
TASKING Safety Checker
User Guide

MA000-740 (v2.0r1) September 14, 2018



Copyright © 2018 TASKING BV.

All rights reserved.You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of TASKING BV. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium®,
TASKING®, and their respective logos are registered trademarks of Altium Limited or its subsidiaries. All other registered
or unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to
the same are claimed.



Table of Contents
Manual Purpose and Structure ............................................................................................. v
1. Installing the Software ..................................................................................................... 1

1.1. Installation for Windows ........................................................................................ 1
1.2. Licensing ........................................................................................................... 2

1.2.1. Obtaining a License .................................................................................. 3
1.2.2. Frequently Asked Questions (FAQ) ............................................................... 3
1.2.3. Installing a License ................................................................................... 4

2. Introduction .................................................................................................................. 7
2.1. Mixed Criticality Systems and ISO 26262 ................................................................. 8

2.1.1. ISO 26262 Guidance about FFI ................................................................... 8
2.2. ASIL Aware Safety Checks .................................................................................... 9
2.3. C Syntax Checking ............................................................................................ 16
2.4. Semantic Analysis ............................................................................................. 18
2.5. MISRA C Checks ............................................................................................... 19
2.6. CERT C Checks ................................................................................................ 20

3. C Language ................................................................................................................ 21
3.1. Data Types ....................................................................................................... 21
3.2. Shift JIS Kanji Support ........................................................................................ 22
3.3. Attributes ......................................................................................................... 23
3.4. Pragmas to Control the Safety Checker .................................................................. 27
3.5. Predefined Preprocessor Macros .......................................................................... 29
3.6. Configuring the Safety Checker for Non-Standard C Code .......................................... 32

3.6.1. Data Types ............................................................................................. 32
3.6.2. Data Type Qualifiers, Memory Qualifiers and Function Qualifiers ....................... 32
3.6.3. Attributes ............................................................................................... 33
3.6.4. Intrinsic Functions ................................................................................... 33
3.6.5. Pragmas ............................................................................................... 34
3.6.6. Predefined Typedefs ................................................................................ 34
3.6.7. Predefined Macros .................................................................................. 34
3.6.8. Include Files ........................................................................................... 35
3.6.9. Assembly Instructions in the C Source ......................................................... 35
3.6.10. Target Configuration ............................................................................... 35

4. Using the Safety Checker ............................................................................................... 37
4.1. Safety Checker Phases ....................................................................................... 37
4.2. Invocation Syntax .............................................................................................. 38
4.3. Verification Data ................................................................................................ 38
4.4. Define Partitioning Information .............................................................................. 39
4.5. Output of the Safety Checker ............................................................................... 42
4.6. How the Safety Checker Searches Include Files ....................................................... 44
4.7. Static Code Analysis .......................................................................................... 45

4.7.1. C Code Checking: CERT C ....................................................................... 46
4.7.2. C Code Checking: MISRA C ...................................................................... 47

4.8. Safety Checker Error Messages ............................................................................ 49
5. Tutorial ....................................................................................................................... 51
6. Using the Utilities ......................................................................................................... 57

6.1. Make Utility amk ................................................................................................ 57
6.1.1. Makefile Rules ........................................................................................ 57
6.1.2. Makefile Directives .................................................................................. 59

iii



6.1.3. Macro Definitions .................................................................................... 59
6.1.4. Makefile Functions .................................................................................. 61
6.1.5. Conditional Processing ............................................................................. 62
6.1.6. Makefile Parsing ..................................................................................... 62
6.1.7. Makefile Command Processing .................................................................. 63
6.1.8. Calling the amk Make Utility ...................................................................... 64

6.2. Archiver ........................................................................................................... 65
6.2.1. Calling the Archiver ................................................................................. 65
6.2.2. Archiver Examples .................................................................................. 66

7. Tool Options ................................................................................................................ 69
7.1. Configuring the Command Line Environment ........................................................... 69
7.2. Safety Checker Options ...................................................................................... 70
7.3. Make Utility Options .......................................................................................... 116
7.4. Archiver Options .............................................................................................. 130

8. CERT C Secure Coding Standard .................................................................................. 145
8.1. Preprocessor (PRE) ......................................................................................... 145
8.2. Declarations and Initialization (DCL) .................................................................... 146
8.3. Expressions (EXP) ........................................................................................... 147
8.4. Integers (INT) .................................................................................................. 148
8.5. Floating Point (FLP) .......................................................................................... 148
8.6. Arrays (ARR) .................................................................................................. 149
8.7. Characters and Strings (STR) ............................................................................. 149
8.8. Memory Management (MEM) ............................................................................. 149
8.9. Environment (ENV) .......................................................................................... 150
8.10. Signals (SIG) ................................................................................................. 150
8.11. Miscellaneous (MSC) ...................................................................................... 151

9. MISRA C Rules .......................................................................................................... 153
9.1. MISRA C:1998 ................................................................................................ 153
9.2. MISRA C:2004 ................................................................................................ 157
9.3. MISRA C:2012 ................................................................................................ 165

iv

TASKING Safety Checker User Guide



Manual Purpose and Structure
Manual Purpose

You should read this manual if you want to know:

• how to use the TASKING Safety Checker

• the features of the TASKING Safety Checker

Manual Structure

Chapter 1, Installing the Software

Explains how to install and license the TASKING Safety Checker.

Chapter 2, Introduction

Contains an introduction to the TASKING Safety Checker and contains an overview of the features.

Chapter 4, Using the Safety Checker

Explains how to use the TASKING Safety Checker.

Chapter 5, Tutorial

Contains a step-by-step tutorial how to prepare your safety critical project for analysis by the Safety
Checker.

Chapter 6, Using the Utilities

Contains a description of the make utility and archiver.

Chapter 7, Tool Options

Contains a detailed list of all command line options of the Safety Checker, make utility and archiver.

Chapter 8, CERT C Secure Coding Standard

Contains an overview of the CERT C Secure Coding Standard recommendations and rules that are
supported by the TASKING Safety Checker.

Chapter 9, MISRA C Rules

Contains an overview of the supported and unsupported MISRA C rules.

v



Related Publications: ISO 26262 Standard

• ISO 26262-9:2011(E) Road vehicles - Functional safety - [2011, ISO]

Related Publications: C Standard

• C A Reference Manual (fifth edition) by Samual P. Harbison and Guy L. Steele Jr. [2002, Prentice Hall]

• ISO/IEC 9899:1990, Programming languages - C [ISO/IEC]

• ISO/IEC 9899:1999(E), Programming languages - C [ISO/IEC]

• ISO/IEC 9899:2011(E), Information technology - Programming languages - C [ISO/IEC]

More information on the standards can be found at http://www.iso.org/

Related Publications: CERT C Secure Coding Standard

• The CERT C Secure Coding Standard by Robert C. Seacord [October 2008, Addison Wesley]

• The CERT C Secure Coding Standard web site http://www.securecoding.cert.org/

For general information about CERT secure coding, see http://www.cert.org/secure-coding

Related Publications: MISRA C

• MISRA C:2012, Guidelines for the use of the C language in critical systems [MIRA Ltd, 2013]

See also http://www.misra-c.com/

• MISRA C:2004, Guidelines for the Use of the C Language in Critical Systems [MIRA Ltd, 2004]

See also http://www.misra-c.com/

• Guidelines for the Use of the C Language in Vehicle Based Software [MIRA Ltd, 1998]

See also http://www.misra-c.com/

vi

TASKING Safety Checker User Guide

http://www.iso.org/
https://www.securecoding.cert.org/
http://www.cert.org/secure-coding
http://www.misra-c.com/
http://www.misra-c.com/
http://www.misra-c.com/


Chapter 1. Installing the Software
This chapter guides you through the installation process of the TASKING® Safety Checker. It also describes
how to license the software.

1.1. Installation for Windows

System Requirements

Before installing, make sure the following minimum system requirements are met:

• 64-bit version of Windows 7 or higher

• 2 GHz Pentium class processor

• 4 GB memory

• 10 MB free hard disk space

Installation

1. If you received a download link, download the software and extract its contents.

- or -

If you received an USB flash drive, insert it into a free USB port on your computer.

2. Run the installation program (setup.exe).

The TASKING Setup dialog box appears.

3. Select a product and click on the Install button. If there is only one product, you can directly click on
the Install button.

4. Follow the instructions that appear on your screen. During the installation you need to enter a license
key, this is described in Section 1.2, Licensing.

1



1.2. Licensing

TASKING products are protected with TASKING license management software (TLM).To use a TASKING
product, you must install that product and install a license.

The following license types can be ordered from Altium.

Node-locked license

A node-locked license locks the software to one specific computer so you can use the product on that
particular computer only.

For information about installing a node-locked license see Section 1.2.3.2, Installing Server Based Licenses
(Floating or Node-Locked) and Section 1.2.3.3, Installing Client Based Licenses (Node-Locked).

Floating license

A floating license is a license located on a license server and can be used by multiple users on the network.
Floating licenses allow you to share licenses among a group of users up to the number of users (seats)
specified in the license.

For example, suppose 50 developers may use a client but only ten clients are running at any given time.
In this scenario, you only require a ten seats floating license. When all ten licenses are in use, no other
client instance can be used.

For information about installing a floating license see Section 1.2.3.2, Installing Server Based Licenses
(Floating or Node-Locked).

License service types

The license service type specifies the process used to validate the license. The following types are
possible:

• Client based (also known as 'standalone').The license is serviced by the client. All information necessary
to service the license is available on the computer that executes the TASKING product. This license
service type is available for node-locked licenses only.

• Server based (also known as 'network based'). The license is serviced by a separate license server
program that runs either on your companies' network or runs in the cloud. This license service type is
available for both node-locked licenses and floating licenses.

Licenses can be serviced by a cloud based license server called "Remote TASKING License Server".
This is a license server that is operated by TASKING. Alternatively, you can install a license server
program on your local network. Such a server is called a "Local TASKING License Server".You have
to configure such a license server yourself. The installation of a local TASKING license server is not
part of this manual.You can order it as a separate product (SW000089).

The benefit of using the Remote TASKING License Server is that product installation and configuration
is simplified.

2

TASKING Safety Checker User Guide



Unless you have an IT department that is proficient with the setup and configuration of licensing systems
we recommend to use the facilities offered by the Remote TASKING License Server.

1.2.1. Obtaining a License

You need a license key when you install a TASKING product on a computer. If you have not received
such a license key follow the steps below to obtain one. Otherwise, you cannot install the software.

Obtaining a server based license (floating or node-locked)

• Order a TASKING product from Altium or one of its distributors.

A license key will be sent to you by email or on paper.

If your node-locked server based license is not yet bound to a specific computer ID, the license server
binds the license to the computer that first uses the license.

Obtaining a client based license (node-locked)

To use a TASKING product on one particular computer with a license file, Altium needs to know the
computer ID that uniquely identifies your computer.You can do this with the getcid program that is
available on the TASKING website. The detailed steps are explained below.

1. Download the getcid program from http://www.tasking.com/support/tlm/download.shtml.

2. Execute the getcid program on the computer on which you want to use a TASKING product. The
tool has no options. For example,

C:\Tasking\getcid
Computer ID: 5Dzm-L9+Z-WFbO-aMkU-5Dzm-L9+Z-WFbO-aMkU-MDAy-Y2Zm

The computer ID is displayed on your screen.

3. Order a TASKING product from Altium or one of its distributors and supply the computer ID.

A license key and a license file will be sent to you by email or on paper.

When you have received your TASKING product, you are now ready to install it.

1.2.2. Frequently Asked Questions (FAQ)

If you have questions or encounter problems you can check the support page on the TASKING website.

http://www.tasking.com/support/tlm/faq.shtml

This page contains answers to questions for the TASKING license management system TLM.

If your question is not there, please contact your nearest Altium Sales & Support Center or Value Added
Reseller.

3

Installing the Software

http://www.tasking.com/support/tlm/download.shtml
http://www.tasking.com/support/tlm/faq.shtml


1.2.3. Installing a License

The license setup procedure is done by the installation program.

If the installation program can access the internet then you only need the licence key. Given the license
key the installation program retrieves all required information from the remote TASKING license server.
The install program sends the license key and the computer ID of the computer on which the installation
program is running to the remote TASKING license server, no other data is transmitted.

If the installation program cannot access the internet the installation program asks you to enter the required
information by hand. If you install a node-locked client based license you should have the license file at
hand (see Section 1.2.1, Obtaining a License).

Floating licenses are always server based and node-locked licenses can be server based. All server
based licenses are installed using the same procedure.

1.2.3.1. Configure the Firewall in your Network

For using the TASKING license servers the TASKING license manager tries to connect to the Remote
TASKING servers lic1.tasking.com .. lic4.tasking.com at the TCP ports 8080, 8936 or 80.
Make sure that the firewall in your network is transparently enabled for one of these ports.

1.2.3.2. Installing Server Based Licenses (Floating or Node-Locked)

If you do not have received your license key, read Section 1.2.1, Obtaining a License before you continue.

1. If you want to use a local license server, first install and run the local license server before you
continue with step 2.You can order a local license server as a separate product (SW000089).

2. Install the TASKING product and follow the instruction that appear on your screen.

The installation program asks you to enter the license information.

4

TASKING Safety Checker User Guide



3. In the License key field enter the license key you have received from Altium and click Next to
continue.

The installation program tries to retrieve the license information from a remote TASKING license
server.Wait until the license information is retrieved. If the license information is retrieved successfully
subsequent dialogs are already filled-in and you only have to confirm the contents of the dialogs by
clicking the Next button. If the license information is not retrieved successfully you have to enter the
information by hand.

4. Select your License type and click Next to continue.

You can find the license type in the email or paper that contains the license key.

5. Select Remote TASKING license server to use one of the remote TASKING license servers, or
select Local TASKING license server for a local license server.The latter requires optional software.

6. (For local license server only) specify the Server name and Port number of the local license server.

7. Click Finish to complete the installation.

1.2.3.3. Installing Client Based Licenses (Node-Locked)

If you do not have received your license key and license file, read Section 1.2.1, Obtaining a License
before continuing.

1. Install the TASKING product and follow the instruction that appear on your screen.

The installation program asks you to enter the license information.

5

Installing the Software



2. In the License key field enter the license key you have received from Altium and click Next to
continue.

The installation program tries to retrieve the license information from a remote TASKING license
server.Wait until the license information is retrieved. If the license information is retrieved successfully
subsequent dialogs are already filled-in and you only have to confirm the contents of the dialogs by
clicking the Next button. If the license information is not retrieved successfully you have to enter the
information by hand.

3. Select Node-locked client based license and click Next to continue.

4. In the License file content field enter the contents of the license file you have received from Altium.

The license data is stored in the file licfile.txt in the etc directory of the product.

5. Click Finish to complete the installation.

6

TASKING Safety Checker User Guide



Chapter 2. Introduction
The TASKING® Safety Checker greatly enhances the effectiveness and efficiency of your software safety
verification process, allowing you to meet specific demands required for ISO 26262 certification. With the
Safety Checker you can automatically detect interference between software elements with different
Automotive Safety Integrity Levels (ASIL) by checking the memory access restrictions imposed on these
elements.

The Safety Checker analyzes your ASIL-partitioned application against specific safety criteria and reports
safety violations, including their root cause. A powerful configuration system allows you to define the
specific access rights that are to be checked and to partition your software. Some configuration examples
include:

• Assign a safety integrity level to a source module, a specific function or variable, or an address range.

• Low-safety-level code is not allowed to write high-safety-level data objects.

• High-safety-level code is not allowed to call low-safety-level functions.

• Limit reporting to specific branches of the function call tree.

Besides proper isolation of code and data, the Safety Checker is also capable of checking C source code
(ISO/IEC 9899:1990, 1999 and 2011) for possible vulnerabilities, including MISRA C guidelines (1998,
2004 and 2012) and CERT C secure coding standard.

Benefits of the TASKING Safety Checker

• Provides a systematic and automatic analysis of dependent failures to ensure freedom from memory
interference as required by ISO 26262.

• Report files can be used as evidence during system safety certification.

• Cascading errors that cause memory interferences are detected in the early stages of the development
process versus during MPU integration, avoiding the risk of having to redesign the software architecture,
or a software component and/or increase its ASIL later on.

• Safety Checker applies a project wide scope and deals with data access and function invocation through
all possible reference mechanisms. It detects all errors in one invocation, instead of one-by-one as
when using code inspection or dynamic testing.

• Enables you to quickly identify the root cause of a safety violation from easy-to-read verification diagnostic
reports.

• Eases communication between the software safety analyst and software developers.

• Reduces total system development costs and increases system safety.

7



2.1. Mixed Criticality Systems and ISO 26262

Systems that contain software components with different ASIL levels are called mixed criticality systems.
Such mixed criticality systems do exist either because different functionalities with different ASILs are
integrated on one microcontroller, or because ASIL decomposition has been applied to split a requirement
with a high ASIL into multiple requirements with lower ASILs, or a combination of both.

The integration of multiple software components on one microcontroller, often referred to as domain
controller, is not new but is applied more and more a.o. due to the complexity and the computational
performance required by ADAS functions.

ASIL decomposition can have a significant impact on the overall development cost of some function. The
development process requirements that ISO 26262 imposes on lower criticality ASILs are lower than on
higher level ASILs. As such the total development cost for redundant lower ASIL components can be less
than the cost for developing one high ASIL component, while still ensuring high dependability of the
resulting system.

ISO 26262 is a Functional Safety standard, titled "Road vehicles – Functional safety". ISO 26262 requires
that Freedom from Interference (FFI) shall be ensured in mixed-criticality systems. Interferences are
cascading failures from a Quality Management (QM) component, or a lower ASIL For example, software
for controlling the electronic steering wheel unit and software controlling the door-open light have different
levels of criticality.You have to ensure that the 'simple' door-open software does not interfere with the
'high classified' steering software.

2.1.1. ISO 26262 Guidance about FFI

ISO 26262 requires that evidence is made available to proof that no interferences exist, otherwise all of
the embedded software shall be treated in accordance with the highest ASIL. Furthermore, for ASIL-D,
dedicated hardware features or equivalent means are required to catch memory interferences at run-time
and mitigate their effect.

ISO 26262 considers three types of interference:

1. Memory interference

2. Interference with respect to timing

3. Interference with respect to exchange of information

Memory interference

Memory interferences occur when a software element accesses or modifies code or data belonging to
another software element. This type of interference is related to corruption of memory content and
corruption of device configuration data. ISO 262622 recommends static analysis of memory accessing
software as a means to verify whether memory interference occurs.

Safety Checker provides a systematic and automatic way to assess such interferences, and is the only
ASIL-aware static analyzer available today. For ASIL-D run-time protection is required, which is typically
implemented by means of a Memory Protection Unit (MPU) which issues an interrupt once an interference
occurs, and the fault handler tries to restart all software elements located in the partition that caused the

8

TASKING Safety Checker User Guide



interrupt to occur. Interferences that occur at run-time can be caused by either an incorrect software
design or implementation, or by a (random) hardware fault.

Interference with respect to time/exchange of information

The other two types: interference with respect to timing, and interference with respect to exchange of
information, shall also be addressed by the software safety analysis but require other specialized methods,
techniques and tools. They are beyond the scope of this manual.

2.2. ASIL Aware Safety Checks

How the Safety Checker can perform ASIL aware static analysis on your application is demonstrated by
the following four examples.

Assigning a safety integrity level to a source module, a specific function or variable, or an address range
is done by so-called 'safety classes'. Safety classes used by the Safety Checker are just arbitrary numbers.
Which number you assign to which ASIL level is up to you.The benefit of this is that you can also perform
safety checks within one ASIL level.

Example 1

Imagine we have three modules, all belonging to a different safety class, and we want access restrictions
between module 3 and the two other modules to create a safety barrier.

Safety class access rights

Now access rights can, for example, be specified in a way module 2 has direct read-access to global data
declared in module 1. But module 3 is not allowed to read data from module 1 directly. It should call the
get-function to get the value of the variable my_global. In a 'safety class access rights table' you can
specify the read (r), write (w) and execute (x) access rights. Such a table might look as follows.

9

Introduction



* Safety Class Access Rights Table
==================================

    Target:    0    1    2    3   
            +---------------------
Source: 0   |  rwx  ---  ---  ---
        1   |  ---  rwx  ---  ---
        2   |  ---  r--  rwx  ---
        3   |  ---  --x  --x  rwx

The safety class access rights table shows that:

• All safety classes have (by default) full access to objects of the same safety class.

• Safety class 2 has read access to safety class 1 objects.

• Safety class 3 has execute access to safety class 1 and 2 objects.

How to pass this information to the Safety Checker?

You can specify the access rights table as an initialized predefined C structure and you can insert this
structure anywhere in the source code or in a configuration file.

__SAFETY_CLASS_ACCESS_RIGHTS__
{
    // Src Dst Rights 

    {  2,  1,  __SAFETY_CLASS_ACCESS_RIGHTS_READ__ },
    {  3,  1,  __SAFETY_CLASS_ACCESS_RIGHTS_CALL__ },
    {  3,  2,  __SAFETY_CLASS_ACCESS_RIGHTS_CALL__ }
};

Most obvious you will store it in a separate configuration file with a specific name for example
partitioning.saf. This way your code stays untouched and portable. This file is simply passed to
the Safety Checker just as if it was an ordinary source file.

Safety class selection and safety class areas

How does the Safety Checker determine which part of the code belongs to which safety class?

The safety class selection table and the safety class areas table are used for this. For example,

__SAFETY_CLASS_SELECTIONS__
{
    // File Mask    Name Mask   Class
    {  "file1.c",   "*",        1     },
    {  "file2.c",   "*",        2     },
    {  "file3.c",   "f3",       3     },
    {  "file3.c",   "y",        3     }
    // everything else gets class 0 by default
};

10

TASKING Safety Checker User Guide



__SAFETY_CLASS_AREAS__
{
    // Address    Size      Class
    {  0x8004000, 0x200,    4      },
    {  0x8008000, 0x100,    4      }
};

Both tables are also specified as an initialized predefined C structure and you can insert these structures
anywhere in the source code or in a configuration file. Most obvious you will store it in the same file as
the access rights, for example partitioning.saf.

In the safety class selection table you can make a selection on:

• Module name or parts of a module name by means of wildcards1

• Symbol name or parts of a symbol name by means of wildcards1

1 The wildcards syntax is the same as for the bash utility with extglob extension as used on Linux. For
details see section Wildcards in safety class selections in Section 4.4, Define Partitioning Information.

In the safety class selection table above everything from file1 is marked class 1, everything from file2
is marked class 2 and only function f3 and variable y from file3 are marked class 3. All other objects
are marked class 0 by default. If an object gets assigned a safety class by default, a warning is issued.
For example:

csaf W753: ["main.c" 14/6] Default safety class is assigned to symbol "main"

For fixed address areas like special function registers (SFR), you specify the start address and the size
of the area in the safety class areas table.

Now we have set all rights correctly. Module 3 has no direct access to (static) data of module 1 and
therefore module 3 has to use the function get_my_global() to get the value of the static variable
my_global.

Example 2

But what would happen if module 3 would access the variable my_global directly?

11

Introduction



As you may expect, the Safety Checker reports the safety violation:

$ csaf file1.c file2.c file3.c partitioning.saf
csaf E498: ["file3.c" 7] Safety violation reading "my_global" (class 1)
           from "f3" (class 3)

Example 3

Example 2 showed a situation where global data was accesses directly. But what will happen if we pass
the address of variable my_global from module 1 to module 2 to module 3 and let module 3 read the
content of the address? This is a completely accepted way to work in C. Follow the arrows in the following
example.

12

TASKING Safety Checker User Guide



The address of variable my_global is passed to function f2(). Within function f2(), the address of
my_global is stored in p and passed to function f3().Within function f3() the address of my_global
is stored in q and dereferenced followed by a read action.

According to the specified access rights table, this is not permitted. But how could the Safety Checker
know?

Call tree

First, the Safety Checker constructs a call tree. The tree starts at the *, from left to right.

*--f1()
    |
    +--f2()
       |
       +--f3()

Data flow

Then, the Safety Checker extends the call tree to a data flow. In this case the address of a variable is
passed to another function, but it is also possible to return the address of a variable. Furthermore, the
safety class and file and line number are listed.

