Example

To create the output file myf i | e. hex of the address space named | i near , enter:

| k850 test.o --output=nyfile.hex:|HEX 2,1inear

If they exist, any other address spaces are emitted as well and are named nyfi | e_spacename. hex.
Related information

Linker option --chip-output (Generate an output file for each chip)

Linker option --hex-format (Specify Hex file format settings)

354

Tool Options

Linker option: --strip-debug (-S)

Menu entry
1. Select Linker » Miscellaneous.

2. Enable the option Strip symbolic debug information.

Command line syntax
--strip-debug

-S

Description

With this option you specify not to include symbolic debug information in the resulting output file.

Related information

355

TASKING VX-toolset for RH850 User Guide

Linker option: --user-provided-initialization-code (-i)
Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Do not use standard copy table for initialization.

Command line syntax
--user-provided-initialization-code
-

Description

It is possible to use your own initialization code, for example, to save ROM space. With this option you
tell the linker not to generate a copy table for initialize/clear sections. Use linker labels in your source
code to access the positions of the sections when located.

If the linker detects references to the TASKING initialization code, an error is emitted: it is either the
TASKING initialization routine or your own, not both.

Note that the options --no-rom-copy and --non-romable, may vary independently. The
‘copytable-compression’ optimization (--optimize=t) is automatically disabled when you enable this option.

Related information
Linker option --no-rom-copy (Do not generate ROM copy)
Linker option --non-romable (Application is not romable)

Linker option --optimize (Specify optimization)

356

Tool Options

Linker option: --verbose (-v)

Menu entry
1. Select Linker » Miscellaneous.
2. Enable the option Show link phases during processing.

The verbose output is displayed in the Problems view and the Console view.

Command line syntax

--verbose

-V

Description

With this option you put the linker in verbose mode. The linker prints the link phases while it processes
the files. The linker prints one entry for each action it executes for a task. When you use this option twice
(- vv) you put the linker in extra verbose mode. In this mode the linker also prints the filenames and it
shows which objects are extracted from libraries and it shows verbose information that would normally

be hidden when you use the normal verbose mode or when you run without verbose. With this option you
can monitor the current status of the linker.

Related information

357

TASKING VX-toolset for RH850 User Guide

Linker option: --version (-V)

Menu entry

Command line syntax

--version
-V
Description

Display version information. The linker ignores all other options or input files.

Example
| k850 --version
The linker does not link any files but displays the following version information:

TASKI NG VX-t ool set for RH850: object |inker vX.yrz Build nnn
Copyright 2012-year Altium BV SN- 00000000

Related information

358

Tool Options

Linker option: --warnings-as-errors

Menu entry
1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber, ...]

Description

When the linker detects an error or warning, it tries to continue the link process and reports other errors
and warnings. When you use this option without arguments, you tell the linker to treat all warnings as
errors. This means that the exit status of the linker will be non-zero after the detection of one or more
linker warnings. As a consequence, the linker will not produce any output files.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Linker option --no-warnings (Suppress some or all warnings)

359

TASKING VX-toolset for RH850 User Guide

Linker option: --whole-archive

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --whole-archive to the Additional options field.

Command line syntax

--whol e-archive=file

Description

This option tells the linker to directly load all object modules in a library, as if they were placed on the

command line. This is different from libraries specified as input files or with the -l option, which are only
used to resolve references in object files that were loaded earlier.

Example

Suppose the library myar chi ve. a contains the objects ny1. o, my2. o and ny3. o. Specifying
| k850 --whol e-archi ve=nyarchive. a

is the same as specifying

| k850 nyl.o0 ny3.0 ny3.0

Related information

Linker option --library (Link system library)

360

Tool Options

8.5. Control Program Options

The control program cc850 facilitates the invocation of the various components of the RH850 toolset from
a single command line.

Options in Eclipse versus options on the command line

Eclipse invokes the compiler, assembler and linker via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the tools. The control program processes command
line options either by itself, or, when the option is unknown to the control program, it looks whether it can
pass the option to one of the other tools. However, for directly passing an option to the C compiler,
assembler or linker, it is recommended to use the control program options --pass-c, --pass-assembler,
--pass-linker.

See the previous sections for details on the options of the tools.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

cc850 -W-0Cac test.c
cc850 --pass-c=--optim ze=+coal esce, +cse test.c

When you do not specify an option, a default value may become active.

361

TASKING VX-toolset for RH850 User Guide

Control program option: --address-size

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file and/or Generate S-records file.
3. Specify the Size of addresses.

Eclipse always uses the project name as the basename for the output file.

Command line syntax

- - addr ess-si ze=addr _si ze

Description

If you specify IHEX or SREC with the control option --format, you can additionally specify the record
length to be emitted in the output files.

With this option you can specify the size of the addresses in bytes (record length). For Intel Hex you can
use the values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records)
or 4 bytes (S3 records, default).

If you do not specify addr_size, the default address size is generated.
Example

To create the SREC file t est . sr e with S1 records, type:

cc850 --format=SREC - - address-size=2 test.c

Related information

Control program option --format (Set linker output format)

Control program option --output (Output file)

362

Tool Options

Control program option: --case-insensitive

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.
Command line syntax

--case-insensitive

Default: case sensitive

Description

With this option you tell the assembler not to distinguish between uppercase and lowercase characters.
By default the assembler considers uppercase and lowercase characters as different characters.

Assembly source files that are generated by the compiler must always be assembled case sensitive.
When you are writing your own assembly code, you may want to specify the case insensitive mode.

The control program passes this option to both the assembler and the linker.

Example

When assembling case insensitive, the label Label Nane is the same label as | abel nane.
cc850 --case-insensitive test.src

Related information

Assembler option --case-insensitive

363

TASKING VX-toolset for RH850 User Guide

Control program option: --check

Menu entry

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler/assembler reports any warnings and/or errors.

This option is available on the command line only.

Related information
C compiler option --check (Check syntax)

Assembler option --check (Check syntax)

364

Tool Options

Control program option: --cpu (-C)

Menu entry
1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, make a selection.

Command line syntax
--cpu=id | nanme | cpu
-Cd | name | cpu
Description

With this option you define the target processor for which you create your application. You can specify a
full processor name, like R7F701501, or a base CPU name, like r7f701501 or its unique id, like r7f701501.

The standard list of supported processors is defined in the file pr ocessor s. xmi . This file defines for
each processor its full name, its ID, the base CPU nam and the core settings. To show a list of all supported
processors you can use option --cpu-list.

The control program reads the file pr ocessor s. xnl . The lookup sequence for names specified to this
option is as follows:

1. match with the 'i d' attribute in pr ocessors. xm (case insensitive, for example r 7f 701501)

2. if none matched, match with the 'nane’ attribute in pr ocessor s. xm (case insensitive, for example
R7F701501)

3. if still none matched, the control program issues a fatal error.

The control program passes the options to the underlaying tools. For example, -D__CPU__ =r7f701501
-D__CPU_R7F701501__ to the C compiler, or -dr7f701501.Isl -D__CPU__=r7f701501
-D__PROC_R7F701501__to the linker.

Example

To generate the filet est . el f for the R7F701501 processor, enter:
cc850 --cpu=r7f701501 test.c

Related information

Control program option --cpu-list (Show list of processors)

Control program option --processors (Read additional processor definitions)

365

TASKING VX-toolset for RH850 User Guide

Control program option: --cpu-list

Menu entry

Command line syntax
--cpu-list[=pattern]
Description

With this option the control program shows a list of supported processors as defined in the file
processors. xm . This can be useful when you want to select a processor name or id for the --cpu
option.

The pattern works similar to the UNIX grep utility. You can use it to limit the output list.
Example

To show a list of all processors, enter:

cc850 --cpu-list

To show all processors that have 7016 in their name, enter:

ccppc --cpu-list=7016

--- ~/c850/etc/processors. xm ---
id name CPU core
r7f 701603 R7F701603 r7f 701603 v850e3
r7f 701623 R7F701623 r7f 701623 v850e3
r7f 701653 R7F701653 r7f 701653 v850e3
r7f 701673 R7F701673 r7f 701673 v850e3

Related information

Control program option --cpu (Select processor)

366

Tool Options

Control program option: --create (-c)

Menu entry

Command line syntax
--creat e[=st age]
- c[st age]

You can specify the following stages:

relocatable | Stop after the files are linked to a linker object file (. out)
mil m Stop after C files are compiled to MIL (. mi |)

object o] Stop after the files are assembled to objects (. 0)
assembly s Stop after C files are compiled to assembly (. src)

Default (without flags): - - cr eat e=obj ect

Description

Normally the control program generates an absolute object file of the specified output format from the file
you supplied as input. With this option you tell the control program to stop after a certain number of phases.

Example

To generate the object file t est . o:

cc850 --create test.c

The control program stops after the file is assembled. It does not link nor locate the generated output.
Related information

Control program option --link-only (Link only, no locating)

367

TASKING VX-toolset for RH850 User Guide

Control program option: --debug-info (-g)

Menu entry
1. Select C Compiler » Debugging.

2. Togenerate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax
--debug-info

-9

Description

With this option you tell the control program to include debug information in the generated object file.

The control program passes the option --debug-info (-g) to the C compiler and calls the assembler with
--debug-info=+smart,+local (-gsl).

Related information

C compiler option --debug-info (Generate symbolic debug information)

Assembler option --debug-info (Generate symbolic debug information)

368

Tool Options

Control program option: --define (-D)

Menu entry
1. Select C Compiler » Preprocessing and/or Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)
Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax
- -defi ne=macr o_name[=macr o_defi ni tion]

- Dmacr o_name[=nacr o_defini tion]

Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1".

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

The control program passes the option --define (-D) to the compiler and the assembler.
Example
Consider the following C program with conditional code to compile a demo program and a real program:

void main(void)

{
#i f DEMO

dermo_func(); /* conpile for the demo program */
#el se

real _func(); /* conpile for the real program*/
#endi f
}

You can now use a macro definition to set the DEMO flag:

369

TASKING VX-toolset for RH850 User Guide
cc850 --define=DEMO test.c

cc850 --define=DEMO=1 test.c

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

cc850 --define="MAX(A B)=((A > (B) ? (A : (B))" test.c
Related information
Control program option --undefine (Remove preprocessor macro)

Control program option --option-file (Specify an option file)

370

Tool Options

Control program option: --dep-file

Menu entry

Command line syntax
--dep-file[=file]
Description

With this option you tell the compiler to generate dependency lines that can be used in a Makefile. In
contrast to the option --preprocess=+make, the dependency information will be generated in addition to
the normal output file.

By default, the information is written to a file with extension . d (one for every input file). When you specify
a filename, all dependencies will be combined in the specified file.

Example
cc850 --dep-file=test.dep -t test.c

The compiler compiles the file t est . ¢, which results in the output file t est . sr ¢, and generates
dependency lines in the file t est . dep.

Related information

Control program option --preprocess=+make (Generate dependencies for make)

371

TASKING VX-toolset for RH850 User Guide

Control program option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.
Command line syntax
--diag=[format:]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 103, enter:
cc850 --diag=103

This results in message 103 with explanation.

To write an explanation of all errors and warnings in HTML format to file ccer r or s. ht m , use redirection
and enter:

cc850 --diag=htm:all > ccerrors.htn

372

Tool Options

Related information

Section 3.8, C Compiler Error Messages

373

TASKING VX-toolset for RH850 User Guide

Control program option: --dry-run (-n)
Menu entry

Command line syntax

--dry-run

-n

Description

With this option you put the control program in verbose mode. The control program prints the invocations
of the tools it would use to process the files without actually performing the steps.

Related information

Control program option --verbose (Verbose output)

374

Tool Options

Control program option: --eabi-compliant

Menu entry

Command line syntax

- -eabi -conpl i ant

Description

Use this option when the generated code needs to be completely EABI compliant.
This option is an alias for C compiler option --eabi-deviations=AEF.

Related information

C compiler option --eabi-deviations (control EABI deviations)

375

TASKING VX-toolset for RH850 User Guide

Control program option: --error-file

Menu entry

Command line syntax

--error-file

Description

With this option the control program tells the compiler, assembler and linker to redirect error messages
to a file.

The error file will be named after the output file with extension . er r (for compiler) or . er s (for assembler).
For the linker, the error file is | k850. el k.

Example

To write errors to error files instead of stderr, enter:
cc850 --error-file -t test.c

Related information

Control Program option --warnings-as-errors (Treat warnings as errors)

376

Tool Options

Control program option: --format

Menu entry
1. Select Linker » Output Format.
2. Enable the option Generate Intel Hex format file and/or Generate S-records file.
3. Optionally, specify the Size of addresses.

Eclipse always uses the project name as the basename for the output file.
Command line syntax
- - f or mat =f or mat

You can specify the following formats:

ELF ELF/DWARF

IHEX Intel Hex

SREC Motorola S-records
Description

With this option you specify the output format for the resulting (absolute) object file. The default output
format is ELF/DWARF, which can directly be used by the debugger.

If you choose IHEX or SREC, you can additionally specify the address size of the chosen format (option
--address-size).

Example

To generate a Motorola S-record output file:

cc850 --format =SREC testl.c test2.c --output=test.sre

Related information

Control program option --address-size (Set address size for linker IHEX/SREC files)
Control program option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

377

TASKING VX-toolset for RH850 User Guide

Control program option: --fp-model

Menu entry

1. Select C Compiler » Floating-Point.

2. Make a selection from the Floating-point model list.

3. If you selected Custom, enable one or more individual options.

Command line syntax
- -f p-nodel =f | ags

You can set the following flags:

+/-contract c/C
+/-float fIF
+/-fastlib I/L
+/-nonan n/N
+/-rewrite r’R
+/-soft s/S
+/-trap tT
+/-negzero z/Z
strict 0
precise 1
fast-double 2
fast-single 3

Default: - - f p- nodel =cf | nr STz

Description

allow expression contraction

treat 'double’ as 'float'

allow less precise library functions
allow optimizations to ignore NaN/Inf
allow expression rewriting

use software floating-point library
support trapping on exceptions
ignore sign of -0.0

alias for --fp-model=CFLNRStZ
alias for --fp-model=cFLNRSTZ
alias for --fp-model=cFInrSTz
alias for --fp-model=cfinrSTz

With this option you select the floating-point execution model.

With --fp-model=+contract you allow the compiler to contract multiple float operations into a single
operation, with different rounding results. A possible example is fused multiply-add.

With --fp-model=+float you tell the compiler to treat variables and constants of type doubl e as f | oat .
Because the f | oat type takes less space, execution speed increases and code size decreases, both at
the cost of less precision. The control program automatically selects the correct libraries.

With --fp-model=+fastlib you allow the compiler to select faster but less accurate library functions for

certain floating-point operations.

378

Tool Options
With --fp-model=+nonan you allow the compiler to ignore NaN or Inf input values. An example is to
replace multiply by zero with zero.

With --fp-model=+rewrite you allow the compiler to rewrite expressions by reassociating. This might
result in rounding differences and possibly different exceptions. An example is to rewrite (a*c)+(b*c) as
(at+b)*c.

With --fp-model=+soft no hardware floating-point instructions are generated, only calls to the software
floating-point library.

By default, the floating-point unit (FPU) is used if the selected core supports one. If an FPU is present,
the macro __FPU__ is defined in the C source file. Use this option to disable the use of the FPU.

Functions that have the __f pu function qualifier are not affected by this option. You can also disable the
FPU for specific functions by using the __nof pu function qualifier.

With --fp-model=+trap operations trap on floating-point exceptions. By default the control program uses
the non-trapping versions of the floating-point library (I i bf p. a). With this option you tell the control
program to use the trapping version (I i bf pt . a).

If you use trapping, exceptional floating-point cases are intercepted and can be handled separately by
an application defined exception handler. An example of an exception handler can be found in: spe. c.

With --fp-model=+negzero you allow the compiler to ignore the sign of -0.0 values. An example is to
replace (a-a) by zero.

Related information

Pragmas STDC FP_CONTRACT, f p_negzero,fp_nonanandfp_rewi tein Section 1.7, Pragmas to
Control the Compiler.

C compiler option --eabi=+float (control level of EABI compliancy)

Section 1.10.3, Floating-Point Unit Support: _ fpu, __nofpu

379

TASKING VX-toolset for RH850 User Guide

Control program option: --fpu

Menu entry

Eclipse automatically sets the correct option based on the selected processor.
Command line syntax

--fpu=type

You can specify the following arguments:

double Double/single precision FPU
single Single precision FPU
none No FPU available

Default: - - f pu=none

Description
With this option you can select the hardware floating-point configuration of the used processor.

With double the compiler generates hardware floating-point instructions for single and double precision
floating-point.

With single the compiler generates hardware floating-point instructions for single precision floating-point
and software floating-point instructions for double precision floating-point.

With none the compiler generates software floating-point instructions for single and double precision
floating-point.

Related information

Control program option --fp-model (Floating-point execution model)

380

Tool Options

Control program option: --global-type-checking

Menu entry

1. Select C Compiler » Diagnostics.

2. Enable the option Perform global type checking on C code.

Command line syntax

--gl obal -t ype-checki ng

Description

The C compiler already performs type checking within each module. Use this option when you want the

linker to perform type checking between modules. The control program passes this option to both the C
compiler and the linker.

Related information

381

TASKING VX-toolset for RH850 User Guide

Control program option: --help (-?)

Menu entry

Command line syntax
--help[=item

-?

You can specify the following argument:

options o] Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
cc850 -?

cc850 --help

cc850

To see a detailed description of the available options, enter:

cc850 --hel p=options

Related information

382

Tool Options

Control program option: --include-directory (-I)

Menu entry
1. Select C Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...

-lpath, ...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory.

The control program passes this option to the compiler and the assembler.

Example
Suppose that the C source file t est . ¢ contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the control program as follows:
cc850 --include-directory=nyinclude test.c

First the compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

The compiler now looks for the file nyi nc. h in the directory where t est . c is located. If the file is not
there the compiler searches in the directory myi ncl ude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information
C compiler option --include-directory (Add directory to include file search path)

C compiler option --include-file (Include file at the start of a compilation)

383

TASKING VX-toolset for RH850 User Guide

Control program option: --iso

Menu entry

1. Select C Compiler » Language.

2. From the Comply to C standard list, select ISO C99 or ISO C90.
Command line syntax

--is0={90| 99}

Default: - - i s0=99

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99
refers to the newer ISO/IEC 9899:1999 (E) standard. C99 is the default.

Independent of the chosen ISO standard, the control program always links libraries with C99 support.

Example

To select the ISO C90 standard on the command line:
cc850 --is0=90 test.c

Related information

C compiler option --iso (ISO C standard)

384

Tool Options

Control program option: --keep-output-files (-k)
Menu entry

Eclipse always removes generated output files when an error occurs.

Command line syntax
--keep-output-files
-k

Description

If an error occurs during the compilation, assembling or linking process, the resulting output file may be
incomplete or incorrect. With this option you keep the generated output files when an error occurs.

By default the control program removes generated output files when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated files. For example when you know that a particular
error does not result in a corrupt file, or when you want to inspect the output file, or send it to Altium
support.

The control program passes this option to the compiler, assembler and linker.
Example
cc850 --keep-output-files test.c

When an error occurs during compiling, assembling or linking, the erroneous generated output files will
not be removed.

Related information
C compiler option --keep-output-files
Assembler option --keep-output-files

Linker option --keep-output-files

385

TASKING VX-toolset for RH850 User Guide

Control program option: --keep-temporary-files (-t)
Menu entry

1. Select Global Options.

2. Enable the option Keep temporary files.

Command line syntax

--keep-tenporary-files

-t

Description

By default, the control program removes intermediate files like the . sr c file (result of the compiler phase)
and the . o file (result of the assembler phase).

With this option you tell the control program to keep temporary files it generates during the creation of
the absolute object file.

Example
cc850 --keep-tenporary-files test.c

The control program keeps all intermediate files it generates while creating the absolute object file
test.elf.

Related information

386

Tool Options

Control program option: --library (-I)

Menu entry
1. Select Linker » Libraries.
The Libraries box shows the list of libraries that are linked with the project.
2. To add a library, click on the Add button in the Libraries box.
3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.
Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax
--library=nane

-l nane

Description

With this option you tell the linker via the control program to use system library | i bname. a, where name
is a string. The linker first searches for system libraries in any directories specified with --library-directory,
then in the directories specified with the environment variable LI B850, unless you used the option
--ignore-default-library-path.

Example
To search in the system library | i bc. a (C library):
cc850 test.o nylib.a --library=c

The linker links the file t est . o and first looks in library myl i b. a (in the current directory only), then in
the system library | i bc. a to resolve unresolved symbols.

Related information

Control program option --no-default-libraries (Do not link default libraries)

Control program option --library-directory (Additional search path for system libraries)
Section 5.3, Linking with Libraries

Chapter 10, Libraries

387

TASKING VX-toolset for RH850 User Guide

Control program option: --library-directory (-L) /
--ignore-default-library-path

Menu entry
1. Select Linker » Libraries.
The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path, ...
-Lpath, ...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-1), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is $(PRODDI R) \ | i b\ v850e3.

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variable LI B850.
So, the linker ignores steps 2 and 3 as listed below.

The priority order in which the linker searches for system libraries specified with the option --library ()
is:

1. The path that is specified with the option --library-directory.
2. The path that is specified in the environment variable LI B850.

3. The default directory $(PRODDI R)\ | i b\ v850e3.

Example
Suppose you call the control program as follows:

cc850 test.c --library-directory=c:\nylibs --library=c

388

Tool Options

First the linker looks in the directory c: \ nmyl i bs for library | i bc. a (this option). If it does not find the
requested libraries, it looks in the directory that is set with the environment variable LI B850. Then the
linker looks in the default directory $(PRODDI R)\ | i b\ v850e3 for libraries.

Related information
Control program option --library (Link system library)

Section 5.3.1, How the Linker Searches Libraries

389

TASKING VX-toolset for RH850 User Guide

Control program option: --link-only

Menu entry
Command line syntax
--link-only
Description

With this option you suppress the locating phase. The linker stops after linking and informs you about
unresolved references.

Related information
Control program option --create=relocatable (-cl) (Stop after linking)

Linker option --link-only (Link only, no locating)

390

Tool Options

Control program option: --list-files

Menu entry

Command line syntax

--list-files[=file]

Default: no list files are generated

Description

With this option you tell the assembler via the control program to generate a list file for each specified
input file. A list file shows the generated object code and the relative addresses. Note that the assembler

generates a relocatable object file with relative addresses.

With the optional file you can specify a name for the list file. This is only possible if you specify only one
input file to the control program. If you do not specify a file name, or you specify more than one input file,
the control program names the generated list file(s) after the specified input file(s) with extension . | st .

Note that object files and library files are not counted as input files.

Related information
Assembler option --list-file (Generate list file)

Assembler option --list-format (Format list file)

391

TASKING VX-toolset for RH850 User Guide

Control program option: --Isl-file (-d)
Menu entry
An LSL file can be generated when you create your project in Eclipse:
1. From the File menu, select File » New » TASKING RH850 C Project.
The New C Project wizard appears.
2. Fillin the project settings in each dialog and click Next > until the RH850 Project Settings appear.
3. Enable the option Add linker script file to the project and click Finish.
Eclipse creates your project and the file project. | sl in the project directory.
The LSL file can be specified in the Properties dialog:
1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.Isl) field (default . . / ${ Pr oj Nane}. | sl).

Command line syntax
--Isl-file=file,...

-dfile,...

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

« the architecture definition describes the core's hardware architecture.
 the memory definition describes the physical memory available in the system.
* the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file via the control program to the linker. If you do not specify
this option, the linker uses a default script file. You can specify the existing file target. | s| or the name
of a manually written linker script file. You can use this option multiple times. The linker processes the
LSL files in the order in which they appear on the command line.

Related information

Section 5.7, Controlling the Linker with a Script

392

Tool Options

Control program option: --make-target

Menu entry

Command line syntax

- -make-t ar get =nane

Description

With this option you can overrule the default target name in the make dependencies generated by the

options --preprocess=+make (-Em) and --dep-file. The default target name is the basename of the input
file, with extension . o.

Example
cc850 --preprocess=+nake --nake-target=../mytarget.o test.c

The compiler generates dependency lines with the default target name . . / myt ar get . o instead of
test.o.

Related information
Control program option --preprocess=+make (Generate dependencies for make)

Control program option --dep-file (Generate dependencies in a file)

393

TASKING VX-toolset for RH850 User Guide

Control program option: --no-default-libraries

Menu entry
1. SelectLinker » Libraries.

2. Disable the option Link default libraries.

Command line syntax

--no-default-libraries

Description

By default the control program specifies the standard C libraries (C99) and run-time library to the linker.
With this option you tell the control program not to specify the standard C libraries and run-time library to
the linker.

In this case you must specify the libraries you want to link to the linker with the option --library=library_name
or pass the libraries as files on the command line. The control program recognizes the option --library
(-1) as an option for the linker and passes it as such.

Example
cc850 --no-default-libraries test.c

The control program does not specify any libraries to the linker. In normal cases this would result in
unresolved externals.

To specify your own libraries (I i bc. a) and avoid unresolved externals:

cc850 --no-default-libraries --library=c test.c

Related information
Control program option --library (Link system library)
Section 5.3.1, How the Linker Searches Libraries

Chapter 10, Libraries

394

Tool Options

Control program option: --no-map-file

Menu entry
1. Select Linker » Map File.

2. Disable the option Generate map file.

Command line syntax

--no-map-file

Description

By default the control program tells the linker to generate a linker map file.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (. 0) to the linked object file. A locate part shows the absolute position of each section.
External symbols are listed per space with their absolute address, both sorted on symbol and sorted on
address.

With this option you prevent the generation of a map file.

Related information

395

TASKING VX-toolset for RH850 User Guide

Control program option: --no-warnings (-w)
Menu entry
1. Select C Compiler » Diagnostics.
The Suppress C compiler warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas or as a range, of the warnings you want to suppress (for
example 537, 538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- - no- war ni ngs[=nunber [- nunber], ...]
-w nunber [- nunber],...]

Description

With this option you can suppresses all warning messages for the various tools or specific control program
warning messages.

On the command line this option works as follows:
* If you do not specify this option, all warnings are reported.
« If you specify this option but without numbers, all warnings of all tools are suppressed.

* If you specify this option with a number or a range, only the specified control program warnings are
suppressed. You can specify the option --no-warnings=number multiple times.

Example

To suppress all warnings for all tools, enter:
cc850 test.c --no-warnings
Related information

Control program option --warnings-as-errors (Treat warnings as errors)

396

Tool Options

Control program option: --option-file (-f)

Menu entry

Command line syntax
--option-file=file,...
-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the control program.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

* Multiple arguments on one line in the option file are allowed.

» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a double quote " enbedded'
'"This has a double quote " and a single quote '"' enbedded"
* When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
li ne"

-> "This is a continuation |ine"

* Itis possible to nest command line files up to 25 levels.

397

TASKING VX-toolset for RH850 User Guide

Example

Suppose the file myopt i ons contains the following lines:

--debug-info
- - def i ne=DEMO=1
test.c

Specify the option file to the control program:
cc850 --option-fil e=nyoptions
This is equivalent to the following command line:

cc850 —debug-info --defi ne=DEMO=1 test.c

Related information

398

Tool Options

Control program option: --output (-0)

Menu entry

Eclipse always uses the project name as the basename for the output file.

Command line syntax
--output=file

-o file

Description

By default, the control program generates a file with the same basename as the first specified input file.
With this option you specify another name for the resulting absolute object file.

The default output format is ELF/DWARF, but you can specify another output format with option --format.
Example

cc850 test.c prog.c

The control program generates an ELF/DWARF object file (default) with the name t est . el f.

To generate the fileresul t . el f:

cc850 --output=result.elf test.c prog.c

Related information

Control program option --format (Set linker output format)

Linker option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

399

TASKING VX-toolset for RH850 User Guide

Control program option: --pass (-W)

Menu entry
1. Select C Compiler » Miscellaneous or Assembler » Miscellaneous or Linker » Miscellaneous.
2. Add an option to the Additional options field.

Be aware that the options in the option file are added to the options you have set in the other pages.
Only in extraordinary cases you may want to use them in combination. The assembler options are
preceded by -Wa and the linker options are preceded by -WI. For the C options you have to do this
manually.

Command line syntax

--pass-assembler=option -Waoption Pass option directly to the assembler

--pass-c=option -Wcoption Pass option directly to the C compiler

--pass-linker=option -Wloption Pass option directly to the linker
Description

With this option you tell the control program to call a tool with the specified option. The control program
does not use or interpret the option itself, but specifies it directly to the tool which it calls.

Example
To pass the option --verbose directly to the linker, enter:

cc850 --pass-linker=--verbose test.c

Related information

400

Tool Options

Control program option: --preprocess (-E) / --no-preprocessing-only
Menu entry

1. Select C Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.

4. (Optional) Enable the option Keep #line info in preprocessor output.

Command line syntax

- - preprocess[=fl ags]
-E[fl ags]

- - no- preprocessi ng-only

You can set the following flags:

+/-comments c/C keep comments

+/-includes il generate a list of included source files
+/-list I/L generate a list of macro definitions
+/-make m/M generate dependencies for make
+/-noline p/P strip #line source position information

Default; - ECI LMP

Description

With this option you tell the compiler to preprocess the C source. The C compiler sends the preprocessed
output to the file name. pr e (where name is the name of the C source file to compile). Eclipse also
compiles the C source.

On the command line, the control program stops after preprocessing. If you also want to compile the C
source you can specify the option --no-preprocessing-only. In this case the control program calls the
compiler twice, once with option --preprocess and once for a regular compilation.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+includes the compiler will generate a list of all included source files. The preprocessor
output is discarded.

With --preprocess=+list the compiler will generate a list of all macro definitions. The preprocessor output
is discarded.

401

TASKING VX-toolset for RH850 User Guide

With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The information is written to a file with extension . d. The preprocessor output is discarded. The default
target name is the basename of the input file, with the extension . 0. With the option --make-target you
can specify a target name which overrules the default target name.

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines

starting with #l i ne). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example
cc850 --preprocess=+comments, - make, -noli ne --no-preprocessing-only test.c

The compiler preprocesses the file t est . ¢ and sends the output to the file t est . pr e. Comments are
included but no dependencies are generated and the line source position information is not stripped from
the output file. Next, the control program calls the compiler, assembler and linker to create the final object
fletest.elf

Related information
Control program option --dep-file (Generate dependencies in a file)

Control program option --make-target (Specify target name for -Em output)

402

Tool Options

Control program option: --processors

Menu entry

1. From the Window menu, select Preferences.
The Preferences dialog appears.

2. Select TASKING » RH850.

3. Click the Add button to add additional processor definition files.

Command line syntax

--processors=file

Description
With this option you can specify an additional XML file with processor definitions.

The standard list of supported processors is defined in the file pr ocessor s. xml . This file defines for
each processor its full name (for example, R7F701501), its ID (for example, r7f701501), the base CPU
name (for example, r7f701501) and the core settings (for example, v850e3).

The control program reads the specified file after the file pr ocessor s. xm in the product's et c directory.
Additional XML files can override processor definitions made in XML files that are read before.

Multiple --processors options are allowed.
Eclipse generates a --processors option in the makefiles for each specified XML file.
Example

Specify an additional processor definition file (suppose pr ocessor s- new. xni contains a new processor
RH850NEW:

cc850 --processors=processors-new. xm --cpu=RH850NEW test.c

Related information

Control program option --cpu (Select architecture)

403

TASKING VX-toolset for RH850 User Guide

Control program option: --static

Menu entry

Command line syntax

--static

Description
This option is directly passed to the compiler.

With this option, the compiler treats external definitions at file scope (except for mai n) as if they were
declared st at i c. As a result, unused functions will be eliminated, and the alias checking algorithm
assumes that objects with static storage cannot be referenced from functions outside the current module.

This option only makes sense when you specify all modules of an application on the command line.

Example

cc850 --static nodul el.c nodul e2.¢c nodule3.c ...

Related information

404

Tool Options

Control program option: --undefine (-U)

Menu entry
1. Select C Compiler » Preprocessing
The Defined symbols box shows the symbols that are currently defined.

2. Toremove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax
--undefi ne=nmacr o_nane

- Uracr o_nane

Description

With this option you can undefine an earlier defined macro as with #undef . This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

__FILE__ current source filename

__LINE__ current source line number (int type)
_TIME__ hh:mm:ss

__DATE__ Mmm dd yyyy

__STDC level of ANSI standard

The control program passes the option --undefine (-U) to the compiler.

Example
To undefine the predefined macro __TASKI NG__:

cc850 --undefine=__TASKING _ test.c

Related information
Control program option --define (Define preprocessor macro)

Section 1.8, Predefined Preprocessor Macros

405

TASKING VX-toolset for RH850 User Guide

Control program option: --verbose (-v)

Menu entry

1. Select Global Options.

2. Enable the option Verbose mode of control program.
Command line syntax

--verbose

-v

Description

With this option you put the control program in verbose mode. The control program performs its tasks
while it prints the steps it performs to st dout .

Related information

Control program option --dry-run (Verbose output and suppress execution)

406

Tool Options

Control program option: --version (-V)

Menu entry

Command line syntax

--version
-V
Description

Display version information. The control program ignores all other options or input files.

Related information

407

TASKING VX-toolset for RH850 User Guide

Control program option: --warnings-as-errors

Menu entry
1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber[-nunber],...]

Description

If one of the tools encounters an error, it stops processing the file(s). With this option you tell the tools to
treat warnings as errors or treat specific control program warning messages as errors:

* If you specify this option but without numbers, all warnings are treated as errors.

« If you specify this option with a number or a range, only the specified control program warnings are
treated as an error. You can specify the option --warnings-as-errors=number multiple times.

Use one of the --pass-tool options to pass this option directly to a tool when a specific warning for that
tool must be treated as an error. For example, use --pass-c=--warnings-as-errors=number to treat a
specific C compiler warning as an error.

Related information
Control program option --no-warnings (Suppress some or all warnings)

Control program option --pass (Pass option to tool)

408

Tool Options

8.6. Parallel Make Utility Options

When you build a project in Eclipse, Eclipse generates a makefile and uses the make utility amk to build
all your files. However, you can also use the make utility directly from the command line to build your
project.

The invocation syntax is:
ank [option...] [target...] [macro=def]
This section describes all options for the parallel make utility.

For detailed information about the parallel make utility and using makefiles see Section 6.2, Make Utility
amk.

409

TASKING VX-toolset for RH850 User Guide

Parallel make utility option: --always-rebuild (-a)

Command line syntax
--always-rebuild

-a

Description

Normally the make utility rebuilds only those files that are out of date. With this option you tell the make
utility to rebuild all files, without checking whether they are out of date.

Example
ank -a
Rebuilds all your files, regardless of whether they are out of date or not.

Related information

410

Tool Options

Parallel make utility option: --change-dir (-G)

Command line syntax

--change-di r=path

-G path

Description

Normally you must call the make utility from the directory where your makefile and other files are stored.

With the option -G you can call the make utility from within another directory. The path is the path to the
directory where your makefile and other files are stored and can be absolute or relative to your current
directory.

The macro SUBDI Ris defined with the value of path.

Example

Suppose your makefile and other files are stored in the directory . . \ myfi | es.You can call the make
utility, for example, as follows:

ank -G ..\nyfiles

Related information

411

TASKING VX-toolset for RH850 User Guide

Parallel make utility option: --diag
Command line syntax
--diag=[format:]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 169, enter:
ank --di ag=169

This results in the following message and explanation:

F169: target '%' returned exit code %l

An error occured while executing one of the conmands
of the target, and -k option is not specified.

To write an explanation of all errors and warnings in HTML format to file anker r or s. ht m , use redirection
and enter:

ank --diag=htm:all > ankerrors. htm

Related information

412

Tool Options

Parallel make utility option: --dry-run (-n)

Command line syntax
--dry-run

-n

Description

With this option you tell the make utility to perform a dry run. The make utility shows what it would do but
does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if you call the make utility.

Example

ank -n

The make utility does not perform any tasks but displays what it would do if called without the option -n.
Related information

Parallel make utility option -s (Do not print commands before execution)

413

TASKING VX-toolset for RH850 User Guide

Parallel make utility option: --help (-? / -h)

Command line syntax
--help[=item

-h

-?

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example
The following invocations all display a list of the available command line options:

ank -?
ank --help

To see a detailed description of the available options, enter:

ank --hel p=options

Related information

414

Tool Options

Parallel make utility option: --jobs (-}) / --jobs-limit (-J)
Menu
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.
In the right pane the C/C++ Build page appears.
3. On the Behaviour tab, select Use parallel build.

4. You can specify the number of parallel jobs, or you can use an optimal number of jobs. In the last
case, amk will fork as many jobs in parallel as cores are available.

Command line syntax

- -j obs[=nunber]
-j [nunber]

--jobs-1imt[=nunber]
- J[nunber]

Description

When these options you can limit the number of parallel jobs. The default is 1. Zero means no limit. When
you omit the number, amk uses the number of cores detected.

Option -J is the same as -j, except that the number of parallel jobs is limited by the number of cores
detected.

Example
ank -j3
Limit the number of parallel jobs to 3.

Related information

415

TASKING VX-toolset for RH850 User Guide

Parallel make utility option: --keep-going (-k)
Command line syntax

- - keep- goi ng

-k

Description

When during the make process the make utility encounters an error, it stops rebuilding your files.

With the option -k, the make utility only stops building the target that produced the error. All other targets
defined in the makefile are built.

Example
ank -k

If the make utility encounters an error, it stops building the current target but proceeds with the other
targets that are defined in the makefile.

Related information

416

Tool Options

Parallel make utility option: --list-targets (-I)

Command line syntax

--list-targets

-1

Description

With this option, the make utility lists all "primary" targets that are out of date.
Example

ank -1
list of targets

Related information

417

TASKING VX-toolset for RH850 User Guide

Parallel make utility option: --makefile (-f)

Command line syntax
--makefil e=nmy_makefile

-f nmy_nakefile
Description

By default the make utility uses the file makef i | e to build your files.

With this option you tell the make utility to use the specified file instead of the file makef i | e. Multiple -f
options act as if all the makefiles were concatenated in a left-to-right order.

If you use '-' instead of a makefile name it means that the information is read from st di n.

Example
ank -f mynake
The make utility uses the file mynake to build your files.

Related information

418

Tool Options

Parallel make utility option: --no-warnings (-w)

Command line syntax

- - no-war ni ngs[=nunber, .. .]
-w nunber, .. .]
Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

* If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 751 and 756, enter:
ank --no-warni ngs=751, 756
Related information

Parallel make utility option --warnings-as-errors (Treat warnings as errors)

419

TASKING VX-toolset for RH850 User Guide

Parallel make utility option: --silent (-s)

Command line syntax
--silent

-s

Description

With this option you tell the make utility to perform its tasks without printing the commands it executes.
Error messages are normally printed.

Example

ank -s

The make utility rebuilds your files but does not print the commands it executes during the make process.
Related information

Parallel make utility option -n (Perform a dry run)

420

Tool Options

Parallel make utility option: --version (-V)

Command line syntax

--version
-V
Description

Display version information. The make utility ignores all other options or input files.

Related information

421

TASKING VX-toolset for RH850 User Guide

Parallel make utility option: --warnings-as-errors

Command line syntax

- -war ni ngs- as-errors[=nunber, ...]

