
TASKING SmartCode - PPU
User Guide

MA265-800 (v10.1r1) December 07, 2021



Copyright © 2021 TASKING BV.

All rights reserved.You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of TASKING BV. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. TASKING®

and its logo are registered trademarks of TASKING Germany GmbH. All other registered or unregistered trademarks
referenced herein are the property of their respective owners and no trademark rights to the same are claimed.



Table of Contents
1. C Language .................................................................................................................. 1

1.1. Data Types ......................................................................................................... 2
1.1.1. Half Precision Floating-Point ....................................................................... 3
1.1.2. Vector Data Types ..................................................................................... 4

1.2. Changing the Alignment: __aligned__() .................................................................... 5
1.3. Accessing Memory .............................................................................................. 6

1.3.1. Memory Type Qualifiers .............................................................................. 6
1.3.2. Small Data Area (SDA) .............................................................................. 6
1.3.3. Vector Closely Coupled Memory (VCCM) ...................................................... 7
1.3.4. Accessing Hardware from C ........................................................................ 8

1.4. Shift JIS Kanji Support ......................................................................................... 9
1.5. Using Assembly in the C Source: __asm() .............................................................. 10
1.6. Attributes ......................................................................................................... 15
1.7. Pragmas to Control the Compiler .......................................................................... 19
1.8. Predefined Preprocessor Macros .......................................................................... 25
1.9. Functions ......................................................................................................... 26

1.9.1. Calling Convention and Register Usage ....................................................... 26
1.9.2. Inlining Functions: inline ........................................................................... 26
1.9.3. Interrupt Functions / Exception Handling ...................................................... 28
1.9.4. Intrinsic Functions ................................................................................... 28

1.10. Compiler Generated Sections ............................................................................. 47
1.10.1. Rename Sections .................................................................................. 48

2. Assembly Language ..................................................................................................... 51
2.1. Assembly Syntax ............................................................................................... 51
2.2. Assembler Significant Characters .......................................................................... 52
2.3. Operands of an Assembly Instruction ..................................................................... 53
2.4. Symbol Names .................................................................................................. 53

2.4.1. Predefined Preprocessor Symbols .............................................................. 54
2.5. Registers ......................................................................................................... 55

2.5.1. Special Function Registers ........................................................................ 55
2.6. Assembly Expressions ........................................................................................ 55

2.6.1. Numeric Constants .................................................................................. 56
2.6.2. Strings .................................................................................................. 57
2.6.3. Expression Operators .............................................................................. 57

2.7. Working with Sections ......................................................................................... 59
2.8. Built-in Assembly Functions ................................................................................. 59
2.9. Assembler Directives and Controls ........................................................................ 63

2.9.1. Assembler Directives ............................................................................... 64
2.9.2. Assembler Controls ................................................................................ 105

2.10. Macro Operations ........................................................................................... 115
2.10.1. Defining a Macro ................................................................................. 115
2.10.2. Calling a Macro ................................................................................... 115
2.10.3. Using Operators for Macro Arguments ..................................................... 116

2.11. Alias Instructions ............................................................................................ 119
2.11.1. Branch on Compare Alias Instructions ...................................................... 119
2.11.2. Pop and Push Alias Instructions for Load and Store .................................... 120
2.11.3. Alias Instructions for FCVT32 Encodings .................................................. 120
2.11.4. Alias Instructions for FCVT32_64 Encoding ............................................... 120

iii



2.11.5. Alias Instructions for FCVT64 Encoding .................................................... 121
2.11.6. Alias Instructions for FCVT64_32 Encoding ............................................... 121
2.11.7. Floating-point Absolute Alias Instructions for BCLR Encoding ....................... 122
2.11.8. Floating-point Negate Alias Instructions for BXOR Encoding ......................... 122
2.11.9. NOP Alias Instruction for MOV Encoding .................................................. 123
2.11.10. Vector FPU Alias Instructions ................................................................ 123

3. Using the C Compiler .................................................................................................. 125
3.1. Compilation Process ......................................................................................... 125
3.2. Calling the C Compiler ...................................................................................... 126
3.3. The C Startup Code .......................................................................................... 128
3.4. How the Compiler Searches Include Files ............................................................. 130
3.5. Compiling for Debugging ................................................................................... 130
3.6. Compiler Optimizations ..................................................................................... 131

3.6.1. Generic Optimizations (frontend) .............................................................. 133
3.6.2. Core Specific Optimizations (backend) ....................................................... 138
3.6.3. Optimize for Code Size or Execution Speed ................................................ 139

3.7. Static Code Analysis ......................................................................................... 143
3.7.1. C Code Checking: CERT C ...................................................................... 144
3.7.2. C Code Checking: MISRA C .................................................................... 146

3.8. C Compiler Error Messages ............................................................................... 147
4. Using the Assembler ................................................................................................... 149

4.1. Assembly Process ............................................................................................ 149
4.2. Calling the Assembler ....................................................................................... 150
4.3. How the Assembler Searches Include Files ........................................................... 151
4.4. Generating a List File ........................................................................................ 152
4.5. Assembler Error Messages ................................................................................ 153

5. Using the Linker ......................................................................................................... 155
5.1. Linking Process ............................................................................................... 155

5.1.1. Phase 1: Linking .................................................................................... 157
5.1.2. Phase 2: Locating .................................................................................. 158

5.2. Calling the Linker ............................................................................................. 159
5.3. Linking with Libraries ........................................................................................ 160

5.3.1. How the Linker Searches Libraries ............................................................ 162
5.3.2. How the Linker Extracts Objects from Libraries ............................................ 163

5.4. Incremental Linking .......................................................................................... 163
5.5. Importing Binary Files ....................................................................................... 164
5.6. Converting Intel Hex to Binary Format .................................................................. 165
5.7. Linker Optimizations ......................................................................................... 165
5.8. Controlling the Linker with a Script ....................................................................... 167

5.8.1. Purpose of the Linker Script Language ...................................................... 167
5.8.2. Eclipse and LSL .................................................................................... 168
5.8.3. Structure of a Linker Script File ................................................................ 170
5.8.4. The Architecture Definition ...................................................................... 173
5.8.5. The Derivative Definition ......................................................................... 175
5.8.6. The Processor Definition ......................................................................... 176
5.8.7. The Memory Definition ............................................................................ 176
5.8.8. The Section Layout Definition: Locating Sections .......................................... 178

5.9. Linker Labels .................................................................................................. 180
5.10. Generating a Map File ..................................................................................... 181
5.11. Linker Error Messages .................................................................................... 182

iv

TASKING SmartCode - PPU User Guide



6. Using the Utilities ........................................................................................................ 185
6.1. Control Program .............................................................................................. 185
6.2. Make Utility amk .............................................................................................. 187

6.2.1. Makefile Rules ...................................................................................... 187
6.2.2. Makefile Directives ................................................................................. 189
6.2.3. Macro Definitions ................................................................................... 189
6.2.4. Makefile Functions ................................................................................. 192
6.2.5. Conditional Processing ........................................................................... 192
6.2.6. Makefile Parsing .................................................................................... 193
6.2.7. Makefile Command Processing ................................................................ 194
6.2.8. Calling the amk Make Utility ..................................................................... 195

6.3. Archiver ......................................................................................................... 196
6.3.1. Calling the Archiver ................................................................................ 196
6.3.2. Archiver Examples ................................................................................. 198

6.4. HLL Object Dumper .......................................................................................... 200
6.4.1. Invocation ............................................................................................ 200
6.4.2. HLL Dump Output Format ....................................................................... 200

7. Tool Options .............................................................................................................. 209
7.1. Configuring the Command Line Environment ......................................................... 213
7.2. C Compiler Options .......................................................................................... 215
7.3. Assembler Options ........................................................................................... 282
7.4. Linker Options ................................................................................................. 319
7.5. Control Program Options ................................................................................... 371
7.6. Parallel Make Utility Options ............................................................................... 422
7.7. Archiver Options .............................................................................................. 436
7.8. HLL Object Dumper Options .............................................................................. 451

8. Influencing the Build Time ............................................................................................ 481
8.1. SFR File ......................................................................................................... 481
8.2. MIL Linking ..................................................................................................... 481
8.3. Optimization Options ........................................................................................ 482
8.4. Automatic Inlining ............................................................................................. 482
8.5. Code Compaction ............................................................................................ 482
8.6. Header Files ................................................................................................... 482
8.7. Parallel Build ................................................................................................... 482

9. Libraries ................................................................................................................... 485
9.1. Library Functions ............................................................................................. 485

9.1.1. assert.h ............................................................................................... 485
9.1.2. complex.h ............................................................................................ 486
9.1.3. ctype.h and wctype.h .............................................................................. 487
9.1.4. dbg.h .................................................................................................. 488
9.1.5. errno.h ................................................................................................ 488
9.1.6. except.h .............................................................................................. 489
9.1.7. fcntl.h .................................................................................................. 489
9.1.8. fenv.h .................................................................................................. 489
9.1.9. float.h .................................................................................................. 490
9.1.10. float_config.h ...................................................................................... 491
9.1.11. inttypes.h and stdint.h ........................................................................... 491
9.1.12. io.h ................................................................................................... 491
9.1.13. iso646.h ............................................................................................. 492
9.1.14. libfloat.h ............................................................................................. 492

v

TASKING SmartCode - PPU User Guide



9.1.15. limits.h ............................................................................................... 492
9.1.16. locale.h .............................................................................................. 492
9.1.17. malloc.h ............................................................................................. 493
9.1.18. math.h and tgmath.h ............................................................................ 493
9.1.19. setjmp.h ............................................................................................. 497
9.1.20. signal.h .............................................................................................. 497
9.1.21. stdalign.h ........................................................................................... 498
9.1.22. stdarg.h ............................................................................................. 498
9.1.23. stdbool.h ............................................................................................ 499
9.1.24. stddef.h ............................................................................................. 499
9.1.25. stdint.h .............................................................................................. 499
9.1.26. stdio.h and wchar.h .............................................................................. 499
9.1.27. stdlib.h and wchar.h .............................................................................. 507
9.1.28. stdnoreturn.h ...................................................................................... 511
9.1.29. string.h and wchar.h ............................................................................. 511
9.1.30. time.h and wchar.h ............................................................................... 513
9.1.31. uchar.h .............................................................................................. 515
9.1.32. unistd.h .............................................................................................. 516
9.1.33. wchar.h .............................................................................................. 516
9.1.34. wctype.h ............................................................................................ 517

9.2. C Library Reentrancy ........................................................................................ 518
10. List File Formats ....................................................................................................... 531

10.1. Assembler List File Format ............................................................................... 531
10.2. Linker Map File Format .................................................................................... 532

11. Object File Formats ................................................................................................... 537
11.1. ELF/DWARF Object Format .............................................................................. 537
11.2. Intel Hex Record Format .................................................................................. 537
11.3. Motorola S-Record Format ............................................................................... 540
11.4. C Array Format .............................................................................................. 542
11.5. Binary Object Format ...................................................................................... 545

12. Linker Script Language (LSL) ...................................................................................... 547
12.1. Structure of a Linker Script File ......................................................................... 547
12.2. Syntax of the Linker Script Language ................................................................. 549

12.2.1. Preprocessing ..................................................................................... 549
12.2.2. Lexical Syntax ..................................................................................... 550
12.2.3. Identifiers and Tags .............................................................................. 551
12.2.4. Expressions ........................................................................................ 551
12.2.5. Built-in Functions ................................................................................. 552
12.2.6. LSL Definitions in the Linker Script File ..................................................... 554
12.2.7. Memory and Bus Definitions .................................................................. 555
12.2.8. Architecture Definition ........................................................................... 557
12.2.9. Derivative Definition ............................................................................. 560
12.2.10. Processor Definition and Board Specification ........................................... 561
12.2.11. Section Setup .................................................................................... 561
12.2.12. Section Layout Definition ..................................................................... 561

12.3. Expression Evaluation ..................................................................................... 566
12.4. Semantics of the Architecture Definition .............................................................. 567

12.4.1. Defining an Architecture ........................................................................ 568
12.4.2. Defining Internal Buses ......................................................................... 569
12.4.3. Defining Address Spaces ...................................................................... 569

vi

TASKING SmartCode - PPU User Guide



12.4.4. Mappings ........................................................................................... 573
12.5. Semantics of the Derivative Definition ................................................................. 576

12.5.1. Defining a Derivative ............................................................................ 577
12.5.2. Instantiating Core Architectures .............................................................. 577
12.5.3. Defining Internal Memory and Buses ....................................................... 578

12.6. Semantics of the Board Specification ................................................................. 579
12.6.1. Defining a Processor ............................................................................ 580
12.6.2. Instantiating Derivatives ........................................................................ 580
12.6.3. Defining External Memory and Buses ...................................................... 581

12.7. Semantics of the Section Setup Definition ........................................................... 582
12.7.1. Setting up a Section ............................................................................. 582

12.8. Semantics of the Section Layout Definition .......................................................... 583
12.8.1. Defining a Section Layout ...................................................................... 584
12.8.2. Creating and Locating Groups of Sections ................................................ 585
12.8.3. Creating or Modifying Special Sections .................................................... 591
12.8.4. Creating Symbols ................................................................................ 595
12.8.5. Conditional Group Statements ................................................................ 596

13. CERT C Secure Coding Standard ................................................................................ 597
13.1. Preprocessor (PRE) ........................................................................................ 597
13.2. Declarations and Initialization (DCL) ................................................................... 598
13.3. Expressions (EXP) ......................................................................................... 599
13.4. Integers (INT) ................................................................................................ 600
13.5. Floating Point (FLP) ........................................................................................ 600
13.6. Arrays (ARR) ................................................................................................. 601
13.7. Characters and Strings (STR) ........................................................................... 601
13.8. Memory Management (MEM) ........................................................................... 601
13.9. Environment (ENV) ......................................................................................... 602
13.10. Signals (SIG) ............................................................................................... 602
13.11. Miscellaneous (MSC) .................................................................................... 603

14. MISRA C Rules ........................................................................................................ 605
14.1. MISRA C:1998 ............................................................................................... 605
14.2. MISRA C:2004 ............................................................................................... 609
14.3. MISRA C:2012 ............................................................................................... 617

15. C Implementation-defined Behavior .............................................................................. 625
15.1. C99 Implementation-defined Behavior ................................................................ 625

15.1.1. Translation .......................................................................................... 625
15.1.2. Environment ....................................................................................... 626
15.1.3. Identifiers ........................................................................................... 627
15.1.4. Characters ......................................................................................... 627
15.1.5. Integers ............................................................................................. 629
15.1.6. Floating-Point ...................................................................................... 629
15.1.7. Arrays and Pointers .............................................................................. 631
15.1.8. Hints ................................................................................................. 631
15.1.9. Structures, Unions, Enumerations, and Bit-fields ........................................ 631
15.1.10. Qualifiers .......................................................................................... 632
15.1.11. Preprocessing Directives ..................................................................... 632
15.1.12. Library Functions ............................................................................... 633
15.1.13. Architecture ...................................................................................... 638

15.2. C99 Locale-specific Behavior ............................................................................ 641
15.3. C11 Implementation-defined Behavior ................................................................ 643

vii

TASKING SmartCode - PPU User Guide



15.3.1. Translation .......................................................................................... 643
15.3.2. Environment ....................................................................................... 643
15.3.3. Identifiers ........................................................................................... 644
15.3.4. Characters ......................................................................................... 644
15.3.5. Integers ............................................................................................. 646
15.3.6. Floating-Point ...................................................................................... 647
15.3.7. Arrays and Pointers .............................................................................. 648
15.3.8. Hints ................................................................................................. 649
15.3.9. Structures, Unions, Enumerations, and Bit-fields ........................................ 649
15.3.10. Qualifiers .......................................................................................... 650
15.3.11. Preprocessing Directives ..................................................................... 650
15.3.12. Library Functions ............................................................................... 651
15.3.13. Architecture ...................................................................................... 656

15.4. C11 Locale-specific Behavior ............................................................................ 659

viii

TASKING SmartCode - PPU User Guide



Chapter 1. C Language
This chapter describes the target specific features of the C language, including language extensions that
are not standard in ISO C. For example, pragmas are a way to control the compiler from within the C
source.

The TASKING C compiler fully supports the ISO C99 standard and supports all mandatory language
features of the C11 standard, and adds extra possibilities to program the special functions of the target.
C11 is the default of the C compiler.

The TASKING C compiler meets and exceeds the minimum requirements in all cases, only limited by the
amount of memory available to the compiler.

C11 language features

All mandatory ISO C11 language features are supported (ISO/IEC 9899:2011 section 6.10.8.1 Mandatory
macros). Furthermore the C compiler supports the following conditional features (ISO/IEC 9899:2011
section 6.10.8.3 Conditional feature macros):

• variable length arrays and variably modified types

Other conditional language features such as threads, as mentioned in section 6.10.8.3 Conditional feature
macros and section 6.10.8.2 Environment macros of the ISO/IEC 9899:2011 standard, are not supported.
__STDC_NO_ATOMICS__ and __STDC_NO_THREADS__ are defined as 1.

Additional language features

In addition to the standard C language, the compiler supports the following:

• keywords to specify memory types for data and functions

• attribute to specify alignment and absolute addresses

• intrinsic (built-in) functions that result in target specific assembly instructions

• pragmas to control the compiler from within the C source

• predefined macros

• the possibility to use assembly instructions in the C source

• keywords for inlining functions and programming interrupt routines

• libraries

All non-standard keywords have two leading underscores (__).

In this chapter the target specific characteristics of the C language are described, including the above
mentioned extensions.

1



1.1. Data Types

The C compiler supports the ISO C11 defined data types. The sizes of these types are shown in the
following table.

LimitsAlignSizeC Type

0 or 181_Bool

[-27, 27-1]88signed char

[0, 28-1]88unsigned char

[-215, 215-1]1616short

[0, 216-1]1616unsigned short

[-231, 231-1]3232int

[0, 232-1]3232unsigned int

[-27, 27-1] or [0, 28-1]
[-215, 215-1] or [0, 216-1]
[-231, 231-1]

8
16
32

8
16
32

enum 1

[-231, 231-1]3232long

[0, 232-1]3232unsigned long

[-263, 263-1]3264long long

[0, 264-1]3264unsigned long long

[-65504.0F,-6.103515625E-05]
[+6.103515625E-05,+65504.0F]

1616_Float16 (10-bit significand) 2

[–3.402E+38, –1.175E-38]
[+1.175E-38, +3.402E+38]

3232float (23-bit significand)

[-1.797E+308, -2.225E-308]
[+2.225E-308, +1.797E+308]

3264double
long double (52-bit significand)

[–3.402E+38i, –1.175E-38i]
[+1.175E-38i, +3.402E+38i]

3232_Imaginary float

[-1.797E+308i, -2.225E-308i]
[+2.225E-308i, +1.797E+308i]

3264_Imaginary double
_Imaginary long double

real part + imaginary part3264_Complex float

real part + imaginary part32128_Complex double
_Complex long double

[0, 232-1]3232pointer to data or function

1 When you use the enum type, the compiler will use the smallest suitable integer type (char,
unsigned char, short, unsigned short or int).

2 The C compiler supports half-precision (16-bit) floating-point via the _Float16 type using the
binary16 interchange format. See also Section 1.1.1, Half Precision Floating-Point.

2

TASKING SmartCode - PPU User Guide



__bitsizeof() operator

The sizeof operator always returns the size in bytes. Use the __bitsizeof operator in a similar way
to return the size of an object or type in bits.

__bitsizeof( object | type )

Aggregate and Union Types

Aggregates (structures, classes, and arrays) and unions assume the alignment of their most strictly aligned
component, that is, the component with the largest alignment. All members of the aggregate types are
aligned as required by their individual types as listed in the table above. The struct/union data types may
contain bit-fields.The allowed bit-field fundamental data types are _Bool, (un)signed char, (un)signed
short and (un)signed int.The maximum bit-field size is equal to that of the type’s size. For the bit-field
types the same rules regarding to alignment and signed-ness apply as specified for the fundamental data
types. In addition, the following rules apply:

• The first bit-field is stored at the least significant bits. Subsequent bit-fields fill the higher significant bits.

• A bit-field of a particular type cannot cross a boundary as is specified by its maximum width. For example,
a bit-field of type int cannot cross a 32-bit boundary.

• Bit-fields share a storage unit with other bit-field members if and only if there is sufficient space in the
storage unit.

• An unnamed bit-field creates a gap that has the size of the specified width. As a special case, an
unnamed bit-field having width 0 (zero) prevents any further bit-field from residing in the storage unit
corresponding to the type of the zero-width bit-field.

1.1.1. Half Precision Floating-Point

The TASKING C compiler supports half precision (16-bit) floating-point via the _Float16 type using the
binary16 interchange format. The binary16 interchange format is defined in IEEE Std 754-2008 IEEE
Standard for Floating-Point Arithmetic. The _Float16 type is defined in ISO/IEC TS 18661-3 Draft
Technical Specification – December 4, 2014 WG14 N1896.

The _Float16 type with binary16 format can represent normalized values in the range of 2-14 to 65504.
There are 11 bits of significant precision, approximately 3 decimal digits. Also subnormal values are
supported, as defined by FLT16_HAS_SUBNORM in float.h.

The _Float16 type is a storage format only. For purposes of arithmetic and other operations, _Float16
values in C expressions are automatically promoted to float.

Note that all conversions from and to _Float16 involve an intermediate conversion to float. Because
of rounding, this can sometimes produce a different result than a direct conversion.

3

C Language



1.1.2. Vector Data Types

The C compiler supports the following vector data types:

DescriptionVector Data Type

Vector of 4 (ppu_tc43x), 8 (ppu_tc4dx) or 16 (ppu_tc49x) signed 32-bit integersvNint_t

Vector of 4 (ppu_tc43x), 8 (ppu_tc4dx) or 16 (ppu_tc49x) unsigned 32-bit integersvNuint_t

Vector of 4 (ppu_tc43x), 8 (ppu_tc4dx) or 16 (ppu_tc49x) single-precision 32-bit
floats

vNfloat_t

Vector of 8 (ppu_tc43x), 16 (ppu_tc4dx) or 32 (ppu_tc49x) signed 16-bit integersvNx2short_t

Vector of 8 (ppu_tc43x), 16 (ppu_tc4dx) or 32 (ppu_tc49x) unsigned 16-bit
integers

vNx2ushort_t

Vector of 8 (ppu_tc43x), 16 (ppu_tc4dx) or 32 (ppu_tc49x) half-precision 16-bit
floats

vNx2half_t

Vector of 16 (ppu_tc43x), 32 (ppu_tc4dx) or 64 (ppu_tc49x) signed 8-bit integersvNx4char_t

Vector of 16 (ppu_tc43x), 32 (ppu_tc4dx) or 64 (ppu_tc49x) unsigned 8-bit
integers

vNx4uchar_t

Automatic variables of these types are allocated to the vector registers (vr0 .. vr31), unless they must
be allocated to memory (e.g. because address is taken).

Furthermore the C compiler supports the following predicate vector types:

DescriptionPredicate Vector
Type

Predicate vector of 4 (ppu_tc43x), 8 (ppu_tc4dx) or 16 (ppu_tc49x) _Bool valuespvN_t

Predicate vector of 8 (ppu_tc43x), 16 (ppu_tc4dx) or 32 (ppu_tc49x) _Bool valuespvNx2_t

Predicate vector of 16 (ppu_tc43x), 32 (ppu_tc4dx) or 64 (ppu_tc49x) _Bool
values

pvNx4_t

Automatic variables of these types are allocated to the vector predicate registers (p1 .. p7).

You should use vector variables either as automatic variables (allocated to registers), static variables
with the qualifier __vccm (allocated to .vdata or .vbss section), or pointers dynamically allocated with
the intrinsic function __vccm_alloca() (allocated on vector stack, freed automatically upon function
exit). Other uses of vectors (function parameters, struct fields, non-vccm memory) are supported, but
inefficient.

Vector operations

All the basic arithmetic operations are supported natively:

• The following element-wise operations are supported for integer vector types: +, -, *, /, %, |, &, ^, >>,
<<, unary -, unary ~, producing the same resulting type.

4

TASKING SmartCode - PPU User Guide



• The following element-wise operations are supported for floating point vector types: +, -, *, /, unary -,
producing the same resulting type.

• The following element-wise comparison operations are supported for integer and floating point vector
types: ==, !=, <, >, <=, >=, producing vector predicate resulting type of the same elements number.

• The following element-wise operations are supported for vector predicate types: &, |, ^, ==, !=, unary
~, producing the same resulting type.

More complicated operations are supported through intrinsics. Instead of using the raw intrinsics it is
recommended to use the overloaded wrappers defined in the arc_vector.h header file.

Vector initialization with the '{}' notation is supported.Vector element access (using the subscript operator
'[]') is supported for all vector types, producing corresponding scalar resulting type. For predicate vectors
there are limitations: non-constant index and pointer casts are not supported.

Loads and stores from __vccm qualified pointers can be done either directly (with the dereference operator
'*'), or with vvld/vvst wrapped intrinsic functions (available in arc_vector.h). These intrinsics can
also be used for predicated loads and stores.

The arc_vector.h header file also defines macros for dereference operators vloadN, vloadNx2,
vloadNx4, vstoreN, vstoreNx2, vstoreNx4. These macros differ from dereference operators in that they
accept a pointer to an element type rather than to vector type. For example:

short __vccm *p;
vNx2short_t v;
vstoreNx2(v, p); // the same as *(vNx2short_t __vccm*)p = v; 

Casts between vectors of different types are not supported, except for casts between float and int
vectors of the same size (vNint_t <-> vNfloat_t and vNx2short_t <-> vNx2half_t) which is done
using the convenience routines (to_vNint_t, etc.).

1.2. Changing the Alignment: __aligned__()

By default the compiler aligns variables, functions and structure members to the minimum alignment
required by the architecture. See Section 1.1, Data Types. With the attribute __aligned__(n) or
__attribute__((aligned(n))) you can increase the default alignment of variables, functions or
structure members to n bytes. If you apply an alignment with a value lower than the default alignment of
the variable, function or structure member, this has no effect on the alignment of the variable, function or
structure member. The C compiler issues a warning in that case. The alignment must be a power of two.
The compiler issues an error message otherwise.

When a function is inlined the attribute __aligned__() has no effect on the inlined code, the alignment
attribute is ignored.

Example:

__aligned__(8) int globalvar; /* changed to 8 bytes alignment 
                                 instead of default 4 bytes  */

5

C Language



1.3. Accessing Memory

You can use static memory type qualifiers to allocate static objects in a particular part of the addressing
space of the processor.

1.3.1. Memory Type Qualifiers

In the C language you can specify that a variable must lie in a specific part of memory.You can do this
with a memory type qualifier. If you do not specify a memory type qualifier, data objects get a default
memory type.

You can specify the following memory type qualifiers:

Section typePointer
size

Maximum
object size

LocationDescriptionQualifier

sdata, sbss32-bit2 KiB2 KiB around GP pointerSmall data area
(SDA)

__sda

data, bss32-bitno limitanywhereDirect addressable
data

__no_sda

data32-bitno limitaddress
AUX_VECMEM_REGIONwith
size VEC_MEM_SIZE

Vector closely
coupled memory
(VCCM)

__vccm

The qualifiers are described in more detail in the Section 1.3.2, Small Data Area (SDA) and Section 1.3.3,
Vector Closely Coupled Memory (VCCM) .

1.3.2. Small Data Area (SDA)

By default, data consisting of 4 bytes or less will be placed in the SDA.You can change this default limit
of 4 bytes with C compiler option --sda-max-data-size. Instead of this option you can also use pragma
sda_max_data_size around an object declaration. For example,

#pragma sda_max_data_size 16
int arr[4];
#pragma sda_max_data_size restore 

You have to compile the entire program with the same --sda-max-data-size option value. More precisely,
for every object all of its declarations have to be consistent with its definition with respect to the
--sda-max-data-size option value (specified either as a compiler option, or as a pragma). So, if for example
you override the option at a variable definition in some file with a pragma, you have to use the same
pragma around all its extern declarations in other files.

With __sda you can indicate that a variable should be placed in the SDA, irrespective of its size.

Initialized data is placed in a .sdata section (which is similar to the .data section), while uninitialized
or zero-initialized data is placed in a .sbss section (which is similar to the .bss section). The compiler
allocates each symbol either completely in or completely outside of the SDA.

6

TASKING SmartCode - PPU User Guide



With __no_sda you can explicitly indicate that a variable should be placed in normal memory (.data or
.bss).

The instruction set supports only a limited addressing range for SDA objects, and it's your responsibility
to make sure all program objects fit into it. Objects accessed as bytes and half-words have even a more
narrow range around the GP pointer: 512 bytes for single bytes and 1 KiB for half-words. If any access
does not fit in the range the linker issues an error like:

larc E121: relocation error in "task1": relocation value 0x103680, 
type R_ARC_SDA16_LD2, offset 0x222, section ".text" at address 0x86d4 
is not within a 11-bit signed range from the value of gp as defined 
by the symbol _SDA_BASE_ 

In this case you should mark some of the excessive variables with the __no_sda qualifier, reduce the
value of the --sda-max-data-size option, or disable automatic SDA allocation completely by using
--sda-max-data-size=0.

Examples

         char  c;   // 8-bit object in .bss
__no_sda char  d;   // 8-bit object in .bss (forced, overrules the option)
         short s;   // 16-bit object in .bss
         int   i;   // 32-bit object in .bss
         char  text[] = "No smoking"; // 11 bytes in .data

__sda char  c;   // 8-bit object in .sbss
__sda short s;   // 16-bit object in .sbss
__sda int   i;   // 32-bit object in .sbss
__sda char  text[] = "No smoking"; // 11 bytes in .sdata

1.3.3. Vector Closely Coupled Memory (VCCM)

You can use the __vccm memory qualifier to place a variable into a vector memory area.