* Call Graph
=============

*--f1() [class 1] @file1.c:4
    |
    +--f2(&my_global) [class 2] @file2.c:3
        |
        +--f3(&my_global) [class 3] @file3.c:3

Access tree

After the data flow is constructed, the Safety Checker checks the data accesses.

* Call Graph Details

=====================

*--f1 [class 1] @file1.c:4 :

 :.. Calls function "f2" [class 2] // ACCESS VIOLATION!                    <-- 1

*--f2 [class 2] @file2.c:3 :

 :.. Calls function "f3" [class 3] // ACCESS VIOLATION!                    <-- 2

*--f3 [class 3] @file3.c:3 :

 :.. Reads from static variable "my_global" [class 1] // ACCESS VIOLATION! <-- 3

 :.. Writes to static variable "y" [class 3]                               <-- 4

* Access table

13

Introduction



===============

+--------------------------------------------------------------------------------------------------------+

| Name/Address  | Safety class  | Definition location  | Acting function  | Access | Access location(s)  |

|========================================================================================================|

| f2            | 2             | file2.c:3            | f1               |  --CA  | file1.c:6           |

| f3            | 3             | file3.c:3            | f2               |  --CA  | file2.c:5           |

| my_global     | 1             | file1.c:2            | f3               |  R--A  | file3.c:5           |

| y             | 3             | file3.c:1            | f3               |  -W-A  | file3.c:5           |

+--------------------------------------------------------------------------------------------------------+

Access: R=read, W=write, C=call and A=address taken

Point 3 is about reading (indirectly) the variable my_global by module 3.

You can tell the Safety Checker to generate a report with this information.

The Safety Checker reports this access violation as follows:

$ csaf file1.c file2.c file3.c partitioning.saf
csaf E499: ["file1.c" 6] safety violation calling "f2" (class 2)
           from "f1" (class 1)
csaf E499: ["file2.c" 5] safety violation calling "f3" (class 3)
           from "f2" (class 2)
csaf E498: ["file3.c" 5] safety violation reading "my_global" (class 1)
           from "f3" (class 3)
3 errors, 0 warnings

Example 4

Follow the arrows in the following example.

14

TASKING Safety Checker User Guide



The address of a structure member is returned by function f1() in module 1. The return value of f1()
is returned by function f2() in module 2. And function f3() in module 3 reads the content of the address
returned by function f2().

How does the Safety Checker handle this?

Call tree

Again, the Safety Checker first constructs call tree. This time f3() calls f2() which calls f1().

*--f3()
    |
    +--f2()
       |
       +--f1()

Data flow

The Safety Checker then extends the call tree to a data flow.

* Call Graph
=============

*--f3() [class 3] @file3.c:4
    |
    +--f2() -> &my_struct [class 2] @file2.c:3
        |
        +--f1() -> &my_struct [class 1] @file1.c:6

As you can see, the address of my_struct (not my_struct.x) is returned by f1() and therefore also
indirectly by f2().

Access tree

After the data flow is constructed, the Safety Checker checks the data accesses.

* Call Graph Details

=====================

*--f3 [class 3] @file3.c:4 :

 :.. Reads from static variable "my_struct" [class 1] // ACCESS VIOLATION!  <-- 1

 :.. Writes to static variable "y" [class 3]                                <-- 2

 :.. Calls function "f2" [class 2]                                          <-- 3

*--f2 [class 2] @file2.c:3 :

 :.. Calls function "f1" [class 1] // ACCESS VIOLATION!                     <-- 4

*--f1 [class 1] @file1.c:6

* Access table

15

Introduction



===============

+--------------------------------------------------------------------------------------------------------+

| Name/Address  | Safety class  | Definition location  | Acting function  | Access | Access location(s)  |

|========================================================================================================|

| f1            | 1             | file1.c:6            | f2               |  --CA  | file2.c:5           |

| f2            | 2             | file2.c:3            | f3               |  --CA  | file3.c:6           |

| my_struct     | 1             | file1.c:4            | f3               |  R--A  | file3.c:6           |

| y             | 3             | file3.c:2            | f3               |  -W-A  | file3.c:6           |

+--------------------------------------------------------------------------------------------------------+

Access: R=read, W=write, C=call and A=address taken

Point 1 is about reading (indirectly) the my_struct member by module 3.

The Safety Checker reports this access violation as follows:

$ csaf file1.c file2.c file3.c partitioning.saf
csaf E498: ["file3.c" 6] safety violation reading "my_struct" (class 1)
           from "f3" (class 3)
csaf E499: ["file2.c" 5] safety violation calling "f1" (class 1)
           from "f2" (class 2)
2 errors, 0 warnings

Accesses not checked

Due to the complexity of the application, it is not always possible to reconstruct the correct data flow. But
at least you want to know all the accesses not checked by the Safety Checker. So, this is also reported.
For example, the following message might appear:

csaf W799: ["myfile.c" 4] unable to check safety violation

If a function definition is not available, a warning is issued:

csaf W754: Function "printf" is external - no further information available 

2.3. C Syntax Checking

Basic syntax checking

The Safety Checker performs basic C syntax checking.

For example:

int ;  /* empty declaration */

Invocation of the Safety Checker results in a simple error, like every compiler should report.

$ csaf a.c
csaf W514: ["a.c" 1/1] empty declaration

16

TASKING Safety Checker User Guide



Old C style

The Safety Checker has the ability to check for C90 code, C99 code and C11 code.

For example:

foo(bar)    /* no type specifiers */ 
{
  return bar;
}

Invocation:

$ csaf --iso=90 a.c
0 errors, 0 warnings

$ csaf --iso=99 a.c
csaf W535: ["a.c" 1/1] no type specifiers - assumed 'int'
csaf W538: ["a.c" 1/5] undeclared parameter "bar" defaults to "int"

The Safety Checker complains because no (explicit) types are specified. Although no one would dare to
write these lines of code anymore, it is still valid C according to the C90 standard. The C99 standard is
much more strict and therefore it is also the default.

C99 extensions

Some language extensions are only available in C99 code and not in C90 code.

For example:

/* invalid type for ISO C90 */
long long int my_long_long;

Invocation:

$ csaf --iso=90 a.c
csaf E243: ["a.c" 2/1] invalid type "long long int"

$ csaf --iso=99 a.c
0 errors, 0 warnings

Type long long is not supported in C90 code. However, if your code has to meet the ISO C90 standard,
use the option --iso=90.

17

Introduction



2.4. Semantic Analysis

Superfluous code

The Safety Checker can warn for superfluous code.

For example:

if (b1 || (!b1 && b2))
{
  ...
}

Invocation:

$ csaf a.c
csaf W549: ["a.c" 1/13] condition is always false

The Safety Checker signals the condition in column 13 is always false. Is this true? Yes, it is. The right
side of the expression (!b1 && b2) will only be evaluated if the left side (b1) is false. Therefore, the
value of b1 in the right side of the expression will always be evaluated as false.We can see all combinations
by creating a truth table:

b1 || (!b1 && b2)b2b1

TrueTrueTrue

TrueFalseTrue

TrueTrueFalse

FalseFalseFalse

The truth table indicates this is function could be simply rewritten as:

if (b1 || b2)
{
  ...
}

In this case the extra check is harmless, but superfluous code could sometimes point you to a potential
hazard.The Safety Checker also checks for unused variables, assignment to a variable which is not used
further on, parts of code that is never reached, etcetera.

Boundary checking

The Safety Checker signals out of bounds access.

For example:

int my_array[10];

for (int j = 20; j < 30; j++)

18

TASKING Safety Checker User Guide



{
  my_array[j] = 0;
}

Invocation:

$ csaf a.c
csaf W561: ["a.c" 5/13] access out of bounds

Type checking

The Safety Checker can perform type checking. For example with incompatible conversion specifications
in a printf/scanf format string.

#include <stdio.h>

void f(long value)
{
    printf( "%d\n", value ); /* incorrect argument type */
    printf( "%ld\n", value ); /* OK */
}

Invocation:

$ csaf a.c
csaf W570: ["a.c" 5/21] type of argument #2 is incompatible with format

2.5. MISRA C Checks

The Safety Checker has support for checking against MISRA C guidelines.

For example:

#include <stdint.h>

int x;    /* int32_t is safer */

Invocation:

$ csaf --misrac=all a.c
csaf E354: ["a.c" 3/5] MISRA C 2004 rule 6.3 violation: [A] specific-length 
           typedefs should be used instead of the basic types

Because the size of an integer is target-specific, MISRA C 2004 rule 6.3 says: specific-length typedefs
should be used instead of the basic types.

See Section 4.7.2, C Code Checking: MISRA C and Chapter 9, MISRA C Rules for more information.

19

Introduction



2.6. CERT C Checks

The Safety Checker has support for CERT C secure code checking.

For example:

#define SQUARE(n) ((n) * (n))

y = SQUARE(++x);

Invocation:

$ csaf --cert a.c
csaf W700: ["a.c" 4/14] CERT check EXP30: do not depend on order 
           of evaluation between sequence points

The macro in this example will expand as "++x * ++x". So, x will be increased twice. CERT will warn
for this.

See Section 4.7.1, C Code Checking: CERT C and Chapter 8, CERT C Secure Coding Standard for more
information.

20

TASKING Safety Checker User Guide



Chapter 3. C Language
This chapter describes the features of the C language supported by the TASKING Safety Checker and
describes how to configure the Safety Checker for non-standard C code.

The TASKING Safety Checker fully supports the ISO-C standard, and additional generic language
extensions, but it does not add extra possibilities to program the special functions of a target processor
as is done by a target specific compiler.

It is required to configure the Safety Checker for non-standard C code. The Safety Checker generates a
syntax error when a target compiler specific feature is used. See Section 3.6, Configuring the Safety
Checker for Non-Standard C Code.

In addition to the ISO-C standard, the Safety Checker supports the following:

• attributes

• pragmas to control the Safety Checker from within the C source

• predefined macros

All TASKING non-standard keywords have two leading underscores (__).

3.1. Data Types

The Safety Checker supports the ISO C (C90, C99, C11) defined data types. The default sizes of these
types are shown in the following table.

LimitsSizeC Type

0 or 11_Bool

[-27, 27-1]8signed char

[0, 28-1]8unsigned char

[-215, 215-1]16short

[0, 216-1]16unsigned short

[-231, 231-1]32int

[0, 232-1]32unsigned int

[-27, 27-1] or [0, 28-1]
[-215, 215-1] or [0, 216-1]
[-231, 231-1]

8
16
32

enum 1

[-231, 231-1]32long

[0, 232-1]32unsigned long

[-263, 263-1]64long long

[0, 264-1]64unsigned long long

21



LimitsSizeC Type

[–3.402E+38, –1.175E-38]
[+1.175E-38, +3.402E+38]

32float (23-bit mantissa)

[-1.797E+308, -2.225E-308]
[+2.225E-308, +1.797E+308]

64double
long double (52-bit mantissa)

[–3.402E+38i, –1.175E-38i]
[+1.175E-38i, +3.402E+38i]

32_Imaginary float

[-1.797E+308i, -2.225E-308i]
[+2.225E-308i, +1.797E+308i]

64_Imaginary double
_Imaginary long double

real part + imaginary part64_Complex float

real part + imaginary part128_Complex double
_Complex long double

[0, 232-1]32pointer to data or function

You can change most of the default integer sizes by using one of the options --bit-size-<type>

1 When you use the enum type, the Safety Checker will use the smallest suitable integer type
(char, unsigned char, short, unsigned short or int).

3.2. Shift JIS Kanji Support

In order to allow for Japanese character support on non-Japanese systems (like PCs), you can use the
Shift JIS Kanji Code standard. This standard combines two successive ASCII characters to represent
one Kanji character. A valid Kanji combination is only possible within the following ranges:

• First (high) byte is in the range 0x81-0x9f or 0xe0-0xef.

• Second (low) byte is in the range 0x40-0x7e or 0x80-0xfc

Safety Checker option -Ak enables support for Shift JIS encoded Kanji multi-byte characters in strings
and (wide) character constants. Without this option, encodings with 0x5c as the second byte conflict with
the use of the backslash ('\') as an escape character. Shift JIS in comments is supported regardless of
this option.

Note that Shift JIS also includes Katakana and Hiragana.

Example:

// Example usage of Shift JIS Kanji
// Do not switch off option -Ak
// At the position of the italic text you can
// put your Shift JIS Kanji code
int  i;  // put Shift JIS Kanji here
char c1;
char c2;
unsigned int ui;

22

TASKING Safety Checker User Guide



const char mes[]="put Shift JIS Kanji here";
const unsigned int ar[5]={'K','a','n',
                   'j','i'};
                   // 5 Japanese array
void main(void)
{
    i=(int)c1;
    i++; /* put Shift JIS Kanji here\
            continuous comment */
    c2=mes[9];
    ui=ar[0];
}

3.3. Attributes

You can use the keyword __attribute__ to specify special attributes on declarations of variables,
functions, types, and fields.

Syntax:

__attribute__((name,...))

or:

__name__

The second syntax allows you to use attributes in header files without being concerned about a possible
macro of the same name. This second syntax is only possible on attributes that do not already start with
an underscore. For example, you may use __noreturn__ instead of __attribute__((noreturn)).

The Safety Checker supports the following attributes:

const

You can use __attribute__((const)) to specify that a function has no side effects and will not
access global data. See also attribute pure.

The following kinds of functions should not be declared __const__:

• A function with pointer arguments which examines the data pointed to.

• A function that calls a non-const function.

export

You can use __attribute__((export)) to specify that a variable/function has external linkage and
should not be removed.

int i __attribute__((export)); /* 'i' has external linkage */

23

C Language



flatten

You can use __attribute__((flatten)) to force inlining of all function calls in a function, including
nested function calls.

Unless inlining is impossible or disabled by __attribute__((noinline)) for one of the calls, the
generated code for the function will not contain any function calls.

format(type,arg_string_index,arg_check_start)

You can use __attribute__((format(type,arg_string_index,arg_check_start))) to
specify that functions take printf, scanf, strftime or strfmon style arguments and that calls to
these functions must be type-checked against the corresponding format string specification.

type determines how the format string is interpreted, and should be printf, scanf, strftime or
strfmon.

arg_string_index is a constant integral expression that specifies which argument in the declaration of the
user function is the format string argument.

arg_check_start is a constant integral expression that specifies the first argument to check against the
format string. If there are no arguments to check against the format string (that is, diagnostics should only
be performed on the format string syntax and semantics), arg_check_start should have a value of 0. For
strftime-style formats, arg_check_start must be 0.

Example:

int foo(int i, const char * my_format, ...) __attribute__((format(printf, 2, 3)));

The format string is the second argument of the function foo and the arguments to check start with the
third argument.

leaf

You can use __attribute__((leaf)) to specify that a function is a leaf function. A leaf function is
an external function that does not call a function in the current compilation unit, directly or indirectly. The
attribute is intended for library functions to improve dataflow analysis. The attribute has no effect on
functions defined within the current compilation unit.

malloc

You can use __attribute__((malloc)) to improve optimization and error checking by telling the
Safety Checker that:

• The return value of a call to such a function points to a memory location or can be a null pointer.

• On return of such a call (before the return value is assigned to another variable in the caller), the memory
location mentioned above can be referenced only through the function return value; e.g., if the pointer
value is saved into another global variable in the call, the function is not qualified for the malloc attribute.

24

TASKING Safety Checker User Guide



• The lifetime of the memory location returned by such a function is defined as the period of program
execution between a) the point at which the call returns and b) the point at which the memory pointer
is passed to the corresponding deallocation function. Within the lifetime of the memory object, no other
calls to malloc routines should return the address of the same object or any address pointing into that
object.

noreturn

Some standard C function, such as abort and exit cannot return. The Safety Checker knows this
automatically.You can use __attribute__((noreturn)) to tell the Safety Checker that a function
never returns. For example:

void fatal() __attribute__((noreturn));

void fatal( /* ... */ )
{
  /* Print error message */
  exit(1);
}

The function fatal cannot return.The Safety Checker can optimize without regard to what would happen
if fatal ever did return.This can produce slightly better code and it helps to avoid warnings of uninitialized
variables.

pure

You can use __attribute__((pure)) to specify that a function has no side effects, although it may
read global data. See also attribute const.

section("section_name")

You can use __attribute__((section("name"))) to specify that a function must appear in the
object file in a particular section. For example:

extern void foobar(void) __attribute__((section("bar")));

puts the function foobar in the section named bar.

used

You can use __attribute__((used)) to prevent an unused symbol from being removed by the Safety
Checker. Example:

static const char copyright[] __attribute__((used)) = "Copyright 2016 Altium BV";

When there is no C code referring to the copyright variable, the Safety Checker will normally remove
it. The __attribute__((used)) symbol attribute prevents this.

25

C Language



unused

You can use __attribute__((unused)) to specify that a variable or function is possibly unused. The
Safety Checker will not issue warning messages about unused variables or functions.

26

TASKING Safety Checker User Guide



3.4. Pragmas to Control the Safety Checker

Pragmas are keywords in the C source that control the behavior of the Safety Checker. Pragmas overrule
Safety Checker options. Put pragmas in your C source where you want them to take effect. Unless stated
otherwise, a pragma is in effect from the point where it is included to the end of the compilation unit or
until another pragma changes its status.

The syntax is:

#pragma [label:]pragma-spec pragma-arguments [on | off | default | restore] 

or:

_Pragma( "[label:]pragma-spec pragma-arguments [on | off | default | restore]" )

Some pragmas can accept the following special arguments:

switch the flag on (same as without argument)on

switch the flag offoff

set the pragma to the initial valuedefault

restore the previous value of the pragmarestore

Label pragmas

Some pragmas support a label prefix of the form "label:" between #pragma and the pragma name. Such
a label prefix limits the effect of the pragma to the statement following a label with the specified name.
The restore argument on a pragma with a label prefix has a special meaning: it removes the most
recent definition of the pragma for that label.

You can see a label pragma as a kind of macro mechanism that inserts a pragma in front of the statement
after the label, and that adds a corresponding #pragma ... restore after the statement.

Compared to regular pragmas, label pragmas offer the following advantages:

• The pragma text does not clutter the code, it can be defined anywhere before a function, or even in a
header file. So, the pragma setting and the source code are uncoupled. When you use different header
files, you can experiment with a different set of pragmas without altering the source code.

• The pragma has an implicit end: the end of the statement (can be a loop) or block. So, no need for
pragma restore / endoptimize etc.

Example:

#pragma lab1:optimize P

volatile int v;

void f( void )
{
      int i, a;

27

C Language



      a = 42;

lab1: for( i=1; i<10; i++ )
      {
        /* the entire for loop is part of the pragma optimize */
        a += i;
      }
      v = a;
}

Supported pragmas

The Safety Checker recognizes the following pragmas, other pragmas are ignored. On the command line
you can use csaf --help=pragmas to get a list of all supported pragmas. Pragmas marked with (*) support
a label prefix.

STDC FP_CONTRACT [on | off | default | restore] (*)

This pragma is defined in ISO C99/C11. With this pragma you can control the +contract flag of Safety
Checker option --fp-model.With this flag the Safety Checker is allowed to contract multiple float operations
into a single operation, with different rounding results. This may affect constant folding, and therefore
diagnostics. Therefore this flag is supported by the Safety Checker.

boolean [on | off | default | restore] (*)

This pragma is used to mark the macros "false" and "true" from the library header file stdbool.h as
"essentially BOOLEAN", which is a concept from the MISRA C:2012 standard.

extension isuffix [on | off | default | restore] (*)

Enables a language extension to specify imaginary floating-point constants. With this extension, you can
use an "i" suffix on a floating-point constant, to make the type _Imaginary.

float 0.5i

fp_negzero [on | off | default | restore] (*)

With this pragma you can control the +negzero flag of Safety Checker option --fp-model.

fp_nonan [on | off | default | restore] (*)

With this pragma you can control the +nonan flag of Safety Checker option --fp-model.

fp_rewrite [on | off | default | restore] (*)

With this pragma you can control the +rewrite flag of Safety Checker option --fp-model.

28

TASKING Safety Checker User Guide



macro / nomacro [on | off | default | restore] (*)

Turns macro expansion on or off. By default, macro expansion is enabled.

message "message" ...

Print the message string(s) on standard output.

nomisrac [nr,...] [default | restore] (*)

Without arguments, this pragma disables MISRA C checking. Alternatively, you can specify a
comma-separated list of MISRA C rules to disable.

See Safety Checker option --misrac and Section 4.7.2, C Code Checking: MISRA C.

stdinc [on | off | default | restore] (*)

This pragma changes the behavior of the #include directive. When set, the Safety Checker options
--include-directory and --no-stdinc are ignored.

strict_unions [on | off | default | restore] (*)

By default, the Safety Checker considers union members to be non-overlapping, making them in effect
equivalent to structs (except for some diagnostics). This differs from the way a target compiler interprets
unions. With this pragma you tell the Safety Checker to interpret unions like a target compiler does, with
overlapping members. See Safety Checker option --strict-unions.

warning [number,...] [default | restore] (*)

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed.

3.5. Predefined Preprocessor Macros

The TASKING Safety Checker supports the predefined macros as defined in the table below.The macros
are useful to create conditional C code.

DescriptionMacro

Identifies the build number of the Safety Checker, composed
of decimal digits for the build number, three digits for the
major branch number and three digits for the minor branch
number. For example, if you use build 1.22.1 of the Safety
Checker, __BUILD__ expands to 1022001. If there is no
branch number, the branch digits expand to zero. For
example, build 127 results in 127000000.

__BUILD__

29

C Language



DescriptionMacro

Identifies the Safety Checker.You can use this symbol to
flag parts of the source which must be recognized by the
TASKING Safety Checker only. It expands to 1.

__CSAF__

Expands to the compilation date: “mmm dd yyyy”.__DATE__

Expands to 1 if you used option --fp-model=-float, otherwise
unrecognized as macro.

__DOUBLE_FP__

Expands to the current source file name.__FILE__

Expands to the line number of the line where this macro is
called.

__LINE__

Expands to the MISRA C version used 1998, 2004 or 2012
(option --misrac-version). The default is 2004.

__MISRAC_VERSION__

Expands to the revision number of the Safety Checker. Digits
are represented as they are; characters (for prototypes,
alphas, betas) are represented by -1. Examples: v1.0r1 ->
1, v1.0rb -> -1

__REVISION__

Identifies the safety class access rights table. It expands to:

static const struct
{
  __uint_least64_t safety_class_src;
  __uint_least64_t safety_class_dst;
  __uint_least64_t access_rights;
} __safety_class_access_rights_table[] =

__SAFETY_CLASS_ACCESS_RIGHTS__

Identifies the safety class read access rights. Expands to
0x1.

__SAFETY_CLASS_ACCESS_RIGHTS_READ__

Identifies the safety class write access rights. Expands to
0x2.

__SAFETY_CLASS_ACCESS_RIGHTS_WRITE__

Identifies the safety class call access rights. Expands to 0x4.__SAFETY_CLASS_ACCESS_RIGHTS_CALL__

Identifies the safety class areas table. It expands to:

static const struct
{
  __uintptr_t address;
  __uint_least64_t size;
  __uint_least64_t safety_class;
} __safety_class_areas_table[] =

__SAFETY_CLASS_AREAS__

30

TASKING Safety Checker User Guide



DescriptionMacro

Identifies the safety class attributes table. It expands to:

static const struct
{
  __uint_least64_t safety_class;
  const char * name;
} __safety_class_attributes_table[] =

__SAFETY_CLASS_ATTRIBUTES__

Identifies the safety class selections table. It expands to:

static const struct
{
  const char * file_pattern;
  const char * name_pattern;
  __uint_least64_t safety_class;
} __safety_class_selections_table[] =

__SAFETY_CLASS_SELECTIONS__

Expands to 1 if you used option --fp-model=+float (Treat
‘double’ as ‘float’), otherwise unrecognized as macro.

__SINGLE_FP__

Identifies the level of ANSI standard. The macro expands to
1 if you set option --language (Control language extensions),
otherwise expands to 0.

__STDC__

Always expands to 0, indicating the implementation is not a
hosted implementation.