Description

If the make utility encounters an error, it stops. When you use this option without arguments, you tell the
make utility to treat all warnings as errors. This means that the exit status of the make utility will be non-zero
after one or more warnings. As a consequence, the make utility now also stops after encountering a
warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Parallel make utility option --no-warnings (Suppress some or all warnings)

422

Tool Options

8.7. Archiver Options

The archiver and library maintainer ar850 is a tool to build library files and it offers the possibility to replace,
extract and remove modules from an existing library.

The invocation syntax is:
ar 850 key_option [sub_option...] library [object_file]

This section describes all options for the archiver. Some suboptions can only be used in combination with
certain key options. They are described together. Suboptions that can always be used are described
separately.

For detailed information about the archiver, see Section 6.3, Archiver.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option

names as long as it forms a unique name. You can mix short and long option names on the command
line.

Overview of the options of the archiver utility

The following archiver options are available:

Description ‘Option Sub-option
Main functions (key options)

Replace or add an object module -r -a-b-c-n-u-v
Extract an object module from the library -X -0 -V
Delete object module from library -d -v

Move object module to another position -m -a-b-v
Print a table of contents of the library -t -s0-s1
Print object module to standard output -p

Sub-options

Append or move new modules after existing module name -a name

Append or move new modules before existing module name -b name

Suppress the message that is displayed when a new library is -C

created.

Create a new library from scratch -n

Preserve last-modified date from the library -0

Print symbols in library modules -s{0|1}

Replace only newer modules -u

Verbose -v

423

TASKING VX-toolset for RH850 User Guide

Description Option Sub-option
Miscellaneous

Display options -?

Display description of one or more diagnostic messages --diag

Display version header -V

Read options from file -f file

Suppress warnings above level n -wn

424

Tool Options

Archiver option: --diag
Command line syntax
--diag=[format:]{all | nsg[-nBQ],...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The archiver does
not perform any actions. You can specify the following formats: html, rtf or text (default). To create a file
with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

Example

To display an explanation of message number 102, enter:
ar 850 --di ag=102

This results in the following message and explanation:

F102: cannot create "<file>"

The output file or a tenporary file could not be created. Check if you have
sufficient disk space and if you have wite permissions for the specified
file.

To write an explanation of all errors and warnings in HTML format to file ar er r or s. ht ml , use redirection
and enter:

ar850 --diag=htm:all > arerrors.htmn

Related information

425

TASKING VX-toolset for RH850 User Guide

Archiver option: --delete (-d)

Command line syntax
--delete [--verbose]
-d [-v]

Description

Delete the specified object modules from a library. With the suboption --verbose (-v) the archiver shows
which files are removed.

--verbose -V Verbose: the archiver shows which files are removed.
Example
ar850 --delete nylib.a objl.0 obj2.0
The archiver deletes obj 1. o and obj 2. o from the library nyl i b. a.

ar850 -d -v nylib.a objl.0 obj2.0

The archiver deletes obj 1. 0 and obj 2. o from the library nyl i b. a and displays which files are removed.

Related information

426

Tool Options

Archiver option: --dump (-p)

Command line syntax

--dunp

-p

Description

Print the specified object module(s) in the library to standard output.

This option is only useful when you redirect or pipe the output to other files or tools that serve your own
purposes. Normally you do not need this option.

Example
ar850 --dump nylib.a objl.o0 > file.o

The archiver prints the file obj 1. o to standard output where it is redirected to the file f i | e. 0. The effect
of this example is very similar to extracting a file from the library but in this case the 'extracted' file gets
another name.

Related information

427

TASKING VX-toolset for RH850 User Guide

Archiver option: --extract (-x)

Command line syntax

--extract [--npdtinme] [--verbose]
-x [-0] [-V]

Description

Extract an existing module from the library.

--modtime -0 Give the extracted object module the same date as the last-modified
date that was recorded in the library. Without this suboption it
receives the last-modified date of the moment it is extracted.

--verbose -V Verbose: the archiver shows which files are extracted.

Example

To extract the file obj 1. o from the library nyl i b. a:

ar850 --extract nylib.a objl.o

If you do not specify an object module, all object modules are extracted:

ar850 -x nylib.a

Related information

428

Tool Options

Archiver option: --help (-?)

Command line syntax

--help[=item

-?
You can specify the following argument:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
ar850 -?

ar850 --help

ar 850

To see a detailed description of the available options, enter:

ar 850 --hel p=opti ons

Related information

429

TASKING VX-toolset for RH850 User Guide

Archiver option: --move (-m)

Command line syntax

--nove [-a posnane] [-b posnhane]

-m[-a posnane] [-b posnane]

Description

Move the specified object modules to another position in the library.

The ordering of members in a library can make a difference in how programs are linked if a symbol is
defined in more than one member.

By default, the specified members are moved to the end of the archive. Use the suboptions -a or -b to
move them to a specified place instead.

--after=posname -a Move the specified object module(s) after the existing module
posname poshame.

--before=posname -b Move the specified object module(s) before the existing
posname module poshame.

Example

Suppose the library nmyl i b. a contains the following objects (see option --print):
obj1l.0

obj 2.0

obj 3.0

To move obj 1. o to the end of nyl i b. a:

ar850 --nmove nylib.a objl.0

To move obj 3. o just before obj 2. o:

ar850 -m-b obj3.0 nylib.a obj2.0

The library myl i b. a after these two invocations now looks like:
obj 3.0

obj 2.0
obj1l.0

Related information

Archiver option --print (-t) (Print library contents)

430

Tool Options

Archiver option: --option-file (-f)
Command line syntax
--option-file=file

-f file

Description

Instead of typing all options on the command line, you can create an option file which contains all options
and flags you want to specify. With this option you specify the option file to the archiver.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file (-f) multiple times.

If you use '-' instead of a filename it means that the options are read from st di n.

Format of an option file

» Multiple arguments on one line in the option file are allowed.

» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a double quote " enbedded’

"This has a doubl e quote and a single quote '"' enbedded"

* When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
l'i ne"

-> "This is a continuation |ine

* Itis possible to nest command line files up to 25 levels.

Example
Suppose the file myopt i ons contains the following lines:

-x mylib.a objl.0
- w5

431

TASKING VX-toolset for RH850 User Guide

Specify the option file to the archiver:
ar850 --option-fil e=nyoptions
This is equivalent to the following command line:

ar850 -x nylib.a objl.0 -w5

Related information

432

Tool Options

Archiver option: --print (-t)
Command line syntax

--print [--synbol s=0| 1]

-t [-s0]-s1]

Description

Print a table of contents of the library to standard output. With the suboption -s0 the archiver displays all
symbols per object file.

--symbols=0 -s0 Displays per object the name of the object itself and all symbols in
the object.
--symbols=1 -s1 Displays the symbols of all object files in the library in the form

library_name:object_name:symbol_name

Example

ar850 --print nylib.a

The archiver prints a list of all object modules in the library nyl i b. a:
ar850 -t -sO nylib.a

The archiver prints per object all symbols in the library. For example:

hell 0.0
synbol s:
_main
_world

Related information

433

TASKING VX-toolset for RH850 User Guide

Archiver option: --replace (-r)

Command line syntax

--replace [--after=posnane] [--before=posnane]
[--create] [--new] [--newer-only] [--verbose]

-r [-a posnane] [-b posnane][-c] [-n] [-u] [-V]
Description

You can use the option --replace (-r) for several purposes:

» Adding new objects to the library

» Replacing objects in the library with the same object of a newer date
» Creating a new library

The option --replace (-r) normally adds a new module to the library. However, if the library already contains
a module with the specified name, the existing module is replaced. If you specify a library that does not
exist, the archiver creates a new library with the specified name.

If you add a module to the library without specifying the suboption -a or -b, the specified module is added
at the end of the archive. Use the suboptions -a or -b to insert them after/before a specified place instead.

--after=posname -aposhame Insert the specified object module(s) after the existing
module poshame.

--before=posname -b posname Insert the specified object module(s) before the existing
module posname.

--create -C Suppress the message that is displayed when a new library
is created.

--new -n Create a new library from scratch. If the library already

exists, it is overwritten.

--newer-only -u Insert the specified object module only if it is newer than
the module in the library.

--verbose -V Verbose: the archiver shows which files are replaced.
The suboptions -a or -b have no effect when an object is added to the library.
Example
Suppose the library nyl i b. a contains the following object (see option --print):
obj1l.0
To add obj 2. o to the end of nyl i b. a:

ar850 --replace nylib.a obj2.0

434

Tool Options

To insert obj 3. o just before obj 2. o:

ar850 -r -b obj2.0 nylib.a obj3.0

The library myl i b. a after these two invocations now looks like:

obj1.0

obj 3.0

obj 2.0

Creating a new library

To create a new library file, add an object file and specify a library that does not yet exist:
ar850 --replace newib.a objl.0

The archiver creates the library new i b. a and adds the object obj 1. o to it.

To create a new library file and overwrite an existing library, add an object file and specify an existing
library with the supoption --new (-n):

ar850 -r -n nylib.a objl.0

The archiver overwrites the library myl i b. a and adds the object obj 1. o to it. The new library nyl i b. a
only contains obj 1. o.

Related information

Archiver option --print (-t) (Print library contents)

435

TASKING VX-toolset for RH850 User Guide

Archiver option: --version (-V)

Command line syntax

--version
-V
Description

Display version information. The archiver ignores all other options or input files.

Example
ar850 -V
The archiver displays the version information but does not perform any tasks.

TASKI NG VX-tool set for RH850: ELF archiver vX.yrz Build nnn
Copyri ght 2012-year Altium BV Seri al # 00000000

Related information

436

Tool Options

Archiver option: --warning (-w)

Command line syntax
- -war ni ng=l evel

-w evel

Description

With this suboption you tell the archiver to suppress all warnings above the specified level. The level is
a number between O - 9.

The level of a message is printed between parentheses after the warning number. If you do not use the
-w option, the default warning level is 8.

Example
To suppress warnings above level 5:

ar850 --extract --warning=5 nylib.a obj1.0

Related information

437

TASKING VX-toolset for RH850 User Guide

8.8. HLL Object Dumper Options

The high level language (HLL) dumper hldump850 is a program to dump information about an absolute
object file (. el f).

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

hl dunmp850 - FdhMsy test.elf
hl dunp850 - - dunp- f or mat =+dunp, +hl | synbol s, - nbdul es, +secti ons, +synbol s test.elf

When you do not specify an option, a default value may become active.

438

Tool Options

HLL object dumper option: --class (-c)

Command line syntax
--cl ass[=cl ass]
-c[cl ass]

You can specify one of the following classes:

all a Dump contents of all sections.
code c Dump contents of code sections.
data d Dump contents of data sections.

Default: - - cl ass=al |

Description

With this option you can restrict the output to code or data only. This option affects all parts of the output,
except the module list. The effect is listed in the following table.

Output part Effect of --class

Module list Not restricted

Section list Only lists sections of the specified class

Section dump Only dumps the contents of the sections of the specified class
HLL symbol table Only lists symbols of the specified class

Assembly level symbol |Only lists symbols defined in sections of the specified class
table

Note sections Not restricted

By default all sections are included.

Related information

Section 6.4.2, HLL Dump Output Format

439

TASKING VX-toolset for RH850 User Guide

HLL object dumper option: --copy-table

Command line syntax

--copy-table

Description

With this option the HLL object dumper attempts to translate the specified code address to the destination
address of a copy table copy command during disassembly.

Related information

440

Tool Options

HLL object dumper option: --diag
Command line syntax
--diag=[format:]{all | nsg[-nBQ],...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The HLL object
dumper does not process any files. You can specify the following formats: html, rtf or text (default). To
create a file with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

Example

To display an explanation of message number 101, enter:
hl dump850 - -di ag=101

This results in the following message and explanation:

F101: cannot create "<file>"

The output file or a tenporary file could not be created.
Check if you have sufficient disk space and if you have
wite permissions for the specified file.

To write an explanation of all errors and warnings in HTML format to file hl dunperrors. htnl , use
redirection and enter:

hl dunmp850 --diag=htm :all > hldunperrors. htm

Related information

441

TASKING VX-toolset for RH850 User Guide

HLL object dumper option: --disassembly-intermix (-i)
Command line syntax
--di sassenbl y-i nterm x[=f1 ag]
-i[flag]
You can specify the following format flags:
+/-single-line s/S Force the insert to be limited to the first preceding source line.
Default: - - di sassenbl y-i nterm x=S
Description

With this option the disassembly is intermixed with HLL source code. The source is searched for as
described with option --source-lookup-path

The +single-line sub-option forces the insert to be limited to the first preceding source line. With the

-single-line sub-option all source lines that belong to the address are prefixed. For example comments
are thus also visible. This is the default.

Example

hl dunp850 --di sassenbly-interm x --source-|ookup-path=c:\nylib\src hello.elf

Related information

HLL object dumper option --source-lookup-path

442

Tool Options

HLL object dumper option: --dump-format (-F)

Command line syntax
--dunmp-format[=flag,...]
-F[flag]...

You can specify the following format flags:

+/-dump d/D Dump the contents of the sections in the object file. Code sections
can be disassembled, data sections are dumped.

+/-hllsymbols h/H List the high level language symbols, with address, size and type.
+/-modules m/M Print a list of modules found in object file.
+/-note n/N Dump all ELF . not e sections.
+/-sections s/S Print a list of sections with start address, length and type.
+/-symbols ylIY List the low level symbols, with address and length (if known).

0 Alias for DHMNSY (nothing)

1 Alias for DhAMNSY (only HLL symbols)

2 Alias for dHMNSY (only section contents)

3 Alias for dhmnsy (default, everything)

Default: - - dunp- f or mat =dhmmsy

Description

With this option you can control which parts of the dump output you want to see. By default, all parts are
dumped.

1. Module list

2. Section list

w

. Section dump (disassembly)

N

. HLL symbol table

5. Assembly level symbol table

6. Note sections

You can limit the number of sections that will be dumped with the options --sections and --section-types.
Related information

Section 6.4.2, HLL Dump Output Format

443

TASKING VX-toolset for RH850 User Guide

HLL object dumper option: --expand-symbols (-e)

Command line syntax

- -expand- synbol s[=fl ag], . ..
-e[flag]...

You can specify one of the following flags:

+/-basic-types b/B Expand arrays with basic C types.
+/-fullpath fIF Include the full path to the field level.

Default (no flags): - - expand- synbol s=BF

Description

With this option you specify that all struct, union and array symbols are expanded with their fields in the
HLL symbol dump.

Example
hl dump850 -F1 hello. el f

---------- HLL synbol table ----------

f edec0dO 24 struct _dbg_request [dbhg.c]
f edecOe8 80 static char stdin_buf[80] [_iob.c]

hl dunp850 -e -F1 hello.elf

---------- HLL synbol table ----------

f edec0dO 24 struct _dbg_request [dbhg.c]
f edec0dO 4 i nt _errno

f edec0d4 4 enum nr

f edec0d8 16 uni on u

f edec0d8 4 struct exit

f edec0d8 4 i nt status

f edec0d8 8 struct open

f edec0d8 4 const char * pat hnane

f edecOdc 2 unsi gned short int flags

f edecOe8 80 static char stdin_buf[80] [_iob.c]
hl dunp850 -eb -F1 hello.elf

---------- HLL synbol table ----------

f edec0dO 24 struct _dbg_request [dbhg.c]
f edec0dO 4 i nt _errno

444

Tool Options

f edec0d4 4 enum nr

f edec0d8 16 uni on u

f edec0d8 4 struct exit

f edec0d8 4 i nt st atus

f edec0d8 8 struct open

f edec0d8 4 const char * pat hnane
f edecOdc 2 unsi gned short int flags

f edecOe8 80 static char stdin_buf[80] [_iob.c]
f edecOe8 1 char

f edec0e9 1 char

f edecOea 1 char

fedecl137 1 char

hl dunp850 -ef -F1 hello.elf

---------- HLL synbol table ----------

f edec0dO 24 struct _dbg_request [dbhg.c]

f edec0dO 4 i nt _dbg_request._errno

fedec0d4 4 enum _dbg_request. nr

f edec0d8 16 uni on _dbg_request.u

f edec0d8 4 struct _dbg_request.u.exit

f edec0d8 4 i nt _dbg_request.u.exit.status

f edec0d8 8 struct _dbg_request. u. open

f edec0d8 4 const char * dbg_request. u. open. pat hname
f edecOdc 2 unsi gned short int _dbg_request. u.open. fl ags

f edecOe8 80 static char stdin_buf[80] [_iob.c]

Related information

Section 6.4.2, HLL Dump Output Format

445

TASKING VX-toolset for RH850 User Guide

HLL object dumper option: --help (-?)

Command line syntax

--help

-?

Description

Displays an overview of all command line options.

Example

The following invocations all display a list of the available command line options:
hl dunp850 -?

hl dunp850 --hel p
hl dunp850

Related information

446

Tool Options

HLL object dumper option: --hex (-x)

Command line syntax
- - hex

-X

Description

With this option you can control the way data sections and code sections are dumped. By default, the
contents of data sections are represented by directives. A new directive will be generated for each symbol.
ELF labels in the section are used to determine the start of a directive. ROM sections are represented
with . db, . dh, . dw, . dd kind of directives, depending on the size of the data. RAM sections are
represented with . ds directives, with a size operand depending on the data size. This can be either the
size specified in the ELF symbol, or the size up to the next label. Code sections are dumped as
disassembly.

With option --hex, no directives will be generated for ROM data sections and no disassembly dump will
be done for code sections. Instead ROM data sections and code sections are dumped as hexadecimal
code with ASCII translation. RAM sections will be represented with only a start address and a size indicator.

Example
hl dunp850 - F2 --section=.zconst23.hello.\$2\$str hello.elf
---------- Section dunp ----------
.section .zconst23. hello.2str, at(0x2a)
.db 48, 65, 6c, 6¢, 6f, 20, 25, 73, 21, O0a, 00 ; Hello 9! ..
. endsec
hl dunp850 -F2 --section=.zconst23. hello.\$2\$str --hex hello.elf
---------- Section dunp ----------

section 7 (.zconst23.hello. $2%str):
0000002a 48 65 6¢c 6¢ 6f 20 25 73 21 0Oa 00 Hello %s!..

Related information

Section 6.4.2, HLL Dump Output Format

447

TASKING VX-toolset for RH850 User Guide

HLL object dumper option: --option-file (-f)

Command line syntax
--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the HLL object dumper.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file
» Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a double quote " enbedded

'This has a doubl e quote and a single quote '"' enbedded"

* When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
l'ine"

-> "This is a continuation line

* Itis possible to nest command line files up to 25 levels.

Example
Suppose the file myopt i ons contains the following lines:
- -synbol s=hl |

--cl ass=code
hello.elf

448

Tool Options

Specify the option file to the HLL object dumper:
hl dunp850 --option-file=nyoptions
This is equivalent to the following command line:

hl dump850 --synbol s=hl| --cl ass=code hello.elf

Related information

449

TASKING VX-toolset for RH850 User Guide

HLL object dumper option: --output (-0)
Command line syntax

--output=file

-o file

Description

By default, the HLL object dumper dumps the output on st dout . With this option you specify to dump
the information in the specified file.

The default output format is text, but you can specify another output format with option --output-type.

Example
hl dump850 - - out put =dunp. txt hel |l o. el f

The HLL object dumper dumps the output in file dunp. t xt .

Related information

HLL object dumper option --output-type

450

Tool Options

HLL object dumper option: --output-type (-T)
Command line syntax
--out put -type[=t ype]

- T[type]

You can specify one of the following types:

text t Output human readable text.
xml X Output XML.

Default: - - out put - t ype=t ext

Description

With this option you can specify whether the output is formatted as plain text or as XML.

Related information

HLL object dumper option --output

451

TASKING VX-toolset for RH850 User Guide

HLL object dumper option: --sections (-S)

Command line syntax
--sections=nane,. ..

-Shane, ...

Description

With this option you can restrict the output to the specified sections only. This option affects the following
parts of the output:

Output part Effect of --sections

Module list Not restricted

Section list Only lists the specified sections

Section dump Only dumps the contents of the specified sections
HLL symbol table Not restricted

Assembly level symbol |Only lists symbols defined in the specified sections
table

Note sections Not restricted

By default all sections are included.

Related information

Section 6.4.2, HLL Dump Output Format

452

Tool Options

HLL object dumper option: --source-lookup-path (-L)

Command line syntax
--sour ce- | ookup- pat h=pat h
-Lpath

Description

With this option you can specify an additional path where your source files are located. If you want to
specify multiple paths, use the option --source-lookup-path for each separate path.

The order in which the HLL object dumper will search for source files when intermixed disassembly is
used, is:

1. The path obtained from the HLL debug information.

2. The path that is specified with the option --source-lookup-path. If multiple paths are specified, the
paths will be searched for in the order in which they are given on the command line.

Example
Suppose you call the HLL object dumper as follows:
hl dunp850 --di sassenbly-interm x --source-|ookup-path=c:\nylib\src hello.elf

First the HLL object dumper looks in the directory found in the HLL debug information of file hel | o. el f
for the location of the source file(s). If it does not find the file(s), it looks in the directory c: \ nyl i b\ src.

Related information

HLL object dumper option --disassembly-intermix

453

TASKING VX-toolset for RH850 User Guide

HLL object dumper option: --symbols (-S)

Command line syntax
- -synbol s[=t ype]
- S[type]

You can specify one of the following types:

asm a Display assembly symbols in code dump.
hll h Display HLL symbols in code dump.
none n Display plain addresses in code dump.

Default: - - synmbol s=asm

Description

With this option you can control symbolic information in the disassembly and data dump. For data sections
this only applies to symbols used as labels at the data addresses. Data within the data sections will never
be replaced with symbols.

Only symbols that are available in the ELF or DWARF information are used. If you build an application
without HLL debug information the --symbols=hll option will result in the same output as with
--symbols=none. The same applies to the --symbols=asm option when all symbols are stripped from
the ELF file.

Example
hl dunp850 -F2 hello.elf

----------- Section dunmp ----------

.section .text.hello.min, at(0x400)

00000400 26 06 2a 00 00 0O _mai n: nmov 0Ox2a,r6
00000406 84 07 89 3c 01 00 Id w oxc8[gp].,r7
0000040c bf 07 04 fe jr _printf

. endsec

hl dump850 --synbol s=none -F2 hello.elf

----------- Section dump ----------

.section .text.hello.min, at(0x400)

00000400 26 06 2a 00 00 00 nov Ox2a,r6
00000406 84 07 89 3c 01 00 Id w Oxc8[gp].,r7
0000040c bf 07 04 fe jr 0x210

. endsec

454

Tool Options

Related information

Section 6.4.2, HLL Dump Output Format

455

TASKING VX-toolset for RH850 User Guide

HLL object dumper option: --version (-V)

Command line syntax
--version

-V

Description

Display version information. The HLL object dumper ignores all other options or input files.

Related information

456

Tool Options

HLL object dumper option: --xml-base-filename (-X)

Command line syntax
--xm - base-fil ename
-X

Description

With this option the <Fi | e name> field in the XML output only contains the filename of the object file.
By default, any path name, if present, is printed as well.

Example

hl dunmp850 --out put-type=xm --output=hello.xm ../hello.elf

The field <Fi | e name="../hello.el f">isusedinhel | 0. xm .

hl dunmp850 --out put-type=xm --output=hello.xm -X ../hello.elf

The field <Fi | e name="hel | 0. el f">isused in hel | 0. xm . The path is stripped from the filename.
Related information

HLL object dumper option --output-type

457

TASKING VX-toolset for RH850 User Guide

8.9. Expire Cache Utility Options

With the utility expire850 you can limit the size of the cache (C compiler option --cache) by removing all
files older than a few days or by removing older files until the total size of the cache is smaller than a
specified size. See also Section 9.4, Compiler Cache.

The invocation syntax is:
expi re850 [option]... cache-directory
The compiler cache is present in the directory c850cache under the specified cache-directory.

This section describes all options for the expire cache utility.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option

names as long as it forms a unique name. You can mix short and long option names on the command
line.

458

Tool Options

Expire cache utility option: --access (-a)
Command line syntax

--access

-a

Description

Use the last access time instead of the last modification time to determine which files to delete.

Example

expi re850 --access --days=7 "installation-dir\nproject\.cache"

Related information

459

TASKING VX-toolset for RH850 User Guide

Expire cache utility option: --days (-d)

Command line syntax

- -days=n
-dn
Description

Remove all files older than n days from the cache.

Example
To remove all files older than seven days, enter:

expi re850 --days=7 "installation-dir\nproject\.cache"

Related information

460

Tool Options

Expire cache utility option: --diag
Command line syntax
--diag=[format:]{all | nsg[-nBQ],...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

With this option the expire cache utility does not remove any files.

Example

To display an explanation of message number 204, enter:
expi re850 --di ag=204

This results in the following message and explanation:

E204: failed to renove "<fil e>" <<cause>>

The renoval of the indicated file failed. The <cause>
provi des nore details of the problem

To write an explanation of all errors and warnings in HTML format to file expi r e850_errors. htn,
use redirection and enter:

expire850 --diag=htnm:all > expire850 errors.htm

Related information

461

TASKING VX-toolset for RH850 User Guide

Expire cache utility option: --dry-run (-n)
Command line syntax

--dry-run

-n

Description

With this option you put the expire utility in verbose mode. The utility shows which files would be deleted,
without actually removing them.

Related information

Expire cache utility option --verbose (Verbose output)

462

Tool Options

Expire cache utility option: --help (-?)
Command line syntax

--help[=item

-?

You can specify the following argument:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
expi re850 -7

expi re850 --help

expi re850

To see a detailed description of the available options, enter:

expi re850 --hel p=options

Related information

463

TASKING VX-toolset for RH850 User Guide

Expire cache utility option: --megabytes (-m)
Command line syntax

- - negabyt es=m

-nm

Description

Reduce the size of the cache to m MBytes by removing files from the cache, starting with the oldest file.
With a size of 0 (zero) you clear the entire cache.

Example

To reduce the compiler cache size to 4 MB, enter:

expi re850 --nmegabytes=4 "installation-dir\nproject\.cache"
Older files are removed until the total size of the cache is smaller than 4 MB.
To clear the compiler cache, enter:

expi re850 --negabytes=0 "installation-dir\nproject\.cache"

Related information

464

Tool Options

Expire cache utility option: --totals (-t)
Command line syntax

--totals

-t

Description

Show the total size of the cache and the number of directories and files. This option is implicit when
invoked without the --days and --megabytes options.

Example

expire850 -t "installation-dir\nproject\.cache"

installation-dir\nproject\.cache\c850cache:
1 MB, 3 directories, 3 files

Related information

465

TASKING VX-toolset for RH850 User Guide

Expire cache utility option: --verbose (-v)
Command line syntax

--verbose

-V

Description

With this option you put the expire cache utility in verbose mode. The utility shows which files are being
deleted.

Example

expi re850 -v --negabytes=0 "installation-dir\nproject\.cache"

2014-06-05 12:36: 15 installation-dir\nproject\.cache\c850cache\cstart\30aa7935
2014-06-05 12:36: 17 installation-dir\nproject\.cache\c850cache\ nyproject\6f0a3bad
2014-06-05 12:36: 18 installation-dir\nproject\.cache\c850cache\sync_on_hal t\bab2c716

Related information

466

Tool Options

Expire cache utility option: --version (-V)

Command line syntax

--version
-V
Description

Display version information and exit. The expire cache utility ignores all other options.

Related information

467

TASKING VX-toolset for RH850 User Guide

468

Chapter 9. Influencing the Build Time

In general many settings have influence on the build time of a project. Any change in the tool settings of
your project source will have more or less impact on the build time. The following sections describe several
issues that can have significant influence on the build time.

9.1. Optimization Options

In general any optimization may require more work to be done by the compiler. But this does not mean
that disabling all optimizations (level 0) gives the fastest compilation time. Disabling optimizations may
resultin more code being generated, resulting in more work for other parts of the compiler, like for example
the register allocator.

9.2. Automatic Inlining

Automatic inlining is an optimization which can result in significant longer build time. The overall functions
will get bigger, often making it possible to do more optimizations. But also often resulting in more registers
to be in use in a function, giving the register allocation a tougher job.

9.3. Code Compaction

When you disable the code compaction optimization, the build times may be shorter. Certainly when MIL
linking is used where the full application is passed as a single MIL stream to the code generation. Code
compaction is however an optimization which can make a huge difference when optimizing for code size.
When size matters it makes no sense to disable this option. When you choose to optimize for speed
(--tradeoff=0) the code compaction is automatically disabled.

9.4. Compiler Cache

The C compiler has support for caching intermediate results to avoid full compilations. When the source
code after preprocessing and relevant compiler options and the compiler version are the same as in a
previous invocation, the previous result is copied to the output file. The cache only works when there is
a single C input file and a single output file.
To enable caching from Eclipse:
1. From the Project menu, select Properties for

The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C Compiler » Optimization » Compilation Speed.

469

TASKING VX-toolset for RH850 User Guide

4. Enable the option Cache generated code to improve the compilation speed.

5. Inthe Directory for cached files field, enter the name for the location of the cache.
By default this is the .cache directory under your project directory.

6. Specify the Maximum days files will live in the cache.

7. (Optional) Enable the option Clear cache upon project clean.

Each time you use Project » Clean... the cache is cleared.

Eclipse calls the C compiler with option --cache. The cache directory may be shared, for instance by
placing it on a network drive. The compiler creates a directory c850cache in the specified directory.

When a result from the cache is used, the C compiler generates a comment line in the assembly source
file to notify that. In that case be aware of the following:

In case source merging is enabled an older version of the source is still shown. As long as a source
change has no effect on the preprocessed code, the cached version of the output file is used.

Some options, like --define, --include-directory and --output are not part of the hash used for the
cache. As long as a change in these options has no influence on the preprocessed code, the cached
version of the output is used. This means that the options listed as comments in the generated assembly
file might not match the options actually used.

With every compilation of a file that results in a cache miss, a new file is stored in the cache. Old files are
not removed from the cache automatically because that would slow down the compiler too much. To keep
the cache size reasonable specify a maximum number of days the files will live in the cache. Eclipse uses

the utility expire850 for this. It is recommended to run this utility frequently, for example with each time
the project is linked. For more information on this utility see Section 6.5, Expire Cache Utility.

9.5. Header Files

Many applications include all header files in each module, often by including them all within a single
include file. Processing header files takes time. It is a good programming practice to only include the
header files that are really required in a module, because:

* itis clear what interfaces are used by a module
» an incremental build after modifying a header file results in less modules required to be rebuild

* it reduces compile time

9.6. Parallel Build

The make utility amk, which is used by Eclipse, has a feature to build jobs in parallel. This means that
multiple modules can be compiled in parallel. With today's multi-core processors this means that each
core can be fully utilized. In practice even on single core machines the compile time decreases when

470

Influencing the Build Time
using parallel jobs. On multi-core machines the build time even improves further when specifying more
parallel jobs than the number of cores.

In Eclipse you can control the parallel build behavior:
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.
In the right pane the C/C++ Build page appears.
3. On the Behaviour tab, select Use parallel build.

4. You can specify the number of parallel jobs, or you can use an optimal number of jobs. In the last
case, amk will fork as many jobs in parallel as cores are available.

471

TASKING VX-toolset for RH850 User Guide

472

Chapter 10. Libraries

This chapter contains an overview of all library functions that you can call in your C source. This includes
all functions of the standard C library (ISO C99) and some functions of the floating-point library.

Section 10.1, Library Functions, gives an overview of all library functions you can use, grouped per header
file. A number of functions declared in wchar . h are parallel to functions in other header files. These are
discussed together.

Section 10.2, C Library Reentrancy, gives an overview of which functions are reentrant and which are
not.

C library / floating-point library / run-time library

The following libraries are included in the RH850 toolset. The directory | i b\ v850e3 contains all libraries.
Both Eclipse and the control program cc850 automatically select the appropriate libraries depending on
the specified options.

Libraries Description

libc[s][f | fs].a C libraries

Optional letter:

s = single precision floating-point (control program option
--fp-model=+float)

no s = double precision floating-point (control program option
--fp-model=-float)

f = FPU support, double precision (control program option --fpu=double)
fs = FPU support, single precision (control program option --fpu=single)
no f or fs = no FPU support (control program option --fpu=none)

libfp[t].a Floating-point libraries (contains floating-point functions needed by the C
compiler)

Optional letter:

t = trapping (control program option --fp-model=+trap)

librt.a Run-time library (contains other run-time functions needed by the C
compiler)

Sources for the libraries are present in the directories | i b\ src, | i b\ src. * in the form of an executable.
If you run the executable it will extract the sources in the corresponding directory.

Floating-point library with trapping

If you use the trapping floating-point library (I i bf pt . | i b), exceptional floating-point cases are intercepted
and can be handled separately by an application defined trap handler. Using this library decreases the
execution speed of your application. The header file except . h contains the RH850 specific software
floating-point trap handling interface definition. See Section 10.1.7, except.h for the interface functions
and a list of floating-point exceptions, such as overflow and underflow.

See the f pt r ap example delivered with the product for an example of how floating-point exceptions can
be handled. The file f pt r ap. ¢ installs a floating-point trap handler which is called when a floating-point

473

TASKING VX-toolset for RH850 User Guide

exception occurs. In this example some of the possible exceptions are generated. You can use this

example as a starting point to write your own program which handles the exception without "hanging" the
program or producing incorrect output. This handler overrules the default handler (except i on_handl er)
delivered in the floating-point run-time library in except . c. Note that the default handler is not reentrant.

10.1. Library Functions

The tables in the sections below list all library functions, grouped per header file in which they are declared.
Some functions are not completely implemented because their implementation depends on the context
where your application will run. These functions are for example all I/O related functions. Where possible,
these functions are implemented using file system simulation (FSS). This system can be used by the
debugger to simulate an 1/O environment which enables you to debug your application.

Wide character support

A number of wide character functions are available as C source code, but have not been compiled with
the C library. To use complete wide character functionality, you must recompile the libraries with the
macro WCHAR_SUPPORT_ENABLED and keep this macro also defined when compiling your own sources.
See C compiler option --define (-D). The easiest way is to adapt the makefile for the library and change
the CCline to:

CC = $(PRODDI R)\ bi n\ c850 - DWCHAR SUPPORT _ENABLED
10.1.1. assert.h

assert (expr) Prints a diagnostic message if NDEBUG is not defined.
(Implemented as macro)

10.1.2. complex.h

The complex number z is also written as x+yi where x (the real part) and y (the imaginary part) are real
numbers of types f | oat , doubl e orl ong doubl e.The real and imaginary part can be stored in structs
or in arrays. This implementation uses arrays because structs may have different alignments.

The header file conpl ex. h also defines the following macros for backward compatibility:

conpl ex _Conpl ex /* C99 keyword */
i magi nary _Inmaginary /* C99 keyword */

Parallel sets of functions are defined for double, float and long double. They are respectively named
function, functionf , functionl . All long type functions, though declared in conpl ex. h, are implemented
as the doubl e type variant which nearly always meets the requirement in embedded applications.

This implementation uses the obvious implementation for complex multiplication; and a more sophisticated
implementation for division and absolute value calculations which handles underflow, overflow and infinities
with more care. The ISO C99 #pr agma CX_LI M TED_RANGE therefore has no effect.

474

Libraries

Trigonometric functions

csin csi nf csinl Returns the complex sine of z.

ccos ccosf ccosl Returns the complex cosine of z.

ctan ct anf ctanl Returns the complex tangent of z.

casin casi nf casi nl Returns the complex arc sine sin'l(z).
cacos cacosf cacosl Returns the complex arc cosine cos'l(z).
catan cat anf cat anl Returns the complex arc tangent tan'l(z).
csi nh csi nhf csi nhl Returns the complex hyperbolic sine of z.
ccosh ccoshf ccoshl Returns the complex hyperbolic cosine of z.
ctanh ct anhf ct anhl Returns the complex hyperbolic tangent of z.

casinh casinhf casinhl Returnsthe complex arc hyperbolic sinus of z.
cacosh cacoshf cacoshl Returnsthe complex arc hyperbolic cosine of z.
catanh catanhf catanhl Returnsthe complex arc hyperbolic tangent of z.

Exponential and logarithmic functions

cexp cexpf cexpl Returns the result of the complex exponential function e”.

cl og cl ogf cl ogl Returns the complex natural logarithm.

Power and absolute-value functions

cabs cabsf cabsl Returns the complex absolute value of z (also known as norm,
modulus or magnitude).

cpow cpowf cpowl Returns the complex value of x raised to the power y (x’) where
both x and y are complex numbers.

csqrt csqrtf csqrtl Returns the complex square root of z.

Manipulation functions

carg car gf car gl Returns the argument of z (also known as phase angle).

ci nag ci magf ci magl Returns the imaginary part of z as a real (respectively as adoubl e,
fl oat,l ong doubl e)

conj conj f conj | Returns the complex conjugate value (the sign of its imaginary part
is reversed).

cproj cproj f cprojl Returns the value of the projection of z onto the Riemann sphere.

creal creal f creall Returns the real part of z as a real (respectively as a doubl e,

fl oat,l ong doubl e)

475

TASKING VX-toolset for RH850 User Guide

10.1.3. cstart.h

The header file cst ar t . h controls the system startup code's general settings and register initializations.
It contains defines and prototypes of functions that can be used for hardware configuration.

10.1.4. ctype.h and wctype.h

The header file ct ype. h declares the following functions which take a character ¢ as an integer type
argument. The header file wet ype. h declares parallel wide-character functions which take a character
c of the wchar _t type as argument.

ctype.h wctype.h Description

i sal num i swal num Returns a non-zero value when c is an alphabetic character or a
number ([A-Z][a-z][0-9]).

i sal pha i swal pha Returns a non-zero value when c is an alphabetic character
([A-Z][a-Z]).

i sbl ank i swbl ank Returns a non-zero value when c is a blank character (tab, space...)

iscntrl i swentrl Returns a non-zero value when c is a control character.

isdigit iswditit Returns a non-zero value when c is a numeric character ([0-9]).

i sgraph i swgr aph Returns a non-zero value when c is printable, but not a space.

i sl owner i sw ower Returns a non-zero value when c is a lowercase character ([a-z]).

i sprint i swprint Returns a non-zero value when c is printable, including spaces.

i spunct i swpunct Returns a non-zero value when c is a punctuation character (such
as', ', 'm".

i sspace i swspace Returns a non-zero value when c is a space type character (space,
tab, vertical tab, formfeed, linefeed, carriage return).

i supper i swupper Returns a non-zero value when c is an uppercase character ([A-Z]).

i sxdigit i swxdi git Returns a non-zero value when c is a hexadecimal digit
([0-9][A-F][a-f]).

t ol ower t oM ower Returns c converted to a lowercase character if it is an uppercase
character, otherwise c is returned.

t oupper t owupper Returns ¢ converted to an uppercase character if it is a lowercase
character, otherwise c is returned.

_tol ower - Converts c to a lowercase character, does not check if c really is

an uppercase character. Implemented as macro. This macro
function is not defined in ISO C99.

_t oupper - Converts ¢ to an uppercase character, does not check if ¢ really
is a lowercase character. Implemented as macro. This macro
function is not defined in ISO C99.

i sasci i Returns a non-zero value when c is in the range of 0 and 127. This
function is not defined in ISO C99.
toascii Converts c to an ASCII value (strip highest bit). This function is

not defined in ISO C99.