It is allowed for:

• static object declaration

• pointer type qualification

Non-automatic variables with the __vccm memory qualifier are located in the vector memory (VCCM).
Function automatic variables can only be declared as pointers to dynamically allocated uninitialized
__vccm qualified data.You can use the intrinsic function __vccm_alloca() for this dynamic allocation.
By default, dynamic allocation is restricted by the vector stack size as defined in vppu*.lsl with
__VSTACK_SIZE.

Non-automatic variables with the __vccm memory qualifier are located in the vector memory (VCCM).
Function automatic variables can only be declared as pointers to dynamically allocated uninitialized
__vccm qualified data.You can use the intrinsic function __vccm_alloca() for this dynamic allocation.
By default, dynamic allocation is restricted by the vector stack size as defined in vppu*.lsl with
__VSTACK_SIZE.

7

C Language



Initialized data is placed in a .vdata section (which is similar to the .data section), while uninitialized
data is placed in a .vbss section (which is similar to the .bss section). By default uninitialized data is
cleared with zeroes unless you specify C compiler option --vccm-no-clear. The compiler allocates each
symbol either completely in or completely outside of the VCCM.

Example

__vccm int vccm_block[1024]; // Allocate 1024*4 == 4K bytes statically
                             // to VCCM

void func1()
{
    int __vccm* p = __vccm_alloca(1024*sizeof(int)); 
    // Allocate 1024*4 == 4K bytes for func1's lifetime
    // on VCCM vector stack
    ...
} // 4K bytes released from VCCM vector stack

1.3.4. Accessing Hardware from C

Using Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from C. The SFRs are
defined in a special function register file (*.sfr) as symbol names for use with the compiler. An SFR file
contains the names of the SFRs and the bits in the SFRs.

Example use in C (SFRs from regppu.sfr):

void access_sfr(void)
{
    int chipid;

    JLI_BASE = 0;             /* access Jump and Link Indexed Base Address
                                 register as a whole      */

    chipid = IDENTITY.CHIPID; /* read CHIPID bit-field of IDENTITY
                              Service Request Control register */
}

You can find a list of defined SFRs and defined bits by inspecting the SFR file for a specific processor.
The files are located in the sfr subdirectory of the standard include directory. The file is named
regppu.sfr. The compiler includes this register file if you specify option --include-file=sfr/regppu.sfr,
or you can use control program option --tasking-sfr.

The names in regppu.sfr are the same as in chapters 5.3, 45.4 and 45.5 from the DesignWare ARCv2
ISA Programmer’s Reference Manual for DW EV7x Processors [Version 6367-001 April 2020, Synopsys,
Inc.], and there are bit-fields defined for SFRs with multiple fields.

8

TASKING SmartCode - PPU User Guide



Defining Special Function Registers: __sfr

SFRs are defined in SFR files and are written in C. To define that a pointer points to a value in the SFR
memory space, you can use the qualifier __sfr (only valid for pointers).

When the SFR contains fields, the layout of the SFR is defined by a typedef-ed struct. The next example
is part of an SFR file and illustrates the declaration of a special function register:

typedef struct {
    unsigned int CHIPID : 16;
    unsigned int ARCNUM :  8;
    unsigned int ARCVER :  8;
} identity_t;

Read-only fields can be marked by using the const keyword.

The SFR is defined by a cast to a ‘typedef-ed struct’ pointer. The SFR address is given in parenthesis.
Read-only SFRs are marked by using the const keyword in the macro definition.

#define IDENTITY (*((__sfr volatile const identity_t *) 0x004 ))
#define JLI_BASE (*((__sfr volatile uint32_t *)         0x290 ))

1.4. Shift JIS Kanji Support

In order to allow for Japanese character support on non-Japanese systems (like PCs), you can use the
Shift JIS Kanji Code standard. This standard combines two successive ASCII characters to represent
one Kanji character. A valid Kanji combination is only possible within the following ranges:

• First (high) byte is in the range 0x81-0x9f or 0xe0-0xef.

• Second (low) byte is in the range 0x40-0x7e or 0x80-0xfc

Compiler option -Ak enables support for Shift JIS encoded Kanji multi-byte characters in strings and
(wide) character constants. Without this option, encodings with 0x5c as the second byte conflict with the
use of the backslash ('\') as an escape character. Shift JIS in comments is supported regardless of this
option.

Note that Shift JIS also includes Katakana and Hiragana.

Example:

// Example usage of Shift JIS Kanji
// Do not switch off option -Ak
// At the position of the italic text you can
// put your Shift JIS Kanji code
int  i;  // put Shift JIS Kanji here
char c1;
char c2;
unsigned int ui;
const char mes[]="put Shift JIS Kanji here";
const unsigned int ar[5]={'K','a','n',

9

C Language



                   'j','i'};
                   // 5 Japanese array
void main(void)
{
    i=(int)c1;
    i++; /* put Shift JIS Kanji here\
            continuous comment */
    c2=mes[9];
    ui=ar[0];
}

1.5. Using Assembly in the C Source: __asm()

With the keyword __asm() you can use assembly instructions in the C source and pass C variables as
operands to the assembly code.

It is recommended to use constructs in C or use intrinsic functions instead of __asm(). Be aware
that C modules that contain assembly are not portable and harder to compile in other environments.

The compiler does not interpret assembly blocks but passes the assembly code to the assembly source
file; they are regarded as a black box. So, it is your responsibility to make sure that the assembly block
is syntactically correct. Possible errors can only be detected by the assembler.

You need to tell the compiler exactly what happens in the inline assembly code because it uses that for
code generation and optimization. The compiler needs to know exactly which registers are written and
which registers are only read. For example, if the inline assembly writes to a register from which the
compiler assumes that it is only read, the generated code after the inline assembly is based on the fact
that the register still contains the same value as before the inline assembly. If that is not the case the
results may be unexpected. Also, an inline assembly statement using multiple input parameters may be
assigned the same register if the compiler finds that the input parameters contain the same value. As
long as this register is only read this is not a problem.

General syntax of the __asm keyword

__asm( "instruction_template"
       [ : output_param_list
       [ : input_param_list
       [ : register_reserve_list]]] );

Assembly instructions that may contain parameters from the input
list or output list in the form: %parm_nr. If an instruction template
references registers explicitly, they must be spelled with a double
percent sign (e.g. %%r0).

instruction_template

Parameter number in the range 0 .. 9.%parm_nr

[[ "=[&]constraint_char"(C_expression)],...]output_param_list

[[ "constraint_char"(C_expression)],...]input_param_list

10

TASKING SmartCode - PPU User Guide



Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.

&

Constraint character: the type of register to be used for the
C_expression. See the table below.

constraint _char

Any C expression. For output parameters it must be an lvalue, that
is, something that is legal to have on the left side of an assignment.

C_expression

[["register_name"],...]register_reserve_list

Name of the register you want to reserve. For example because this
register gets clobbered by the assembly code. The compiler will not
use this register for inputs or outputs. Note that reserving too many
registers can make register allocation impossible.The register name
must be prefixed with a % (e.g. %r0).

register_name

Specifying registers for C variables

With a constraint character you specify the register type for a parameter.

You can reserve the registers that are used in the assembly instructions, either in the parameter lists or
in the reserved register list (register_reserve_list). The compiler takes account of these lists, so no
unnecessary register saves and restores are placed around the inline assembly instructions.

RemarkOperandTypeConstraint
character

valueimmediate valuei

memory operandvariablememorym

r0 .. r31, r58, r59, r60,
r61, r63

general purpose registerr

Input constraint only. The number
must refer to an output parameter.
Indicates that %number and
number are the same register.

same as %numbertype of operand it is
associated with

number

If an input parameter is modified by the inline assembly then this input parameter must also be
added to the list of output parameters (see Example 6). If this is not the case, the resulting code
may behave differently than expected since the compiler assumes that an input parameter is not
being changed by the inline assembly.

Loops and conditional jumps

The compiler does not detect loops with multiple __asm() statements or (conditional) jumps across
__asm() statements and will generate incorrect code for the registers involved.

If you want to create a loop with __asm(), the whole loop must be contained in a single __asm()
statement. The same counts for (conditional) jumps. As a rule of thumb, all references to a label in an
__asm() statement must be in that same statement.You can use numeric labels for these purposes.

11

C Language



Example 1: no input or output

A simple example without input or output parameters.You can use any instruction or label. When it is
required that a sequence of __asm() statements generates a contiguous sequence of instructions, then
they can be best combined to a single __asm() statement. Compiler optimizations can insert instruction(s)
in between __asm() statements. Note that you can use standard C escape sequences. Use newline
characters ‘\n’ to continue on a new line in a __asm() statement. For multi-line output, use tab characters
'\t' to indent instructions.

__asm( "nop\n"
       "\tnop" ); 

Example 2: using output parameters

Assign the result of inline assembly to a variable. With the constraint r a general purpose register is
chosen for the parameter; the compiler decides which register it uses. The %0 in the instruction template
is replaced with the name of this register. The compiler generates code to assign the result to the output
variable.

int out;
void main( void )
{
    __asm( "mov %0,#0xff"
           : "=r" (out) );
}

Generated assembly code:

      mov %r0,#0xff
      st  %r0,[out]

Example 3: using input parameters

Assign a variable to a register. A register is chosen for the parameter because of the constraint r; the
compiler decides which register is best to use. The %0 in the instruction template is replaced with the
name of this register.The compiler generates code to move the input variable to the input register. Because
there are no output parameters, the output parameter list is empty. Only the colon has to be present.

int in;
void initreg( void )
{
    __asm( "MOV  %%R0,%0"
           :
           : "r" (in) );
}

Generated assembly code:

      ld  %r0,[in]
      MOV %R0,%r0

12

TASKING SmartCode - PPU User Guide



Example 4: using input and output parameters

Add two C variables and assign the result to a third C variable. Registers are used for the input and output
parameters (constraint r, %0 for out, %1 for in1, %2 for in2 in the instruction template). The compiler
generates code to move the input expressions into the input registers and to assign the result to the output
variable.

int in1, in2, out;

void add32( void )
{
    __asm( "add %0, %1, %2"
           : "=r" (out)
           : "r" (in1), "r" (in2) );
}

Generated assembly code:

      ld      %r0,[in1]
      ld      %r1,[in2]
      add %r0, %r0, %r1
      st      %r0,[out]

Example 5: reserving registers

Sometimes an instruction knocks out certain specific registers. The most common example of this is a
function call, where the called function is allowed to do whatever it likes with some registers. If this is the
case, you can list specific registers that get clobbered by an operation after the inputs.

Same as Example 4, but now register r0 is a reserved register.You can do this by adding a reserved
register list (: "%r0"). As you can see in the generated assembly code, register r0 is not used (the first
register used is r2).

int in1, in2, out;

void add32( void )
{
    __asm( "add %0, %1, %2"
           : "=r" (out)
           : "r" (in1), "r" (in2)

: "%r0" );
}

Generated assembly code:

      ld      %r2,[in1]
      ld      %r3,[in2]
      add %r2, %r2, %r3
      st      %r2,[out]

13

C Language



Example 6: use the same register for input and output

As input constraint you can use a number to refer to an output parameter. This tells the compiler that the
same register can be used for the input and output parameter. When the input and output parameter are
the same C expression, these will effectively be treated as if the input parameter is also used as output.
In that case it is allowed to write to this register. For example:

inline int foo(int par1, int par2, int * par3)
{
  int retvalue;

  __asm(
    "shl %1,%1,2\n\t"
    "add %2,%2,%1\n\t"
    "mov %5,%2\n\t"
    "mov %0,%2"
    : "=&r" (retvalue), "=r" (par1), "=r" (par2)
    : "1" (par1), "2" (par2), "r" (par3)
  );
  return retvalue;
}

int result,parm;

void func(void)
{
  result = foo(1000,1000,&parm);
} 

In this example the "1" constraint for the input parameter par1 refers to the output parameter par1, and
similar for the "2" constraint and par2. In the inline assembly %1 (par1) and %2 (par2) are written. This
is allowed because the compiler is aware of this.

This results in the following generated assembly code:

  mov %r0,1000
  mov %r1,%r0
  mov %r2,parm

  shl %r0,%r0,2
  add %r1,%r1,%r0
  mov %r2,%r1
  mov %r3,%r1
  st %r3,[result]

However, when the inline assembly would have been as given below, the compiler would have assumed
that %1 (par1) and %2 (par2) were read-only. Because of the inline keyword the compiler knows that
par1 and par2 both contain 1000. Therefore the compiler can optimize and assign the same register to
%1 and %2. This would have given an unexpected result.

14

TASKING SmartCode - PPU User Guide



__asm(
    "shl %1,%1,2\n\t"
    "add %2,%2,%1\n\t"
    "mov %3,%2\n\t"
    "mov %0,%2"
    : "=&r" (retvalue)
    : "r" (par1), "r" (par2), "r" (par3)
  );
  return retvalue;
}

Generated assembly code:

  mov %r0,1000
  mov %r1,parm

  shl %r0,%r0,2         ; same register, but is expected read-only
  add %r0,%r0,%r0
  mov %r1,%r0
  mov %r2,%r0
  st %r2,[result]       ; contains unexpected result 

1.6. Attributes

You can use the keyword __attribute__ to specify special attributes on declarations of variables,
functions, types, and fields.

Syntax:

__attribute__((name,...))

or:

__name__

The second syntax allows you to use attributes in header files without being concerned about a possible
macro of the same name. This second syntax is only possible on attributes that do not already start with
an underscore. For example, you may use __noreturn__ instead of __attribute__((noreturn)).

The following attributes are supported:

alias("symbol")

You can use __attribute__((alias("symbol"))) to specify that the function declaration appears
in the object file as an alias for another symbol. For example:

void __f() { /* function body */; }
void f() __attribute__((weak, alias("__f")));

declares 'f' to be a weak alias for '__f'.

15

C Language



aligned(value)

You can use __attribute__((aligned(n))) to increase the alignment of variables or functions. If
you apply an alignment with a value lower than the default alignment of the variable or function, this has
no effect on the alignment of the variable or function. The C compiler issues a warning in that case. The
alignment must be a power of two. The compiler issues an error message otherwise. When a function is
inlined the attribute has no effect on the inlined code, the attribute is ignored. See also Section 1.2,
Changing the Alignment: __aligned__().

const

You can use __attribute__((const)) to specify that a function has no side effects and will not
access global data. This can help the compiler to optimize code. See also attribute pure.

The following kinds of functions should not be declared __const__:

• A function with pointer arguments which examines the data pointed to.

• A function that calls a non-const function.

export

You can use __attribute__((export)) to specify that a variable/function has external linkage and
should not be removed. During MIL linking, the compiler treats external definitions at file scope as if they
were declared static. As a result, unused variables/functions will be eliminated, and the alias checking
algorithm assumes that objects with static storage cannot be referenced from functions outside the current
module. During MIL linking not all uses of a variable/function can be known to the compiler. For example
when a variable is referenced in an assembly file or a (third-party) library. With the export attribute the
compiler will not perform optimizations that affect the unknown code.

int i __attribute__((export)); /* 'i' has external linkage */

flatten

You can use __attribute__((flatten)) to force inlining of all function calls in a function, including
nested function calls.

Unless inlining is impossible or disabled by __attribute__((noinline)) for one of the calls, the
generated code for the function will not contain any function calls.

format(type,arg_string_index,arg_check_start)

You can use __attribute__((format(type,arg_string_index,arg_check_start))) to
specify that functions take printf, scanf, strftime or strfmon style arguments and that calls to
these functions must be type-checked against the corresponding format string specification.

type determines how the format string is interpreted, and should be printf, scanf, strftime or
strfmon.

16

TASKING SmartCode - PPU User Guide



arg_string_index is a constant integral expression that specifies which argument in the declaration of the
user function is the format string argument.

arg_check_start is a constant integral expression that specifies the first argument to check against the
format string. If there are no arguments to check against the format string (that is, diagnostics should only
be performed on the format string syntax and semantics), arg_check_start should have a value of 0. For
strftime-style formats, arg_check_start must be 0.

Example:

int foo(int i, const char * my_format, ...) __attribute__((format(printf, 2, 3)));

The format string is the second argument of the function foo and the arguments to check start with the
third argument.

leaf

You can use __attribute__((leaf)) to specify that a function is a leaf function. A leaf function is
an external function that does not call a function in the current compilation unit, directly or indirectly. The
attribute is intended for library functions to improve dataflow analysis. The attribute has no effect on
functions defined within the current compilation unit.

malloc

You can use __attribute__((malloc)) to improve optimization and error checking by telling the
compiler that:

• The return value of a call to such a function points to a memory location or can be a null pointer.

• On return of such a call (before the return value is assigned to another variable in the caller), the memory
location mentioned above can be referenced only through the function return value; e.g., if the pointer
value is saved into another global variable in the call, the function is not qualified for the malloc attribute.

• The lifetime of the memory location returned by such a function is defined as the period of program
execution between a) the point at which the call returns and b) the point at which the memory pointer
is passed to the corresponding deallocation function. Within the lifetime of the memory object, no other
calls to malloc routines should return the address of the same object or any address pointing into that
object.

noinline

You can use __attribute__((noinline)) to prevent a function from being considered for inlining.
Same as keyword __noinline or #pragma noinline.

always_inline

With __attribute__((always_inline)) you force the compiler to inline the specified function,
regardless of the optimization strategy of the compiler itself. Same as keyword inline or #pragma
inline.

17

C Language



noreturn

Some standard C function, such as abort and exit cannot return.The C compiler knows this automatically.
You can use __attribute__((noreturn)) to tell the compiler that a function never returns. For
example:

void fatal() __attribute__((noreturn));

void fatal( /* ... */ )
{
  /* Print error message */
  exit(1);
}

The function fatal cannot return. The compiler can optimize without regard to what would happen if
fatal ever did return.This can produce slightly better code and it helps to avoid warnings of uninitialized
variables.

overloadable

You can use __attribute__((overloadable)) to define multiple functions with the same name,
but with different prototypes. This provides a limited form of function overloading. Function overloading
is restricted to direct calls.

It is not possible to have both a normal and an overloadable function of the same name. In that case,
the normal function takes precedence. The overloadable attribute is ignored for functions without a
prototype.

When calling a function for which only overloadable definitions are visible, the function with the best match
is selected. The best match is the function with the correct number of arguments, requiring the least
amount of argument conversions. When there are no matches, or when there are multiple ambiguous
matches, an error is generated.

protect

You can use __attribute__((protect)) to exclude a variable/function from the duplicate/unreferenced
section removal optimization in the linker. When you use this attribute, the compiler will add the "protect"
section attribute to the symbol's section. Example:

int i __attribute__((protect));

Note that the protect attribute will not prevent the compiler from removing an unused variable/function
(see the used symbol attribute).

This attribute is the same as #pragma protect/endprotect.

18

TASKING SmartCode - PPU User Guide



pure

You can use __attribute__((pure)) to specify that a function has no side effects, although it may
read global data. Such pure functions can be subject to common subexpression elimination and loop
optimization. See also attribute const.

section("section_name")

You can use __attribute__((section("name"))) to specify that a function or variable must appear
in the object file in a particular section. For example:

void foobar(void) __attribute__((section(".text.foobar")));
int baz __attribute__((section(".bss.baz")));

puts the function foobar in the section named .text.foobar, and puts variable baz in the section
named .bss.baz.

used

You can use __attribute__((used)) to prevent an unused symbol from being removed, by both the
compiler and the linker. Example:

static const char copyright[] __attribute__((used)) = "Copyright 2020 TASKING BV";

When there is no C code referring to the copyright variable, the compiler will normally remove it. The
__attribute__((used)) symbol attribute prevents this. Because the linker should also not remove
this symbol, __attribute__((used)) implies __attribute__((protect)).

unused

You can use __attribute__((unused)) to specify that a variable or function is possibly unused. The
compiler will not issue warning messages about unused variables or functions.

weak

You can use __attribute__((weak)) to specify that the symbol resulting from the function declaration
or variable must appear in the object file as a weak symbol, rather than a global one. This is primarily
useful when you are writing library functions which can be overwritten in user code without causing
duplicate name errors.

See also #pragma weak.

1.7. Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options. Put pragmas in your C source where you want them to take effect. Unless stated

19

C Language



otherwise, a pragma is in effect from the point where it is included to the end of the compilation unit or
until another pragma changes its status.

The syntax is:

#pragma [label:]pragma-spec pragma-arguments [on | off | default | restore] 

or:

_Pragma( "[label:]pragma-spec pragma-arguments [on | off | default | restore]" )

Some pragmas can accept the following special arguments:

switch the flag on (same as without argument)on

switch the flag offoff

set the pragma to the initial valuedefault

restore the previous value of the pragmarestore

Examples:

// by default all warnings are shown

#pragma warning 535         // disable W535
#pragma warning 530         // also disable W530
const char var_1 = 0x5678;  // W530 is not shown
var_2;                      // W535 is not shown
#pragma warning restore     // restore one level, only W535 is disabled
const char var_3 = 0x56789; // W530 is shown
#pragma warning default     // back to default, all warnings are shown
var_4;                      // W535 is shown

Label pragmas

Some pragmas support a label prefix of the form "label:" between #pragma and the pragma name. Such
a label prefix limits the effect of the pragma to the statement following a label with the specified name.
The restore argument on a pragma with a label prefix has a special meaning: it removes the most
recent definition of the pragma for that label.

You can see a label pragma as a kind of macro mechanism that inserts a pragma in front of the statement
after the label, and that adds a corresponding #pragma ... restore after the statement.

Compared to regular pragmas, label pragmas offer the following advantages:

• The pragma text does not clutter the code, it can be defined anywhere before a function, or even in a
header file. So, the pragma setting and the source code are uncoupled. When you use different header
files, you can experiment with a different set of pragmas without altering the source code.

• The pragma has an implicit end: the end of the statement (can be a loop) or block. So, no need for
pragma restore / endoptimize etc.

Example:

20

TASKING SmartCode - PPU User Guide



#pragma lab1:optimize P

volatile int v;

void f( void )
{
      int i, a;

      a = 42;

lab1: for( i=1; i<10; i++ )
      {
        /* the entire for loop is part of the pragma optimize */
        a += i;
      }
      v = a;
}

Supported pragmas

The compiler recognizes the following pragmas, other pragmas are ignored. On the command line you
can use carc --help=pragmas to get a list of all supported pragmas. Pragmas marked with (*) support
a label prefix.

STDC FP_CONTRACT [on | off | default | restore] (*)

This pragma is defined in ISO C99/C11.With this pragma you can control the +contract flag of C compiler
option --fp-model.

alias symbol=defined_symbol

Define symbol as an alias for defined_symbol. It corresponds to a .ALIAS directive at assembly level.
The symbol should not be defined elsewhere, and defined_symbol should be defined with static storage
duration (not extern or automatic).

align {value | default | restore} (*)

Increase the alignment of variables or functions. If you apply an alignment with a value lower than the
default alignment of the variable or function, this has no effect on the alignment of the variable or function.
The C compiler issues a warning in that case. When a function is inlined the pragma has no effect on the
inlined code, the pragma is ignored. The alignment value must be a power of two or 0. Value 0 defaults
to the compiler natural object alignment.

See Section 1.2, Changing the Alignment: __aligned__().

boolean [on | off | default | restore] (*)

This pragma is used to mark the macros "false" and "true" from the library header file stdbool.h as
"essentially BOOLEAN", which is a concept from the MISRA C:2012 standard.

21

C Language



compactmaxmatch {value | default | restore} (*)

With this pragma you can control the maximum size of a match.

See C compiler option --compact-max-size.

extension isuffix [on | off | default | restore] (*)

Enables a language extension to specify imaginary floating-point constants. With this extension, you can
use an "i" suffix on a floating-point constant, to make the type _Imaginary.

float 0.5i

extern symbol

Normally, when you use the C keyword extern, the compiler generates an .EXTERN directive in the
generated assembly source. However, if the compiler does not find any references to the extern symbol
in the C module, it optimizes the assembly source by leaving the .EXTERN directive out.

With this pragma you can force an external reference (.EXTERN assembler directive), even when the
symbol is not used in the module.

fp_negzero [on | off | default | restore] (*)

With this pragma you can control the +negzero flag of C compiler option --fp-model.

fp_nonan [on | off | default | restore] (*)

With this pragma you can control the +nonan flag of C compiler option --fp-model.

fp_rewrite [on | off | default | restore] (*)

With this pragma you can control the +rewrite flag of C compiler option --fp-model.

inline / noinline / smartinline [default | restore] (*)

See Section 1.9.2, Inlining Functions: inline.

inline_max_incr {value | default | restore} (*)
inline_max_size {value | default | restore} (*)

With these pragmas you can control the automatic function inlining optimization process of the compiler.
It has effect only when you have enabled the inlining optimization (C compiler option --optimize=+inline).

See C compiler options --inline-max-incr / --inline-max-size.

macro / nomacro [on | off | default | restore] (*)

Turns macro expansion on or off. By default, macro expansion is enabled.

22

TASKING SmartCode - PPU User Guide



maxcalldepth {value | default | restore} (*)

With this pragma you can control the maximum call depth. Default is infinite (-1).

See C compiler option --max-call-depth.

message "message" ...

Print the message string(s) on standard output.

nomisrac [nr,...] [default | restore] (*)

Without arguments, this pragma disables MISRA C checking. Alternatively, you can specify a
comma-separated list of MISRA C rules to disable.

See C compiler option --misrac and Section 3.7.2, C Code Checking: MISRA C.

optimize [flags] / endoptimize [default | restore] (*)

You can overrule the C compiler option --optimize for the code between the pragmas optimize and
endoptimize. The pragma works the same as C compiler option --optimize.

See Section 3.6, Compiler Optimizations.

protect / endprotect [on | off | default | restore] (*)

With these pragmas you can protect sections against linker optimizations. This excludes a section from
unreferenced section removal and duplicate section removal by the linker. endprotect restores the
default section protection.

runtime [flags | default | restore] (*)

With this pragma you can control the generation of additional code to check for a number of errors at
run-time.The pragma argument syntax is the same as for the arguments of the C compiler option --runtime.
You can use this pragma to control the run-time checks for individual statements. In addition, objects
declared when the "bounds" sub-option is disabled are not bounds checked. The "malloc" sub-option
cannot be controlled at statement level, as it only extracts an alternative malloc implementation from the
library.

section all ["name" | default | restore ] (*)
section type ["name" | default | restore ] (*)

Changes section names. See Section 1.10, Compiler Generated Sections and C compiler option
--rename-sections for more information.

23

C Language



sda_max_data_size {size | default | restore} (*)

By default, data consisting of 4 bytes or less will be placed in the Small Data Area (SDA).With this pragma
you can change this default limit of 4 bytes. The pragma works the same as C compiler option
--sda-max-data-size.

source / nosource [on | off | default | restore] (*)

With these pragmas you can choose which C source lines must be listed as comments in assembly output.

See C compiler option --source.

stdinc [on | off | default | restore] (*)

This pragma changes the behavior of the #include directive. When set, the C compiler options
--include-directory and --no-stdinc are ignored.

tradeoff {level | default | restore} (*)

Specify tradeoff between speed (0) and size (4). See C compiler option --tradeoff

unroll_factor value / endunroll_factor [default | restore] (*)

Specify how many times the following loop should be unrolled, if possible. At the end of the loop use
endunroll_factor.

See C compiler option --unroll-factor.

vccm_noclear [on | off | default | restore] (*)

By default, uninitialized vector data is cleared to zero on startup. With pragma vccm_noclear this step
is skipped.

See C compiler option --vccm-no-clear.

vectorize_noalias [on | off | default | restore] (*)

By default, any possible aliases will disable auto-vectorization for a loop. With pragma
vectorize_noalias you can selectively disable alias checking for specific loops.

See C compiler option --vectorize-noalias.

warning [number,...] [default | restore] (*)

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed.

24

TASKING SmartCode - PPU User Guide



weak symbol

Mark a symbol as "weak" (.WEAK assembler directive). The symbol must have external linkage, which
means a global or external object or function. A static symbol cannot be declared weak.

A weak external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference.When a weak external reference cannot be resolved, the null pointer is substituted.

A weak definition can be overruled by a normal global definition. The linker will not complain about the
duplicate definition, and ignore the weak definition.

1.8. Predefined Preprocessor Macros

You can use the following predefined macros in your C source.The macros are useful to create conditional
C code.

DescriptionMacro

Expands to 0. The processor accesses data in little-endian.__BIG_ENDIAN__

Identifies the build number of the compiler in the format yymmddqq (year,
month, day and quarter in UTC). For example: 20051340 means May 13,
2020 between 10:00 and 10:15.

__BUILD__

Expands to 1 for the TASKING toolset for Infineon PPU, otherwise
unrecognized as macro.

__CARC__

Expands to the compilation date: “mmm dd yyyy”.__DATE__

Expands to 1 for double-precision FPU (‘double’ is always fully featured for
the ppu_tc49x and ppu_tc4dx).

__DOUBLE_FP__

Expands to the current source file name.__FILE__

Expands to the line number of the line where this macro is called.__LINE__

Expands to the MISRA C version used 1998, 2004 or 2012 (option
--misrac-version). The default is 2004.

__MISRAC_VERSION__

Expands to the revision number of the compiler. Digits are represented as
they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

__REVISION__

Expands to 1 for single-precision FPU. This is for the ppu_tc43x.__SINGLE_FP__

Identifies the level of ANSI standard. The macro expands to 1 if you set
option --language (Control language extensions), otherwise expands to 0.

__STDC__

Always expands to 0, indicating the implementation is not a hosted
implementation.

__STDC_HOSTED__

(C11 only) Expands to 1 to indicate that this implementation does not support
atomic types and the stdatomic.h header file.