__STDC_HOSTED__

Identifies the ISO-C version number. Expands to 201112L
for ISO C11, 199901L for ISO C99 or 199409L for ISO C90.

__STDC_VERSION__

Identifies the Safety Checker as a TASKING product.
Expands to 1 if the TASKING Safety Checker is used.

__TASKING__

Expands to the compilation time: “hh:mm:ss”__TIME__

Identifies the version number of the Safety Checker. For
example, if you use version 2.0r1 of the Safety Checker,
__VERSION__ expands to 2000 (dot and revision number
are omitted, minor version number in 3 digits).

__VERSION__

Example

#if __MISRAC_VERSION__ == 2012
/* this part is only valid for MISRA C:2012 */
...
#endif

31

C Language



3.6. Configuring the Safety Checker for Non-Standard C Code

The TASKING Safety Checker fully supports the ISO-C standard, and additional generic language
extensions as explained in the previous sections, but it does not add extra possibilities to program the
special functions of a target processor as is done by a target specific compiler.

It is required to configure the Safety Checker for non-standard C code. The Safety Checker generates a
syntax error when a target compiler specific feature is used.

Bit size

The bit size of the integer types must conform to the target used.You can use the bit size configuration
options (--bit-size-<type>) to set the bit size of type char, short, long, long long and pointer. (e.g.
--bit-size-int=16)

Non-standard keywords

All TASKING non-standard keywords have two leading underscores (__).

TASKING compiler language extensions

When you use the Safety Checker on C code with TASKING compiler C language extensions1,
configurations are needed as explained in the following sections.You can put the configurations in a
separate include file and specify it to the Safety Checker by including the configuration file at the beginning
of each C source file, before other includes, with the option --include-file.

1 Other C compilers can have equivalent additions to the C language that require the same
configurations.

3.6.1. Data Types

For non-standard data types you must define an ISO C99 data type with a bit size that is equal or larger
than the non-standard data type and with a matching arithmetic.You can add a typedef declaration
that is a synonym or add a macro that defines the keyword of the extra data type. For example:

typedef _Bool __bit;

or:

#define __bit _Bool

3.6.2. Data Type Qualifiers, Memory Qualifiers and Function Qualifiers

Non-standard data type qualifiers, memory qualifiers and function qualifiers are superfluous for the Safety
Checker.You cannot use them in your C code.You can remove the keyword by adding an empty macro
definition for it. For example:

#define __far

32

TASKING Safety Checker User Guide



For qualifiers with arguments use macros with the same number of arguments or use variable arguments
"..." . For example:

#define __interrupt(vector)
#define __vector_table(...)

3.6.3. Attributes

The attributes supported by the Safety Checker are listed in Section 3.3, Attributes. Attributes in
non-standard C code can be used with or without the __attribute__(()) keyword.You can remove
the attribute by adding an empty macro definition. For example:

#define __align(n)

The Safety Checker issues a warning on unknown attributes in the form __attribute__((name)) and
ignores the attribute.

Attributes to specify alignment and absolute addresses are superfluous for the Safety Checker and cannot
be used in your C code.

3.6.4. Intrinsic Functions

The Safety Checker does not support compiler specific functions that generate assembly instructions.

You can define function prototypes for these intrinsic functions. For example:

void __nop( void ); 

This is required to avoid warnings that are generated for the implicit declaration of intrinsic functions
(-w505) and the warning for calling an intrinsic function without a prototype (-w577).

Without any function definition for the intrinsic function the Safety Checker generates in the report file
that no further information is available. For example:

__nop() // No further information

Intrinsic functions that generate inline assembly instructions that do not access global data or special
function registers cannot cause a safety violation.You can safely ignore the "No further information"
informational message for these intrinsic functions.

When it is required to check the global data access from within an intrinsic function, you have to declare
a function that mimics the data access of the intrinsic function. For example:

void __intrinsic_read_write_global( int * p ) { *p++; }

No safety class is defined for compiler specific intrinsic functions, they are marked as class 0, which is
conform the default. When intrinsic functions are executed from functions which have restricted execute
access you can assign a safety class for the intrinsic functions to allow execute access.

You have to add the compiler specific intrinsic function names to a safety class selection table of your
application.The safety class values assigned to the intrinsic function should match the safety class access
rights table of your application to allow execute access.

33

C Language



For example:

__SAFETY_CLASS_SELECTIONS__
{ 
    /*  File Mask  Name Mask    Class */
    {   "*",       "__nop",     INTRINSIC_NOP_CLASS }
};

__SAFETY_CLASS_ACCESS_RIGHTS__
{ 
    /* 
     * An ASIL A object is allowed to execute the intrinsic
     * function __nop().
     */

    /*  Src     Dst                  Rights  */
    {   ASIL_A, INTRINSIC_NOP_CLASS, __SAFETY_CLASS_ACCESS_RIGHTS_CALL__ }
};

3.6.5. Pragmas

The pragmas to control the Safety Checker are defined in Section 3.4, Pragmas to Control the Safety
Checker. All other non-STDC pragmas are ignored.The Safety Checker generates a diagnostic message
W509: ignored unrecognized "#pragma <name>".You can disable this warning with command
line option --no-warnings=509.

3.6.6. Predefined Typedefs

The Safety Checker generates a syntax error when compiler specific typedefs are used.You should add
typedef declarations that are a synonym for the compiler specific type. For example:

typedef unsigned long long int __ull;

3.6.7. Predefined Macros

You can add compiler specific predefined macros that have a fixed value to configure the non-standard
C code.You can add these compiler specific macros in an include file or define them at the command
line. For example:

#define __CTC__ 1

or

-D__CTC__=1

Compiler specific predefined macros that are derived from compiler specific options should be defined
on the command line. For example the predefined macro name of a core __CORE__name__ could be
defined on the command line. For example:

-D__CORE_TC13__

34

TASKING Safety Checker User Guide



3.6.8. Include Files

Compiler specific standard include files are not located in the Safety Checker's default include directory
relative to the installation directory.You can use the command line option --include-directory to specify
the compiler specific standard include directory. For example:

--include-directory=$(PRODDIR)\include

3.6.9. Assembly Instructions in the C Source

With the TASKING keyword __asm() you can use assembly instructions in the C source and pass C
variables as operands to the assembly code. The __asm() syntax is supported, but the Safety Checker
does not check assembly blocks; they are regarded as a black box. When the assembly blocks have no
side effects, and will not access global data, no checking is required.

When it is required to check the global data access from within an assembly block, you have to replace
it with equivalent C code.

For example:

#if __CSAF__
    write = read;
#else
__asm( "ld.w d15,read\n"
       "st.w write,d15\n" );
#endif

You can also replace or remove non-TASKING compliant inline assembly blocks with the predefined
macro __CSAF__.

3.6.10.Target Configuration

The Safety Checker support website contains configuration files for several compilers.You can configure
the Safety Checker for a compiler by including the configuration file at the beginning of each C source
file, before other includes, with the option --include-file.

35

C Language

http://www.tasking.com/support/saf/


36

TASKING Safety Checker User Guide



Chapter 4. Using the Safety Checker
This chapter describes the Safety Checker phases and explains how to call the Safety Checker.

The Safety Checker accepts one or more C files as input and a file containing safety class definitions and
safety class access rights. The output is a report file.

In a more advanced flow, checking can be done in two runs. An intermediate verification data file (.vd)
is created in the first run. This is the input for the second run. The intermediate files can be stored in an
archive, which is also possible as input to the Safety Checker. A use case is that the verification data
archives are provided by a third party.

4.1. Safety Checker Phases

During the analysis of a C program, the Safety Checker runs through a number of phases.

1. Preprocessor phase:

The preprocessor includes files and substitutes macros by C source. It uses only string manipulations
on the C source. The syntax for the preprocessor is independent of the C syntax but is also described
in the ISO/IEC 9899:1999(E) standard.

2. Static analysis phase:

The scanner converts the preprocessor output to a stream of tokens which are fed to a parser for the
C grammar. The parser performs a syntactic and semantic analysis of the program and generates an
intermediate representation of the program.

37



3. Partitioning checking phase:

The intermediate (verification) data is used for partitioning checking and a Safety Checker report file
is generated.

4.2. Invocation Syntax

You can call the Safety Checker from the command line. The invocation syntax is:

csaf [ [option]... [file]... ]...

file can be a C source file (.c), verification data file (.vd), VD archive (.vda) or safety class partitioning
file (.saf).

You can find a detailed description of all Safety Checker options in Section 7.2, Safety Checker Options.

4.3. Verification Data

The following entities and actions on entities can be present in C source files:

Fixed
address

Local variableFunction return
value

ArgumentGlobal variable
/ function

Entity action

1.5Always allowed1.31.21.1read / write / call

2.52.42.32.22.1pass as parameter to a
function

3.5Illegal3.33.23.1return

The numbers refer to the following cases:

DescriptionCase

Access (read/write/call) of a variable/function1.1

Access (read/write/call) of an argument1.2

Access (read/write/call) of a function return value1.3

Access (read/write/call) of a fixed address1.5

Pass (the address of) a variable/function as parameter to a function2.1

Pass an argument as parameter to a function2.2

Pass a function return value as parameter to a function2.3

Pass (the address of) a variable with local lifetime as parameter to a function2.4

Pass a fixed address as parameter to a function2.5

Return (the address of) a variable/function3.1

Return an argument3.2

Return a function return value3.3

38

TASKING Safety Checker User Guide



DescriptionCase

Return a fixed address3.5

Variable may represent a basic type (like int), a structure (member) or the element of an array.

For example (safety.c):

int x;  // ASIL A (safety class 3)

int y;  // ASIL A (safety class 3)

int z;  // ASIL A (safety class 3)

int * f1(void)  // safety class 7

{

  return &z;    // case 3.1 - No safety issue.

}

int f2(int *n)  // safety class 7

{

  x = 0;        // case 1.1 - Write access for x can be checked with a safety class.

  *f1() = 0;    // case 1.3 - Write access for z can be checked with a safety class.

  return *n;    // case 1.2 - Read access for x, y, and z can be checked with a safety class.

}

void f3(int *n) // safety class 7

{

  f2(&y);       // case 2.1 - Call access can be checked with a safety class.

  f2(n);        // case 2.2 - Call access can be checked with a safety class.

  f2(f1());     // case 2.3 - Call access can be checked with a safety class.

}

void main(void)

{

  f3(&x);

}

4.4. Define Partitioning Information

Safety class access rights

With safety class access rights you define the access allowed between safety class areas.You can specify
the access rights table as an initialized predefined C structure and you can insert this structure anywhere
in the source code. Most obvious you will store it in a separate file with a specific name, for example
partitioning.saf.This file is simply passed to the Safety Checker just as if it was an ordinary source
file.

You can use the following predefined macros as access rights:

39

Using the Safety Checker



__SAFETY_CLASS_ACCESS_RIGHTS_READ__    // read access
__SAFETY_CLASS_ACCESS_RIGHTS_WRITE__   // write access
__SAFETY_CLASS_ACCESS_RIGHTS_CALL__    // call access

For example:

#define ASIL_A 3   // 
#define ASIL_B 4
#define ASIL_D 7

__SAFETY_CLASS_ACCESS_RIGHTS__
{
    // safety class '7' only has read access in safety class '3'

    // Src      Dst      Rights 
    {  ASIL_D,  ASIL_A,  __SAFETY_CLASS_ACCESS_RIGHTS_READ__ }
};

Note that you can combine access rights with the 'binary OR' operator (|).

Safety class selections

With the safety class selection table you specify which part of the code belongs to which safety class. If
you do not specify a class, class 0 is the default. The safety class numbers are just arbitrary numbers. It
is up to you to assign a particular number to an (A)SIL level. The safety class selection table is also an
initialized predefined C structure. For example,

__SAFETY_CLASS_SELECTIONS__
{
    // f1(), f2() and f3() are part of safety class 7
    // x, y and z are part of safety class 3
    // everything else is part of safety class 0

    // File Mask     Name Mask   Class
    {  "safety.c",   "f*",       ASIL_D     },
    {  "safety.c",   "x",        ASIL_A     },
    {  "safety.c",   "y",        ASIL_A     },
    {  "safety.c",   "z",        ASIL_A     }
};

Wildcards in safety class selections

For the file mask and name mask you can use wildcards. The wildcards syntax is the same as for the
bash utility with extglob extension as used on Linux. It is specified in the online documentation for
bash. The main constructs are listed in the following table:

MeaningPattern

Matches any string, including the null string.*

Matches any single character.?

40

TASKING Safety Checker User Guide

https://www.gnu.org/software/bash/manual/html_node/Pattern-Matching.html
https://www.gnu.org/software/bash/manual/html_node/Pattern-Matching.html


MeaningPattern

Matches any one of the enclosed characters.[abc]

Matches any character within a range expression.[a-c]

Matches character class, where class is one of the following
classes defined in the POSIX standard: alnum, alpha, ascii,
blank, cntrl, digit, graph, lower, print, punct, space, upper,
word, xdigit

[[:class:]]

Matches collation equivalence class.[[=class=]]

Matches collating symbol.[[.symbol.]]

Matches zero or one occurrence of any of the given patterns.?( pattern | pattern | ... )

Matches zero or more occurrences of any of the given
patterns.

*( pattern | pattern | ... )

Matches one or more occurrences of any the given patterns.+( pattern | pattern | ... )

Matches one of the given patterns.@( pattern | pattern | ... )

Matches anything except one of the given patterns.!( pattern | pattern | ... )

Safety class areas

With the safety class areas table you specify which memory areas belongs to which safety class. Those
areas are used to check violations of direct memory access, i.e. in case of SFR access. This table is also
an initialized predefined C structure. For example:

__SAFETY_CLASS_AREAS__
{
    // Address    Size      Class
    {  0x8004000, 0x200,    ASIL_B     },
    {  0x8008000, 0x100,    ASIL_B     }
};

Safety class attributes

In order to get more logical names in the report file and in diagnostic messages, instead of just class
numbers, you can use a safety class attributes table to define other names for the default class numbers.
For example,

__SAFETY_CLASS_ATTRIBUTES__
{
    // Class    Name
    {  3,       "ASIL A"    },
    {  4,       "ASIL B"    },
    {  7,       "ASIL D"    }
};

41

Using the Safety Checker



4.5. Output of the Safety Checker

This section contains an example output of the Safety Checker. The Safety Checker analyzes the
application for possible violations of safety restrictions and generates a report file.You can redirect any
errors and warnings to a file.

For example,

csaf safety.c partitioning.saf --error-file=safety.err --keep-output-files --output-format=2

Errors and warnings are sent to safety.err.

csaf E499: ["safety.c" 26] safety violation calling "f3" (ASIL D) from "main" (class 0)

csaf E497: ["safety.c" 12] safety violation writing "x" (ASIL A) from "f2" (ASIL D)

csaf E497: ["safety.c" 13] safety violation writing "z" (ASIL A) from "f2" (ASIL D)

3 errors, 0 warnings

The output of the Safety Checker is sent to safety.report. If there are errors the output file is removed,
unless you specify option --keep-output-files.

* Safety Class Areas

=====================

+------------------------------------------+

| Address  |    Size | Safety Class | Used |

|==========================================|

| 08004000 |     512 | ASIL B       | No   |

| 08008000 |     256 | ASIL B       | No   |

+------------------------------------------+

* Safety Class Selections

==========================

+--------------------------------------------------------------------------------+

| File pattern              | Name pattern         | Safety class         | Used |

|================================================================================|

| safety.c                  | f*                   | ASIL D               | Yes  |

| safety.c                  | x                    | ASIL A               | Yes  |

| safety.c                  | y                    | ASIL A               | Yes  |

| safety.c                  | z                    | ASIL A               | Yes  |

+--------------------------------------------------------------------------------+

* Safety Class Access Rights Table

===================================

       Target:    0       ASIL A  *ASIL B ASIL D 

               +---------------------------------

Source: 0      |  rwx     ---     ---     ---   

        ASIL A |  ---     rwx     ---     ---   

42

TASKING Safety Checker User Guide



        *ASIL B|  ---     ---     rwx     ---   

        ASIL D |  ---     r--     ---     rwx   

* unused safety class

* Call Graph

=============

*--main() [class 0] @safety.c:24

    |

    +--f3(&x) [class ASIL D] @safety.c:17

        |

        +--f1() -> &z [class ASIL D] @safety.c:5

        |

        +--f2(&x/&y/&z) [class ASIL D] @safety.c:10

        |    |

        |    +--f1 [class ASIL D] @safety.c:5 // see line 45

        |

        +--f2 [class ASIL D] @safety.c:10 // see line 47

        |

        +--f2 [class ASIL D] @safety.c:10 // see line 47

* Call Graph Details

=====================

*--main [class 0] @safety.c:24 :

 :.. Calls function "f3" [class ASIL D] // ACCESS VIOLATION!

*--f3 [class ASIL D] @safety.c:17 :

 :.. Calls function "f1" [class ASIL D]

 :.. Calls function "f2" [class ASIL D]

 :.. Calls function "f2" [class ASIL D]

 :.. Calls function "f2" [class ASIL D]

*--f1 [class ASIL D] @safety.c:5

*--f2 [class ASIL D] @safety.c:10 :

 :.. Reads from static variable "x" [class ASIL A]

 :.. Reads from static variable "y" [class ASIL A]

 :.. Reads from static variable "z" [class ASIL A]

 :.. Writes to static variable "x" [class ASIL A] // ACCESS VIOLATION!

 :.. Writes to static variable "z" [class ASIL A] // ACCESS VIOLATION!

 :.. Calls function "f1" [class ASIL D]

* Access table

===============

+-------------------------------------------------------------------------------------------------------+

| Name/Address  | Safety class  | Definition location  | Acting function  | Access | Access location(s) |

|=======================================================================================================|

| f1            | ASIL D        | safety.c:5           | f2               |  --CA  | safety.c:13        |

43

Using the Safety Checker



|               |               |                      | f3               |  --CA  | safety.c:21        |

| f2            | ASIL D        | safety.c:10          | f3               |  --CA  | safety.c:19,20,21  |

| f3            | ASIL D        | safety.c:17          | main             |  --CA  | safety.c:26        |

| x             | ASIL A        | safety.c:1           | f2               |  RW-A  | safety.c:12,14     |

| y             | ASIL A        | safety.c:2           | f2               |  R--A  | safety.c:14        |

| z             | ASIL A        | safety.c:3           | f2               |  RW-A  | safety.c:13,14     |

+-------------------------------------------------------------------------------------------------------+

Access: R=read, W=write, C=call and A=address taken

Notes on the output:

• A '-' in the Safety Class Access Rights Table means 'no rights'.

• A '*' in front of a class name in the Safety Class Access Rights Table means the class is unused.

• The X in the MISRA C report (not shown in this example) indicates that the MISRA C check for that
rule was enabled for the specified module. The TOTAL row shows the rules that were enabled for all
modules. Note that some rules are not displayed in this example output to fit on the page.

4.6. How the Safety Checker Searches Include Files

When you use include files (with the #include statement), you can specify their location in several ways.
The Safety Checker searches the specified locations in the following order:

1. If the #include statement contains an absolute pathname, the Safety Checker looks for this file. If
no path or a relative path is specified, the Safety Checker looks in the same directory as the source
file. This is only possible for include files that are enclosed in "".

This first step is not done for include files enclosed in <>.

2. When the Safety Checker did not find the include file, it looks in the directories that are specified with
option --include-directory (-I)).

3. When the Safety Checker did not find the include file (because it is not in the specified include directory
or because no directory is specified), it looks in the path(s) specified in the environment variable
CSAFINC.

4. When the Safety Checker still did not find the include file, it finally tries the default include directory
relative to the installation directory (unless you specified option --no-stdinc).

Example

Suppose that the C source file test.c contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the Safety Checker as follows:

44

TASKING Safety Checker User Guide



csaf -Imyinclude test.c

First the Safety Checker looks for the file stdio.h in the directory myinclude relative to the current
directory. If it was not found, the Safety Checker searches in the environment variable CSAFINC and then
in the default include directory.

The Safety Checker now looks for the file myinc.h, in the directory where test.c is located. If the file
is not there the Safety Checker searches in the directory myinclude. If it was still not found, the Safety
Checker searches in the environment variable CSAFINC and then in the default include directory.

4.7. Static Code Analysis

Various approaches and algorithms exist to perform static code analysis (SCA), each having specific pros
and cons.

SCA Implementation Design Philosophy

SCA is implemented in the Safety Checker based on the following design criteria:

• An SCA phase does not take up an excessive amount of execution time. Therefore, the SCA can be
performed during a normal edit-analyze cycle.

• A number of warnings can be issued in two variants. One variant is when it is guaranteed that the rule
is violated when the code is executed, and the other variant is when the rule is potentially violated, as
indicated by a preceding warning message.

For example see the following code fragment:

extern int some_condition(int);
void f(void)
{
    char buf[10];
    int i;

    for (i = 0; i <= 10; i++)
    {
        if (some_condition(i))
        {
            buf[i] = 0; /* subscript may be out of bounds */
        }
    }
}

As you can see in this example, if i=10 the array buf[] might be accessed beyond its upper boundary,
depending on the result of some_condition(i). If the Safety Checker cannot determine the result
of this function at run-time, the Safety Checker issues the warning "subscript is possibly out of bounds"
preceding the CERT warning "ARR35: do not allow loops to iterate beyond the end of an array". If the
Safety Checker can determine the result, or if the if statement is omitted, the Safety Checker can
guarantee that the "subscript is out of bounds".

45

Using the Safety Checker



• The SCA implementation has real practical value in embedded system development.There are no real
objective criteria to measure this claim. Therefore, the Safety Checker supports well known standards
for safety critical software development such as the MISRA guidelines for creating software for safety
critical automotive systems and secure "CERT C Secure Coding Standard" released by CERT. CERT
is founded by the US government and studies internet and networked systems security vulnerabilities,
and develops information to improve security.

4.7.1. C Code Checking: CERT C

The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities.The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

For details about the standard, see the CERT C Secure Coding Standard web site. For general information
about CERT secure coding, see www.cert.org/secure-coding.

Versions of the CERT C standard

Version 1.0 of the CERT C Secure Coding Standard is available as a book by Robert C. Seacord
[Addison-Wesley]. Whereas the web site is a wiki and reflects the latest information, the book serves as
a fixed point of reference for the development of compliant applications and source code analysis tools.

The rules and recommendations supported by the Safety Checker reflect the version of the CERT web
site as of June 1 2009.

The following rules/recommendations implemented by the Safety Checker, are not part of the book:
PRE11-C, FLP35-C, FLP36-C, MSC32-C

For a complete overview of the supported CERT C recommendations/rules by the Safety Checker, see
Chapter 8, CERT C Secure Coding Standard.

Priority and Levels of CERT C

Each CERT C rule and recommendation has an assigned priority. Three values are assigned for each
rule on a scale of 1 to 3 for

• severity - how serious are the consequences of the rule being ignored

1. low (denial-of-service attack, abnormal termination)

2. medium (data integrity violation, unintentional information disclosure)

3. high (run arbitrary code)

• likelihood - how likely is it that a flaw introduced by ignoring the rule could lead to an exploitable
vulnerability

1. unlikely

2. probable

46

TASKING Safety Checker User Guide

https://www.securecoding.cert.org/
http://www.cert.org/secure-coding
http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html
http://doc.tasking.com/cert/msc32.html


3. likely

• remediation cost - how expensive is it to comply with the rule

1. high (manual detection and correction)

2. medium (automatic detection and manual correction)

3. low (automatic detection and correction)

The three values are then multiplied together for each rule. This product provides a measure that can be
used in prioritizing the application of the rules. These products range from 1 to 27. Rules and
recommendations with a priority in the range of 1-4 are level 3 rules (low severity, unlikely, expensive to
repair flaws), 6-9 are level 2 (medium severity, probable, medium cost to repair flaws), and 12-27 are
level 1 (high severity, likely, inexpensive to repair flaws).

The Safety Checker checks most of the level 1 and some of the level 2 CERT C recommendations/rules.

For a complete overview of the supported CERT C recommendations/rules by the Safety Checker, see
Chapter 8, CERT C Secure Coding Standard.