476

Libraries

10.1.5. dbg.h

The header file dbg. h contains the debugger call interface for file system simulation. It contains low level
functions. This header file is not defined in ISO C99.

_dbg_trap Low level function to trap debug events

_argcv(const char Low level function for command line argument passing
*buf, si ze_t size)

10.1.6. errno.h

int errno External variable that holds implementation defined error codes.

The following error codes are defined as macros in er r no. h:

EPERM 1 Operation not permitted
ENCENT 2 No such file or directory
El NTR 3 Interrupted system call
ElI O 4 I/O error

EBADF 5 Bad file number

EAGAI N 6 No more processes
ENOVEM 7 Not enough core
EACCES 8 Permission denied
EFAULT 9 Bad address

EEXI ST 10 File exists

ENOTDI R 11 Not a directory

El SDI R 12 Is a directory

El NVAL 13 Invalid argument

ENFI LE 14 File table overflow

EMFI LE 15 Too many open files
ETXTBSY 16 Text file busy

ENCSPC 17 No space left on device
ESPI PE 18 lllegal seek

EROFS 19 Read-only file system
EPI PE 20 Broken pipe

ELOOP 21 Too many levels of symbolic links
ENAVETOOLONG 22 File name too long

Floating-point errors

EDOM 23 Argument too large
ERANGE 24 Result too large

Errors returned by printf/scanf

ERR_FORMAT 25 lllegal format string for printf/scanf
ERR_NCOFLOAT 26 Floating-point not supported
ERR_NCLONG 27 Long not supported

ERR_NOPO NT 28 Pointers not supported

477

TASKING VX-toolset for RH850 User Guide

Encoding errors set by functions like fgetwc, getwc, mbrtowc, etc ...

El LSEQ 29 Invalid or incomplete multibyte or wide character

Errors returned by RTOS

ECANCELED 30 Operation canceled
ENCDEV 31 No such device

10.1.7. except.h

The header file except . h is for floating-point exception handling. See control program option
--fp-model=+trap.

10.1.8. fcntl.h

The header file f cnt | . h contains the function open() , which calls the low level function _open(), and
definitions of flags used by the low level function _open() . This header file is not defined in ISO C99.

open Opens a file a file for reading or writing. Calls _open.
(FSS implementation)

10.1.9. fenv.h

Contains mechanisms to control the floating-point environment. The functions in this header file are not
implemented.

f eget env Stores the current floating-point environment. (Not implemented)

f ehol dexept Saves the current floating-point environment and installs an environment
that ignores all floating-point exceptions. (Not implemented)

f esetenv Restores a previously saved (fegetenv or feholdexcept) floating-point
environment. (Not implemented)

f eupdat eenv Saves the currently raised floating-point exceptions, restores a previously
saved floating-point environment and finally raises the saved exceptions.
(Not implemented)

f ecl ear except Clears the current exception status flags corresponding to the flags specified
in the argument. (Not implemented)

f eget exceptfl ag Stores the current setting of the floating-point status flags. (Not implemented)

f er ai seexcept Raises the exceptions represented in the argument. As a result, other

exceptions may be raised as well.
(Not implemented)

feset exceptfl ag Sets the current floating-point status flags.
(Not implemented)

f et est except Returns the bitwise-OR of the exception macros corresponding to the
exception flags which are currently set and are specified in the argument.
(Not implemented)

478

Libraries

For each supported exception, a macro is defined. The following exceptions are defined:

FE_DI VBYZERO FE_| NEXACT FE_| NVALI D
FE_OVERFLOW FE_UNDERFLOW FE_ALL_EXCEPT
f eget round Returns the current rounding direction, represented as one of the values of

the rounding direction macros.
(Not implemented)

f eset round Sets the current rounding directions. (Not implemented)

Currently no rounding mode macros are implemented.

10.1.10. float.h

The header file f | oat . h defines the characteristics of the real floating-point types f | oat , doubl e and
| ong doubl e.

f | oat . h used to contain prototypes for the functions copysi gn(f), i si nf (f), i sfinite(f),
i snan(f) and scal b(f). These functions have accordingly to the ISO C99 standard been moved
to the header file mat h. h. See also Section 10.1.17, math.h and tgmath.h.

The following functions are only available for ISO C90:

copysignf(float f,float s) Copies the sign of the second argument s to the value of the first
argument f and returns the result.

copysi gn(doubl e d, doubl e s) Copies the sign of the second argument s to the value of the first
argument d and returns the result.

isinff(float f) Test the variable f on being an infinite (IEEE-754) value.

i si nf(doubl e d); Test the variable d on being an infinite (IEEE-754) value.
isfinitef(float f) Test the variable f on being a finite (IEEE-754) value.

i sfinite(double d) Test the variable d on being a finite (IEEE-754) value.

i snanf (float f) Test the variable f on being NaN (Not a Number, IEEE-754) .

i snan(doubl e d) Test the variable d on being NaN (Not a Number, IEEE-754) .
scal bf (float f,int p) Returns f * 2/p for integral values without computing 2N.

scal b(doubl e d,int p) Returns d * 27p for integral values without computing 2N. (See

also scal bn in Section 10.1.17, math.h and tgmath.h)

10.1.11. inttypes.h and stdint.h

The header files st di nt . hand i nt t ypes. h provide additional declarations for integer types and have
various characteristics. The st di nt . h header file contains basic definitions of integer types of certain
sizes, and corresponding sets of macros. This header file clearly refers to the corresponding sections in
the ISO C99 standard.

Thei ntt ypes. h header file includes st di nt . h and adds portable formatting and conversion functions.
Below the conversion functions from i nt t ypes. h are listed.

479

TASKING VX-toolset for RH850 User Guide

i maxabs(intmax_t j)

i maxdi v(int max_t
i ntmax_t denom

nuner ,

strtoi max(const char *
restrict nptr, char **
restrict endptr, i nt base)

strtoumax(const char *
restrict nptr, char **
restrict endptr, i nt base)

west oi max(const wechar _t *
restrict nptr, wchar _t **
restrict endptr, i nt base)

wcst oumax(const wehar _t *
restrict nptr, wchar _t **
restrict endptr, i nt base)

Returns the absolute value of j

Computes nurrer / denomand nuer % denom The resultis stored
in the quot and r emcomponents of the i maxdi v_t structure type.

Convert string to maximum sized integer. (Compare strtol |)

Convert string to maximum sized unsigned integer. (Compare
strtoul)

Convert wide string to maximum sized integer. (Compare wcst ol |)

Convert wide string to maximum sized unsigned integer. (Compare
westoul 1)

The header file i 0. h contains prototypes for low level I/O functions. This header file is not defined in ISO

10.1.12.i0.h
C99.
_close(fd)

_I seek(fd, of f set, whence)

_open(fd,fl ags)
_read(fd, *buff, cnt)
_unli nk(*nane)
_wite(fd, *buffer,cnt)

10.1.13.is0646.h

Used by the functions cl ose and f cl ose. (FSS implementation)

Used by all file positioning functions: f get pos, f seek, f set pos,
ftell,rew nd.(FSS implementation)

Used by the functions f open and f r eopen. (FSS implementation)
Reads a sequence of characters from a file. (FSS implementation)
Used by the function remove. (FSS implementation)

Writes a sequence of characters to a file. (FSS implementation)

The header file i s0646. h adds tokens that can be used instead of regular operator tokens.

#define and &&
#define and_eq =
#define bitand &
#define bitor |
#defi ne conpl ~
#def i ne not !
#define not_eq !=
#define or |]
#define or_eq | =
#define xor A
#define xor_eq "=

480

Libraries

10.1.14. limits.h

Contains the sizes of integral types, defined as macros.

10.1.15. locale.h

To keep C code reasonable portable across different languages and cultures, a number of facilities are
provided in the header file | ocal e. h.

char *setlocale(int category, const char *locale)

The function above changes locale-specific features of the run-time library as specified by the category
to change and the name of the locale.

The following categories are defined and can be used as input for this function:

LC ALL 0 LCNUMERIC 3
LC COLLATE 1 LC_TI ME 4
LC_CTYPE 2 LC_MONETARY 5

struct | conv *local econv(void)

Returns a pointer to type st ruct | conv with values appropriate for the formatting of numeric
guantities according to the rules of the current locale. The st ruct | conv in this header file is
conforming the ISO standard.

10.1.16. malloc.h

The header file mal | oc. h contains prototypes for memory allocation functions. This include file is not
defined in ISO C99, it is included for backwards compatibility with ISO C90. For ISO C99, the memory
allocation functions are part of st dl i b. h. See Section 10.1.25, stdlib.h and wchar.h.

mal | oc(si ze) Allocates space for an object with size size.
The allocated space is not initialized. Returns a pointer to the
allocated space.

cal I oc(nobj, si ze) Allocates space for n objects with size size.
The allocated space is initialized with zeros. Returns a pointer to
the allocated space.

free(*ptr) Deallocates the memory space pointed to by ptr which should be
a pointer earlier returned by the mal | oc or cal | oc function.
real l oc(*ptr, size) Deallocates the old object pointed to by ptr and returns a pointer

to a new object with size size, while preserving its contents.

If the new size is smaller than the old size, some contents at the
end of the old region will be discarded. If the new size is larger than
the old size, all of the old contents are preserved and any bytes in
the new object beyond the size of the old object will have
indeterminate values.

481

TASKING VX-toolset for RH850 User Guide

10.1.17. math.h and tgmath.h

The header file mat h. h contains the prototypes for many mathematical functions. Before ISO C99, all
functions were computed using the double type (the float was automatically converted to double, prior to
calculation). In this ISO C99 version, parallel sets of functions are defined for doubl e, f | oat and | ong
doubl e. They are respectively named function, functionf , functionl . All | ong type functions, though
declared in mat h. h, are implemented as the doubl e type variant which nearly always meets the
requirement in embedded applications.

The header file t gmat h. h contains parallel type generic math macros whose expansion depends on the
used type.t gmat h. h includes mat h. h and the effect of expansion is that the correct mat h. h functions
are called. The type generic macro, if available, is listed in the second column of the tables below.

Trigonometric and hyperbolic functions

math.h tgmath.h Description

sin si nf si nl sin Returns the sine of x.

cos cosf cosl cos Returns the cosine of x.

tan t anf tanl tan Returns the tangent of x.

asin asi nf asinl asin Returns the arc sine sin'l(x) of x.
acos acosf acosl acos Returns the arc cosine cos'l(x) of x.
at an at anf at anl at an Returns the arc tangent tan'l(x) of x.
at an2 atan2f atan2l at an2 Returns the result of: tan'l(y/ X).

si nh si nhf si nhl si nh Returns the hyperbolic sine of x.
cosh coshf coshl cosh Returns the hyperbolic cosine of x.
tanh t anhf t anhl tanh Returns the hyperbolic tangent of x.

asi nh asi nhf asi nhl asi nh Returns the arc hyperbolic sine of x.
acosh acoshf acoshl acosh Returns the non-negative arc hyperbolic cosine of x.
at anh at anhf at anhl at anh Returns the arc hyperbolic tangent of x.

Exponential and logarithmic functions

All of these functions are new in ISO C99, except for exp, | og and | 0g10.

math.h tgmath.h Description
exp expf expl exp Returns the result of the exponential function e*.
exp2 exp2f exp2l exp2 Returns the result of the exponential function 2. (Not

implemented)
expml expmif expmil expmil Returns the result of the exponential function €*-1. (Not

implemented)
| og | ogf | ogl | og Returns the natural logarithm | n(x), x>0.
| 0ogl10 | ogl0f | oglOl | 0og10 Returns the base-10 logarithm of x, x>0.

482

Libraries

math.h tgmath.h Description

| oglp | oglpf 1 oglpl | oglp Returns the base-e logarithm of (1+x) .x <> -1.(Not
implemented)

| 0g2 | og2f | og2l | 0g2 Returns the base-2 logarithm of x. x>0. (Not implemented)

il ogb ilogbf ilogbl il ogb Returns the signed exponent of x as an integer. x>0. (Not
implemented)

| ogb | ogbf | ogbl | ogb Returns the exponent of x as a signed integer in value in

frexp, Idexp, modf, scalbn, scalbin

floating-point notation. x > 0. (Not implemented)

math.h tgmath.h Description

frexp frexpf frexpl frexp Splits a float x into fraction f and exponent n, so that:
f=0.00r0.5<]|f|<1.0and 2" = x. Returns f, stores n.

| dexp | dexpf | dexpl | dexp Inverse of f r exp. Returns the result of x*2".
(x and n are both arguments).

nodf nmodf f nodf | - Splits a float x into fraction f and integer n, so that:
| f| < 1.0 and f+n=x. Returns f, stores n.

scal bn scal bnf scalbnl scalbn Computes the result of x* FLT_RADI X". efficiently, not
normally by computing FLT_RADI X" explicitly.

scal bl n scal bl nf scal bl nl scal bl n Same as scal bn but with argumentn as | ong int.

Rounding functions

math.h tgmath.h Description

ceil ceilf ceill ceil Returns the smallest integer not less than x, as a double.

floor floorf floorl floor Returns the largest integer not greater than x, as a double.

rint rintf rintl rint Returns the rounded integer value as an i nt according
to the current rounding direction. See f env. h. (Not
implemented)

Irint lrintf lrintl Irint Returns the rounded integer value as a |l ong i nt
according to the current rounding direction. See f env. h.
(Not implemented)

Ilrint Ilrintf Ilrintl Illrint Returns the rounded integer value asal ong | ong i nt
according to the current rounding direction. See f env. h.
(Not implemented)

near byi nt nearbyi ntf nearbyint! nearbyi nt Returns the rounded integer value as a floating-point
according to the current rounding direction. See f env. h.
(Not implemented)

round roundf roundl round Returns the nearest integer value of x as int.

(Not implemented)

483

TASKING VX-toolset for RH850 User Guide

math.h tgmath.h

Description

Iround Iroundf I|roundl |round

I'lround lroundf Ilroundl IIround

trunc truncf t runcl trunc

Remainder after division

math.h tgmath.h

Returns the nearest integer value of x as long int.
(Not implemented)

Returns the nearest integer value of x as long long int.
(Not implemented)

Returns the truncated integer value x. (Not implemented)

Description

f nod f nodf f nodl f nrod

remai nder renai nderf renai nder! renai nder

renmgquo renguof renguol renguo

Power and absolute-value functions

math.h tgmath.h

Returns the remainder r of x- ny. n is chosen as
trunc(x/y).r has the same sign as x.

Returns the remainder r of x- ny. n is chosen as
trunc(x/y).r may not have the same sign as x. (Not
implemented)

Same as remainder. In addition, the argument * quo is
given a specific value (see ISO). (Not implemented)

Description

cbrt cbrtf cbrtl cbrt
f abs f absf f absl f abs

frma f maf f mal fma

hypot hypotf hypotl hypot
pow powf powl power
sqrt sqrtf sqrtl sqrt

Manipulation functions: copysign, nan

Returns the real cube root of x (=x*/ %). (Not implemented)

Returns the absolute value of x (| x|). (abs, | abs, | | abs,
div,ldiv,l1div aredefinedinstdlib.h)

Floating-point multiply add. Returns x*y+z. (Not
implemented)

Returns the square root of x2+y?.
Returns x raised to the power y (xY).
Returns the non-negative square root of x. x 0.

, hextafter, nexttoward

math.h tgmath.h Description
copysi gn copysi gnf copysignll copysi gn Returns the value of x with the sign of y.
nan nanf nanl - Returns a quiet NaN, if available, with content indicated

nextafter nextafterf nextafterl nextafter

484

through t agp.
(Not implemented)

Returns the next representable value in the specified
format after x in the direction of y. Returns y is x=y.
(Not implemented)

Libraries

math.h tgmath.h Description

nexttoward nexttovardf nexttovard nexttoward Same as next af t er, except that the second argument
in all three variants is of type long double. Returns vy if
X=Y.
(Not implemented)

Positive difference, maximum, minimum

math.h tgmath.h Description

fdim f di nf fdim fdim Returns the positive difference between: | x- y]| .
(Not implemented)

f max f maxf f max| f max Returns the maximum value of their arguments.
(Not implemented)

fmn f m nf fmnl fmn Returns the minimum value of their arguments.
(Not implemented)

Error and gamma (Not implemented)

math.h tgmath.h Description

erf erff erfl erf Computes the error function of x.
(Not implemented)

erfc erfcf erfcl erc Computes the complementary error function of x.
(Not implemented)

| ganma | gammaf | gammal | gamma Computes the * | oge| IT'(X) |
(Not implemented)

tgamma tgamaf tgammal tganma Computes I'(x)
(Not implemented)

Comparison macros

The next are implemented as macros. For any ordered pair of numeric values exactly one of the
relationships - less, greater, and equal - is true. These macros are type generic and therefore do not have
a parallel function in t gmat h. h. All arguments must be expressions of real-floating type.

math.h tgmath.h Description

i sgreater - Returns the value of (x) > (y)

i sgreat erequal - Returns the value of (x) >= (vy)

i sl ess - Returns the value of (x) < (vy)

i sl essequal - Returns the value of (x) <= (vy)

i sl essgreater - Returns the value of (x) < (y) || (x) > (y)

i sunor der ed - Returns 1 if its arguments are unordered, O otherwise.

485

TASKING VX-toolset for RH850 User Guide

Classification macros

The next are implemented as macros. These macros are type generic and therefore do not have a parallel
function in t gmat h. h. All arguments must be expressions of real-floating type.

math.h tgmath.h Description

fpcl assify - Returns the class of its argument:
FP_I NFI NI TE, FP_NAN, FP_NORVAL, FP_SUBNORNMAL or
FP_ZERO

isfinite - Returns a nonzero value if and only if its argument has a finite
value

i sinf - Returns a nonzero value if and only if its argument has an infinite
value

i snan - Returns a nonzero value if and only if its argument has NaN value.

i snor mal - Returns a nonzero value if an only if its argument has a normal
value.

signbit - Returns a nonzero value if and only if its argument value is
negative.

10.1.18. setjmp.h

The set j np and | ongj np in this header file implement a primitive form of non-local jumps, which may
be used to handle exceptional situations. This facility is traditionally considered more portable than
signal . h

int setjnp(jnp_buf Records its caller's environment in env and returns 0.
env)

voi d | ongj nmp(j mp_buf Restores the environment previously saved with a call to set j np() .
env, int status)

10.1.19. signal.h

Signals are possible asynchronous events that may require special processing. Each signal is named by
a number. The following signals are defined:

SI G NT 1 Receipt of an interactive attention signal

SIGLL 2 Detection of an invalid function message

S| GFPE 3 An erroneous arithmetic operation (for example, zero divide, over f | ow)
SIGSEGY 4 Aninvalid access to storage

SIGTERM 5 A termination request sent to the program

SIGABRT 6 Abnormal termination, such as is initiated by the abor t function

The next function sends the signal sig to the program:

int raise(int sig)

486

Libraries

The next function determines how subsequent signals will be handled:
signal function *signal (int, signalfunction *);

The first argument specifies the signal, the second argument points to the signal-handler function or has
one of the following values:

S| G_DFL Default behavior is used

SIG I GN The signal is ignored

The function returns the previous value of si gnal f unct i on for the specific signal, or SI G_ERRif an
error occurs.

10.1.20. stdarg.h

The facilities in this header file gives you a portable way to access variable arguments lists, such as
needed foras f pri ntf and vfpri ntf.va_copy is new in ISO C99. This header file contains the
following macros:

va_arg(va_list ap,type) Returns the value of the next argument in the variable argument list.
Its return type has the type of the given argument t ype. A next call to
this macro will return the value of the next argument.

va_copy(va_list dest, This macro duplicates the current state of sr ¢ in dest, creating a

va_list src) second pointer into the argument list. After this call, va_arg() may be
used on sr ¢ and dest independently.

va_end(va_list ap) This macro must be called after the arguments have been processed.
It should be called before the function using the macro 'va_start' is
terminated.

va_start(va_list ap, This macro initializes ap. After this call, each call to va_arg() will return

| ast ar g) the value of the next argument. In our implementation, va_I i st cannot

contain any bit type variables. Also the given argument | ast ar g must
be the last non-bit type argument in the list.

10.1.21. stdbool.h

This header file contains the following macro definitions. These names for boolean type and values are
consistent with C++. You are allowed to #undef i ne or redefine the macros below.

#defi ne bool Bool
#define true

1
#define fal se 0
#define _ bool true_false_are_defined 1

10.1.22. stddef.h
This header file defines the types for common use:

ptrdiff _t Signed integer type of the result of subtracting two pointers.

487

TASKING VX-toolset for RH850 User Guide

size t Unsigned integral type of the result of the si zeof operator.
wchar _t Integer type to represent character codes in large character sets.

Besides these types, the following macros are defined:

NULL Expands to 0 (zero).
of f set of (_t ype, Expands to an integer constant expression with type si ze_t that is the offset
_menber) in bytes of _nmenber within structure type _t ype.

10.1.23. stdint.h

See Section 10.1.11, inttypes.h and stdint.h
10.1.24. stdio.h and wchar.h

Types

The header file st di 0. h contains functions for performing input and output. A number of functions also
have a parallel wide character function or macro, defined in wchar . h. The header file wchar . h also
includes st di o. h.

In the C language, many |I/O facilities are based on the concept of streams. The st di 0. h header file
defines the data type FI LE which holds the information about a stream. A FI LE object is created with
the function f open. The pointer to this object is used as an argument in many of the in this header file.
The FI LE object can contain the following information:

* the current position within the stream
 pointers to any associated buffers

* indications of for read/write errors

» end of file indication

The header file also defines type f pos_t as an unsi gned | ong.

Macros

stdio.h Description

NULL Expands to 0 (zero).

BUFSI Z Size of the buffer used by the set buf /set vbuf function: 512

EOF End of file indicator. Expands to -1.

\EOF End of file indicator. Expands to UINT_MAX (definedinlim ts. h)
NOTE: WEOF need not to be a negative number as long as its value does not
correspond to a member of the wide character set. (Defined in wchar . h).

FOPEN_MAX Number of files that can be opened simultaneously: 10

FI LENAME_MAX Maximum length of a filename: 100

488

Libraries

stdio.h Description

_| OFBF Expand to an integer expression, suitable for use as argument to the set vbuf function.
_I OLBF

_| ONBF

L_t mpnam Size of the string used to hold temporary file names: 8 (tmpxxxxx)

TVP_NMAX Maximum number of unique temporary filenames that can be generated: 0x8000
SEEK_CUR Expand to an integer expression, suitable for use as the third argument to the f seek
SEEK_END function.

SEEK_SET

stderr Expressions of type "pointer to FILE" that point to the FILE objects associated with
stdin standard error, input and output streams.

st dout

File access

stdio.h Description

f open(nane, node)

f cl ose(name)

ffl ush(nane)

f reopen(name, node,
stream

set buf (stream buffer)

set vbuf (st ream buf f er, node,
si ze)

Opens a file for a given mode. Available modes are:

"r read; open text file for reading
"w' write; create text file for writing;

if the file already exists, its contents is discarded
"a" append; open existing text file or

create new text file for writing at end of file
"r+" open text file for update; reading and writing
"w+" create text file for update; previous
contents if any is discarded
a+" append; open or create text file for update,
writes at end of file

(FSS implementation)

Flushes the data stream and closes the specified file that was previously
opened with fopen. (FSS implementation)

If stream is an output stream, any buffered but unwritten date is written.
Else, the effect is undefined. (FSS implementation)

Similar to fopen, but rather than generating a new value of type FILE *,
the existing value is associated with a new stream. (FSS implementation)

If buffer is NULL, buffering is turned off for the stream. Otherwise, setbuf
is equivalentto: (voi d) setvbuf (stream buffer, | OFBF, BUFSI Z) .

Controls buffering for the stream; this function must be called before reading
or writing. Mode can have the following values:

_| OFBF causes full buffering

_| OLBF causes line buffering of text files

_| ONBF causes no buffering.

If buffer is not NULL, it will be used as a buffer; otherwise a buffer will be
allocated. size determines the buffer size.

489

TASKING VX-toolset for RH850 User Guide

Formatted input/output

The f or mat string of pri nt f related functions can contain plain text mixed with conversion specifiers.
Each conversion specifier should be preceded by a '%' character. The conversion specifier should be
built in order:

Flags (in any order):

- specifies left adjustment of the converted argument.

+ a number is always preceded with a sign character.
+ has higher precedence than space.

space a negative number is preceded with a sign, positive numbers with a space.
0 specifies padding to the field width with zeros (only for numbers).

specifies an alternate output form. For o, the first digit will be zero. For x or X, "0x" and "0X"
will be prefixed to the number. For e, E, f, g, G, the output always contains a decimal point,
trailing zeros are not removed.

A number specifying a minimum field width. The converted argument is printed in a field with at least
the length specified here. If the converted argument has fewer characters than specified, it will be
padded at the left side (or at the right when the flag '- ' was specified) with spaces. Padding to numeric
fields will be done with zeros when the flag '0' is also specified (only when padding left). Instead of a
numeric value, also "*' may be specified, the value is then taken from the next argument, which is
assumed to be of type i nt .

A period. This separates the minimum field width from the precision.

A number specifying the maximum length of a string to be printed. Or the number of digits printed after
the decimal point (only for floating-point conversions). Or the minimum number of digits to be printed
for an integer conversion. Instead of a numeric value, also * ' may be specified, the value is then taken
from the next argument, which is assumed to be of type i nt .

A length modifier 'h', *hh', 'I', 'II', 'L', 'j', 'z" or 't'. 'h" indicates that the argument is to be treated as a shor t
orunsi gned short.'hh'indicates that the argument is to be treated as a char or unsi gned char.
'I'should be used if the argumentis al ong integer, 'll' foral ong | ong.'L"indicates that the argument
isal ong doubl e.']' indicates a pointertoi nt max_t orui nt max_t,'z"'indicates a pointerto si ze_t
and 't' indicates a pointertoptrdi ff _t.

Flags, length specifier, period, precision and length modifier are optional, the conversion character is not.
The conversion character must be one of the following, if a character following ‘%' is not in the list, the
behavior is undefined:

Character Printed as

d
0

X,

u

L int, signed decimal

int, unsigned octal
X int, unsigned hexadecimal in lowercase or uppercase respectively
int, unsigned decimal

490

Libraries

Character Printed as

c int, single character (converted to unsigned char)

S char *, the characters from the string are printed until a NULL character is found. When the
given precision is met before, printing will also stop

f,F double

e E double

g,G double

a, A double

n int *, the number of characters written so far is written into the argument. This should be a
pointer to an integer in default memory. No value is printed.

p pointer

r,Ir __fract, __ lIfract

R, IR __accum, __laccum

% No argument is converted, a '%' is printed.

printf conversion characters

All arguments to the scanf related functions should be pointers to variables (in default memory) of the
type which is specified in the format string.

The format string can contain :

» Blanks or tabs, which are skipped.

» Normal characters (not '%"), which should be matched exactly in the input stream.
» Conversion specifications, starting with a '%' character.

Conversion specifications should be built as follows (in order) :

* A meaning that no assignment is done for this field.

» A number specifying the maximum field width.

» The conversion characters d, i , n, 0, u and x may be preceded by 'h' if the argument is a pointer to
short ratherthani nt, or by 'hh'if the argument is a pointer to char , or by 'I' (letter ell) if the argument
is a pointer to | ong or by 'll' for a pointer to | ong | ong, 'j' for a pointer to i nt max_t or ui nt max_t,
'z' for a pointer to si ze_t or't' for a pointer to pt rdi f f _t . The conversion characters e, f, and g
may be preceded by 'I' if the argument is a pointer to doubl e rather than f | oat , and by ‘L' for a pointer
toal ong doubl e.

» A conversion specifier. *', maximum field width and length modifier are optional, the conversion character
is not. The conversion character must be one of the following, if a character following '%' is not in the
list, the behavior is undefined.

Length specifier and length modifier are optional, the conversion character is not. The conversion character
must be one of the following, if a character following '%' is not in the list, the behavior is undefined.

491

TASKING VX-toolset for RH850 User Guide

Character Scanned as

d

nw O X < O

"]

%

int, signed decimal.

int, the integer may be given octal (i.e. a leading 0 is entered) or hexadecimal (leading "0x"
or "0X"), or just decimal.

int, unsigned octal.

int, unsigned decimal.

int, unsigned hexadecimal in lowercase or uppercase.
single character (converted to unsigned char).

char *, a string of non white space characters. The argument should point to an array of
characters, large enough to hold the string and a terminating NULL character.

float

float

float

float

int *, the number of characters written so far is written into the argument. No scanning is done.
pointer; hexadecimal value which must be entered without Ox- prefix.

__fract, __lIfract

__accum, __laccum

Matches a string of input characters from the set between the brackets. A NULL character is
added to terminate the string. Specifying []...] includes the ']' character in the set of scanning
characters.

Matches a string of input characters not in the set between the brackets. A NULL character
is added to terminate the string. Specifying []...] includes the ']’ character in the set.

Literal '%', no assignment is done.

scanf conversion characters

stdio.h wchar.h Description

f scanf (st ream fwscanf (st ream Performs a formatted read from the given stream.

format, ...) format, ...) Returns the number of items converted
successfully. (FSS implementation)

scanf(format,...) wscanf (format, ...) Performs aformatted read from st di n. Returns

the number of items converted successfully. (FSS
implementation)

sscanf (*s, format, swscanf(*s, format, Performs aformatted read from the string s.

) J) Returns the number of items converted
successfully.
vfscanf (stream vfwscanf (stream Same as f scanf /f wscanf , but extra arguments
format, arg) format, arg) are given as variable argument list arg. (See

492

Section 10.1.20, stdarg.h)

stdio.h

wchar.h

Libraries

Description

vscanf (format, arQg)
vsscanf (*s, format,
arg)

fprintf(stream
format, ...)

printf(format, ...)

sprintf(*s, format,
-)

snprintf(*s, n,

format, ...)

viprintf(stream
format, arg)

vprintf(format, arg)

vsprintf(*s, format,
arg)

Character input/output

stdio.h

vwscanf (format, arg)

vswscanf (*s, format,

arg)

fwprintf(stream
format, ...)

wprintf(format, ...

swprintf(*s, n,
format, ...)

viwprintf(stream
format, arg)

vwprintf (format,
arg)

vswprintf(*s,
format, arg)

wchar.h

)

Same as sscanf /swscanf , but extra arguments
are given as variable argument list arg. (See
Section 10.1.20, stdarg.h)

Same as scanf /wscanf , but extra arguments
are given as variable argument list arg. (See
Section 10.1.20, stdarg.h)

Performs a formatted write to the given stream.
Returns EOF/WEOF on error. (FSS
implementation)

Performs a formatted write to the stream st dout .
Returns EOF/WEOF on error. (FSS
implementation)

Performs a formatted write to string s. Returns
EOF/WEOF on error.

Same as spri nt f, but n specifies the maximum
number of characters (including the terminating
null character) to be written.

Same as f pri nt f /f wpri nt f, but extra
arguments are given as variable argument list
arg. (See Section 10.1.20, stdarg.h) (FSS
implementation)

Sameaspri nt f fwpri nt f, but extra arguments
are given as variable argument list arg. (See
Section 10.1.20, stdarg.h) (FSS implementation)

Same as spri nt f/swpri nt f, but extra
arguments are given as variable argument list
arg. (See Section 10.1.20, stdarg.h)

Description

fgetc(stream

getc(stream

fgetwe(strean

getwc(stream

Reads one character from stream. Returns the
read character, or EOF/WEOF on error. (FSS
implementation)

Same as f get c/f get wc except that is
implemented as a macro.

(FSS implementation)

NOTE: Currently #defined as

get char () /get wehar () because FILE I/O is
not supported. Returns the read character, or
EOF/WEOF on error.

493

TASKING VX-toolset for RH850 User Guide

stdio.h

wchar.h

Description

get char (stdin)

fgets(*s, n, stream

gets(*s, n, stdin)

ungetc(c, strean
fputc(c, stream
putc(c, stream

put char (¢, stdout)

fputs(*s, stream

puts(*s)

Direct input/output

stdio.h

get wechar (stdin)

fgetws(*s, n,
strean

ungetwc(c, stream

fputwe(c, strean

putwe(c, strean

putwchar (¢, stdout)

fputws(*s, stream

Description

Reads one character from the st di n stream.
Returns the character read or EOF/WEOF on
error. Implemented as macro.

(FSS implementation)

Reads at most the next n-1 characters from the
stream into array s until a newline is found.
Returns s or NULL or EOF/WEOF on error. (FSS
implementation)

Reads at most the next n-1 characters from the
st di n stream into array s. A newline is ignored.
Returns s or NULL or EOF/WEOF on error. (FSS
implementation)

Pushes character ¢ back onto the input stream.
Returns EOF/WEOF on error.

Put character c onto the given stream. Returns
EOF/WEOF on error. (FSS implementation)
Same as f puc/f put we except that is
implemented as a macro. (FSS implementation)

Put character c onto the st dout stream. Returns
EOF/WEOF on error.
Implemented as macro. (FSS implementation)

Writes string s to the given stream. Returns
EOF/WEOF on error. (FSS implementation)

Writes string s to the st dout stream. Returns
EOF/WEOF on error. (FSS implementation)

fread(ptr, size, nobj, stream

Reads nobj members of size bytes from the given stream into

the array pointed to by ptr. Returns the number of elements
successfully read. (FSS implementation)

fwite(ptr,size, nobj, strean) Writes nobj members of size bytes from to the array pointed to
by ptr to the given stream. Returns the number of elements
successfully written. (FSS implementation)

Random access

stdio.h

Description

fseek(stream offset,

origin)

Sets the position indicator for stream. (FSS implementation)

When repositioning a binary file, the new position origin is given by the following macros:

494

Libraries

SEEK_SET 0 offset characters from the beginning of the file
SEEK_CUR 1 offset characters from the current position in the file
SEEK END 2 offset characters from the end of the file

ftell (stream

rewi nd(stream

Returns the current file position for stream, or -1L on error.
(FSS implementation)

Sets the file position indicator for the stream to the beginning of the file. This
function is equivalent to:

(void) fseek(stream OL, SEEK_SET) ;

clearerr(strean;

(FSS implementation)

f get pos(stream pos) Stores the current value of the file position indicator for stream in the object

pointed to by pos. (FSS implementation)

f set pos(stream pos) Positions st r eamat the position recorded by f get pos in *pos. (FSS

implementation)

Operations on files

stdio.h

Description

remove(file)
rename(ol d, new)
tnpfile()

t npnam(buf f er)

Error handling

stdio.h

Removes the named file, so that a subsequent attempt to open it fails. Returns a
non-zero value if not successful.

Changes the name of the file from old name to new name. Returns a non-zero
value if not successful.

Creates a temporary file of the mode "wb+" that will be automatically removed when
closed or when the program terminates normally. Returns a f i | e pointer.

Creates new file names that do not conflict with other file names currently in use.
The new file name is stored in a buffer which must have room for L_tmpnam
characters. Returns a pointer to the temporary name. The file names are created
in the current directory and all start with "tmp". At most TMP_MAX unique file names
can be generated.

Description

clearerr(stream
ferror(stream
f eof (stream
perror(*s)

Clears the end of file and error indicators for stream.
Returns a non-zero value if the error indicator for stream is set.
Returns a non-zero value if the end of file indicator for stream is set.

Prints s and the error message belonging to the integer er r no. (See
Section 10.1.6, errno.h)

10.1.25. stdlib.h and wchar.h

The header file st dl i

b. h contains general utility functions which fall into the following categories (Some

have parallel wide-character, declared in wchar . h)

495

TASKING VX-toolset for RH850 User Guide

* Numeric conversions

* Random number generation
* Memory management

* Environment communication
» Searching and sorting

* Integer arithmetic

Multibyte/wide character and string conversions.
Macros

EXI T_SUCCES Predefined exit codes that can be used in the exi t function.
0

EXI T_FAI LURE

1

RAND_MAX Highest number that can be returned by the r and/sr and function.
32767

MB_CUR_MAX 1 Maximum number of bytes in a multibyte character for the extended character set
specified by the current locale (category LC_CTYPE, see Section 10.1.15, locale.h).

Numeric conversions

The following functions convert the initial portion of a string *s to a doubl e, i nt,l ong i nt and | ong
| ong i nt value respectively.

doubl e atof (*s)
i nt atoi (*s)
| ong atol (*s)

| ong | ong atol | (*s)

The following functions convert the initial portion of the string *s to a float, double and long double value
respectively. * endp will point to the first character not used by the conversion.

stdlib.h wchar.h

fl oat strtof (*s, **endp) f | oat west of (*s, **endp)
doubl e strtod(*s, **endp) doubl e west od(*s, **endp)

| ong doubl e strtold(*s, **endp) | ong doubl e westol d(*s, **endp)

The following functions convert the initial portion of the string *s to al ong, | ong | ong, unsi gned
| ong and unsi gned | ong | ong respectively. Base specifies the radix. * endp will point to the first
character not used by the conversion.

496

stdlib.h

wchar.h

Libraries

long strtol (*s,**endp, base)
long long strtoll

(*s, **endp, base)
unsi gned | ong strtoul

(*s, **endp, base)
unsi gned long long strtoull

(*s, **endp, base)

I ong westol (*s, **endp, base)
I ong | ong westol |

(*s, **endp, base)
unsi gned | ong wecst oul

(*s, **endp, base)
unsi gned | ong | ong westoul |

(*s, **endp, base)

Random number generation

rand

Returns a pseudo random integer in the range 0 to RAND_MAX.

srand(seed) Same as rand but uses seed for a new sequence of pseudo random numbers.

Memory management

mal | oc(si ze)

cal I oc(nobj, si ze)

free(*ptr)

real l oc(*ptr, size)

Allocates space for an object with size size.
The allocated space is not initialized. Returns a pointer to the allocated space.

Allocates space for n objects with size size.
The allocated space is initialized with zeros. Returns a pointer to the allocated
space.

Deallocates the memory space pointed to by ptr which should be a pointer
earlier returned by the mal | oc or cal | oc function.

Deallocates the old object pointed to by ptr and returns a pointer to a new
object with size size, while preserving its contents.

If the new size is smaller than the old size, some contents at the end of the
old region will be discarded. If the new size is larger than the old size, all of
the old contents are preserved and any bytes in the new object beyond the
size of the old object will have indeterminate values.

Environment communication

abort ()
atexi t (*func)

exit(status)

_Exit(status)

getenv(*s)

Causes abnormal program termination. If the signal SIGABRT is caught, the
signal handler may take over control. (See Section 10.1.19, signal.h).

func points to a function that is called (without arguments) when the program
normally terminates.

Causes normal program termination. Acts as if mai n() returns with status as
the return value. Status can also be specified with the predefined macros
EXIT_SUCCES or EXIT_FAILURE.

Same as exi t, but not registered by the at exi t function or signal handlers
registered by the si gnal function are called.

Searches an environment list for a string s. Returns a pointer to the contents
of s.
NOTE: this function is not implemented because there is no OS.

497

TASKING VX-toolset for RH850 User Guide

systen(*s)

Passes the string s to the environment for execution.
NOTE: this function is not implemented because there is no OS.