__STDC_NO_ATOMICS__

(C11 only) Expands to 1 to indicate that this implementation does not support
the threads.h header file.

__STDC_NO_THREADS__

25

C Language



DescriptionMacro

Identifies the ISO-C version number. Expands to 201112L for ISO C11,
199901L for ISO C99 or 199409L for ISO C90.

__STDC_VERSION__

Identifies the compiler as a TASKING compiler. Expands to 1 if a TASKING
compiler is used.

__TASKING__

Expands to the compilation time: “hh:mm:ss”__TIME__

Expands to the native vector width in bits. 512 for the ppu_tc49x, 256 for
the ppu_tc4dx or 128 for the ppu_tc43x.

__VDSP_VEC_WIDTH__

Identifies the version number of the compiler. For example, if you use version
1.2r3 of the compiler, __VERSION__ expands to 1002 (dot and revision
number are omitted, the minor version number is in 3 digits).

__VERSION__

Example

#ifdef __CARC__
/* this part is only valid for the PPU C compiler */
...
#endif

1.9. Functions

1.9.1. Calling Convention and Register Usage

The compiler follows the calling convention and register usage as described in section 2.2 Function Calling
Sequence of the DesignWare ARCv2 System V ABI Supplement [Version 4092-007, Nov 01, 2019,
Synopsys, Inc.].

1.9.2. Inlining Functions: inline

With the C compiler option --optimize=+inline, the C compiler automatically inlines small functions in
order to reduce execution time (smart inlining). The compiler inserts the function body at the place the
function is called. The C compiler decides which functions will be inlined.You can overrule this behavior
with the two keywords inline (ISO-C) and __noinline.

With the inline keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)
{
    unsigned int abs_val = val;
    if (val < 0) abs_val = -val;
    return abs_val;
}

If a function with the keyword inline is not called at all, the compiler does not generate code for it.

26

TASKING SmartCode - PPU User Guide



You must define inline functions in the same source module as in which you call the function, because
the compiler only inlines a function in the module that contains the function definition. When you need to
call the inline function from several source modules, you must include the definition of the inline function
in each module (for example using a header file).

With the __noinline keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)
{
    unsigned int abs_val = val;
    if (val < 0) abs_val = -val;
    return abs_val;
}

Using pragmas: inline, noinline, smartinline

Instead of the inline qualifier, you can also use #pragma inline and #pragma noinline to inline
a function body:

#pragma inline
unsigned int abs(int val)
{
    unsigned int abs_val = val;
    if (val < 0) abs_val = -val;
    return abs_val;
}
#pragma noinline
void main( void )
{
    int i;
    i = abs(-1);
}

If a function has an inline/__noinline function qualifier, then this qualifier will overrule the current
pragma setting.

With the #pragma noinline / #pragma smartinline you can temporarily disable the default behavior
that the C compiler automatically inlines small functions when you turn on the C compiler option
--optimize=+inline.

With the C compiler options --inline-max-incr and --inline-max-size you have more control over the
automatic function inlining process of the compiler.

Combining inline with __asm to create intrinsic functions

With the keyword __asm it is possible to use assembly instructions in the body of an inline function.
Because the compiler inserts the (assembly) body at the place the function is called, you can create your
own intrinsic function. See Section 1.9.4, Intrinsic Functions.

27

C Language



1.9.3. Interrupt Functions / Exception Handling

The compiler supports user-designated interrupt functions and exception handling functions. The PPU
interrupt unit has 16 allocated exceptions associated with vectors 0 to 15 and 240 interrupts associated
with vectors 16 to 255. For an extensive description see chapter 6 Interrupts and Exceptions in the
DesignWare ARCv2 ISA Programmer’s Reference Manual for DW EV7x Processors [Version 6367-001
April 2020, Synopsys, Inc.].

1.9.3.1. Defining an Interrupt Service Routine: __interrupt()

With the function type qualifier __interrupt() you can declare a function as an interrupt function or
an exception handler. The function type qualifier __interrupt() takes one vector number (0..255) as
argument.

Interrupt functions cannot return anything and must have a void argument type list:

void __interrupt(n)
isr( void )
{
...
}

The argument n is the vector number. The vector number must be in range [0..255]. Vectors 0 to 15 are
assigned to internal exceptions and vectors 16 to 255 are assigned to external interrupts.

Example

void __interrupt( 1 ) isr( void )
{
     ...
}

1.9.4. Intrinsic Functions

Some specific assembly instructions have no equivalence in C. Intrinsic functions give the possibility to
use these instructions. Intrinsic functions are predefined functions that are recognized by the compiler.
The compiler generates the most efficient assembly code for these functions.

The compiler always inlines the corresponding assembly instructions in the assembly source (rather than
calling it as a function).This avoids parameter passing and register saving instructions which are normally
necessary during function calls.

Intrinsic functions produce very efficient assembly code. Though it is possible to inline assembly code by
hand, intrinsic functions use registers even more efficiently. At the same time your C source remains very
readable.

You can use intrinsic functions in C as if they were ordinary C (library) functions. All intrinsics begin with
a double underscore character (__).

28

TASKING SmartCode - PPU User Guide



1.9.4.1. Intrinsics Used By Compiler and Libraries

DescriptionIntrinsic Function

Allocate memory. Returns a pointer to memory of size bytes length.
Returns NULL if there is not enough space left.This function is used
internally for variable length arrays, it is not to be used by end users.

void * volatile __alloc( __size_t size
);

Variable argument '...' operator. Used in library function
va_start(). Returns the stack offset to the variable argument list.

void * __va_start( void );

Deallocates the memory pointed to by p. p must point to memory
earlier allocated by a call to __alloc().

volatile void __free( void *p );

Generate a NOP instruction.volatile void __nop( void );

1.9.4.2. SIMD Intrinsics

Mapped InstructionIntrinsic Function

VADD2unsigned long long __vadd2( unsigned long long x, unsigned long long y );

VADD2Hunsigned long __vadd2h( unsigned long x, unsigned long y );

VADD4Hunsigned long long __vadd4h( unsigned long long x, unsigned long long y );

VSUB2unsigned long long __vsub2( unsigned long long x, unsigned long long y );

VSUB2Hunsigned long __vsub2h( unsigned long x, unsigned long y );

VSUB4Hunsigned long long __vsub4h( unsigned long long x, unsigned long long y );

VADDSUBunsigned long long __vaddsub( unsigned long long x, unsigned long long y );

VADDSUB2Hunsigned long __vaddsub2h( unsigned long x, unsigned long y );

VADDSUB4Hunsigned long long __vaddsub4h( unsigned long long x, unsigned long long y );

VSUBADDunsigned long long __vsubadd( unsigned long long x, unsigned long long y );

VSUBADD2Hunsigned long __vsubadd2h( unsigned long x, unsigned long y );

VSUBADD4Hunsigned long long __vsubadd4h( unsigned long long x, unsigned long long y );

VMPY2Hlong long __vmpy2h( unsigned long x, unsigned long y );

VMPY2HUunsigned long long __vmpy2hu( unsigned long x, unsigned long y );

VMAC2Hlong long __vmac2h( unsigned long x , unsigned long y );

VMAC2HUunsigned long long __vmac2hu( unsigned long x, unsigned long y );

1.9.4.3. DSP Intrinsics

Mapped InstructionIntrinsic Function

MPYDlong long __mpyd( long x, long y );

MPYDUunsigned long long __mpydu( unsigned long x, unsigned long y );

DMPYHlong __dmpyh( unsigned long x, unsigned long y );

DMPYHUunsigned long __dmpyhu( unsigned long x, unsigned long y );

29

C Language



Mapped InstructionIntrinsic Function

DMPYWHlong long __dmpywh( unsigned long long x, unsigned long y );

DMPYWHUunsigned long long __dmpywhu( unsigned long long x, unsigned long y );

QMPYHlong long __qmpyh( unsigned long long x, unsigned long long y );

QMPYHUunsigned long long __qmpyhu( unsigned long long x, unsigned long long y );

MAClong __mac( long x, long y );

MACUunsigned long __macu( unsigned long x, unsigned long y);

MACDlong long __macd( long x, long y );

MACDUunsigned long long __macdu( unsigned long x, unsigned long y );

DMACHlong __dmach( unsigned long x, unsigned long y );

DMACHUunsigned long __dmachu( unsigned long x, unsigned long y );

DMACWHlong long __dmacwh( unsigned long long x, unsigned long y );

DMACWHUunsigned long long __dmacwhu( unsigned long long x, unsigned long y );

QMACHlong long __qmach( unsigned long long x, unsigned long long y );

QMACHUunsigned long long __qmachu( unsigned long long x, unsigned long long y );

1.9.4.4. Miscellaneous Intrinsics

Mapped InstructionIntrinsic Function

BRKvolatile void __brk( void );

CLRIvolatile unsigned __clri( void );

FLAGvolatile void __flag( unsigned x );

KFLAGvolatile void __kflag( unsigned x );

PREFETCHvolatile void __prefetch( void * p );

SETIvolatile void __seti( unsigned x );

SLEEPvolatile void __sleep( int t );

SYNCvolatile void __sync( void );

SWIvolatile void __swi( void );

WEVTvolatile void __wevt( unsigned x );

WLFCvolatile void __wlfc( unsigned x );

1.9.4.5. Vector Support Intrinsics

DescriptionIntrinsic Function

Allocate memory on VCCM vector stack. Returns a pointer
to VCCM memory of size bytes length.

void __vccm * volatile __vccm_alloca( __size_t
size );

30

TASKING SmartCode - PPU User Guide



Wrapped vector intrinsics

The vector intrinsic names in the following sections are wrapped.These intrinsic names do not begin with
a double underscore character. The intrinsic wrappers are defined in file arc_vector.h.

Vector support load and store intrinsics

The header file arc_vector.h declares several functions (as macro wrappers over intrinsics) for vector
load/store operations.

Mapped InstructionIntrinsic Function

vvld.bvNx4char_t vvld(const signed char __vccm * addr);

vvld.b.pvNx4char_t vvld(pvNx4 pred, const signed char __vccm * addr);

vvld.bvNx4uchar_t vvld(const unsigned char __vccm * addr);

vvld.b.pvNx4uchar_t vvld(pvNx4 pred, const unsigned char __vccm * addr);

vvld.hvNx2short_t vvld(const short __vccm * addr);

vvld.h.pvNx2short_t vvld(pvNx2 pred, const short __vccm * addr);

vvld.hvNx2ushort_t vvld(const unsigned short __vccm * addr);

vvld.h.pvNx2ushort_t vvld(pvNx2 pred, const unsigned short __vccm * addr);

vvld.wvNint_t vvld(const int __vccm * addr);

vvld.w.pvNint_t vvld(pvN pred, const int __vccm * addr);

vvld.wvNuint_t vvld(const unsigned int __vccm * addr);

vvld.w.pvNuint_t vvld(pvN pred, const unsigned int __vccm * addr);

vvld.hvNx2half_t vvld(const _Float16 __vccm * addr);

vvld.h.pvNx2half_t vvld(pvNx2 pred, const _Float16 __vccm * addr);

vvld.wvNfloat_t vvld(const float __vccm * addr);

vvld.w.pvNfloat_t vvld(pvN pred, const float __vccm * addr);

vvld.ub.wvNuint_t vvld_ub_w(const unsigned char __vccm * addr);

vvld.ub.w.pvNuint_t vvld_ub_w(pvN pred, const unsigned char __vccm * addr);

vvld.uh.wvNuint_t vvld_uh_w(const unsigned short __vccm * addr);

vvld.uh.w.pvvNuint_t vvld_uh_w(pvN pred, const unsigned short __vccm * addr);

vvld.ub.hvvNx2ushort_t vvld_ub_h(const unsigned char __vccm * addr);

vvld.ub.h.pvNx2ushort_t vvld_ub_h(pvNx2 pred, const unsigned char __vccm * addr);

vvst.bvoid vvst(vNx4char_t val, signed char __vccm * addr);

vvst.b.pvoid vvst(vNx4char_t val, pvNx4 pred, signed char __vccm * addr);

vvst.bvoid vvst(vNx4uchar_t val, unsigned char __vccm * addr);

vvst.b.pvoid vvst(vNx4uchar_t val, pvNx4 pred, unsigned char __vccm * addr);

vvst.hvoid vvst(vNx2short_t val, short __vccm * addr);

vvst.h.pvoid vvst(vNx2short_t val, pvNx2 pred, short __vccm * addr);

31

C Language



Mapped InstructionIntrinsic Function

vvst.hvoid vvst(vNx2ushort_t val, unsigned short __vccm * addr);

vvst.h.pvoid vvst(vNx2ushort_t val, pvNx2 pred, unsigned short __vccm * addr);

vvst.wvoid vvst(vNint_t val, int __vccm * addr);

vvst.w.pvoid vvst(vNint_t val, pvN pred, int __vccm * addr);

vvst.wvoid vvst(vNuint_t val, unsigned int __vccm * addr);

vvst.w.pvoid vvst(vNuint_t val, pvN pred, unsigned int __vccm * addr);

vvst.hvoid vvst(vNx2half_t val, _Float16 __vccm * addr);

vvst.h.pvoid vvst(vNx2half_t val, pvNx2 pred, _Float16 __vccm * addr);

vvst.wvoid vvst(vNfloat_t val, float __vccm * addr);

vvst.w.pvoid vvst(vNfloat_t val, pvN pred, float __vccm * addr);

vvst.db.wvoid vvst_db(vNint_t val, signed char __vccm * addr);

vvst.db.w.pvoid vvst_db(vNint_t val, pvN pred, signed char __vccm * addr);

vvst.db.hvoid vvst_db(vNx2short_t val, signed char __vccm * addr);

vvst.db.h.pvoid vvst_db(vNx2short_t val, pvNx2 pred, signed char __vccm * addr);

vvst.dh.wvoid vvst_dh(vNint_t val, short __vccm * addr);

vvst.dh.w.pvoid vvst_dh(vNint_t val, pvN pred, short __vccm * addr);

Vector support gather and scatter intrinsics for 32-bit lane types

The compiler supports intrinsics implementing vector gather load and scatter store operations for 32-bit
lane types. The header file arc_vector.h declares several functions as macro wrappers over these
intrinsics.

The following vgather functions return 32-bit values loaded from addr + offsets. Here

• addr is a pointer parameter to __vccm.

• offsets is a vector of displacements added to addr pointer to create a vector of addresses for the
memory operation.

• pred is a predicate used to mask the load. If the dflt parameter is not specified, lane i is undefined
if pred[i] is false.

• dflt is a vector, lane i is dflt[i] if pred[i] is false.

Mapped InstructionIntrinsic Function

vvld.fa.wvNint_t vgather(const int __vccm * addr, vNint_t offsets);

vvld.fa.w.pvNint_t vgather(const int __vccm * addr, vNint_t offsets, pvN pred);

vvld.fa.w.pvNint_t vgather(const int __vccm * addr, vNint_t offsets, vNint_t dflt, pvN pred);

vvld.fa.wvNuint_t vgather(const unsigned int __vccm * addr, vNint_t offsets);

vvld.fa.w.pvNuint_t vgather(const unsigned int __vccm * addr, vNint_t offsets, pvN pred);

32

TASKING SmartCode - PPU User Guide



Mapped InstructionIntrinsic Function

vvld.fa.w.pvNuint_t vgather(const unsigned int __vccm * addr, vNint_t offsets, vNuint_t dflt,
pvN pred);

vvld.fa.wvNfloat_t vgather(const float __vccm * addr, vNint_t offsets);

vvld.fa.w.pvNfloat_t vgather(const float __vccm * addr, vNint_t offsets, pvN pred);

vvld.fa.w.pvNfloat_t vgather(const float __vccm * addr, vNint_t offsets, vNfloat_t dflt, pvN
pred);

The following vscatter functions store up to N 32-bit values from vector val to addr + offsets. If the
pred parameter is specified, val[i] will be stored only if pred[i] is true.

Mapped InstructionIntrinsic Function

vvst.fa.w.pvoid vscatter(vNint_t val, int __vccm * addr, vNint_t offsets, pvN pred);

vvst.fa.wvoid vscatter(vNint_t val, int __vccm * addr, vNint_t offsets);

vvst.fa.w.pvoid vscatter(vNuint_t val, unsigned int __vccm * addr, vNint_t offsets, pvN pred);

vvst.fa.wvoid vscatter(vNuint_t val, unsigned int __vccm * addr, vNint_t offsets);

vvst.fa.w.pvoid vscatter(vNfloat_t val, float __vccm * addr, vNint_t offsets, pvN pred);

vvst.fa.wvoid vscatter(vNfloat_t val, float __vccm * addr, vNint_t offsets);

Vector support intrinsics with predicates

Mapped InstructionIntrinsic Function

vvscan_excl_add.w.pvNuint_t vvscan_excl_add( pvN_t p );

vvscan_excl_add.h.pvNx2ushort_t vvscan_excl_add( pvNx2_t p );

vvscan_excl_add.b.pvNx4uchar_t vvscan_excl_add( pvNx4_t p );

vvsel.w.pvNint_t vvsel( pvN_t p, vNint_t y, vNint_t z );

vvsel.w.pvNuint_t vvsel( pvN_t p, vNuint_t y, vNuint_t z );

vvsel.h.pvNx2short_t vvsel( pvNx2_t p, vNx2short_t y, vNx2short_t z );

vvsel.h.pvNx2ushort_t vvsel( pvNx2_t p, vNx2ushort_t y, vNx2ushort_t z );

vvsel.b.pvNx4char_t vvsel( pvNx4_t p, vNx4char_t y, vNx4char_t z );

vvsel.b.pvNx4uchar_t vvsel( pvNx4_t p, vNx4uchar_t y, vNx4uchar_t z );

vvshfl.w.pvNint_t vvshfl_p( pvN_t p, vNint_t t, vNint_t x, vNint_t y );

vvshfl.w.pvNuint_t vvshfl_p( pvN_t p, vNuint_t t, vNuint_t x, vNuint_t y );

vvshfl.h.pvNx2short_t vvshfl_p( pvNx2_t p, vNx2short_t t, vNx2short_t x, vNx2short_t y );

vvshfl.h.pvNx2ushort_t vvshfl_p( pvNx2_t p, vNx2ushort_t t, vNx2ushort_t x, vNx2ushort_t
y );

vvshfl.b.pvNx4char_t vvshfl_p( pvNx4_t p, vNx4char_t t, vNx4char_t x, vNx4char_t y );

vvshfl.b.pvNx4uchar_t vvshfl_p( pvNx4_t p, vNx4uchar_t t, vNx4uchar_t x, vNx4uchar_t y
);

33

C Language



Mapped InstructionIntrinsic Function

vvp2reduce.wpvN_t vvp2reduce( pvN_t x );

vvp2reduce.hpvNx2_t vvp2reduce( pvNx2_t x );

vvp2reduce.bpvNx4_t vvp2reduce( pvNx4_t x );

vvp4pack.wpvN_t vvp4pack( pvN_t x );

vvp4pack.hpvNx2_t vvp4pack( pvNx2_t x );

vvp4pack.bpvNx4_t vvp4pack( pvNx4_t x );

vvp4reduce.wpvN_t vvp4reduce( pvN_t x );

vvp4reduce.hpvNx2_t vvp4reduce( pvNx2_t x );

vvp4reduce.bpvNx4_t vvp4reduce( pvNx4_t x );

vvpandpvN_t vvpand( pvN_t x, pvN_t y );

vvpandpvNx2_t vvpand( pvNx2_t x, pvNx2_t y );

vvpandpvNx4_t vvpand( pvNx4_t x, pvNx4_t y );

vvpclrallpvN_t vvpclrallN( void );

vvpclrallpvNx2_t vvpclrallNx2( void );

vvpclrallpvNx4_t vvpclrallNx4( void );

vvpconcatpvN_t vvpconcat( pvN_t x, pvN_t y );

vvpconcatpvNx2_t vvpconcat( pvNx2_t x, pvNx2_t y );

vvpconcatpvNx4_t vvpconcat( pvNx4_t x, pvNx4_t y );

vvpeven.wpvN_t vvpeven( pvN_t x );

vvpeven.hpvNx2_t vvpeven( pvNx2_t x );

vvpeven.bpvNx4_t vvpeven( pvNx4_t x );

vvphipvN_t vvphi( pvN_t x );

vvphipvNx2_t vvphi( pvNx2_t x );

vvphipvNx4_t vvphi( pvNx4_t x );

vvplopvN_t vvplo( pvN_t x );

vvplopvNx2_t vvplo( pvNx2_t x );

vvplopvNx4_t vvplo( pvNx4_t x );

vvpnotpvN_t vvpnot( pvN_t x );

vvpnotpvNx2_t vvpnot( pvNx2_t x );

vvpnotpvNx4_t vvpnot( pvNx4_t x );

vvpnumset.wint vvpnumset( pvN_t x );

vvpnumset.hint vvpnumset( pvNx2_t x );

vvpnumset.bint vvpnumset( pvNx4_t x );

vvporpvN_t vvpor( pvN_t x, pvN_t y );

vvporpvNx2_t vvpor( pvNx2_t x, pvNx2_t y );

34

TASKING SmartCode - PPU User Guide



Mapped InstructionIntrinsic Function

vvporpvNx4_t vvpor( pvNx4_t x, pvNx4_t y );

vvpsetallpvN_t vvpsetallN( void );

vvpsetallpvNx2_t vvpsetallNx2( void );

vvpsetallpvNx4_t vvpsetallNx4( void );

vvpwiden2.hpvNx2_t vvpwiden2( pvNx2_t x );

vvpwiden2.bpvNx4_t vvpwiden2( pvNx4_t x );

vvpwiden4.bpvNx4_t vvpwiden4( pvNx4_t x );

vvporpvN_t vvpxor( pvN_t x, pvN_t y );

vvpxorpvNx2_t vvpxor( pvNx2_t x, pvNx2_t y );

vvpxorpvNx4_t vvpxor( pvNx4_t x, pvNx4_t y );

Vector support floating-point intrinsics

Mapped InstructionIntrinsic Function

vvfadd.wvNfloat_t vvfadd(vNfloat_t x, vNfloat_t y);

vvfadd.hvNx2half_t vvfadd(vNx2half_t x, vNx2half_t y);

vvffadd.wfloat vvffadd(vNfloat_t x);

vvffadd.h_Float16 vvffadd(vNx2half_t x);

vvf2add.wvNfloat_t vvf2add(vNfloat_t x);

vvf2add.hvNx2half_t vvf2add(vNx2half_t x);

vvfcopysign.wvNfloat_t vvfcopysign(vNfloat_t x, vNfloat_t y);

vvfcopysign.hvNx2half_t vvfcopysign(vNx2half_t x, vNx2half_t y);

vvfcos.wvNfloat_t vvfcos(vNfloat_t x);

vvfcos.hvNx2half_t vvfcos(vNx2half_t x);

vvfexp.wvNfloat_t vvfexp(vNfloat_t x);

vvfexp.hvNx2half_t vvfexp(vNx2half_t x);

vvfexp2.wvNfloat_t vvfexp2(vNfloat_t x);

vvfexp2.hvNx2half_t vvfexp2(vNx2half_t x);

vvflog2.wvNfloat_t vvflog2(vNfloat_t x);

vvflog2.hvNx2half_t vvflog2(vNx2half_t x);

vvfmadd.wvNfloat_t vvfmadd(vNfloat_t x, vNfloat_t y, vNfloat_t z);

vvfmadd.hvNx2half_t vvfmadd(vNx2half_t x, vNx2half_t y, vNx2half_t z);

vvfmsub.wvNfloat_t vvfmsub(vNfloat_t x, vNfloat_t y, vNfloat_t z);

vvfmsub.hvNx2half_t vvfmsub(vNx2half_t x, vNx2half_t y, vNx2half_t z);

vvfmax.wvNfloat_t vvfmax(vNfloat_t x, vNfloat_t y);

vvfmax.hvNx2half_t vvfmax(vNx2half_t x, vNx2half_t y);

35

C Language



Mapped InstructionIntrinsic Function

vvf2max.wvNfloat_t vvf2max(vNfloat_t x);

vvf2max.hvNx2half_t vvf2max(vNx2half_t x);

vvfmin.wvNfloat_t vvfmin(vNfloat_t x, vNfloat_t y);

vvfmin.hvNx2half_t vvfmin(vNx2half_t x, vNx2half_t y);

vvf2min.wvNfloat_t vvf2min(vNfloat_t x);

vvf2min.hvNx2half_t vvf2min(vNx2half_t x);

vvfmul.wvNfloat_t vvfmul(vNfloat_t x, vNfloat_t y);

vvfmul.hvNx2half_t vvfmul(vNx2half_t x, vNx2half_t y);

vvfrdiv.wvNfloat_t vvfrdiv(vNfloat_t x, vNfloat_t y);

vvfrdiv.hvNx2half_t vvfrdiv(vNx2half_t x, vNx2half_t y);

vvfrsqrt.wvNfloat_t vvfrsqrt(vNfloat_t x);

vvfrsqrt.hvNx2half_t vvfrsqrt(vNx2half_t x);

vvfsin.wvNfloat_t vvfsin(vNfloat_t x);

vvfsin.hvNx2half_t vvfsin(vNx2half_t x);

vvfsqrt.wvNfloat_t vvfsqrt(vNfloat_t x);

vvfsqrt.hvNx2half_t vvfsqrt(vNx2half_t x);

vvfsub.wvNfloat_t vvfsub(vNfloat_t x, vNfloat_t y);

vvfsub.hvNx2half_t vvfsub(vNx2half_t x, vNx2half_t y);

Vector support miscellaneous intrinsics

Mapped InstructionIntrinsic Function

vvabs.wvNint_t vvabs( vNint_t x );

vvabs.hvNx2short_t vvabs( vNx2short_t x );

vvabs.bvNx4char_t vvabs( vNx4char_t x );

vvabs.sat.wvNint_t vvabs_sat( vNint_t x );

vvabs.sat.hvNx2short_t vvabs_sat( vNx2short_t x );

vvabs.sat.bvNx4char_t vvabs_sat( vNx4char_t x );

vvcabs.wvNint_t vvcabs( vNint_t x );

vvcabs.hvNx2short_t vvcabs( vNx2short_t x );

vvcabs.bvNx4char_t vvcabs( vNx4char_t x );

vvadd.sat.wvNint_t vvadd_sat( vNint_t x, vNint_t y );

vvadd.sat.hvNx2short_t vvadd_sat( vNx2short_t x, vNx2int_t y );

vvadd.sat.bvNx4char_t vvadd_sat( vNx4char_t x, vNx4char_t y );

vvadd.satu.wvNuint_t vvadd_satu( vNuint_t x, vNuint_t y );

vvadd.satu.hvNx2ushort_t vvadd_satu( vNx2ushort_t x, vNx2ushort_t y );

36

TASKING SmartCode - PPU User Guide



Mapped InstructionIntrinsic Function

vvadd.satu.bvNx4uchar_t vvadd_satu( vNx4uchar_t x, vNx4uchar_t y );

vvcadd.wvNint_t vvcadd( vNint_t x, vNint_t y, vNint_t z );

vvcadd.hvNx2short_t vvcadd( vNx2short_t x, vNx2short_t y, vNx2short_t z );

vvcadd.bvNx4char_t vvcadd( vNx4char_t x, vNx4char_t y, vNx4char_t z );

vvcadd.uu.wvNuint_t vvcadd_uu( vNuint_t x, vNuint_t y, vNuint_t z );

vvcadd.uu.hvNx2ushort_t vvcadd_uu( vNx2ushort_t x, vNx2ushort_t y, vNx2ushort_t z );

vvcadd.uu.bvNx4uchar_t vvcadd_uu( vNx4uchar_t x, vNx4uchar_t y, vNx4uchar_t z );

vvcadd1.wvNint_t vvcadd1( vNint_t x, vNint_t y, vNint_t z );

vvcadd1.hvNx2short_t vvcadd1( vNx2short_t x, vNx2short_t y, vNx2short_t z );

vvcadd1.bvNx4char_t vvcadd1( vNx4char_t x, vNx4char_t y, vNx4char_t z );

vvcadd1.uu.wvNuint_t vvcadd1_uu( vNuint_t x, vNuint_t y, vNuint_t z );

vvcadd1.uu.hvNx2ushort_t vvcadd1_uu( vNx2ushort_t x, vNx2ushort_t y, vNx2ushort_t z );

vvcadd1.uu.bvNx4uchar_t vvcadd1_uu( vNx4uchar_t x, vNx4uchar_t y, vNx4uchar_t z );

vvcadd1b.wvNint_t vvcadd1b( vNint_t x, vNint_t y, vNint_t z );

vvcadd1b.hvNx2short_t vvcadd1b( vNx2short_t x, vNx2short_t y, vNx2short_t z );

vvcadd1b.bvNx4char_t vvcadd1b( vNx4char_t x, vNx4char_t y, vNx4char_t z );

vvcadd1b.uu.wvNuint_t vvcadd1b_uu( vNuint_t x, vNuint_t y, vNuint_t z );

vvcadd1b.uu.hvNx2ushort_t vvcadd1b_uu( vNx2ushort_t x, vNx2ushort_t y, vNx2ushort_t z );

vvcadd1b.uu.bvNx4uchar_t vvcadd1b_uu( vNx4uchar_t x, vNx4uchar_t y, vNx4uchar_t z );

vvcaddsub.wvNint_t vvcaddsub( vNint_t x, vNint_t y, vNint_t z );

vvcaddsub.hvNx2short_t vvcaddsub( vNx2short_t x, vNx2short_t y, vNx2short_t z );

vvcaddsub.bvNx4char_t vvcaddsub( vNx4char_t x, vNx4char_t y, vNx4char_t z );

vvcaddsub.uu.wvNuint_t vvcaddsub_uu( vNuint_t x, vNuint_t y, vNuint_t z );

vvcaddsub.uu.hvNx2ushort_t vvcaddsub_uu( vNx2ushort_t x, vNx2ushort_t y, vNx2ushort_t z );

vvcaddsub.uu.bvNx4uchar_t vvcaddsub_uu( vNx4uchar_t x, vNx4uchar_t y, vNx4uchar_t z );

vvcaddsub1.wvNint_t vvcaddsub1( vNint_t x, vNint_t y, vNint_t z );

vvcaddsub1.hvNx2short_t vvcaddsub1( vNx2short_t x, vNx2short_t y, vNx2short_t z );

vvcaddsub1.bvNx4char_t vvcaddsub1( vNx4char_t x, vNx4char_t y, vNx4char_t z );

vvcaddsub1.uu.wvNuint_t vvcaddsub1_uu( vNuint_t x, vNuint_t y, vNuint_t z );

vvcaddsub1.uu.hvNx2ushort_t vvcaddsub1_uu( vNx2ushort_t x, vNx2ushort_t y, vNx2ushort_t z );

vvcaddsub1.uu.bvNx4uchar_t vvcaddsub1_uu( vNx4uchar_t x, vNx4uchar_t y, vNx4uchar_t z );

vvcaddsub1b.wvNint_t vvcaddsub1b( vNint_t x, vNint_t y, vNint_t z );

vvcaddsub1b.hvNx2short_t vvcaddsub1b( vNx2short_t x, vNx2short_t y, vNx2short_t z );

vvcaddsub1b.bvNx4char_t vvcaddsub1b( vNx4char_t x, vNx4char_t y, vNx4char_t z );

vvcaddsub1b.uu.wvNuint_t vvcaddsub1b_uu( vNuint_t x, vNuint_t y, vNuint_t z );