To apply CERT C code checking to your application

On the command line use option --cert.

csaf --cert={all | name [-name],...]

With --diag=cert you can see a list of the available checks, or you can use a three-letter mnemonic to
list only the checks in a particular category. For example, --diag=pre lists all supported checks in the
preprocessor category.

4.7.2. C Code Checking: MISRA C

The C programming language is a standard for high level language programming in embedded systems,
yet it is considered somewhat unsuitable for programming safety-related applications.Through enhanced
code checking and strict enforcement of best practice programming rules, TASKING MISRA C code
checking helps you to produce more robust code.

MISRA C specifies a subset of the C programming language which is intended to be suitable for embedded
automotive systems. It consists of a set of rules, defined in MISRA C:2004, Guidelines for the Use of the
C Language in Critical Systems (Motor Industry Research Association (MIRA), 2004).

The Safety Checker also supports MISRA C:1998, the first version of MISRA C and MISRA C: 2012, the
latest version of MISRA C.You can select the version with the following option:

--misrac-version=1998
--misrac-version=2004
--misrac-version=2012

In your C source files you can check against the MISRA C version used. For example:

47

Using the Safety Checker



#if __MISRAC_VERSION__ == 1998
  ...
#elif __MISRAC_VERSION__ == 2004
  ...
#elif __MISRAC_VERSION__ == 2012
  ...
#endif

For a complete overview of all MISRA C rules, see Chapter 9, MISRA C Rules.

Implementation issues

The MISRA C implementation in the Safety Checker supports nearly all rules. Only a few rules are not
supported because they address documentation, run-time behavior, or other issues that cannot be checked
by static source code inspection, or because they require an application-wide overview.

During analysis of the code, violations of the enabled MISRA C rules are indicated with error messages.

MISRA C rules are divided in mandatory rules, required rules and advisory rules. If rules are violated,
errors are generated causing the Safety Checker to stop. With the following options warnings, instead of
errors, are generated:

--misrac-mandatory-warnings
--misrac-required-warnings
--misrac-advisory-warnings

Note that not all MISRA C violations will be reported when other errors are detected in the input
source. For instance, when there is a syntax error, all semantic checks will be skipped, including
some of the MISRA C checks.

Quality Assurance report

To ensure compliance to the MISRA C rules throughout the entire project, the Safety Cheker can generate
a MISRA C Quality Assurance report.This report lists the various modules in the project with the respective
MISRA C settings at the time of analyzing.You can use this in your company's quality assurance system
to provide proof that company rules for best practice programming have been applied in the particular
project.

To apply MISRA C code checking to your application

On the command line use option --misrac.

csaf --misrac={all | number [-number],...]

48

TASKING Safety Checker User Guide



4.8. Safety Checker Error Messages

The Safety Checker reports the following types of error messages.

F ( Fatal errors)

After a fatal error the Safety Checker immediately aborts.

E (Errors)

Errors are reported, but the Safety Checker continues analysis. No output files are produced unless you
have set the Safety Checker option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous output. They are meant to draw your attention to
possible vulnerabilities which requires special attention.You can control warnings with Safety Checker
option --no-warnings.

I (Information)

Information messages are always preceded by an error message. Information messages give extra
information about the error.

S (System errors)

System errors occur when internal consistency checks fail and should never occur.When you still receive
the system error message

S9##: internal consistency check failed - please report

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

On the command line you can use the Safety Checker option --diag to see an explanation of a diagnostic
message:

csaf --diag=[format:]{all | number,...]

49

Using the Safety Checker



50

TASKING Safety Checker User Guide



Chapter 5.Tutorial
The examples\partitioning directory of the Safety Checker installation contains several examples
of partitioning analysis of the Safety Checker. They serve as a good starting point for your own safety
critical project.

• basic - A basic example using functions and global variables with various safety configurations.

• rebel - A rebel module tries to access critical information, but is caught by the partitioning analysis of
the Safety Checker.

• sfr - A simple example showing how safety classes can be applied to memory-mapped Special
Function Registers (SFRs).

• ivar - A basic example using functions passing the address of a global variable and disallowing access
to that variable.

• istruct - A basic example using functions passing the address of a struct member and disallowing
access to that struct member.

In this tutorial we will use the basic example to go through the process of preparing your project for
safety checking. After this basic example, you can inspect the other examples.

Step 1: Write the source files

The source files delivered with the basic example are:

• module1.c

#include "globdef.h"

int my_global;

• module2.c

#include "globdef.h"

int f2( void )
{
    return my_global;
}

• module3.c

#include "globdef.h"

void f3( void )
{

51



    my_global = 1;
}

• module4.c

#include "globdef.h"

void f4( void )
{
    f3();
}

• globdef.h

extern int my_global;

extern int f2( void );
extern void f3( void );
extern void f4( void );

Step 2: Define the safety classes

Several safety class configuration files are delivered with the basic example:

• none.saf

This is an empty file which triggers the default settings. Use this to get your code working without having
to worry about safety classes.

• default.saf

This file contains safety class settings that are equivalent to the default settings. This file has the same
purpose as none.saf.

• minimal.saf

Each module gets a different safety class. The minimum set of access rights has been defined so that
the Safety Checker approves the program.

• maximal.saf

Each module gets a different safety class. The maximum set of access rights has been defined so that
every possible access is allowed. This is just for illustration purposes. If you want to allow everything
it is easier to just use none.saf.

We will use the file minimal.saf in this tutorial:

/*

 * Minimal settings using different safety classes

 */

52

TASKING Safety Checker User Guide



#define R  (__SAFETY_CLASS_ACCESS_RIGHTS_READ__)

#define W  (__SAFETY_CLASS_ACCESS_RIGHTS_WRITE__)

#define X  (__SAFETY_CLASS_ACCESS_RIGHTS_CALL__)

#define QM     (0U)

#define ASIL_A (1U)

#define ASIL_B (2U)

#define ASIL_C (3U)

#define ASIL_D (4U)

/*

  Safety Class Access Rights Table

===================================

    Target:    0    1    2    3    4    

            +--------------------------

Source: 0   |  ---  ---  ---  ---  ---

        1   |  ---  rwx  --x  ---  ---

        2   |  ---  ---  rwx  ---  -w-

        3   |  ---  ---  ---  rwx  r--

        4   |  ---  ---  ---  ---  rwx

*/

/*

 * Minimum rights to get example to work.

 */

__SAFETY_CLASS_ACCESS_RIGHTS__

{ 

    /* Src     Dst     Rights  */

    {  QM,     QM,     0U    }, /* Zero, as this is not used. */

    {  ASIL_B, ASIL_D, W     }, /* An ASIL B object is allowed to write an ASIL D object */

    {  ASIL_A, ASIL_B, X     }, /* An ASIL A object is allowed to execute an ASIL B object */

    {  ASIL_C, ASIL_D, R     }  /* An ASIL C object is allowed to read an ASIL D object */

};

/*

** Safety Class selections:

*/

__SAFETY_CLASS_SELECTIONS__

{ 

    /* File Mask     Name Mask  Class */

    {  "module1.c",  "*",       ASIL_D  }, 

    {  "module2.c",  "*",       ASIL_C  }, 

    {  "module3.c",  "*",       ASIL_B  }, 

53

Tutorial



    {  "module4.c",  "*",       ASIL_A  } 

};

#if 0 /* No safety class areas defined for this example */

/*

** Safety Class areas:

*/

__SAFETY_CLASS_AREAS__

{

 /* Address    Size    Class */

};

#endif

Note that in this example ASIL A is assigned to safety class 1, ASIL B to safety class 2, etc. But you can
use any number you want.

Step 3: Call the Safety Checker

You can call the Safety Checker in a separate invocation or you can use a makefile. The makefiles
delivered in the examples directory work with both amk (delivered with the Safety Checker) and GNU
make.

Call the Safety Checker by hand :

install_dir\bin\csaf --output-format=2 -k -o minimal.report module1.c
                     module2.c module3.c module4.c minimal.saf

This invocation creates the report file minimal.report in one call.

Alternatively, call the make utility amk:

install_dir\bin\amk minimal.report_passed

This call to amk results in the following invocations:

install_dir\bin\csaf --vd --dep-file=module1.vd.d --make-target=module1.vd -o module1.vd module1.c

install_dir\bin\csaf --vd --dep-file=module2.vd.d --make-target=module2.vd -o module2.vd module1.c

install_dir\bin\csaf --vd --dep-file=module3.vd.d --make-target=module3.vd -o module3.vd module1.c

install_dir\bin\csaf --vd --dep-file=module4.vd.d --make-target=module4.vd -o module4.vd module1.c

install_dir\bin\csaf --output-format=2 -k --dep-file=minimal.report_passed.d

                     --make-target=minimal.report -o minimal.report minimal.saf

                     module1.vd module2.vd module3.vd module4.vd

This invocation uses verification data files (.vd) as intermediate results and dependency files for the
make utility. This invocation also creates the report file minimal.report. All options are explained in
Section 7.2, Safety Checker Options.

54

TASKING Safety Checker User Guide



Step 4: Inspect the report file

The report file minimal.report contains an overview of the safety class selections, the safety class
access rights and a call/data graph with remarks on which checks have been performed.

* Safety Class Selections

==========================

+------------------------------------------------------------------------+

| File pattern              | Name pattern         | Class        | Used |

|========================================================================|

| module1.c                 | *                    | 4            | Yes  |

| module2.c                 | *                    | 3            | Yes  |

| module3.c                 | *                    | 2            | Yes  |

| module4.c                 | *                    | 1            | Yes  |

+------------------------------------------------------------------------+

* Safety Class Access Rights Table

===================================

    Target:    *0   1    2    3    4    

            +--------------------------

Source: *0  |  ---  ---  ---  ---  ---

        1   |  ---  rwx  --x  ---  ---

        2   |  ---  ---  rwx  ---  -w-

        3   |  ---  ---  ---  rwx  r--

        4   |  ---  ---  ---  ---  rwx

* unused safety class

* Call Graph

=============

*--f2() [class 3] @module2.c:7

*--f4() [class 1] @module4.c:7

    |

    +--f3() [class 2] @module3.c:7

* Call Graph Details

=====================

*--f2 [class 3] @module2.c:7 :

 :.. Reads from static variable "my_global" [class 4]

*--f4 [class 1] @module4.c:7 :

55

Tutorial



 :.. Calls function "f3" [class 2]

*--f3 [class 2] @module3.c:7 :

 :.. Writes to static variable "my_global" [class 4]

* Access table

===============

+-------------------------------------------------------------------------------------------------------+

| Name/Address  | Safety class  | Definition location  | Acting function  | Access | Access location(s) |

|=======================================================================================================|

| f3            | 2             | module3.c:7          | f4               |  --CA  | module4.c:9        |

| my_global     | 4             | module1.c:7          | f2               |  R--A  | module2.c:9        |

|               |               |                      | f3               |  -W-A  | module3.c:9        |

+-------------------------------------------------------------------------------------------------------+

Access: R=read, W=write, C=call and A=address taken

56

TASKING Safety Checker User Guide



Chapter 6. Using the Utilities
The TASKING Safety Checker comes with a number of utilities:

A make utility to maintain, update, and reconstruct groups of programs. The make utility
looks whether files are out of date, rebuilds them and determines which other files as a
consequence also need to be rebuilt. It supports parallelism which utilizes the multiple
cores found on modern host hardware.

amk

An archiver. With this utility you create and maintain library files with verification data files
(.vd) generated by the Safety Checker.

arsaf

6.1. Make Utility amk

amk is a make utility that you can use to maintain, update, and reconstruct groups of programs. amk
features parallelism which utilizes the multiple cores found on modern host hardware, hardening for path
names with embedded white space and it has an (internal) interface to provide progress information for
updating a progress bar. It does not use an external command shell (/bin/sh, cmd.exe) but executes
commands directly.

The primary purpose of any make utility is to speed up the edit-build-test cycle. To avoid having to build
everything from scratch even when only one source file changes, it is necessary to describe dependencies
between source files and output files and the commands needed for updating the output files. This is
done in a so called "makefile".

6.1.1. Makefile Rules

A makefile dependency rule is a single line of the form:

[target ...] : [prerequisite ...]

where target and prerequisite are path names to files. Example:

test.report : test.c

This states that target test.report depends on prerequisite test.c. So, whenever the latter is modified
the first must be updated. Dependencies accumulate: prerequisites and targets can be mentioned in
multiple dependency rules (circular dependencies are not allowed however).The command(s) for updating
a target when any of its prerequisites have been modified must be specified with leading white space
after any of the dependency rule(s) for the target in question. Example:

test.report :
  csaf test.c   # leading white space

Command rules may contain dependencies too. Combining the above for example yields:

test.report : test.c
  csaf test.c

57



White space around the colon is not required. When a path name contains special characters such as
':', '#' (start of comment), '=' (macro assignment) or any white space, then the path name must be enclosed
in single or double quotes. Quoted strings can contain anything except the quote character itself and a
newline. Two strings without white space in between are interpreted as one, so it is possible to embed
single and double quotes themselves by switching the quote character.

When a target does not exist, its modification time is assumed to be very old. So, amk will try to make it.
When a prerequisite does not exist possibly after having tried to make it, it is assumed to be very new.
So, the update commands for the current target will be executed in that case. amk will only try to make
targets which are specified on the command line.The default target is the first target in the makefile which
does not start with a dot.

Static pattern rules

Static pattern rules are rules which specify multiple targets and construct the prerequisite names for each
target based on the target name.

[target ...] : target-pattern : [prerequisite-patterns ...]

The target specifies the targets the rules applies to. The target-pattern and prerequisite-patterns specify
how to compute the prerequisites of each target. Each target is matched against the target-pattern to
extract a part of the target name, called the stem. This stem is substituted into each of the
prerequisite-patterns to make the prerequisite names (one from each prerequisite-pattern).

Each pattern normally contains the character '%' just once. When the target-pattern matches a target,
the '%' can match any part of the target name; this part is called the stem. The rest of the pattern must
match exactly. For example, the target foo.report matches the pattern '%.report', with 'foo' as the
stem. The target foo.c does not match that pattern.

The prerequisite names for each target are made by substituting the stem for the '%' in each prerequisite
pattern.

Example:

reports = test.report filter.report

all: $(reports)

$(reports): %.report: %.c
    csaf $< -o $@
    echo the stem is $*

Here '$<' is the automatic variable that holds the name of the prerequisite, '$@' is the automatic variable
that holds the name of the target and '$*' is the stem that matches the pattern. Internally this translates
to the following two rules:

test.report: test.c
    csaf test.c -o test.report
    echo the stem is test

filter.report: filter.c

58

TASKING Safety Checker User Guide



    csaf filter.c -o filter.report
    echo the stem is filter

Each target specified must match the target pattern; a warning is issued for each target that does not.

Special targets

There are a number of special targets. Their names begin with a period.

DescriptionTarget

When the make utility has finished building the specified targets, it continues with
the rules following this target.

.DONE

The rules following this target are executed before any other targets are built..INIT

The prerequisites of this target are considered to be phony targets. A phony target
is a target that is not really the name of a file. The rules following a phony target are
executed unconditionally, regardless of whether a file with that name exists or what
its last-modification time is.

For example:

.PHONY: clean

clean:
        rm *.report

With amk clean, the command is executed regardless of whether there is a file
named clean.

.PHONY

6.1.2. Makefile Directives

Directives inside makefiles are executed while reading the makefile. When a line starts with the word
"include" or "-include" then the remaining arguments on that line are considered filenames whose
contents are to be inserted at the current line. "-include" will silently skip files which are not present.
You can include several files. Include files may be nested.

Example:

include makefile2 makefile3

White spaces (tabs or spaces) in front of the directive are allowed.

6.1.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lowercase or uppercase characters, uppercase is an accepted convention.
When a line does not start with white space and contains the assignment operator '=', ':=' or '+=' then the
line is interpreted as a macro definition. White space around the assignment operator and white space
at the end of the line is discarded. Single character macro evaluation happens by prefixing the name with
'$'. To evaluate macros with names longer than one character put the name between parentheses '()' or

59

Using the Utilities



curly braces '{}'. Macro names may contain anything, even white space or other macro evaluations.
Example:

DINNER = $(FOOD) and $(BEVERAGE)
FOOD = pizza
BEVERAGE = sparkling water
FOOD += with cheese

With the += operator you can add a string to an existing macro. An extra space is inserted before the
added string automatically.

Macros are evaluated recursively. Whenever $(DINNER) or ${DINNER} is mentioned after the above,
it will be replaced by the text "pizza with cheese and sparkling water". The left hand side in
a macro definition is evaluated before the definition takes place. Right hand side evaluation depends on
the assignment operator:

Evaluate the macro at the moment it is used.=

Evaluate the replacement text before defining the macro.:=

Subsequent '+=' assignments will inherit the evaluation behavior from the previous assignment. If there
is none, then '+=' is the same as '='.The default value for any macro is taken from the environment. Macro
definitions inside the makefile overrule environment variables. Macro definitions on the amk command
line will be evaluated first and overrule definitions inside the makefile.

Predefined macros

DescriptionMacro

This macro translates to a dollar sign.Thus you can use "$$" in the makefile to represent
a single "$".

$

The name of the current target. When a rule has multiple targets, then it is the name
of the target that caused the rule commands to be run.

@

The basename (or stem) of the current target. The stem is either provided via a static
pattern rule or is calculated by removing all characters found after and including the
last dot in the current target name. If the target name is 'test.c' then the stem is
'test' (if the target was not created via a static pattern rule).

*

The name of the first prerequisite.<

The amk path name (quoted if necessary). Optionally followed by the options -n and
-s.

MAKE

The name of the directory where amk is installed (quoted if necessary).ORIGIN

The argument of option -G. If you have nested makes with -G options, the paths are
combined. This macro is defined in the environment (i.e. default macro value).

SUBDIR

The @, * and < macros may be suffixed by 'D' to specify the directory component or by 'F' to specify the
filename component. $(@D) evaluates to the directory name holding the file$(@F). $(@D)/$(@F) is
equivalent to $@. Note that on MS-Windows most programs accept forward slashes, even for UNC path
names.

60

TASKING Safety Checker User Guide



The result of the predefined macros @, * and < and 'D' and 'F' variants is not quoted, so it may be necessary
to put quotes around it.

Note that stem calculation can cause unexpected values. For example:

$@ $*
    /home/.wine/test      /home/
    /home/test/.project   /home/test/
    /../file              /.

Macro string substitution

When the macro name in an evaluation is followed by a colon and equal sign as in

$(MACRO:string1=string2)

then amk will replace string1 at the end of every word in $(MACRO) by string2 during evaluation. When
$(MACRO) contains quoted path names, the quote character must be mentioned in both the original string
and the replacement string1. For example:

$(MACRO:.report"=.d")

6.1.4. Makefile Functions

A function not only expands but also performs a certain operation. The following functions are available:

$(filter pattern ...,item ...)

The filter function filters a list of items using a pattern. It returns items that do match any of the pattern
words, removing any items that do not match. The patterns are written using '%',

    ${filter %.c %.h, test.c test.h test.report readme.txt output.c}

results in:

    test.c test.h output.c

$(filter-out pattern ...,item ...)

The filter-out function returns all items that do not match any of the pattern words, removing the
items that do match one or more. This is the exact opposite of the filter function.

    ${filter-out %.c %.h, test.c test.h test.report readme.txt output.c}

results in:

    test.report readme.txt

1Internally, amk tokenizes the evaluated text, but performs substitution on the original input text to preserve compatibility here with
existing make implementations and POSIX.

61

Using the Utilities



$(foreach var-name, item ..., action)

The foreach function runs through a list of items and performs the same action for each item. The
var-name is the name of the macro which gets dynamically filled with an item while iterating through the
item list. In the action you can refer to this macro. For example:

    ${foreach T, test filter output, ${T}.c ${T}.h}

results in:

    test.c test.h filter.c filter.h output.c output.h

6.1.5. Conditional Processing

Lines containing ifdef, ifndef, else or endif are used for conditional processing of the makefile.
They are used in the following way:

ifdef macro-name
if-lines
else
else-lines
endif

The if-lines and else-lines may contain any number of lines or text of any kind, even other ifdef, ifndef,
else and endif lines, or no lines at all.The else line may be omitted, along with the else-lines following
it. White spaces (tabs or spaces) in front of preprocessing directives are allowed.

First the macro-name after the ifdef command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an else line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the ifndef line instead of ifdef, the macro is tested for not being defined. These
conditional lines can be nested to any level.

You can also add tests based on strings. With ifeq the result is true if the two strings match, with ifneq
the result is true if the two strings do not match. They are used in the following way:

ifeq(string1,string2)
if-lines
else
else-lines
endif

6.1.6. Makefile Parsing

amk reads and interprets a makefile in the following order:

1. When the last character on a line is a backslash (\) (i.e. without trailing white space) then that line and
the next line will be concatenated, removing the backslash and newline.

62

TASKING Safety Checker User Guide



2. The unquoted '#' character indicates start of comment and may be placed anywhere on a line. It will
be removed in this phase.

# this comment line is continued\
on the next line

3. Trailing white space is removed.

4. When a line starts with white space and it is not followed by a directive or preprocessing directive, then
it is interpreted as a command for updating a target.

5. Otherwise, when a line contains the unquoted text '=', '+=' or ':=' operator, then it will be interpreted as
a macro definition.

6. Otherwise, all macros on the line are evaluated before considering the next steps.

7. When the resulting line contains an unquoted ':' the line is interpreted as a dependency rule.

8. When the first token on the line is "include" or "-include" (which by now must start on the first
column of the line), amk will execute the directive.

9. Otherwise, the line must be empty.

Macros in commands for updating a target are evaluated right before the actual execution takes place
(or would take place when you use the -n option).

6.1.7. Makefile Command Processing

A line with leading white space (tabs or spaces) without a (preprocessing) directive is considered as a
command for updating a target. When you use the option -j or -J, amk will execute the commands for
updating different targets in parallel. In that case standard input will not be available and standard output
and error output will be merged and displayed on standard output only after the commands have finished
for a target.

You can precede a command by one or more of the following characters:

Do not show the command. By default, commands are shown prior to their output.@

Continue upon error. This means that amk ignores a non-zero exit code of the command.-

Execute the command, even when you use option -n (dry run).+

Execute the command on the foreground with standard input, standard output and error
output available.

|

Built-in commands

DescriptionCommand

This command does nothing. Arguments are ignored.true

This command does nothing, except failing with exit code 1. Arguments are
ignored.

false

63

Using the Utilities



DescriptionCommand

Display a line of text.echo arg...

Exit with defined code. Depending on the program arguments and/or the extra
rule options '-' this will cause amk to exit with the provided code. Please note
that 'exit 0' has currently no result.

exit code

Create an argument file suitable for the --option-file (-f) option of all the other
tools. The first argfile argument is the name of the file to be created.
Subsequent arguments specify the contents. An existing argument file is not
modified unless necessary. So, the argument file itself can be used to create
a dependency to options of the command for updating a target.

argfile file arg...

Remove the specified file(s). The following options are available:

Remove directories and their contents recursively.-r, --recursive

Force deletion. Ignore non-existent files, never prompt.-f, --force

Interactive. Prompt before every removal.-i, --interactive

Verbose mode. Explain what is being done.-v, --verbose

Read options from file..-m file

Show usage.-?, --help

rm [option]... file...

6.1.8. Calling the amk Make Utility

The invocation syntax of amk is:

amk [option]... [target]... [macro=def]...

For example:

amk test.report

You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

target

Macro definition.This definition remains fixed for the amk invocation. It overrides any
regular definitions for the specified macro within the makefiles and from the
environment. It is not inherited by subordinate amk's

macro=def

For a complete list and description of all amk make utility options, see Section 7.3,
Make Utility Options.

option

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

64

TASKING Safety Checker User Guide



6.2. Archiver

The archiver arsaf is a program to build and maintain your own library files. A library file is a verification
data archive with extension .vda and contains one or more verification data files (.vd) that may be used
by the Safety Checker. A use case is that the verification data archives are provided by a third party. With
the archiver you can add or extract verification data files from the archive.