Searching and sorting

bsear ch(*key,
*base, n, size,
*cnp)

gsort (*base, n,
size, *cnp)

Integer arithmetic

int abs(j)
I ong | abs(j)
long long Il abs(j)

div_t div(x,y)
Idiv_t Idiv(x,y)
I1div_t Ildiv(x,y)

This function searches in an array of n members, for the object pointed to by
key. The initial base of the array is given by base. The size of each member
is specified by size. The given array must be sorted in ascending order,
according to the results of the function pointed to by cmp. Returns a pointer
to the matching member in the array, or NULL when not found.

This function sorts an array of n members using the quick sort algorithm. The
initial base of the array is given by base. The size of each member is specified
by size. The array is sorted in ascending order, according to the results of the
function pointed to by cmp.

Compute the absolute value ofanint,long int,andlong long intj
respectively.

Compute x/y and x%y in a single operation. X and y have respectively type
int,long int andlong | ong int.The resultis stored in the members
quot andremofstruct div_t,ldiv_t andl|div_t which have the
same types.

Multibyte/wide character and string conversions

nmbl en(*s, n)

mbt owc (* pwe, *s, n)
wet onb(*s, we)

nbst owcs(* pwes, *s, n)

west onbs(*s, *pwes, n)

Determines the number of bytes in the multi-byte character pointed to by s. At
most n characters will be examined. (See also nbr | en in Section 10.1.29,
wchar.h).

Converts the multi-byte character in s to a wide-character code and stores it
in pwc. At most n characters will be examined.

Converts the wide-character wc into a multi-byte representation and stores it
in the string pointed to by s. At most MB_CUR_MAX characters are stored.

Converts a sequence of multi-byte characters in the string pointed to by s into
a sequence of wide characters and stores at most n wide characters into the
array pointed to by pwcs. (See also nmbsr t owcs in Section 10.1.29, wchar.h).

Converts a sequence of wide characters in the array pointed to by pwcs into
multi-byte characters and stores at most n multi-byte characters into the string
pointed to by s. (See also wcsr t owrb in Section 10.1.29, wchar.h).

10.1.26. string.h and wchar.h

This header file provides numerous functions for manipulating strings. By convention, strings in C are
arrays of characters with a terminating null character. Most functions therefore take arguments of type

498

Libraries

*char . However, many functions have also parallel wide-character functions which take arguments of
type *wchar _t . These functions are declared in wechar . h.

Copying and concatenation functions

string.h wchar.h Description

mencpy(*sl, *s2, n) wentpy(*sl, *s2, n) Copies n characters from *s2 into *s1 and returns *s1. If
*s1 and *s2 overlap the result is undefined.

nmemmove(*sl, *s2, n) wnemmove(*s1, *s2,n) Same as nmentpy, but overlapping strings are handled
correctly. Returns *s1.

strcpy(*sl, *s2) wescpy(*sl, *s2) Copies *s2 into *s1 and returns *sl. If *s1 and *s2 overlap
the result is undefined.

strncpy(*sl, *s2, n) wesncpy(*sl, *s2, n) Copies not more than n characters from *s2 into *s1 and
returns *s1. If *s1 and *s2 overlap the result is undefined.

strcat (*sl1,*s2) wecscat (*sl1, *s2) Appends a copy of *s2 to *s1 and returns *s1. If *s1 and
*s2 overlap the result is undefined.

strncat (*sl, *s2,n) wesncat (*s1, *s2, n) Appends not more than n characters from *s2 to *s1 and
returns *sl. If *s1 and *s2 overlap the result is undefined.

Comparison functions

string.h wchar.h Description

mencnp(*sl, *s2, n) wentnp(*sl, *s2, n) Compares the first n characters of *s1 to the first n
characters of *s2. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or >0 if *s1 > *s2.

strcmp(*sl, *s2) wescnp(*sl, *s2) Compares string *s1 to *s2. Returns < 0 if *s1 < *s2, 0 if *s1
==*s2,0r >0 if *s1 > *s2.

strncnp(*sl, *s2, n) wesnenp(*sl, *s2, n) Compares the first n characters of *s1 to the first n
characters of *s2. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2.

strcoll (*s1,*s2) wescol | (*s1, *s2) Performs a local-specific comparison between string *s1
and string *s2 according to the LC_COLLATE category of
the current locale. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2. (See Section 10.1.15, locale.h)

strxfrn{*sl, *s2,n) wesxfrn{*sl, *s2, n) Transforms (a local) string *s2 so that a comparison
between transformed strings with st r cnp gives the same
result as a comparison between non-transformed strings
with st rcol | . Returns the transformed string *s1.

Search functions

string.h wchar.h Description

menchr(*s,c,n) wnenchr(*s, c,n) Checks the first n characters of *s on the occurrence of
character c. Returns a pointer to the found character.

499

TASKING VX-toolset for RH850 User Guide

string.h wchar.h Description

strchr(*s,c) weschr (*s, ¢) Returns a pointer to the first occurrence of character c in
*s or the null pointer if not found.

strrchr(*s,c) wesrchr (*s, c) Returns a pointer to the last occurrence of character c in *s

strspn(*s, *set) wcsspn(*s, *set)
strcspn(*s, *set) wescspn(*s, *set)
strpbrk(*s, *set) wespbrk(*s, *set)
strstr(*s,*sub) wesstr(*s, *sub)

strtok(*s,*dln) westok(*s,*dlm

Miscellaneous functions

string.h wchar.h

or the null pointer if not found.

Searches *s for a sequence of characters specified in *set.
Returns the length of the first sequence found.

Searches *s for a sequence of characters not specified in
*set. Returns the length of the first sequence found.

Same as st r spn/wecsspn but returns a pointer to the first
character in *s that also is specified in *set.

Searches for a substring *sub in *s. Returns a pointer to the
first occurrence of *sub in *s.

A sequence of calls to this function breaks the string *s into
a sequence of tokens delimited by a character specified in
*dIm. The token found in *s is terminated with a null
character. Returns a pointer to the first position in *s of the
token.

Description

menset (*s,c,n) wnenset(*s, c,n)

strerror(errno) -

strlen(*s) wesl en(*s)

10.1.27. time.h and wchar.h

Fills the first n bytes of *s with character ¢ and returns *s.

Typically, the values for errno come fromi nt errno.This
function returns a pointer to the associated error message.
(See also Section 10.1.6, errno.h)

Returns the length of string *s.

The header file t i ne. h provides facilities to retrieve and use the (calendar) date and time, and the
process time. Time can be represented as an integer value, or can be broken-down in components. Two
arithmetic data types are defined which are capable of holding the integer representation of times:

clock_t unsigned | ong |ong

tinme_t unsigned |ong

The type st ruct t mbelow is defined according to ISO C99 with one exception: this implementation
does not support leap seconds. The st ruct t mtype is defines as follows:

struct tm
{ .
i nt t m sec;
i nt tm.mn;
i nt t m_hour;
i nt t m_nday;

500

/*
/*
/*
/*

seconds after the minute - [0, 59] */

m nutes after the hour - [0, 59] */
hours since midnight - [0, 23] */
day of the nonth - [1, 31] */

Libraries

i nt t m_non; /* nonths since January - [0, 11] */
i nt tmyear; /* year since 1900 */
i nt t m wday; /* days since Sunday - [0, 6] */
i nt t m yday; /* days since January 1 - [0, 365] */
i nt tm.isdst; /* Daylight Saving Tine flag */

}s

Time manipulation

cl ock

difftinme(ti,t0)
nktime(tm *tp)
time(*tiner)

Time conversion

asctine(tm*tp)

ctime(*tiner)

gntime(*timer)

| ocal time(*tiner)

Formatted time

Returns the application's best approximation to the processor time used by the
program since it was started. This low-level routine is not implemented because it
strongly depends on the hardware. To determine the time in seconds, the result of
clock should be divided by the value defined by CLOCKS_PER_SEC.

Returns the difference t1-t0 in seconds.

Converts the broken-down time in the structure pointed to by tp, to a value of type
ti me_t.The return value has the same encoding as the return value of the t i me
function.

Returns the current calendar time. This value is also assigned to *t i ner.

Converts the broken-down time in the structure pointed to by tp into a string in the
form Mon Feb 04 16: 15: 14 2013\ n\ 0. Returns a pointer to this string.

Converts the calender time pointed to by timer to local time in the form of a string.
This is equivalent to: ascti me(l ocal ti me(tiner))

Converts the calender time pointed to by timer to the broken-down time, expressed
as UTC. Returns a pointer to the broken-down time.

Converts the calendar time pointed to by timer to the broken-down time, expressed
as local time. Returns a pointer to the broken-down time.

The next function has a parallel function defined in wchar . h:

time.h

wchar.h

strftime(*s,smax, *fnt,tm*tp) wesftine(*s, smax, *fnt,tm*tp)

Formats date and time information from st r uct t m*tp into *s according to the specified format *fmt.
No more than smax characters are placed into *s. The formatting of st r f t i me is locale-specific using
the LC_TI ME category (see Section 10.1.15, locale.h).

You can use the next conversion specifiers:

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

501

TASKING VX-toolset for RH850 User Guide

%B
%cC
%C
%d
%D
%e
%F
%g
%G
%h
%H
%I
%j
%m
%M
%n
%p
%r
%R
%S
%t
%T
%u
%U
%V
%w
%W
%X
%X
%y
%Y
%z
%Z
%%

502

full month name

locale-specific date and time representation (same as ¥%a % % % %)
last two digits of the year

day of the month (01-31)

same as % Yd/ %y

day of the month (1-31), with single digits preceded by a space
ISO 8601 date format: %v- %m %d

last two digits of the week based year (00-99)

week based year (0000—9999)

same as %b

hour, 24-hour clock (00-23)

hour, 12-hour clock (01-12)

day of the year (001-366)

month (01-12)

minute (00-59)

replaced by newline character

locale's equivalent of AM or PM

locale's 12-hour clock time; same as % : %Vt %8 %

same as %1 9YM

second (00-59)

replaced by horizontal tab character

ISO 8601 time format: % %t %S

ISO 8601 weekday number (1-7), Monday as first day of the week
week number of the year (00-53), week 1 has the first Sunday
ISO 8601 week number (01-53) in the week-based year
weekday (0-6, Sunday is 0)

week number of the year (00-53), week 1 has the first Monday
local date representation

local time representation

year without century (00-99)

year with century

ISO 8601 offset of time zone from UTC, or nothing

time zone name, if any

%

Libraries

10.1.28. unistd.h

The file uni st d. h contains standard UNIX I/O functions. These functions are all implemented using file
system simulation. Except for | st at and f st at which are not implemented. This header file is not
defined in ISO C99.

access(*nane, node) Use file system simulation to check the permissions of a file on the host. mode
specifies the type of access and is a bit pattern constructed by a logical OR of
the following values:

R_OK Checks read permission.

W OK Checks write permission.

X_OK Checks execute (search) permission.
F_OK Checks to see if the file exists.

(FSS implementation)

chdi r (*pat h) Use file system simulation to change the current directory on the host to the
directory indicated by path. (FSS implementation)

cl ose(fd) File close function. The given file descriptor should be properly closed. This
function calls _cl ose() . (FSS implementation)

get cwd(*buf, si ze) Use file system simulation to retrieve the current directory on the host. Returns
the directory name. (FSS implementation)

| seek(fd, of fset, whence) Moves read-write file offset. Calls _| seek() . (FSS implementation)

read(fd, *buff, cnt) Reads asequence of characters from a file. This function calls _r ead() . (FSS
implementation)

stat (*nane, *buff) Use file system simulation to stat() a file on the host platform. (FSS
implementation)

| stat (*name, *buf f) This function is identical to stat(), except in the case of a symbolic link, where
the link itself is 'stat’-ed, not the file that it refers to. (Not implemented)

fstat (fd,*buff) This function is identical to stat(), except that it uses a file descriptor instead
of a name. (Not implemented)

unl i nk(*nane) Removes the named file, so that a subsequent attempt to open it fails. (FSS
implementation)

wite(fd,*buff, cnt) Write asequence of characters to afile.Calls _wri t e() . (FSS implementation)

10.1.29. wchar.h

Many functions inwchar . h represent the wide-character variant of other functions so these are discussed
together. (See Section 10.1.24, stdio.h and wchar.h, Section 10.1.25, stdlib.h and wchar.h, Section 10.1.26,
string.h and wchar.h and Section 10.1.27, time.h and wchar.h).

The remaining functions are described below. They perform conversions between multi-byte characters
and wide characters. In these functions, ps points to struct mbst at e_t which holds the conversion state
information necessary to convert between sequences of multibyte characters and wide characters:

503

TASKING VX-toolset for RH850 User Guide

t ypedef struct

{
wchar _t wc_val ue; [/* wide character val ue sol ved
so far */
unsi gned short n_bytes; /* nunber of bytes of solved
mul ti byte */
unsi gned short encoding; /* encoding rule for w de
character <=> nultibyte
conversion */
} nbstate_t;

When multibyte characters larger than 1 byte are used, this struct will be used to store the conversion
information when not all the bytes of a particular multibyte character have been read from the source. In
this implementation, multi-byte characters are 1 byte long (MB_CUR_MAX and MB_LEN_MAX are defined

as 1) and this will never occur.

nbsi ni t (*ps)

niosr t owes(* pyes, **src, n, *ps)

wesrtonbs(*s, **src, n, *ps)

nbrt owc(*pwe, *s, n, *ps)

wertonb(*s, we, *ps)
bt owc(c)

wct ob(c)

nbrlen(*s, n, *ps)

10.1.30. wctype.h

Determines whether the object pointed to by ps, is an initial conversion
state. Returns a non-zero value if so.

Restartable version of nbst owcs. See Section 10.1.25, stdlib.h and
wchar.h. The initial conversion state is specified by ps. The input sequence
of multibyte characters is specified indirectly by src.

Restartable version of wecst onbs. See Section 10.1.25, stdlib.h and
wchar.h. The initial conversion state is specified by ps. The input wide
string is specified indirectly by src.

Converts a multibyte character *s to a wide character *pwc according to
conversion state ps. See also nbt owc in Section 10.1.25, stdlib.h and
wchar.h.

Converts a wide character wc to a multi-byte character according to
conversion state ps and stores the multi-byte character in *s.

Returns the wide character corresponding to character c. Returns WEOF
on error.

Returns the multi-byte character corresponding to the wide character c.
The returned multi-byte character is represented as one byte. Returns
EOF on error.

Inspects up to n bytes from the string *s to see if those characters
represent valid multibyte characters, relative to the conversion state held
in *ps.

Most functions in wet ype. h represent the wide-character variant of functions declared in ct ype. h and
are discussed in Section 10.1.4, ctype.h and wctype.h. In addition, this header file provides extensible,
locale specific functions and wide character classification.

504

wct ype(* pr operty)

i swet ype(we, desc)

Function

Libraries

Constructs a value of type wet ype_t that describes a class of wide characters
identified by the string *property. If property identifies a valid class of wide characters
according to the LC_TYPE category (see Section 10.1.15, locale.h) of the current
locale, a non-zero value is returned that can be used as an argument in the

i swet ype function.

Tests whether the wide character wc is a member of the class represented by
wct ype_t desc. Returns a non-zero value if tested true.

Equivalent to locale specific test

swal nunm(we)

swal pha(wc)

swentrl (we)
swdi gi t (we)
swgr aph(we)
sw ower (we)

swpri nt (we)

swpunct (we)

swspace(we)

swupper (we)

swxdi tig(we)

wct rans(* property)

t owct rans(we, desc)

Function

swet ype(we, wet ype("al nuni'))

swet ype(we, wet ype("al pha"))

swet ype(we, wetype("cntrl ™))

swetype(we, wetype("digit"))

swet ype(we, wet ype(" graph"))

swetype(we, wet ype("l ower ™))

swetype(we, wetype("print™))

swet ype(we, wet ype(" punct ™))

swet ype(we, wet ype(" space"))

swet ype(we, wet ype(" upper ™))

swetype(we, wet ype("xdigit"))

Constructs a value of type wet ype_t that describes a mapping between wide
characters identified by the string *property. If property identifies a valid mapping
of wide characters according to the LC_TYPE category (see Section 10.1.15,
locale.h) of the current locale, a non-zero value is returned that can be used as an
argument in the t owct r ans function.

Transforms wide character wc into another wide-character, described by desc.

Equivalent to locale specific transformation

t o ower (wc)
t owupper (wc)

towct rans(wc, wctrans("t ol ower")
towct rans(we, wet rans("t oupper")

10.2. C Library Reentrancy

Some of the functions in the C library are reentrant, others are not. The table below shows the functions
in the C library, and whether they are reentrant or not. A dash means that the function is reentrant. Note
that some of the functions are not reentrant because they set the global variable 'errno’ (or call other
functions that eventually set 'errno’). If your program does not check this variable and errno is the only
reason for the function not being reentrant, these functions can be assumed reentrant as well.

The explanation of the cause why a function is not reentrant sometimes refers to a footnote because the
explanation is too lengthy for the table.

505

TASKING VX-toolset for RH850 User Guide

Function Not reentrant because

_close Uses global File System Simulation buffer, _dbg_request

_doflt Uses I/O functions which modify iob[]. See (1).

_doprint Uses indirect access to static iob[] array. See (1).

_doscan Uses indirect access to iob[] and calls ungetc (access to local static
ungetc]] buffer). See (1).

_Exit See exit.

_fil buf Uses iob[], which is not reentrant. See (1).

_fl sbuf Uses iob[]. See (1).

_getflt Uses iob[]. See (1).

_iob Defines static iob[]. See (1).

_|I seek Uses global File System Simulation buffer, _dbg_request

_open Uses global File System Simulation buffer, _dbg_request

_read Uses global File System Simulation buffer, _dbg_request

_unlink Uses global File System Simulation buffer, _dbg_request

_Wwite Uses global File System Simulation buffer, _dbg_request

abort Calls exit

abs labs || abs
access

acos acosf acosl
acosh acoshf acoshl
asctinme

asin asinf asinl
asi nh asi nhf asi nhl
atan atanf atanl
atan2 atan2f atan2l
at anh at anhf at anhl
atexit

at of

at oi

at ol

bsearch

bt owc

cabs cabsf cabsl
cacos cacosf cacosl
cacosh cacosh cfacoshl

506

Uses global File System Simulation buffer, _dbg_request
Sets errno.

Sets errno via calls to other functions.

asctime defines static array for broken-down time string.
Sets errno.

Sets errno via calls to other functions.

Sets errno via calls to other functions.

atexit defines static array with function pointers to execute at exit of
program.

Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.

Function

Not reentrant because

Libraries

cal | oc

carg cargf cargl

casi n casinf casinl
casi nh casi nh cfasinhl
catan catanf catanl
cat anh catanhf catanhl
cbrt cbrtf cbrtl

ccos ccosf ccosl
ccosh ccoshf ccoshl
ceil ceilf ceill

cexp cexpf cexpl

chdir

ci mag ci magf ci magl

cl eanup

clearerr

cl ock

clog clogf clogl

cl ose

conj conjf conjl

copysi gn copysi gnf
copysi gnl

cos cosf cosl
cosh coshf coshl

cpow cpowf cpow
cproj cprojf cprojl
creal crealf creall
csin csinf csinl
csi nh csinhf csinhl
csqrt csqrtf csqrtl
ctan ctanf ctanl
ctanh ctanhf ctanhl
ctine

difftime

div Idiv Ildiv

erf erfl erff

calloc uses static buffer management structures. See malloc (5).

Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
(Not implemented)

Sets errno via calls to other functions.
Sets errno via calls to other functions.

Sets errno via calls to other functions.

Uses global File System Simulation buffer, _dbg_request

Calls fclose. See (1)
Modifies iob[]. See (1)

Uses global File System Simulation buffer, _dbg_request

Sets errno via calls to other functions.

Calls _close

cosh calls exp(), which sets errno. If errno is discarded, cosh is

reentrant.
Sets errno via calls to other functions.

Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
Calls asctime

(Not implemented)

507

TASKING VX-toolset for RH850 User Guide

Function

Not reentrant because

erfc erfcf erfcl
exit

exp expf expl
exp2 exp2f exp2
expnl expmif expmil
fabs fabsf fabsl
fcl ose
fdimfdinf fdim
f ecl ear except

f eget env

feget exceptfl ag
f egetround

f ehol dexept

f eof

f er ai seexcept
ferror

f esetenv
fesetexceptfl ag
fesetround

f et est except

f eupdat eenv
fflush

fgetc fgetwe

f get pos

fgets fgetws
floor floorf floorl
frma fmaf frma
fmax frmaxf fmaxl
fmn fmnf fmnl
frod frnodf fnod
f open

fpcl assify
fprintf fwprintf
fputc fputwe

508

(Not implemented)

Calls fclose indirectly which uses iob[] calls functions in _atexit
array. See (1). To make exit reentrant kernel support is required.

Sets errno.

(Not implemented)

(Not implemented)

Uses values in iob[]. See (1).
(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

Uses values in iob[]. See (1).
(Not implemented)

Uses values in iob[]. See (1).
(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)
Modifies iob[]. See (1).

Uses pointer to iob[]. See (1).
Sets the variable errno and uses pointer to iob[]. See (1) / (2).
Uses iob[]. See (1).

(Not implemented)

(Not implemented)

(Not implemented)

Uses iob[] and calls malloc when file open for buffered 10. See (1)

Uses iob[]. See (1).
Uses iob[]. See (1).

Function

Libraries

Not reentrant because

fputs fputws

fread

free

freopen

frexp frexpf frexp
fscanf fwscanf

f seek

f set pos

fstat

ftell

fwite

getc getwe

get char getwchar
get cwd

getenv

gets getws

gntine

hypot hypotf hypot
ilogb ilogbf ilogbl
maxabs

maxdi v

sal num i swal num

sal pha i swal pha

sascii iswascii
scntrl iswentrl
sdigit iswdigit
sfinite

sgraph iswgraph

sgreater

sgr eat er equal
si nf

sl ess

sl essequal

sl essgreater
sl ower isw ower

Uses iob[]. See (1).

Calls fgetc. See (1).

free uses static buffer management structures. See malloc (5).
Modifies iob[]. See (1).

Uses iob[]. See (1)

Uses iob[] and calls _Iseek. Accesses ungetc|] array. See (1).
Uses iob[] and sets errno. See (1) / (2).

(Not implemented)

Uses iob[] and sets errno. Calls _Iseek. See (1) / (2).

Uses iob[]. See (1).

Uses iob[]. See (1).

Uses iob[]. See (1).

Uses global File System Simulation buffer, _dbg_request
Skeleton only.

Uses iob[]. See (1).

gmtime defines static structure

Sets errno via calls to other functions.

(Not implemented)

509

TASKING VX-toolset for RH850 User Guide

Not reentrant because

Function

i snan

i snor mal

isprint iswprint
i spunct iswpunct

sspace iswspace
sunor der ed

supper i swupper
swal num

swal pha
swentrl

swet ype
swdi gi t
swgr aph
sw ower
swpri nt
swpunct

swspace

swupper

swxditig

sxdigit iswdigit

| dexp | dexpf | dexp
| ganma | ganmaf

Ilrintf

| ganmal
I'lrint Ilrintl
I'1round Il roundf I1lround
| ocal econv

| ocal tinme

| og | ogf 1 ogl
| 0g10 | ogl10f

| oglp | oglpf

1 0og10
I oglp
| og2 | og2f | o0g2l
| ogb | ogbf
| ongj np

lrint Irintf

| ogbl

lrintl
| round | roundf | roundl

| seek

510

Sets errno. See (2).
(Not implemented)
(Not implemented)
(Not implemented)
N.A.; skeleton function

Sets errno. See (2).

Sets errno via calls to other functions.

(Not implemented)
(Not implemented)
(Not implemented)
(Not implemented)
(Not implemented)

Calls _Iseek

Libraries

Function Not reentrant because

| stat (Not implemented)

mal | oc Needs kernel support. See (5).
bl en N.A., skeleton function

nbrl en Sets errno.

nmbrt owc Sets errno.

nbsi ni t -

nbsrtowcs Sets errno.

nbst owcs N.A., skeleton function

nbt owc N.A., skeleton function

menchr wrenchr
nmencnp Whencnp
mencpy wrencpy
NMeNmMoVe WTENMDVE
nmenset wrenset
nmkti me

nmodf nodff nodfl
nan nanf nanl

near byi nt near byi nt f
near byi nt |

nextafter nextafterf
next afterl

nexttoward nexttowar df
next t owar dl

of f set of

open

perror

pow powf pow
printf wprintf
putc putwc

put char putwchar
puts

gsort

rai se

rand

read

(Not implemented)
(Not implemented)

(Not implemented)

(Not implemented)

Calls _open

Uses errno. See (2)

Sets errno. See (2)

Uses iob[]. See (1)

Uses iob[]. See (1)

Uses iob[]. See (1)

Uses iob[]. See (1)

Updates the signal handler table

Uses static variable to remember latest random number. Must
diverge from ISO C standard to define reentrant rand. See (4).

Calls _read

511

TASKING VX-toolset for RH850 User Guide

Function Not reentrant because

real | oc See malloc (5).

remai nder remai nderf (Not implemented)

r emai nder |

renove Uses global File System Simulation buffer, _dbg_request

renguo renmguof renquol (Not implemented)

r enane Uses global File System Simulation buffer, _dbg_request

rew nd
rint rintf rintl
round roundf roundl

scal bl n scal bl nf scal bl nl
scal bn scal bnf scal bnl

scanf wscanf

set buf

setjnp

setl ocal e

set vbuf

si gnal

si gnbi t

sin sinf sinl

si nh si nhf sinhl
snprintf swprintf
sprintf

sqrt sqrtf sqrtl
srand

sscanf swscanf
st at

strcat wcscat
strchr weschr
strcnp wescnp
strcoll wcscol
strcpy wescpy
strcspn wescspn
strerror
strftime wesftine

strlen wesl en

512

Eventually calls _Iseek
(Not implemented)
(Not implemented)

Uses iob[], calls _doscan. See (1).
Sets iob[]. See (1).

N.A.; skeleton function

Sets iob and calls malloc. See (1) / (5).
Updates the signal handler table

Sets errno via calls to other functions.
Sets errno. See (2).

Sets errno. See (2).

Sets errno. See (2).

See rand

Sets errno via calls to other functions.

Uses global File System Simulation buffer, _dbg_request

Function

Libraries

Not reentrant because

strncat wcsncat
strncnp wesncnp
strncpy wesncpy
strpbrk wespbrk
strrchr wesrchr
strspn wesspn
strstr wesstr
strtod westod
strtof wcstof
strtoi max
strtok westok

strtol wcstol
strtold westold
strtoul wcstoul
strtoull westoull
strtoumax
strxfrmwesxfrm
system

tan tanf tanl
tanh tanhf tanhl

tgamma t gammaf t gamal

time
tnpfile
t npnam

toascii

t ol ower

t oupper

towct rans

t o ower

t owupper

trunc truncf truncl
unget c ungetwc

Sets errno via calls to other functions.

strtok saves last position in string in local static variable. This function
is not reentrant by design. See (4).

Sets errno. See (2).

Sets errno. See (2).

Sets errno. See (2).

Sets errno via calls to other functions.

N.A,; skeleton function

Sets errno. See (2).

Sets errno via call to other functions.

(Not implemented)

Uses static variable which defines initial start time
Uses iob[]. See (1).

Uses local buffer to build filename.
Function can be adapted to use user buffer. This makes the function
non ISO C. See (4).

(Not implemented)

Uses static buffer to hold unget characters for each file. Can be
moved into iob structure. See (1).

513

TASKING VX-toolset for RH850 User Guide

Function Not reentrant because

unl i nk Uses global File System Simulation buffer, _dbg_request
viprintf vfwprintf Uses iob[]. See (1).

vfscanf vfwscanf Calls _doscan

vprintf vwprintf Uses iob[]. See (1).

vscanf vwscanf Calls _doscan

vsprintf vswprintf Sets errno.

vsscanf vswscanf Sets errno.

wert onb Sets errno.

wesrt onbs Sets errno.

west oi max Sets errno via calls to other functions.
west onbs N.A.; skeleton function

west oumax Sets errno via calls to other functions.
wct ob -

wct onb N.A.; skeleton function

wctrans -

wet ype -

wite Calls _write

Table: C library reentrancy

Several functions in the C library are not reentrant due to the following reasons:

The i ob[] structure is static. This influences all I/O functions.

The unget c[] array is static. This array holds the characters (one for each stream) when unget c()
is called.

The variable er r no is globally defined. Numerous functions read or modify er r no
_doprint and _doscan use static variables for e.g. character counting in strings.
Some string functions use locally defined (static) buffers. This is prescribed by ANSI.

mal | oc uses a static heap space.

The following description discusses these items in more detail. The numbers at the beginning of each
paragraph relate to the number references in the table above.

(1) iob structures

The I/O part of the C library is not reentrant by design. This is mainly caused by the static declaration of
the i ob[] array. The functions which use elements of this array access these elements via pointers (
FILE *).

514

Libraries

Building a multi-process system that is created in one link-run is hard to do. The C language scoping
rules for external variables make it difficult to create a private copy of the i ob[] array. Currently, the

i ob[] array has external scope. Thus it is visible in every module involved in one link phase. If these
modules comprise several tasks (processes) in a system each of which should have its private copy of

i ob[], itis apparent that the i ob[] declaration should be changed. This requires adaptation of the
library to the multi-tasking environment. The library modules must use a process identification as an index
for determining which i ob[] array to use. Thus the library is suitable for interfacing to that kernel only.

Another approach for the i ob[] declaration problem is to declare the array static in one of the modules
which create a task. Thus there can be more than one i ob[] array is the system without having conflicts
at link time. This brings several restrictions: Only the module that holds the declaration of the statici ob[]

can use the standard file handles st di n, st dout and st der r (which are the first three entriesini ob[]).
Thus all I/O for these three file handles should be located in one module.

(2) errno declaration

Several functions in the C library set the global variable er r no. After completion of the function the user
program may consult this variable to see if some error occurred. Since most of the functions that set

er r no already have a return type (this is the reason for using er r no) it is not possible to check successful
completion via the return type.

The library routines can set er r no to the values defined in er r no. h. See the file er r no. h for more
information.

errno can be set to ERR_FORMAT by the print and scan functions in the C library if you specify illegal
format strings.

er r no will never be set to ERR_NOLONG or ERR_NOPOINT since the C library supports long and
pointer conversion routines for input and output.

er r no can be set to ERANGE by the following functions: exp(), strtol (),strtoul () andtan().
These functions may produce results that are out of the valid range for the return type. If so, the result of
the function will be the largest representable value for that type and er r no is set to ERANGE.

errno is set to EDOM by the following functions: acos(), asi n(), 1 og(), powm) andsqrt().If the
arguments for these functions are out of their valid range (e.g.sqrt(-1)), errno is set to EDOM.

er rno can be setto ERR_POS by the file positioning functionsftel | (), fset pos() andf get pos().
(3) ungetc

Currently the ungetc buffer is static. For each file entry in the i ob[] structure array, there is one character
available in the buffer to unget a character.

(4) local buffers

t npnan{() creates a temporary filename and returns a pointer to a local static buffer. This is according
to the ANSI definition. Changing this function such that it creates the name in a user specified buffer
requires another calling interface. Thus the function would be no longer portable.

515

TASKING VX-toolset for RH850 User Guide

strtok() scans through a string and remembers that the string and the position in the string for
subsequent calls. This function is not reentrant by design. Making it reentrant requires support of a kernel
to store the information on a per process basis.

rand() generates a sequence of random numbers. The function uses the value returned by a previous
call to generate the next value in the sequence. This function can be made reentrant by specifying the
previous random value as one of the arguments. However, then it is no longer a standard function.

(5) malloc

Malloc uses a heap space which is assigned at locate time. Thus this implementation is not reentrant.
Making a reentrant malloc requires some sort of system call to obtain free memory space on a per process
basis. This is not easy to solve within the current context of the library. This requires adaptation to a
kernel.

This paragraph on reentrancy applies to multi-process environments only. If reentrancy is required
for calling library functions from an exception handler, another approach is required. For such a
situation it is of no use to allocate e.g. multiple i ob[] structures. In such a situation several pieces
of code in the library have to be declared 'atomic": this means that interrupts have to be disabled
while executing an atomic piece of code.

The default exception handler (except i on_handl er) delivered in the floating-point run-time
library in except . c is not reentrant, because it uses global variables for the custom handler and
status.

516

Chapter 11. List File Formats

This chapter describes the format of the assembler list file and the linker map file.

11.1. Assembler List File Format

The assembiler list file is an additional output file of the assembler that contains information about the
generated code. For details on how to generate a list file, see Section 4.5, Generating a List File.

The list file consists of a page header and a source listing.

Page header
The page header is repeated on every page:

TASKI NG VX-t ool set for RH850: assenbler vx.yrz Build nnn SN 00000000
Title Page 1

ADDR CCDE CYCLES LINE SOURCE LI NE

The first line contains version information. The second line can contain a title which you can specify with
the assembler directive . Tl TLE and always contains a page number. The third line is empty and the
fourth line contains the headings of the columns for the source listing. An additional line with a subtitle is
added before the third line if you use the assembler directive . STI TLE.

With the assembler directives . LI ST/ . NOLI ST, . PAGE, and with the assembler option --list-format you
can format the list file.

Source listing

The following is a sample part of a listing. An explanation of the different columns follows below.

ADDR CCDE CYCLES LI NE SOURCE LI NE
1 ;. TASKI NG VX-t ool set for RH850
2 ; Options
3 : Mbdul e start
0000 9 min: .type func
0000 10 . L3:
0000 2606rrrr 1 1 11 mv .2.str, r6
rrrr
0006 12 . L25:
0006 405Errrr 1 2 13 nmov hi @a(_world),r0,r11
000A 2B3Frrrr 1 3 14 I d.w @o(_world)[r11],r7
000E EOO2rrrr 1 4 15 jr _printf

rrrr

517

TASKING VX-toolset for RH850 User Guide

0000 44 buf: . ds 4

| RESERVED
0003
ADDR This column contains the memory address. The address is a hexadecimal number

that represents the offset from the beginning of a relocatable section or the absolute
address for an absolute section. The address only appears on lines that generate
object code.

CODE This is the object code generated by the assembler for this source line, displayed
in hexadecimal format. The displayed code need not be the same as the generated
code that is entered in the object module. The code can also be relocatable code.
In this case the letter 'r' is printed for the relocatable code part in the listing. For
lines that allocate space, the code field contains the text "RESERVED". For lines
that initialize a buffer, the code field lists one value followed by the word
"REPEATS".

CYCLES The first number in this column is the number of instruction cycles needed to
execute the instruction(s) as generated in the CODE field. The second number is
the accumulated cycle count of this section.

LINE This column contains the line number. This is a decimal humber indicating each
input line, starting from 1 and incrementing with each source line.

SOURCE LINE This column contains the source text. This is a copy of the source line from the
assembly source file.

For the . SET and . EQU directives the ADDR and CODE columns do not apply. The symbol value is listed
instead.

11.2. Linker Map File Format

The linker map file is an additional output file of the linker that shows how the linker has mapped the
sections and symbols from the various object files (. 0) to output sections. The locate part shows the
absolute position of each section. External symbols are listed per space with their absolute address, both
sorted on symbol and sorted on address. For details on how to generate a map file, see Section 5.9,
Generating a Map File.

With the linker option --map-file-format you can specify which parts of the map file you want to see.

In Eclipse the linker map file (project. mapxm) is generated in the output directory of the build configuration,
usually Debug or Rel ease. You can open the map file by double-clicking on the file name.

518

List File Formats

[El myproject.mapxml 2 = B || 5= Outline & = 0
(=] Select table: | Locate Result: Sections V] ENE:| B 4 Tool and Invocation

Used Resources

Y

Memery usage in bytes

Space usage in bytes

Section Sect, size (hex) Group Start address Chip name Chip addr m Estimated stack usage
il text.cstart. START (18) (000000024] spe:Code flash 00 Processed Files

2 zconst23.myproject.S15str (2) 0:00000004 zero_disp23c 000000024 speCode flash 000000024 Link Result

3 zconst23.myproject.828str (3) 00000000 zero_disp23c 0x00000028 spe:Code_flash 000000028 Cross References

4 zconst23.myproject.§3%str (4) 0x0000000a zero_disp23c 0x00000036 spe:Code flash 0:00000036 | Call Graph

5 .zconst23.myproject.343str (5) 0x0000000e zero_disp23c 0x00000040 speCode_flash 000000040 i 4 Locate Result

6 zconstZ3.myproject.S5Sstr(6) 0x00000014 zero_disp23c 0x0000004e spe:Code flash 0x0000004e Task entry address

7 text._doprint,_doprint (48) 000000390 000000062 spe:Code flash 000000062 Sections

8 text._doprint._putnumber (50) 0x0000025¢ 000000372 spe:Code flash 0300000372 Symbols

0 text._flsbuf,_flsbuf (147) 0:000000ea 000000650 spe:Code flash 0x00000650 ;Z:i::':;tim

10 text.fflush,_fflush (167) (00000008 ¢ 000000732 spe:Code_flash 000000732

11 text._deprint._putstring (439) 0:0000006e 0x000007c6 speiCode_flash 0000007 c6

12 text.myproject.main (1) (000000048 000000834 speiCode_flash 000000834

13 text.printf.printf (78) (000000044 00000087 ¢ spe:Code_flash 00000087 ¢

14 text.cinit._c_init (28) 000000042 0:000008c0 spe:Code_flash 00000080

15 text._deprint,_ltoa (52) (000000040 0:00000902 spe:Code_flash 000000902

16 text.fputc.fputc (117) (000000036 000000942 spe:Code flash 000000942

17 textfclosefclose (157) (000000034 000000978 spe:Code flash (00000978

18 text.dbg._host_write (213) (0:0000002e 0:00000%ac spe:Code_flash 0:000009ac =

Each page displays a part of the map file. You can use the drop-down list or the Outline view to navigate
through the different tables and you can use the following buttons.

Icon Action Description

) Back Goes back one page in the history list.

= Forward Goes forward one page in the history list.

=1 Next Table Shows the next table from the drop-down list.

| Previous Table Shows the previous table from the drop-down list.

When you right-click in the view, a popup menu appears (for example, to reset the layout of a table). The
meaning of the different parts is:

Tool and Invocation

This part of the map file contains information about the linker, its version header information, binary
location and which options are used to call it.

Used Resources

This part of the map file shows the memory usage at memory level and space level. The largest free
block of memory (Lar gest gap) is also shown. This part also contains an estimation of the stack usage.

Explanation of the columns:

Memory The names of the memory as defined in the linker script file (*. | sl).
Code The size of all executable sections.

519

TASKING VX-toolset for RH850 User Guide

Data

Reserved

Free

Total
Space

Native used ...

Foreign used

Stack Name
Used

The size of all non-executable sections (not including stacks, heaps, debug sections
in non-alloc space).

The total size of reserved memories, reserved ranges, reserved special sections,
stacks, heaps, alignment protections, sections located in non-alloc space (debug
sections). In fact, this size is the same as the size in the Total column minus the
size of all other columns.

The free memory area addressable by this core. This area is accessible for
unrestricted items.

The total memory area addressable by this core.

The names of the address spaces as defined in the linker script file (*. | sl). The
names are constructed of the der i vat i ve name followed by a colon "', the cor e
name, another colon "' and the space name. For example: spe: v850: | i near .