37

C Language



Mapped InstructionIntrinsic Function

vvcaddsub1b.uu.hvNx2ushort_t vvcaddsub1b_uu( vNx2ushort_t x, vNx2ushort_t y, vNx2ushort_t z
);

vvcaddsub1b.uu.bvNx4uchar_t vvcaddsub1b_uu( vNx4uchar_t x, vNx4uchar_t y, vNx4uchar_t z );

vvcadd.init.wvNint_t vvcadd_init( vNint_t x, vNint_t y );

vvcadd.init.hvNx2short_t vvcadd_init( vNx2short_t x, vNx2short_t y );

vvcadd.init.bvNx4char_t vvcadd_init( vNx4char_t x, vNx4char_t y );

vvcadd.init.uu.wvNuint_t vvcadd_init_uu( vNuint_t x, vNuint_t y );

vvcadd.init.uu.hvNx2ushort_t vvcadd_init_uu( vNx2ushort_t x, vNx2ushort_t y );

vvcadd.init.uu.bvNx4uchar_t vvcadd_init_uu( vNx4uchar_t x, vNx4uchar_t y );

vvc2add.wvNint_t vvc2add( vNint_t x );

vvc2add.hvNx2short_t vvc2add( vNx2short_t x );

vvc2add.bvNx4char_t vvc2add( vNx4char_t x );

vvc4add.wvNint_t vvc4add( vNint_t x );

vvc4add.hvNx2short_t vvc4add( vNx2short_t x );

vvc4add.bvNx4char_t vvc4add( vNx4char_t x );

vvavg.wvNint_t vvavg( vNint_t x, vNint_t y );

vvavg.hvNx2int_t vvavg( vNx2int_t x, vNx2int_t y ) ;

vvavg.bvNx4char_t vvavg( vNx4char_t x, vNx4char_t y );

vvavg.uu.wvNuint_t vvavg_uu( vNuint_t x, vNuint_t y );

vvavg.uu.hvNx2ushort_t vvavg_uu( vNx2ushort_t x, vNx2ushort_t y );

vvavg.uu.bvNx4uchar_t vvavg_uu( vNx4uchar_t x, vNx4uchar_t y );

vvavgr.wvNint_t vvavgr( vNint_t x, vNint_t y );

vvavgr.hvNx2int_t vvavgr( vNx2int_t x, vNx2int_t y );

vvavgr.bvNx4char_t vvavgr( vNx4char_t x, vNx4char_t y );

vvavgr.uu.wvNuint_t vvavgr_uu( vNuint_t x, vNuint_t y );

vvavgr.uu.hvNx2ushort_t vvavgr_uu( vNx2ushort_t x, vNx2ushort_t y );

vvavgr.uu.bvNx4uchar_t vvavgr_uu( vNx4uchar_t x, vNx4uchar_t y );

vvbclr.wvNint_t vvbclr( vNint_t x, vNint_t y );

vvbclr.wvNuint_t vvbclr( vNuint_t x, vNuint_t y );

vvbclr.hvNx2short_t vvbclr( vNx2short_t x, vNx2short_t y );

vvbclr.hvNx2ushort_t vvbclr( vNx2ushort_t x, vNx2ushort_t y );

vvbclr.bvNx4char_t vvbclr( vNx4char_t x, vNx4char_t y );

vvbclr.bvNx4uchar_t vvbclr( vNx4uchar_t x, vNx4uchar_t y );

vvbic.wvNint_t vvbic( vNint_t x, vNint_t y );

vvbic.wvNuint_t vvbic( vNuint_t x, vNuint_t y );

38

TASKING SmartCode - PPU User Guide



Mapped InstructionIntrinsic Function

vvbic.hvNx2short_t vvbic( vNx2short_t x, vNx2short_t y );

vvbic.hvNx2ushort_t vvbic( vNx2ushort_t x, vNx2ushort_t y );

vvbic.bvNx4char_t vvbic( vNx4char_t x, vNx4char_t y );

vvbic.bvNx4uchar_t vvbic( vNx4uchar_t x, vNx4uchar_t y );

vvbmsk.wvNint_t vvbmsk( vNint_t x, vNint_t y );

vvbmsk.wvNuint_t vvbmsk( vNuint_t x, vNuint_t y );

vvbmsk.hvNx2short_t vvbmsk( vNx2short_t x, vNx2short_t y );

vvbmsk.hvNx2ushort_t vvbmsk( vNx2ushort_t x, vNx2ushort_t y );

vvbmsk.bvNx4char_t vvbmsk( vNx4char_t x, vNx4char_t y );

vvbmsk.bvNx4uchar_t vvbmsk( vNx4uchar_t x, vNx4uchar_t y );

vvbmskn.wvNint_t vvbmskn( vNint_t x, vNint_t y );

vvbmskn.wvNuint_t vvbmskn( vNuint_t x, vNuint_t y );

vvbmskn.hvNx2short_t vvbmskn( vNx2short_t x, vNx2short_t y );

vvbmskn.hvNx2ushort_t vvbmskn( vNx2ushort_t x, vNx2ushort_t y );

vvbmskn.bvNx4char_t vvbmskn( vNx4char_t x, vNx4char_t y );

vvbmskn.bvNx4uchar_t vvbmskn( vNx4uchar_t x, vNx4uchar_t y );

vvbset.wvNint_t vvbset( vNint_t x, vNint_t y );

vvbset.wvNuint_t vvbset( vNuint_t x, vNuint_t y );

vvbset.hvNx2short_t vvbset( vNx2short_t x, vNx2short_t y );

vvbset.hvNx2ushort_t vvbset( vNx2ushort_t x, vNx2ushort_t y );

vvbset.bvNx4char_t vvbset( vNx4char_t x, vNx4char_t y );

vvbset.bvNx4uchar_t vvbset( vNx4uchar_t x, vNx4uchar_t y );

vvbxor.wvNint_t vvbxor( vNint_t x, vNint_t y );

vvbxor.wvNuint_t vvbxor( vNuint_t x, vNuint_t y );

vvbxor.hvNx2short_t vvbxor( vNx2short_t x, vNx2short_t y );

vvbxor.hvNx2ushort_t vvbxor( vNx2ushort_t x, vNx2ushort_t y );

vvbxor.bvNx4char_t vvbxor( vNx4char_t x, vNx4char_t y );

vvbxor.bvNx4uchar_t vvbxor( vNx4uchar_t x, vNx4uchar_t y );

vvcdiv.wvNint_t vvcdiv( vNint_t x, vNint_t y );

vvcdiv.hvNx2short_t vvcdiv( vNx2short_t x, vNx2short_t y );

vvcdiv.bvNx4char_t vvcdiv( vNx4char_t x, vNx4char_t y );

vvcdiv.uu.wvNuint_t vvcdiv_uu( vNuint_t x, vNuint_t y );

vvcdiv.uu.hvNx2ushort_t vvcdiv_uu( vNx2ushort_t x, vNx2ushort_t y );

vvcdiv.uu.bvNx4uchar_t vvcdiv_uu( vNx4uchar_t x, vNx4uchar_t y );

vvceven.wvNint_t vvceven( vNint_t x );

39

C Language



Mapped InstructionIntrinsic Function

vvceven.hvNx2short_t vvceven( vNx2short_t x );

vvceven.bvNx4char_t vvceven( vNx4char_t x );

vvci.wvNint_t vvci_w( void );

vvci.hvNx2short_t vvci_h( void );

vvci.bvNx4char_t vvci_b( void );

vvci.stridw.wvNint_t vvci_stride_w( int x );

vvci.stride.hvNx2short_t vvci_stride_h( int x );

vvcmac.hi.wvNint_t vvcmac_hi( vNint_t x, vNint_t y, vNint_t z );

vvcmac.hi.uu.wvNuint_t vvcmac_hi_uu( vNuint_t x, vNuint_t y, vNuint_t z );

vvcmac.lo.wvNint_t vvcmac_lo( vNint_t x, vNint_t y, vNint_t z );

vvcmac.lo.uu.wvNuint_t vvcmac_lo_uu( vNuint_t x, vNuint_t y, vNuint_t z );

vvmax.wvNint_t vvmax( vNint_t x, vNint_t y );

vvmax.hvNx2short_t vvmax( vNx2short_t x, vNx2short_t y );

vvmax.bvNx4char_t vvmax( vNx4char_t x, vNx4char_t y );

vvmax.uu.wvNuint_t vvmax_uu( vNuint_t x, vNuint_t y );

vvmax.uu.hvNx2ushort_t vvmax_uu( vNx2ushort_t x, vNx2ushort_t y );

vvmax.uu.bvNx4uchar_t vvmax_uu( vNx4uchar_t x, vNx4uchar_t y );

vvcmax.wvNint_t vvcmax( vNint_t x, vNint_t y );

vvcmax.hvNx2short_t vvcmax( vNx2short_t x, vNx2short_t y );

vvcmax.bvNx4char_t vvcmax( vNx4char_t x, vNx4char_t y );

vvcmax.uu.wvNuint_t vvcmax_uu( vNuint_t x, vNuint_t y );

vvcmax.uu.hvNx2ushort_t vvcmax_uu( vNx2ushort_t x, vNx2ushort_t y );

vvcmax.uu.bvNx4uchar_t vvcmax_uu( vNx4uchar_t x, vNx4uchar_t y );

vvc2max.wvNint_t vvc2max( vNint_t x );

vvc2max.hvNx2short_t vvc2max( vNx2short_t x );

vvc2max.bvNx4char_t vvc2max( vNx4char_t x );

vvc2max.uu.wvNuint_t vvc2max_uu( vNuint_t x );

vvc2max.uu.hvNx2ushort_t vvc2max_uu( vNx2ushort_t x );

vvc2max.uu.bvNx4uchar_t vvc2max_uu( vNx4uchar_t x );

vvmin.wvNint_t vvmin( vNint_t x, vNint_t y );

vvmin.hvNx2short_t vvmin( vNx2short_t x, vNx2short_t y );

vvmin.bvNx4char_t vvmin( vNx4char_t x, vNx4char_t y );

vvmin.uu.wvNuint_t vvmin_uu( vNuint_t x, vNuint_t y );

vvmin.uu.hvNx2ushort_t vvmin_uu( vNx2ushort_t x, vNx2ushort_t y ) ;

vvmin.uu.bvNx4uchar_t vvmin_uu( vNx4uchar_t x, vNx4uchar_t y );

40

TASKING SmartCode - PPU User Guide



Mapped InstructionIntrinsic Function

vvcmin.wvNint_t vvcmin( vNint_t x, vNint_t y );

vvcmin.hvNx2short_t vvcmin( vNx2short_t x, vNx2short_t y );

vvcmin.bvNx4char_t vvcmin( vNx4char_t x, vNx4char_t y );

vvcmin.uu.wvNuint_t vvcmin_uu( vNuint_t x, vNuint_t y );

vvcmin.uu.hvNx2ushort_t vvcmin_uu( vNx2ushort_t x, vNx2ushort_t y );

vvcmin.uu.bvNx4uchar_t vvcmin_uu( vNx4uchar_t x, vNx4uchar_t y );

vvc2min.wvNint_t vvc2min( vNint_t x );

vvc2min.hvNx2short_t vvc2min( vNx2short_t x );

vvc2min.bvNx4char_t vvc2min( vNx4char_t x );

vvc2min.uu.wvNuint_t vvc2min_uu( vNuint_t x );

vvc2min.uu.hvNx2ushort_t vvc2min_uu( vNx2ushort_t x );

vvc2min.uu.bvNx4uchar_t vvc2min_uu( vNx4uchar_t x );

vvmpy.hi.wvNint_t vvmpy_hi( vNint_t x, vNint_t y );

vvmpy.hi.hvNx2short_t vvmpy_hi( vNx2short_t x, vNx2short_t y );

vvmpy.hi.bvNx4char_t vvmpy_hi( vNx4char_t x, vNx4char_t y );

vvmpy.hi.uu.wvNuint_t vvmpy_hi_uu( vNuint_t x, vNuint_t y );

vvmpy.hi.uu.hvNx2ushort_t vvmpy_hi_uu( vNx2ushort_t x, vNx2ushort_t y );

vvmpy.hi.uu.bvNx4uchar_t vvmpy_hi_uu( vNx4uchar_t x, vNx4uchar_t y );

vvcmpy.hi.wvNint_t vvcmpy_hi( vNint_t x, vNint_t y );

vvcmpy.hi.uu.wvNuint_t vvcmpy_hi_uu( vNuint_t x, vNuint_t y );

vvcmpy.lovNint_t vvcmpy_lo( vNint_t x, vNint_t y );

vvcmpy.lo.uuvNuint_t vvcmpy_lo_uu( vNuint_t x, vNuint_t y );

vvcmsub.hi.wvNint_t vvcmsub_hi( vNint_t x, vNint_t y, vNint_t z );

vvcmsub.hi.uu.wvNuint_t vvcmsub_hi_uu( vNuint_t x, vNuint_t y, vNuint_t z );

vvcmsub.lo.wvNint_t vvcmsub_lo( vNint_t x, vNint_t y, vNint_t z );

vvcmsub.lo.uu.wvNuint_t vvcmsub_lo_uu( vNuint_t x, vNuint_t y, vNuint_t z );

vvneg.sat.wvNint_t vvneg_sat( vNint_t x );

vvneg.sat.hvNx2short_t vvneg_sat( vNx2short_t x );

vvneg.sat.bvNx4char_t vvneg_sat( vNx4char_t x );

vvcneg.wvNint_t vvcneg( vNint_t x );

vvcneg.hvNx2short_t vvcneg( vNx2short_t x );

vvcneg.bvNx4char_t vvcneg( vNx4char_t x );

vvcnorm.wvNint_t vvcnorm( vNint_t x );

vvcnorm.hvNx2short_t vvcnorm( vNx2short_t x );

vvcnorm.bvNx4char_t vvcnorm( vNx4char_t x );

41

C Language



Mapped InstructionIntrinsic Function

vvnorm.wvNuint_t vvnorm( vNuint_t x );

vvnorm.hvNx2ushort_t vvnorm( vNx2ushort_t x );

vvnorm.bvNx4uchar_t vvnorm( vNx4uchar_t x );

vvnorm.wvNint_t vvnorm( vNint_t x );

vvnorm.hvNx2short_t vvnorm( vNx2short_t x );

vvnorm.bvNx4char_t vvnorm( vNx4char_t x );

vvnumlz.wvNint_t vvnumlz( vNint_t x );

vvnumlz.wvNuint_t vvnumlz( vNuint_t x );

vvnumlz.hvNx2short_t vvnumlz( vNx2short_t x );

vvnumlz.hvNx2ushort_t vvnumlz( vNx2ushort_t x );

vvnumlz.bvNx4char_t vvnumlz( vNx4char_t x );

vvnumlz.bvNx4uchar_t vvnumlz( vNx4uchar_t x );

vvnumset.wvNint_t vvnumset( vNint_t x );

vvnumset.wvNuint_t vvnumset( vNuint_t x );

vvnumset.hvNx2ushort_t vvnumset( vNx2ushort_t x );

vvnumset.hvNx2short_t vvnumset( vNx2short_t x );

vvnumset.bvNx4char_t vvnumset( vNx4char_t x );

vvnumset.bvNx4uchar_t vvnumset( vNx4uchar_t x );

vvnumtz.wvNint_t vvnumtz( vNint_t x );

vvnumtz.wvNuint_t vvnumtz( vNuint_t x );

vvnumtz.hvNx2short_t vvnumtz( vNx2short_t x );

vvnumtz.hvNx2ushort_t vvnumtz( vNx2ushort_t x );

vvnumtz.bvNx4char_t vvnumtz( vNx4char_t x );

vvnumtz.bvNx4uchar_t vvnumtz( vNx4uchar_t x );

vvc4pack.wvNint_t vvc4pack( vNint_t x );

vvc4pack.hvNx2short_t vvc4pack( vNx2short_t x );

vvc4pack.bvNx4char_t vvc4pack( vNx4char_t x );

vvrol.wvNint_t vvrol( vNint_t x );

vvrol.wvNuint_t vvrol( vNuint_t x );

vvrol.hvNx2short_t vvrol( vNx2short_t x );

vvrol.hvNx2ushort_t vvrol( vNx2ushort_t x );

vvrol.bvNx4char_t vvrol( vNx4char_t x );

vvrol.bvNx4uchar_t vvrol( vNx4uchar_t x );

vvrol8.wvNint_t vvrol8( vNint_t x );

vvrol8.wvNuint_t vvrol8( vNuint_t x );

42

TASKING SmartCode - PPU User Guide



Mapped InstructionIntrinsic Function

vvrol8.hvNx2short_t vvrol8( vNx2short_t x );

vvrol8.hvNx2ushort_t vvrol8( vNx2ushort_t x );

vvror.wvNuint_t vvror( vNuint_t x );

vvror.hvNx2ushort_t vvror( vNx2ushort_t x );

vvror.bvNx4uchar_t vvror( vNx4uchar_t x );

vvror.wvNint_t vvror( vNint_t x );

vvror.hvNx2short_t vvror( vNx2short_t x );

vvror.bvNx4char_t vvror( vNx4char_t x );

vvror8.wvNint_t vvror8( vNint_t x );

vvror8.wvNuint_t vvror8( vNuint_t x );

vvror8.wvNx2short_t vvror8( vNx2short_t x );

vvror8.hvNx2ushort_t vvror8( vNx2ushort_t x );

vvrorm.wvNint_t vvrorm( vNint_t x, vNint_t y );

vvrorm.wvNuint_t vvrorm( vNuint_t x, vNuint_t y );

vvrorm.hvNx2short_t vvrorm( vNx2short_t x, vNx2short_t y );

vvrorm.hvNx2ushort_t vvrorm( vNx2ushort_t x, vNx2ushort_t y );

vvrorm.bvNx4char_t vvrorm( vNx4char_t x, vNx4char_t y );

vvrorm.bvNx4uchar_t vvrorm( vNx4uchar_t x, vNx4uchar_t y );

vvcsad.wvNint_t vvcsad( vNint_t x, vNint_t y, vNint_t z );

vvcsad.hvNx2short_t vvcsad( vNx2short_t x, vNx2short_t y, vNx2short_t z );

vvcsad.bvNx4char_t vvcsad( vNx4char_t x, vNx4char_t y, vNx4char_t z );

vvcsad.uu.wvNuint_t vvcsad_uu( vNuint_t x, vNuint_t y, vNuint_t z );

vvcsad.uu.hvNx2ushort_t vvcsad_uu( vNx2ushort_t x, vNx2ushort_t y, vNx2ushort_t z );

vvcsad.uu.bvNx4uchar_t vvcsad_uu( vNx4uchar_t x, vNx4uchar_t y, vNx4uchar_t z );

vvcsad.init.wvNint_t vvcsad_init( vNint_t x, vNint_t y );

vvcsad.init.hvNx2short_t vvcsad_init( vNx2short_t x, vNx2short_t y );

vvcsad.init.bvNx4char_t vvcsad_init( vNx4char_t x, vNx4char_t y );

vvcsad.init.uu.wvNuint_t vvcsad_init_uu( vNuint_t x, vNuint_t y );

vvcsad.init.uu.hvNx2ushort_t vvcsad_init_uu( vNx2ushort_t x, vNx2ushort_t y );

vvcsad.init.uu.bvNx4uchar_t vvcsad_init_uu( vNx4uchar_t x, vNx4uchar_t y );

vvsexb.wvNint_t vvsexb( vNint_t x );

vvsexb.wvNuint_t vvsexb( vNuint_t x );

vvsexb.hvNx2short_t vvsexb( vNx2short_t x );

vvsexb.hvNx2ushort_t vvsexb( vNx2ushort_t x );

vvsexh.wvNint_t vvsexh( vNint_t x );

43

C Language



Mapped InstructionIntrinsic Function

vvsexh.wvNuint_t vvsexh( vNuint_t x );

vvshfl.wvNint_t vvshfl( vNint_t x, vNint_t y );

vvshfl.wvNuint_t vvshfl( vNuint_t x, vNuint_t y );

vvshfl.hvNx2short_t vvshfl( vNx2short_t x, vNx2short_t y );

vvshfl.hvNx2ushort_t vvshfl( vNx2ushort_t x, vNx2ushort_t y );

vvshfl.bvNx4char_t vvshfl( vNx4char_t x, vNx4char_t y );

vvshfl.bvNx4uchar_t vvshfl( vNx4uchar_t x, vNx4uchar_t y );

vvshft.wvNint_t vvshft( vNint_t x );

vvshft.hvNx2short_t vvshft( vNx2short_t x );

vvshft.bvNx4char_t vvshft( vNx4char_t x );

vvshft.wvNuint_t vvshft( vNuint_t x );

vvshft.hvNx2ushort_t vvshft( vNx2ushort_t x );

vvshft.bvNx4uchar_t vvshft( vNx4uchar_t x );

vvshft.wvNfloat_t vvshft( vNfloat_t y );

vvshft.hvNx2half_t vvshft( vNx2half_t y );

vvshft.bvNuint_t vvcsqrt( vNuint_t x );

vvshiftleft.wvNint_t vvshiftleft( vNint_t x, unsigned y );

vvshiftleft.hvNx2short_t vvshiftleft( vNx2short_t x, unsigned y );

vvshiftleft.bvNx4char_t vvshiftleft( vNx4char_t x, unsigned y );

vvshiftleft.wvNuint_t vvshiftleft( vNuint_t x, unsigned y );

vvshiftleft.hvNx2ushort_t vvshiftleft( vNx2ushort_t x, unsigned y );

vvshiftleft.bvNx4uchar_t vvshiftleft( vNx4uchar_t x, unsigned y );

vvshiftright.wvNint_t vvshiftright( vNint_t x, unsigned y );

vvshiftright.hvNx2short_t vvshiftright( vNx2short_t x, unsigned y );

vvshiftright.bvNx4char_t vvshiftright( vNx4char_t x, unsigned y );

vvshiftright.wvNuint_t vvshiftright( vNuint_t x, unsigned y );

vvshiftright.hvNx2ushort_t vvshiftright( vNx2ushort_t x, unsigned y );

vvshiftright.bvNx4uchar_t vvshiftright( vNx4uchar_t x, unsigned y );

vvslm.sat.wvNint_t vvslm_sat( vNint_t x, vNint_t y );

vvslm.sat.hvNx2short_t vvslm_sat( vNx2short_t x, vNx2short_t y );

vvslm.sat.bvNx4char_t vvslm_sat( vNx4char_t x, vNx4char_t y );

vvslm.satu.wvNuint_t vvslm_satu( vNuint_t x, vNuint_t y );

vvslm.satu.hvNx2ushort_t vvslm_satu( vNx2ushort_t x, vNx2ushort_t y );

vvslm.satu.bvNx4uchar_t vvslm_satu( vNx4uchar_t x, vNx4uchar_t y );

vvcslm.wvNint_t vvcslm( vNint_t x, vNint_t y );

44

TASKING SmartCode - PPU User Guide



Mapped InstructionIntrinsic Function

vvcslm.hvNx2short_t vvcslm( vNx2short_t x, vNx2short_t y );

vvcslm.bvNx4char_t vvcslm( vNx4char_t x, vNx4char_t y );

vvcasrm.wvNint_t vvcasrm( vNint_t x, vNint_t y );

vvcasrm.hvNx2short_t vvcasrm( vNx2short_t x, vNx2short_t y );

vvcasrm.bvNx4char_t vvcasrm( vNx4char_t x, vNx4char_t y );

vvclsrm.wvNuint_t vvclsrm( vNuint_t x, vNuint_t y );

vvclsrm.hvNx2ushort_t vvclsrm( vNx2ushort_t x, vNx2ushort_t y );

vvclsrm.bvNx4uchar_t vvclsrm( vNx4uchar_t x, vNx4uchar_t y );

vvsqrt.wvNuint_t vvsqrt( vNuint_t x );

vvsqrt.hvNx2ushort_t vvsqrt( vNx2ushort_t x );

vvsqrt.bvNx4uchar_t vvsqrt( vNx4uchar_t x );

vvcsqrt.wvNx2ushort_t vvcsqrt( vNx2ushort_t x );

vvcsqrt.hvNx4uchar_t vvcsqrt( vNx4uchar_t x );

vvsub.sat.wvNint_t vvsub_sat( vNint_t x, vNint_t y );

vvsub.sat.hvNx2short_t vvsub_sat( vNx2short_t x, vNx2short_t y );

vvsub.sat.bvNx4char_t vvsub_sat( vNx4char_t x, vNx4char_t y );

vvsub.satu.wvNuint_t vvsub_satu( vNuint_t x, vNuint_t y );

vvsub.satu.hvNx2ushort_t vvsub_satu( vNx2ushort_t x, vNx2ushort_t y );

vvsub.satu.bvNx4uchar_t vvsub_satu( vNx4uchar_t x, vNx4uchar_t y );

vvcsub.wvNint_t vvcsub( vNint_t x, vNint_t y, vNint_t z );

vvcsub.hvNx2short_t vvcsub( vNx2short_t x, vNx2short_t y, vNx2short_t z );

vvcsub.bvNx4char_t vvcsub( vNx4char_t x, vNx4char_t y, vNx4char_t z );

vvcsub.uu.wvNuint_t vvcsub_uu( vNuint_t x, vNuint_t y, vNuint_t z );

vvcsub.uu.hvNx2ushort_t vvcsub_uu( vNx2ushort_t x, vNx2ushort_t y, vNx2ushort_t z );

vvcsub.uu.bvNx4uchar_t vvcsub_uu( vNx4uchar_t x, vNx4uchar_t y, vNx4uchar_t z );

vvcsub1.wvNint_t vvcsub1( vNint_t x, vNint_t y, vNint_t z );

vvcsub1.hvNx2short_t vvcsub1( vNx2short_t x, vNx2short_t y, vNx2short_t z );

vvcsub1.bvNx4char_t vvcsub1( vNx4char_t x, vNx4char_t y, vNx4char_t z );

vvcsub1.uu.wvNuint_t vvcsub1_uu( vNuint_t x, vNuint_t y, vNuint_t z );

vvcsub1.uu.hvNx2ushort_t vvcsub1_uu( vNx2ushort_t x, vNx2ushort_t y, vNx2ushort_t z );

vvcsub1.uu.bvNx4uchar_t vvcsub1_uu( vNx4uchar_t x, vNx4uchar_t y, vNx4uchar_t z );

vvcsub1b.wvNint_t vvcsub1b( vNint_t x, vNint_t y, vNint_t z );

vvcsub1b.hvNx2short_t vvcsub1b( vNx2short_t x, vNx2short_t y, vNx2short_t z );

vvcsub1b.bvNx4char_t vvcsub1b( vNx4char_t x, vNx4char_t y, vNx4char_t z );

vvcsub1b.uu.wvNuint_t vvcsub1b_uu( vNuint_t x, vNuint_t y, vNuint_t z );

45

C Language



Mapped InstructionIntrinsic Function

vvcsub1b.uu.hvNx2ushort_t vvcsub1b_uu( vNx2ushort_t x, vNx2ushort_t y, vNx2ushort_t z );

vvcsub1b.uu.bvNx4uchar_t vvcsub1b_uu( vNx4uchar_t x, vNx4uchar_t y, vNx4uchar_t z );

vvcsubsub1.wvNint_t vvcsubsub1( vNint_t x, vNint_t y, vNint_t z );

vvcsubsub1.hvNx2short_t vvcsubsub1( vNx2short_t x, vNx2short_t y, vNx2short_t z );

vvcsubsub1.bvNx4char_t vvcsubsub1( vNx4char_t x, vNx4char_t y, vNx4char_t z );

vvcsubsub1.uu.wvNuint_t vvcsubsub1_uu( vNuint_t x, vNuint_t y, vNuint_t z );

vvcsubsub1.uu.hvNx2ushort_t vvcsubsub1_uu( vNx2ushort_t x, vNx2ushort_t y, vNx2ushort_t z );

vvcsubsub1.uu.bvNx4uchar_t vvcsubsub1_uu( vNx4uchar_t x, vNx4uchar_t y, vNx4uchar_t z );

vvcsubsub1b.wvNint_t vvcsubsub1b( vNint_t x, vNint_t y, vNint_t z );

vvcsubsub1b.hvNx2short_t vvcsubsub1b( vNx2short_t x, vNx2short_t y, vNx2short_t z );

vvcsubsub1b.bvNx4char_t vvcsubsub1b( vNx4char_t x, vNx4char_t y, vNx4char_t z );

vvcsubsub1b.uu.wvNuint_t vvcsubsub1b_uu( vNuint_t x, vNuint_t y, vNuint_t z );

vvcsubsub1b.uu.hvNx2ushort_t vvcsubsub1b_uu( vNx2ushort_t x, vNx2ushort_t y, vNx2ushort_t z
);

vvcsubsub1b.uu.bvNx4uchar_t vvcsubsub1b_uu( vNx4uchar_t x, vNx4uchar_t y, vNx4uchar_t z );

vvcsub.init.wvNint_t vvcsub_init( vNint_t x, vNint_t y );

vvcsub.init.hvNx2short_t vvcsub_init( vNx2short_t x, vNx2short_t y );

vvcsub.init.bvNx4char_t vvcsub_init( vNx4char_t x, vNx4char_t y );

vvcsub.init.uu.wvNuint_t vvcsub_init_uu( vNuint_t x, vNuint_t y );

vvcsub.init.uu.hvNx2ushort_t vvcsub_init_uu( vNx2ushort_t x, vNx2ushort_t y );

vvcsub.init.uu.bvNx4uchar_t vvcsub_init_uu( vNx4uchar_t x, vNx4uchar_t y );

1.9.4.6. Writing Your Own Intrinsic Function

Because you can use any assembly instruction with the __asm() keyword, you can use the __asm()
keyword to create your own intrinsic functions. The essence of an intrinsic function is that it is inlined.