The archiver has five main functions:

• Deleting a verification data file from the library

• Moving a verification data file to another position in the library file

• Replacing a verification data file in the library or add a new verification data file

• Showing a table of contents of the library file

• Extracting a verification data file from the library

The archiver takes the following files for input and output:

6.2.1. Calling the Archiver

You can call the archiver from the command line. The invocation syntax is:

arsaf key_option [sub_option...] library [module]

With a key option you specify the main task which the archiver should perform.You
must always specify a key option.

key_option

Sub-options specify into more detail how the archiver should perform the task that is
specified with the key option. It is not obligatory to specify sub-options.

sub_option

The name of the library file on which the archiver performs the specified action.You
must always specify a library name, except for the options -? and -V. When the library
is not in the current directory, specify the complete path (either absolute or relative) to
the library.

library

The name of a verification data file.You must always specify a verification data file
name when you add, extract, replace or remove a verification data file from the library.

module

65

Using the Utilities



Options of the archiver utility

The following archiver options are available:

Sub-optionOptionDescription

Main functions (key options)

-a -b -c -n -u -v-rReplace or add a module

-o -v-xExtract a module from the library

-v-dDelete a module from library

-a -b -v-mMove a module to another position

-s0 -s1-tPrint a table of contents of the library

-pPrint the contents of a module to standard output

Sub-options

-a nameAppend or move new modules after existing module name

-b nameAppend or move new modules before existing module name

-cSuppress the message that is displayed when a new library is
created

-nCreate a new library from scratch

-oPreserve last-modified date from the library

-s{0|1}Print symbols in library modules

-uReplace only newer modules

-vVerbose

Miscellaneous

-?Display options

--diagDisplay description of one or more diagnostic messages

-VDisplay version header

-f fileRead options from file

-wnSuppress warnings above level n

For a complete list and description of all archiver options, see Section 7.4, Archiver Options.

6.2.2. Archiver Examples

Create a new library

If you add modules to a library that does not yet exist, the library is created. To create a new library with
the name mylib.vda and add the modules mod1.vd and mod2.vd to it:

arsaf -r mylib.vda mod1.vd mod2.vd

66

TASKING Safety Checker User Guide



Add a new module to an existing library

If you add a new module to an existing library, the module is added at the end of the module. (If the
module already exists in the library, it is replaced.)

arsaf -r mylib.vda mod3.vd

Print a list of modules in the library

To inspect the contents of the library:

arsaf -t mylib.vda

The library has the following contents:

mod1.vd
mod2.vd
mod3.vd

Move a module to another position

To move mod3.vd to the beginning of the library, position it just before mod1.vd:

arsaf -mb mod1.vd mylib.vda mod3.vd

Delete a module from the library

To delete the module mod1.vd from the library mylib.vda:

arsaf -d mylib.vda mod1.vd

Extract all modules from the library

Extract all modules from the library mylib.vda:

arsaf -x mylib.vda

67

Using the Utilities



68

TASKING Safety Checker User Guide



Chapter 7.Tool Options
This chapter provides a detailed description of the options for the Safety Checker, make utility and archiver.

7.1. Configuring the Command Line Environment

You can set the following environment variables:

DescriptionEnvironment
variable

With this variable you specify one or more additional directories in which the Safety
Checker looks for include files. See Section 4.6, How the Safety Checker Searches
Include Files.

CSAFINC

With this variable you specify the directory in which the executables reside. This
allows you to call the executables when you are not in the bin directory. Usually
your system already uses the PATH variable for other purposes. To keep these
settings, you need to add (rather than replace) the path. Use a semicolon (;) to
separate path names.

PATH

With this variable you specify the location where programs can create temporary
files. Usually your system already uses this variable. In this case you do not need
to change it.

TMPDIR

See the documentation of your operating system on how to set environment variables.

69



7.2. Safety Checker Options

This section lists all Safety Checker options.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on', use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

csaf -Eil test.c
csaf --preprocess=+includes,+list test.c

When you do not specify an option, a default value may become active.

70

TASKING Safety Checker User Guide



Safety Checker option: --absolute

Command line syntax

--absolute

Description

With this option the Safety Checker always shows the complete path name of the source file in diagnostic
messages.

Related information

-

71

Tool Options



Safety Checker option: --bit-size-<type>

Command line syntax

--bit-size-char=size
--bit-size-short=size
--bit-size-int=size
--bit-size-long=size
--bit-size-llong=size
--bit-size-ptr=size

Default and minimum size:

Minimum sizeDefault sizeInteger type

88char

1616short

1632int

3232long

6464long long

832pointer

Description

With these options you can configure the sizes of the integer types.The default sizes conform to the sizes
as defined by ISO C99.These options are needed when in your use case the sizes differ from the default.
The sizes should not be less than the minimum size.

Related information

-

72

TASKING Safety Checker User Guide



Safety Checker option: --cert

Command line syntax

--cert={all | name[-name],...}

Default format: all

Description

With this option you can enable one or more checks for CERT C Secure Coding Standard
recommendations/rules. When you omit the argument, all checks are enabled. name is the name of a
CERT recommendation/rule, consisting of three letters and two digits. Specify only the three-letter
mnemonic to select a whole category. For the list of names you can use, see Chapter 8, CERT C Secure
Coding Standard.

On the command line you can use --diag=cert to see a list of the available checks, or you can use a
three-letter mnemonic to list only the checks in a particular category. For example, --diag=pre lists all
supported preprocessor checks.

Example

To enable the check for CERT rule STR30-C, enter:

csaf --cert=str30 test.c

Related information

Chapter 8, CERT C Secure Coding Standard

Safety Checker option --diag (Explanation of diagnostic messages)

73

Tool Options



Safety Checker option: --define (-D)

Command line syntax

--define=macro_name[=macro_definition]

-Dmacro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1'.

On the command line, you can use the option --define (-D) multiple times. If the command line exceeds
the limit of the operating system, you can define the macros in an option file which you then must specify
to the Safety Checker with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful for conditional C
source as shown in the example below.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

Consider the following C program with conditional code to check a demo program and a real program:

void main( void )
{
#if DEMO
    demo_func();   /* check the demo program */
#else
    real_func();   /* check the real program */
#endif
}

You can now use a macro definition to set the DEMO flag:

csaf --define=DEMO test.c
csaf --define=DEMO=1 test.c

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

csaf --define="MAX(A,B)=((A) > (B) ? (A) : (B))" test.c

74

TASKING Safety Checker User Guide



Related information

Safety Checker option --undefine (Remove preprocessor macro)

Safety Checker option --option-file (Specify an option file)

75

Tool Options



Safety Checker option: --dep-file

Command line syntax

--dep-file[=file]

Description

With this option you tell the Safety Checker to generate dependency lines that can be used in a Makefile.
In contrast to the option --preprocess=+make, the dependency information will be generated in addition
to the normal output file.

By default, the information is written to a file with extension .d (one for every input file).When you specify
a filename, all dependencies will be combined in the specified file.

Example

csaf --dep-file=test.dep test.c

The Safety Checker analyzes the file test.c, which results in the output file test.report, and generates
dependency lines in the file test.dep.

Related information

Safety Checker option --preprocess=+make (Generate dependencies for make)

Safety Checker option --make-target (Specify target name for --dep-file output)

76

TASKING Safety Checker User Guide



Safety Checker option: --diag

Command line syntax

--diag=[format:]{all | msg[-msg],...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The Safety Checker
does not analyze any files.You can specify the following formats: html, rtf or text (default). To create a
file with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given (except for the CERT checks). If
you want the description of one or more selected error messages, you can specify the error message
numbers, separated by commas, or you can specify a range.

With --diag=cert you can see a list of the available CERT checks, or you can use a three-letter mnemonic
to list only the checks in a particular category. For example, --diag=pre lists all supported preprocessor
checks.

Example

To display an explanation of message number 282, enter:

csaf --diag=282

This results in the following message and explanation:

E282: unterminated comment

Make sure that every comment starting with /* has a matching */.
Nested comments are not possible.

To write an explanation of all errors and warnings in HTML format to file cerrors.html, use redirection
and enter:

csaf --diag=html:all > cerrors.html

Related information

Section 4.8, Safety Checker Error Messages

77

Tool Options



Safety Checker option --cert (Enable individual CERT checks)

78

TASKING Safety Checker User Guide



Safety Checker option: --error-file

Command line syntax

--error-file[=file]

Description

With this option the Safety Checker redirects error messages to a file. If you do not specify a filename,
the error file will be named after the output file with extension .err.

Example

To write errors to errors.err instead of stderr, enter:

csaf --error-file=errors.err test.c

Related information

-

79

Tool Options



Safety Checker option: --error-limit

Command line syntax

--error-limit=number

Default: 42

Description

With this option you limit the number of error messages in one invocation run to the specified number.
When the limit is exceeded, the Safety Checker aborts with fatal error message F105. Warnings and
informational messages are not included in the count. When 0 (zero) or a negative number is specified,
the Safety Checker emits all errors. Without this option the maximum number of errors is 42.

Related information

Section 4.8, Safety Checker Error Messages

80

TASKING Safety Checker User Guide



Safety Checker option: --errors-as-warnings

Command line syntax

--errors-as-warnings[=number[-number],...]

Description

When used without arguments, this option tells the Safety Checker to treat all errors as warnings. This
means that errors will no longer cause an early termination with a non-zero exit status.

You can limit this option to specific errors by specifying a comma-separated list of error numbers or
ranges.

This option only applies to normal errors with an E prefix, not to fatal errors (F) and system errors (S).

Option --tolerate-errors is an alias for --errors-as-warnings=200-449.

Use this option with extreme care. Ignoring errors can lead to unpredictable results.

Related information

Safety Checker option --tolerate-errors (Treat front-end errors as warnings)

81

Tool Options



Safety Checker option: --fp-model

Command line syntax

--fp-model=flags

You can set the following flags:

allow expression contractionc/C+/-contract

treat 'double' as 'float'f/F+/-float

allow optimizations to ignore NaN/Infn/N+/-nonan

allow expression rewritingr/R+/-rewrite

ignore sign of -0.0z/Z+/-negzero

alias for --fp-model=CFNRZ (strict)0

alias for --fp-model=cFNRZ (precise)1

alias for --fp-model=cFnrz (fast double)2

alias for --fp-model=cfnrz (fast single)3

Default: --fp-model=cFnrz

Description

With this option you select the floating-point execution model.

With --fp-model=+contract you allow the Safety Checker to contract multiple float operations into a single
operation, with different rounding results. A possible example is fused multiply-add. This may affect
constant folding, and therefore diagnostics. Therefore this flag is supported by the Safety Checker.

With --fp-model=+float you tell the Safety Checker to treat variables and constants of type double as
float. Because the float type takes less space, execution speed increases and code size decreases,
both at the cost of less precision. This will affect diagnostics and therefore this flag is supported by the
Safety Checker.

With --fp-model=+nonan you allow the Safety Checker to ignore NaN or Inf input values. An example is
to replace multiply by zero with zero.This influences constant folding, and therefore diagnostics.Therefore
this flag is supported by the Safety Checker.

With --fp-model=+rewrite you allow the Safety Checker to rewrite expressions by reassociating. This
might result in rounding differences and possibly different exceptions, and therefore influences diagnostics.
Therefore this flag is supported by the Safety Checker. An example is to rewrite (a*c)+(b*c) as (a+b)*c.

With --fp-model=+negzero you allow the Safety Checker to ignore the sign of -0.0 values.This influences
constant folding, and therefore diagnostics. Therefore this flag is supported by the Safety Checker. An
example is to replace (a-a) by zero.

82

TASKING Safety Checker User Guide



Related information

Pragmas STDC FP_CONTRACT, fp_negzero, fp_nonan and fp_rewrite in Section 3.4, Pragmas to
Control the Safety Checker.

83

Tool Options



Safety Checker option: --help (-?)

Command line syntax

--help[=item]

-?

You can specify the following arguments:

Show extended option descriptionsooptions

Show the list of supported pragmasppragmas

Show the list of predefined typedefsttypedefs

Description

Displays an overview of all command line options. With an argument you can specify which extended
information is shown.

Example

The following invocations all display a list of the available command line options:

csaf -?
csaf --help
csaf

The following invocation displays a list of the available pragmas:

csaf --help=pragmas

Related information

-

84

TASKING Safety Checker User Guide



Safety Checker option: --ignore-generated-symbols

Command line syntax

--ignore-generated-symbols

Description

With this option the Safety Checker ignores compiler-generated symbols (string literals and aggregate
initializers) in safety checks.

Related information

-

85

Tool Options



Safety Checker option: --include-directory (-I)

Command line syntax

--include-directory=path,...

-Ipath,...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the Safety Checker searches for include files is:

1. The pathname in the C source file and the directory of the C source (only for #include files that are
enclosed in "")

2. The path or paths that are specified with this option. Multiple paths/options are handled by the Safety
Checker from left to right.

3. The path that is specified in the environment variable CSAFINC when the product was installed.

4. The default directory $(PRODDIR)\include (unless you specified option --no-stdinc).

Example

Suppose that the C source file test.c contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the Safety Checker as follows:

csaf --include-directory=myinclude test.c

First the Safety Checker looks for the file stdio.h in the directory myinclude relative to the current
directory. If it was not found, the Safety Checker searches in the environment variable and then in the
default include directory.

The Safety Checker now looks for the file myinc.h in the directory where test.c is located. If the file
is not there the Safety Checker searches in the directory myinclude. If it was still not found, the Safety
Checker searches in the environment variable and then in the default include directory.

Related information

Safety Checker option --include-file (Include file at the start of an analysis)

Safety Checker option --no-stdinc (Skip standard include files directory)

Section 3.6.8, Include Files

86

TASKING Safety Checker User Guide



Safety Checker option: --include-file (-H)

Command line syntax

--include-file=file,...

-Hfile,...

Description

With this option you include one or more extra files at the beginning of each C source file, before other
includes. This is the same as specifying #include "file" at the beginning of each of your C sources.

Example

csaf --include-file=csaf.h test1.c test2.c

The file csaf.h is included at the beginning of both test1.c and test2.c.

Related information

Safety Checker option --include-directory (Add directory to include file search path)

Section 3.6.10, Target Configuration

87

Tool Options



Safety Checker option: --iso (-c)

Command line syntax

--iso={90|99|11}

-c{90|99|11}

Default: --iso=99

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99
refers to the ISO/IEC 9899:1999 (E) standard. C11 refers to the ISO/IEC 9899:2011 (E) standard. C99
is the default.

Example

To select the ISO C11 standard on the command line:

csaf --iso=11 test.c

Related information

Section 2.3, C Syntax Checking

Safety Checker option --language (Language extensions)

88

TASKING Safety Checker User Guide



Safety Checker option: --keep-output-files (-k)

Command line syntax

--keep-output-files

-k

Description

If an error occurs during safety checking, the resulting .report file may be incomplete or incorrect. With
this option you keep the generated output file (.report) when an error occurs.

By default the Safety Checker removes the generated output file (.report) when an error occurs. This
is useful when you use the make utility. If the erroneous files are not removed, the make utility may process
corrupt files on a subsequent invocation.

Use this option when you still want to inspect the generated report file. Even if it is incomplete or incorrect.

Example

csaf --keep-output-files test.c

When an error occurs, the generated output file test.report will not be removed.

Related information

Safety Checker option --warnings-as-errors (Treat warnings as errors)

89

Tool Options



Safety Checker option: --language (-A)

Command line syntax

--language=[flags]

-A[flags]

You can set the following flags:

enable a number of gcc extensionsg/G+/-gcc

support for Shift JIS Kanji in stringsk/K+/-kanji

// comments in ISO C90 modep/P+/-comments

relaxed const check for string literalsx/X+/-strings

Default: -AGKpx

Default (without flags): -AGKPX

Description

With this option you control the language extensions the Safety Checker can accept.

The option --language (-A) without flags disables all language extensions.

GNU C extensions

The --language=+gcc (-Ag) option enables the following gcc language extensions:

• The identifier __FUNCTION__ expands to the current function name.

• Alternative syntax for variadic macros.

• Alternative syntax for designated initializers.

• Allow zero sized arrays.

• Allow empty struct/union.

• Allow unnamed struct/union fields.

• Allow empty initializer list.

• Allow initialization of static objects by compound literals.

• The middle operand of a ? : operator may be omitted.

• Allow a compound statement inside braces as expression.

• Allow arithmetic on void pointers and function pointers.

• Allow a range of values after a single case label.

90

TASKING Safety Checker User Guide



• Additional preprocessor directive #warning.

• Allow comma operator, conditional operator and cast as lvalue.

• An inline function without "static" or "extern" will be global.

• An "extern inline" function will not be analyzed on its own.

• An __attribute__ directly following a struct/union definition relates to that tag instead of to the
objects in the declaration.

For a more complete description of these extensions, you can refer to the UNIX gcc info pages (info
gcc).

Shift JIS Kanji support

With --language=+kanji (-Ak) you enable support for Shift JIS encoded Kanji multi-byte characters in
strings, (wide) character constants and // comments. Without this option, encodings with 0x5c as the
second byte conflict with the use of the backslash as an escape character. Shift JIS in /*...*/ comments
is supported regardless of this option. Note that Shift JIS also includes Katakana and Hiragana.

Comments in ISO C90 mode

With --language=+comments (-Ap) you enable support for C++ style comments (//) in ISO C90 mode
(option --iso=90). In ISO C99 mode this style of comments is always accepted.

Check assignment of string literal to non-const string pointer

With --language=+strings (-Ax) you disable warnings about discarded const qualifiers when a string
literal is assigned to a non-const pointer.

char *p;
int main( void )
{
    p = "hello"; // with -AX the Safety Checker issues warning W525
    return 0;
}

Related information

Safety Checker option --iso (ISO C standard)

Section 3.2, Shift JIS Kanji Support

91

Tool Options



Safety Checker option: --make-target

Command line syntax

--make-target=name

Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file.The default target name is the basename of the input
file, with extension .vd.

Example

csaf --preprocess=+make --make-target=test.report test.c

The Safety Checker generates dependency lines with the target name test.report instead of the
default name test.vd.

Related information

Safety Checker option --preprocess=+make (Generate dependencies for make)

Safety Checker option --dep-file (Generate dependencies in a file)

92

TASKING Safety Checker User Guide



Safety Checker option: --misrac

Command line syntax

--misrac={all | nr[-nr]},...

Description

With this option you specify to the Safety Checker which MISRA C rules must be checked.With the option
--misrac=all the Safety Checker checks for all supported MISRA C rules.

Example

csaf --misrac=9-13 test.c

The Safety Checker generates an error for each MISRA C rule 9, 10, 11, 12 or 13 violation in file test.c.

Related information

Section 4.7.2, C Code Checking: MISRA C

Safety Checker option --misrac-mandatory-warnings

Safety Checker option --misrac-advisory-warnings

Safety Checker option --misrac-required-warnings

93

Tool Options



Safety Checker option: --misrac-advisory-warnings /
--misrac-required-warnings / --misrac-mandatory-warnings

Command line syntax

--misrac-advisory-warnings
--misrac-required-warnings
--misrac-mandatory-warnings

Description

Normally, if an advisory rule, required rule or mandatory rule is violated, the Safety Checker generates
an error. As a consequence, no report file is generated. With this option, the Safety Checker generates
a warning instead of an error.

Related information

Section 4.7.2, C Code Checking: MISRA C

Safety Checker option --misrac

94

TASKING Safety Checker User Guide



Safety Checker option: --misrac-version

Command line syntax

--misrac-version={1998|2004|2012}

Default: 2004

Description

MISRA C rules exist in three versions: MISRA C:1998, MISRA C:2004 and MISRA C:2012. By default,
the C source is checked against the MISRA C:2004 rules. With this option you can select which version
to use.

Related information

Section 4.7.2, C Code Checking: MISRA C

Safety Checker option --misrac

95

Tool Options



Safety Checker option: --no-stdinc

Command line syntax

--no-stdinc

Description

With this option you tell the Safety Checker not to look in the default include directory relative to the
installation directory, when searching for include files. This way the Safety Checker only searches in the
include file search paths you specified.

Related information

Safety Checker option --include-directory (Add directory to include file search path)

Section 4.6, How the Safety Checker Searches Include Files

96

TASKING Safety Checker User Guide



Safety Checker option: --no-warnings (-w)

Command line syntax

--no-warnings[=number[-number],...]

-w[number[-number],...]

Description

With this option you can suppresses all warning messages or specific warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are suppressed.

• If you specify this option with a number or a range, only the specified warnings are suppressed.You
can specify the option --no-warnings=number multiple times.

Example

To suppress warnings 537 and 538, enter:

csaf test.c --no-warnings=537,538

Related information

Safety Checker option --warnings-as-errors (Treat warnings as errors)

Pragma warning

97

Tool Options



Safety Checker option: --option-file (-f)

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the Safety Checker.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

         -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

--output-format=acDrt
--define=DEMO=1
test.c

98

TASKING Safety Checker User Guide



Specify the option file to the Safety Checker:

csaf --option-file=myoptions

This is equivalent to the following command line:

csaf --output-format=acDrt --define=DEMO=1 test.c

Related information

-

99

Tool Options



Safety Checker option: --output-file (-o)

Command line syntax

--output-file=file

-o file

Description

With this option you can specify another filename for the output file of the Safety Checker. Without this
option the basename of the C source file is used with extension .report.

Example

To create the file output.report instead of test.report, enter:

csaf --output-file=output.report test.c

Related information

-

100

TASKING Safety Checker User Guide



Safety Checker option: --output-format

Command line syntax

--output-format[=flag,...]

You can specify the following format flags:

Safety class areasa/A+/-areas

Call/data graph of the applicationc/C+/-callgraph

Call graph detailsd/D+/-details

MISRA C Quality Assurance reportm/M+/-misra

Safety class access rightsr/R+/-rights

Safety class selectionss/S+/-selection

Access tablet/T+/-table

Alias for ACDMRST (nothing)0

Alias for acDmrsT (default)1

Alias for acdmrst (everything)2

Default: --output-format=acDmrsT

Description

With this option you can control which parts of the report output you want to see.

1. Safety class areas table

2. Safety class selections table

3. Safety class access rights table

4. Call/data graph

5. Call graph details (actions and checks)

6. Access table (sorted on address)

7. MISRA C Quality Assurance report

By default, all parts are reported, except for parts 5 and 6.

The MISRA C Quality Assurance report lists the various modules in the project with the respective MISRA
C settings at the time of analysis. This report is only shown if you specify the option --misrac with one or
more rules.

Related information

Section 4.5, Output of the Safety Checker

101

Tool Options



Safety Checker option --misrac

102

TASKING Safety Checker User Guide



Safety Checker option: --preprocess (-E)

Command line syntax

--preprocess[=flags]

-E[flags]

You can set the following flags:

keep commentsc/C+/-comments

generate a list of included source filesi/I+/-includes

generate a list of macro definitionsl/L+/-list

generate dependencies for makem/M+/-make

strip #line source position informationp/P+/-noline

Default: -ECILMP

Description

With this option you tell the Safety Checker to preprocess the C source. The Safety Checker sends the
preprocessed file to stdout. To capture the information in a file, specify an output file with the option
--output.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+includes the Safety Checker will generate a list of all included source files. The
preprocessor output is discarded.

With --preprocess=+list the Safety Checker will generate a list of all macro definitions.The preprocessor
output is discarded.

With --preprocess=+make the Safety Checker will generate dependency lines that can be used in a
Makefile. The preprocessor output is discarded. The default target name is the basename of the input
file, with the extension .vd.With the option --make-target you can specify a target name which overrules
the default target name.

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #line). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example

csaf --preprocess=+comments,+includes,-list,-make,-noline test.c 
     --output=test.pre

The Safety Checker preprocesses the file test.c and sends the output to the file test.pre. Comments
and a list of all included source files are included but no list of macro definitions and no dependencies
are generated and the line source position information is not stripped from the output file.

103

Tool Options



Related information

Safety Checker option --dep-file (Generate dependencies in a file)

Safety Checker option --make-target (Specify target name for -Em output)

104

TASKING Safety Checker User Guide



Safety Checker option: --root-functions

Command line syntax

--root-functions==name,...

Description

With this option you can specify the root functions from which a call graph report is produced. By default
all functions not called from other functions are considered root.You can use this option to limit the call
graph report to only interesting sections of the program.