The size of sections located in this space.

The size of all sections destined for/located in other spaces, but because of overlap
in spaces consume memory in this space.

The name(s) of the stack(s) as defined in the linker script file (*. | sl).

An estimation of the stack usage. The linker calculates the required stack size by
using information (. CALLS directives) generated by the compiler. If for example
recursion is detected, the calculated stack size is inaccurate, therefore this is an
estimation only. The calculated stack size is supposed to be smaller than the actual
allocated stack size. If that is not the case, then a warning is given.

Processed Files

This part of the map file shows all processed files. This also includes object files that are extracted from
a library, with the symbol that led to the extraction.

Link Result

This part of the map file shows per object file how the link phase has mapped the sections from the various
object files (. 0) to output sections.

[in] File
[in] Section

[in] Size
[out] Offset
[out] Section
[out] Size

520

The name of an input object file.

A section name and id from the input object file. The number between ‘()" uniquely
identifies the section.

The size of the input section.

The offset relative to the start of the output section.
The resulting output section name and id.

The size of the output section.

List File Formats

Module Local Symbols

This part of the map file shows a table for each local scope within an object file. Each table has three
columns, 1 the symbol name, 2 the address of the symbol and 3 the space where the symbol resides in.
The table is sorted on symbol name within each space.

By default this part is not shown in the map file. You have to turn this part on manually with linker option
--map-file-format=+statics (module local symbols).

Cross References

This part of the map file lists all symbols defined in the object modules and for each symbol the object
modules that contain a reference to the symbol are shown. Also, symbols that remain undefined are
shown.

Call Graph

This part of the map file contains a schematic overview that shows how (library) functions call each other.
To obtain call graph information, the assembly file must contain . CALLS directives.

The following example is a part of a call graph in the textual version of the map file (. map):

START [s0: 0, 136]

I

+-- _main [s0:8, 136]

I

| +-- _printf [sO0:40, 128]

I I

| +-- _ _doprint [sO:24,88]

I I

| +-- __io_putc [sO0:8, 64]

I I

| +-- _fputc [sO:8,56]

I I

| +-- _ flsbuf [s0:24, 48]
I I

I

I

I

I
+- -

+-- _ _fflush *

+- __wite *
__c_init [s0:0,0]

* fflush [s0: 24, 24]
I

+- __wite *

I

+-- __Iseek [s0:0,0]

» A * after a function name indicates a caller, which calls a function which is listed separately in the call
graph.

521

TASKING VX-toolset for RH850 User Guide

« A *in front of a function name indicates a callee. This function is referenced by a caller.

* An additional R (not shown in this example) indicates this function is part of a recursive call chain. If
both a leaf and the root of a tree are marked this way, all nodes in between are in a recursive chain.

« [] after afunction contains information about the stack usage. The first field is the name of the stack
(s0 in this example), followed by the amount of stack used by the function and the amount of stack
used by the function including its callees.

In the graphical version of the map file, you can click the + or - sign to expand or collapse a single node.

Use the # / =l buttons to expand/collapse all nodes in the call graph. Hover the mouse over a function
(root, callee or node) to see information about the stack usage.

a|ft, _START
4 @ _main

4@ _F[\E‘Itf

stack: =0
- used by function: 40

- used by function + callees: 280
Press 'F2' for focus.ring

char

4 @ _doprint_int.sro:__putnumber

= _strlen

< _doprint_int.src:__emitchar

< _doprint_int.src:__putstring

@ _doprint_int.sre:__ltoa

a4 @ _exit

@ _ Exit
a @ _docloze
a @ _fclose

= _ fflush
@ _close
@ _ dofree
@ _ doexit
Icon Meaning Description
2 Root This function is the top of the call graph. If there are interrupt handlers, there
° can be several roots.
This function is referenced by several caller functions. Right-click on the
D Callee function and select Expand all References to see all functions that
& reference this function. Select Back to Caller to return to the calling function.
= indicates a recursive function.
@ Node A normal node (function) in the call graph.
This function calls a function which is listed separately in the call graph.
= Right-click on the function and select Go to Callee to see the callee. Hover
Caller . . L
e the mouse over the function to see a popup with all callees. = indicates a
recursive function.

522

Overlay

List File Formats

This part is empty for the RH850.

Locate Result: Sections

This part of the map file shows the absolute position of each section in the absolute object file. It is
organized per address space, memory chip and group and sorted on space address. In Eclipse, right-click
in the table and select Configure Columns to specify which columns you want to see. If you hover the
mouse over a section, you get a popup with information about the section. If you select a range of sections,
in the Fast View bar (at the bottom) you will see information about the selected range, such as the total
size, how many sections are selected and how many gaps are present.

#

Section
Section name
Section number

Sect. size (hex)
Sect. size (dec)

Group

Start address
End address

Symbols in sect.

Defined in
Referenced in
Chip name
Chip addr

Locate
type:properties

The line number and default sort order.

The name and id of the section. The number between '()’ uniquely identifies the
section. Names within square brackets [] will be copied during initialization from
ROM to the corresponding section name in RAM.

The size of the section in minimum addressable units (hexadecimal or decimal).

Sections can be ordered in groups. These are the names of the groups as defined
in the linker script file (*. | sl) with the keyword gr oup in the secti on_| ayout
definition. The name that is displayed is the name of the deepest nested group.

The first address of the section in the address space.
The last address of the section in the address space.

The names of the external symbols that are referenced in the section. See Locate
Result: Symbols below.

The names of the input modules the section is defined in. See Link Result: [in]
File above.

The names of the modules that contain a reference to the section. See Cross
References above.

The names of the memory chips as defined in the linker script file (*. | sl) in the
menor y definitions.

The absolute offset of the section from the start of a memory chip.
The locate rule type and properties. See Locate Rules below.

The following buttons are available in this part of the map file.

Icon Action Description
= Configure Section |Opens the Configure Section Filter dialog. Here you can select which
Filter sections you want to see in the map file and how.
Enable All sections that are marked with "Highlight" in the Configure Section Filter
g Highlighting dialog will be highlighted in the table.

523

TASKING VX-toolset for RH850 User Guide

Icon Action Description
g, .| All sections that are marked with "Collapse" in the Configure Section Filter
g Enable Collapsing]| .. X)
dialog will appear collapsed in the table.
, Only Show All lines that are not part of the selection in the Configure Section Filter
1

Matching Lines |dialog will be hidden.

Show Gaps

Also shows the gaps in the map file. Click the button again to hide the gaps.

Configure Section Filter Dialog

In this dialog you can filter which sections you want to see in the map file and how. Click Add to add a
new filter. Explanation of the columns and fields:

Highlight

Color
Collapse

Section name

Start address

End address

Address

space

Chip name

Hide gap
than

s smaller

Marks the section as a candidate for highlighting. Turn on Enable Highlighting
to see the effect.

The highlight color.

Marks the section as a candidate for collapsing. Turn on Enable Collapsing to
see the effect.

A filter to select a section or group of sections. Wildcards are allowed. Wildcards
follow the rules of regular expressions. To get help on which wildcards are
supported, press Ctrl-space. Click an item in the list for help, double-click to add
the wildcard.

The first address of the section in the address space for this filter.
The last address of the section in the address space for this filter.
The name of the address space.

The name of the memory chip as defined in the linker script file (*. | sl) in the
nmenor y definitions.

If gaps are shown in the map file, here you can limit the number of gaps you want
to see.

The meaning of the check boxes is the same as the corresponding buttons available in this part of the

map file.

Locate Result: Symbols

This part of the map file lists all external symbols per address space name.

Address
Name
Space

524

The absolute address of the symbol in the address space.
The name of the symbol.

The names of the address spaces as defined in the linker script file (*. | sl). The
names are constructed of the der i vat i ve name followed by a colon "', the cor e
name, another colon "' and the space name. For example: spe: v850: | i near .

List File Formats

Processor and Memory

This part of the map file shows the processor and memory information of the linker script file.

By default this part is not shown in the map file. You have to turn this part on manually with linker option
--map-file-format=+Isl (processor and memory info). You can print this information to a separate file with
linker option --Isl-dump.

You can click the + or - sign to expand or collapse a part of the information.

Locate Rules

This part of the map file shows the rules the linker uses to locate sections.

Address space

Type

Properties

The names of the address spaces as defined in the linker script file (*. | sl). The
names are constructed of the der i vat i ve name followed by a colon "', the cor e
name, another colon "' and the space name.

The rule type:
ordered/ conti guous/clustered/ unrestricted

Specifies how sections are grouped. By default, a group is 'unrestricted' which
means that the linker has total freedom to place the sections of the group in the
address space.

absol ut e

The section must be located at the address shown in the Properties column.
ranged

The section must be located anywhere in the address ranges shown in the
Properties column; end addresses are not included in the range.

page

The sections must be located in some address range with a size not larger than
shown in the Properties column; the first number is the page size, the second part
is the address range restriction within the page.

ranged page

Both the ranged and the paged restriction apply. In the Properties column the
range restriction is listed first, followed by the paged restriction between parenthesis.
bal | ooned

After locating all sections, the largest remaining gap in the space is used completely
for the stack and/or heap.

The contents depends on the Type column.

525

TASKING VX-toolset for RH850 User Guide

Prio The locate priority of the rule. A higher priority value gives a rule precedence over
a rule with a lower priority, but only if the two rules have the same type and the
same properties. The relative order of rules of different types or different properties
is not affected by this priority value. You can set the priority with the priority
group attribute in LSL

Sections The sections to which the rule applies;
restrictions between sections are shown in this column:

< ordered
| conti guous
+ clustered

For contiguous sections, the linker uses the section order as shown here. Clustered
sections can be located in any relative order.

Removed Sections

This part of the map file shows the sections which are removed from the output file as a result of the

optimization option to delete unreferenced sections and or duplicate code or constant data (linker option
--optimize=cxy).

Section The name of the section which has been removed.

File The name of the input object file where the section is removed from.

Library The name of the library where the object file is part of.

Symbol The symbols that were present in the section.

Reason The reason why the section has been removed. This can be because the section

is unreferenced or duplicated.

526

Chapter 12. Object File Formats

This chapter describes the format of several object files.

12.1. ELF/DWARF Object Format

The TASKING VX-toolset for RH850 by default produces objects in the ELF/DWARF 3 format.

The ELF/DWARF Object Format for the RH850 toolset follows the convention as described in the RH850
Compiler ABI Specification [Renesas Group].

For a complete description of the ELF and DWARF formats, please refer to the Tool Interface Standard
(TIS).

12.2. Intel Hex Record Format

Intel Hex records describe the hexadecimal object file format for 8-bit, 16-bit and 32-bit microprocessors.
The hexadecimal object file is an ASCII representation of an absolute binary object file. There are six
different types of records:

» Data Record (8-, 16, or 32-bit formats)

» End of File Record (8-, 16, or 32-bit formats)

» Extended Segment Address Record (16, or 32-bit formats)
» Start Segment Address Record (16, or 32-bit formats)

» Extended Linear Address Record (32-bit format only)

» Start Linear Address Record (32-bit format only)

To generate an Intel Hex output file specify the Control program option --format=IHEX. Optionally specify
the address size with Control program option --address-size.

By default the linker generates records in the 32-bit format (4-byte addresses).

General Record Format

In the output file, the record format is:

|: ‘ length | offset | type | content checksum

where:

is the record header.

527

TASKING VX-toolset for RH850 User Guide

length is the record length which specifies the number of bytes of the content field. This
value occupies one byte (two hexadecimal digits). The linker outputs records of
255 bytes (32 hexadecimal digits) or less; that is, length is never greater than OxFF.

offset is the starting load offset specifying an absolute address in memory where the
data is to be located when loaded by a tool. This field is two bytes long. This field
is only used for Data Records. In other records this field is coded as four ASCII
zero characters ('0000").

type is the record type. This value occupies one byte (two hexadecimal digits). The
record types are:

Byte Type |Record Type

00 Data

01 End of file

02 Extended segment address (not used)

03 Start segment address (not used)

04 Extended linear address (32-bit)

05 Start linear address (32-bit)
content is the information contained in the record. This depends on the record type.
checksum is the record checksum. The linker computes the checksum by first adding the

binary representation of the previous bytes (from length to content). The linker
then computes the result of sum modulo 256 and subtracts the remainder from
256 (two's complement). Therefore, the sum of all bytes following the header is
zero.

Extended Linear Address Record

The Extended Linear Address Record specifies the two most significant bytes (bits 16-31) of the absolute
address of the first data byte in a subsequent Data Record:

‘: ‘ 02 ‘ 0000 ‘ 04 ‘ upper_address checksum |

The 32-bit absolute address of a byte in a Data Record is calculated as:

(address + offset + index) nodulo 4G

where:

address is the base address, where the two most significant bytes are the upper_address
and the two least significant bytes are zero.

offset is the 16-bit offset from the Data Record.

index is the index of the data byte within the Data Record (O for the first byte).

528

Object File Formats

Example:

: 0200000400FFFB

| | | _ checksum
| | |_ upper_address
| | |_ type
| |_ offset
| _ length

Data Record

The Data Record specifies the actual program code and data.

‘: ‘ length ‘ offset | 00 ‘ data checksum |

The length byte specifies the number of data bytes. The linker has an option (--hex-record-size) that
controls the length of the output buffer for generating Data records. The default buffer length is 32 bytes.

The offset is the 16-bit starting load offset. Together with the address specified in the Extended Address
Record it specifies an absolute address in memory where the data is to be located when loaded by a tool.

Example:

: 0F00200000232222754E00754F04AFAFAE4AE22C3

| | | _ checksum
| || |_ data

| | |_ type

| |_ offset

| _ length

Start Linear Address Record

The Start Linear Address Record contains the 32-bit program execution start address.

‘: ‘ 04 ‘ 0000 ‘ 05 ‘ address checksum

With linker option --hex-format=S you can prevent the linker from emitting this record.
Example:

04000005A000000057

| | | _ checksum
| | |_ address

| | |_ type

| |_ offset

| _ length

529

TASKING VX-toolset for RH850 User Guide

End of File Record
The hexadecimal file always ends with the following end-of-file record:

: 00000001FF
|] | |_ checksum
| | |_ type
| |_ offset

| _ length

12.3. Motorola S-Record Format

To generate a Motorola S-record output file specify the Control program option --format=SREC. Optionally
specify the address size with Control program option --address-size.

By default, the linker produces output in Motorola S-record format with three types of S-records (4-byte
addresses): SO, S3 and S7. Depending on the size of addresses you can force other types of S-records.
They have the following layout:

SO - record

‘SO ‘ length ‘ 0000 comment checksum

A linker generated S-record file starts with an SO record with the following contents:

Il Kk ppec
S00800006C6B707063DD

The SO record is a comment record and does not contain relevant information for program execution.

where:

SO is a comment record and does not contain relevant information for program
execution.

length represents the number of bytes in the record, not including the record type and
length byte. This value occupies one byte (two hexadecimal digits).

comment contains the name of the linker.

checksum is the record checksum. The linker computes the checksum by first adding the

binary representation of the bytes following the record type (starting with the length
byte) to just before the checksum. Then the one's complement is calculated of this
sum. The least significant byte of the result is the checksum. The sum of all bytes
following the record type is OxFF.

S1/S2/S3-record

This record is the program code and data record for 2-byte, 3-byte or 4-byte addresses respectively.

530

Object File Formats

‘Sl ‘ length ‘ address ‘ code bytes | checksum ‘
‘SZ ‘ length ‘ address ‘ code bytes | checksum ‘
‘SS ‘ length ‘ address ‘ code bytes | checksum ‘
where:
S1 is the program code and data record for 2-byte addresses.
S2 is the program code and data record for 3-byte addresses.
S3 is the program code and data record for 4-byte addresses (this is the default).
length represents the number of bytes in the record, not including the record type and
length byte. This value occupies one byte (two hexadecimal digits).
address contains the code or data address.
code bytes contains the actual program code and data.
checksum is the record checksum. The checksum calculation is identical to SO.
Example:
S3070000FFFE6E6825
|] | _ checksum
|] | _ code
| |_ address
| _ length

S7/S8/S9 -record

This record is the termination record for 4-byte, 3-byte or 2-byte addresses respectively.

‘87 ‘ length ‘ address ‘ checksum ‘

’S8 ‘ length ‘ address ’ checksum ‘

‘89 ‘ length ‘ address ‘ checksum ‘

where:

S7 is the termination record for 4-byte addresses (this is the default). S7 is the
corresponding termination record for S3 records.

S8 is the termination record for 3-byte addresses. S8 is the corresponding termination
record for S2 records.

S9 is the termination record for 2-byte addresses. S9 is the corresponding termination
record for S1 records.

length represents the number of bytes in the record, not including the record type and

length byte. This value occupies one byte (two hexadecimal digits).

531

TASKING VX-toolset for RH850 User Guide

contains the program start address.

address
checksum is the record checksum. The checksum calculation is identical to SO.
Example:
S70500000000FA

| | | _checksum

| | _ address

| _ length

532

Chapter 13. Linker Script Language (LSL)

To make full use of the linker, you can write a script with information about the architecture of the target
processor and locating information. The language for the script is called the Linker Script Language (LSL).
This chapter first describes the structure of an LSL file. The next section contains a summary of the LSL
syntax. In the remaining sections, the semantics of the Linker Script Language is explained.

The TASKING linker is a target independent linker/locator that can simultaneously link and locate all
programs for all cores available on a target board. The target board may be of arbitrary complexity. A
simple target board may contain one standard processor with some external memory that executes one
task. A complex target board may contain multiple standard processors and DSPs combined with
configurable IP-cores loaded in an FPGA. Each core may execute a different program, and external
memory may be shared by multiple cores.

LSL serves two purposes. First it enables you to specify the characteristics (that are of interest to the
linker) of your specific target board and of the cores installed on the board. Second it enables you to
specify how sections should be located in memory.

13.1. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each
space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the interrupt vector table.

This specification is normally written by Altium. Altium supplies LSL files in the i ncl ude. | s| directory.
The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

See Section 13.4, Semantics of the Architecture Definition for detailed descriptions of LSL in the architecture
definition.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

Altium provides LSL descriptions of supported derivatives, along with "SFR files", which provide easy
access to registers in /O sub-systems from C and assembly programs. When you build an ASIC or use
a derivative that is not (yet) supported by the TASKING tools, you may have to write a derivative definition.

533

TASKING VX-toolset for RH850 User Guide

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

See Section 13.5, Semantics of the Derivative Definition for a detailed description of LSL in the derivative
definition.

The processor definition

The processor definition describes an instance of a derivative. Typically the processor definition instantiates
one derivative only (single-core processor). A processor that contains multiple cores having the same
(homogeneous) or different (heterogeneous) architecture can also be described by instantiating multiple
derivatives of the same or different types in separate processor definitions.

See Section 13.6, Semantics of the Board Specification for a detailed description of LSL in the processor
definition.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

See Section 13.6.3, Defining External Memory and Buses, for more information on how to specify the
external physical memory layout. Internal memory for a processor should be defined in the derivative
definition for that processor.

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems. The board specification describes all characteristics of your target board's system buses, memory
devices, 1/0 sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

 convert a logical address to an offset within a memory device
* locate sections in physical memory

* maintain an overall view of the used and free physical memory within the whole system while locating

The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given load-address or run-time address,
to place sections in a given order, and to overlay code and/or data sections.

Which object files (sections) constitute the task that will run on a given core is specified on the command
line when you invoke the linker. The linker will link and locate all sections of all tasks simultaneously.
From the section layout definition the linker can deduce where a given section may be located in memory,

534

Linker Script Language (LSL)

form the board specification the linker can deduce which physical memory is (still) available while locating
the section.

See Section 13.8, Semantics of the Section Layout Definition, for more information on how to locate a
section at a specific place in memory.

Skeleton of a Linker Script File

architecture architecture_nane

{

/1 Specification core architecture
}
derivative derivative_nane
{

/1 Derivative definition
}
processor processor_nane
{

/'l Processor definition
}

menory and/or bus definitions

section_| ayout space_nanme

{
}

/'l section placenent statenments

13.2. Syntax of the Linker Script Language

This section describes what the LSL language looks like. An LSL document is stored as a file coded in
UTF-8 with extension . | sl . Before processing an LSL file, the linker preprocesses it using a standard
C preprocessor. Following this, the linker interprets the LSL file using a scanner and parser. Finally, the
linker uses the information found in the LSL file to guide the locating process.

13.2.1. Preprocessing

When the linker loads an LSL file, the linker processes it with a C-style prepocessor. As such, it strips C
and C++ comments. You can use the standard ISO C preprocessor directives, such as #i ncl ude,
#def i ne, #i f/ #i f def / #el se/ #endi f , #error.

For example:

#i nclude "arch.lsl"

Preprocess and include the file ar ch. | s| at this point in the LSL file.

535

TASKING VX-toolset for RH850 User Guide

13.2.2. Lexical Syntax

The following lexicon is used to describe the syntax of the Linker Script Language:

A::=B = Aisdefinedas B

A::=BC = Ais defined as B and C; B is followed by C

A::=B]| C = AisdefinedasBorC

0I1 = zero or one occurrence of B

>70 = zero of more occurrences of B

>71 = one of more occurrences of B

| DENTI FI ER = acharacter sequence starting with 'a’-'z', 'A’-'’Z' or '_". Following
characters may also be digits and dots "'

STRI NG = sequence of characters not starting with \n, \r or \t

DQSTRI NG = " STRING " (double quoted string)

CCT_NUM = octal number, starting with a zero (06, 045)

DEC_NUM = decimal number, not starting with a zero (14, 1024)

HEX_NUM = hexadecimal number, starting with '0x' (0x0023, 0x FF00)

OCT_NUM DEC_NUMand HEX_NUMcan be followed by a k (kilo), M (mega), or G (giga).

Characters in bold are characters that occur literally. Words in italics are higher order terms that are
defined in the same or in one of the other sections.

To write comments in LSL file, you can use the C style '/ * */'or C++ style '/ /.

13.2.3. Identifiers and Tags

arch_nane = | DENTI FI ER
bus_nane = | DENTI FI ER
core_nane = | DENTI FI ER
derivative_nanme = | DENTI FI ER
file_nane = DQSTRI NG
group_name = | DENTI FI ER
heap_nane = section_nane
map_name = | DENTI FI ER
mem nane = | DENTI FI ER
proc_nane = | DENTI FI ER
secti on_nane = DQSTRI NG
space_nane = | DENTI FI ER
st ack_nane = section_nane
synbol _nane = DQSTRI NG

536

tag_attr
t ag

(tag<, tag>"")
tag = DQSTRI NG

A tag is an arbitrary text that can be added to a statement.

13.2.4. Expressions

Linker Script Language (LSL)

The expressions and operators in this section work the same as in ISO C.

nunber

expr

unary_op

bi nary_op

OCT_NUM
DEC_NUM
HEX_NUM

nunber

synbol _name
unary_op expr

expr binary_op expr
expr ? expr : expr
(expr)
function_cal

! /1 1ogical NOT

~ /1 bitw se conpl emrent

- /'l negative val ue

N /1 exclusive OR
* /1 multiplication
/ /1 division

% /1 nmodul us

+ /1 addition

- /1 subtraction

>> [/ right shift

<< /] left shift
/1 equal to
/1 not equal to
/1 greater than
/'l less than

/1 greater than or equal t

/1 less than or equa

/1 bitw se OR
/1 1ogical AND
| /1 1ogical OR

| =

>

<

>=

<=

& /1 bitwi se AND
|

&&

13.2.5. Built-in Functions

function_cal

absol ute (expr)
addressof (addr_id)

checksum (checksum al go

exists (section_nane)
max (expr , expr)

to

expr

(o]

., expr)

537

TASKING VX-toolset for RH850 User Guide
| mn (expr , expr)
| sizeof (size_id)

addr _id ::= sect : section_nane
| group : group_nane

checksum al go crc32w

size_id sect : section_nane

| group : group_nane
| mem: mem nane
» Every space, bus, memory, section or group you refer to, must be defined in the LSL file.

* The addr essof () and si zeof () functions with the gr oup or sect argument can only be used in
the right hand side of an assignment. The si zeof () function with the nemargument can be used
anywhere in section layouts.

* The checksun() function can only be used in a st ruct statement.

You can use the following built-in functions in expressions. All functions return a numerical value. This
value is a 64-bit signed integer.

absolute()
int absolute(expr)
Converts the value of expr to a positive integer.

absol ute("l abel A"-"| abel B")

addressof()
int addressof(addr_id)

Returns the address of addr_id, which is a named section or group. To get the offset of the section with
the name asect :

addressof (sect: "asect")

This function only works in assignments and st r uct statements.

checksum()
i nt checksum checksum al go, expr, expr)

Returns the computed checksum over a contiguous address range. The first argument specifies how the
checksum must be computed (see below), the second argument is an expression that represents the
start address of the range, while the third argument represents the end address (exclusive). The value
of the end address expression must be strictly larger than the value of the start address (i.e. the size of
the checksum address range must be at least one MAU). Each address in the range must point to a valid

538

Linker Script Language (LSL)
memory location. Memory locations in the address range that are not occupied by a section are filled with
Zeros.

The only checksum algorithm (checksum_algo) currently supported is crc32w. This algorithm computes
the checksum using a Cyclic Redundancy Check with the "CRC-32" polynomial OXEDB88320. The input
range is processed per 4-byte word. Those 4 bytes are passed to the checksum algorithm in reverse
order if the target architecture is little-endian. For big-endian targets, this checksum algorithm is equal to
a regular byte-wise CRC-32 implementation. Both the start address and end address values must be
aligned on 4 MAUs. The behavior of this checksum algorithm is undefined when used in an address space
that has a MAU size not equal to 8.

checksunm(crc32w,
addr essof (mem foo),
addressof (mnemfoo) + sizeof(nemfoo))

This function only works in st r uct statements.

exists()
int exists(section_nane)

The function returns 1 if the section section_name exists in one or more object file, 0 otherwise. If the
section is not present in input object files, but generated from LSL, the result of this function is undefined.

To check whether the section mysect i on exists in one of the object files that is specified to the linker:
exi sts("nysection")

max()

int max(expr, expr)

Returns the value of the expression that has the largest value. To get the highest value of two symbols:
max("syml" , "synmR")

min()

int mn(expr, expr)

Returns the value of the expression hat has the smallest value. To get the lowest value of two symbols:
mn("synl" , "symR")

sizeof()

int sizeof(size_id)

Returns the size of the object (group, section or memory) the identifier refers to. To get the size of the
section "asection":

539

TASKING VX-toolset for RH850 User Guide

si zeof (sect: "asection")

The gr oup and sect arguments only works in assignments and st r uct statements. The nem
argument can be used anywhere in section layouts.

13.2.6. LSL Definitions in the Linker Script File

>=1

description <definition>

definition = architecture_definition
| derivative_definition
| board_spec
| section_definition
| section_setup

» Atleast one ar chit ecture_definition mustbe presentin the LSL file.

13.2.7. Memory and Bus Definitions
mem def ;= nenory nemname <tag attr>%! { <memdescr ;>0 }
 Anmem def defines a memory with the mem _nane as a unique name.

mem descr 1= type = <reserved>"! nem type
mu = expr

size = expr

speed = numnber

priority = nunber
exec_priority = nunber

fill <= fill _val ues>%1t
wite_unit = expr
mappi ng

* Amem def contains exactly one t ype statement.

* Amem def contains exactly one mau statement (non-zero size).

« Anem def contains exactly one si ze statement.

 Anmem def contains zero or one pri ority (or speed) statement (if absent, the default value is 1).
« Anem def contains zero or one exec_pri ority statement.

* Amem def contains zerooronefil | statement.

« Anem def contains zero oronewrite_unit statement.

* Anmem def contains at least one mappi ng

rx
rw

nmem type ::= rom /] attrs
| ram /] attrs

540

| nvram /] attrs = rwx
| bl ockram
fill_val ues = expr
| [expr <, expr>7]
bus_def = bus bus_nane { <bus_descr

Linker Script Language (LSL)

. >>:0 }

* Abus_def statement defines a bus with the given bus_nane as a unique name within a core

bus_descr

architecture.

Il
Il
Il
Il

bus wi dth,
of data bits
destination

| egal
' bus'

only

nr

The mau and wi dt h statements appear exactly once in a bus_descr . The default value for wi dt h is

the mau size.

The bus width must be an integer times the bus MAU size.

The MAU size must be non-zero.

A bus can only have a nappi ng on a destination bus (through dest

exec_priority

nunber

mappi ng S

map_descr = dest = destination
| dest_dbits = range
| dest_offset = expr
| size = expr
| src_dbits = range
| src_offset = expr
| reserved
| priority = nunber
|

t ag

A map_descr requires at least the si ze and dest statements.

map <map_nane>"'! (nap_descr <, map_descr>

= bus:).

>=0)

A map_descr contains zero or one pri or ity statement (if absent, the default value is 0).

A map_descr contains zero or one exec_pri ori ty statement.

Each map_descr can occur only once.

You can define multiple mappings from a single source.

Overlap between source ranges or destination ranges is not allowed.

If the src_dbi t s or dest _dbi t s statement is not present, its value defaults to the wi dt h value if
the source/destination is a bus, and to the nau size otherwise.

541

TASKING VX-toolset for RH850 User Guide

» The r eser ved statement is allowed only in mappings defined for a memory.
destination ! = space : space_namne
| bus : <proc_nane |
core_nane :>%1 pus_nane
» A space_nane refers to a defined address space.
* Aproc_nane refers to a defined processor.

» A core_nane refers to a defined core.

« A bus_nane refers to a defined bus.

The following mappings are allowed (source to destination)
* space => space

e space => bus

* bus =>bus

e memory => bus

range D= expr .. expr

» With address ranges, the end address is not part of the range.

13.2.8. Architecture Definition

architecture_definition
::= architecture arch_nane
<(paraneter list)>01
<ext ends arch_nane
<(argunent_|ist)>01 5011
{ <arch_spec>>0 }

 Anarchitecture_definition defines acore architecture with the given ar ch_nane as a unique
name.

» Atleast one space_def and at least one bus_def have to be present in an
architecture_definition.

* Anarchitecture_definitionthatusesthe ext ends constructdefines an architecture that inherits
all elements of the architecture defined by the second ar ch_nan®e. The parent architecture must be
defined in the LSL file as well.

parameter_li st .= parameter <, paraneter>>"

| DENTI FI ER <= expr>°t

par amet er

0

argunent _| i st expr <, expr>>7

542

Linker Script Language (LSL)

arch_spec .= bus_def
| space_def
| endi anness_def
space_def .= space space_nane <tag_attr>l1 { <space_descr;>>0}

» Aspace_def defines an address space with the given space_nane as a unique name within an
architecture.

space_descr = space_property ;

| section_definition //no space ref
| vector_tabl e_statement

I

reserved_range

space_property ::=id = nunber // as used in object
mau = expr
align = expr

page_size = expr <[range | <| [range]>>70>01
page

st ack_def

heap_def

copy_t abl e_def
start_address

I
I
I
I
| direction = direction
I
I
I
| .
| mapping

» Aspace_def contains exactly one i d and one mau statement.
* Aspace_def contains at most one al i gn statement.

* Aspace_def contains at most one page_si ze statement.

» Aspace_def contains at least one mappi ng.

st ack_def ;.= stack stack_name (stack_heap_descr
<, stack_heap_descr >0)

» Astack_def defines a stack with the st ack_nane as a unique name.

heap_def .= heap heap_nane (stack_heap_descr
<, stack_heap_descr >0)

» A heap_def defines a heap with the heap_nane as a unique name.

st ack_heap_descr mn_size = expr
grows = direction

expr

——
e
Q
=]
I

* The m n_si ze statement must be present.

543

TASKING VX-toolset for RH850 User Guide

* You can specify at most one al i gn statement and one gr ows statement.

» Each stack definition has its own unique i d, the number specified corresponds to the index in the
. CALLS directive as generated by the compiler.

direction | ow_t o_hi gh

hi gh_to_| ow

« If you do not specify the gr ows statement, the stack and heap grow | ow- t o- hi gh.

copy_t abl e_def copytable <(copy_table_descr

<, copy_table_descr >>0)>0l1
» Aspace_def contains at most one copyt abl e statement.
» Exactly one copy table must be defined in one of the spaces.

copy_t abl e_descr = align = expr

| copy_unit = expr

| dest <space_name>"'! = space_nane
| page

| tag

» The copy_uni t is defined by the size in MAUs in which the startup code moves data.

» The dest statementis only required when the startup code initializes memory used by another processor
that has no access to ROM.

* A space_nane refers to a defined address space.

start _addr ::= start_address (start_addr_descr
<, start_addr_descr>"")

start_addr_descr ::= run_addr = expr
| symbol = synbol _nane

« Asynbol _nane refers to the section that contains the startup code.

vect or _t abl e_st at enent
::= vector_tabl e section_namne
(vecttab_spec <, vecttab_spec>
{ <vector_def>>}

>=0)

vecttab_spec .= vector_size = expr

size = expr

i d_synbol prefix = synbol nane
run_addr = addr_absol ute

tenpl ate = section_nane

tenpl ate_synbol = synbol nane
vector_prefix = section_nane
fill = vector_val ue

no_inline

544

Linker Script Language (LSL)

| copy
| tag

vect or _def vector (vector_spec <, vect or_spec>>:0);

vect or _spec id = vector_id_spec
fill = vector_val ue
opti onal

t ag

nunber
[range | <, [range]>7°

vector _id_spec

vect or _val ue synbol _name
[number <, number>>7]

loop <[expr]>%1

S01

reserved_range ;.= reserved <tag_attr expr .. expr ;
» The end address is not part of the range.
endi anness_def .= endi anness { <endi anness_type; > }
endi anness_t ype ::= big

| little

13.2.9. Derivative Definition

derivative_definition
::= derivative derivative_nane
<(paraneter list)>01
<ext ends derivative_nane
<(argunent_|ist)>01 011
{ <derivative_spec>" }

« Aderivative_definition defines a derivative with the given deri vati ve_nane as a unique
name.

core_def
bus_def

derivative_spec =
I
| mem def
I
I

section_definition // no processor nane
section_setup

cor e_def ::= core core_nane { <core_descr ;>"0}
» Acore_def defines a core with the given cor e_nane as a unique name.
» Atleast one cor e_def must be presentinaderivative_definition.
core_descr ::= architecture = arch_nanme

<(argunent list)>01

545

TASKING VX-toolset for RH850 User Guide

| endi anness = (endi anness_type
<, endi anness_type>"")

« An ar ch_name refers to a defined core architecture.

» Exactly one ar chi t ect ur e statement must be present in a cor e_def .

13.2.10. Processor Definition and Board Specification

boar d_spec ;= proc_def
| bus_def
| mem def
proc_def .= processor proc_nane
{ proc_descr ; }
proc_descr .= derivative = derivative_nane

<(argunment list)>01
» Aproc_def defines a processor with the pr oc_nan®e as a unique name.

« If you do not explicitly define a processor for a derivative in an LSL file, the linker defines a processor
with the same name as that derivative.

» Aderivative_nane refers to a defined derivative.

» Aproc_def contains exactly one deri vat i ve statement.

13.2.11. Section Setup

S0/1

section_setup section_setup space_ref <tag_attr

{ <section_setup_itens""0 }

section_setup_item
.= vector_tabl e_statenent
| reserved_range
| stack_def ;
| heap_def ;
| copy_table_def ;
| start_address ;

13.2.12. Section Layout Definition

section_definition ::= section_|l ayout <space_ref>01
<(space_l ayout properties)>01
{ <section_statement >}

» A section definition inside a space definition does not have a space_r ef.

* All global section definitions have a space_r ef .

546

Linker Script Language (LSL)

space_r ef .= <proc_nanme>"11 : <core_name>0l?!

space_nane <| space_nane>""°
« If more than one processor is present, the pr oc_name must be given for a global section layout.

« If the section layout refers to a processor that has more than one core, the cor e_namne must be given
in the space_ref .

* A proc_nane refers to a defined processor.
» A core_nane refers to a defined core.
» A space_nane refers to a defined address space.

space_| ayout _properties
::= space_|l ayout _property <, space_| ayout_ property >
space_| ayout _property
::= locate_direction

| tag
| ocate direction ::= direction = direction
direction = low_to_high

| high_to_low

« A section layout contains at most one di r ect i on statement.

« If you do not specify the di r ect i on statement, the locate direction of the section layout is
| owt o- hi gh.

section_st at enent
;.= sinple_section_statenent ;
| aggregate_section_statenent

si nmpl e_section_stat enent
;= assi gnment
| select_section_statenent
| special _section_statenent

assi gnnent = synbol _nanme assi gn_op expr

assign_op ii= =

sel ect _secti on_st at enent
.= select <ref_tree>??! <section_name>°®
<section_sel ections>%?

|1

» Either asecti on_nane or at least one sect i on_sel ecti on must be defined.

547

TASKING VX-toolset for RH850 User Guide

section_sel ections

(section_selection
<, section_sel ection>)

section_sel ection
c:= attributes = < <+|-> attribute>>
| tag

» +attribute means: select all sections that have this attribute.
» -attribute means: select all sections that do not have this attribute.

speci al _section_st at enent

= heap heap_nane <stack_heap_nods>?1

| stack stack_name <stack_heap_nods>°!

| copytable

| reserved section_nane <reserved_specs>’l?

» Special sections cannot be selected in load-time groups.

st ack_heap_nods .= (stack_heap_nod <, st ack_heap_m)d>>:0)
st ack_heap_nod :1= size = expr
| tag

reserved_specs (reserved_spec <, reserved spec>")

»= attributes
| fill_spec
| size = expr
| alloc_allowed = absolute | ranged

reserved_spec

» Ifareserved section has attributes r, rw, X, rx or rwx, and no fill pattern is defined, the section is
filled with zeros. If no attributes are set, the section is created as a scratch section (attributes ws, no
image).

fill_spec fill =fill_values
fill _val ues D= expr
| [expr <, expr>>0]

aggregat e_secti on_st at ement
::= { <section_statenent>
| group_descr
| if_statenent
| section_creation_statenent
| struct_statenent

>=0 }

group_descr .= group <group_name>’1 <(group_specs)>01
section_st at ement

» For every group with a name, the linker defines a label.

548

Linker Script Language (LSL)

* No two groups for address spaces of a core can have the same gr oup_nane.

group_specs

gr oup_spec

group_spec <, group_spec >~

group_al i gnnent

attributes

copy

nocopy

group_| oad_addr ess
fill <= fill_val ues>%?
gr oup_page
group_run_address
group_type

al | ow_cross_references
priority = number

tag

0

» The al | ow cross-r ef er ences property is only allowed for overlay groups.

» Sub groups inherit all properties from a parent group.

group_al i gnnent
attributes

attribute

group_| oad_addr ess

group_page

group_run_address ::

group_type

Tow X g

align = expr

attributes =

| oad_addr <= | oad_or _run_addr

page <= expr>°1
page_si ze = expr <[

<attribute>

>=1

/! readabl e sections
/!l witable sections
/1 executable code sections
// initialized sections
/1 scratch sections

/1 bl anked (cl eared) sections
/1 protected sections

range] <

S0 1

[range]>>70>011

run_addr <= | oad_or_run_addr>%1

clustered
conti guous
ordered
overl ay

» For non-contiguous groups, you can only specify gr oup_al i gnment and att ri but es.