1. First write a function with assembly in the body using the keyword __asm(). See Section 1.5, Using
Assembly in the C Source: __asm()

2. Next make sure that the function is inlined rather than being called.You can do this with the function
qualifier inline. This qualifier is discussed in more detail in Section 1.9.2, Inlining Functions: inline.

inline int __my_pow( int base, int power )
{
    int result;

__asm( "mov  %0,1\n"
           "1:\n\t"
           "sub   %2,%2,1\n\t"
           "mpy   %0,%0,%1\n\t"

46

TASKING SmartCode - PPU User Guide



           "bne   1p\n\t"
           : "=&r"(result)
           : "r"(base), "r"(power) );

    return result;
}

int main(void)
{
    int result;

    // call to function __my_pow
    result = __my_pow(3,2);

    return result;
}

Generated assembly code:

main:   .type func
    ; __my_pow code is inlined here
        mov     %r1,3
        mov     %r2,2

        mov  %r0,1
1:
        sub   %r2,%r2,1
        mpy   %r0,%r0,%r1
        bne   1p

As you can see, the generated assembly code for the function __my_pow is inlined rather than called.
Numeric labels are used for the loop.

1.10. Compiler Generated Sections

The compiler generates code and data in several types of sections. By default the C compiler generates
sections with the following names:

section_type_prefix.module_name.symbol_name

When you use a section renaming pragma, the compiler uses the following section naming convention:

section_type_prefix[.pragma_value]

The prefix depends on the type of the section and determines if the section is initialized, constant or
uninitialized and which addressing mode is used. The symbol_name is either the name of an object or
the name of a function.

The following table lists the section types and name prefixes.

47

C Language



DescriptionName section type prefixSection type

program code.textcode

initialized data.datadata

initialized small data.sdatasdata

initialized vector memory data.vdatavdata

uninitialized data (cleared).bssbss

uninitialized small data (cleared).sbsssbss

uninitialized vector memory data (cleared).vbssvbss

constant data.rodatarodata

1.10.1. Rename Sections

You can change the default section names with one of the following pragmas. The naming convention
for the renamed section is:

section_type_prefix[.pragma_value]

#pragma section type ["name" | default | restore]

With this pragma all sections of the specified type will be named "section_type_prefix.name". For example
with,

#pragma section data "where"

all sections of type data will have the name ".data.where".

#pragma section type will set section naming for sections of this type conform its name
"section_type_prefix".

#pragma section type default will restore the default section naming for sections of this type.

#pragma section type restore will restore the previous setting of #pragma section type.

#pragma section all ["name" | default | restore]

With this pragma all sections will be named "section_type_prefix.name", unless you use a type specific
renaming pragma. For example,

#pragma section all "here"

all sections have the syntax "section_type_prefix.here". For example, sections of type sdata will have
the name ".sdata.here"

#pragma section all will set section naming conform its name "section_type_prefix".

#pragma section all default will restore the default section naming (not for sections that have a
type specific renaming pragma).

48

TASKING SmartCode - PPU User Guide



#pragma section all restore will restore the previous setting of #pragma section all.

On the command line you can use the C compiler option --rename-sections[=name].

Note that when you use one of the above section renaming pragmas, the module name and symbol name
are no longer part of the section name.

49

C Language



50

TASKING SmartCode - PPU User Guide



Chapter 2. Assembly Language
This chapter describes the most important aspects of the TASKING assembly language for the Infineon
PPU and contains a detailed description of all built-in assembly functions, assembler directives and
controls. For a complete overview of the PPU architecture, refer to the DesignWare ARCv2 ISA
Programmer’s Reference Manual for DW EV7x Processors [Version 6367-001 April 2020, Synopsys,
Inc.] and the DesignWare EV7x Processor Databook [Version 6368-004 April 2020, Synopsys, Inc.]

2.1. Assembly Syntax

An assembly program consists of statements. A statement may optionally be followed by a comment.
Any source statement can be extended to more lines by including the line continuation character (\) as
the last character on the line. The length of a source statement (first line and continuation lines) is only
limited by the amount of available memory.

Mnemonics, directives and other keywords are case insensitive. Labels, symbols, directive arguments,
and literal strings are case sensitive.

The syntax of an assembly statement is:

[label:] [instruction | directive | macro_call] [;comment]

A label is a special symbol which is assigned the value and type of the current
program location counter. A label can consist of letters, digits and underscore
characters (_). The first character cannot be a digit. The label can also be a
number. A label which is prefixed by whitespace (spaces or tabs) has to be
followed by a colon (:). The size of an identifier is only limited by the amount of
available memory.

number is a number ranging from 1 to 255.This type of label is called a numeric
label or local label. To refer to a numeric label, you must put an n (next) or p
(previous) immediately after the label. This is required because the same label
number may be used repeatedly.

Examples:

   LAB1:   ; This label is followed by a colon and
           ; can be prefixed by whitespace
1: LP 1p   ; This is an endless loop
           ; using numeric labels

label

51



An instruction consists of a mnemonic and zero, one or more operands. It must
not start in the first column.

Operands are described in Section 2.3, Operands of an Assembly Instruction.
The instructions are described in the target's core Architecture Manual.

The instruction can also be a so-called 'alias instruction'. Alias instructions are
pseudo instructions (no instructions from the instruction set). Depending on the
situation in which an alias instruction is used, the assembler replaces the alias
instruction with appropriate real assembly instruction(s). For a complete list, see
Section 2.11, Alias Instructions.

instruction

With directives you can control the assembler from within the assembly source.
Except for preprocessing directives, these must not start in the first column.
Directives are described in Section 2.9, Assembler Directives and Controls.

directive

A call to a previously defined macro. It must not start in the first column. See
Section 2.10, Macro Operations.

macro_call

Comment, preceded by a ; (semicolon).comment

You can use empty lines or lines with only comments.

Apart from the assembly statements as described above, you can put a so-called 'control line' in your
assembly source file. These lines start with a $ in the first column and alter the default behavior of the
assembler.

$control

For more information on controls see Section 2.9, Assembler Directives and Controls.

2.2. Assembler Significant Characters

You can use all ASCII characters in the assembly source both in strings and in comments. Also the
extended characters from the ISO 8859-1 (Latin-1) set are allowed.

Some characters have a special meaning to the assembler. Special characters associated with expression
evaluation are described in Section 2.6.3, Expression Operators. Other special assembler characters
are:

DescriptionCharacter

Start of a comment;

Line continuation character or macro operator: argument concatenation\

Macro operator: return decimal value of a symbol?

Macro operator: return hex value of a symbol%

Macro operator: override local label^

Macro string delimiter or quoted string .DEFINE expansion character”

String constants delimiter'

52

TASKING SmartCode - PPU User Guide



DescriptionCharacter

Start of a built-in assembly function@

Location counter substitution*

String concatenation operator++

Substring delimiter[ ]

2.3. Operands of an Assembly Instruction

In an instruction, the mnemonic is followed by zero, one or more operands. An operand has one of the
following types:

DescriptionOperand

A symbolic name as described in Section 2.4, Symbol Names. Symbols can also occur
in expressions.

symbol

Any valid register as listed in Section 2.5, Registers.register

Any valid expression as described in Section 2.6, Assembly Expressions.expression

A combination of expression, register and symbol.address

Addressing modes

The PPU assembly language has several addressing modes. These are described in detail in the
DesignWare ARCv2 ISA Programmer’s Reference Manual for DW EV7x Processors [Version 6367-001
April 2020, Synopsys, Inc.].

2.4. Symbol Names

User-defined symbols

A user-defined symbol can consist of letters, digits and underscore characters (_). The first character
cannot be a digit. The size of an identifier is only limited by the amount of available memory. The case
of these characters is significant.You can define a symbol by means of a label declaration or an equate
or set directive.

Predefined preprocessor symbols

These symbols start and end with two underscore characters, __symbol__, and you can use them in your
assembly source to create conditional assembly. See Section 2.4.1, Predefined Preprocessor Symbols.

Labels

Symbols used for memory locations are referred to as labels. It is allowed to use reserved symbols as
labels as long as the label is followed by a colon.

53

Assembly Language



Reserved symbols

Symbol names and other identifiers starting with a period (.) are reserved for the system (for example for
directives or section names). Identifiers starting with an at sign ('@') are reserved for built-in assembler
functions. Instructions are also reserved. The case of these built-in symbols is insignificant.

Examples

Valid symbol names:

loop_1
ENTRY
a_B_c
_aBC

Invalid symbol names:

1_loop     ; starts with a number
r1         ; reserved register name
.DEFINE    ; reserved directive name

2.4.1. Predefined Preprocessor Symbols

The TASKING assembler knows the predefined symbols as defined in the table below. The symbols are
useful to create conditional assembly.

DescriptionSymbol

Identifies the assembler.You can use this symbol to flag parts of the source
which must be recognized by the asarc assembler only. It expands to 1.

__ASARC__

Identifies the build number of the assembler in the format yymmddqq (year,
month, day and quarter in UTC).

__BUILD__

Expands to the revision number of the assembler. Digits are represented
as they are; characters (for prototypes, alphas, betas) are represented by
-1. Examples: v1.0r1 -> 1, v1.0rb -> -1

__REVISION__

Identifies the assembler as a TASKING assembler. Expands to 1 if a
TASKING assembler is used.

__TASKING__

Identifies the version number of the assembler. For example, if you use
version 2.1r1 of the assembler, __VERSION__ expands to 2001 (dot and
revision number are omitted, minor version number in 3 digits).

__VERSION__

Example

.if @defined('__ASARC__')
  ; this part is only for the asarc assembler
...
.endif

54

TASKING SmartCode - PPU User Guide



2.5. Registers

To prevent conflicts with user-defined symbol names in an assembly language source file, the following
register names, either uppercase or lowercase, should be prefixed with a percent sign '%', for example
%R0.

R0  .. R31, R56, R58, R59, R60, R63   (general purpose registers)
VR0 .. VR31 (vector registers)
P0  .. P7   (predicate registers)
GP          (alias for R26)
FP          (alias for R27)
SP          (alias for R28)
ILINK       (alias for R29)
BLINK       (alias for R31)
ACCL        (alias for R58)
ACCH        (alias for R59)
LP_COUNT    (alias for R60)
PCL         (alias for R63)

Among the vector registers, registers VR16 to VR31 are used as single-wide accumulator registers and
eight vector register pairs (VR16-VR17 ..VR30-VR31) are used as double-wide accumulators.The default
double-wide accumulator is register pair VR30-VR31 and the default single-wide accumulator is VR30.

If no predicate register is used as suffix in an instruction mnemonic, then P0 is taken as the default
predicate register.

2.5.1. Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from assembly. The
SFRs are defined in a special function register definition file (*.def) as symbol names for use by the
assembler.The assembler can include the SFR definition file with the command line option --include-file
(-H). SFRs are defined with .EQU directives.

For example (from regppu.def):

PC      .equ  0x006

Without an SFR file the assembler only knows the general purpose registers as listed in Section 2.5,
Registers.

2.6. Assembly Expressions

An expression is a combination of symbols, constants, operators, and parentheses which represent a
value that is used as an operand of an assembler instruction (or directive).

Expressions can contain user-defined labels (and their associated integer or floating-point values), and
any combination of integers, floating-point numbers, or ASCII literal strings.

Expressions follow the conventional rules of algebra and boolean arithmetic.

55

Assembly Language



Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker. Relocatable expressions can only
contain integral functions; floating-point functions and numbers are not supported by the ELF/DWARF
object format.

The assembler evaluates expressions with 64-bit precision in two's complement.

The syntax of an expression can be any of the following:

• numeric constant

• string

• symbol

• expression binary_operator expression

• unary_operator expression

• (expression)

• function call

All types of expressions are explained in separate sections.

2.6.1. Numeric Constants

Numeric constants can be used in expressions. If there is no prefix or suffix, by default the assembler
assumes the number is a decimal number. Prefixes and suffixes can be used in either lowercase or
uppercase.

ExampleDescriptionBase

0B1101
11001010b

A 0b or 0B prefix followed by binary digits (0,1). Or use a b or
B suffix.

Binary

0x12FF
0x45
0fa10h

A 0x or 0X prefix followed by hexadecimal digits (0-9, A-F, a-f).
Or use a h or H suffix.

Hexadecimal

12
1245

Decimal digits (0-9).Decimal integer

6E10
.6
3.14
2.7e10

Decimal digits (0-9), includes a decimal point, or an 'E' or 'e'
followed by the exponent.

Decimal
floating-point

56

TASKING SmartCode - PPU User Guide



2.6.2. Strings

ASCII characters, enclosed in single (') or double (”) quotes constitute an ASCII string. Strings between
double quotes allow symbol substitution by a .DEFINE directive, whereas strings between single quotes
are always literal strings. Both types of strings can contain escape characters.

Strings constants in expressions are evaluated to a number (each character is replaced by its ASCII
value). Strings in expressions can have a size of up to 8 characters or less depending on the operand of
an instruction or directive; any subsequent characters in the string are ignored. In this case the assembler
issues a warning. An exception to this rule is when a string is used in a .DB assembler directive; in that
case all characters result in a constant value of the specified size. Null strings have a value of 0.

Square brackets ([ ]) delimit a substring operation in the form:

[string,offset,length]

offset is the start position within string. length is the length of the desired substring. Both values may not
exceed the size of string.

Examples

'ABCD'              ; (0x44434241)
'''79'              ; to enclose a quote double it
"A\"BC"             ; or to enclose a quote escape it
'AB'+1              ; (0x4341) string used in expression
''                  ; null string
.DW 'abcdef'        ; (0x64636261) 'ef' are ignored
                    ; warning: string value truncated
'ab'++'cd'          ; you can concatenate 
                    ; two strings with the '++' operator.
                    ; This results in 'abcd'
['TASKING',0,4]     ; results in the substring 'TASK'

2.6.3. Expression Operators

The next table shows the assembler operators.They are ordered according to their precedence. Operators
of the same precedence are evaluated left to right. Parenthetical expressions have the highest priority
(innermost first).

Valid operands include numeric constants, literal ASCII strings and symbols.

Most assembler operators can be used with both integer and floating-point values. If one operand has
an integer value and the other operand has a floating-point value, the integer is converted to a floating-point
value before the operator is applied. The result is a floating-point value.

DescriptionNameOperatorType

Expressions enclosed by parenthesis are evaluated
first.

parenthesis( )

Returns the value of its operand.plus+Unary

57

Assembly Language



DescriptionNameOperatorType

Returns the negative of its operand.minus-

Integer only. Returns the one’s complement of its
operand. It cannot be used with a floating-point
operand.

one's complement~

Returns 1 if the operands' value is 0; otherwise 0.
For example, if buf is 0 then !buf is 1. If buf has
a value of 1000 then !buf is 0.

logical negate!

Yields the product of its operands.multiplication*Arithmetic

Yields the quotient of the division of the first operand
by the second. For integer operands, the divide
operation produces a truncated integer result.

division/

Integer only.This operator yields the remainder from
the division of the first operand by the second.

modulo%

Yields the sum of its operands.addition+

Yields the difference of its operands.subtraction-

Integer only. Causes the left operand to be shifted
to the left (and zero-filled) by the number of bits
specified by the right operand.

shift left<<Shift

Integer only. Causes the left operand to be shifted
to the right by the number of bits specified by the
right operand. The sign bit will be extended.

shift right>>

Returns an integer 1 if the indicated condition is
TRUE or an integer 0 if the indicated condition is
FALSE.

For example, if D has a value of 3 and E has a value
of 5, then the result of the expression D<E is 1, and
the result of the expression D>E is 0.

Use tests for equality involving floating-point values
with caution, since rounding errors could cause
unexpected results.

less than<Relational

less than or equal<=

greater than>

greater than or equal>=

equal==

not equal!=

Integer only.Yields the bitwise AND function of its
operand.

AND&Bit and
Bitwise

Integer only.Yields the bitwise OR function of its
operand.

OR|

Integer only.Yields the bitwise exclusive OR function
of its operands.

exclusive OR^

Returns an integer 1 if both operands are non-zero;
otherwise, it returns an integer 0.

logical AND&&Logical

Returns an integer 1 if either of the operands is
non-zero; otherwise, it returns an integer 1

logical OR||

58

TASKING SmartCode - PPU User Guide



The relational operators and logical operators are intended primarily for use with the conditional assembly
.if directive, but can be used in any expression.

2.7. Working with Sections

Sections are absolute or relocatable blocks of contiguous memory that can contain code or data. Some
sections contain code or data that your program declared and uses directly, while other sections are
created by the compiler or linker and contain debug information or code or data to initialize your application.
These sections can be named in such a way that different modules can implement different parts of these
sections. These sections are located in memory by the linker (using the linker script language, LSL) so
that concerns about memory placement are postponed until after the assembly process.

All instructions and directives which generate data or code must be within an active section.The assembler
emits a warning if code or data starts without a section definition. The compiler automatically generates
sections. If you program in assembly you have to define sections yourself.

For more information about locating sections see Section 5.8.8, The Section Layout Definition: Locating
Sections.

Section definition

Sections are defined with the .SECTION/.ENDSEC directive and have a name.The names have a special
meaning to the locating process and have to start with a predefined name, optionally extended by a dot
'.' and a user defined name. Optionally, you can specify the at() attribute to locate a section at a specific
address.

  .SECTION  name[,at(address)]
   ; instructions etc.
  .ENDSEC

See the description of the .SECTION directive for more information.

Examples

  .SECTION .data               ; Declare a .data section
   ; ...
  .ENDSEC

  .SECTION .data.abs, at(0x0)  ; Declare a .data.abs section at 
                               ; an absolute address
   ; ...
  .ENDSEC

2.8. Built-in Assembly Functions

The TASKING assembler has several built-in functions to support data conversion, string comparison,
and math computations.You can use functions as terms in any expression.

59

Assembly Language



Syntax of an assembly function

@function_name([argument[,argument]...])

Functions start with the '@' character and have zero or more arguments, and are always followed by
opening and closing parentheses. White space (a blank or tab) is not allowed between the function name
and the opening parenthesis and between the (comma-separated) arguments.

The names of assembly functions are case insensitive.

Overview of assembly functions

DescriptionFunction

Test whether macro argument is present@ARG('symbol' | expr)

Return number of macro arguments@CNT()

Test whether symbol exists@DEFINED('symbol' | symbol)

Least significant byte of the expression@LSB(expr)

Least significant half word of the absolute expression@LSH(expr)

Least significant word of the expression@LSW(expr)

Most significant byte of the expression@MSB(expr)

Most significant half word of the absolute expression@MSH(expr)

Most significant word of the expression@MSW(expr)

Access small data area objects@SDA(expr)

Concatenate str1 and str2@STRCAT(str1,str2)

Compare str1 with str2@STRCMP(str1,str2)

Return length of string@STRLEN(string)

Return position of str2 in str1@STRPOS(str1,str2[,start])

Return substring@STRSUB(str,expr1,expr2)

Detailed Description of Built-in Assembly Functions

@ARG('symbol' | expression)

Returns integer 1 if the macro argument represented by symbol or expression is present, 0 otherwise.

You can specify the argument with a symbol name (the name of a macro argument enclosed in single
quotes) or with expression (the ordinal number of the argument in the macro formal argument list). If you
use this function when macro expansion is not active, the assembler issues a warning.

Example:

  .IF @ARG('TWIDDLE') ;is argument twiddle present?
  .IF @ARG(1)         ;is first argument present?

60

TASKING SmartCode - PPU User Guide



@CNT()

Returns the number of macro arguments of the current macro expansion as an integer. If you use this
function when macro expansion is not active, the assembler issues a warning.

Example:

  ARGCOUNT .SET @CNT() ; reserve argument count

@DEFINED('symbol' | symbol)

Returns 1 if symbol has been defined, 0 otherwise. If symbol is quoted, it is looked up as a .DEFINE
symbol; if it is not quoted, it is looked up as an ordinary symbol, macro or label.

Example:

  .IF @DEFINED('ANGLE')            ;is symbol ANGLE defined?
  .IF @DEFINED(ANGLE)              ;does label ANGLE exist?

@LSB(expression)

Returns the least significant byte of the result of the expression.The result of the expression is calculated
as 16 bits.

Example:

  .DB  @LSB(0x1234)   ; stores 0x34
  .DB  @MSB(0x1234)   ; stores 0x12

@LSH(expression)

Returns the least significant half word (bits 0..15) of the result of the absolute expression. The result of
the expression is calculated as a word (32 bits).

@LSW(expression)

Returns the least significant word (bits 0..31) of the result of the expression. The result of the expression
is calculated as a double-word (64 bits).

Example:

  .DW  @LSW(0x12345678)   ; stores 0x5678
  .DW  @MSW(0x123456)     ; stores 0x0012

@MSB(expression)

Returns the most significant byte of the result of the expression.The result of the expression is calculated
as 16 bits.

61

Assembly Language



@MSH(expression)

Returns the most significant half word (bits 16..31) of the result of the absolute expression. The result of
the expression is calculated as a word (32 bits). @MSH(expression) is equivalent to
((expression>>16) & 0xffff).

@MSW(expression)

Returns the most significant word of the result of the expression.The result of the expression is calculated
as a double-word (64 bits).

@SDA(expr)

Designates access to objects in the small data area by means of the global pointer (%gp). In other words,
this function is used by instructions along with gp-relative symbols to access small data area objects.

Example:

  ld %r0,[%gp, @sda(var)]

This instruction loads the small data object pointed by the offset var to register r0.

@STRCAT(string1,string2)

Concatenates string1 and string2 and returns them as a single string.You must enclose string1 and
string2 either with single quotes or with double quotes.

Example:

  .DEFINE ID "@STRCAT('TAS','KING')"  ; ID = 'TASKING'

@STRCMP(string1,string2)

Compares string1 with string2 by comparing the characters in the string.The function returns the difference
between the characters at the first position where they disagree, or zero when the strings are equal:

<0 if string1 < string2

0 if string1 == string2

>0 if string1 > string2

Example:

  .IF (@STRCMP(STR,'MAIN'))==0  ; does STR equal 'MAIN'?

@STRLEN(string)

Returns the length of string as an integer.

Example:

62

TASKING SmartCode - PPU User Guide



  SLEN .SET @STRLEN('string')    ; SLEN = 6

@STRPOS(string1,string2[,start])

Returns the position of string2 in string1 as an integer. If string2 does not occur in string1, the last string
position + 1 is returned.

With start you can specify the starting position of the search. If you do not specify start, the search is
started from the beginning of string1.

Example:

  ID .set @STRPOS('TASKING','ASK')  ; ID = 1
  ID .set @STRPOS('TASKING','BUG')  ; ID = 7

@STRSUB(string,expression1,expression2)

Returns the substring from string as a string. expression1 is the starting position within string, and
expression2 is the length of the desired string. The assembler issues an error if either expression1 or
expression2 exceeds the length of string. Note that the first position in a string is position 0.

Example:

  .DEFINE  ID  "@STRSUB('TASKING',3,4)"  ;ID = 'KING'

2.9. Assembler Directives and Controls

An assembler directive is simply a message to the assembler. Assembler directives are not translated
into machine instructions. There are three main groups of assembler directives.

• Assembler directives that tell the assembler how to go about translating instructions into machine code.
This is the most typical form of assembly directives. Typically they tell the assembler where to put a
program in memory, what space to allocate for variables, and allow you to initialize memory with data.
When the assembly source is assembled, a location counter in the assembler keeps track of where
the code and data is to go in memory.

The following directives fall under this group:

• Assembly control directives

• Symbol definition and section directives

• Data definition / Storage allocation directives

• High Level Language (HLL) directives

• Directives that are interpreted by the macro preprocessor.These directives tell the macro preprocessor
how to manipulate your assembly code before it is actually being assembled.You can use these
directives to write macros and to write conditional source code. Parts of the code that do not match the
condition, will not be assembled at all.

63

Assembly Language



• Some directives act as assembler options and most of them indeed do have an equivalent assembler
(command line) option.The advantage of using a directive is that with such a directive you can overrule
the assembler option for a particular part of the code. Directives of this kind are called controls. A typical
example is to tell the assembler with an option to generate a list file while with the controls $LIST ON
and $LIST OFF you overrule this option for a part of the code that you do not want to appear in the
list file. Controls always appear on a separate line and start with a '$' sign in the first column.

The following controls are available:

• Assembly listing controls

• Miscellaneous controls

Each assembler directive or control has its own syntax.You can use assembler directives and controls
in the assembly code as pseudo instructions.

Some assembler directives can be preceded with a label. If you do not precede an assembler directive
with a label, you must use white space instead (spaces or tabs).The assembler recognizes both uppercase
and lowercase for directives.

2.9.1. Assembler Directives

Overview of assembly control directives

DescriptionDirective

Indicates the start and end of a bundle of instructions.{, .}

Indicates the end of an assembly module.END

Include file.INCLUDE

Programmer generated message.MESSAGE

Overview of symbol definition and section directives

DescriptionDirective

Create an alias for a symbol.ALIAS

Set permanent value to a symbol.EQU

Import global section symbol.EXTERN

Declare global section symbol.GLOBAL

Declare local section symbol.LOCAL

Start a new section.SECTION, .ENDSEC

Set temporary value to a symbol.SET

Set size of symbol in the ELF symbol table.SIZE

Specify name of original C source file.SOURCE

Set symbol type in the ELF symbol table.TYPE

Mark a symbol as 'weak'.WEAK

64

TASKING SmartCode - PPU User Guide



Overview of data definition / storage allocation directives

DescriptionDirective

Align location counter.ALIGN

Define ASCII string without / with ending NULL byte.ASCII, .ASCIIZ

Define block storage (initialized).BS, .BSB, .BSH, .BSW,
.BSD

Define byte.DB

Define half word (16 bits).DH

Define word (32 bits).DW

Define double-word (64 bits).DD

Define a 64-bit floating-point constant.DOUBLE

Define storage.DS, .DSB, .DSH, .DSW,
.DSD

Define a 32-bit floating-point constant.FLOAT

Overview of macro preprocessor directives

DescriptionDirective

Define substitution string.DEFINE

Repeat sequence of source lines n times.FOR, .ENDFOR

Conditional assembly directive.IF, .ELIF, .ELSE

End of conditional assembly directive.ENDIF

Exit macro.EXITM

Define macro.MACRO, .ENDM

Undefine (purge) macro.PMACRO

Repeat sequence of source lines.REPEAT, .ENDREP

Undefine .DEFINE symbol.UNDEF

Overview of HLL directives

DescriptionDirective

Pass call tree information and/or stack usage information.CALLS

Pass C compiler invocation.COMPILER_INVOCATION

Pass C compiler name.COMPILER_NAME

Pass C compiler version header.COMPILER_VERSION

Pass MISRA C information.MISRAC

65

Assembly Language



.{, .}

Syntax

.{
instruction1
instruction2

  ...
.}

Description

With the .{ and .} directives you can indicate the beginning and the end of a bundle of instructions. The
assembler assembles the instructions that are given within these directives into a variable length instruction
word (VLIW), also called Super instruction.The assembler takes the vector instructions in the same order
given to form a valid bundle. If a valid bundle cannot be formed, then the assembler issues an error
message.

You can use these directives only in code sections and you can only specify instructions within these
directives.

Examples

A bundle of a vector instruction and a scalar instruction:

  .{
  vvadd %vr1, %vr2, %vr3
  add %r0, %r2, %r3
  .} 

A bundle of two vector instructions:

  .{
  vvabs.h %vr3, %vr19
  vvsub.b %vr1, %vr2, %vr12
  .} 

A bundle of two predicated vector instructions and a scalar instruction:

  .{
  vvsub.h.p2 %vr1, %vr2, 0x232
  vvadd.b.p6 %vr4, %vr5, %vr8
  add_s %r1, %r2, %r3
  .}

Related Information

-

66

TASKING SmartCode - PPU User Guide



.ALIAS

Syntax

alias-name .ALIAS symbol-name

Description

With the .ALIAS directive you can create an alias of a symbol. The C compiler generates this directive
when you use the #pragma alias.