Example

If you are only interested in the call graphs starting at the functions printf and func2, enter:

csaf --root-functions=printf,func2 test.c

Related information

Section 4.5, Output of the Safety Checker

105

Tool Options



Safety Checker option: --signed-bitfields

Command line syntax

--signed-bitfields

Description

For bit-fields it depends on the implementation whether a plain int is treated as signed int or unsigned
int. By default an int bit-field is treated as unsigned int. With this option you tell the Safety Checker
to treat int bit-fields as signed int. In this case, you can still add the keyword unsigned to treat a
particular int bit-field as unsigned.

Related information

Section 3.1, Data Types

106

TASKING Safety Checker User Guide



Safety Checker option: --signed-wchar

Command line syntax

--signed-wchar

Description

By default wide character data type wchar_t is treated as unsigned short int. With this option you
tell the Safety Checker to treat wchar_t as signed short int.

Related information

-

107

Tool Options



Safety Checker option: --stdout (-n)

Command line syntax

--stdout

-n

Description

With this option you tell the Safety Checker to send the output to stdout (usually your screen). No files
are created. This option is for example useful to quickly inspect the output or to redirect the output to
other tools.

Related information

-

108

TASKING Safety Checker User Guide



Safety Checker option: --strict-unions

Command line syntax

--strict-unions

Description

By default, the Safety Checker considers union members to be non-overlapping, making them in effect
equivalent to structs (except for some diagnostics). This differs from the way a target compiler interprets
unions. With option --strict-unions you tell the Safety Checker to interpret unions like a target compiler
does, with overlapping members.

When you have a large number of unions in your source code, and you would turn on this option, the
Safety Checker may run for an extremely long time. If from a logical perspective, your union has the same
function as a struct, for example because you use unions to save memory, you do not have to turn on
this option. Only in situations where you want to make use of the aliasing feature of your union, for example
to do data conversions, you should turn on this option to treat your union as a true union.

If you want to apply strictness to specific unions, you can use the #pragma strict_unions.

Related information

Pragma strict_unions

109

Tool Options



Safety Checker option: --tolerate-errors

Command line syntax

--tolerate-errors

Description

With this option you tell the Safety Checker to treat all front-end errors as warnings. This means that
errors will no longer cause an early termination with a non-zero exit status. Safety Checker errors are
processed as usual.

This option is an alias for --errors-as-warnings=200-449.

Use this option with extreme care. Ignoring errors can lead to unpredictable results.

Related information

Safety Checker option --errors-as-warnings (Treat errors as warnings)

110

TASKING Safety Checker User Guide



Safety Checker option: --uchar (-u)

Command line syntax

--uchar

-u

Description

By default char is the same as specifying signed char.With this option char is the same as unsigned
char.

Related information

-

111

Tool Options



Safety Checker option: --undefine (-U)

Command line syntax

--undefine=macro_name

-Umacro_name

Description

With this option you can undefine an earlier defined macro as with #undef. This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

current source filename__FILE__

current source line number (int type)__LINE__

hh:mm:ss__TIME__

Mmm dd yyyy__DATE__

level of ANSI standard__STDC__

Example

To undefine the predefined macro __TASKING__:

csaf --undefine=__TASKING__ test.c

Related information

Safety Checker option --define (Define preprocessor macro)

Section 3.5, Predefined Preprocessor Macros

112

TASKING Safety Checker User Guide



Safety Checker option: --vd

Command line syntax

--vd

Description

With option --vd you can split up the analysis phase of the Safety Checker into smaller steps. The Safety
Checker skips partitioning checking and reporting and writes the verification data (VD) to a file with the
suffix .vd.You can use those .vd files as input files again for the Safety Checker.

Related information

Section 4.1, Safety Checker Phases

113

Tool Options



Safety Checker option: --version (-V)

Command line syntax

--version

-V

Description

Display version information. The Safety Checker ignores all other options or input files.

Related information

-

114

TASKING Safety Checker User Guide



Safety Checker option: --warnings-as-errors

Command line syntax

--warnings-as-errors[=number[-number],...]

Description

If the Safety Checker encounters an error, it stops analyzing.When you use this option without arguments,
you tell the Safety Checker to treat all warnings not suppressed by option --no-warnings (or #pragma
warning) as errors. This means that the exit status of the Safety Checker will be non-zero after one or
more Safety Checker warnings. As a consequence, the Safety Checker now also stops after encountering
a warning.

You can limit this option to specific warnings by specifying a comma-separated list of warning numbers
or ranges. In this case, this option takes precedence over option --no-warnings (and #pragma warning).

Related information

Safety Checker option --no-warnings (Suppress some or all warnings)

Pragma warning

115

Tool Options



7.3. Make Utility Options

The invocation syntax is:

amk [option...] [target...] [macro=def]

This section describes all options for the make utility.

For detailed information about the make utility and using makefiles see Section 6.1, Make Utility amk.

116

TASKING Safety Checker User Guide



Make utility option: --always-rebuild (-a)

Command line syntax

--always-rebuild

-a

Description

Normally the make utility rebuilds only those files that are out of date. With this option you tell the make
utility to rebuild all files, without checking whether they are out of date.

Example

amk -a

Rebuilds all your files, regardless of whether they are out of date or not.

Related information

-

117

Tool Options



Make utility option: --change-dir (-G)

Command line syntax

--change-dir=path

-G path

Description

Normally you must call the make utility from the directory where your makefile and other files are stored.

With the option -G you can call the make utility from within another directory. The path is the path to the
directory where your makefile and other files are stored and can be absolute or relative to your current
directory.

The macro SUBDIR is defined with the value of path.

Example

Suppose your makefile and other files are stored in the directory ..\myfiles.You can call the make
utility, for example, as follows:

amk -G ..\myfiles

Related information

-

118

TASKING Safety Checker User Guide



Make utility option: --diag

Command line syntax

--diag=[format:]{all | msg[-msg],...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify.You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

Example

To display an explanation of message number 169, enter:

amk --diag=451

This results in the following message and explanation:

E451: make stopped

An error has occured while executing one of the commands
of the target, and -k option is not specified.

To write an explanation of all errors and warnings in HTML format to file amkerrors.html, use redirection
and enter:

amk --diag=html:all > amkerrors.html

Related information

-

119

Tool Options



Make utility option: --dry-run (-n)

Command line syntax

--dry-run

-n

Description

With this option you tell the make utility to perform a dry run. The make utility shows what it would do but
does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if you call the make utility.

Example

amk -n

The make utility does not perform any tasks but displays what it would do if called without the option -n.

Related information

Make utility option -s (Do not print commands before execution)

120

TASKING Safety Checker User Guide



Make utility option: --help (-? / -h)

Command line syntax

--help[=item]

-h[item]

-?

You can specify the following arguments:

Show extended option descriptionsooptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

amk -?
amk -h
amk --help

To see a detailed description of the available options, enter:

amk --help=options

Related information

-

121

Tool Options



Make utility option: --jobs (-j) / --jobs-limit (-J)

Command line syntax

--jobs[=number]
-j[number]

--jobs-limit[=number]
-J[number]

Description

When these options you can limit the number of parallel jobs.The default is 1. Zero means no limit. When
you omit the number, amk uses the number of cores detected.

Option -J is the same as -j, except that the number of parallel jobs is limited by the number of cores
detected.

Example

amk -j3

Limit the number of parallel jobs to 3.

Related information

-

122

TASKING Safety Checker User Guide



Make utility option: --keep-going (-k)

Command line syntax

--keep-going

-k

Description

When during the make process the make utility encounters an error, it stops rebuilding your files.

With the option -k, the make utility only stops building the target that produced the error. All other targets
defined in the makefile are built.

Example

amk -k

If the make utility encounters an error, it stops building the current target but proceeds with the other
targets that are defined in the makefile.

Related information

-

123

Tool Options



Make utility option: --list-targets (-l)

Command line syntax

--list-targets

-l

Description

With this option, the make utility lists all "primary" targets that are out of date.

Example

amk -l
list of targets

Related information

-

124

TASKING Safety Checker User Guide



Make utility option: --makefile (-f)

Command line syntax

--makefile=my_makefile

-f my_makefile

Description

By default the make utility uses the file makefile to build your files.

With this option you tell the make utility to use the specified file instead of the file makefile. Multiple -f
options act as if all the makefiles were concatenated in a left-to-right order.

If you use '-' instead of a makefile name it means that the information is read from stdin.

Example

amk -f mymake

The make utility uses the file mymake to build your files.

Related information

-

125

Tool Options



Make utility option: --no-warnings (-w)

Command line syntax

--no-warnings[=number,...]

-w[number,...]

Description

With this option you can suppresses all warning messages or specific warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are suppressed.

• If you specify this option with a number, only the specified warning is suppressed.You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 751 and 756, enter:

amk --no-warnings=751,756

Related information

Make utility option --warnings-as-errors (Treat warnings as errors)

126

TASKING Safety Checker User Guide



Make utility option: --silent (-s)

Command line syntax

--silent

-s

Description

With this option you tell the make utility to perform its tasks without printing the commands it executes.
Error messages are normally printed.

Example

amk -s

The make utility rebuilds your files but does not print the commands it executes during the make process.

Related information

Make utility option -n (Perform a dry run)

127

Tool Options



Make utility option: --version (-V)

Command line syntax

--version

-V

Description

Display version information. The make utility ignores all other options or input files.

Related information

-

128

TASKING Safety Checker User Guide



Make utility option: --warnings-as-errors

Command line syntax

--warnings-as-errors[=number,...]

Description

If the make utility encounters an error, it stops. When you use this option without arguments, you tell the
make utility to treat all warnings as errors.This means that the exit status of the make utility will be non-zero
after one or more warnings. As a consequence, the make utility now also stops after encountering a
warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Make utility option --no-warnings (Suppress some or all warnings)

129

Tool Options



7.4. Archiver Options

The archiver and library maintainer arsaf is a tool to build library files and it offers the possibility to replace,
extract and remove modules from an existing library.

The invocation syntax is:

arsaf key_option [sub_option...] library [module]

This section describes all options for the archiver. Some suboptions can only be used in combination with
certain key options. They are described together. Suboptions that can always be used are described
separately.

For detailed information about the archiver, see Section 6.2, Archiver.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Overview of the options of the archiver utility

The following archiver options are available:

Sub-optionOptionDescription

Main functions (key options)

-a -b -c -n -u -v-rReplace or add a module

-o -v-xExtract a module from the library

-v-dDelete a module from library

-a -b -v-mMove a module to another position

-s0 -s1-tPrint a table of contents of the library

-pPrint the contents of a module to standard output

Sub-options

-a nameAppend or move new modules after existing module name

-b nameAppend or move new modules before existing module name

-cSuppress the message that is displayed when a new library is
created

-nCreate a new library from scratch

-oPreserve last-modified date from the library

-s{0|1}Print symbols in library modules

-uReplace only newer modules

-vVerbose

130

TASKING Safety Checker User Guide



Sub-optionOptionDescription

Miscellaneous

-?Display options

--diagDisplay description of one or more diagnostic messages

-VDisplay version header

-f fileRead options from file

-wnSuppress warnings above level n

131

Tool Options



Archiver option: --delete (-d)

Command line syntax

--delete [--verbose]

-d [-v]

Description

Delete the specified modules from a library. With the suboption --verbose (-v) the archiver shows which
modules are removed.

Verbose: the archiver shows which modules are removed.-v--verbose

Example

arsaf --delete mylib.vda mod1.vd mod2.vd

The archiver deletes mod1.vd and mod2.vd from the library mylib.vda.

arsaf -d -v mylib.vda mod1.vd mod2.vd

The archiver deletes mod1.vd and mod2.vd from the library mylib.vda and displays which modules
are removed.

Related information

-

132

TASKING Safety Checker User Guide



Archiver option: --diag

Command line syntax

--diag=[format:]{all | msg[-msg],...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The archiver does
not perform any actions.You can specify the following formats: html, rtf or text (default). To create a file
with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

Example

To display an explanation of message number 102, enter:

arsaf --diag=102

This results in the following message and explanation:

F102: cannot create "<file>"

The output file or a temporary file could not be created. Check if you have
sufficient disk space and if you have write permissions for the specified
file.

To write an explanation of all errors and warnings in HTML format to file arerrors.html, use redirection
and enter:

arsaf --diag=html:all > arerrors.html

Related information

-

133

Tool Options



Archiver option: --dump (-p)

Command line syntax

--dump

-p

Description

Print the contents of the specified module(s) in the library to standard output.

This option is only useful when you redirect or pipe the output to other files or tools that serve your own
purposes. Normally you do not need this option.

Example

arsaf --dump mylib.vda mod1.vd > file.vd

The archiver prints the file mod1.vd to standard output where it is redirected to the file file.vd. The
effect of this example is very similar to extracting a file from the library but in this case the 'extracted' file
gets another name.

Related information

-

134

TASKING Safety Checker User Guide



Archiver option: --extract (-x)

Command line syntax

--extract [--modtime] [--verbose]

-x [-o] [-v]

Description

Extract an existing module from the library.

Give the extracted module the same date as the last-modified date
that was recorded in the library. Without this suboption it receives
the last-modified date of the moment it is extracted.

-o--modtime

Verbose: the archiver shows which moules are extracted.-v--verbose

Example

To extract the file mod1.vd from the library mylib.vda:

arsaf --extract mylib.vda mod1.vd

If you do not specify a module, all modules are extracted:

arsaf -x mylib.vda

Related information

-

135

Tool Options



Archiver option: --help (-?)

Command line syntax

--help[=item]

-?

You can specify the following argument:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

arsaf -?
arsaf --help
arsaf

To see a detailed description of the available options, enter:

arsaf --help=options

Related information

-

136

TASKING Safety Checker User Guide



Archiver option: --move (-m)

Command line syntax

--move [-a posname] [-b posname]

-m [-a posname] [-b posname]

Description

Move the specified modules to another position in the library.

The ordering of modules in a library can make a difference in how programs are linked if a symbol is
defined in more than one module.

By default, the specified modules are moved to the end of the archive. Use the suboptions -a or -b to
move them to a specified place instead.

Move the specified module(s) after the existing module
posname.

-a
posname

--after=posname

Move the specified module(s) before the existing module
posname.

-b
posname

--before=posname

Example

Suppose the library mylib.vda contains the following modules (see option --print):

mod1.vd
mod2.vd
mod3.vd

To move mod1.vd to the end of mylib.vda:

arsaf --move mylib.vda mod1.vd

To move mod3.vd just before mod2.vd:

arsaf -m -b mod3.vd mylib.vda mod2.vd

The library mylib.vda after these two invocations now looks like:

mod3.vd
mod2.vd
mod1.vd

Related information

Archiver option --print (-t) (Print library contents)

137

Tool Options



Archiver option: --option-file (-f)

Command line syntax

--option-file=file

-f file

Description

Instead of typing all options on the command line, you can create an option file which contains all options
and flags you want to specify. With this option you specify the option file to the archiver.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file (-f) multiple times.

If you use '-' instead of a filename it means that the options are read from stdin.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

         -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

-x mylib.vda mod1.vd
-w5

138

TASKING Safety Checker User Guide



Specify the option file to the archiver:

arsaf --option-file=myoptions

This is equivalent to the following command line:

arsaf -x mylib.vda mod1.vd -w5

Related information

-

139

Tool Options



Archiver option: --print (-t)

Command line syntax

--print [--symbols=0|1]

-t [-s0|-s1]

Description

Print a table of contents of the library to standard output. With the suboption -s0 the archiver displays all
symbols per module.

Displays per module the name of the module itself and all symbols
in the module.

-s0--symbols=0

Displays the symbols of all modules in the library in the form
library_name:module_name:symbol_name

-s1--symbols=1

Example

arsaf --print mylib.vda

The archiver prints a list of all modules in the library mylib.vda:

arsaf -t -s0 mylib.vda

The archiver prints per module all symbols in the library. For example:

hello.vd
   symbols:
        _main
        _world

Related information

-

140

TASKING Safety Checker User Guide



Archiver option: --replace (-r)

Command line syntax

--replace [--after=posname] [--before=posname]
          [--create] [--new] [--newer-only] [--verbose]

-r [-a posname] [-b posname][-c] [-n] [-u] [-v]

Description

You can use the option --replace (-r) for several purposes:

• Adding new modules to the library

• Replacing modules in the library with the same module of a newer date

• Creating a new library

The option --replace (-r) normally adds a new module to the library. However, if the library already contains
a module with the specified name, the existing module is replaced. If you specify a library that does not
exist, the archiver creates a new library with the specified name.

If you add a module to the library without specifying the suboption -a or -b, the specified module is added
at the end of the archive. Use the suboptions -a or -b to insert them after/before a specified place instead.

Insert the specified module(s) after the existing module
posname.

-a posname--after=posname

Insert the specified module(s) before the existing module
posname.

-b posname--before=posname

Suppress the message that is displayed when a new library
is created.

-c--create

Create a new library from scratch. If the library already
exists, it is overwritten.

-n--new

Insert the specified module only if it is newer than the
module in the library.

-u--newer-only

Verbose: the archiver shows which modules are replaced.-v--verbose

The suboptions -a or -b have no effect when a module is added to the library.

Example

Suppose the library mylib.vda contains the following module (see option --print):

mod1.vd

To add mod2.vd to the end of mylib.vda:

arsaf --replace mylib.vda mod2.vd

141

Tool Options



To insert mod3.vd just before mod2.vd:

arsaf -r -b mod2.vd mylib.vda mod3.vd

The library mylib.vda after these two invocations now looks like:

mod1.vd
mod3.vd
mod2.vd

Creating a new library

To create a new library file, add a module and specify a library that does not yet exist:

arsaf --replace newlib.vda mod1.vd

The archiver creates the library newlib.vda and adds the module mod1.vd to it.

To create a new library file and overwrite an existing library, add a module and specify an existing library
with the suboption --new (-n):

arsaf -r -n mylib.vda mod1.vd

The archiver overwrites the library mylib.vda and adds the module mod1.vd to it. The new library
mylib.vda only contains mod1.vd.

Related information

Archiver option --print (-t) (Print library contents)

142

TASKING Safety Checker User Guide



Archiver option: --version (-V)

Command line syntax

--version

-V

Description

Display version information. The archiver ignores all other options or input files.

Example

arsaf -V

The archiver displays the version information but does not perform any tasks.

Related information

-

143

Tool Options



Archiver option: --warning (-w)

Command line syntax

--warning=level

-wlevel

Description

With this suboption you tell the archiver to suppress all warnings above the specified level. The level is
a number between 0 - 9.

The level of a message is printed between parentheses after the warning number. If you do not use the
-w option, the default warning level is 8.

Example

To suppress warnings above level 5:

arsaf --extract --warning=5 mylib.vda mod1.vd

Related information

-

144

TASKING Safety Checker User Guide



Chapter 8. CERT C Secure Coding Standard
The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities.The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

This chapter contains an overview of the CERT C Secure Coding Standard recommendations and rules
that are supported by the TASKING Safety Checker.

For details see the CERT C Secure Coding Standard web site. For general information about CERT
secure coding, see www.cert.org/secure-coding.

Identifiers

Each rule and recommendation is given a unique identifier. These identifiers consist of three parts:

• a three-letter mnemonic representing the section of the standard

• a two-digit numeric value in the range of 00-99

• the letter "C" indicates that this is a C language guideline

The three-letter mnemonic is used to group similar coding practices and to indicate to which category a
coding practice belongs.

The numeric value is used to give each coding practice a unique identifier. Numeric values in the range
of 00-29 are reserved for recommendations, while values in the range of 30-99 are reserved for rules.

Safety Checker invocation

With the Safety Checker option --cert you can enable one or more checks for the CERT C Secure Coding
Standard recommendations/rules. With --diag=cert you can see a list of the available checks, or you can
use a three-letter mnemonic to list only the checks in a particular category. For example, --diag=pre lists
all supported checks in the preprocessor category.

8.1. Preprocessor (PRE)

Use parentheses within macros around parameter names

Parenthesize all parameter names in macro definitions to avoid precedence problems.

PRE01-C

145

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard+C+Coding+Standard
http://www.cert.org/secure-coding
http://doc.tasking.com/cert/pre01.html


Macro replacement lists should be parenthesized

Macro replacement lists should be parenthesized to protect any lower-precedence operators
from the surrounding expression. The example below is syntactically correct, although the
!= operator was omitted. Enclosing the constant -1 in parenthesis will prevent the incorrect
interpretation and force an error message:

#define EOF -1  // should be (-1)
int getchar(void);
void f(void)
{
  if (getchar() EOF) // != operator omitted
  {
    /* ... */
  }
}

PRE02-C

Wrap multi-statement macros in a do-while loop

When multiple statements are used in a macro, enclose them in a do-while statement, so
the macro can appear safely inside if clauses or other places that expect a single statement
or a statement block. Braces alone will not work in all situations, as the macro expansion is
typically followed by a semicolon.

PRE10-C

Do not conclude a single statement macro definition with a semicolon

Macro definitions consisting of a single statement should not conclude with a semicolon. If
required, the semicolon should be included following the macro expansion. Inadvertently
inserting a semicolon can change the control flow of the program.

PRE11-C

8.2. Declarations and Initialization (DCL)

Declare objects with appropriate storage durations

The lifetime of an automatic object ends when the function returns, which means that a
pointer to the object becomes invalid.

DCL30-C

Declare identifiers before using them

The ISO C90 standard allows implicit typing of variables and functions. Because implicit
declarations lead to less stringent type checking, they can often introduce unexpected and
erroneous behavior or even security vulnerabilities. The ISO C99 standard requires type
identifiers and forbids implicit function declarations. For backwards compatibility reasons,
the Safety Checker assumes an implicit declaration and continues translation after issuing
a warning message (W505 or W535).

DCL31-C

146

TASKING Safety Checker User Guide

http://doc.tasking.com/cert/pre02.html
http://doc.tasking.com/cert/pre10.html
http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/dcl30.html
http://doc.tasking.com/cert/dcl31.html


Guarantee that mutually visible identifiers are unique

The Safety Checker encountered two or more identifiers that are identical in the first 31
characters. The ISO C99 standard allows a compiler to ignore characters past the first 31 in
an identifier. Two distinct identifiers that are identical in the first 31 characters may lead to
problems when the code is ported to a different compiler.

DCL32-C

Do not invoke a function using a type that does not match the function definition

This warning is generated when a function pointer is set to refer to a function of an
incompatible type. Calling this function through the function pointer will result in undefined
behavior. Example:

void my_function(int a);
int main(void)
{
  int (*new_function)(int a) = my_function;
  return (*new_function)(10); /* the behavior is undefined */
}

DCL35-C

8.3. Expressions (EXP)

Do not take the size of a pointer to determine the size of the pointed-to type

The size of the object(s) allocated by malloc(), calloc() or realloc() should be a multiple of
the size of the base type of the result pointer. Therefore, the sizeof expression should be
applied to this base type, and not to the pointer type.

EXP01-C

Do not ignore values returned by functions

The Safety Checker gives this warning when the result of a function call is ignored at some
place, although it is not ignored for other calls to this function.This warning will not be issued
when the function result is ignored for all calls, or when the result is explicitly ignored with a
(void) cast.

EXP12-C

Do not depend on order of evaluation between sequence points

Between two sequence points, an object should only be modified once. Otherwise the behavior
is undefined.

EXP30-C

Do not access a volatile object through a non-volatile reference

If an attempt is made to refer to an object defined with a volatile-qualified type through use
of an lvalue with non-volatile-qualified type, the behavior is undefined.

EXP32-C

Do not reference uninitialized memory

Uninitialized automatic variables default to whichever value is currently stored on the stack
or in the register allocated for the variable. Consequently, uninitialized memory can cause a
program to behave in an unpredictable or unplanned manner and may provide an avenue
for attack.

EXP33-C

147

CERT C Secure Coding Standard

http://doc.tasking.com/cert/dcl32.html
http://doc.tasking.com/cert/dcl35.html
http://doc.tasking.com/cert/exp01.html
http://doc.tasking.com/cert/exp12.html
http://doc.tasking.com/cert/exp30.html
http://doc.tasking.com/cert/exp32.html
http://doc.tasking.com/cert/exp33.html


Ensure a null pointer is not dereferenced

Attempting to dereference a null pointer results in undefined behavior, typically abnormal
program termination.