» The over | ay keyword also sets the cont i guous property.

» The cl ust er ed property cannot be set together with cont i guous or or der ed on a single group.

549

TASKING VX-toolset for RH850 User Guide

| oad_or _run_addr ::= addr_absol ute
| addr_range <| addr _range>>°

addr _absol ute D= expr
| memory_reference [expr]

» An absolute address can only be set on ordered groups.

addr _range [expr .. expr]

| memory_reference
| menmory_reference [expr .. expr]

» The parent of a group with an addr _r ange or page restriction cannot be or der ed, cont i guous or
cl ustered.

» The end address is not part of the range.

nmemory reference ::= mem: <proc_nane :>°! nemnane </ map_nanme>0?

* Aproc_nane refers to a defined processor.
« A nem_nane refers to a defined memory.
* A map_nane refers to a defined memory mapping.

i f_statenent o= if (expr) section_statenent
<el se section_statenent>1

section_creation_statenent
;.= section section_nane (section_specs)
{ <section_statenent2>>0}

0

section_specs section_spec <, section_spec >~

section_spec = attributes

| fill_spec

| size = expr

| bl ocksize = expr

| overflow = section_nane
I

tag

section_statenment 2
.= sel ect_section_statenent ;

| group_descr?2
| { <section_statenment2>""0 }

group_descr2 ::= group <group_nanme>l1
(group_specs?2)
section_statenment 2

group_specs2 »1= group_spec2 <, group_spec2 >>=0

550

Linker Script Language (LSL)

group_spec2 group_al i gnnent
attributes
| oad_addr

t ag

struct _st at enent
struct { <struct_item0 }

struct_item expr : nunber ;

13.3. Expression Evaluation

Only constant expressions are allowed, including sizes, but not addresses, of sections in object files.

All expressions are evaluated with 64-bit precision integer arithmetic. The result of an expression can be
absolute or relocatable. A symbol you assign is created as an absolute symbol. Symbol references are
only allowed in symbol assignments and st r uct statements.

551

TASKING VX-toolset for RH850 User Guide

13.4. Semantics of the Architecture Definition

Keywords in the architecture definition

architecture
ext ends
endi anness
bus
mau
wi dt h
map
space
id
mau
al i gn
page_si ze
page
direction
st ack
nmn_size
gr ows
align
fixed
id
heap
nmn_size
gr ows
align
fixed
id
copyt abl e
align

copy_uni t

dest
page

big little

| ow_t o_hi gh

| ow_t o_hi gh

| ow_t o_hi gh

vector_table
vector_size
si ze
i d_synbol _prefix
run_addr
tenpl ate
t enpl at e_synbol
vector _prefix
fill
no_inline
copy
vect or
id
fill | oop

552

high_to_| ow

high_to_| ow

high_to_| ow

Linker Script Language (LSL)

opti onal
reserved
start_address
run_addr
synbol
map

map
dest bus space
dest dbits
dest of fset
si ze
src_dbits
src_of fset
priority
exec_priority

13.4.1. Defining an Architecture

With the keyword ar chi t ect ur e you define an architecture and assign a unique name to it. The name
is used to refer to it at other places in the LSL file:

architecture nane

{
}

If you are defining multiple core architectures that show great resemblance, you can define the common
features in a parent core architecture and extend this with a child core architecture that contains specific
features. The child inherits all features of the parent. With the keyword extends you create a child core
architecture:

definitions

architecture nanme_chil d_arch extends name_parent _arch

{
}

A core architecture can have any number of parameters. These are identifiers which get values assigned
on instantiation or extension of the architecture. You can use them in any expression within the core
architecture. Parameters can have default values, which are used when the core architecture is instantiated
with less arguments than there are parameters defined for it. When you extend a core architecture you
can pass arguments to the parent architecture. Arguments are expressions that set the value of the
parameters of the sub-architecture.

definitions

architecture name_chil d_arch (parmil, parm2=1)
ext ends name_parent _arch (argunents)

{
}

definitions

553

TASKING VX-toolset for RH850 User Guide

13.4.2. Defining Internal Buses

With the bus keyword you define a bus (the combination of data and corresponding address bus). The
bus name is used to identify a bus and does not conflict with other identifiers. Bus descriptions in an
architecture definition or derivative definition define internal buses. Some internal buses are used to
communicate with the components outside the core or processor. Such buses on a processor have
physical pins reserved for the number of bits specified with the wi dt h statements.

» The mau field specifies the MAU size (Minimum Addressable Unit) of the data bus. This field is required.

» The wi dt h field specifies the width (number of address lines) of the data bus. The default value is the
MAU size.

» The map keyword specifies how this bus maps onto another bus (if so). Mappings are described in
Section 13.4.4, Mappings.

bus bus_nane

=8
map_description);

13.4.3. Defining Address Spaces

With the space keyword you define a logical address space. The space name is used to identify the
address space and does not conflict with other identifiers.

* Thei d field defines how the addressing space is identified in object files. In general, each address
space has a unique ID. The linker locates sections with a certain ID in the address space with the same
ID. This field is required.

» The nau field specifies the MAU size (Minimum Addressable Unit) of the space. This field is required.

» The al i gn value must be a power of two. The linker uses this value to compute the start addresses
when sections are concatenated. An align value of n means that objects in the address space have to
be aligned on n MAUSs.

* The page_si ze field sets the page alignment and page size in MAUs for the address space. It must
be a power of 2. The default value is 1. If one or more page ranges are supplied the supplied value
only sets the page alignment. The ranges specify the available space in each page, as offsets to the
page start, which is aligned at the page alignment.

See also the page keyword in subsection Locating a group in Section 13.8.2, Creating and Locating
Groups of Sections.

» With the optional di r ect i on field you can specify how all sections in this space should be located.
This can be either from | ow_t o_hi gh addresses (this is the default) or from hi gh_t o_| owaddresses.

» The map keyword specifies how this address space maps onto an internal bus or onto another address
space. Mappings are described in Section 13.4.4, Mappings.

554

Linker Script Language (LSL)

Stacks and heaps

» The st ack keyword defines a stack in the address space and assigns a hame to it. The architecture
definition must contain at least one stack definition. Each stack of a core architecture must have a
unique name. See also the st ack keyword in Section 13.8.3, Creating or Modifying Special Sections.

The stack is described in terms of a minimum size (m n_si ze) and the direction in which the stack
grows (gr ows). This can be either from | ow_t o_hi gh addresses (stack grows upwards, this is the
default) or from hi gh_t o_| owaddresses (stack grows downwards). The mi n_si ze is required.

By default, the linker tries to maximize the size of the stacks and heaps. After locating all sections, the
largest remaining gap in the space is used completely for the stacks and heaps. If you specify the
keyword f i xed, you can disable this so-called 'balloon behavior'. The size is also fixed if you used a
stack or heap in the software layout definition in a restricted way. For example when you override a
stack with another size or select a stack in an ordered group with other sections.

The i d keyword matches stack information generated by the compiler with a stack name specified in
LSL. This value assigned to this keyword is strongly related to the compiler’'s output, so users are not
supposed to change this configuration.

Optionally you can specify an alignment for the stack with the argument al i gn. This alignment must
be equal or larger than the alignment that you specify for the address space itself.

* The heap keyword defines a heap in the address space and assigns a name to it. The definition of a
heap is similar to the definition of a stack. See also the heap keyword in Section 13.8.3, Creating or
Modifying Special Sections.

Stacks and heaps are only generated by the linker if the corresponding linker labels are referenced in the
object files.

See Section 13.8, Semantics of the Section Layout Definition, for information on creating and placing
stack sections.

Copy tables

» The copyt abl e keyword defines a copy table in the address space. The content of the copy table is
created by the linker and contains the start address and size of all sections that should be initialized
by the startup code. You must define exactly one copy table in one of the address spaces (for a core).

Optionally you can specify an alignment for the copy table with the argument al i gn. This alignment
must be equal or larger than the alignment that you specify for the address space itself. If smaller, the
alignment for the address space is used.

The copy_uni t argument specifies the size in MAUs of information chunks that are copied. If you do
not specify the copy unit, the MAU size of the address space itself is used.

The dest argument specifies the destination address space that the code uses for the copy table. The
linker uses this information to generate the correct addresses in the copy table. The memory into where
the sections must be copied at run-time, must be accessible from this destination space.

Sections generated for the copy table may get a page restriction with the address space's page size,
by adding the page argument.

555

TASKING VX-toolset for RH850 User Guide

Vector table

* The vect or _t abl e keyword defines a vector table with n vectors of size m (This is an internal LSL
object similar to an LSL group.) The r un_addr argument specifies the location of the first vector (id=0).
This can be a simple address or an offset in memory (see the description of the run-time address in
subsection Locating a group in Section 13.8.2, Creating and Locating Groups of Sections). A vector
table defines symbols __| ¢_ub_f oo and __I| c_ue_f oo pointing to start and end of the table.

vector_table "vector_table" (vector_size=m size=n, run_addr=x, ...)
See the following example of a vector table definition:

vector_table "vector_table" (vector_size = 16, size = 32, run_addr=0,
templ ate=".text.vector",
tenmpl ate_synbol ="__| c_vector_target”,
vector_prefix=".vector.",
i d_synbol _prefix="foo",

no_inline,
/* default: enpty, or */
fill="foo", /* or */
fill=[1,2,3,4], /* or */
fill=loop)
{
vector (id=23, fill="_main", optional);
vector (id=12, fill=[0Oxab, 0x21, 0x32, 0x43]);
vector (id=[1..11], fill=[0]);
vector (id=[18..23], fill=loop);
}

The t enpl at e argument defines the name of the section that holds the code to jump to a handler
function from the vector table. This template section does not get located and is removed when the
locate phase is completed. This argument is required.

Thet enpl at e_synbol argumentis the symbol reference in the template section that must be replaced
by the address of the handler function. This symbol name should start with the linker prefix for the
symbol to be ignored in the link phase. This argument is required.

The vect or _pr ef i x argument defines the names of vector sections: the section for a vector with id
vector_id is $(vector_prefix)$(vector_id). Vectors defined in C or assembly source files that should be
included in the vector table must have the correct symbol name. The compiler uses the prefix that is
defined in the default LSL file(s); if this attribute is changed, the vectors declared in C source files are
not included in the vector table. When a vector supplied in an object file has exactly one relocation, the
linker will assume it is a branch to a handler function, and can be removed when the handler is inlined
in the vector table. Otherwise, no inlining is done. This argument is required.

With the optional no_i nl i ne argument the vectors handlers are not inlined in the vector table.

With the optional copy argument a ROM copy of the vector table is made and the vector table is copied
to RAM at startup.

With the optional i d_synbol _pr ef i x argument you can set an internal string representing a symbol
name prefix that may be found on symbols in vector handler code. When the linker detects such a

556

Linker Script Language (LSL)

symbol in a handler, the symbol is assigned the vector number. If the symbol was already assigned a
vector number, a warning is issued.

Thefill argument sets the default contents of vectors. If nothing is specified for a vector, this setting
is used. See below. When no default is provided, empty vectors may be used to locate large vector
handlers and other sections. Only one fi | | argument is allowed.

The vect or field defines the content of vector with the number specified by i d. If a range is specified
forid(p..q,s..t])allvectors in the ranges (inclusive) are defined the same way.

With fi | | =symbol_name, the vector must jump to this symbol. If the section in which the symbol is
defined fits in the vector table (size may be >m), locate the section at the location of the vector.
Otherwise, insert code to jump to the symbol's value. A template interrupt handler section name +
symbol name for the target code must be supplied in the LSL file.

fill=[value(s)], fills the vector with the specified MAU values.

With fi | | =l oop the vector jumps to itself. With the optional [offset] you can specify an offset from the
vector table entry.

When the keyword opt i onal is set on a vector specification with a symbol value and the symbol is
not found, no error is reported. A default fill value is used if the symbol was not found. With other values
the attribute has no effect.

Reserved address ranges

» The r eser ved keyword specifies to reserve a part of an address space even if not all of the range is
covered by memory. See also the r eser ved keyword in Section 13.8.3, Creating or Modifying Special
Sections.

Start address

» The st art _addr ess keyword specifies the start address for the position where the C startup code is
located. When a processor is reset, it initializes its program counter to a certain start address, sometimes
called the reset vector. In the architecture definition, you must specify this start address in the correct
address space in combination with the name of the label in the application code which must be located
here.

The run_addr argument specifies the start address (reset vector). If the core starts executing using
an entry from a vector table, and directly jumps to the start label, you should omit this argument.

The synbol argument specifies the name of the label in the application code that should be located
at the specified start address. The synbol argument is required. The linker will resolve the start symbol
and use its value after locating for the start address field in IEEE-695 files and Intel Hex files. If you
also specified the r un_addr argument, the start symbol (label) must point to a section. The linker
locates this section such that the start symbol ends up on the start address.

space space_hane

557

TASKING VX-toolset for RH850 User Guide

page_si ze = 1;

stack nane (mn_size = 1k, grows = low_to_high);
reserved start_address .. end_address;
start_address (run_addr = 0x0000,

synbol = "start_I|abel")

map (map_description);

}
13.4.4. Mappings

You can use a mapping when you define a space, bus or memory. With the map field you specify how
addresses from the source (space, bus or memory) are translated to addresses of a destination (space,
bus). The following mappings are possible:

« space => space
» space => bus

* bus => bus

e memory => bus

With a mapping you specify a range of source addresses you want to map (specified by a source offset
and a size), the destination to which you want to map them (a bus or another address space), and the
offset address in the destination.

» The dest argument specifies the destination. This can be a bus or another address space (only for
a space to space mapping). This argument is required.

» The src_of f set argument specifies the offset of the source addresses. In combination with size, this
specifies the range of address that are mapped. By default the source offset is 0x0000.

» The si ze argument specifies the number of addresses that are mapped. This argument is required.

* The dest _of f set argument specifies the position in the destination to which the specified range of
addresses is mapped. By default the destination offset is 0x0000.

If you are mapping a bus to another bus, the number of data lines of each bus may differ. In this case
you have to specify a range of source data lines you want to map (sr c_dbi t s =begi n. . end) and the
range of destination data lines you want to map them to (dest _dbits =first..|ast).

» The src_dbi t s argument specifies a range of data lines of the source bus. By default all data lines
are mapped.

» The dest _dbi t s argument specifies a range of data lines of the destination bus. By default, all data
lines from the source bus are mapped on the data lines of the destination bus (starting with line 0).

If you define a memory and the memory mapping must not be used by default when locating sections in
address spaces, you can specify the r eser ved argument. This marks all address space areas that the
mapping points to as reserved. If a section has an absolute or address range restriction, the reservation
is lifted and the section may be located at these locations. This feature is only useful when more than

558

Linker Script Language (LSL)
one mapping is available for a range of memory addresses, otherwise the menor y keyword with the same
name would be used.

For example:

menory xrom

{
mau = 8§;
size = 1M
type = rom
map cached (dest =bus: nycore: system dest_of f set =0x80000000,
size=1M;
map uncached (dest=bus: mycore:system dest_offset=0xa0000000,
size=1M reserved);
}

Mapping priority

If you define a memory you can set a locate priority on a mapping with the keywords pri ority and
exec_pri ority.The values of these priorities are relative which means they add to the priority of
memories. Whereas a priority set on the memory applies to all address space areas reachable through
any mapping of the memory, a priority set on a mapping only applies to address space areas reachable
through the mapping. The memory mapping with the highest priority is considered first when locating. To
set only a priority for non-executable (data) sections, add a pri ori t y keyword with the desired value
and an exec_pri ority setto zero. To set only a priority for executable (code) sections, simply set an
exec_priority keyword to the desired value.

The default for a mapping pri ori ty is zero, while the default for exec_pri ori ty is the same as the
specified pri ori ty. If you specify a value for pri ori ty in LSL it must be greater than zero. A value
for exec_pri ority must be greater or equal to zero.

For more information about priority values see the description of the memory pri ori ty keyword.

menory nyram

{
mau = 8;
size = 112k;
type = ram
map (dest =bus: nycore: system dest_offset=0xd0000000,
size=112k, priority=8, exec_priority=0);
map (dest=bus: nycore: system dest_offset=0x70000000,
si ze=112Kk);
}

From space to space
If you map an address space to another address space (nesting), you can do this by mapping the subspace

to the containing larger space. In this example a small space of 64 kB is mapped on a large space of 16
MB.

559

TASKING VX-toolset for RH850 User Guide

space smal |
{
id=2;
mau = 4,
map (src_offset = 0, dest_offset = 0,
dest = space : large, size = 64k);
}

From space to bus
All spaces that are not mapped to another space must map to a bus in the architecture:

space | arge

{
id=1;
mau = 4,
map (src_offset = 0, dest_offset = 0,
dest = bus: bus_nanme, size = 16M);
}

From bus to bus

The next example maps an external bus called e_bus to an internal bus called i _bus. This internal bus
resides on a core called mycor e. The source bus has 16 data lines whereas the destination bus has only
8 data lines. Therefore, the keywords sr ¢c_dbi t s and dest _dbi t s specify which source data lines are
mapped on which destination data lines.

architecture nycore

{
bus i _bus
{
mau = 4;
}
space i_space
{ map (dest=bus:i_bus, size=256);
}
}
bus e_bus
{
mau = 16;
wi dth = 16;
map (dest = bus:nycore:i_bus, src_dbits = 0..7, dest_dbits =0..7)
}

It is not possible to map an internal bus to an external bus.

560

Linker Script Language (LSL)

13.5. Semantics of the Derivative Definition

Keywords in the derivative definition

derivative
ext ends
core
architecture
bus
mau
wi dt h
map
nmenory
type reserved rom ram nvram bl ockram
mau
si ze
speed
priority
exec_priority
fill
write unit
map
section_| ayout
section_setup

map
dest bus space
dest _dbits
dest _of fset
si ze
src_dbits
src_of fset
priority
exec_priority
reserved

13.5.1. Defining a Derivative

With the keyword der i vat i ve you define a derivative and assign a unique name to it. The name is used
to refer to it at other places in the LSL file:

derivative nane

{
}

If you are defining multiple derivatives that show great resemblance, you can define the common features
in a parent derivative and extend this with a child derivative that contains specific features. The child
inherits all features of the parent (cores and memories). With the keyword ext ends you create a child
derivative:

definitions

561

TASKING VX-toolset for RH850 User Guide

derivative nane_child_deriv extends nane_parent _deriv

{
}

As with a core architecture, a derivative can have any number of parameters. These are identifiers which
get values assigned on instantiation or extension of the derivative. You can use them in any expression
within the derivative definition.

definitions

derivative nane_child_deriv (parndl, parn2=1)
ext ends name_parent _deriv (argunents)
{

}

definitions

13.5.2. Instantiating Core Architectures
With the keyword cor e you instantiate a core architecture in a derivative.

» With the keyword ar chi t ect ur e you tell the linker that the given core has a certain architecture. The
architecture name refers to an existing architecture definition in the same LSL file.

For example, if you have two cores (called nycor e_1 and nycor e_2) that have the same architecture
(called nycor ear ch), you must instantiate both cores as follows:

core nycore_1

{

architecture = mycorearch;
}
core nycore_2
{

architecture = mycorearch;
}

If the architecture definition has parameters you must specify the arguments that correspond with the
parameters. For example mycor ear chl expects two parameters which are used in the architecture
definition:

core nmycore

{
}

architecture = nmycorearchl (1, 2);

13.5.3. Defining Internal Memory and Buses

With the keyword menory you define physical memory that is present on the target board. The memory
name is used to identify the memory and does not conflict with other identifiers. It is common to define
internal memory (on-chip) in the derivative definition. External memory (off-chip memory) is usually defined
in the board specification (See Section 13.6.3, Defining External Memory and Buses).

562

Linker Script Language (LSL)

The t ype field specifies a memory type:
< rom read-only memory - it can only be written at load-time

« r amrandom access volatile writable memory - writing at run-time is possible while writing at load-time
has no use since the data is not retained after a power-down

e nvram non volatile ram - writing is possible both at load-time and run-time

« bl ockr am writing is possible both at load-time and run-time. Changes are applied in RAM, so after
a full device reset the data in a blockram reverts to the original state.

The optional r eser ved qualifier before the memory type, tells the linker not to locate any section in
the memory by default. You can locate sections in such memories using an absolute address or range
restriction (see subsection Locating a group in Section 13.8.2, Creating and Locating Groups of Sections).

The mau field specifies the MAU size (Minimum Addressable Unit) of the memory. This field is required.
The si ze field specifies the size in MAU of the memory. This field is required.

The pri ori ty field specifies a locate priority for a memory. The speed field has the same meaning
but is considered deprecated. By default, a memory has its priority set to 1. The memories with the
highest priority are considered first when trying to locate a rule. Subsequently, the next highest priority
memories are added if the rule was not located successfully, and so on until the lowest priority that is
available is reached or the rule is located. The lowest priority value is zero. Sections with an or der ed
and/or cont i guous restriction are not affected by the locate priority. If such sections also have a page
restriction, the locate priority is still used to select a page.

If an exec_pri ori ty is specified for a memory, the regular priority (either specified or its default
value) does not apply to locate rules with only executable sections. Instead, the supplied value applies
for such rules. Additionally, the exec_pri ori t y value is used for any executable unrestricted sections,
even if they appear in an unrestricted rule together with non-executable sections.

The nap field specifies how this memory maps onto an (internal) bus. The mapping can have a name.
Mappings are described in Section 13.4.4, Mappings.

The optional wri t e_uni t field specifies the minimum write unit (MWU). This is the minimum number
of MAUSs required in a write action. This is useful to initialize memories that can only be written in units
of two or more MAUSs. If wr i t e_uni t is not defined the minimum write unit is 0.

The optional f i | | field contains a bit pattern that the linker writes to all memory addresses that remain
unoccupied during the locate process. The result of the expression, or list of expressions, is used as
values to write to memory, each in MAU.

menory nem name

{

type = rom
mau = 8;
wite_unit = 4;
fill = Oxaa;
size = 64k;

priority = 2;

563

TASKING VX-toolset for RH850 User Guide

map nmap_nane (nmap_description);

}

With the bus keyword you define a bus in a derivative definition. Buses are described in Section 13.4.2,
Defining Internal Buses.

13.6. Semantics of the Board Specification

Keywords in the board specification

pr ocessor
derivative
bus
mau
wi dt h
map
nmenory
type reserved rom ram nvram bl ockram
mau
si ze
speed
priority
exec_priority
fill
write unit
map

nmap
dest bus space
dest _dbits
dest _of fset
si ze
src_dbits
src_of fset
priority
exec_priority
reserved

13.6.1. Defining a Processor

If you have a target board with multiple processors that have the same derivative, you need to instantiate
each individual processor in a processor definition. This information tells the linker which processor has
which derivative and enables the linker to distinguish between the present processors.

If you use processors that all have a unique derivative, you may omit the processor definitions.
In this case the linker assumes that for each derivative definition in the LSL file there is one
processor. The linker uses the derivative name also for the processor.

564

Linker Script Language (LSL)

With the keyword pr ocessor you define a processor. You can freely choose the processor name. The
name is used to refer to it at other places in the LSL file:

processor proc_nane

{
}

processor definition

13.6.2. Instantiating Derivatives

With the keyword der i vat i ve you tell the linker that the given processor has a certain derivative. The
derivative name refers to an existing derivative definition in the same LSL file.

For example, if you have two processors on your target board (called nypr oc_1 and mypr oc_2) that
have the same derivative (called myder i v), you must instantiate both processors as follows:

processor nyproc_1

{

derivative = nyderiv;
}
processor myproc_2
{

derivative = nyderiv;
}

If the derivative definition has parameters you must specify the arguments that correspond with the
parameters. For example myder i v1 expects two parameters which are used in the derivative definition:

processor myproc

{
}

derivative = nyderivl (2,4);

13.6.3. Defining External Memory and Buses

It is common to define external memory (off-chip) and external buses at the global scope (outside any
enclosing definition). Internal memory (on-chip memory) is usually defined in the scope of a derivative
definition.

With the keyword menory you define physical memory that is present on the target board. The memory
name is used to identify the memory and does not conflict with other identifiers. If you define memory
parts in the LSL file, only the memory defined in these parts is used for placing sections.

If no external memory is defined in the LSL file and if the linker option to allocate memory on demand is
set then the linker will assume that all virtual addresses are mapped on physical memory. You can override
this behavior by specifying one or more memory definitions.

menory nem name

{
type = rom

565

TASKING VX-toolset for RH850 User Guide

mau = 8;

wite_ unit = 4;

fill = Oxaa;

size = 64k;

priority = 2;

map nmap_nane (nmap_description);

}
For a description of the keywords, see Section 13.5.3, Defining Internal Memory and Buses.

With the keyword bus you define a bus (the combination of data and corresponding address bus). The
bus name is used to identify a bus and does not conflict with other identifiers. Bus descriptions at the
global scope (outside any definition) define external buses. These are buses that are present on the target
board.

bus bus_nane

{

mau = 8;

wi dth = 8§;

map (map_description);
}

For a description of the keywords, see Section 13.4.2, Defining Internal Buses.

You can connect off-chip memory to any derivative: you need to map the off-chip memory to a bus and
map that bus on the internal bus of the derivative you want to connect it to.

13.7. Semantics of the Section Setup Definition

Keywords in the section setup definition

section_setup

st ack
mn_size
gr ows low to_high high_to_|ow
align
fixed
id

heap
mn_size
gr ows low to_high high_to_|ow
align
fixed
id

copyt abl e
align
copy_uni t
dest

page

566

Linker Script Language (LSL)

vector_table
vector_size
si ze
i d_synbol prefix
run_addr
tenpl ate
tenpl at e_synbo
vector_prefix
fill
no_inline
copy
vect or
id
fill | oop
opti ona
reserved
start_address
run_addr
synbol

13.7.1. Setting up a Section

With the keyword sect i on_set up you can define stacks, heaps, copy tables, vector tables, start address
and/or reserved address ranges outside their address space definition.

section_setup ::ny_space

{
vector table statenents
reserved address range
stack definition
heap definition
copy table definition
start adress

}

See the subsections Stacks and heaps, Copy tables, Start address, Vector table and Reserved address
ranges in Section 13.4.3, Defining Address Spaces for details on the keywords st ack, heap, copyt abl e,
vector _tabl eandreserved.

13.8. Semantics of the Section Layout Definition

Keywords in the section layout definition

section_| ayout

direction low to_high high_to_low
group

align

attributes +- rwxbisp

copy

567

TASKING VX-toolset for RH850 User Guide

nocopy
fill
ordered
conti guous
clustered
overl ay
al | ow_cross_references
| oad_addr
nmem
run_addr
nmem
page
page_si ze
priority
sel ect
st ack
si ze
heap
si ze
reserved
si ze
attributes r wXx
fill
al l oc_al | oned absol ute ranged
copytabl e
section
si ze
bl ocksi ze
attributes r wXx
fill
overfl ow
struct
checksum

if
el se

13.8.1. Defining a Section Layout

With the keyword sect i on_| ayout you define a section layout for exactly one address space. In the
section layout you can specify how input sections are placed in the address space, relative to each other,
and what the absolute run and load addresses of each section will be.

You can define one or more section definitions. Each section definition arranges the sections in one
address space. You can precede the address space name with a processor name and/or core name,
separated by colons. You can omit the processor name and/or the core name if only one processor is
defined and/or only one core is present in the processor. A reference to a space in the only core of the
only processor in the system would look like ": : ny_space". A reference to a space of the only core on
a specific processor in the system could be "ny_chi p: : my_space". The next example shows a section
definition for sections in the ny_space address space of the processor called my_chip:

568

Linker Script Language (LSL)

section_layout ny_chip::ny_space (locate_direction)

{
}

section statenents

Locate direction

With the optional keyword di r ect i on you specify whether the linker starts locating sections from

| ow_t o_hi gh (default) or from hi gh_t o_I ow. In the second case the linker starts locating sections at
the highest addresses in the address space but preserves the order of sections when necessary (one
processor and core in this example).

section_layout ::my_space (direction = high_to_|l ow)

{
}

section statenents

If you do not explicitly tell the linker how to locate a section, the linker decides on the basis of the
section attributes in the object file and the information in the architecture definition and memory
parts where to locate the section.

13.8.2. Creating and Locating Groups of Sections
Sections are located per group. A group can contain one or more (sets of) input sections as well as other
groups. Per group you can assign a mutual order to the sets of sections and locate them into a specific

memory part.

group (group_specifications)

{
}

Withthe sect i on_st at enent s you generally select sets of sections to form the group. This is described
in subsection Selecting sections for a group.

section_statenments

Instead of selecting sections, you can also modify special sections like stack and heap or create a reserved
section. This is described in Section 13.8.3, Creating or Modifying Special Sections.

With the gr oup_speci fi cat i ons you actually locate the sections in the group. This is described in
subsection Locating a group.

Selecting sections for a group

With the keyword sel ect you can select one or more sections for the group. You can select a section
by name or by attributes. If you select a section by name, you can use a wildcard pattern:

* matches with all section names
? matches with a single character in the section name
\ takes the next character literally

569

TASKING VX-toolset for RH850 User Guide

[abc] matches with a single 'a’, 'b' or 'c' character
[a-z] matches with any single character in the range 'a' to 'z

group (...)
{

sel ect "nysection";
select "*";

}

The first sel ect statement selects the section with the name "nmysect i on". The second sel ect
statement selects all sections that were not selected yet.

A section is selected by the first select statement that matches, in the union of all section layouts for the
address space. Global section layouts are processed in the order in which they appear in the LSL file.
Internal core architecture section layouts always take precedence over global section layouts.

» Theattri but es field selects all sections that carry (or do not carry) the given attribute. With +attribute
you select sections that have the specified attribute set. With -attribute you select sections that do not
have the specified attribute set. You can specify one or more of the following attributes:

 r readable sections

* w writable sections

¢ X executable sections

« iinitialized sections

« b sections that should be cleared at program startup
* s scratch sections (not cleared and not initialized)

* p protected sections

To select all read-only sections:

group (...)
{

}

Keep in mind that all section selections are restricted to the address space of the section layout in which
this group definition occurs.

select (attributes = +r-w);

» With ther ef _t ree field you can select a group of related sections. The relation between sections is
often expressed by means of references. By selecting just the 'root' of tree, the complete tree is selected.
This is for example useful to locate a group of related sections in special memory (e.g. fast memory).
The (referenced) sections must meet the following conditions in order to be selected:

1. The sections are within the section layout's address space

2. The sections match the specified attributes

570

Linker Script Language (LSL)

3. The sections have no absolute restriction (as is the case for all wildcard selections)
For example, to select the code sections referenced from f 0o1:

group refgrp (ordered, contiguous, run_addr=nem ext_c)

{
}

If section f 001 references f 002 and f 002 references f 003, then all these sections are selected by
the selection shown above.

select ref_tree "fool" (attributes=+x);

Locating a group

group group_name (group_specifications)

{
}

With the gr oup_speci fi cat i ons you actually define how the linker must locate the group. You can
roughly define three things: 1) assign properties to the sections in a group like alignment and read/write
attributes, 2) define the mutual order in the address space for sections in the group and 3) restrict the
possible addresses for the sections in a group.

section_statements

The linker creates labels that allow you to refer to the begin and end address of a group from within the
application software. Labels __| c_gb_group_nane and __| ¢_ge_gr oup_nane mark the begin and

end of the group respectively, where the begin is the lowest address used within this group and the end
is the highest address used. Notice that a group not necessarily occupies all memory between begin and
end address. The given label refers to where the section is located at run-time (versus load-time).

1. Assign properties to the sections in a group like alignment and read/write attributes.

These properties are assigned to all sections in the group (and subgroups) and override the attributes
of the input sections.

» The al i gn field tells the linker to align all sections in the group according to the align value. The
alignment of a section is first determined by its own initial alignment and the defined alignment for
the address space. Alignments are never decreased, if multiple alignments apply to a section, the
largest one is used.

» The at t ri but es field tells the linker to assign one or more attributes to all sections in the group.
This overrules the default attributes. By default the linker uses the attributes of the input sections.
You can set the r, w, or rw attributes and you can switch between the b and s attributes.

» The copy field tells the linker to locate a read-only section in RAM and generate a ROM copy and
a copy action in the copy table. This property makes the sections in the group writable which causes
the linker to generate ROM copies for the sections.

» The effect of the nocopy field is the opposite of the copy field. It prevents the linker from generating
ROM copies of the selected sections.

2. Define the mutual order of the sections in the group.

571

TASKING VX-toolset for RH850 User Guide

By default, a group is unrestricted which means that the linker has total freedom to place the sections
of the group in the address space.

572

The or der ed keyword tells the linker to locate the sections in the same order in the address space
as they appear in the group (but not necessarily adjacent).

Suppose you have an ordered group that contains the sections 'A’, 'B' and 'C'. By default the linker
places the sections in the address space like ‘A’ - 'B' - 'C', where section 'A’ gets the lowest possible
address. With di recti on=hi gh_t o_| owin the secti on_| ayout space properties, the linker
places the sections in the address space like 'C' - 'B' - 'A’, where section 'A’ gets the highest possible
address.

The cont i guous keyword tells the linker to locate the sections in the group in a single address
range. Within a contiguous group the input sections are located in arbitrary order, however the group
occupies one contiguous range of memory. Due to alignment of sections there can be ‘alignment
gaps' between the sections.

When you define a group that is both or der ed and cont i guous, this is called a sequential group.
In a sequential group the linker places sections in the same order in the address space as they
appear in the group and it occupies a contiguous range of memory.

The cl ust er ed keyword tells the linker to locate the sections in the group in a number of contiguous
blocks. It tries to keep the number of these blocks to a minimum. If enough memory is available, the
group will be located as if it was specified as cont i guous. Otherwise, it gets split into two or more
blocks.

If a contiguous or clustered group contains alignment gaps, the linker can locate sections that are
not part of the group in these gaps. To prevent this, you can use the fi | | keyword. If the group is
located in RAM, the gaps are treated as reserved (scratch) space. If the group is located in ROM,
the alignment gaps are filled with zeros by default. You can however change the fill pattern by
specifying a bit pattern. The result of the expression, or list of expressions, is used as values to write
to memory, each in MAU.

The over | ay keyword tells the linker to overlay the sections in the group. The linker places all
sections in the address space using a contiguous range of addresses. (Thus an overlay group is
automatically also a contiguous group.) To overlay the sections, all sections in the overlay group
share the same run-time address.

For each input section within the overlay the linker automatically defines two symbols. The symbol
__lc_cb_section_nane is defined as the load-time start address of the section. The symbol
__lc_ce_section_nane is defined as the load-time end address of the section. C (or assembly)
code may be used to copy the overlaid sections.

If sections in the overlay group contain references between groups, the linker reports an error. The
keyword al | ow_cr oss_r ef er ences tells the linker to accept cross-references. Normally, it does
not make sense to have references between sections that are overlaid.

group ovl (overlay)

{

group a

{
select "ny_ovl _pl";

Linker Script Language (LSL)

select "ny_ovl _p2";

}
group b
{
select "ny_ovl _ql";
}

It may be possible that one of the sections in the overlay group already has been defined in
another group where it received a load-time address. In this case the linker does not overrule
this load-time address and excludes the section from the overlay group.

3. Restrict the possible addresses for the sections in a group.

The load-time address specifies where the group's elements are loaded in memory at download time.
The run-time address specifies where sections are located at run-time, that is when the program is
executing. If you do not explicitly restrict the address in the LSL file, the linker assigns addresses to
the sections based on the restrictions relative to other sections in the LSL file and section alignments.
The program is responsible for copying overlay sections at appropriate moment from its load-time
location to its run-time location (this is typically done by the startup code).

e The run_addr keyword defines the run-time address. If the run-time location of a group is set
explicitly, the given order between groups specify whether the run-time address propagates to the
parent group or not. The location of the sections in a group can be restricted either to a single absolute
address, or to a number of address ranges (not including the end address). With an expression you
can specify that the group should be located at the absolute address specified by the expression:

group (run_addr = 0xa00f 0000)

If the group is ordered, the first section in the group is located at the specified absolute address.
You can use the '[of f set]' variant to locate the group at the given absolute offset in memory:
group (run_addr = mem A[0x1000])

If the group is ordered, the first section in the group is located at the specified absolute offset in

memory.
Arange can be an absolute space address range, writtenas [expr .. expr], acomplete memory
device, written as nem nem_nane, or a memory address range, men mem_namne[expr .. expr

]
group (run_addr = nmem ny_dram

You can use the '|' to specify an address range of more than one physical memory device:
group (run_addr = nem A | nem B)

When used in top-level section layouts, a memory name refers to a board-level memory. You can
select on-chip memory with mem pr oc_nane: mem nane. If the memory has multiple parallel
mappings towards the current address space, you can select a specific named mapping in the

573

TASKING VX-toolset for RH850 User Guide

memory by appending / map_name to the memory specifier. The linker then maps memory offsets
only through that mapping, so the address(es) where the sections in the group are located are
determined by that memory mapping.

group (run_addr = nmem CPUl: A/ cached)

» The | oad_addr keyword changes the meaning of the section selection in the group: the linker
selects the load-time ROM copy of the named section(s) instead of the regular sections. Just like
run_addr you can specify an absolute address or an address range.

group (contiguous, |oad_addr)
{
select "nydata"; // select ROM copy of nydata:
/1 "[mnydata]"

}

The load-time and run-time addresses of a group cannot be set at the same time. If the load-time
property is set for a group, the group (only) restricts the positioning at load-time of the group's
sections. It is not possible to set the address of a group that has a not-unrestricted parent group.

The properties of the load-time and run-time start address are:

< At run-time, before using an element in an overlay group, the application copies the sections from
their load location to their run-time location, but only if these two addresses are different. For
non-overlay sections this happens at program start-up.

e The start addresses cannot be set to absolute values for unrestricted groups.

« For non-overlay groups that do not have an overlay parent, the load-time start address equals the
run-time start address.

e For any group, if the run-time start address is not set, the linker selects an appropriate address.

« If an ordered group or sequential group has an absolute address and contains sections that have
separate page restrictions (not defined in LSL), all those sections are located in a single page. In
other cases, for example when an unrestricted group has an address range assigned to it, the
paged sections may be located in different pages.

For overlays, the linker reserves memory at the run-time start address as large as the largest element
in the overlay group.

» The page keyword tells the linker to place the group in one page. Instead of specifying a run-time
address, you can specify a page and optional a page number. Page numbers start from zero. If you
omit the page number, the linker chooses a page.

The page keyword refers to pages in the address space as defined in the architecture definition.

» With the page_si ze keyword you can override the page alignment and size set on the address
space. When you set the page size to zero, the linker removes simple (auto generated) page
restrictions from the selected sections. See also the page_si ze keyword in Section 13.4.3, Defining
Address Spaces.

574

Linker Script Language (LSL)

» With the pri ori ty keyword you can change the order in which sections are located. This is useful
when some sections are considered important for good performance of the application and a small
amount of fast memory is available. The value is a number for which the default is 1, so higher
priorities start at 2. Sections with a higher priority are located before sections with a lower priority,
unless their relative locate priority is already determined by other restrictions like r un_addr and

page.

group (priority=2)

{
sel ect "inportantcodel”;
sel ect "inportantcode2";

13.8.3. Creating or Modifying Special Sections

Instead of selecting sections, you can also create a reserved section or an output section or modify special
sections like a stack or a heap. Because you cannot define these sections in the input files, you must use
the linker to create them.