Example

exit .ALIAS _Exit

Related information

Pragma alias

67

Assembly Language



.ALIGN

Syntax

.ALIGN expression

Description

With the .ALIGN directive you instruct the assembler to align the location counter. By default the assembler
aligns on one byte.

When the assembler encounters the .ALIGN directive, it advances the location counter to an address
that is aligned as specified by expression and places the next instruction or directive on that address.
The alignment is in minimal addressable units (MAUs).The assembler fills the ‘gap’ with NOP instructions
for code sections or with zeros for data sections. If the location counter is already aligned on the specified
alignment, it remains unchanged. The location of absolute sections will not be changed.

The expression must be a power of two: 2, 4, 8, 16, ... If you specify another value, the assembler changes
the alignment to the next higher power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value occurring in that section.

A label is not allowed before this directive.

Example

Example

  .SECTION  .text
  .ALIGN 4     ; the assembler aligns
instruction  ; this instruction at 4 MAUs and

               ; fills the 'gap' with NOP instructions.
  .ENDSEC

  .SECTION  .text
  .ALIGN 3     ; WRONG: not a power of two, the
instruction  ; assembler aligns this instruction at

               ; 4 MAUs and issues a warning.
  .ENDSEC

68

TASKING SmartCode - PPU User Guide



.ASCII, .ASCIIZ

Syntax

[label:] .ASCII string[,string]...

[label:] .ASCIIZ string[,string]...

Description

With the .ASCII or .ASCIIZ directive the assembler allocates and initializes memory for each string
argument.

The .ASCII directive does not add a NULL byte to the end of the string. The .ASCIIZ directive does
add a NULL byte to the end of the string. The "z" in .ASCIIZ stands for "zero". Use commas to separate
multiple strings.

Example

STRING:  .ASCII  "Hello world"
STRINGZ: .ASCIIZ "Hello world"

Note that with the .DB directive you can obtain exactly the same effect:

STRING:  .DB  "Hello world"    ; without a NULL byte
STRINGZ: .DB  "Hello world",0  ; with a NULL byte

Related Information

.DB (Define a constant byte)

69

Assembly Language



.BS, .BSB, .BSH, .BSW, .BSD

Syntax

[label] .BS count[,value]
[label] .BSB count[,value]
[label] .BSH count[,value]
[label] .BSW count[,value]
[label] .BSD count[,value]

Description

With the .BS directive the assembler reserves a block of memory. The reserved block of memory is
initialized to the value of value, or zero if omitted.

With count you specify the number of minimum addressable units (MAUs) you want to reserve, and how
much the location counter will advance. The expression must be an integer greater than zero and cannot
contain any forward references to address labels (labels that have not yet been defined).

With value you can specify a value to initialize the block with. Only the least significant MAU of value is
used. If you omit value, the default is zero.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

You cannot initialize of a block of memory in sections with prefix .bss. In those sections, the
assembler issues a warning and only reserves space, just as with .DS.

The .BSB, .BSH, .BSW and .BSD directives are variants of the .BS directive.The difference is the number
of bits that are reserved for the count argument:

Reserved bitsDirective

8.BSB

16.BSH

32.BSW

64.BSD

Example

The .BSB directive is for example useful to define and initialize an array that is only partially filled:

    .section .data
    .DB 84,101,115,116  ; initialize 4 bytes
    .BSB 96,0xFF        ; reserve another 96 bytes, initialized with 0xFF
    .endsec

70

TASKING SmartCode - PPU User Guide



Related Information

.DB (Define Memory)

.DS (Define Storage)

71

Assembly Language



.CALLS

Syntax

.CALLS ’caller’,’callee’

or

.CALLS ’caller’,’’,stack_usage

Description

The first syntax creates a call graph reference between caller and callee.The linker needs this information
to build a call graph. caller and callee are names of functions.

The second syntax specifies stack information. When callee is an empty name, this means we define the
stack usage of the function itself. The value specified is the stack usage in bytes at the time of the call
including the return address.

This information is used by the linker to compute the used stack within the application. The information
is found in the generated linker map file within the Memory Usage.

This directive is generated by the C compiler. Use the .CALLS directive in hand-coded assembly when
the assembly code calls a C function. If you manually add .CALLS directives, make sure they connect
to the compiler generated .CALLS directives: the name of the caller must also be named as a callee in
another directive.

A label is not allowed before this directive.

Example

  .CALLS 'main','nfunc'

Indicates that the function main calls the function nfunc.

  .CALLS 'main','',8

The function main uses 8 bytes on the stack.

72

TASKING SmartCode - PPU User Guide



.COMPILER_INVOCATION, .COMPILER_NAME, .COMPILER_VERSION

Syntax

.COMPILER_VERSION "version_header"

.COMPILER_INVOCATION "invocation"

.COMPILER_NAME "name"

Description

The C compiler generates information about itself and the invocation at the start of the assembly source.
This way you can always see how the assembly source file was generated. When you assemble the
source file, this information will appear in .note sections in the object file.

A label is not allowed before these directives.

Example

.COMPILER_VERSION "TASKING SmartCode - PPU C compiler vx.yrz Build yymmddqq"

.COMPILER_INVOCATION "carc test.c"

.COMPILER_NAME "carc"

73

Assembly Language



.DB, .DH, .DW, .DD

Syntax

[label] .DB argument[,argument]...
[label] .DH argument[,argument]...
[label] .DW argument[,argument]...
[label] .DD argument[,argument]...

Description

With these directive you can define memory. With each directive the assembler allocates and initializes
one or more bytes of memory for each argument.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

An argument can be a single- or multiple-character string constant, an expression or empty. Multiple
arguments must be separated by commas with no intervening spaces. Empty arguments are stored as
0 (zero).

The following table shows the number of bits initialized.

BitsDirective

8.DB

16.DH

32.DW

64.DD

The value of the arguments must be in range with the size of the directive; floating-point numbers are not
allowed. If the evaluated argument is too large to be represented in a half word / word / double-word, the
assembler issues a warning and truncates the value.

String constants

Single-character strings are stored in a byte whose lower seven bits represent the ASCII value of the
character, for example:

.DB 'R'        ; = 0x52

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like ‘\n’ are permitted.

.DB 'AB',,'C'  ; = 0x41420043 (second argument is empty)

Example

When a string is supplied as argument of a directive that initializes multiple bytes, each character in the
string is stored in consecutive bytes whose lower seven bits represent the ASCII value of the character.
For example:

74

TASKING SmartCode - PPU User Guide



HTBL: .DH 'ABC',,'D'   ; results in 0x424100004400 , the 'C' is truncated
WTBL: .DW 'ABC'        ; results in 0x43424100

Related Information

.BS (Block Storage)

.DS (Define Storage)

75

Assembly Language



.DEFINE

Syntax

.DEFINE symbol  string

Description

With the .DEFINE directive you define a substitution string that you can use on all following source lines.
The assembler searches all succeeding lines for an occurrence of symbol, and replaces it with string. If
the symbol occurs in a double quoted string it is also replaced. Strings between single quotes are not
expanded.

This directive is useful for providing better documentation in the source program. A symbol can consist
of letters, digits and underscore characters (_), and the first character cannot be a digit.

Macros represent a special case. .DEFINE directive translations will be applied to the macro definition
as it is encountered. When the macro is expanded, any active .DEFINE directive translations will again
be applied.

The assembler issues a warning if you redefine an existing symbol.

A label is not allowed before this directive.

Example

Suppose you defined the symbol LEN with the substitution string "32":

  .DEFINE LEN "32"

Then you can use the symbol LEN for example as follows:

  .DS LEN
  .MESSAGE "The length is: LEN"

The assembler preprocessor replaces LEN with "32" and assembles the following lines:

  .DS 32
  .MESSAGE "The length is: 32"

Related Information

.UNDEF (Undefine a .DEFINE symbol)

.MACRO, .ENDM (Define a macro)

76

TASKING SmartCode - PPU User Guide



.DS, .DSB, .DSH, .DSW, .DSD

Syntax

[label] .DS expression
[label] .DSB expression
[label] .DSH expression
[label] .DSW expression
[label] .DSD expression

Description

With the .DS directive the assembler reserves a block in memory. The reserved block of memory is not
initialized to any value.

With the expression you specify the number of MAUs (Minimal Addressable Units) that you want to
reserve, and how much the location counter will advance. The expression must evaluate to an integer
greater than zero and cannot contain any forward references (symbols that have not yet been defined).

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

The .DSB, .DSH, .DSW and .DSD directives are variants of the .DS directive.The difference is the number
of bits that are reserved per expression argument:

Reserved bitsDirective

8.DSB

16.DSH

32.DSW

64.DSD

Example

      .section .bss
RES:  .DS 5+3   ; allocate 8 bytes
      .endsec

Related Information

.BS (Block Storage)

.DB (Define Memory)

77

Assembly Language



.END

Syntax

.END

Description

With the optional .END directive you tell the assembler that the end of the module is reached. If the
assembler finds assembly source lines beyond the .END directive, it ignores those lines and issues a
warning.

You cannot use the .END directive in a macro expansion.

The assembler does not allow a label with this directive.

Example

       ; source lines
    .END                ; End of assembly module

Related Information

-

78

TASKING SmartCode - PPU User Guide



.EQU

Syntax

symbol .EQU expression

Description

With the .EQU directive you assign the value of expression to symbol permanently. The expression can
be relocatable or absolute and forward references are allowed. Once defined, you cannot redefine the
symbol. With the .GLOBAL directive you can declare the symbol global.

Example

To assign the value 0x400 permanently to the symbol MYSYMBOL:

MYSYMBOL .EQU  0x4000

You cannot redefine the symbol MYSYMBOL after this.

Related Information

.SET (Set temporary value to a symbol)

79

Assembly Language



.EXITM

Syntax

.EXITM

Description

With the .EXITM directive the assembler will immediately terminate a macro expansion. It is useful when
you use it with the conditional assembly directive .IF to terminate macro expansion when, for example,
error conditions are detected.

A label is not allowed before this directive.

Example

CALC  .MACRO  XVAL,YVAL
      .IF     XVAL<0
      .MESSAGE F 'Macro parameter value out of range'
      .EXITM  ;Exit macro
      .ENDIF
        .
        .
        .
      .ENDM

Related Information

.MACRO, .ENDM (Define a macro)

80

TASKING SmartCode - PPU User Guide



.EXTERN

Syntax

.EXTERN symbol[,symbol]...

Description

With the .EXTERN directive you define an external symbol. It means that the specified symbol is referenced
in the current module, but is not defined within the current module. This symbol must either have been
defined outside of any module or declared as globally accessible within another module with the .GLOBAL
directive.

If you do not use the .EXTERN directive and the symbol is not defined within the current module, the
assembler issues a warning and inserts the .EXTERN directive.

A label is not allowed with this directive.

Example

     .EXTERN AA,CC,DD      ;defined elsewhere

Related Information

.GLOBAL (Declare global section symbol)

.LOCAL (Declare local section symbol)

81

Assembly Language



.FLOAT, .DOUBLE

Syntax

[label:].FLOAT expression[,expression]...

[label:].DOUBLE expression[,expression]...

Description

With the .FLOAT or .DOUBLE directive the assembler allocates and initializes a floating-point number
(32 bits) or a double (64 bits) in memory for each argument.

An expression can be:

• a floating-point expression

• NULL (indicated by two adjacent commas: ,,)

You can represent a constant as a signed whole number with fraction or with the 'e' format as used in the
C language. For example, 12.457 and +0.27E-13 are legal floating-point constants.

If the evaluated argument is too large to be represented in a single word / double-word, the assembler
issues an error and truncates the value.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

FLT:  .FLOAT   12.457,+0.27E-13
DBL:  .DOUBLE  12.457,+0.27E-13

Related Information

.DS (Define Storage)

82

TASKING SmartCode - PPU User Guide



.FOR, .ENDFOR

Syntax

[label] .FOR var IN expression[,expression]...
    ....

.ENDFOR

or:

[label] .FOR var IN start TO end [STEP step]
    ....

.ENDFOR

Description

With the .FOR/.ENDFOR directive you can repeat a block of assembly source lines with an iterator. As
shown by the syntax, you can use the .FOR/.ENDFOR in two ways.

1. In the first method, the block of source statements is repeated as many times as the number of
arguments following IN. If you use the symbol var in the assembly lines between .FOR and .ENDFOR,
for each repetition the symbol var is substituted by a subsequent expression from the argument list. If
the argument is a null, then the block is repeated with each occurrence of the symbol var removed. If
an argument includes an embedded blank or other assembler-significant character, it must be enclosed
with single quotes.

2. In the second method, the block of source statements is repeated using the symbol var as a counter.
The counter passes all integer values from start to end with a step. If you do not specify step, the
counter is increased by one for every repetition.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

In the following example the block of source statements is repeated 4 times (there are four arguments).
With the .DB directive you allocate and initialize a byte of memory for each repetition of the loop (a word
for the .DW directive). Effectively, the preprocessor duplicates the .DB and .DW directives four times in
the assembly source.

  .FOR VAR1 IN 1,2+3,4,12
      .DB VAR1
      .DW (VAR1*VAR1)
  .ENDFOR

In the following example the loop is repeated 16 times. With the .DW directive you allocate and initialize
four bytes of memory for each repetition of the loop. Effectively, the preprocessor duplicates the .DW
directive 16 times in the assembled file, and substitutes VAR2 with the subsequent numbers.

  .FOR VAR2 IN 1 to 0x10
      .DW (VAR1*VAR1)
  .ENDFOR

83

Assembly Language



Related Information

.REPEAT,.ENDREP (Repeat sequence of source lines)

84

TASKING SmartCode - PPU User Guide



.GLOBAL

Syntax

.GLOBAL symbol[,symbol]...

Description

All symbols or labels defined in the current section or module are local to the module by default.You can
change this default behavior with assembler option --symbol-scope=global.

With the .GLOBAL directive you declare one of more symbols as global. It means that the specified
symbols are defined within the current section or module, and that those definitions should be accessible
by all modules.

To access a symbol, defined with .GLOBAL, from another module, use the .EXTERN directive.

Only program labels and symbols defined with .EQU can be made global.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.

The assembler does not allow a label with this directive.

Example

LOOPA .EQU 1          ; definition of symbol LOOPA
      .GLOBAL  LOOPA  ; LOOPA will be globally
                      ; accessible by other modules

Related Information

.EXTERN (Import global section symbol)

.LOCAL (Declare local section symbol)

85

Assembly Language



.IF, .ELIF, .ELSE, .ENDIF

Syntax

.IF expression
   .
   .
  [.ELIF expression]  ; the .ELIF directive is optional
   .
   .
  [.ELSE]           ; the .ELSE directive is optional
   .
   .
.ENDIF

Description

With the .IF/.ENDIF directives you can create a part of conditional assembly code. The assembler
assembles only the code that matches a specified condition.

The expression must evaluate to an absolute integer and cannot contain forward references. If expression
evaluates to zero, the IF-condition is considered FALSE, any non-zero result of expression is considered
as TRUE.

If the optional .ELSE and/or .ELIF directives are not present, then the source statements following the
.IF directive and up to the next .ENDIF directive will be included as part of the source file being assembled
only if the expression had a non-zero result.

If the expression has a value of zero, the source file will be assembled as if those statements between
the .IF and the .ENDIF directives were never encountered.

If the .ELSE directive is present and expression has a nonzero result, then the statements between the
.IF and .ELSE directives will be assembled, and the statement between the .ELSE and .ENDIF directives
will be skipped. Alternatively, if expression has a value of zero, then the statements between the .IF and
.ELSE directives will be skipped, and the statements between the .ELSE and .ENDIF directives will be
assembled.

You can nest .IF directives to any level. The .ELSE and .ELIF directive always refer to the nearest
previous .IF directive.

A label is not allowed with this directive.

Example

Suppose you have an assemble source file with specific code for a test version, for a demo version and
for the final version. Within the assembly source you define this code conditionally as follows:

  .IF   TEST
  ... ; code for the test version
  .ELIF DEMO
  ... ; code for the demo version
  .ELSE

86

TASKING SmartCode - PPU User Guide



  ... ; code for the final version
  .ENDIF

Before assembling the file you can set the values of the symbols TEST and DEMO in the assembly source
before the .IF directive is reached. For example, to assemble the demo version:

TEST .SET 0
DEMO .SET 1

You can also define the symbols on the command line with the assembler option --define (-D):

asarc --define=DEMO --define=TEST=0 test.asm

87

Assembly Language



.INCLUDE

Syntax

.INCLUDE "filename" | <filename>

Description

With the .INCLUDE directive you include another file at the exact location where the .INCLUDE occurs.
This happens before the resulting file is assembled. The .INCLUDE directive works similarly to the
#include statement in C. The source from the include file is assembled as if it followed the point of the
.INCLUDE directive. When the end of the included file is reached, assembly of the original file continues.

The string specifies the filename of the file to be included. The filename must be compatible with the
operating system (forward/backward slashes) and can contain a directory specification.

If an absolute pathname is specified, the assembler searches for that file. If a relative path is specified
or just a filename, the order in which the assembler searches for include files is:

1. The current directory if you use the "filename" construction.

The current directory is not searched if you use the <filename> syntax.

2. The path that is specified with the assembler option --include-directory.

3. The path that is specified in the environment variable ASARCINC when the product was installed.

4. The default include directory in the installation directory.

The assembler does not allow a label with this directive.

Example

.INCLUDE 'storage\mem.asm'    ; include file

.INCLUDE <data.asm>           ; Do not look in
                              ; current directory

88

TASKING SmartCode - PPU User Guide



.LOCAL

Syntax

.LOCAL symbol[,symbol]...

Description

All symbols or labels defined in the current section or module are local to the module by default.You can
change this default behavior with assembler option --symbol-scope=global.

With the .LOCAL directive you declare one of more symbols as local. It means that the specified symbols
are explicitly local to the module in which you define them.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.

The assembler does not allow a label with this directive.

Example

      .SECTION  .data
      .LOCAL    LOOPA   ; LOOPA is local to this section

LOOPA .DH       0x100   ; assigns the value 0x100 to LOOPA

Related Information

.EXTERN (Import global section symbol)

.GLOBAL (Declare global section symbol)

89

Assembly Language



.MACRO, .ENDM

Syntax

macro_name .MACRO [argument[,argument]...]
    ...

macro_definition_statements
    ...

.ENDM

Description

With the .MACRO directive you define a macro. Macros provide a shorthand method for handling a repeated
pattern of code or group of instructions.You can define the pattern as a macro, and then call the macro
at the points in the program where the pattern would repeat.

The definition of a macro consists of three parts:

• Header, which assigns a name to the macro and defines the arguments (.MACRO directive).

• Body, which contains the code or instructions to be inserted when the macro is called.

• Terminator, which indicates the end of the macro definition (.ENDM directive).

The arguments are symbolic names that the macro processor replaces with the literal arguments when
the macro is expanded (called). Each formal argument must follow the same rules as symbol names: the
name can consist of letters, digits and underscore characters (_). The first character cannot be a digit.
Argument names cannot start with a percent sign (%).

Macro definitions can be nested but the nested macro will not be defined until the primary macro is
expanded.

You can use the following operators in macro definition statements:

DescriptionNameOperator

Concatenates a macro argument with adjacent
alphanumeric characters.

Macro argument concatenation\

Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

Return decimal value of symbol?

Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

Return hex value of symbol%

Allows the use of macro arguments as literal strings.Macro string delimiter“

Prevents name mangling on labels in macros.Macro local label override^

Example

The macro definition:

CONST.D .MACRO  reg,value                   ;header
        ldl.iu  reg,@HI(value)              ;body

90

TASKING SmartCode - PPU User Guide



        ldl.il  reg,@LO(value)
        .ENDM                               ;terminator

The macro call:

    .section .text
    CONST.D  r5,0x12345678

The macro expands as follows:

    ldl.iu  r5,@HI(0x12345678)
    ldl.il  r5,@LO(0x12345678)

Related Information

Section 2.10, Macro Operations

.PMACRO (Undefine macro)

.DEFINE (Define a substitution string)

91

Assembly Language



.MESSAGE

Syntax

.MESSAGE type [{str|exp}[,{str|exp}]...]

Description

With the .MESSAGE directive you tell the assembler to print a message to stderr during the assembling
process.

With type you can specify the following types of messages:

Information message. Error and warning counts are not affected and the assembler continues
the assembling process.

I

Warning message. Increments the warning count and the assembler continues the assembling
process.

W

Error message. Increments the error count and the assembler continues the assembling process.E

Fatal error message.The assembler immediately aborts the assembling process and generates
no object file or list file.

F

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated message. If you use expressions,
the assembler outputs the result. The assembler outputs a space between each argument.

The error and warning counts will not be affected. The .MESSAGE directive is for example useful in
combination with conditional assembly to indicate which part is assembled. The assembling process
proceeds normally after the message has been printed.

This directive has no effect on the exit code of the assembler.

A label is not allowed with this directive.

Example

   .MESSAGE I 'Generating tables'

ID .EQU 4
   .MESSAGE E 'The value of ID is',ID

   .DEFINE LONG "SHORT"
   .MESSAGE I 'This is a LONG string'
   .MESSAGE I "This is a LONG string"

Within single quotes, the defined symbol LONG is not expanded. Within double quotes the symbol LONG
is expanded so the actual message is printed as:

This is a LONG string
This is a SHORT string

92

TASKING SmartCode - PPU User Guide



.MISRAC

Syntax

.MISRAC string

Description

The C compiler can generate the .MISRAC directive to pass the compiler’s MISRA C settings to the object
file. The linker performs checks on these settings and can generate a report. It is not recommended to
use this directive in hand-coded assembly.

Example

  .MISRAC 'MISRA-C:2004,64,e2,0b,e,e11,27,6,ef83,e1,
           ef,66,cb75,af1,eff,e7,e7f,8d,63,87ff7,6ff3,4'

Related Information

Section 3.7.2, C Code Checking: MISRA C

C compiler option --misrac

93

Assembly Language



.PMACRO

Syntax

.PMACRO symbol[,symbol]...

Description

With the .PMACRO directive you tell the assembler to undefine the specified macro, so that later uses of
the symbol will not be expanded.

The assembler does not allow a label with this directive.

Example

  .PMACRO MAC1,MAC2

This statement causes the macros named MAC1 and MAC2 to be undefined.

Related Information

.MACRO, .ENDM (Define a macro)

94

TASKING SmartCode - PPU User Guide



.REPEAT, .ENDREP

Syntax

[label] .REPEAT expression
    ....

.ENDREP

Description

With the .REPEAT/.ENDREP directive you can repeat a sequence of assembly source lines.With expression
you specify the number of times the loop is repeated. If the expression evaluates to a number less than
or equal to 0, the sequence of lines will not be included in the assembler output. The expression result
must be an absolute integer and cannot contain any forward references (symbols that have not already
been defined). The .REPEAT directive may be nested to any level.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

In this example the loop is repeated 3 times. Effectively, the preprocessor repeats the source lines (.DB
10) three times, then the assembler assembles the result:

  .REPEAT 3
  .DB 10  ; assembly source lines
  .ENDREP

Related Information

.FOR,.ENDFOR (Repeat sequence of source lines n times)

95

Assembly Language



.SECTION, .ENDSEC

Syntax

.SECTION name [, attribute ]... [,at(address)]
   ....
.ENDSEC

Description

With the .SECTION directive you define a new section. Each time you use the .SECTION directive, a
new section is created. It is possible to create multiple sections with exactly the same name.

If you define a section, you must always specify the section name. The names have a special meaning
to the locating process and have to start with a predefined name, optionally extended by a dot '.' and a
user defined name. For example, .text.myname or .data.mymodule.myobject. The predefined
section name also determines the type of the section (code, data or debug). Optionally, you can specify
the at() attribute to locate a section at a specific address.

You can use the following predefined section names:

Forbidden attributesImplied
attributes

Section
type

DescriptionSection
name

initcodeCode sections.text

noinit, clear, romdatainitdataInitialized data.data

noinit, clear, romdatainitdataInitialized data in small data
area

.sdata

noinit, clear, romdatainitdataInitialized data in vector
memory (VCCM)

.vdata

init, romdata, noclearcleardataUninitialized data (cleared).bss

init, romdata, noclearcleardataUninitialized data in small data
area (cleared)

.sbss

init, romdatacleardataUninitialized data in vector
memory (VCCM) (cleared)

.vbss

init, clearromdatadataROM data (constants).rodata

debugDebug sections. .debug_ is
used as a prefix

.debug

.debug_

The section attributes are case insensitive. The defined attributes are:

Allowed on typeDescriptionAttribute

code, dataAlign the section to the value specified. value must be a power of
two.

align( value )

code, dataLocate the section at the given address.at( address )

dataSections are zeroed at startup. Clear can only be used in
combination with noinit.

clear

96

TASKING SmartCode - PPU User Guide



Allowed on typeDescriptionAttribute

code, data, debugCluster code sections with companion debug sections. Used by the
linker during removal of unreferenced sections. The name must be
unique for this module (not for the application).

cluster( ‘name‘ )

dataConcatenate sections. Used by the linker to merge sections with
the same name.The assembler removes the default 'separate' ELF
section attribute.

concat

dataUsed to group sections. The assembler appends @group to the
section name.

group( ‘group‘ )

code, dataDefines that the section contains initialization data, which is copied
from ROM to RAM at program startup.

init

For internal use only.linkonce ‘tag‘

dataWhen data sections with the same name occur in different object
modules with the MAX attribute, the linker generates a section of
which the size is the maximum of the sizes in the individual object
modules. Only works on sections with both attributes noinit and
noclear set.

max

dataSections are not zeroed at startup.This is a default attribute for data
sections. This attribute is only useful with .vbss sections, which are
cleared at startup by default.

noclear

code, dataDefines that the section contains no initialization data.noinit

dataStatic stack overlay. Automatic stack variables, function stack
parameters and temporary data are stored here. The assembler
appends name@function to the section prefix.

overlay( ‘name‘ )

code, dataTells the linker to exclude a section from unreferenced section
removal and duplicate section removal.

protect

dataSection contains data to be placed in ROM. This ROM area is not
executable.

romdata

Sections of a specified type are located by the linker in a memory space. The space names are defined
in a so-called 'linker script file' (files with the extension .lsl) delivered with the product in the directory
installation-dir\include.lsl.

Example

  .SECTION .text                           ; Declare a .text section
     ;;
  .ENDSEC

  .SECTION .rodata, cluster('$group_var')  ; Declare a section in ROM
     ;;
  .ENDSEC

  .SECTION .data.abs, at(0x0)              ; Declare a .data.abs section at 
                                           ; an absolute address

97

Assembly Language



     ;;
  .ENDSEC

Related Information

Section 2.7, Working with Sections

98

TASKING SmartCode - PPU User Guide



.SET

Syntax

symbol .SET expression

.SET symbol expression

Description

With the .SET directive you assign the value of expression to symbol temporarily. If a symbol was defined
with the .SET directive, you can redefine that symbol in another part of the assembly source, using the
.SET directive again. Symbols that you define with the .SET directive are always local: you cannot define
the symbol global with the .GLOBAL directive.

The .SET directive is useful in establishing temporary or reusable counters within macros. expression
must be absolute and forward references are allowed.

Example

COUNT  .SET  0   ; Initialize count. Later on you can
                 ; assign other values to the symbol

Related Information

.EQU (Set permanent value to a symbol)

99

Assembly Language



.SIZE

Syntax

.SIZE symbol,expression

Description

With the .SIZE directive you set the size of the specified symbol to the value represented by expression.

The .SIZE directive may occur anywhere in the source file unless the specified symbol is a function. In
this case, the .SIZE directive must occur after the function has been defined.

Example

        .section .text.hello.main ,cluster('$group_main')
        .global main
        .align  4
; Function main
main:   .type   func
         ;
        .SIZE   main,*-main
        .endsec

Related Information

.TYPE (Set symbol type)

100

TASKING SmartCode - PPU User Guide



.SOURCE

Syntax

.SOURCE string

Description

With the .SOURCE directive you specify the name of the original C source module. This directive is
generated by the C compiler.You do not need this directive in hand-written assembly.

Example

  .SOURCE "main.c"

101

Assembly Language



.TYPE

Syntax

symbol .TYPE typeid

Description

With the .TYPE directive you set a symbol's type to the specified value in the ELF symbol table. Valid
symbol types are:

The symbol is associated with a function or other executable code.FUNC

The symbol is associated with an object such as a variable, an array, or a structure.OBJECT

The symbol name represents the filename of the compilation unit.FILE

Labels in code sections have the default type FUNC. Labels in data sections have the default type OBJECT.

Example

Afunc:  .type   func

Related Information

.SIZE (Set symbol size)

102

TASKING SmartCode - PPU User Guide



.UNDEF

Syntax

.UNDEF symbol

Description

With the .UNDEF directive you can undefine a substitution string that was previously defined with the
.DEFINE directive. The substitution string associated with symbol is released, and symbol will no longer
represent a valid .DEFINE substitution or macro.

The assembler issues a warning if you undefine a non-existing symbol.

The assembler does not allow a label with this directive.

Example

The following example undefines the LEN substitution string that was previously defined with the .DEFINE
directive:

  .UNDEF LEN

Related Information

.DEFINE (Define a substitution string)

103

Assembly Language



.WEAK

Syntax

.WEAK symbol[,symbol]...

Description

With the .WEAK directive you mark one or more symbols as 'weak'. The symbol can be defined in the
same module with the .GLOBAL directive or the .EXTERN directive. If the symbol does not already exist,
it will be created.

A 'weak' external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference.

You can overrule a weak definition with a .GLOBAL definition in another module. The linker will not
complain about the duplicate definition, and ignore the weak definition.

Only program labels and symbols defined with .EQU can be made weak.