EXP34-C

Call functions with the arguments intended by the API

When a function is properly declared with function prototype information, an incorrect call
will be flagged by the Safety Checker. When there is no prototype information available at
the call, the Safety Checker cannot check the number of arguments and the types of the
arguments. This message is issued to warn about this situation.

EXP37-C

Do not call offsetof() on bit-field members or invalid types

The behavior of the offsetof() macro is undefined when the member designator parameter
designates a bit-field.

EXP38-C

8.4. Integers (INT)

Ensure that unsigned integer operations do not wrap

A constant with an unsigned integer type is truncated, resulting in a wrap-around.

INT30-C

Do not shift a negative number of bits or more bits than exist in the operand

The shift count of the shift operation may be negative or greater than or equal to the size of
the left operand. According to the C standard, the behavior of such a shift operation is
undefined. Make sure the shift count is in range by adding appropriate range checks.

INT34-C

Evaluate integer expressions in a larger size before comparing or assigning to that size

If an integer expression is compared to, or assigned to a larger integer size, that integer
expression should be evaluated in that larger size by explicitly casting one of the operands.

INT35-C

8.5. Floating Point (FLP)

Do not use floating point variables as loop counters

To avoid problems with limited precision and rounding, floating point variables should not be
used as loop counters.

FLP30-C

Take granularity into account when comparing floating point values

Floating point arithmetic in C is inexact, so floating point values should not be tested for exact
equality or inequality.

FLP35-C

Beware of precision loss when converting integral types to floating point

Conversion from integral types to floating point types without sufficient precision can lead to
loss of precision.

FLP36-C

148

TASKING Safety Checker User Guide

http://doc.tasking.com/cert/exp34.html
http://doc.tasking.com/cert/exp37.html
http://doc.tasking.com/cert/exp38.html
http://doc.tasking.com/cert/int30.html
http://doc.tasking.com/cert/int34.html
http://doc.tasking.com/cert/int35.html
http://doc.tasking.com/cert/flp30.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html


8.6. Arrays (ARR)

Do not apply the sizeof operator to a pointer when taking the size of an array

A function parameter declared as an array, is converted to a pointer by the Safety Checker.
Therefore, the sizeof operator applied to this parameter yields the size of a pointer, and not
the size of an array.

ARR01-C

Ensure that array types in expressions are compatible

Using two or more incompatible arrays in an expression results in undefined behavior.

ARR34-C

Do not allow loops to iterate beyond the end of an array

Reading or writing of data outside the bounds of an array may lead to incorrect program
behavior or execution of arbitrary code.

ARR35-C

8.7. Characters and Strings (STR)

Do not attempt to modify string literals

Writing to a string literal has undefined behavior, as identical strings may be shared and/or
allocated in read-only memory.

STR30-C

Size wide character strings correctly

Wide character strings may be improperly sized when they are mistaken for narrow strings
or for multi-byte character strings.

STR33-C

Cast characters to unsigned types before converting to larger integer sizes

A signed character is sign-extended to a larger signed integer value. Use an explicit cast, or
cast the value to an unsigned type first, to avoid unexpected sign-extension.

STR34-C

Do not specify the bound of a character array initialized with a string literal

The Safety Checker issues this warning when the character buffer initialized by a string literal
does not provide enough room for the terminating null character.

STR36-C

8.8. Memory Management (MEM)

Allocate and free memory in the same module, at the same level of abstraction

The Safety Checker issues this warning when the result of the call to malloc(), calloc() or
realloc() is discarded, and therefore not free()d, resulting in a memory leak.

MEM00-C

Use realloc() only to resize dynamically allocated arrays

Only use realloc() to resize an array. Do not use it to transform an object to an object of a
different type.

MEM08-C

149

CERT C Secure Coding Standard

http://doc.tasking.com/cert/arr01.html
http://doc.tasking.com/cert/arr34.html
http://doc.tasking.com/cert/arr35.html
http://doc.tasking.com/cert/str30.html
http://doc.tasking.com/cert/str33.html
http://doc.tasking.com/cert/str34.html
http://doc.tasking.com/cert/str36.html
http://doc.tasking.com/cert/mem00.html
http://doc.tasking.com/cert/mem08.html


Do not access freed memory

When memory is freed, its contents may remain intact and accessible because it is at the
memory manager's discretion when to reallocate or recycle the freed chunk. The data at the
freed location may appear valid. However, this can change unexpectedly, leading to
unintended program behavior. As a result, it is necessary to guarantee that memory is not
written to or read from once it is freed.

MEM30-C

Free dynamically allocated memory exactly once

Freeing memory multiple times has similar consequences to accessing memory after it is
freed. The underlying data structures that manage the heap can become corrupted. To
eliminate double-free vulnerabilities, it is necessary to guarantee that dynamic memory is
freed exactly once.

MEM31-C

Detect and handle memory allocation errors

The result of realloc() is assigned to the original pointer, without checking for failure. As a
result, the original block of memory is lost when realloc() fails.

MEM32-C

Use the correct syntax for flexible array members

Use the ISO C99 syntax for flexible array members instead of an array member of size 1.

MEM33-C

Only free memory allocated dynamically

Freeing memory that is not allocated dynamically can lead to corruption of the heap data
structures.

MEM34-C

Allocate sufficient memory for an object

The Safety Checker issues this warning when the size of the object(s) allocated by malloc(),
calloc() or realloc() is smaller than the size of an object pointed to by the result pointer. This
may be caused by a sizeof expression with the wrong type or with a pointer type instead of
the object type.

MEM35-C

8.9. Environment (ENV)

All atexit handlers must return normally

The Safety Checker issues this warning when an atexit() handler is calling a function that
does not return. No atexit() registered handler should terminate in any way other than by
returning.

ENV32-C

8.10. Signals (SIG)

Call only asynchronous-safe functions within signal handlersSIG30-C

150

TASKING Safety Checker User Guide

http://doc.tasking.com/cert/mem30.html
http://doc.tasking.com/cert/mem31.html
http://doc.tasking.com/cert/mem32.html
http://doc.tasking.com/cert/mem33.html
http://doc.tasking.com/cert/mem34.html
http://doc.tasking.com/cert/mem35.html
http://doc.tasking.com/cert/env32.html
http://doc.tasking.com/cert/sig30.html


Do not call longjmp() from inside a signal handler

Invoking the longjmp() function from within a signal handler can lead to undefined behavior
if it results in the invocation of any non-asynchronous-safe functions, likely compromising
the integrity of the program.

SIG32-C

8.11. Miscellaneous (MSC)

Ensure your random number generator is properly seeded

Ensure that the random number generator is properly seeded by calling srand().

MSC32-C

151

CERT C Secure Coding Standard

http://doc.tasking.com/cert/sig32.html
http://doc.tasking.com/cert/msc32.html


152

TASKING Safety Checker User Guide



Chapter 9. MISRA C Rules
This chapter contains an overview of the supported and unsupported MISRA C rules.

9.1. MISRA C:1998

This section lists all supported and unsupported MISRA C:1998 rules.

See also Section 4.7.2, C Code Checking: MISRA C.

A number of MISRA C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

x means that the rule is not supported by the TASKING Safety Checker. (R) is a required rule, (A) is an
advisory rule.

The code shall conform to standard C, without language extensions.(R)1.

Other languages should only be used with an interface standard.(A)2.x

Inline assembly is only allowed in dedicated C functions.(A)3.

Provision should be made for appropriate run-time checking.(A)4.x

Only use characters and escape sequences defined by ISO C.(R)5.

Character values shall be restricted to a subset of ISO 106460-1.(R)6.x

Trigraphs shall not be used.(R)7.

Multibyte characters and wide string literals shall not be used.(R)8.

Comments shall not be nested.(R)9.

Sections of code should not be "commented out".

In general, it is not possible to decide whether a piece of comment is C code that is
commented out, or just some pseudo code. Instead, the following heuristics are used
to detect possible C code inside a comment:

• a line ends with ';', or

• a line starts with '}', possibly preceded by white space

(A)10.

Identifiers shall not rely on significance of more than 31 characters.(R)11.

The same identifier shall not be used in multiple name spaces.(A)12.

Specific-length typedefs should be used instead of the basic types.(A)13.

Use unsigned char or signed char instead of plain char.(R)14.

Floating-point implementations should comply with a standard.(A)15.x

The bit representation of floating-point numbers shall not be used.
A violation is reported when a pointer to a floating-point type is converted to a pointer
to an integer type.

(R)16.

153



typedef names shall not be reused.(R)17.

Numeric constants should be suffixed to indicate type.
A violation is reported when the value of the constant is outside the range indicated
by the suffixes, if any.

(A)18.

Octal constants (other than zero) shall not be used.(R)19.

All object and function identifiers shall be declared before use.(R)20.

Identifiers shall not hide identifiers in an outer scope.(R)21.

Declarations should be at function scope where possible.(A)22.

All declarations at file scope should be static where possible.(A)23.x

Identifiers shall not have both internal and external linkage.(R)24.

Identifiers with external linkage shall have exactly one definition.(R)25.x

Multiple declarations for objects or functions shall be compatible.(R)26.

External objects should not be declared in more than one file.(A)27.x

The register storage class specifier should not be used.(A)28.

The use of a tag shall agree with its declaration.(R)29.

All automatics shall be initialized before being used .
This rule is checked using worst-case assumptions. This means that violations are
reported not only for variables that are guaranteed to be uninitialized, but also for
variables that are uninitialized on some execution paths.

(R)30.

Braces shall be used in the initialization of arrays and structures.(R)31.

Only the first, or all enumeration constants may be initialized.(R)32.

The right hand operand of && or || shall not contain side effects.(R)33.

The operands of a logical && or || shall be primary expressions.(R)34.

Assignment operators shall not be used in Boolean expressions.(R)35.

Logical operators should not be confused with bitwise operators.(A)36.

Bitwise operations shall not be performed on signed integers.(R)37.

A shift count shall be between 0 and the operand width minus 1.
This violation will only be checked when the shift count evaluates to a constant value
at compile time.

(R)38.

The unary minus shall not be applied to an unsigned expression.(R)39.

sizeof should not be used on expressions with side effects.(A)40.

The implementation of integer division should be documented.(A)41.x

The comma operator shall only be used in a for condition.(R)42.

Don't use implicit conversions which may result in information loss.(R)43.

Redundant explicit casts should not be used.(A)44.

Type casting from any type to or from pointers shall not be used.(R)45.

154

TASKING Safety Checker User Guide



The value of an expression shall be evaluation order independent.
This rule is checked using worst-case assumptions. This means that a violation will
be reported when a possible alias may cause the result of an expression to be
evaluation order dependent.

(R)46.

No dependence should be placed on operator precedence rules.(A)47.

Mixed arithmetic should use explicit casting.(A)48.

Tests of a (non-Boolean) value against 0 should be made explicit.(A)49.

F.P. variables shall not be tested for exact equality or inequality.(R)50.

Constant unsigned integer expressions should not wrap-around.(A)51.

There shall be no unreachable code.(R)52.

All non-null statements shall have a side-effect.(R)53.

A null statement shall only occur on a line by itself.(R)54.

Labels should not be used.(A)55.

The goto statement shall not be used.(R)56.

The continue statement shall not be used.(R)57.

The break statement shall not be used (except in a switch).(R)58.

An if or loop body shall always be enclosed in braces.(R)59.

All if, else if constructs should contain a final else.(A)60.

Every non-empty case clause shall be terminated with a break.(R)61.

All switch statements should contain a final default case.(R)62.

A switch expression should not represent a Boolean case.(A)63.

Every switch shall have at least one case.(R)64.

Floating-point variables shall not be used as loop counters.(R)65.

A for should only contain expressions concerning loop control.
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

(A)66.

Iterator variables should not be modified in a for loop.(A)67.

Functions shall always be declared at file scope.(R)68.

Functions with variable number of arguments shall not be used.(R)69.

Functions shall not call themselves, either directly or indirectly.
A violation will be reported for direct or indirect recursive function calls in the source
file being checked. Recursion via functions in other source files, or recursion via
function pointers is not detected.

(R)70.

Function prototypes shall be visible at the definition and call.(R)71.

The function prototype of the declaration shall match the definition.(R)72.

Identifiers shall be given for all prototype parameters or for none.(R)73.

Parameter identifiers shall be identical for declaration/definition.(R)74.

Every function shall have an explicit return type.(R)75.

155

MISRA C Rules



Functions with no parameters shall have a void parameter list.(R)76.

An actual parameter type shall be compatible with the prototype.(R)77.

The number of actual parameters shall match the prototype.(R)78.

The values returned by void functions shall not be used.(R)79.

Void expressions shall not be passed as function parameters.(R)80.

const should be used for reference parameters not modified.(A)81.

A function should have a single point of exit.(A)82.

Every exit point shall have a return of the declared return type.(R)83.

For void functions, return shall not have an expression.(R)84.

Function calls with no parameters should have empty parentheses.(A)85.

If a function returns error information, it should be tested.
A violation is reported when the return value of a function is ignored.

(A)86.

#include shall only be preceded by other directives or comments.(R)87.

Non-standard characters shall not occur in #include directives.(R)88.

#include shall be followed by either <filename> or "filename".(R)89.

Plain macros shall only be used for constants/qualifiers/specifiers.(R)90.

Macros shall not be #define'd and #undef'd within a block.(R)91.

#undef should not be used.(A)92.

A function should be used in preference to a function-like macro.(A)93.

A function-like macro shall not be used without all arguments.(R)94.

Macro arguments shall not contain pre-preprocessing directives.
A violation is reported when the first token of an actual macro argument is '#'.

(R)95.

Macro definitions/parameters should be enclosed in parentheses.(R)96.

Don't use undefined identifiers in pre-processing directives.(A)97.

A macro definition shall contain at most one # or ## operator.(R)98.

All uses of the #pragma directive shall be documented.
This rule is really a documentation issue. The Safety Checker will flag all #pragma
directives as violations.

(R)99.

defined shall only be used in one of the two standard forms.(R)100.

Pointer arithmetic should not be used.(A)101.

No more than 2 levels of pointer indirection should be used.
A violation is reported when a pointer with three or more levels of indirection is
declared.

(A)102.

No relational operators between pointers to different objects.
In general, checking whether two pointers point to the same object is impossible.The
Safety Checker will only report a violation for a relational operation with incompatible
pointer types.

(R)103.

Non-constant pointers to functions shall not be used.(R)104.

Functions assigned to the same pointer shall be of identical type.(R)105.

156

TASKING Safety Checker User Guide



Automatic address may not be assigned to a longer lived object.(R)106.

The null pointer shall not be de-referenced.
A violation is reported for every pointer dereference that is not guarded by a NULL
pointer test.

(R)107.

All struct/union members shall be fully specified.(R)108.

Overlapping variable storage shall not be used.
A violation is reported for every union declaration.

(R)109.

Unions shall not be used to access the sub-parts of larger types.
A violation is reported for a union containing a struct member.

(R)110.

Bit-fields shall have type unsigned int or signed int.(R)111.

Bit-fields of type signed int shall be at least 2 bits long.(R)112.

All struct/union members shall be named.(R)113.

Reserved and standard library names shall not be redefined.(R)114.

Standard library function names shall not be reused.(R)115.

Production libraries shall comply with the MISRA C restrictions.(R)116.x

The validity of library function parameters shall be checked.(R)117.x

Dynamic heap memory allocation shall not be used.(R)118.

The error indicator errno shall not be used.(R)119.

The macro offsetof shall not be used.(R)120.

<locale.h> and the setlocale function shall not be used.(R)121.

The setjmp and longjmp functions shall not be used.(R)122.

The signal handling facilities of <signal.h> shall not be used.(R)123.

The <stdio.h> library shall not be used in production code.(R)124.

The functions atof/atoi/atol shall not be used.(R)125.

The functions abort/exit/getenv/system shall not be used.(R)126.

The time handling functions of library <time.h> shall not be used.(R)127.

9.2. MISRA C:2004

This section lists all supported and unsupported MISRA C:2004 rules.

See also Section 4.7.2, C Code Checking: MISRA C.

A number of MISRA C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

x means that the rule is not supported by the TASKING Safety Checker. (R) is a required rule, (A) is an
advisory rule.

157

MISRA C Rules



Environment

All code shall conform to ISO 9899:1990 "Programming languages - C", amended
and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC
9899/COR2:1996.

(R)1.1

No reliance shall be placed on undefined or unspecified behavior.(R)1.2

Multiple compilers and/or languages shall only be used if there is a common defined
interface standard for object code to which the languages/compilers/assemblers
conform.

(R)1.3x

The compiler/linker shall be checked to ensure that 31 character significance and
case sensitivity are supported for external identifiers.

(R)1.4x

Floating-point implementations should comply with a defined floating-point standard.(A)1.5x

Language extensions

Assembly language shall be encapsulated and isolated.(R)2.1

Source code shall only use /* ... */ style comments.(R)2.2

The character sequence /* shall not be used within a comment.(R)2.3

Sections of code should not be "commented out". In general, it is not possible to
decide whether a piece of comment is C code that is commented out, or just some
pseudo code. Instead, the following heuristics are used to detect possible C code
inside a comment: - a line ends with ';', or - a line starts with '}', possibly preceded by
white space

(A)2.4

Documentation

All usage of implementation-defined behavior shall be documented.(R)3.1x

The character set and the corresponding encoding shall be documented.(R)3.2x

The implementation of integer division in the chosen compiler should be determined,
documented and taken into account.

(A)3.3x

All uses of the #pragma directive shall be documented and explained. This rule is
really a documentation issue. The Safety Checker will flag all #pragma directives as
violations.

(R)3.4

The implementation-defined behavior and packing of bit-fields shall be documented
if being relied upon.

(R)3.5

All libraries used in production code shall be written to comply with the provisions of
this document, and shall have been subject to appropriate validation.

(R)3.6x

Character sets

Only those escape sequences that are defined in the ISO C standard shall be used.(R)4.1

Trigraphs shall not be used.(R)4.2

158

TASKING Safety Checker User Guide



Identifiers

Identifiers (internal and external) shall not rely on the significance of more than 31
characters.

(R)5.1

Identifiers in an inner scope shall not use the same name as an identifier in an outer
scope, and therefore hide that identifier.

(R)5.2

A typedef name shall be a unique identifier.(R)5.3

A tag name shall be a unique identifier.(R)5.4

No object or function identifier with static storage duration should be reused.(A)5.5

No identifier in one name space should have the same spelling as an identifier in
another name space, with the exception of structure and union member names.

(A)5.6

No identifier name should be reused.(A)5.7

Types

The plain char type shall be used only for storage and use of character values.(R)6.1

signed and unsigned char type shall be used only for the storage and use of
numeric values.

(R)6.2

typedefs that indicate size and signedness should be used in place of the basic
types.

(A)6.3

Bit-fields shall only be defined to be of type unsigned int or signed int.(R)6.4

Bit-fields of type signed int shall be at least 2 bits long.(R)6.5

Constants

Octal constants (other than zero) and octal escape sequences shall not be used.(R)7.1

Declarations and definitions

Functions shall have prototype declarations and the prototype shall be visible at both
the function definition and call.

(R)8.1

Whenever an object or function is declared or defined, its type shall be explicitly
stated.

(R)8.2

For each function parameter the type given in the declaration and definition shall be
identical, and the return types shall also be identical.

(R)8.3

If objects or functions are declared more than once their types shall be compatible.(R)8.4

There shall be no definitions of objects or functions in a header file.(R)8.5

Functions shall be declared at file scope.(R)8.6

Objects shall be defined at block scope if they are only accessed from within a single
function.

(R)8.7

An external object or function shall be declared in one and only one file.(R)8.8

159

MISRA C Rules



An identifier with external linkage shall have exactly one external definition.(R)8.9

All declarations and definitions of objects or functions at file scope shall have internal
linkage unless external linkage is required.

(R)8.10x

The static storage class specifier shall be used in definitions and declarations of
objects and functions that have internal linkage.

(R)8.11

When an array is declared with external linkage, its size shall be stated explicitly or
defined implicitly by initialization.

(R)8.12

Initialization

All automatic variables shall have been assigned a value before being used.This rule
is checked using worst-case assumptions. This means that violations are reported
not only for variables that are guaranteed to be uninitialized, but also for variables
that are uninitialized on some execution paths.

(R)9.1

Braces shall be used to indicate and match the structure in the non-zero initialization
of arrays and structures.

(R)9.2

In an enumerator list, the "=" construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

(R)9.3

Arithmetic type conversions

The value of an expression of integer type shall not be implicitly converted to a different
underlying type if:
a) it is not a conversion to a wider integer type of the same signedness, or
b) the expression is complex, or
c) the expression is not constant and is a function argument, or
d) the expression is not constant and is a return expression.

(R)10.1

The value of an expression of floating type shall not be implicitly converted to a
different type if:
a) it is not a conversion to a wider floating type, or
b) the expression is complex, or
c) the expression is a function argument, or
d) the expression is a return expression.

(R)10.2

The value of a complex expression of integer type may only be cast to a type of the
same signedness that is no wider than the underlying type of the expression.

(R)10.3

The value of a complex expression of floating type may only be cast to a type that is
no wider than the underlying type of the expression.

(R)10.4

If the bitwise operators ~ and << are applied to an operand of underlying type
unsigned char or unsigned short, the result shall be immediately cast to the
underlying type of the operand.

(R)10.5

A "U" suffix shall be applied to all constants of unsigned type.(R)10.6

160

TASKING Safety Checker User Guide



Pointer type conversions

Conversions shall not be performed between a pointer to a function and any type
other than an integral type.

(R)11.1

Conversions shall not be performed between a pointer to object and any type other
than an integral type, another pointer to object type or a pointer to void.

(R)11.2

A cast should not be performed between a pointer type and an integral type.(A)11.3

A cast should not be performed between a pointer to object type and a different pointer
to object type.

(A)11.4

A cast shall not be performed that removes any const or volatile qualification
from the type addressed by a pointer.

(R)11.5

Expressions

Limited dependence should be placed on C's operator precedence rules in
expressions.

(A)12.1

The value of an expression shall be the same under any order of evaluation that the
standard permits. This rule is checked using worst-case assumptions. This means
that a violation will be reported when a possible alias may cause the result of an
expression to be evaluation order dependent.

(R)12.2

The sizeof operator shall not be used on expressions that contain side effects.(R)12.3

The right-hand operand of a logical && or || operator shall not contain side effects.(R)12.4

The operands of a logical && or || shall be primary-expressions.(R)12.5

The operands of logical operators (&&, || and !) should be effectively Boolean.
Expressions that are effectively Boolean should not be used as operands to operators
other than (&&, || and !).

(A)12.6

Bitwise operators shall not be applied to operands whose underlying type is signed.(R)12.7

The right-hand operand of a shift operator shall lie between zero and one less than
the width in bits of the underlying type of the left-hand operand.This violation will only
be checked when the shift count evaluates to a constant value at compile time.

(R)12.8

The unary minus operator shall not be applied to an expression whose underlying
type is unsigned.

(R)12.9

The comma operator shall not be used.(R)12.10

Evaluation of constant unsigned integer expressions should not lead to wrap-around.(A)12.11

The underlying bit representations of floating-point values shall not be used. A violation
is reported when a pointer to a floating-point type is converted to a pointer to an
integer type.

(R)12.12

The increment (++) and decrement (--) operators should not be mixed with other
operators in an expression.

(A)12.13

Control statement expressions

Assignment operators shall not be used in expressions that yield a Boolean value.(R)13.1

161

MISRA C Rules



Tests of a value against zero should be made explicit, unless the operand is effectively
Boolean.

(A)13.2

Floating-point expressions shall not be tested for equality or inequality.(R)13.3

The controlling expression of a for statement shall not contain any objects of floating
type.

(R)13.4

The three expressions of a for statement shall be concerned only with loop control.
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

(R)13.5

Numeric variables being used within a for loop for iteration counting shall not be
modified in the body of the loop.

(R)13.6

Boolean operations whose results are invariant shall not be permitted.(R)13.7

Control flow

There shall be no unreachable code.(R)14.1

All non-null statements shall either:
a) have at least one side effect however executed, or
b) cause control flow to change.