Stack

» The keyword st ack tells the linker to reserve memory for the stack. The name for the stack section
refers to the stack as defined in the architecture definition. If no name was specified in the architecture
definition, the default name is st ack.

With the keyword si ze you can specify the size for the stack. If the size is not specified, the linker uses
the size given by the m n_si ze argument as defined for the stack in the architecture definition. Normally
the linker automatically tries to maximize the size, unless you specified the keyword f i xed.

group (...)
{
stack "mystack" (size = 2k);
}
The linker creates two labels to mark the begin and end of the stack, __| ¢_ub_st ack_nane for the

begin of the stack and __| c_ue_st ack_nan® for the end of the stack. The linker allocates space for
the stack when there is a reference to either of the labels.

See also the st ack keyword in Section 13.4.3, Defining Address Spaces.

Heap

» The keyword heap tells the linker to reserve a dynamic memory range for the mal | oc() function.
Each heap section has a name. With the keyword si ze you can change the size for the heap. If the
si ze is not specified, the linker uses the size given by the m n_si ze argument as defined for the heap
in the architecture definition. Normally the linker automatically tries to maximize the size, unless you
specified the keyword f i xed.

group (...)
{

575

TASKING VX-toolset for RH850 User Guide

heap "nyheap" (size = 2k);
}

The linker creates two labels to mark the begin and end of the heap, __| ¢c_ub_heap_nane for the
begin of the heap and __| c_ue_heap_nane for the end of the heap. The linker allocates space for
the heap when a reference to either of the section labels exists in one of the input object files.

Reserved section

» The keyword r eser ved tells the linker to create an area or section of a given size. The linker will not
locate any other sections in the memory occupied by a reserved section, with some exceptions. Each
reserved section has a name. With the keyword si ze you can specify a size for a given reserved area
or section.

group (...)
{
reserved "nyreserved" (size = 2k);
}
The optional fi | | field contains a bit pattern that the linker writes to all memory addresses that remain

unoccupied during the locate process. The result of the expression, or list of expressions, is used as
values to write to memory, each in MAU. The first MAU of the fill pattern is always the first MAU in the
section.

By default, no sections can overlap with a reserved section. With al | oc_al | owed=absol ut e sections
that are located at an absolute address due to an absolute group restriction can overlap a reserved
section. The same applies for reserved sections with al | oc_al | owed=r anged set. Sections restricted
to a fixed address range can also overlap a reserved section.

With the at t ri but es field you can set the access type of the reserved section. The linker locates the
reserved section in its space with the restrictions that follow from the used attributes, r, w or x or a valid
combination of them. The allowed attributes are shown in the following table. A value between < and
> in the table means this value is set automatically by the linker.

Properties set in LSL [Resulting section properties
attributes |filled access memory |content

X yes <rom> executable
r yes r <rom> data

r no r <rom> scratch

rx yes r <rom> executable
rw yes rw <ram> data

rw no rw <ram> scratch
rwx yes rw <ram> executable
?r oup (...)

reserved "nyreserved" (size = 2k,

576

Linker Script Language (LSL)

attributes = rw, fill = Oxaa);

}

If you do not specify any attributes, the linker will reserve the given number of maus, no matter what
type of memory lies beneath. If you do not specify a fill pattern, no section is generated.

The linker creates two labels to mark the begin and end of the section, __| ¢c_ub_nane for the begin
of the section and __| c_ue_nane for the end of the reserved section.

Output sections

» The keyword sect i on tells the linker to accumulate sections obtained from object files (“input sections")
into an output section of a fixed size in the locate phase. You can select the input sections with sel ect
statements. You can use groups inside output sections, but you can only setthe al i gn, attri but es,
copy and | oad_addr properties and the | oad_addr property cannot have an address specified.

Thefill field contains a bit pattern that the linker writes to all unused space in the output section.
When all input sections have an image (code/data) you must specify a fill pattern. If you do not specify
a fill pattern, all input sections must be scratch sections. The fill pattern is aligned at the start of the
output section.

As with a reserved section you can use the at t ri but es field to set the access type of the output
section.

group (...)
{
section "nyoutput” (size = 4k, attributes = rw,
fill = Oxaa)
{
sel ect "nyinputl”;
sel ect "nyi nput2";
}

}

The available room for input sections is determined by the si ze, bl ocksi ze and over f | owfields.
With the keyword si ze you specify the fixed size of the output section. Input sections are placed from
output section start towards higher addresses (offsets). When the end of the output section is reached
and one or more input sections are not yet placed, an error is emitted. If however, the over f | owfield
is set to another output section, remaining sections are located as if they were selected for the overflow
output section.

group (...)
{
section "tskl data" (size=4k, attributes=rw, fill=0,
overflow = "overfl ow data")
{
select ".data.tskl.*"
}
section "tsk2 data" (size=4k, attributes=rw, fill=0,
overflow = "overfl ow data")
{

577

TASKING VX-toolset for RH850 User Guide

sel ect ".data.tsk2. *"

}

section "overflow data" (size=4k, attributes=rx,
fill=0)

{

}

}

With the keyword bl ocksi ze , the size of the output section will adapt to the size of its content. For
example:

group flash_area (run_addr = 0x10000)

{
section "flash_code" (blocksize=4k, attributes=rx,
fill=0)
{
select "*.flash";
}
}

If the content of the section is 1 mau, the size will be 4 kB, if the content is 11 kB, the section will be
12 kB, etc. If you use si ze in combination with bl ocksi ze, the si ze value is used as default (minimal)
size for this section. If it is omitted, the default size will be of bl ocksi ze. It is not allowed to omit both
si ze and bl ocksi ze from the section definition.

The linker creates two labels to mark the begin and end of the section, __| ¢_ub_nare for the begin
of the section and __| c_ue_nane for the end of the output section.

When the copy property is set on an enclosing group, a ROM copy is created for the output section
and the output section itself is made writable causing it to be located in RAM by default. For this to
work, the output section and its input sections must be read-only and the output section must have a
fill property.

Copy table

The keyword copyt abl e tells the linker to select a section that is used as copy table. The content of
the copy table is created by the linker. It contains the start address and length of all sections that should
be initialized by the startup code.

The linker creates two labels to mark the begin and end of the section, __| ¢c_ub_t abl e for the begin
of the section and __| c_ue_t abl e for the end of the copy table. The linker generates a copy table
when a reference to either of the section labels exists in one of the input object files.

Structures

Astruct statementinasecti on_| ayout creates a section and fills it with numbers that each occupy
one or more MAUSs. The new section must be named by providing a double-quoted string after the

st ruct keyword. Each element has the form expr : number ;, where the expression provides the value
to insert in the section and the number determines the number of MAUs occupied by the expression
value. Elements are placed in the section in the order in which they appear in the st r uct body without
any gaps between them. Multi-MAU elements are split into MAUs according to the endianness of the

578

Linker Script Language (LSL)
target. A st ruct section is read-only and it cannot be copied to RAM at startup (using the copy group
attribute). No default alignment is set.

For example,

struct "nystruct"

{
0x1234 . 2
addr essof (mem foo) D4
addressof (mtemfoo) + sizeof(nemfoo) 4;

checksun(crc32w,
addressof (memfoo),
addressof (memfoo) + sizeof(memfoo)) : 4}

13.8.4. Creating Symbols

You can tell the linker to create symbols before locating by putting assignments in the section layout
definition. Symbol names are represented by double-quoted strings. Any string is allowed, but object files
may not support all characters for symbol names. You can use two different assignment operators. With
the simple assignment operator '=', the symbol is created unconditionally. With the ":=' operator, the
symbol is only created if it already exists as an undefined reference in an object file.

The expression that represents the value to assign to the symbol may contain references to other symbols.
If such a referred symbol is a special section symbol, creation of the symbol in the left hand side of the
assignment will cause creation of the special section.

section_| ayout

{
" _lc_cp" :="__lc_ub_table";
/'l when the synbol __lc_cp occurs as an undefined reference
/1 in an object file, the linker generates a copy table
}

13.8.5. Conditional Group Statements
Within a group, you can conditionally select sections or create special sections.

» With the if keyword you can specify a condition. The succeeding section statement is executed if the
condition evaluates to TRUE (1).

» The optional else keyword is followed by a section statement which is executed in case the if-condition
evaluates to FALSE (0).

group (...)
{
if (exists("mysection"))
sel ect "nysection";
el se

579

TASKING VX-toolset for RH850 User Guide

reserved "nyreserved" (size=2k);

580

Chapter 14. Debug Target Configuration Files

DTC files (Debug Target Configuration files) define all possible configurations for a debug target. A debug
target can be target hardware such as an evaluation board or a simulator. The DTC files are used by
Eclipse to configure the project and the debugger. The information is used by the Target Board
Configuration wizard and the debug configuration. DTC files are located in the et ¢ directory of the installed
product and use . dt ¢ as filename suffix.

Based on the DTC files, the Target Board Configuration wizard adjust the project's LSL file and creates
a debug launch configuration.

14.1. Custom Board Support

When you need support for a custom board and the board requires a different configuration than those
that are in the product, it is necessary to create a dedicated DTC file.

To add a custom board

1. From the et ¢ directory of the product, make a copy of a . dt c file and put it in your project directory
(in the current workspace).

In Eclipse, the DTC file should now be visible as part of your project.
2. Edit the file and give it a name that reflects the custom board.

The Import Board Configuration wizard in Eclipse adds DTC files that are present in your current project
to the list of available target boards.

Syntax of a DTC file

DTC files are XML files and use the XML Schema file dt c. xsd, also present in the et ¢ directory of the
installed product.

Inspect the DTC XML schema file dt c. xsd for a description of the allowed elements and the available
attributes. Use a delivered . dt c file as a starting point for creating a custom board specification.

Basically a DTC file consists of the definition of the debug target (debugTar get element) which embodies
one or more configurations (conf i gur ati on element) and one or more communication methods
(communi cat i onMet hod element).

DTC macros in LSL

To protect wizards/dialogs from changing the LSL file, you can protect the LSL file by adding the macro
__DTC_I GNORE. This can be useful for projects that need the same LSL file, but still need to run on
different target boards.

#define __ DTC_| GNORE

581

TASKING VX-toolset for RH850 User Guide

14.2. Description of DTC Elements and Attributes

The following table contains a description of the DTC elements and attributes. For each element a list of
allowed elements is listed and the available attributes are described.

Element / Attribute

Description

Allowed Elements

debugTar get
nane

manuf act urer

The debug target.

The name of the configuration.

The manufacturer of the debug target.

flashChips, Isl,
communicationMethod,
def, processor,
resource, initialize

processor

nane

cpu

Defines a processor that can be present on
the debug target. Multiple processor definitions
are allowed. The user should select the actual
processor on the debug target.

A descriptive name of the processor derivative.

Defines the CPU name.

conmuni cat i onMet hod

name

debugl nst runent

gdi Met hod

Defines a communication method. A
communication method is the channel that is
used to communicate with the target.

A descriptive name of the communication
method.

The debug instrument DLL/Shared library file
to be used for this communication method. Do
not supply a path or a filename suffix.

This is the method used for communication.
Allowed values: r s232, t cpi p, can, none

ref, resource, initialize,
configuration, Isl,
processor

def

id

Defines a set of elements as a macro. The
macro can be expanded using the r ef
element.

The macro name.

Isl, resource, initialize,
ref, configuration,
flashMonitor

resource

val ue

Defines a resource definition that can be used
by Eclipse, the debugger or by the debug
instrument.

The identifier name used by the debugger or
debug instrument to retrieve the value.

The value assigned to the resource.

r ef

Reference to a macro defined with a def
element. The elements contained in the def
element with the same name will be expanded
at the location of the r ef . Multiple r ef s to the
same def are allowed.

The name of the referenced macro.

582

Debug Target Configuration Files

Element / Attribute

Description

Allowed Elements

configuration

nanme

Defines a configuration.

The descriptive name of the configuration.

ref, initialize, resource,
Isl, flashMonitor,
processor

initialize

resourceld
name

val ue

cstart

This element defines an initialization
expression. Each initialize element contains a
resour cel d attribute. If the DI requests this
resource the debugger will compose a string
from all initialize elements with the same
resour cel d. This DI can use this string to
initialize registers by passing it to the debugger
as an expression to be evaluated.

The name of the resource to be used.

The name of the register to be initialized.

When the cst ar t attribute is false, this is the
value to be used, otherwise, it is the default
value when using this configuration. It will be
used by the startup code editor to set the
default register values.

A boolean value. If true the debugger should
ask the C startup code editor for the value,
otherwise the contents of the value attribute is
used. The default value is true.

f1 ashMoni t or

noni t or

wor kspaceAddr ess

fl ashSectorBufferSi ze

This element specifies the flash programming
monitor to be used for this configuration.

Filename of the monitor, usually an Intel Hex
or S-Record file.

The address of the workspace of the flash
programming monitor.

Specifies the buffer size for buffering a flash
sector.

chip

vendor

chip

wi dt h

chi ps
baseAddr ess

chi pSi ze

This element defines a flash chip. It must be
used by the flash properties page to add it on
request to the list of flash chips.

The vendor of this flash chip.

The name of the chip.

The width of the chip in bits.

The number of chips present on the board.

The base address of the chip.

The size of the chip in bytes.

debugTarget

fl ashChi ps

Specify a list of flash chips that can be
available on this debug target.

chip

583

TASKING VX-toolset for RH850 User Guide

Element / Attribute

Description

Allowed Elements

| sl

Defines LSL pieces belonging to the
configuration part. The LSL text must be
defined between the start and end tag of this
element. All LSL texts of the active selection
will be placed in the project's LSL file.

584

Chapter 15. CERT C Secure Coding Standard

The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities. The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

This chapter contains an overview of the CERT C Secure Coding Standard recommendations and rules
that are supported by the TASKING VX-toolset.

For details see the CERT C Secure Coding Standard web site. For general information about CERT
secure coding, see www.cert.org/secure-coding.

Identifiers

Each rule and recommendation is given a unique identifier. These identifiers consist of three parts:
 athree-letter mnemonic representing the section of the standard

» atwo-digit numeric value in the range of 00-99

« the letter "C" indicates that this is a C language guideline

The three-letter mnemonic is used to group similar coding practices and to indicate to which category a
coding practice belongs.

The numeric value is used to give each coding practice a unique identifier. Numeric values in the range
of 00-29 are reserved for recommendations, while values in the range of 30-99 are reserved for rules.

C compiler invocation
With the C compiler option --cert you can enable one or more checks for the CERT C Secure Coding
Standard recommendations/rules. With --diag=cert you can see a list of the available checks, or you can

use a three-letter mnemonic to list only the checks in a particular category. For example, --diag=pre lists
all supported checks in the preprocessor category.

15.1. Preprocessor (PRE)

PREO1-C Use parentheses within macros around parameter names

Parenthesize all parameter names in macro definitions to avoid precedence problems.

585

https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard
http://www.cert.org/secure-coding
http://doc.tasking.com/cert/pre01.html

TASKING VX-toolset for RH850 User Guide

PREO2-C

PRE10-C

PRE11-C

Macro replacement lists should be parenthesized

Macro replacement lists should be parenthesized to protect any lower-precedence operators
from the surrounding expression. The example below is syntactically correct, although the

I = operator was omitted. Enclosing the constant - 1 in parenthesis will prevent the incorrect
interpretation and force a compiler error:

#define EOF -1 // should be (-1)
int getchar(void);
void f(void)
{
if (getchar() EOF) // != operator onitted
{
[* ... %]
}
}

Wrap multi-statement macros in a do-while loop

When multiple statements are used in a macro, enclose them in a do- whi | e statement, so
the macro can appear safely inside i f clauses or other places that expect a single statement
or a statement block. Braces alone will not work in all situations, as the macro expansion is
typically followed by a semicolon.

Do not conclude a single statement macro definition with a semicolon
Macro definitions consisting of a single statement should not conclude with a semicolon. If

required, the semicolon should be included following the macro expansion. Inadvertently
inserting a semicolon can change the control flow of the program.

15.2. Declarations and Initialization (DCL)

DCL30-C

DCL31-C

586

Declare objects with appropriate storage durations

The lifetime of an automatic object ends when the function returns, which means that a
pointer to the object becomes invalid.

Declare identifiers before using them

The ISO C90 standard allows implicit typing of variables and functions. Because implicit
declarations lead to less stringent type checking, they can often introduce unexpected and
erroneous behavior or even security vulnerabilities. The ISO C99 standard requires type
identifiers and forbids implicit function declarations. For backwards compatibility reasons,
the VX-toolset C compiler assumes an implicit declaration and continues translation after
issuing a warning message (W505 or W535).

http://doc.tasking.com/cert/pre02.html
http://doc.tasking.com/cert/pre10.html
http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/dcl30.html
http://doc.tasking.com/cert/dcl31.html

DCL32-C

DCL35-C

CERT C Secure Coding Standard

Guarantee that mutually visible identifiers are unique

The compiler encountered two or more identifiers that are identical in the first 31 characters.
The ISO C99 standard allows a compiler to ignore characters past the first 31 in an identifier.
Two distinct identifiers that are identical in the first 31 characters may lead to problems when
the code is ported to a different compiler.

Do not invoke a function using a type that does not match the function definition

This warning is generated when a function pointer is set to refer to a function of an
incompatible type. Calling this function through the function pointer will result in undefined
behavior. Example:

void nmy_function(int a);
int main(void)
{
int (*new_function)(int a) = my_function;
return (*new_function)(10); /* the behavior is undefined */

}

15.3. Expressions (EXP)

EXPO1-C

EXP12-C

EXP30-C

EXP32-C

EXP33-C

Do not take the size of a pointer to determine the size of the pointed-to type

The size of the object(s) allocated by malloc(), calloc() or realloc() should be a multiple of
the size of the base type of the result pointer. Therefore, the sizeof expression should be
applied to this base type, and not to the pointer type.

Do not ignore values returned by functions
The compiler gives this warning when the result of a function call is ignored at some place,
although it is not ignored for other calls to this function. This warning will not be issued when

the function result is ignored for all calls, or when the result is explicitly ignored with a (void)
cast.

Do not depend on order of evaluation between sequence points

Between two sequence points, an object should only be modified once. Otherwise the behavior
is undefined.

Do not access a volatile object through a non-volatile reference

If an attempt is made to refer to an object defined with a volatile-qualified type through use
of an Ivalue with non-volatile-qualified type, the behavior is undefined.

Do not reference uninitialized memory

Uninitialized automatic variables default to whichever value is currently stored on the stack
or in the register allocated for the variable. Consequently, uninitialized memory can cause a

program to behave in an unpredictable or unplanned manner and may provide an avenue
for attack.

587

http://doc.tasking.com/cert/dcl32.html
http://doc.tasking.com/cert/dcl35.html
http://doc.tasking.com/cert/exp01.html
http://doc.tasking.com/cert/exp12.html
http://doc.tasking.com/cert/exp30.html
http://doc.tasking.com/cert/exp32.html
http://doc.tasking.com/cert/exp33.html

TASKING VX-toolset for RH850 User Guide

EXP34-C

EXP37-C

EXP38-C

Ensure a null pointer is not dereferenced

Attempting to dereference a null pointer results in undefined behavior, typically abnormal
program termination.

Call functions with the arguments intended by the API

When a function is properly declared with function prototype information, an incorrect call
will be flagged by the compiler. When there is no prototype information available at the call,

the compiler cannot check the number of arguments and the types of the arguments. This
message is issued to warn about this situation.

Do not call offsetof() on bit-field members or invalid types

The behavior of the offsetof() macro is undefined when the member designator parameter
designates a bit-field.

15.4. Integers (INT)

INT30-C

INT34-C

INT35-C

Ensure that unsigned integer operations do not wrap

A constant with an unsigned integer type is truncated, resulting in a wrap-around.
Do not shift a negative number of bits or more bits than exist in the operand
The shift count of the shift operation may be negative or greater than or equal to the size of

the left operand. According to the C standard, the behavior of such a shift operation is
undefined. Make sure the shift count is in range by adding appropriate range checks.

Evaluate integer expressions in a larger size before comparing or assigning to that size

If an integer expression is compared to, or assigned to a larger integer size, that integer
expression should be evaluated in that larger size by explicitly casting one of the operands.

15.5. Floating Point (FLP)

FLP30-C

FLP35-C

FLP36-C

588

Do not use floating point variables as loop counters

To avoid problems with limited precision and rounding, floating point variables should not be
used as loop counters.

Take granularity into account when comparing floating point values

Floating point arithmetic in C is inexact, so floating point values should not be tested for exact
equality or inequality.

Beware of precision loss when converting integral types to floating point

Conversion from integral types to floating point types without sufficient precision can lead to
loss of precision.

http://doc.tasking.com/cert/exp34.html
http://doc.tasking.com/cert/exp37.html
http://doc.tasking.com/cert/exp38.html
http://doc.tasking.com/cert/int30.html
http://doc.tasking.com/cert/int34.html
http://doc.tasking.com/cert/int35.html
http://doc.tasking.com/cert/flp30.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html

CERT C Secure Coding Standard

15.6. Arrays (ARR)

ARRO1-C

ARR34-C

ARR35-C

Do not apply the sizeof operator to a pointer when taking the size of an array

A function parameter declared as an array, is converted to a pointer by the compiler. Therefore,
the sizeof operator applied to this parameter yields the size of a pointer, and not the size of
an array.

Ensure that array types in expressions are compatible

Using two or more incompatible arrays in an expression results in undefined behavior.
Do not allow loops to iterate beyond the end of an array

Reading or writing of data outside the bounds of an array may lead to incorrect program
behavior or execution of arbitrary code.

15.7. Characters and Strings (STR)

STR30-C

STR33-C

STR34-C

STR36-C

Do not attempt to modify string literals

Writing to a string literal has undefined behavior, as identical strings may be shared and/or
allocated in read-only memory.

Size wide character strings correctly

Wide character strings may be improperly sized when they are mistaken for narrow strings
or for multi-byte character strings.

Cast characters to unsigned types before converting to larger integer sizes

A signed character is sign-extended to a larger signed integer value. Use an explicit cast, or
cast the value to an unsigned type first, to avoid unexpected sign-extension.

Do not specify the bound of a character array initialized with a string literal

The compiler issues this warning when the character buffer initialized by a string literal does
not provide enough room for the terminating null character.

15.8. Memory Management (MEM)

MEMOO-C Allocate and free memory in the same module, at the same level of abstraction

The compiler issues this warning when the result of the call to malloc(), calloc() or realloc()
is discarded, and therefore not free()d, resulting in a memory leak.

MEMO08-C Use realloc() only to resize dynamically allocated arrays

Only use realloc() to resize an array. Do not use it to transform an object to an object of a
different type.

589

http://doc.tasking.com/cert/arr01.html
http://doc.tasking.com/cert/arr34.html
http://doc.tasking.com/cert/arr35.html
http://doc.tasking.com/cert/str30.html
http://doc.tasking.com/cert/str33.html
http://doc.tasking.com/cert/str34.html
http://doc.tasking.com/cert/str36.html
http://doc.tasking.com/cert/mem00.html
http://doc.tasking.com/cert/mem08.html

TASKING VX-toolset for RH850 User Guide

MEM30-C

MEM31-C

MEM32-C

MEM33-C

MEM34-C

MEM35-C

Do not access freed memory

When memory is freed, its contents may remain intact and accessible because it is at the
memory manager's discretion when to reallocate or recycle the freed chunk. The data at the
freed location may appear valid. However, this can change unexpectedly, leading to
unintended program behavior. As a result, it is necessary to guarantee that memory is not
written to or read from once it is freed.

Free dynamically allocated memory exactly once
Freeing memory multiple times has similar consequences to accessing memory after it is
freed. The underlying data structures that manage the heap can become corrupted. To

eliminate double-free vulnerabilities, it is necessary to guarantee that dynamic memory is
freed exactly once.

Detect and handle memory allocation errors

The result of realloc() is assigned to the original pointer, without checking for failure. As a
result, the original block of memory is lost when realloc() fails.

Use the correct syntax for flexible array members

Use the ISO C99 syntax for flexible array members instead of an array member of size 1.
Only free memory allocated dynamically

Freeing memory that is not allocated dynamically can lead to corruption of the heap data
structures.

Allocate sufficient memory for an object

The compiler issues this warning when the size of the object(s) allocated by malloc(), calloc()

or realloc() is smaller than the size of an object pointed to by the result pointer. This may be
caused by a sizeof expression with the wrong type or with a pointer type instead of the object

type.

15.9. Environment (ENV)

ENV32-C

All atexit handlers must return normally

The compiler issues this warning when an atexit() handler is calling a function that does not
return. No atexit() registered handler should terminate in any way other than by returning.

15.10. Signals (SIG)

SIG30-C
SIG32-C

590

Call only asynchronous-safe functions within signal handlers
Do not call longjmp() from inside a signal handler
Invoking the longjmp() function from within a signal handler can lead to undefined behavior

if it results in the invocation of any non-asynchronous-safe functions, likely compromising
the integrity of the program.

http://doc.tasking.com/cert/mem30.html
http://doc.tasking.com/cert/mem31.html
http://doc.tasking.com/cert/mem32.html
http://doc.tasking.com/cert/mem33.html
http://doc.tasking.com/cert/mem34.html
http://doc.tasking.com/cert/mem35.html
http://doc.tasking.com/cert/env32.html
http://doc.tasking.com/cert/sig30.html
http://doc.tasking.com/cert/sig32.html

CERT C Secure Coding Standard

15.11. Miscellaneous (MSC)

MSC32-C Ensure your random number generator is properly seeded

Ensure that the random number generator is properly seeded by calling srand().

591

http://doc.tasking.com/cert/msc32.html

TASKING VX-toolset for RH850 User Guide

592

Chapter 16. MISRA C Rules

This chapter contains an overview of the supported and unsupported MISRA C rules.

16.1. MISRA C:1998

This section lists all supported and unsupported MISRA C:1998 rules.
See also Section 3.7.2, C Code Checking: MISRA C.

A number of MISRA C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

X means that the rule is not supported by the TASKING C compiler. (R) is a required rule, (A) is an advisory
rule.

1. (R) The code shall conform to standard C, without language extensions.
X 2. (A) Other languages should only be used with an interface standard.

3. (A) Inline assembly is only allowed in dedicated C functions.
X 4. (A) Provision should be made for appropriate run-time checking.

5. (R) Only use characters and escape sequences defined by ISO C.
X 6. (R) Character values shall be restricted to a subset of ISO 106460-1.

7. (R) Trigraphs shall not be used.

8. (R) Multibyte characters and wide string literals shall not be used.

9. (R) Comments shall not be nested.

10. (A) Sections of code should not be "commented out".

In general, it is not possible to decide whether a piece of comment is C code that is
commented out, or just some pseudo code. Instead, the following heuristics are used
to detect possible C code inside a comment:

* aline ends with ';', or

 aline starts with '}, possibly preceded by white space

11. (R) Identifiers shall not rely on significance of more than 31 characters.
12. (A) The same identifier shall not be used in multiple name spaces.
13. (A) Specific-length typedefs should be used instead of the basic types.
14. (R) Useunsigned char orsigned char instead of plain char .

X 15. (A) Floating-point implementations should comply with a standard.

16. (R) The bit representation of floating-point numbers shall not be used.
A violation is reported when a pointer to a floating-point type is converted to a pointer
to an integer type.

593

TASKING VX-toolset for RH850 User Guide

17. (R) typedef names shall not be reused.

18. (A) Numeric constants should be suffixed to indicate type.
A violation is reported when the value of the constant is outside the range indicated
by the suffixes, if any.

19. (R) Octal constants (other than zero) shall not be used.
20. (R) All object and function identifiers shall be declared before use.
21. (R) Identifiers shall not hide identifiers in an outer scope.
22. (A) Declarations should be at function scope where possible.
X 23. (A) Alldeclarations at file scope should be static where possible.
24. (R) Identifiers shall not have both internal and external linkage.
X 25. (R) Identifiers with external linkage shall have exactly one definition.
26. (R) Multiple declarations for objects or functions shall be compatible.
X 27. (A) External objects should not be declared in more than one file.
28. (A) Theregister storage class specifier should not be used.
29. (R) The use of atag shall agree with its declaration.

30. (R) Allautomatics shall be initialized before being used .
This rule is checked using worst-case assumptions. This means that violations are
reported not only for variables that are guaranteed to be uninitialized, but also for
variables that are uninitialized on some execution paths.

31. (R) Braces shall be used in the initialization of arrays and structures.
32. (R) Only the first, or all enumeration constants may be initialized.

33. (R) Theright hand operand of & or | | shall not contain side effects.
34. (R) The operands of a logical & or | | shall be primary expressions.
35. (R) Assignment operators shall not be used in Boolean expressions.
36. (A) Logical operators should not be confused with bitwise operators.
37. (R) Bitwise operations shall not be performed on signed integers.

38. (R) A shift count shall be between 0 and the operand width minus 1.
This violation will only be checked when the shift count evaluates to a constant value
at compile time.

39. (R) The unary minus shall not be applied to an unsigned expression.
40. (A) sizeof should not be used on expressions with side effects.

X 41. (A) The implementation of integer division should be documented.
42. (R) The comma operator shall only be used in a f or condition.
43. (R) Don't use implicit conversions which may result in information loss.
44. (A) Redundant explicit casts should not be used.
45. (R) Type casting from any type to or from pointers shall not be used.

594

46.

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

67.
68.
69.
70.

71.
72.
73.
74.
75.

R

(A)
(A)
(A)
R
(A)
R
R
R
(A)
R
(R
R
R
(A)
R
(R
(A)
R
R
(A)

(A)
R
R
R

R
R
R
R
R

MISRA C Rules

The value of an expression shall be evaluation order independent.

This rule is checked using worst-case assumptions. This means that a violation will
be reported when a possible alias may cause the result of an expression to be
evaluation order dependent.

No dependence should be placed on operator precedence rules.
Mixed arithmetic should use explicit casting.

Tests of a (non-Boolean) value against 0 should be made explicit.
F.P. variables shall not be tested for exact equality or inequality.
Constant unsigned integer expressions should not wrap-around.
There shall be no unreachable code.

All non-null statements shall have a side-effect.

A null statement shall only occur on a line by itself.

Labels should not be used.

The got o statement shall not be used.

The cont i nue statement shall not be used.

The br eak statement shall not be used (except in a swi t ch).
Ani f or loop body shall always be enclosed in braces.

Alli f, el se if constructs should contain a final el se.

Every non-empty case clause shall be terminated with a br eak.
All swi t ch statements should contain a final def aul t case.

A swi t ch expression should not represent a Boolean case.
Every swi t ch shall have at least one case.

Floating-point variables shall not be used as loop counters.

A f or should only contain expressions concerning loop control.
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

Iterator variables should not be modified in a f or loop.
Functions shall always be declared at file scope.
Functions with variable number of arguments shall not be used.

Functions shall not call themselves, either directly or indirectly.

A violation will be reported for direct or indirect recursive function calls in the source
file being checked. Recursion via functions in other source files, or recursion via
function pointers is not detected.

Function prototypes shall be visible at the definition and call.

The function prototype of the declaration shall match the definition.
Identifiers shall be given for all prototype parameters or for none.
Parameter identifiers shall be identical for declaration/definition.
Every function shall have an explicit return type.

595

TASKING VX-toolset for RH850 User Guide

76. (R) Functions with no parameters shall have a voi d parameter list.
77. (R) An actual parameter type shall be compatible with the prototype.
78. (R) The number of actual parameters shall match the prototype.

79. (R) The values returned by voi d functions shall not be used.

80. (R) Void expressions shall not be passed as function parameters.

81. (A) const should be used for reference parameters not modified.

82. (A) A function should have a single point of exit.

83. (R) Every exit point shall have a r et ur n of the declared return type.
84. (R) Forvoi d functions, r et ur n shall not have an expression.

85. (A) Function calls with no parameters should have empty parentheses.

86. (A) Ifafunction returns error information, it should be tested.
A violation is reported when the return value of a function is ignored.

87. (R) #incl ude shall only be preceded by other directives or comments.
88. (R) Non-standard characters shall not occur in #i ncl ude directives.

89. (R) #incl ude shall be followed by either <fi | enane>or"fil enane".
90. (R) Plain macros shall only be used for constants/qualifiers/specifiers.
91. (R) Macros shall not be #def i ne'd and #undef 'd within a block.

92. (A) #undef should not be used.

93. (A) A function should be used in preference to a function-like macro.

94. (R) A function-like macro shall not be used without all arguments.

95. (R) Macro arguments shall not contain pre-preprocessing directives.
A violation is reported when the first token of an actual macro argument is '#'.

96. (R) Macro definitions/parameters should be enclosed in parentheses.
97. (A) Don't use undefined identifiers in pre-processing directives.
98. (R) A macro definition shall contain at most one # or ## operator.

99. (R) Alluses of the #pr agma directive shall be documented.
This rule is really a documentation issue. The compiler will flag all #pr agna directives
as violations.

100. (R) defi ned shall only be used in one of the two standard forms.
101. (A) Pointer arithmetic should not be used.

102. (A) No more than 2 levels of pointer indirection should be used.
A violation is reported when a pointer with three or more levels of indirection is
declared.

103. (R) No relational operators between pointers to different objects.
In general, checking whether two pointers point to the same object is impossible. The
compiler will only report a violation for a relational operation with incompatible pointer
types.

104. (R) Non-constant pointers to functions shall not be used.
105. (R) Functions assigned to the same pointer shall be of identical type.

596

106.
107.

108.
109.

110.

111.
112.
113.
114.
115.
X 116.
X 117.
118.
1109.
120.
121.
122.
123.
124.
125.
126.
127.

R
R

R
R

(R)

R
R
R
R
R
(R
R
R
R
R
R
R
(R)
R
R
R
R

MISRA C Rules

Automatic address may not be assigned to a longer lived object.

The null pointer shall not be de-referenced.
A violation is reported for every pointer dereference that is not guarded by a NULL
pointer test.

All st ruct /uni on members shall be fully specified.

Overlapping variable storage shall not be used.
A violation is reported for every uni on declaration.

Unions shall not be used to access the sub-parts of larger types.
A violation is reported for a uni on containing a st r uct member.

Bit-fields shall have type unsi gned int orsigned int.
Bit-fields of type si gned i nt shall be at least 2 bits long.

All st ruct /uni on members shall be named.

Reserved and standard library names shall not be redefined.
Standard library function names shall not be reused.
Production libraries shall comply with the MISRA C restrictions.
The validity of library function parameters shall be checked.
Dynamic heap memory allocation shall not be used.

The error indicator er r no shall not be used.

The macro of f set of shall not be used.

<l ocal e. h> and the set | ocal e function shall not be used.
The setj np and | ongj np functions shall not be used.

The signal handling facilities of <si gnal . h> shall not be used.
The <st di 0. h> library shall not be used in production code.
The functions at of /at oi /at ol shall not be used.

The functions abor t /exi t /get env/syst emshall not be used.
The time handling functions of library <t i me. h> shall not be used.

16.2. MISRA C:2004

This section lists all supported and unsupported MISRA C:2004 rules.

See also Section 3.7.2, C Code Checking: MISRA C.

A number of MISRA C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

X means that the rule is not supported by the TASKING C compiler. (R) is a required rule, (A) is an advisory

rule.

597

TASKING VX-toolset for RH850 User Guide

Environment

1.1
1.2
X 1.3
X 1.4
X 1.5

R

R
(R

R

(A)

All code shall conform to ISO 9899:1990 "Programming languages - C", amended
and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC
9899/COR2:1996.

No reliance shall be placed on undefined or unspecified behavior.

Multiple compilers and/or languages shall only be used if there is a common defined
interface standard for object code to which the languages/compilers/assemblers
conform.

The compiler/linker shall be checked to ensure that 31 character significance and
case sensitivity are supported for external identifiers.

Floating-point implementations should comply with a defined floating-point standard.

Language extensions

21
2.2
23
24

R
R
(R)
(A)

Assembly language shall be encapsulated and isolated.
Source code shallonlyuse /* ... */ style comments.
The character sequence / * shall not be used within a comment.

Sections of code should not be "commented out". In general, it is not possible to
decide whether a piece of comment is C code that is commented out, or just some
pseudo code. Instead, the following heuristics are used to detect possible C code
inside a comment: - a line ends with ';', or - a line starts with '}, possibly preceded by
white space

Documentation

X 3.1
X 3.2
X 3.3
34
35
X 3.6

R
(R
(A)

(R)

R

R

All usage of implementation-defined behavior shall be documented.
The character set and the corresponding encoding shall be documented.

The implementation of integer division in the chosen compiler should be determined,
documented and taken into account.

All uses of the #pr agma directive shall be documented and explained. This rule is
really a documentation issue. The compiler will flag all #pr agma directives as
violations.

The implementation-defined behavior and packing of bit-fields shall be documented
if being relied upon.

All libraries used in production code shall be written to comply with the provisions of
this document, and shall have been subject to appropriate validation.

Character sets

4.1
4.2

598

(R
R

Only those escape sequences that are defined in the ISO C standard shall be used.
Trigraphs shall not be used.

Identifiers
51 (R)
52 (R)
53 (R)
54 (R)
55 (A)
56 (A)
57 (A

Types
6.1 (R)
6.2 (R)
6.3 (A
64 (R)
65 (R)

Constants
71 (R)

MISRA C Rules

Identifiers (internal and external) shall not rely on the significance of more than 31
characters.

Identifiers in an inner scope shall not use the same name as an identifier in an outer
scope, and therefore hide that identifier.

At ypedef name shall be a unique identifier.
A tag name shall be a unique identifier.
No object or function identifier with static storage duration should be reused.

No identifier in one name space should have the same spelling as an identifier in
another name space, with the exception of structure and union member names.

No identifier name should be reused.

The plain char type shall be used only for storage and use of character values.

si gned and unsi gned char type shall be used only for the storage and use of
numeric values.

t ypedef s that indicate size and signedness should be used in place of the basic
types.

Bit-fields shall only be defined to be of type unsi gned i nt orsigned int.
Bit-fields of type si gned i nt shall be at least 2 bits long.

Octal constants (other than zero) and octal escape sequences shall not be used.

Declarations and definitions

8.1

8.2

8.3

8.4
8.5
8.6
8.7

8.8

R

R

R

R
R
R
R

R

Functions shall have prototype declarations and the prototype shall be visible at both
the function definition and call.

Whenever an object or function is declared or defined, its type shall be explicitly
stated.

For each function parameter the type given in the declaration and definition shall be
identical, and the return types shall also be identical.

If objects or functions are declared more than once their types shall be compatible.
There shall be no definitions of objects or functions in a header file.
Functions shall be declared at file scope.

Obijects shall be defined at block scope if they are only accessed from within a single
function.

An external object or function shall be declared in one and only one file.

599

TASKING VX-toolset for RH850 User Guide

89 (R)
x 810 (R)
8.11 (R)
8.12 (R)
Initialization
9.1 (R
92 (R)
93 (R)

An identifier with external linkage shall have exactly one external definition.

All declarations and definitions of objects or functions at file scope shall have internal
linkage unless external linkage is required.

The st at i c storage class specifier shall be used in definitions and declarations of
objects and functions that have internal linkage.

When an array is declared with external linkage, its size shall be stated explicitly or
defined implicitly by initialization.