Example

LOOPA .EQU 1          ; definition of symbol LOOPA
      .GLOBAL  LOOPA  ; LOOPA will be globally
                      ; accessible by other modules
      .WEAK LOOPA     ; mark symbol LOOPA as weak

Related Information

.EXTERN (Import global section symbol)

.GLOBAL (Declare global section symbol)

104

TASKING SmartCode - PPU User Guide



2.9.2. Assembler Controls

Controls start with a $ as the first character on the line. Unknown controls are ignored after a warning is
issued.

Overview of assembler listing controls

DescriptionControl

Print / do not print source lines to list file$LIST ON/OFF

Generate form feed in list file$PAGE

Define page layout for assembly list file$PAGE settings

Send control string to printer$PRCTL

Set program subtitle in header of assembly list file$STITLE

Set program title in header of assembly list file$TITLE

Overview of miscellaneous assembler controls

DescriptionControl

Case sensitive user names ON/OFF$CASE ON/OFF

Generation of symbolic debug ON/OFF$DEBUG ON/OFF

Select debug information$DEBUG "flags"

Assembler treats labels by default as local or global$IDENT LOCAL/GLOBAL

Suppress all or some warnings$WARNING OFF [num]

105

Assembly Language



$CASE

Syntax

$CASE  ON
$CASE  OFF

Default

$CASE ON

Description

With the $CASE ON and $CASE OFF controls you specify wether the assembler operates in case sensitive
mode or not. By default the assembler operates in case sensitive mode. This means that all user-defined
symbols and labels are treated case sensitive, so LAB and Lab are distinct.

Note that the instruction mnemonics, register names, directives and controls are always treated case
insensitive.

Example

;begin of source
$CASE OFF   ; assembler in case insensitive mode

Related Information

Assembler option --case-insensitive

106

TASKING SmartCode - PPU User Guide



$DEBUG

Syntax

$DEBUG  ON
$DEBUG  OFF
$DEBUG  "flags"

Default

$DEBUG "AhLS"

Description

With the $DEBUG ON and $DEBUG OFF controls you turn the generation of debug information on or off.
($DEBUG ON is similar to the assembler option --debug-info=+local (-gl).

If you use the $DEBUG control with flags, you can set the following flags:

Assembly source line informationa/A

Pass high level language debug information (HLL)h/H

Assembler local symbols debug informationl/L

Smart debug informations/S

You cannot specify $DEBUG "ah". Either the assembler generates assembly source line information, or
it passes HLL debug information.

Debug information that is generated by the C compiler, is always passed to the object file.

Example

;begin of source
$DEBUG ON   ; generate local symbols debug information

Related Information

Assembler option --debug-info

107

Assembly Language



$IDENT

Syntax

$IDENT LOCAL
$IDENT GLOBAL

Default

$IDENT LOCAL

Description

With the controls $IDENT LOCAL and $IDENT GLOBAL you tell the assembler how to treat symbols that
you have not specified explicitly as local or global with the assembler directives .LOCAL or .GLOBAL.

By default the assembler treats all symbols as local symbols unless you have defined them to be global
explicitly.

Example

;begin of source
$IDENT GLOBAL  ; assembly labels are global by default

Related Information

Assembler directive .GLOBAL

Assembler directive .LOCAL

Assembler option --symbol-scope

108

TASKING SmartCode - PPU User Guide



$LIST ON/OFF

Syntax

$LIST ON
$LIST OFF

Default

$LIST ON

Description

If you generate a list file with the assembler option --list-file, you can use the $LIST ON and $LIST
OFF controls to specify which source lines the assembler must write to the list file. Without the assembler
option --list-file these controls have no effect. The controls take effect starting at the next line.

The $LIST ON control actually increments a counter that is checked for a positive value and is symmetrical
with respect to the $LIST OFF control. Note the following sequence:

; Counter value currently 1
$LIST ON         ; Counter value = 2
$LIST ON         ; Counter value = 3
$LIST OFF        ; Counter value = 2
$LIST OFF        ; Counter value = 1

The listing still would not be disabled until another $LIST OFF control was issued.

Example

   .section .text
   ...  ; source line in list file
$LIST OFF
   ...  ; source line not in list file
$LIST ON
   ...  ; source line also in list file

Related Information

Assembler option --list-file

109

Assembly Language



$PAGE

Syntax

$PAGE [pagewidth[,pagelength[,blankleft[,blanktop[,blankbtm]]]]

Default

$PAGE 132,72,0,0,0

Description

If you generate a list file with the assembler option --list-file, you can use the $PAGE control to format
the generated list file.

The arguments may be any positive absolute integer expression, and must be separated by commas.

Number of columns per line. The default is 132, the minimum is 40.pagewidth

Total number of lines per page. The default is 72, the minimum is 10.
As a special case, a page length of 0 turns off page breaks.

pagelength

Number of blank columns at the left of the page. The default is 0, the
minimum is 0, and the maximum must maintain the relationship: blankleft
< pagewidth.

blankleft

Number of blank lines at the top of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) ≤ (pagelength - 10).

blanktop

Number of blank lines at the bottom of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) ≤ (pagelength - 10).

blankbtm

If you use the $PAGE control without arguments, it causes a 'formfeed': the next source line is printed on
the next page in the list file. The $PAGE control itself is not printed.

Example

$PAGE         ; formfeed, the next source line is printed
              ; on the next page in the list file.

$PAGE 96      ; set page width to 96. Note that you can
              ; omit the last four arguments.

$PAGE ,,,3,3  ; use 3 line top/bottom margins.

Related Information

Assembler option --list-file

110

TASKING SmartCode - PPU User Guide



$PRCTL

Syntax

$PRCTL exp|string[,exp|string]...

Description

If you generate a list file with the assembler option --list-file, you can use the $PRCTL control to send
control strings to the printer.

The $PRCTL control simply concatenates its arguments and sends them to the listing file (the control line
itself is not printed unless there is an error).

You can specify the following arguments:

A byte expression which may be used to encode non-printing control characters, such as ESC.expr

An assembler string, which may be of arbitrary length, up to the maximum assembler-defined
limits.

string

The $PRCTL control can appear anywhere in the source file; the assembler sends out the control string
at the corresponding place in the listing file.

If a $PRCTL control is the last line in the last input file to be processed, the assembler insures that all
error summaries, symbol tables, and cross-references have been printed before sending out the control
string. In this manner, you can use a $PRCTL control to restore a printer to a previous mode after printing
is done.

Similarly, if the $PRCTL control appears as the first line in the first input file, the assembler sends out the
control string before page headings or titles.

Example

$PRCTL  $1B,'E'  ; Reset HP LaserJet printer

Related Information

Assembler option --list-file

111

Assembly Language



$STITLE

Syntax

$STITLE "string"

Default

$STITLE ""

Description

If you generate a list file with the assembler option --list-file, you can use the $STITLE control to specify
the program subtitle which is printed at the top of all succeeding pages in the assembler list file below
the title.

The specified subtitle is valid until the assembler encounters a new $STITLE control. By default, the
subtitle is empty.

The $STITLE control itself will not be printed in the source listing.

If the page width is too small for the title to fit in the header, it will be truncated.

Example

$TITLE   'This is the title'
$STITLE  'This is the subtitle'

Related Information

Assembler option --list-file

Assembler control $TITLE

112

TASKING SmartCode - PPU User Guide



$TITLE

Syntax

$TITLE "string"

Default

$TITLE ""

Description

If you generate a list file with the assembler option --list-file, you can use the $TITLE control to specify
the program title which is printed at the top of each page in the assembler list file.

The specified title is valid until the assembler encounters a new $TITLE control. By default, the title is
empty.

The $TITLE control itself will not be printed in the source listing.

If the page width is too small for the title to fit in the header, it will be truncated.

Example

$TITLE  'This is the title'

Related Information

Assembler option --list-file

Assembler control $STITLE

113

Assembly Language



$WARNING OFF

Syntax

$WARNING OFF [number]

Default

All warnings are reported.

Description

This control allows you to disable all or individual warnings.The number argument must be a valid warning
message number.

Example

$WARNING OFF      ; all warning messages are suppressed

$WARNING OFF 135  ; suppress warning message 135

Related Information

Assembler option --no-warnings

114

TASKING SmartCode - PPU User Guide



2.10. Macro Operations

Macros provide a shorthand method for inserting a repeated pattern of code or group of instructions.You
can define the pattern as a macro, and then call the macro at the points in the program where the pattern
would repeat.

Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly.

When a macro is called, the assembler executes the macro and replaces the call by the resulting in-line
source statements. 'In-line' means that all replacements act as if they are on the same line as the macro
call. The generated statements may contain substitutable arguments. The statements produced by a
macro can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions as any
other statements.

Macros can be nested. The assembler processes nested macros when the outer macro is expanded.

2.10.1. Defining a Macro

The first step in using a macro is to define it.

The definition of a macro consists of three parts:

• Header, which assigns a name to the macro and defines the arguments (.MACRO directive).

• Body, which contains the code or instructions to be inserted when the macro is called.

• Terminator, which indicates the end of the macro definition (.ENDM directive).

A macro definition takes the following form:

macro_name .MACRO [argument[,argument]...]
    ...

macro_definition_statements
    ...

.ENDM

For more information on the definition see the description of the .MACRO directive.

2.10.2. Calling a Macro

To invoke a macro, construct a source statement with the following format:

[label] macro_name [argument[,argument]...]  [; comment]

where,

An optional label that corresponds to the value of the location counter
at the start of the macro expansion.

label

The name of the macro. This may not start in the first column.macro_name

115

Assembly Language



One or more optional, substitutable arguments. Multiple arguments
must be separated by commas.

argument

An optional comment.comment

The following applies to macro arguments:

• Each argument must correspond one-to-one with the formal arguments of the macro definition. If the
macro call does not contain the same number of arguments as the macro definition, the assembler
issues a warning.

• If an argument has an embedded comma or space, you must surround the argument by single quotes
(').

• You can declare a macro call argument as null in three ways:

• enter delimiting commas in succession with no intervening spaces

macroname ARG1,,ARG3 ; the second argument is a null argument

• terminate the argument list with a comma, the arguments that normally would follow, are now
considered null

macroname ARG1,      ; the second and all following arguments are null

• declare the argument as a null string

• No character is substituted in the generated statements that reference a null argument.

2.10.3. Using Operators for Macro Arguments

The assembler recognizes certain text operators within macro definitions which allow text substitution of
arguments during macro expansion.You can use these operators for text concatenation, numeric
conversion, and string handling.

DescriptionNameOperator

Concatenates a macro argument with adjacent
alphanumeric characters.

Macro argument concatenation\

Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

Return decimal value of symbol?

Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

Return hex value of symbol%

Allows the use of macro arguments as literal strings.Macro string delimiter“

Prevents name mangling on labels in macros.Macro local label override^

116

TASKING SmartCode - PPU User Guide



Example: Argument Concatenation Operator - \

Consider the following macro definition:

MAC_A .MACRO reg,val
   sub %r\reg,%r\reg,val
   .ENDM

The macro is called as follows:

   MAC_A 2,1

The macro expands as follows:

   sub %r2,%r2,1

The macro preprocessor substitutes the character '2' for the argument reg, and the character '1' for the
argument val. The concatenation operator (\) indicates to the macro preprocessor that the substitution
characters for the arguments are to be concatenated with the characters 'r'.

Without the '\' operator the macro would expand as:

   sub %rreg,%rreg,1

which results in an assembler error (invalid operand).

Example: Decimal Value Operator - ?

Instead of substituting the formal arguments with the actual macro call arguments, you can also use the
value of the macro call arguments.

Consider the following source code that calls the macro MAC_A after the argument AVAL has been set to
1.

AVAL .SET  1
     MAC_A 2,AVAL

If you want to replace the argument val with the value of AVAL rather than with the literal string 'AVAL',
you can use the ? operator and modify the macro as follows:

MAC_A .MACRO reg,val
   sub %r\reg,%r\reg,?val
   .ENDM

Example: Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator (?) except that it returns the
hexadecimal value of a symbol.

Consider the following macro definition:

117

Assembly Language



GEN_LAB   .MACRO  LAB,VAL,STMT
LAB\%VAL  STMT
     .ENDM

The macro is called after NUM has been set to 10:

NUM  .SET      10
     GEN_LAB   HEX,NUM,NOP

The macro expands as follows:

HEXA NOP

The %VAL argument is replaced by the character 'A' which represents the hexadecimal value 10 of the
argument VAL.

Example: Argument String Operator - "

To generate a literal string, enclosed by single quotes ('), you must use the argument string operator (")
in the macro definition.

Consider the following macro definition:

STR_MAC    .MACRO  STRING
    .DB    "STRING"
    .ENDM

The macro is called as follows:

    STR_MAC  ABCD

The macro expands as follows:

    .DB     'ABCD'

Within double quotes .DEFINE directive definitions can be expanded.Take care when using constructions
with single quotes and double quotes to avoid inappropriate expansions. Since .DEFINE expansion
occurs before macro substitution, any .DEFINE symbols are replaced first within a macro argument string:

    .DEFINE LONG  'short'
STR_MAC    .MACRO  STRING
    .MESSAGE I 'This is a LONG STRING'
    .MESSAGE I "This is a LONG STRING"
    .ENDM

If the macro is called as follows:

    STR_MAC  sentence

it expands as:

    .MESSAGE I 'This is a LONG STRING'
    .MESSAGE I 'This is a short sentence'

118

TASKING SmartCode - PPU User Guide



Macro Local Label Override Operator - ^

If you use labels in macros, the assembler normally generates another unique name for the labels (such
as LOCAL__M_L000001).

The macro ^-operator prevents name mangling on macro local labels.

Consider the following macro definition:

INIT  .MACRO  addr
LOCAL:  b,^addr
      .ENDM

The macro is called as follows:

LOCAL:
       INIT LOCAL

The macro expands as:

LOCAL__M_L000001: b,LOCAL

If you would not omitted the ^ operator, the macro preprocessor would choose another name for LOCAL
because the label already exists. The macro would expand like:

LOCAL__M_L000001: b,LOCAL__M_L000001

2.11. Alias Instructions

The assembler supports so-called 'alias instructions'. Alias instructions are pseudo instructions (no
instructions from the instruction set). Depending on the situation in which an alias instruction is used, the
assembler replaces the alias instruction with appropriate real assembly instruction(s).

2.11.1. Branch on Compare Alias Instructions

The assembler supports the following alias instructions of the Branch on Compare (BR) instruction.

ReplacementAlias Instruction

BRLT c,b,s9BRGT b,c,s9

BRGE c,b,s9BRLE b,c,s9

BRLO c,b,s9BRHI b,c,s9

BRHS c,b,s9BRLS b,c,s9

The following alias instructions have a reduced immediate range of 0 to 62 instead of 0 to 63.

ReplacementAlias Instruction

BRGE b,u6+1,s9BRGT b,u6,s9

BRLT b,u6+1,s9BRLE b,u6,s9

119

Assembly Language



ReplacementAlias Instruction

BRHS b,u6+1,s9BRHI b,u6,s9

BRLO b,u6+1,s9BRLS b,u6,s9

2.11.2. Pop and Push Alias Instructions for Load and Store

The assembler supports the following 32-bit instruction aliases, where a refers to the destination register
from the core register set.

ReplacementAlias Instruction

ST.AW a, [SP, -4]PUSH a

LD.AB a, [SP,+4]POP a

2.11.3. Alias Instructions for FCVT32 Encodings

The assembler supports the following instruction aliases for the 32-bit data formats conversion instruction
FCVT32, based on the encoded values for 6-bit unsigned operand u6 in the instruction format FCVT32
a, b, u6.

DescriptionReplacementAlias Instruction

Single-precision float to signed integerFCVT32 a, b, 0b000011FS2INT a, b

Single-precision float to signed integer;
round to zero

FCVT32 a, b, 0b001011FS2INT_RZ a, b

Signed integer to single-precision floatFCVT32 a, b, 0b000010FINT2S a, b

Single-precision float to unsigned integerFCVT32 a, b, 0b000001FS2UINT a, b

Single-precision float to unsigned integer;
round to zero

FCVT32 a, b, 0b001001FS2UINT_RZ a, b

Unsigned integer to single-precision floatFCVT32 a, b, 0b000000FUINT2S a, b

Half-precision to single-precision
conversion

FCVT32 a, b, 0b010101FH2S a, b

Single-precision to half-precision
conversion

FCVT32 a, b, 0b010100FS2H a, b

2.11.4. Alias Instructions for FCVT32_64 Encoding

The assembler supports the following instruction aliases for 32-bit data formats to 64-bit data formats
conversion instruction FCVT32_64, based on the encoded values for 6-bit unsigned operand u6 in the
instruction format FCVT32_64 a, b, u6.

DescriptionReplacementAlias Instruction

Single-precision float to 64-bit integerFCVT32_64 a, b, 0b000011FS2L a, b

Single-precision float to 64-bit integer;
round to zero

FCVT32_64 a, b, 0b001011FS2L_RZ a, b

120

TASKING SmartCode - PPU User Guide



DescriptionReplacementAlias Instruction

Single-precision float to 64-bit unsigned
integer

FCVT32_64 a, b, 0b000001FS2UL a, b

Single-precision float to 64-bit unsigned
integer; round to zero

FCVT32_64 a, b, 0b001001FS2UL_RZ a, b

32-bit integer to double-precision floatFCVT32_64 a, b, 0b000010FINT2D a, b

32-bit unsigned integer to double-precision
float

FCVT32_64 a, b, 0b000000FUINT2D a, b

Single-precision float to double-precision
float

FCVT32_64 a, b, 0b000100FS2D a, b

2.11.5. Alias Instructions for FCVT64 Encoding

The assembler supports the following instruction aliases for 64-bit data formats to 64-bit data formats
conversion instruction FCVT64, based on the encoded values for 6-bit unsigned operand u6 in the
instruction format FCVT64 a, b, u6.

DescriptionReplacementAlias Instruction

Double-precision float to 64-bit signed
integer

FCVT64 a, b, 0b000011FD2L a, b

Double-precision float to 64-bit signed
integer; round to zero

FCVT64 a, b, 0b001011FD2L_RZ a, b

64-bit integer to double-precision floatFCVT64 a, b, 0b000010FL2D a, b

Double-precision float to 64-bit unsigned
integer

FCVT64 a, b, 0b000001FD2UL a, b

Double-precision float to 64-bit unsigned
integer; round to zero

FCVT64 a, b, 0b001001FD2UL_RZ a, b

64-bit unsigned integer to double-precision
float

FCVT64 a, b, 0b000000FUL2D a, b

2.11.6. Alias Instructions for FCVT64_32 Encoding

The assembler supports the following instruction aliases for 64-bit data formats to 32-bit data formats
conversion instruction FCVT64_32, based on the encoded values for 6-bit unsigned operand u6 in the
instruction format FCVT64_32 a, b, u6.

DescriptionReplacementAlias Instruction

Double-precision float to 32-bit integerFCVT64_32 a, b, 0b000011FD2INT a, b

Double-precision float to 32-bit integer;
round to zero

FCVT64_32 a, b, 0b001011FD2INT_RZ a, b

Double-precision float to 32-bit unsigned
integer

FCVT64_32 a, b, 0b000001FD2UINT a, b

121

Assembly Language



DescriptionReplacementAlias Instruction

Double-precision float to 32-bit unsigned
integer; round to zero

FCVT64_32 a, b, 0b001001FD2UINT_RZ a, b

64-bit integer to single-precision floatFCVT64_32 a, b, 0b000010FL2S a, b

64-bit unsigned integer to
double-precision float

FCVT64_32 a, b, 0b000000FUL2S a, b

Double-precision float to single-precision
float

FCVT64_32 a, b, 0b000100FD2S a, b

2.11.7. Floating-point Absolute Alias Instructions for BCLR Encoding

The assembler supports the following double-precision and single-precision floating-point absolute
instruction aliases for BCLR encoding.

DescriptionReplacementAlias Instruction

Double-precision float absolute. b and c
refer to register pairs representing 64-bit
operands and should be specified as even
numbered registers. For example, FDABS
r0, r2 and BCLR r0, r2, 0x1F share
the same encoding.

BCLR b, c, 0x1FFDABS b, c

Single-precision float absolute, b and c
refer to any two operand registers. For
example, FSABS r1, r3 and BCLR r1,
r3, 0x1F share the same encoding.

BCLR b, c, 0x1FFSABS b, c

2.11.8. Floating-point Negate Alias Instructions for BXOR Encoding

The assembler supports the following double-precision and single-precision floating-point negate instruction
aliases for BXOR encoding.

DescriptionReplacementAlias Instruction

Double-precision float absolute. b and c
refer to register pairs representing 64-bit
operands and should be specified as even
numbered registers. For example, FDNEG
r0, r2 and BXOR r0, r2, 0x1F share
the same encoding.

BXOR b, c, 0x1FFDNEG b, c

Single-precision float absolute, b and c
refer to any two operand registers. For
example, FSNEG r1, r3 and BXOR r1,
r3, 0x1F share the same encoding.

BXOR b, c, 0x1FFSNEG b, c

122

TASKING SmartCode - PPU User Guide



2.11.9. NOP Alias Instruction for MOV Encoding

The assembler supports the following 32-bit NOP instruction alias for MOV encoding.

ReplacementAlias Instruction

MOV r62, 0NOP

2.11.10. Vector FPU Alias Instructions

The assembler supports the following vector FPU aliases, where a and b refer to any two vector register
operands:

ReplacementAlias Instruction

vvbclr.h a, b, 0xfvvfabs.h a, b

vvbclr.w a, b, 0x1fvvfabs.w a, b

vvbxor.h a, b, 0xfvvfneg.h a, b

vvbxor.w a, b, 0x1fvvfneg.w a, b

123

Assembly Language



124

TASKING SmartCode - PPU User Guide



Chapter 3. Using the C Compiler
This chapter describes the compilation process and explains how to call the C compiler.

The TASKING toolset for Infineon PPU under Eclipse uses the TASKING makefile generator and make
utility to build your entire embedded project, from C source till the final ELF/DWARF object file which
serves as input for the debugger.

Although in Eclipse you cannot run the C compiler separately from the other tools, this section discusses
the options that you can specify for the C compiler.

On the command line it is possible to call the C compiler separately from the other tools. However, it is
recommended to use the control program for command line invocations of the toolset (see Section 6.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line.

The C compiler takes the following files for input and output:

This chapter first describes the compilation process which consists of a frontend and a backend part.
Next it is described how to call the C compiler and how to use its options. An extensive list of all options
and their descriptions is included in Section 7.2, C Compiler Options. Finally, a few important basic tasks
are described, such as including the C startup code and performing various optimizations.

3.1. Compilation Process

During the compilation of a C program, the C compiler runs through a number of phases that are divided
into two parts: frontend and backend.

The backend part is not called for each C statement, but starts after a complete C module or set of modules
has been processed by the frontend (in memory). This allows better optimization.

The C compiler requires only one pass over the input file which results in relative fast compilation.

Frontend phases

1. The preprocessor phase:

The preprocessor includes files and substitutes macros by C source. It uses only string manipulations
on the C source. The syntax for the preprocessor is independent of the C syntax but is also described
in the ISO/IEC 9899:2011(E) standard.

125



2. The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

3. The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs a syntactic and semantic
analysis of the program, and generates an intermediate representation of the program. This code is
called MIL (Medium level Intermediate Language).

4. The frontend optimization phase:

Target processor independent optimizations are performed by transforming the intermediate code.

Backend phases

1. Instruction selector phase:

This phase reads the MIL input and translates it into Low level Intermediate Language (LIL). The LIL
objects correspond to a processor instruction, with an opcode, operands and information used within
the C compiler.

2. Peephole optimizer/instruction scheduler/software pipelining phase:

This phase replaces instruction sequences by equivalent but faster and/or shorter sequences, rearranges
instructions and deletes unnecessary instructions.

3. Register allocator phase:

This phase chooses a physical register to use for each virtual register. When there are not enough
physical registers, virtual registers are spilled to the stack. Intermediate results of any optimization can
live, for some time, on the stack or in physical registers.

4. The backend optimization phase:

Performs target processor independent and dependent optimizations which operate on the Low level
Intermediate Language.

5. The code generation/formatter phase:

This phase reads through the LIL operations to generate assembly language output.

3.2. Calling the C Compiler

The TASKING toolset for Infineon PPU under Eclipse uses the TASKING makefile generator and make
utility to build your entire project. After you have built your project, the output files are available in a
subdirectory of your project directory, depending on the active configuration you have set in the C/C++
Build » Settings page of the Project » Properties for dialog.

126

TASKING SmartCode - PPU User Guide



Building a project under Eclipse

You have several ways of building your project:

• Build Selected File(s) ( ). This compiles and assembles the selected file(s) without calling the linker.

1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

• Build Individual Project ( ).

To build individual projects incrementally, select Project » Build project.

• Rebuild Project ( ). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...

2. Enable the option Start a build immediately and click Clean.

• Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behavior tab of the C/C++ Build page of the Project » Properties for dialog.

See also Chapter 8, Influencing the Build Time.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you need to set them for each
configuration. Based on the target processor, the compiler includes a special function register file. This
is a regular include file which enables you to use virtual registers that are located in memory.

You can specify the target processor when you create a new project with the New C Project wizard (File
» New » TASKING PPU C Project), but you can always change the processor in the project properties
dialog.

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Processor.

In the right pane the Processor page appears.

3. From the Configuration list, select a configuration or select [ All configurations ].

4. From the Processor selection list, select a processor.

127

Using the C Compiler



To access the C compiler options

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. From the Configuration list, select a configuration or select [ All configurations ].

4. On the Tool Settings tab, select C Compiler.

5. Select the sub-entries and set the options in the various pages.

Note that the C compiler options are used to create an object file from a C file. The options you
enter in the Assembler page are not only used for hand-coded assembly files, but also for
intermediate assembly files.

Note that when you click Restore Defaults to restore the default tool options, as a side effect the
processor is also reset to its default value on the Processor page (C/C++ Build » Processor).

Invocation syntax on the command line:

carc [ [option]... [file]... ]...

You can find a detailed description of all C compiler options in Section 7.2, C Compiler Options.

3.3.The C Startup Code

You need the run-time startup code to build an executable application. The startup code consists of the
following components:

• Initialization code. This code is executed when the program is initiated and before the function main()
is called.

• Exit code. This controls the close down of the application after the program's main function terminates.

The startup code is part of the C library, and the source is present in the file cstart.c in the directory
lib\src. This code is generic code. It uses linker generated symbols which you can give target specific
or application specific values. These symbols are defined in the linker script file
(include.lsl\arch_ppu.lsl) and you can specify their values on the command line with linker option
--define. If the default run-time startup code does not match your configuration, you need to make a copy
of the startup file, modify it and add it to your project. A typical example for doing this is when main()
has arguments, typically argc/argv. In this case cstart needs to be recompiled with the macro
__USE_ARGC_ARGV set. When necessary you can use the macro __ARGCV_BUFSIZE to define the size
of the buffer used to pass arguments to main().

128

TASKING SmartCode - PPU User Guide



The entry point of the startup code is label _START. This global label should not be removed, since the
linker uses it in the linker script file. It is also used as the default start address of the application.

Initialization code

The following initialization actions are executed before the application starts:

• Initialize the stack pointer sp. The stack pointer is loaded in memory by the stack address located at
linker label _lc_ub_stack.

• Initialize the global pointer gp. The global pointer is loaded with the address of the Small Data Area
(SDA).

• Initialize the vector stack pointer register r56. The vector stack pointer is loaded in memory by the
vector stack address located at linker label _lc_ub_vstack.

• Initialize the registers for vector stack pointer checking. Auxiliary register VEC_STACK_BASE points to
the first vector memory location above the local memory stack (linker label _lc_ub_vstack).
VEC_STACK_TOP points to the lowest allowed address in the vector memory where the local memory
stack pointer can be located (linker label _lc_ue_vstack).

• Copy initialized sections from ROM to RAM, using a linker generated table (also known as the 'copy
table') and clear uninitialized data sections in RAM.

• Initialize profiling if profiling is enabled.

• Initialize the argc and argv arguments.

• Call the entry point of your application with a call to function main().

Exit code

When the C application 'returns', which is not likely to happen in an embedded environment, the program
ends with a call to the library function exit().

Macro preprocessor symbols

A number of macro preprocessor symbols are used in the startup code. These are enabled when you
use a particular option or you can enable or disable them using the compiler option --define with the
following syntax:

--define=symbol[=value]

In the startup file (cstart.c) the following macro preprocessor symbols are used:

DescriptionDefine

If defined, initialize profiling.__PROF_ENABLE__

If defined, pass arguments to main: int main( int argc, char
*argv[] ).

__USE_ARGC_ARGV

Define buffer size for argv. (default: 256 bytes)__ARGCV_BUFSIZE

129

Using the C Compiler



DescriptionDefine

If defined, skip vector stack pointer operations.__ARC_DISABLE_VCCM__

3.4. How the Compiler Searches Include Files

When you use include files (with the #include statement), you can specify their location in several ways.
The compiler searches the specified locations in the following order:

1. If the #include statement contains an absolute pathname, the compiler looks for this file. If no path
or a relative path is specified, the compiler looks in the same directory as the source file. This is only
possible for include files that are enclosed in "".

This first step is not done for include files enclosed in <>.

2. When the compiler did not find the include file, it looks in the directories that are specified in the C
Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-I)).

3. When the compiler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable CARCINC.

4. When the compiler still did not find the include file, it finally tries the default include directory relative
to the installation directory (unless you specified option --no-stdinc).

Example

Suppose that the C source file test.c contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the compiler as follows:

carc -Imyinclude test.c

First the compiler looks for the file stdio.h in the directory myinclude relative to the current directory.
If it was not found, the compiler searches in the environment variable CARCINC and then in the default
include directory.