(R)14.2

Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment provided that the first character following the null statement
is a white-space character.

(R)14.3

The goto statement shall not be used.(R)14.4

The continue statement shall not be used.(R)14.5

For any iteration statement there shall be at most one break statement used for loop
termination.

(R)14.6

A function shall have a single point of exit at the end of the function.(R)14.7

The statement forming the body of a switch, while, do ... while or for
statement be a compound statement.

(R)14.8

An if (expression) construct shall be followed by a compound statement. The
else keyword shall be followed by either a compound statement, or another if
statement.

(R)14.9

All if ... else if constructs shall be terminated with an else clause.(R)14.10

Switch statements

A switch label shall only be used when the most closely-enclosing compound statement
is the body of a switch statement.

(R)15.1

An unconditional break statement shall terminate every non-empty switch clause.(R)15.2

The final clause of a switch statement shall be the default clause.(R)15.3

A switch expression shall not represent a value that is effectively Boolean.(R)15.4

Every switch statement shall have at least one case clause.(R)15.5

162

TASKING Safety Checker User Guide



Functions

Functions shall not be defined with variable numbers of arguments.(R)16.1

Functions shall not call themselves, either directly or indirectly. A violation will be
reported for direct or indirect recursive function calls in the source file being checked.
Recursion via functions in other source files, or recursion via function pointers is not
detected.

(R)16.2

Identifiers shall be given for all of the parameters in a function prototype declaration.(R)16.3

The identifiers used in the declaration and definition of a function shall be identical.(R)16.4

Functions with no parameters shall be declared with parameter type void.(R)16.5

The number of arguments passed to a function shall match the number of parameters.(R)16.6

A pointer parameter in a function prototype should be declared as pointer to const
if the pointer is not used to modify the addressed object.

(A)16.7

All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

(R)16.8

A function identifier shall only be used with either a preceding &, or with a
parenthesized parameter list, which may be empty.

(R)16.9

If a function returns error information, then that error information shall be tested. A
violation is reported when the return value of a function is ignored.

(R)16.10

Pointers and arrays

Pointer arithmetic shall only be applied to pointers that address an array or array
element.

(R)17.1x

Pointer subtraction shall only be applied to pointers that address elements of the
same array.

(R)17.2x

>, >=, <, <= shall not be applied to pointer types except where they point to the same
array. In general, checking whether two pointers point to the same object is impossible.
The Safety Checker will only report a violation for a relational operation with
incompatible pointer types.

(R)17.3

Array indexing shall be the only allowed form of pointer arithmetic.(R)17.4

The declaration of objects should contain no more than 2 levels of pointer indirection.
A violation is reported when a pointer with three or more levels of indirection is
declared.

(A)17.5

The address of an object with automatic storage shall not be assigned to another
object that may persist after the first object has ceased to exist.

(R)17.6

Structures and unions

All structure or union types shall be complete at the end of a translation unit.(R)18.1

An object shall not be assigned to an overlapping object.(R)18.2

An area of memory shall not be reused for unrelated purposes.(R)18.3x

163

MISRA C Rules



Unions shall not be used.(R)18.4

Preprocessing directives

#include statements in a file should only be preceded by other preprocessor
directives or comments.

(A)19.1

Non-standard characters should not occur in header file names in #include
directives.

(A)19.2

The #include directive shall be followed by either a <filename> or "filename"
sequence.

(R)19.3x

C macros shall only expand to a braced initializer, a constant, a parenthesized
expression, a type qualifier, a storage class specifier, or a do-while-zero construct.

(R)19.4

Macros shall not be #define'd or #undef'd within a block.(R)19.5

#undef shall not be used.(R)19.6

A function should be used in preference to a function-like macro.(A)19.7

A function-like macro shall not be invoked without all of its arguments.(R)19.8

Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives. A violation is reported when the first token of an actual macro argument
is '#'.

(R)19.9

In the definition of a function-like macro each instance of a parameter shall be enclosed
in parentheses unless it is used as the operand of # or ##.

(R)19.10

All macro identifiers in preprocessor directives shall be defined before use, except in
#ifdef and #ifndef preprocessor directives and the defined() operator.

(R)19.11

There shall be at most one occurrence of the # or ## preprocessor operators in a
single macro definition.

(R)19.12

The # and ## preprocessor operators should not be used.(A)19.13

The defined preprocessor operator shall only be used in one of the two standard
forms.

(R)19.14

Precautions shall be taken in order to prevent the contents of a header file being
included twice.

(R)19.15

Preprocessing directives shall be syntactically meaningful even when excluded by
the preprocessor.

(R)19.16

All #else, #elif and #endif preprocessor directives shall reside in the same file
as the #if or #ifdef directive to which they are related.

(R)19.17

Standard libraries

Reserved identifiers, macros and functions in the standard library, shall not be defined,
redefined or undefined.

(R)20.1

The names of standard library macros, objects and functions shall not be reused.(R)20.2

The validity of values passed to library functions shall be checked.(R)20.3x

164

TASKING Safety Checker User Guide



Dynamic heap memory allocation shall not be used.(R)20.4

The error indicator errno shall not be used.(R)20.5

The macro offsetof, in library <stddef.h>, shall not be used.(R)20.6

The setjmp macro and the longjmp function shall not be used.(R)20.7

The signal handling facilities of <signal.h> shall not be used.(R)20.8

The input/output library <stdio.h> shall not be used in production code.(R)20.9

The library functions atof, atoi and atol from library <stdlib.h> shall not be
used.

(R)20.10

The library functions abort, exit, getenv and system from library <stdlib.h>
shall not be used.

(R)20.11

The time handling functions of library <time.h> shall not be used.(R)20.12

Run-time failures

Minimization of run-time failures shall be ensured by the use of at least one of:
a) static analysis tools/techniques;
b) dynamic analysis tools/techniques;
c) explicit coding of checks to handle run-time faults.

(R)21.1x

9.3. MISRA C:2012

This section lists all supported and unsupported MISRA C:2012 rules.

See also Section 4.7.2, C Code Checking: MISRA C.

A number of MISRA C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

x means that the rule is not supported by the TASKING Safety Checker. (M) is a mandatory rule, (R) is
a required rule, (A) is an advisory rule.

A standard C environment

The program shall contain no violations of the standard C syntax and constraints,
and shall not exceed the implementation's translation limits.

(R)1.1

Language extensions should not be used.(A)1.2

There shall be no occurrence of undefined or critical unspecified behavior.(R)1.3

Unused code

A project shall not contain unreachable code.(R)2.1

There shall be no dead code.(R)2.2

A project should not contain unused type declarations.(A)2.3

165

MISRA C Rules



A project should not contain unused tag declarations.(A)2.4

A project should not contain unused macro declarations.(A)2.5

A function should not contain unused label declarations.(A)2.6

There should be no unused parameters in functions.(A)2.7

Comments

The character sequences /* and // shall not be used within a comment.(R)3.1

Line-splicing shall not be used in // comments.(R)3.2

Character sets and lexical conventions

Octal and hexadecimal escape sequences shall be terminated.(R)4.1

Trigraphs should not be used.(A)4.2

Identifiers

External identifiers shall be distinct.(R)5.1

Identifiers declared in the same scope and name space shall be distinct.(R)5.2

An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope.

(R)5.3

Macro identifiers shall be distinct.(R)5.4

Identifiers shall be distinct from macro names.(R)5.5

A typedef name shall be a unique identifier.(R)5.6

A tag name shall be a unique identifier.(R)5.7

Identifiers that define objects or functions with external linkage shall be unique.(R)5.8

Identifiers that define objects or functions with internal linkage should be unique.(A)5.9

Types

Bit-fields shall only be declared with an appropriate type.(R)6.1

Single-bit named bit-fields shall not be of a signed type.(R)6.2

Literals and constants

Octal constants shall not be used.(R)7.1

A "u" or "U" suffix shall be applied to all integer constants that are represented in an
unsigned type.

(R)7.2

The lowercase character "l" shall not be used in a literal suffix trivial.(R)7.3

A string literal shall not be assigned to an object unless the object's type is "pointer
to const-qualified char".

(R)7.4

166

TASKING Safety Checker User Guide



Declarations and definitions

Types shall be explicitly specified.(R)8.1

Function types shall be in prototype form with named parameters.(R)8.2

All declarations of an object or function shall use the same names and type qualifiers.(R)8.3

A compatible declaration shall be visible when an object or function with external
linkage is defined.

(R)8.4

An external object or function shall be declared once in one and only one file.(R)8.5

An identifier with external linkage shall have exactly one external definition.(R)8.6

Functions and objects should not be defined with external linkage if they are referenced
in only one translation unit.

(A)8.7

The static storage class specifier shall be used in all declarations of objects and
functions that have internal linkage.

(R)8.8

An object should be defined at block scope if its identifier only appears in a single
function.

(A)8.9

An inline function shall be declared with the static storage class.(R)8.10

When an array with external linkage is declared, its size should be explicitly specified.(A)8.11

Within an enumerator list, the value of an implicitly-specified enumeration constant
shall be unique.

(R)8.12

A pointer should point to a const-qualified type whenever possible.(A)8.13

The restrict type qualifier shall not be used.(R)8.14

Initialization

The value of an object with automatic storage duration shall not be read before it has
been set.

(M)9.1

The initializer for an aggregate or union shall be enclosed in braces.(R)9.2

Arrays shall not be partially initialized.(R)9.3

An element of an object shall not be initialized more than once.(R)9.4

Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

(R)9.5

The essential type model

Operands shall not be of an inappropriate essential type.(R)10.1

Expressions of essentially character type shall not be used inappropriately in addition
and subtraction operations.

(R)10.2

The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category.

(R)10.3

Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category.

(R)10.4

167

MISRA C Rules



The value of an expression should not be cast to an inappropriate essential type.(A)10.5

The value of a composite expression shall not be assigned to an object with wider
essential type.

(R)10.6

If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed then the other operand shall not have wider
essential type.

(R)10.7

The value of a composite expression shall not be cast to a different essential type
category or a wider essential type.

(R)10.8

Pointer type conversions

Conversions shall not be performed between a pointer to a function and any other
type.

(R)11.1

Conversions shall not be performed between a pointer to an incomplete type and any
other type.

(R)11.2

A cast shall not be performed between a pointer to object type and a pointer to a
different object type.

(R)11.3

A conversion should not be performed between a pointer to object and an integer
type.

(A)11.4

A conversion should not be performed from pointer to void into pointer to object.(A)11.5

A cast shall not be performed between pointer to void and an arithmetic type.(R)11.6

A cast shall not be performed between pointer to object and a non-integer arithmetic
type.

(R)11.7

A cast shall not remove any const or volatile qualification from the type pointed
to by a pointer.

(R)11.8

The macro NULL shall be the only permitted form of integer null pointer constant.(R)11.9

Expressions

The precedence of operators within expressions should be made explicit.(A)12.1

The right hand operand of a shift operator shall lie in the range zero to one less than
the width in bits of the essential type of the left hand operand.

(R)12.2

The comma operator should not be used.(A)12.3

Evaluation of constant expressions should not lead to unsigned integer wrap-around.(A)12.4

The sizeof operator shall not have an operand which is a function parameter
declared as "array of type".

(M)12.5

Side effects

Initializer lists shall not contain persistent side effects.(R)13.1

The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders.

(R)13.2

168

TASKING Safety Checker User Guide



A full expression containing an increment (++) or decrement (--) operator should
have no other potential side effects other than that caused by the increment or
decrement operator.

(A)13.3

The result of an assignment operator should not be used.(A)13.4

The right hand operand of a logical && or || operator shall not contain persistent side
effects.

(R)13.5

The operand of the sizeof operator shall not contain any expression which has
potential side effects.

(M)13.6

Control statement expressions

A loop counter shall not have essentially floating type.(R)14.1

A for loop shall be well-formed.(R)14.2

Controlling expressions shall not be invariant.(R)14.3

The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type.

(R)14.4

Control flow

The goto statement should not be used.(A)15.1

The goto statement shall jump to a label declared later in the same function.(R)15.2

Any label referenced by a goto statement shall be declared in the same block, or in
any block enclosing the goto statement.

(R)15.3

There should be no more than one break or goto statement used to terminate any
iteration statement.

(A)15.4

A function should have a single point of exit at the end.(A)15.5

The body of an iteration-statement or a selection-statement shall be a
compound-statement.

(R)15.6

All if ... else if constructs shall be terminated with an else statement.(R)15.7

Switch statements

All switch statements shall be well-formed.(R)16.1

A switch label shall only be used when the most closely-enclosing compound statement
is the body of a switch statement.

(R)16.2

An unconditional break statement shall terminate every switch-clause.(R)16.3

Every switch statement shall have a default label.(R)16.4

A default label shall appear as either the first or the last switch label of a switch
statement.

(R)16.5

Every switch statement shall have at least two switch-clauses.(R)16.6

A switch-expression shall not have essentially Boolean type.(R)16.7

169

MISRA C Rules



Functions

The features of <stdarg.h> shall not be used.(R)17.1

Functions shall not call themselves, either directly or indirectly.(R)17.2

A function shall not be declared implicitly.(M)17.3

All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

(M)17.4

The function argument corresponding to a parameter declared to have an array type
shall have an appropriate number of elements.

(A)17.5

The declaration of an array parameter shall not contain the static keyword between
the [ ].

(M)17.6

The value returned by a function having non-void return type shall be used.(R)17.7

A function parameter should not be modified.(A)17.8

Pointers and arrays

A pointer resulting from arithmetic on a pointer operand shall address an element of
the same array as that pointer operand.

(R)18.1

Subtraction between pointers shall only be applied to pointers that address elements
of the same array.

(R)18.2

The relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object.

(R)18.3

The +, -, += and -= operators should not be applied to an expression of pointer type.(A)18.4

Declarations should contain no more than two levels of pointer nesting.(A)18.5

The address of an object with automatic storage shall not be copied to another object
that persists after the first object has ceased to exist.

(R)18.6

Flexible array members shall not be declared.(R)18.7

Variable-length array types shall not be used.(R)18.8

Overlapping storage

An object shall not be assigned or copied to an overlapping object.(M)19.1

The union keyword should not be used.(A)19.2

Preprocessing directives

#include directives should only be preceded by preprocessor directives or
comments.

(A)20.1

The ', " or \ characters and the /* or // character sequences shall not occur in a
header file name.

(R)20.2

The #include directive shall be followed by either a <filename> or "filename"
sequence.

(R)20.3

170

TASKING Safety Checker User Guide



A macro shall not be defined with the same name as a keyword.(R)20.4

#undef should not be used.(A)20.5

Tokens that look like a preprocessing directive shall not occur within a macro argument(R)20.6

Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses.

(R)20.7

The controlling expression of a #if or #elif preprocessing directive shall evaluate
to 0 or 1.

(R)20.8

All identifiers used in the controlling expression of #if or #elif preprocessing
directives shall be #define'd before evaluation.

(R)20.9

The # and ## preprocessor operators should not be used.(A)20.10

A macro parameter immediately following a # operator shall not immediately be
followed by a ## operator.

(R)20.11

A macro parameter used as an operand to the # or ## operators, which is itself subject
to further macro replacement, shall only be used as an operand to these operators.

(R)20.12

A line whose first token is # shall be a valid preprocessing directive.(R)20.13

All #else, #elif and #endif preprocessor directives shall reside in the same file
as the #if, #ifdef or #ifndef directive to which they are related.

(R)20.14

Standard libraries

#define and #undef shall not be used on a reserved identifier or reserved macro
name.

(R)21.1

A reserved identifier or macro name shall not be declared.(R)21.2

The memory allocation and deallocation functions of <stdlib.h> shall not be used.(R)21.3

The standard header file <setjmp.h> shall not be used.(R)21.4

The standard header file <signal.h> shall not be used.(R)21.5

The Standard Library input/output functions shall not be used.(R)21.6

The atof, atoi, atol and atoll functions of <stdlib.h> shall not be used.(R)21.7

The library functions abort, exit and system of <stdlib.h> shall not be used.(R)21.8

The library functions bsearch and qsort of <stdlib.h> shall not be used.(R)21.9

The Standard Library time and date functions shall not be used(R)21.10

The standard header file <tgmath.h> shall not be used.(R)21.11

The exception handling features of <fenv.h> should not be used.(A)21.12

Any value passed to a function in <ctype.h> shall be representable as an unsigned
char or be the value EOF.

(M)21.13

The Standard Library function memcmp shall not be used to compare null terminated
strings.

(R)21.14

The pointer arguments to the Standard Library functions memcpy, memmove and
memcmp shall be pointers to qualified or unqualified versions of compatible types

(R)21.15

171

MISRA C Rules



The pointer arguments to the Standard Library function memcmp shall point to either
a pointer type, an essentially signed type, an essentially unsigned type, an essentially
Boolean type or an essentially enum type

(R)21.16

Use of the string handling functions from <string.h> shall not result in accesses
beyond the bounds of the objects referenced by their pointer parameters.

(M)21.17

The size_t argument passed to any function in <string.h> shall have an
appropriate value.

(M)21.18

The pointers returned by the Standard Library functions localeconv, getenv,
setlocale or, strerror shall only be used as if they have pointer to const-qualified
type.

(M)21.19

The pointer returned by the Standard Library functions asctime, ctime, gmtime,
localtime, localeconv, getenv, setlocale or strerror shall not be used
following a subsequent call to the same function.

(M)21.20

Resources

All resources obtained dynamically by means of Standard Library functions shall be
explicitly released.

(R)22.1x

A block of memory shall only be freed if it was allocated by means of a Standard
Library function.

(M)22.2x

The same file shall not be open for read and write access at the same time on different
streams.

(R)22.3x

There shall be no attempt to write to a stream which has been opened as read-only.(M)22.4x

A pointer to a FILE object shall not be dereferenced.(M)22.5x

The value of a pointer to a FILE shall not be used after the associated stream has
been closed.

(M)22.6x

The macro EOF shall only be compared with the unmodified return value from any
Standard Library function capable of returning EOF.

(R)22.7x

The value of errno shall be set to zero prior to a call to an errno-setting-function.(R)22.8x

The value of errno shall be tested against zero after calling an errno-setting-function.(R)22.9x

The value of errno shall only be tested when the last function to be called was an
errno-setting-function.

(R)22.10x

172

TASKING Safety Checker User Guide


	TASKING Safety Checker User Guide
	Table of Contents
	Manual Purpose and Structure
	Chapter 1. Installing the Software
	1.1. Installation for Windows
	1.2. Licensing
	1.2.1. Obtaining a License
	1.2.2. Frequently Asked Questions (FAQ)
	1.2.3. Installing a License
	1.2.3.1. Configure the Firewall in your Network
	1.2.3.2. Installing Server Based Licenses (Floating or Node-Locked)
	1.2.3.3. Installing Client Based Licenses (Node-Locked)



	Chapter 2. Introduction
	2.1. Mixed Criticality Systems and ISO 26262
	2.1.1. ISO 26262 Guidance about FFI

	2.2. ASIL Aware Safety Checks
	2.3. C Syntax Checking
	2.4. Semantic Analysis
	2.5. MISRA C Checks
	2.6. CERT C Checks

	Chapter 3. C Language
	3.1. Data Types
	3.2. Shift JIS Kanji Support
	3.3. Attributes
	3.4. Pragmas to Control the Safety Checker
	3.5. Predefined Preprocessor Macros
	3.6. Configuring the Safety Checker for Non-Standard C Code
	3.6.1. Data Types
	3.6.2. Data Type Qualifiers, Memory Qualifiers and Function Qualifiers
	3.6.3. Attributes
	3.6.4. Intrinsic Functions
	3.6.5. Pragmas
	3.6.6. Predefined Typedefs
	3.6.7. Predefined Macros
	3.6.8. Include Files
	3.6.9. Assembly Instructions in the C Source
	3.6.10. Target Configuration


	Chapter 4. Using the Safety Checker
	4.1. Safety Checker Phases
	4.2. Invocation Syntax
	4.3. Verification Data
	4.4. Define Partitioning Information
	4.5. Output of the Safety Checker
	4.6. How the Safety Checker Searches Include Files
	4.7. Static Code Analysis
	4.7.1. C Code Checking: CERT C
	4.7.2. C Code Checking: MISRA C

	4.8. Safety Checker Error Messages

	Chapter 5. Tutorial
	Chapter 6. Using the Utilities
	6.1. Make Utility amk
	6.1.1. Makefile Rules
	6.1.2. Makefile Directives
	6.1.3. Macro Definitions
	6.1.4. Makefile Functions
	6.1.5. Conditional Processing
	6.1.6. Makefile Parsing
	6.1.7. Makefile Command Processing
	6.1.8. Calling the amk Make Utility

	6.2. Archiver
	6.2.1. Calling the Archiver
	6.2.2. Archiver Examples


	Chapter 7. Tool Options
	7.1. Configuring the Command Line Environment
	7.2. Safety Checker Options
	Safety Checker option: --absolute
	Safety Checker option: --bit-size-<type>
	Safety Checker option: --cert
	Safety Checker option: --define (-D)
	Safety Checker option: --dep-file
	Safety Checker option: --diag
	Safety Checker option: --error-file
	Safety Checker option: --error-limit
	Safety Checker option: --errors-as-warnings
	Safety Checker option: --fp-model
	Safety Checker option: --help (-?)
	Safety Checker option: --ignore-generated-symbols
	Safety Checker option: --include-directory (-I)
	Safety Checker option: --include-file (-H)
	Safety Checker option: --iso (-c)
	Safety Checker option: --keep-output-files (-k)
	Safety Checker option: --language (-A)
	Safety Checker option: --make-target
	Safety Checker option: --misrac
	Safety Checker option: --misrac-advisory-warnings / --misrac-required-warnings / --misrac-mandatory-warnings
	Safety Checker option: --misrac-version
	Safety Checker option: --no-stdinc
	Safety Checker option: --no-warnings (-w)
	Safety Checker option: --option-file (-f)
	Safety Checker option: --output-file (-o)
	Safety Checker option: --output-format
	Safety Checker option: --preprocess (-E)
	Safety Checker option: --root-functions
	Safety Checker option: --signed-bitfields
	Safety Checker option: --signed-wchar
	Safety Checker option: --stdout (-n)
	Safety Checker option: --strict-unions
	Safety Checker option: --tolerate-errors
	Safety Checker option: --uchar (-u)
	Safety Checker option: --undefine (-U)
	Safety Checker option: --vd
	Safety Checker option: --version (-V)
	Safety Checker option: --warnings-as-errors

	7.3. Make Utility Options
	Make utility option: --always-rebuild (-a)
	Make utility option: --change-dir (-G)
	Make utility option: --diag
	Make utility option: --dry-run (-n)
	Make utility option: --help (-? / -h)
	Make utility option: --jobs (-j) / --jobs-limit (-J)
	Make utility option: --keep-going (-k)
	Make utility option: --list-targets (-l)
	Make utility option: --makefile (-f)
	Make utility option: --no-warnings (-w)
	Make utility option: --silent (-s)
	Make utility option: --version (-V)
	Make utility option: --warnings-as-errors

	7.4. Archiver Options
	Archiver option: --delete (-d)
	Archiver option: --diag
	Archiver option: --dump (-p)
	Archiver option: --extract (-x)
	Archiver option: --help (-?)
	Archiver option: --move (-m)
	Archiver option: --option-file (-f)
	Archiver option: --print (-t)
	Archiver option: --replace (-r)
	Archiver option: --version (-V)
	Archiver option: --warning (-w)


	Chapter 8. CERT C Secure Coding Standard
	8.1. Preprocessor (PRE)
	8.2. Declarations and Initialization (DCL)
	8.3. Expressions (EXP)
	8.4. Integers (INT)
	8.5. Floating Point (FLP)
	8.6. Arrays (ARR)
	8.7. Characters and Strings (STR)
	8.8. Memory Management (MEM)
	8.9. Environment (ENV)
	8.10. Signals (SIG)
	8.11. Miscellaneous (MSC)

	Chapter 9. MISRA C Rules
	9.1. MISRA C:1998
	9.2. MISRA C:2004
	9.3. MISRA C:2012