All automatic variables shall have been assigned a value before being used. This rule
is checked using worst-case assumptions. This means that violations are reported
not only for variables that are guaranteed to be uninitialized, but also for variables
that are uninitialized on some execution paths.

Braces shall be used to indicate and match the structure in the non-zero initialization
of arrays and structures.

In an enumerator list, the "=" construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

Arithmetic type conversions

600

10.1

10.2

10.3

10.4

10.5

10.6

R

(R

R
(R

R

(R)

The value of an expression of integer type shall not be implicitly converted to a different
underlying type if:

a) it is not a conversion to a wider integer type of the same signedness, or

b) the expression is complex, or

c¢) the expression is not constant and is a function argument, or

d) the expression is not constant and is a return expression.

The value of an expression of floating type shall not be implicitly converted to a
different type if:

a) it is not a conversion to a wider floating type, or

b) the expression is complex, or

c) the expression is a function argument, or

d) the expression is a return expression.

The value of a complex expression of integer type may only be cast to a type of the
same signedness that is no wider than the underlying type of the expression.

The value of a complex expression of floating type may only be cast to a type that is
no wider than the underlying type of the expression.

If the bitwise operators ~ and << are applied to an operand of underlying type
unsi gned char orunsi gned short, the result shall be immediately cast to the
underlying type of the operand.

A "U" suffix shall be applied to all constants of unsi gned type.

MISRA C Rules

Pointer type conversions

111

11.2

11.3
114

115

Expressions

R

R

(A)
(A)

R

121 (A
122 (R)
123 (R)
124 (R)
125 (R)
126 (A
127 (R)
128 (R)
129 (R)
12.10 (R)
12.11 (A)
12.12 (R)
12.13 (A)

Conversions shall not be performed between a pointer to a function and any type
other than an integral type.

Conversions shall not be performed between a pointer to object and any type other
than an integral type, another pointer to object type or a pointer to void.

A cast should not be performed between a pointer type and an integral type.

A cast should not be performed between a pointer to object type and a different pointer
to object type.

A cast shall not be performed that removes any const or vol at i | e qualification
from the type addressed by a pointer.

Limited dependence should be placed on C's operator precedence rules in
expressions.

The value of an expression shall be the same under any order of evaluation that the
standard permits. This rule is checked using worst-case assumptions. This means
that a violation will be reported when a possible alias may cause the result of an
expression to be evaluation order dependent.

The si zeof operator shall not be used on expressions that contain side effects.
The right-hand operand of a logical && or | | operator shall not contain side effects.
The operands of a logical & or | | shall be primary-expressions.

The operands of logical operators (&&, | | and !) should be effectively Boolean.
Expressions that are effectively Boolean should not be used as operands to operators
other than (&&, || and!).

Bitwise operators shall not be applied to operands whose underlying type is signed.

The right-hand operand of a shift operator shall lie between zero and one less than
the width in bits of the underlying type of the left-hand operand. This violation will only
be checked when the shift count evaluates to a constant value at compile time.

The unary minus operator shall not be applied to an expression whose underlying
type is unsigned.

The comma operator shall not be used.
Evaluation of constant unsigned integer expressions should not lead to wrap-around.

The underlying bit representations of floating-point values shall not be used. A violation
is reported when a pointer to a floating-point type is converted to a pointer to an
integer type.

The increment (++) and decrement (- -) operators should not be mixed with other
operators in an expression.

Control statement expressions

13.1

R

Assignment operators shall not be used in expressions that yield a Boolean value.

601

TASKING VX-toolset for RH850 User Guide

Control flow

13.2

13.3
134

13.5

13.6

13.7

(A)

R
R

R

(R)

R

141 (R)
142 (R)
143 (R)
144 (R)
145 (R)
146 (R)
147 (R)
148 (R)
149 (R)
14.10 (R)

Tests of a value against zero should be made explicit, unless the operand is effectively
Boolean.

Floating-point expressions shall not be tested for equality or inequality.

The controlling expression of af or statement shall not contain any objects of floating
type.

The three expressions of a f or statement shall be concerned only with loop control.
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

Numeric variables being used within a f or loop for iteration counting shall not be
modified in the body of the loop.

Boolean operations whose results are invariant shall not be permitted.

There shall be no unreachable code.

All non-null statements shall either:
a) have at least one side effect however executed, or
b) cause control flow to change.

Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment provided that the first character following the null statement
is a white-space character.

The got o statement shall not be used.
The cont i nue statement shall not be used.

For any iteration statement there shall be at most one break statement used for loop
termination.

A function shall have a single point of exit at the end of the function.

The statement forming the body of aswi t ch,while,do ... whileorfor
statement be a compound statement.

Anif (expression) construct shall be followed by a compound statement. The
el se keyword shall be followed by either a compound statement, or another i f
statement.

Allif ... else if constructs shall be terminated with an el se clause.

Switch statements

602

151

15.2
15.3
154
15.5

R

R
R
R
R

A switch label shall only be used when the most closely-enclosing compound statement
is the body of a swi t ch statement.

An unconditional br eak statement shall terminate every non-empty swi t ch clause.
The final clause of a switch statement shall be the def aul t clause.

A swi t ch expression shall not represent a value that is effectively Boolean.

Every swi t ch statement shall have at least one case clause.

Functions
16.1 (R)
16.2 (R)
16.3 (R)
16.4 (R)
16,5 (R)
166 (R)
16.7 (A)
16.8 (R)
16.9 (R)
16.10 (R)

MISRA C Rules

Functions shall not be defined with variable numbers of arguments.

Functions shall not call themselves, either directly or indirectly. A violation will be
reported for direct or indirect recursive function calls in the source file being checked.
Recursion via functions in other source files, or recursion via function pointers is not
detected.

Identifiers shall be given for all of the parameters in a function prototype declaration.
The identifiers used in the declaration and definition of a function shall be identical.
Functions with no parameters shall be declared with parameter type voi d.

The number of arguments passed to a function shall match the number of parameters.

A pointer parameter in a function prototype should be declared as pointer to const
if the pointer is not used to modify the addressed object.

All exit paths from a function with non-void return type shall have an explicit r et ur n
statement with an expression.

A function identifier shall only be used with either a preceding &, or with a
parenthesized parameter list, which may be empty.

If a function returns error information, then that error information shall be tested. A
violation is reported when the return value of a function is ignored.

Pointers and arrays

x 171 (R)
x 172 (R)
173 (R)
174 (R)
175 (A)
176 (R)

Pointer arithmetic shall only be applied to pointers that address an array or array
element.

Pointer subtraction shall only be applied to pointers that address elements of the
same array.

>, >=, <, <= shall not be applied to pointer types except where they point to the same
array. In general, checking whether two pointers point to the same object is impossible.
The compiler will only report a violation for a relational operation with incompatible
pointer types.

Array indexing shall be the only allowed form of pointer arithmetic.

The declaration of objects should contain no more than 2 levels of pointer indirection.
A violation is reported when a pointer with three or more levels of indirection is
declared.

The address of an object with automatic storage shall not be assigned to another
object that may persist after the first object has ceased to exist.

Structures and unions

181 (R)
182 (R)
X 18.3 (R)

All structure or union types shall be complete at the end of a translation unit.
An object shall not be assigned to an overlapping object.
An area of memory shall not be reused for unrelated purposes.

603

TASKING VX-toolset for RH850 User Guide

18.4

(R

Unions shall not be used.

Preprocessing directives

191

19.2

19.3

194

19.5

19.6

19.7

19.8

19.9

19.10

19.11

19.12

19.13
19.14

19.15

19.16

19.17

(A)
(A)
(R
R

(R)
R
(A)
(R
R
R
R
R

(A)
(R)

R
R

(R

#i ncl ude statements in a file should only be preceded by other preprocessor
directives or comments.

Non-standard characters should not occur in header file names in #i ncl ude
directives.

The #i ncl ude directive shall be followed by either a <fi | enane>or"fil enanme"
sequence.

C macros shall only expand to a braced initializer, a constant, a parenthesized
expression, a type qualifier, a storage class specifier, or a do-while-zero construct.

Macros shall not be #def i ne'd or #undef 'd within a block.

#undef shall not be used.

A function should be used in preference to a function-like macro.

A function-like macro shall not be invoked without all of its arguments.

Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives. A violation is reported when the first token of an actual macro argument
is '#'.

In the definition of a function-like macro each instance of a parameter shall be enclosed
in parentheses unless it is used as the operand of # or ##.

All macro identifiers in preprocessor directives shall be defined before use, exceptin
#i f def and #i f ndef preprocessor directives and the def i ned() operator.

There shall be at most one occurrence of the # or ## preprocessor operators in a
single macro definition.

The # and ## preprocessor operators should not be used.

The def i ned preprocessor operator shall only be used in one of the two standard
forms.

Precautions shall be taken in order to prevent the contents of a header file being
included twice.

Preprocessing directives shall be syntactically meaningful even when excluded by
the preprocessor.

All #el se, #el i f and #endi f preprocessor directives shall reside in the same file
asthe #i f or #i f def directive to which they are related.

Standard libraries

X

604

20.1

20.2
20.3

R

(R)
R

Reserved identifiers, macros and functions in the standard library, shall not be defined,
redefined or undefined.

The names of standard library macros, objects and functions shall not be reused.
The validity of values passed to library functions shall be checked.

204 (R)
205 (R)
206 (R)
207 (R)
208 (R)
209 (R)
20.10 (R)
20.11 (R)
20.12 (R)

MISRA C Rules

Dynamic heap memory allocation shall not be used.

The error indicator er r no shall not be used.

The macro of f set of , in library <st ddef . h>, shall not be used.

The set j mp macro and the | ongj np function shall not be used.

The signal handling facilities of <si gnal . h> shall not be used.

The input/output library <st di 0. h> shall not be used in production code.

The library functions at of , at oi and at ol from library <st dl i b. h> shall not be
used.

The library functions abort, exi t, get env and syst emfrom library <st dl i b. h>
shall not be used.

The time handling functions of library <t i me. h> shall not be used.

Run-time failures

X 21.1

R

Minimization of run-time failures shall be ensured by the use of at least one of:
a) static analysis tools/techniques;

b) dynamic analysis tools/techniques;

c) explicit coding of checks to handle run-time faults.

16.3. MISRA C:2012

This section lists all supported and unsupported MISRA C:2012 rules.

See also Section 3.7.2, C Code Checking: MISRA C.

A number of MISRA C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

X means that the rule is not supported by the TASKING C compiler. (M) is a mandatory rule, (R) is a
required rule, (A) is an advisory rule.

A standard C environment

11

1.2
1.3

Unused code

21
2.2
2.3

R

(A)
R

R
R
(A)

The program shall contain no violations of the standard C syntax and constraints,
and shall not exceed the implementation's translation limits.

Language extensions should not be used.
There shall be no occurrence of undefined or critical unspecified behavior.

A project shall not contain unreachable code.
There shall be no dead code.
A project should not contain unused type declarations.

605

TASKING VX-toolset for RH850 User Guide

24 (A
25 (A
26 (A
27 (A

Comments
31 (R
32 (R

A project should not contain unused tag declarations.
A project should not contain unused macro declarations.
A function should not contain unused label declarations.
There should be no unused parameters in functions.

The character sequences / * and // shall not be used within a comment.
Line-splicing shall not be used in// comments.

Character sets and lexical conventions

41 (R)

42 (A
Identifiers
x 51 (R)
x 52 (R)
X 53 (R)
X 54 (R)
x 55 (R)
x 56 (R)
X 57 (R)
x 58 (R)
X 59 (A
Types

6.1 (R)

62 (R)

Octal and hexadecimal escape sequences shall be terminated.
Trigraphs should not be used.

External identifiers shall be distinct.
Identifiers declared in the same scope and name space shall be distinct.

An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope.

Macro identifiers shall be distinct.

Identifiers shall be distinct from macro names.

Atypedef name shall be a unique identifier.

A tag name shall be a unique identifier.

Identifiers that define objects or functions with external linkage shall be unique.
Identifiers that define objects or functions with internal linkage should be unique.

Bit-fields shall only be declared with an appropriate type.
Single-bit named bit-fields shall not be of a signed type.

Literals and constants

71 (R)
72 (R)
73 (R)
74 (R)

606

Octal constants shall not be used.

A "u" or "U" suffix shall be applied to all integer constants that are represented in an
unsi gned type.

The lowercase character "l " shall not be used in a literal suffix trivial.

A string literal shall not be assigned to an object unless the object's type is "pointer
to const -qualified char ".

MISRA C Rules

Declarations and definitions

81 (R)
82 (R
83 (R)
84 (R)
85 (R)
86 (R)
8.7 (A
88 (R)
89 (A
8.10 (R)
8.11 (A)
8.12 (R)
8.13 (A)
8.14 (R)
Initialization
9.1 (M)
92 (R)
93 (R)
94 (R)
95 (R)

Types shall be explicitly specified.
Function types shall be in prototype form with named parameters.
All declarations of an object or function shall use the same names and type qualifiers.

A compatible declaration shall be visible when an object or function with external
linkage is defined.

An external object or function shall be declared once in one and only one file.
An identifier with external linkage shall have exactly one external definition.

Functions and objects should not be defined with external linkage if they are referenced
in only one translation unit.

The st at i ¢ storage class specifier shall be used in all declarations of objects and
functions that have internal linkage.

An object should be defined at block scope if its identifier only appears in a single
function.

An inline function shall be declared with the st at i ¢ storage class.
When an array with external linkage is declared, its size should be explicitly specified.

Within an enumerator list, the value of an implicitly-specified enumeration constant
shall be unique.

A pointer should point to a const -qualified type whenever possible.
Therestrict type qualifier shall not be used.

The value of an object with automatic storage duration shall not be read before it has
been set.

The initializer for an aggregate or union shall be enclosed in braces.
Arrays shall not be partially initialized.
An element of an object shall not be initialized more than once.

Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

The essential type model

10.1
10.2

10.3

104

R
R

R

R

Operands shall not be of an inappropriate essential type.

Expressions of essentially character type shall not be used inappropriately in addition
and subtraction operations.

The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category.

Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category.

607

TASKING VX-toolset for RH850 User Guide

10.5
10.6

10.7

10.8

(A)
R

R

(R)

The value of an expression should not be cast to an inappropriate essential type.

The value of a composite expression shall not be assigned to an object with wider
essential type.

If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed then the other operand shall not have wider
essential type.

The value of a composite expression shall not be cast to a different essential type
category or a wider essential type.

Pointer type conversions

Expressions

111

11.2

11.3

114

115
116
11.7

11.8

11.9

121
12.2

12.3
12.4

R

R)

R

(A)

(A)
R
R

R

R

(A)
R

(A)
(A)

Side effects

608

13.1
13.2

R
R

Conversions shall not be performed between a pointer to a function and any other
type.

Conversions shall not be performed between a pointer to an incomplete type and any
other type.

A cast shall not be performed between a pointer to object type and a pointer to a
different object type.

A conversion should not be performed between a pointer to object and an integer
type.

A conversion should not be performed from pointer to voi d into pointer to object.
A cast shall not be performed between pointer to voi d and an arithmetic type.

A cast shall not be performed between pointer to object and a non-integer arithmetic
type.

A cast shall not remove any const orvol ati | e qualification from the type pointed
to by a pointer.

The macro NULL shall be the only permitted form of integer null pointer constant.

The precedence of operators within expressions should be made explicit.

The right hand operand of a shift operator shall lie in the range zero to one less than
the width in bits of the essential type of the left hand operand.

The comma operator should not be used.
Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Initializer lists shall not contain persistent side effects.

The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders.

13.3

13.4
13.5

13.6

(A)

(A)
(R)

(M)

MISRA C Rules

A full expression containing an increment (++) or decrement (- -) operator should
have no other potential side effects other than that caused by the increment or
decrement operator.

The result of an assignment operator should not be used.

The right hand operand of a logical & or | | operator shall not contain persistent side
effects.

The operand of the si zeof operator shall not contain any expression which has
potential side effects.

Control statement expressions

141
14.2
14.3
14.4

Control flow

151
15.2
15.3

15.4

155
15.6

15.7

R
R
R
(R)

(A)
R
R

(A)

(A)
R

R

A loop counter shall not have essentially floating type.
A f or loop shall be well-formed.
Controlling expressions shall not be invariant.

The controlling expression of an i f statement and the controlling expression of an
iteration-statement shall have essentially Boolean type.

The got o statement should not be used.
The got o statement shall jump to a label declared later in the same function.

Any label referenced by a got o statement shall be declared in the same block, or in
any block enclosing the got o statement.

There should be no more than one br eak or got o statement used to terminate any
iteration statement.

A function should have a single point of exit at the end.

The body of an iteration-statement or a selection-statement shall be a
compound-statement.

Allif ... else if constructs shall be terminated with an el se statement.

Switch statements

16.1
16.2

16.3
16.4
16.5

16.6
16.7

R
R

R
R
(R)

R
R

All swi t ch statements shall be well-formed.

A switch label shall only be used when the most closely-enclosing compound statement
is the body of a swi t ch statement.

An unconditional br eak statement shall terminate every switch-clause.
Every swi t ch statement shall have a def aul t label.

A def aul t label shall appear as either the first or the last switch label of a swi t ch
statement.

Every swi t ch statement shall have at least two switch-clauses.
A switch-expression shall not have essentially Boolean type.

609

TASKING VX-toolset for RH850 User Guide

Functions
171 (R)
17.2 (R)
17.3 (M)
17.4 (M)
175 (A)
17.6 (M)
17.7 (R)
17.8 (A

The features of <st dar g. h> shall not be used.
Functions shall not call themselves, either directly or indirectly.
A function shall not be declared implicitly.

All exit paths from a function with non-voi d return type shall have an explicitr et ur n
statement with an expression.

The function argument corresponding to a parameter declared to have an array type
shall have an appropriate number of elements.

The declaration of an array parameter shall not contain the st at i ¢ keyword between
the[1.

The value returned by a function having non-voi d return type shall be used.
A function parameter should not be modified.

Pointers and arrays

18.1

18.2

18.3

18.4
18.5
18.6

18.7
18.8

(R
(R
R

(A)
(A)
(R

R
(R)

A pointer resulting from arithmetic on a pointer operand shall address an element of
the same array as that pointer operand.

Subtraction between pointers shall only be applied to pointers that address elements
of the same array.

he relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object.

The +, - , += and - = operators should not be applied to an expression of pointer type.
Declarations should contain no more than two levels of pointer nesting.

The address of an object with automatic storage shall not be copied to another object
that persists after the first object has ceased to exist.

Flexible array members shall not be declared.
Variable-length array types shall not be used.

Overlapping storage

191
19.2

(M)
(A)

An object shall not be assigned or copied to an overlapping object.
The uni on keyword should not be used.

Preprocessing directives

610

20.1

20.2

20.3

(A)

R

R

#i ncl ude directives should only be preceded by preprocessor directives or
comments.

The' ," or\ characters and the / * or// character sequences shall not occur in a
header file name.

The #i ncl ude directive shall be followed by either a <fi | ename>or"fi | enane”
sequence.

20.4
20.5
20.6
20.7

20.8

20.9

R
(A)
(R)
R

R

R

20.10 (A)
20.11 (R)

20.12 (R)

20.13 (R)
20.14 (R)

MISRA C Rules

A macro shall not be defined with the same name as a keyword.
#undef should not be used.
Tokens that look like a preprocessing directive shall not occur within a macro argument

Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses.

The controlling expression of a #i f or #el i f preprocessing directive shall evaluate
toOor 1.

All identifiers used in the controlling expression of #i f or #el i f preprocessing
directives shall be #def i ne'd before evaluation.

The # and ## preprocessor operators should not be used.

A macro parameter immediately following a # operator shall not immediately be
followed by a ## operator.

A macro parameter used as an operand to the # or ## operators, which is itself subject
to further macro replacement, shall only be used as an operand to these operators.

A line whose first token is # shall be a valid preprocessing directive.

All #el se, #el i f and #endi f preprocessor directives shall reside in the same file
as the #i f, #i f def or #i f ndef directive to which they are related.

Standard libraries

211 (R)
212 (R)
213 (R)
214 (R)
215 (R)
216 (R)
217 (R)
218 (R)
219 (R)
21.10 (R)
21.11 (R)
21.12 (A)
Resources
X 221 (R)

#def i ne and #undef shall not be used on a reserved identifier or reserved macro
name.

A reserved identifier or macro name shall not be declared.

The memory allocation and deallocation functions of <st dl i b. h> shall not be used.
The standard header file <set j np. h> shall not be used.

The standard header file <si gnal . h> shall not be used.

The Standard Library input/output functions shall not be used.

The at of , at oi , at ol and at ol | functions of <st dl i b. h> shall not be used.

The library functions abort, exi t, get env and syst emof <st dl i b. h> shall not
be used.

The library functions bsear ch and gsort of <st dl i b. h> shall not be used.
The Standard Library time and date functions shall not be used

The standard header file <t gnat h. h> shall not be used.

The exception handling features of <f env. h> should not be used.

All resources obtained dynamically by means of Standard Library functions shall be
explicitly released.

611

TASKING VX-toolset for RH850 User Guide

612

22.2

22.3

22.4
225
22.6

(M)

R

(M)
(M)
(M)

A block of memory shall only be freed if it was allocated by means of a Standard
Library function.

The same file shall not be open for read and write access at the same time on different
streams.

There shall be no attempt to write to a stream which has been opened as read-only.
A pointer to a Fl LE object shall not be dereferenced.

The value of a pointer to a FI LE shall not be used after the associated stream has
been closed.

	TASKING VX-toolset for RH850 User Guide
	Table of Contents
	Chapter 1. C Language
	1.1. Data Types
	1.2. Accessing Memory
	1.2.1. Memory Qualifiers
	1.2.2. Data Allocation Options and Pragmas
	1.2.3. Allocation of Uninitialized Constants
	1.2.4. Placing an Object at an Absolute Address: __at()

	1.3. Static Assertions
	1.4. Shift JIS Kanji Support
	1.5. Using Assembly in the C Source: __asm()
	1.6. Attributes
	1.7. Pragmas to Control the Compiler
	1.8. Predefined Preprocessor Macros
	1.9. Switch Statement
	1.10. Functions
	1.10.1. Calling Convention
	1.10.2. Inlining Functions: inline
	1.10.3. Floating-Point Unit Support: __fpu, __nofpu
	1.10.4. Interrupt Functions
	1.10.5. Intrinsic Functions

	1.11. Section Naming

	Chapter 2. Assembly Language
	2.1. Assembly Syntax
	2.2. Assembler Significant Characters
	2.3. Operands of an Assembly Instruction
	2.4. Symbol Names
	2.4.1. Predefined Preprocessor Symbols

	2.5. Registers
	2.6. Assembly Expressions
	2.6.1. Numeric Constants
	2.6.2. Strings
	2.6.3. Expression Operators

	2.7. Working with Sections
	2.8. Built-in Assembly Functions
	2.9. Assembler Directives
	2.9.1. Overview of Assembler Directives
	2.9.2. Detailed Description of Assembler Directives
	.ALIGN
	.BREAK
	.BS, .BSB, .BSH, .BSW, .BSD
	.CALLS
	.DB, .DH, .DW, .DD
	.DEFINE
	.DS, .DSB, .DSH, .DSW, .DSD
	.END
	.EQU
	.EXTERN
	.FOR, .ENDFOR
	.FPU_DOUBLE
	.FPU_SINGLE
	.GLOBAL
	.HAS_MMU
	.HAS_SIMD
	.HAS_THREAD
	.HAS_VIRTUAL
	.IF, .ELIF, .ELSE, .ENDIF
	.INCLUDE
	.LIST, .NOLIST
	.MACRO, .ENDM
	.MESSAGE
	.MISRAC
	.PAGE
	.REPEAT, .ENDREP
	.RESUME
	.SECTION, .ENDSEC
	.SET
	.SIZE
	.SOURCE
	.STITLE
	.TITLE
	.TYPE
	.UNDEF
	.WEAK

	2.10. Macro Operations
	2.10.1. Defining a Macro
	2.10.2. Calling a Macro
	2.10.3. Using Operators for Macro Arguments

	2.11. Generic Instructions

	Chapter 3. Using the C Compiler
	3.1. Compilation Process
	3.2. Calling the C Compiler
	3.3. The C Startup Code
	3.4. How the Compiler Searches Include Files
	3.5. Compiling for Debugging
	3.6. Compiler Optimizations
	3.6.1. Generic Optimizations (frontend)
	3.6.2. Core Specific Optimizations (backend)
	3.6.3. Optimize for Code Size or Execution Speed

	3.7. Static Code Analysis
	3.7.1. C Code Checking: CERT C
	3.7.2. C Code Checking: MISRA C

	3.8. C Compiler Error Messages

	Chapter 4. Using the Assembler
	4.1. Assembly Process
	4.2. Calling the Assembler
	4.3. How the Assembler Searches Include Files
	4.4. Assembler Optimizations
	4.5. Generating a List File
	4.6. Assembler Error Messages

	Chapter 5. Using the Linker
	5.1. Linking Process
	5.1.1. Phase 1: Linking
	5.1.2. Phase 2: Locating

	5.2. Calling the Linker
	5.3. Linking with Libraries
	5.3.1. How the Linker Searches Libraries
	5.3.2. How the Linker Extracts Objects from Libraries

	5.4. Incremental Linking
	5.5. Importing Binary Files
	5.6. Linker Optimizations
	5.7. Controlling the Linker with a Script
	5.7.1. Purpose of the Linker Script Language
	5.7.2. Eclipse and LSL
	5.7.3. Structure of a Linker Script File
	5.7.4. The Architecture Definition
	5.7.5. The Derivative Definition
	5.7.6. The Processor Definition
	5.7.7. The Memory Definition
	5.7.8. The Section Layout Definition: Locating Sections

	5.8. Linker Labels
	5.9. Generating a Map File
	5.10. Linker Error Messages

	Chapter 6. Using the Utilities
	6.1. Control Program
	6.2. Make Utility amk
	6.2.1. Makefile Rules
	6.2.2. Makefile Directives
	6.2.3. Macro Definitions
	6.2.4. Makefile Functions
	6.2.5. Conditional Processing
	6.2.6. Makefile Parsing
	6.2.7. Makefile Command Processing
	6.2.8. Calling the amk Make Utility

	6.3. Archiver
	6.3.1. Calling the Archiver
	6.3.2. Archiver Examples

	6.4. HLL Object Dumper
	6.4.1. Invocation
	6.4.2. HLL Dump Output Format

	6.5. Expire Cache Utility

	Chapter 7. Using the Debugger
	7.1. Reading the Eclipse Documentation
	7.2. Creating a Customized Debug Configuration
	7.3. Troubleshooting
	7.4. TASKING Debug Perspective
	7.4.1. Debug View
	7.4.2. Breakpoints View
	7.4.3. File System Simulation (FSS) View
	7.4.4. Disassembly View
	7.4.5. Expressions View
	7.4.6. Memory View
	7.4.7. Compare Application View
	7.4.8. Heap View
	7.4.9. Logging View
	7.4.10. RTOS View
	7.4.11. Registers View
	7.4.12. Trace View

	Chapter 8. Tool Options
	8.1. Configuring the Command Line Environment
	8.2. C Compiler Options
	C compiler option: --cache
	C compiler option: --cert
	C compiler option: --check
	C compiler option: --const-data-memory
	C compiler option: --data-memory
	C compiler option: --debug-info (-g)
	C compiler option: --default-code
	C compiler option: --default-data
	C compiler option: --define (-D)
	C compiler option: --dep-file
	C compiler option: --diag
	C compiler option: --eabi-deviations
	C compiler option: --eabi-compliant
	C compiler option: --error-file
	C compiler option: --fp-model
	C compiler option: --fpu
	C compiler option: --global-type-checking
	C compiler option: --help (-?)
	C compiler option: --include-directory (-I)
	C compiler option: --include-file (-H)
	C compiler option: --inline
	C compiler option: --inline-max-incr / --inline-max-size
	C compiler option: --iso (-c)
	C compiler option: --keep-output-files (-k)
	C compiler option: --language (-A)
	C compiler option: --make-target
	C compiler option: --misrac
	C compiler option: --misrac-advisory-warnings / --misrac-required-warnings / --misrac-mandatory-warnings
	C compiler option: --misrac-version
	C compiler option: --no-clear
	C compiler option: --no-stdinc
	C compiler option: --no-warnings (-w)
	C compiler option: --optimize (-O)
	C compiler option: --option-file (-f)
	C compiler option: --output (-o)
	C compiler option: --preprocess (-E)
	C compiler option: --rename-sections (-R)
	C compiler option: --runtime (-r)
	C compiler option: --source (-s)
	C compiler option: --static
	C compiler option: --stdout (-n)
	C compiler option: --string-literal-memory
	C compiler option: --switch
	C compiler option: --tradeoff (-t)
	C compiler option: --uchar (-u)
	C compiler option: --undefine (-U)
	C compiler option: --verbose (-v)
	C compiler option: --version (-V)
	C compiler option: --warnings-as-errors

	8.3. Assembler Options
	Assembler option: --case-insensitive (-c)
	Assembler option: --check
	Assembler option: --debug-info (-g)
	Assembler option: --define (-D)
	Assembler option: --dep-file
	Assembler option: --diag
	Assembler option: --dwarf-version
	Assembler option: --emit-locals
	Assembler option: --error-file
	Assembler option: --error-limit
	Assembler option: --fpu
	Assembler option: --has-mmu
	Assembler option: --has-simd
	Assembler option: --has-thread
	Assembler option: --has-virtualization
	Assembler option: --help (-?)
	Assembler option: --include-directory (-I)
	Assembler option: --include-file (-H)
	Assembler option: --kanji
	Assembler option: --keep-output-files (-k)
	Assembler option: --list-file (-l)
	Assembler option: --list-format (-L)
	Assembler option: --make-target
	Assembler option: --nested-sections (-N)
	Assembler option: --no-macs
	Assembler option: --no-warnings (-w)
	Assembler option: --optimize (-O)
	Assembler option: --option-file (-f)
	Assembler option: --output (-o)
	Assembler option: --page-length
	Assembler option: --page-width
	Assembler option: --preprocess (-E)
	Assembler option: --preprocessor-type (-m)
	Assembler option: --section-info (-t)
	Assembler option: --symbol-scope (-i)
	Assembler option: --version (-V)
	Assembler option: --warnings-as-errors

	8.4. Linker Options
	Linker option: --case-insensitive
	Linker option: --chip-output (-c)
	Linker option: --define (-D)
	Linker option: --dep-file
	Linker option: --diag
	Linker option: --error-file
	Linker option: --error-limit
	Linker option: --extern (-e)
	Linker option: --first-library-first
	Linker option: --global-type-checking
	Linker option: --help (-?)
	Linker option: --hex-format
	Linker option: --hex-record-size
	Linker option: --import-object
	Linker option: --include-directory (-I)
	Linker option: --incremental (-r)
	Linker option: --keep-output-files (-k)
	Linker option: --library (-l)
	Linker option: --library-directory (-L) / --ignore-default-library-path
	Linker option: --link-only
	Linker option: --lsl-check
	Linker option: --lsl-dump
	Linker option: --lsl-file (-d)
	Linker option: --make-target
	Linker option: --map-file (-M)
	Linker option: --map-file-format (-m)
	Linker option: --misra-c-report
	Linker option: --non-romable
	Linker option: --no-rescan
	Linker option: --no-rom-copy (-N)
	Linker option: --no-warnings (-w)
	Linker option: --optimize (-O)
	Linker option: --option-file (-f)
	Linker option: --output (-o)
	Linker option: --strip-debug (-S)
	Linker option: --user-provided-initialization-code (-i)
	Linker option: --verbose (-v)
	Linker option: --version (-V)
	Linker option: --warnings-as-errors
	Linker option: --whole-archive

	8.5. Control Program Options
	Control program option: --address-size
	Control program option: --case-insensitive
	Control program option: --check
	Control program option: --cpu (-C)
	Control program option: --cpu-list
	Control program option: --create (-c)
	Control program option: --debug-info (-g)
	Control program option: --define (-D)
	Control program option: --dep-file
	Control program option: --diag
	Control program option: --dry-run (-n)
	Control program option: --eabi-compliant
	Control program option: --error-file
	Control program option: --format
	Control program option: --fp-model
	Control program option: --fpu
	Control program option: --global-type-checking
	Control program option: --help (-?)
	Control program option: --include-directory (-I)
	Control program option: --iso
	Control program option: --keep-output-files (-k)
	Control program option: --keep-temporary-files (-t)
	Control program option: --library (-l)
	Control program option: --library-directory (-L) / --ignore-default-library-path
	Control program option: --link-only
	Control program option: --list-files
	Control program option: --lsl-file (-d)
	Control program option: --make-target
	Control program option: --no-default-libraries
	Control program option: --no-map-file
	Control program option: --no-warnings (-w)
	Control program option: --option-file (-f)
	Control program option: --output (-o)
	Control program option: --pass (-W)
	Control program option: --preprocess (-E) / --no-preprocessing-only
	Control program option: --processors
	Control program option: --static
	Control program option: --undefine (-U)
	Control program option: --verbose (-v)
	Control program option: --version (-V)
	Control program option: --warnings-as-errors

	8.6. Parallel Make Utility Options
	Parallel make utility option: --always-rebuild (-a)
	Parallel make utility option: --change-dir (-G)
	Parallel make utility option: --diag
	Parallel make utility option: --dry-run (-n)
	Parallel make utility option: --help (-? / -h)
	Parallel make utility option: --jobs (-j) / --jobs-limit (-J)
	Parallel make utility option: --keep-going (-k)
	Parallel make utility option: --list-targets (-l)
	Parallel make utility option: --makefile (-f)
	Parallel make utility option: --no-warnings (-w)
	Parallel make utility option: --silent (-s)
	Parallel make utility option: --version (-V)
	Parallel make utility option: --warnings-as-errors

	8.7. Archiver Options
	Archiver option: --diag
	Archiver option: --delete (-d)
	Archiver option: --dump (-p)
	Archiver option: --extract (-x)
	Archiver option: --help (-?)
	Archiver option: --move (-m)
	Archiver option: --option-file (-f)
	Archiver option: --print (-t)
	Archiver option: --replace (-r)
	Archiver option: --version (-V)
	Archiver option: --warning (-w)

	8.8. HLL Object Dumper Options
	HLL object dumper option: --class (-c)
	HLL object dumper option: --copy-table
	HLL object dumper option: --diag
	HLL object dumper option: --disassembly-intermix (-i)
	HLL object dumper option: --dump-format (-F)
	HLL object dumper option: --expand-symbols (-e)
	HLL object dumper option: --help (-?)
	HLL object dumper option: --hex (-x)
	HLL object dumper option: --option-file (-f)
	HLL object dumper option: --output (-o)
	HLL object dumper option: --output-type (-T)
	HLL object dumper option: --sections (-s)
	HLL object dumper option: --source-lookup-path (-L)
	HLL object dumper option: --symbols (-S)
	HLL object dumper option: --version (-V)
	HLL object dumper option: --xml-base-filename (-X)

	8.9. Expire Cache Utility Options
	Expire cache utility option: --access (-a)
	Expire cache utility option: --days (-d)
	Expire cache utility option: --diag
	Expire cache utility option: --dry-run (-n)
	Expire cache utility option: --help (-?)
	Expire cache utility option: --megabytes (-m)
	Expire cache utility option: --totals (-t)
	Expire cache utility option: --verbose (-v)
	Expire cache utility option: --version (-V)

	Chapter 9. Influencing the Build Time
	9.1. Optimization Options
	9.2. Automatic Inlining
	9.3. Code Compaction
	9.4. Compiler Cache
	9.5. Header Files
	9.6. Parallel Build

	Chapter 10. Libraries
	10.1. Library Functions
	10.1.1. assert.h
	10.1.2. complex.h
	10.1.3. cstart.h
	10.1.4. ctype.h and wctype.h
	10.1.5. dbg.h
	10.1.6. errno.h
	10.1.7. except.h
	10.1.8. fcntl.h
	10.1.9. fenv.h
	10.1.10. float.h
	10.1.11. inttypes.h and stdint.h
	10.1.12. io.h
	10.1.13. iso646.h
	10.1.14. limits.h
	10.1.15. locale.h
	10.1.16. malloc.h
	10.1.17. math.h and tgmath.h
	10.1.18. setjmp.h
	10.1.19. signal.h
	10.1.20. stdarg.h
	10.1.21. stdbool.h
	10.1.22. stddef.h
	10.1.23. stdint.h
	10.1.24. stdio.h and wchar.h
	10.1.25. stdlib.h and wchar.h
	10.1.26. string.h and wchar.h
	10.1.27. time.h and wchar.h
	10.1.28. unistd.h
	10.1.29. wchar.h
	10.1.30. wctype.h

	10.2. C Library Reentrancy

	Chapter 11. List File Formats
	11.1. Assembler List File Format
	11.2. Linker Map File Format

	Chapter 12. Object File Formats
	12.1. ELF/DWARF Object Format
	12.2. Intel Hex Record Format
	12.3. Motorola S-Record Format

	Chapter 13. Linker Script Language (LSL)
	13.1. Structure of a Linker Script File
	13.2. Syntax of the Linker Script Language
	13.2.1. Preprocessing
	13.2.2. Lexical Syntax
	13.2.3. Identifiers and Tags
	13.2.4. Expressions
	13.2.5. Built-in Functions
	13.2.6. LSL Definitions in the Linker Script File
	13.2.7. Memory and Bus Definitions
	13.2.8. Architecture Definition
	13.2.9. Derivative Definition
	13.2.10. Processor Definition and Board Specification
	13.2.11. Section Setup
	13.2.12. Section Layout Definition

	13.3. Expression Evaluation
	13.4. Semantics of the Architecture Definition
	13.4.1. Defining an Architecture
	13.4.2. Defining Internal Buses
	13.4.3. Defining Address Spaces
	13.4.4. Mappings

	13.5. Semantics of the Derivative Definition
	13.5.1. Defining a Derivative
	13.5.2. Instantiating Core Architectures
	13.5.3. Defining Internal Memory and Buses

	13.6. Semantics of the Board Specification
	13.6.1. Defining a Processor
	13.6.2. Instantiating Derivatives
	13.6.3. Defining External Memory and Buses

	13.7. Semantics of the Section Setup Definition
	13.7.1. Setting up a Section

	13.8. Semantics of the Section Layout Definition
	13.8.1. Defining a Section Layout
	13.8.2. Creating and Locating Groups of Sections
	13.8.3. Creating or Modifying Special Sections
	13.8.4. Creating Symbols
	13.8.5. Conditional Group Statements

	Chapter 14. Debug Target Configuration Files
	14.1. Custom Board Support
	14.2. Description of DTC Elements and Attributes

	Chapter 15. CERT C Secure Coding Standard
	15.1. Preprocessor (PRE)
	15.2. Declarations and Initialization (DCL)
	15.3. Expressions (EXP)
	15.4. Integers (INT)
	15.5. Floating Point (FLP)
	15.6. Arrays (ARR)
	15.7. Characters and Strings (STR)
	15.8. Memory Management (MEM)
	15.9. Environment (ENV)
	15.10. Signals (SIG)
	15.11. Miscellaneous (MSC)

	Chapter 16. MISRA C Rules
	16.1. MISRA C:1998
	16.2. MISRA C:2004
	16.3. MISRA C:2012