The compiler now looks for the file myinc.h, in the directory where test.c is located. If the file is not
there the compiler searches in the directory myinclude. If it was still not found, the compiler searches
in the environment variable CARCINC and then in the default include directory.

3.5. Compiling for Debugging

Compiling your files is the first step to get your application ready to run on a target. However, during
development of your application you first may want to debug your application.

130

TASKING SmartCode - PPU User Guide



To create an object file that can be used for debugging, you must instruct the compiler to include symbolic
debug information in the source file.

To include symbolic debug information

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C Compiler » Debugging.

4. Select Default in the Generate symbolic debug information box.

Invocation syntax on the command line

The invocation syntax on the command line is:

carc -g file.c

Debug and optimizations

Due to different compiler optimizations, it might be possible that certain debug information is optimized
away. Therefore, if you encounter strange behavior during debugging it might be necessary to reduce
the optimization level, so that the source code is still suitable for debugging. For more information on
optimization see Section 3.6, Compiler Optimizations.

3.6. Compiler Optimizations

The compiler has a number of optimizations which you can enable or disable.

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. From the Configuration list, select a configuration or select [ All configurations ].

4. On the Tool Settings tab, select C Compiler » Optimization.

5. Select an optimization level in the Optimization level box.

or:

131

Using the C Compiler



In the Optimization level box select Custom optimization and enable the optimizations you want
on the Custom optimization page.

Optimization levels

The TASKING C compiler offers four optimization levels and a custom level, at each level a specific set
of optimizations is enabled.

• Level 0 - No optimization: No optimizations are performed. The compiler tries to achieve a 1-to-1
resemblance between source code and produced code. Expressions are evaluated in the order written
in the source code, associative and commutative properties are not used.

• Level 1 - Optimize: Enables optimizations that do not affect the debug-ability of the source code. Use
this level when you encounter problems during debugging your source code with optimization level 2.

• Level 2 - Optimize more (default): Enables more optimizations to reduce the memory footprint and/or
execution time. This is the default optimization level.

• Level 3 - Optimize most: This is the highest optimization level. Use this level when your
program/hardware has become too slow to meet your real-time requirements.

• Custom optimization: you can enable/disable specific optimizations on the Custom optimization page.

Optimization pragmas

If you specify a certain optimization, all code in the module is subject to that optimization. Within the C
source file you can overrule the C compiler options for optimizations with #pragma optimize flag
and #pragma endoptimize. Nesting is allowed:

#pragma optimize e    /* Enable expression
...                      simplification               */
... C source ...
...
#pragma optimize c    /* Enable common expression
...                      elimination. Expression
... C source ...         simplification still enabled */
...
#pragma endoptimize   /* Disable common expression
...                      elimination                  */
#pragma endoptimize   /* Disable expression
...                      simplification               */

The compiler optimizes the code between the pragma pair as specified.

You can enable or disable the optimizations described in the following subsection. The command line
option for each optimization is given in brackets.

132

TASKING SmartCode - PPU User Guide



3.6.1. Generic Optimizations (frontend)

Common subexpression elimination (CSE) (option -Oc)

The compiler detects repeated use of the same (sub-)expression. Such a "common" expression is replaced
by a variable that is initialized with the value of the expression to avoid recomputation. This method is
called common subexpression elimination (CSE).

A CSE can live in a register, on stack or can be recomputed when required.

Expression simplification (option -Oe)

Multiplication by 0 or 1 and additions or subtractions of 0 are removed. Such useless expressions may
be introduced by macros or by the compiler itself (for example, array subscripting).

Constant propagation (option -Op)

A variable with a known value is replaced by that value.

Automatic function inlining (option -Oi)

Small functions that are not too often called, are inlined. This reduces execution time at the cost of code
size.

Control flow simplification (option -Of)

A number of techniques to simplify the flow of the program by removing unnecessary code and reducing
the number of jumps. For example:

• Switch optimization: A number of optimizations of a switch statement are performed, such as removing
redundant case labels or even removing an entire switch.

• Jump chaining: A (conditional) jump to a label which is immediately followed by an unconditional jump
may be replaced by a jump to the destination label of the second jump. This optimization speeds up
execution.

• Conditional jump reversal: A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the code size and the execution
time.

• Dead code elimination: Code that is never reached, is removed. The compiler generates a warning
messages because this may indicate a coding error.

Subscript strength reduction (option -Os)

An array or pointer subscripted with a loop iterator variable (or a simple linear function of the iterator
variable), is replaced by the dereference of a pointer that is updated whenever the iterator is updated.

133

Using the C Compiler



Loop transformations (option -Ol)

Transform a loop with the entry point at the bottom, to a loop with the entry point at the top. This enables
constant propagation in the initial loop test and code motion of loop invariant code by the CSE optimization.

Forward store (option -Oo)

A temporary variable is used to cache multiple assignments (stores) to the same non-automatic variable.

Loop auto-vectorization (option -Om)

The auto-vectorization optimization transforms specific types of loops that sequentially process elements
of one of more arrays to an equivalent loop that uses vector operations to process multiple array elements
per iteration. This optimization is limited to "well-behaved" loops for which the iteration count can be
computed beforehand, either at compile-time or at run-time. Additional code is generated to process the
final partial vector when the number of iterations of the original loop is not an exact multiple of the vector
size. Note that auto-vectorization is restricted to arrays allocated in __vccm memory.

Example:

#define N 100

__vccm int a[N], b[N], c[N];

void ex1(void)
{
        for (int i = 0; i < N; i++)
        {
                a[i] = b[i] * c[i];
        }
}

The auto-vectorization optimization is disabled by default, so you have to enable it explicitly. The option
--vectorize-info enables some informational messages about the auto-vectorization:

carc -Om --vectorize-info ex1.c
carc I811: ["ex1.c" 7/35] vectorize: rewriting loop with vector size 16, 
           6 iteration(s), 4 remaining element(s) 

When the arrays are accessed via pointers, there may be aliases that would invalidate vectorization.You
can use the restrict pointer qualifier to specify that there are no aliases:

void ex2(__vccm float* restrict a, __vccm float* restrict b, 
         __vccm float* restrict c, int n)
{
        for (int i = 0; i < n; i++)
        {
                a[i] = b[i] + c[i] + 1.0;
        }
} 

134

TASKING SmartCode - PPU User Guide



carc -Om --vectorize-info ex2.c
carc I811: ["ex2.c" 3/37] vectorize: rewriting loop with vector size 16, 
           non-constant number of iterations 

Alternatively, you can disable all alias checking for auto-vectorization with the option --vectorize-noalias.

In some situations, two nested loops processing a matrix will be flattened into a single loop before the
auto-vectorization transforms the resulting loop to vector operations:

#define V 8
#define H 8

__vccm int a[V][H], b[V][H], c[V][H];

void ex3(int x)
{
        for (int v = 0; v < V; v++)
        {
                for (int h = 0; h < H; h++)
                {
                        a[v][h] = b[v][h] * c[v][h];
                }
        }
}

carc -Om --vectorize-info ex3.c
carc I811: ["ex3.c" 8/35] vectorize: flattening two nested loops into 
           a single loop
carc I811: ["ex3.c" 10/43] vectorize: rewriting loop with vector size 16, 
           4 iteration(s), no remainder 

Control flow such as an if-statement inside the loop would normally prevent auto-vectorization, but in
some cases the loop body can be converted to straight-line code with predicated vector stores, where
the condition is used to calculate a predicate vector:

#define N 64

__vccm int a[N], b[N];

void ex4(int x)
{
        for (int i = 0; i < N; i++)
        {
                if (b[i] > 0)
                {
                        a[i] /= b[i];
                }
        }
} 

135

Using the C Compiler



carc -Om --vectorize-info ex4.c
carc I811: ["ex4.c" 7/35] vectorize: rewriting loop with vector size 16,
           4 iteration(s), no remainder
carc I811: ["ex4.c" 9/26] vectorize: conditional code transformed to
           predicated stores 

When possible, consecutive loops with the same iterator range will be combined into a single loop before
vectorization:

#define N 64

__vccm int a[N], b[N], q[N], r[N];

void ex5(void)
{
        for (int i = 0; i < N; i++)
        {
                q[i] = a[i] / b[i];
        }
        for (int j = 0; j < N; j++)
        {
                r[j] = a[j] % b[j];
        }
}

carc -Om --vectorize-info ex5.c
carc I811: ["ex5.c" 11/35] vectorize: fusing loop with preceding loop
carc I811: ["ex5.c" 7/35] vectorize: rewriting loop with vector size 16,
           4 iteration(s), no remainder  

MIL linking (Control program option --mil-link)

The frontend phase performs its optimizations on the MIL code. When all C modules and/or MIL modules
of an application are given to the C compiler in a single invocation, the C compiler will link MIL code of
the modules to a complete application automatically. Next, the frontend will run its optimizations again
with application scope. After this, the MIL code is passed on to the backend, which will generate a single
.src file for the whole application. Linking with the run-time library, floating-point library and C library is
still necessary. Linking with the C library is required because this library contains some hand-coded
assembly functions, that are not linked in at MIL level.

In the ISO C standard a "translation unit" is a preprocessed source file together with all the headers and
source files included via the preprocessing directive #include. After MIL linking the compiler will treat
the linked sources files as a single translation unit, allowing global optimizations to be performed, that
otherwise would be limited to a single module.

136

TASKING SmartCode - PPU User Guide



MIL splitting (option --mil-split)

When you specify that the C compiler has to use MIL splitting, the C compiler will first link the application
at MIL level as described above. However, after rerunning the optimizations the MIL code is not passed
on to the backend. Instead the frontend writes a .ms file for each input file or library. A .ms file has the
same format as a .mil file. Only .ms files that really change are updated.The advantage of this approach
is that it is possible to use the make utility to translate only those parts of the application to a .src file
that really have changed. MIL splitting is therefore a more efficient build process than MIL linking. The
penalty for this is that the code compaction optimization in the backend does not have application scope.
As with MIL linking, it is still required to link with the normal libraries to build an ELF file.

137

Using the C Compiler



To read more about how MIL linking influences the build process of your application, see Section 8.2,
MIL Linking.

Note that with both options some extra strict type checking is done that can cause building to fail in a way
that is unforeseen and difficult to understand. For example, when you use one of these options in
combination with option --schar and you link the MIL library, you might get the following error:

carc E289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
carc I802: ["installation-dir\carc\include\string.h" 44/17]
           previous declaration of "strlen"
1 errors, 0 warnings

This is caused by the fact that the MIL library is built without --schar.You can workaround this problem
by rebuilding the MIL libraries.

3.6.2. Core Specific Optimizations (backend)

Coalescer (option -Oa)

The coalescer seeks for possibilities to reduce the number of moves (MOV instruction) by smart use of
registers. This optimizes both speed and code size.

Interprocedural register optimization (option -Ob)

Register allocation is improved by taking note of register usage in functions called by a given function.

Peephole optimizations (option -Oy)

The generated assembly code is improved by replacing instruction sequences by equivalent but faster
and/or shorter sequences, or by deleting unnecessary instructions.

Instruction Scheduler (option -Ok)

The instruction scheduler is a backend optimization that acts upon the generated instructions. When the
processor executes instructions, pipeline hazards might occur which will stall the pipeline. There are
different types of pipeline hazards. For example a data hazard occurs when an instruction waits for a
result of a long-latency instruction, such as a division. When two instructions need the same machine
resource - like a bus, register or functional unit - at the same time, they suffer a structural hazard. This
optimization tries to rearrange instructions to avoid pipeline hazards, for example by inserting another
non-related instruction.

Another important job of the instruction scheduler is auto-bundling. The processor can issue several
vector instructions simultaneously in groups called bundles, which contain up to three vector instructions
and an optional scalar instruction. This optimization tries to form the instruction bundles to minimize the
amount of processor cycles required.

First the instruction stream is partitioned into basic blocks. A new basic block starts at a label, or right
after a jump instruction. Unschedulable instructions and, when -Av is enabled, instructions that access
volatile objects, each get their own basic block. Next, the scheduler searches the instructions within a
basic block, looking for places where the pipeline stalls or functional units are under-utilized. After identifying
these places it tries to rebuild the basic block using the existing instructions, while avoiding the pipeline

138

TASKING SmartCode - PPU User Guide



stalls and combining vector instructions into bundles. In this process data dependencies between
instructions are honored.

Note that the function inlining optimization happens in the frontend of the compiler. The instruction
scheduler has no knowledge about the origin of the instructions.

Unroll small loops (option -Ou)

To reduce the number of branches, short loops are eliminated by replacing them with a number of copies.

IF conversion (option -Ov/-OV)

IF - ELSE constructions are transformed into predicated instructions.This avoids unnecessary jumps and
allows other optimizations to be applied.

Note that this option is only activated when Generic assembly optimizations are enabled (option -Og).

Software pipelining (option -Ow)

A number of techniques to optimize loops. For example, within a loop the most efficient order of instructions
is chosen by the pipeline scheduler and it is examined what instructions can be executed in parallel.

Code compaction (reverse inlining) (option -Or/-OR)

Compaction is the opposite of inlining functions: chunks of code that occur more than once, are transformed
into a function. This reduces code size at the cost of execution speed. The size of the chunks of code to
be inlined depends on the setting of the C compiler option --tradeoff (-t). See the subsection Code
Compaction in Section 3.6.3, Optimize for Code Size or Execution Speed.

Generic assembly optimizations (option -Og)

A set of optimizations on the generated assembly code that increase speed and decrease code size,
similar to peephole optimizations applied within and across basic blocks.The set includes but is not limited
to:

• removal of unused code

• removal of superfluous code

• loop optimizations

• flow optimizations

• load/store optimizations

• addressing mode optimizations

3.6.3. Optimize for Code Size or Execution Speed

You can tell the compiler to focus on execution speed or code size during optimizations.You can do this
by specifying a size/speed trade-off level from 0 (speed) to 4 (size).This trade-off does not turn optimization
phases on or off. Instead, its level is a weight factor that is used in the different optimization phases to

139

Using the C Compiler



influence the heuristics. The higher the level, the more the compiler focusses on code size optimization.
To choose a trade-off value read the description below about which optimizations are affected and the
impact of the different trade-off values.

Note that the trade-off settings are directions and there is no guarantee that these are followed. The
compiler may decide to generate different code if it assessed that this would improve the result.

To specify the size/speed trade-off optimization level:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C Compiler » Optimization.

4. Select a trade-off level in the Trade-off between speed and size box.

See also C compiler option --tradeoff (-t)

Instruction Selection

Trade-off levels 0, 1 and 2: the compiler selects the instructions with the smallest number of cycles.

Trade-off levels 3 and 4: the compiler selects the instructions with the smallest number of bytes.

Subscript Strength Reduction

Subscript strength reduction is turned off by default, because it is not possible for the PPU to automatically
determine if it improves the generated code.

The total number of additional pointers of a particular type in a particular loop is limited to 4 for the PPU.

The performance increases when more subscript pointers can be allocated for an ideal situation. Ideal is
when no registers are needed for other objects than subscripts. This is rarely the case, therefore the
maximum number of registers is set to 4 GPRs.

Automatic Function Inlining

You can enable automatic function inlining with the option --optimize=+inline (-Oi) or by using #pragma
optimize +inline. This option is also part of the -O3 predefined option set.

When automatic inlining is enabled, you can use the options --inline-max-incr and --inline-max-size (or
their corresponding pragmas inline_max_incr / inline_max_size) to control automatic inlining.
By default their values are set to -1. This means that the compiler will select a value depending upon the
selected trade-off level. The defaults are:

inline-max-sizeinline-max-incrTrade-off value

509990

140

TASKING SmartCode - PPU User Guide



inline-max-sizeinline-max-incrTrade-off value

25501

20202

10103

004

For example with trade-off value 1, the compiler inlines all functions that are smaller or equal to 25 internal
compiler units. After that the compiler tries to inline even more functions as long as the function will not
grow more than 50%.

When these options/pragmas are set to a value >= 0, the specified value is used instead of the values
from the table above.

Static functions that are called only once, are always inlined, independent of the values chosen for
inline-max-incr and inline-max-size.

Loop Optimization

For a top-loop, the loop is entered at the top of the loop. A bottom-loop is entered at the bottom. Every
loop has a test and a jump at the bottom of the loop, otherwise it is not possible to create a loop. Some
top-loops also have a conditional jump before the loop. This is only necessary when the number of loop
iterations is unknown. The number of iterations might be zero, in this case the conditional jump jumps
over the loop.

Bottom loops always have an unconditional jump to the loop test at the bottom of the loop.

Optimize loops for size/speedTry to rewrite top-loops to bottom-loops
(when peephole optimization is off -OY)

Trade-off value

speedno0

speedyes1

speedyes2

sizeyes3

sizeyes4

Example:

int a;

void i( int l, int m )
{
    int i;

    for ( i = m; i < l; i++ )
    {
        a++;
    }

141

Using the C Compiler



    return;
}

Coded as a bottom loop (compiled with -OlY --tradeoff=4) is:

      ld.as   %r2,[%gp,@sda(a)]
      b       .L2         ;; unconditional jump to loop test at bottom
.L3:
      add     %r2,%r2,1
      add     %r1,%r1,1
.L2:                      ;; loop entry point
      cmp     %r1,%r0
      blt     .L3
      st.as   %r2,[%gp,@sda(a)]
      j_s    [%blink]

Coded as a top loop (compiled with -OlY --tradeoff=0) is:

      ld.as   %r2,[%gp,@sda(a)]
      cmp     %r1,%r0     ;; test for at least one loop iteration
      bge     .L2         ;; can be omitted when number of iterations is known
.L3:                      ;; loop entry point
      add     %r2,%r2,1
      add     %r1,%r1,1
      cmp     %r1,%r0
      blt     .L3
.L2:
      st.as   %r2,[%gp,@sda(a)]
      j_s     [%blink]

Code Compaction

Trade-off levels 0 and 1: code compaction is disabled.

Trade-off level 2: only code compaction of matches outside loops.

Trade-off level 3: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 10.

Trade-off level 4: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 100.

For loops where the iteration count is unknown an iteration count of 10 is assumed.

For the execution frequency the compiler also accounts nested loops.

See C compiler option --compact-max-size

142

TASKING SmartCode - PPU User Guide



3.7. Static Code Analysis

Static code analysis (SCA) is a relatively new feature in compilers. Various approaches and algorithms
exist to perform SCA, each having specific pros and cons.

SCA Implementation Design Philosophy

SCA is implemented in the TASKING compiler based on the following design criteria:

• An SCA phase does not take up an excessive amount of execution time. Therefore, the SCA can be
performed during a normal edit-compile-debug cycle.

• SCA is implemented in the compiler front-end. Therefore, no new makefiles or work procedures have
to be developed to perform SCA.

• The number of emitted false positives is kept to a minimum. A false positive is a message that indicates
that a correct code fragment contains a violation of a rule/recommendation. A number of warnings is
issued in two variants, one variant when it is guaranteed that the rule is violated when the code is
executed, and the other variant when the rules is potentially violated, as indicated by a preceding
warning message.

For example see the following code fragment:

extern int some_condition(int);
void f(void)
{
    char buf[10];
    int i;

    for (i = 0; i <= 10; i++)
    {
        if (some_condition(i))
        {
            buf[i] = 0; /* subscript may be out of bounds */
        }
    }
}

As you can see in this example, if i=10 the array buf[] might be accessed beyond its upper boundary,
depending on the result of some_condition(i). If the compiler cannot determine the result of this
function at run-time, the compiler issues the warning "subscript is possibly out of bounds" preceding
the CERT warning "ARR35: do not allow loops to iterate beyond the end of an array". If the compiler
can determine the result, or if the if statement is omitted, the compiler can guarantee that the "subscript
is out of bounds".

• The SCA implementation has real practical value in embedded system development.There are no real
objective criteria to measure this claim.Therefore, the TASKING compilers support well known standards
for safety critical software development such as the MISRA guidelines for creating software for safety
critical automotive systems and secure "CERT C Secure Coding Standard" released by CERT. CERT
is founded by the US government and studies internet and networked systems security vulnerabilities,
and develops information to improve security.

143

Using the C Compiler



Effect of optimization level on SCA results

The SCA implementation in the TASKING compilers has the following limitations:

• Some violations of rules will only be detected when a particular optimization is enabled, because they
rely on the analysis done for that optimization, or on the transformations performed by that optimization.
In particular, the constant propagation and the CSE/PRE optimizations are required for some checks.
It is preferred that you enable these optimizations. These optimizations are enabled with the default
setting of the optimization level (-O2).

• Some checks require cross-module inspections and violations will only be detected when multiple
source files are compiled and linked together by the compiler in a single invocation.

3.7.1. C Code Checking: CERT C

The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities.The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

For details about the standard, see the CERT C Secure Coding Standard web site. For general information
about CERT secure coding, see www.cert.org/secure-coding.

Versions of the CERT C standard

Version 1.0 of the CERT C Secure Coding Standard is available as a book by Robert C. Seacord
[Addison-Wesley]. Whereas the web site is a wiki and reflects the latest information, the book serves as
a fixed point of reference for the development of compliant applications and source code analysis tools.

The rules and recommendations supported by the TASKING compiler reflect the version of the CERT
web site as of June 1 2009.

The following rules/recommendations implemented by the TASKING compiler, are not part of the book:
PRE11-C, FLP35-C, FLP36-C, MSC32-C

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 13, CERT C Secure Coding Standard.

Priority and Levels of CERT C

Each CERT C rule and recommendation has an assigned priority. Three values are assigned for each
rule on a scale of 1 to 3 for

• severity - how serious are the consequences of the rule being ignored

1. low (denial-of-service attack, abnormal termination)

2. medium (data integrity violation, unintentional information disclosure)

3. high (run arbitrary code)

144

TASKING SmartCode - PPU User Guide

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
http://www.cert.org/secure-coding
http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html
http://doc.tasking.com/cert/msc32.html


• likelihood - how likely is it that a flaw introduced by ignoring the rule could lead to an exploitable
vulnerability

1. unlikely

2. probable

3. likely

• remediation cost - how expensive is it to comply with the rule

1. high (manual detection and correction)

2. medium (automatic detection and manual correction)

3. low (automatic detection and correction)

The three values are then multiplied together for each rule. This product provides a measure that can be
used in prioritizing the application of the rules. These products range from 1 to 27. Rules and
recommendations with a priority in the range of 1-4 are level 3 rules (low severity, unlikely, expensive to
repair flaws), 6-9 are level 2 (medium severity, probable, medium cost to repair flaws), and 12-27 are
level 1 (high severity, likely, inexpensive to repair flaws).

The TASKING compiler checks most of the level 1 and some of the level 2 CERT C recommendations/rules.

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 13, CERT C Secure Coding Standard.

To apply CERT C code checking to your application

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C Compiler » CERT C Secure Coding.

4. Make a selection from the CERT C secure code checking list.

5. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

On the command line you can use the option --cert.

carc --cert={all | name [-name],...]

With --diag=cert you can see a list of the available checks, or you can use a three-letter mnemonic to
list only the checks in a particular category. For example, --diag=pre lists all supported checks in the
preprocessor category.

145

Using the C Compiler



3.7.2. C Code Checking: MISRA C

The C programming language is a standard for high level language programming in embedded systems,
yet it is considered somewhat unsuitable for programming safety-related applications.Through enhanced
code checking and strict enforcement of best practice programming rules, TASKING MISRA C code
checking helps you to produce more robust code.

MISRA C specifies a subset of the C programming language which is intended to be suitable for embedded
automotive systems. It consists of a set of rules, defined in MISRA-C:2004, Guidelines for the Use of the
C Language in Critical Systems (Motor Industry Research Association (MIRA), 2004).

The compiler also supports MISRA C:1998, the first version of MISRA C and MISRA C: 2012, the latest
version of MISRA C.You can select the version with the following C compiler option:

--misrac-version=1998
--misrac-version=2004
--misrac-version=2012

In your C source files you can check against the MISRA C version used. For example:

#if __MISRAC_VERSION__ == 1998
  ...
#elif __MISRAC_VERSION__ == 2004
  ...
#elif __MISRAC_VERSION__ == 2012
  ...
#endif

For a complete overview of all MISRA C rules, see Chapter 14, MISRA C Rules.

Implementation issues

The MISRA C implementation in the compiler supports nearly all rules. Only a few rules are not supported
because they address documentation, run-time behavior, or other issues that cannot be checked by static
source code inspection, or because they require an application-wide overview.

During compilation of the code, violations of the enabled MISRA C rules are indicated with error messages
and the build process is halted.

MISRA C rules are divided in mandatory rules, required rules and advisory rules. If rules are violated,
errors are generated causing the compiler to stop. With the following options warnings, instead of errors,
are generated:

--misrac-mandatory-warnings
--misrac-required-warnings
--misrac-advisory-warnings

146

TASKING SmartCode - PPU User Guide



Note that not all MISRA C violations will be reported when other errors are detected in the input
source. For instance, when there is a syntax error, all semantic checks will be skipped, including
some of the MISRA C checks. Also note that some checks cannot be performed when the
optimizations are switched off.

Quality Assurance report

To ensure compliance to the MISRA C rules throughout the entire project, the TASKING linker can
generate a MISRA C Quality Assurance report. This report lists the various modules in the project with
the respective MISRA C settings at the time of compilation.You can use this in your company's quality
assurance system to provide proof that company rules for best practice programming have been applied
in the particular project.

To apply MISRA C code checking to your application

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C Compiler » MISRA C.

4. Select the MISRA C version (1998, 2004 or 2012).

5. In the MISRA C checking box select a MISRA C configuration. Select a predefined configuration
for conformance with the required rules in the MISRA C guidelines.

6. (Optional) In the Custom 1998, Custom 2004 or Custom 2012 entry, specify the individual rules.

On the command line you can use the option --misrac.

carc --misrac={all | number [-number],...]

3.8. C Compiler Error Messages

The C compiler reports the following types of error messages in the Problems view of Eclipse.

F ( Fatal errors)

After a fatal error the compiler immediately aborts compilation.

E (Errors)

Errors are reported, but the compiler continues compilation. No output files are produced unless you have
set the C compiler option --keep-output-files (the resulting output file may be incomplete).

147

Using the C Compiler



W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the compiler for a situation which may not be correct.You can control warnings
in the C/C++ Build » Settings » Tool Settings » C Compiler » Diagnostics page of the Project »
Properties for menu (C compiler option --no-warnings).

I (Information)

Information messages are always preceded by an error message. Information messages give extra
information about the error.

S (System errors)

System errors occur when internal consistency checks fail and should never occur.When you still receive
the system error message

S9##: internal consistency check failed - please report

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

On the command line you can use the C compiler option --diag to see an explanation of a diagnostic
message:

carc --diag=[format:]{all | number,...]

148

TASKING SmartCode - PPU User Guide



Chapter 4. Using the Assembler
This chapter describes the assembly process and explains how to call the assembler.

The assembler converts hand-written or compiler-generated assembly language programs into machine
language, resulting in object files in the ELF/DWARF object format.

The assembler takes the following files for input and output:

The following information is described:

• The assembly process.

• How to call the assembler and how to use its options. An extensive list of all options and their descriptions
is included in Section 7.3, Assembler Options.

• How to generate a list file.

• Types of assembler messages.

4.1. Assembly Process

The assembler generates relocatable output files with the extension .o. These files serve as input for
the linker.

Phases of the assembly process

• Parsing of the source file: preprocessing of assembler directives and checking of the syntax of
instructions

• Instruction grouping and reordering

• Generation of the relocatable object file and optionally a list file

The assembler integrates file inclusion and macro facilities. See Section 2.10, Macro Operations for more
information.

149



4.2. Calling the Assembler

The TASKING toolset for PPU under Eclipse uses the TASKING makefile generator and make utility to
build your entire project. After you have built your project, the output files are available in a subdirectory
of your project directory, depending on the active configuration you have set in the C/C++ Build » Settings
page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

• Build Selected File(s) ( ). This compiles and assembles the selected file(s) without calling the linker.

1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

• Build Individual Project ( ).

To build individual projects incrementally, select Project » Build project.

• Rebuild Project ( ). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...

2. Enable the option Start a build immediately and click Clean.

• Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behavior tab of the C/C++ Build page of the Project » Properties for dialog.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you need to set them for each
configuration.

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Processor.

In the right pane the Processor page appears.

3. From the Configuration list, select a configuration or select [ All configurations ].

150

TASKING SmartCode - PPU User Guide



4. From the Processor selection list, select a processor.

To access the assembler options

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. From the Configuration list, select a configuration or select [ All configurations ].

4. On the Tool Settings tab, select Assembler.

5. Select the sub-entries and set the options in the various pages.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

Note that when you click Restore Defaults to restore the default tool options, as a side effect the
processor is also reset to its default value on the Processor page (C/C++ Build » Processor).

Invocation syntax on the command line:

asarc [ [option]... [file]... ]...

The input file must be an assembly source file (.asm or .src).

You can find a detailed description of all assembler options in Section 7.3, Assembler Options.

4.3. How the Assembler Searches Include Files

When you use include files (with the .INCLUDE directive), you can specify their location in several ways.
The assembler searches the specified locations in the following order:

1. If the .INCLUDE directive contains an absolute path name, the assembler looks for this file. If no path
or a relative path is specified, the assembler looks in the same directory as the source file.

2. When the assembler did not find the include file, it looks in the directories that are specified in the
Assembler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-I)).

3. When the assembler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable ASARCINC.

151

Using the Assembler



4. When the assembler still did not find the include file, it finally tries the default include directory relative
to the installation directory.

Example

Suppose that the assembly source file test.asm contains the following lines:

.INCLUDE 'myinc.inc'

You can call the assembler as follows:

asarc -Imyinclude test.asm

First the assembler looks for the file myinc.asm, in the directory where test.asm is located. If the file
is not there the assembler searches in the directory myinclude. If it was still not found, the assembler
searches in the environment variable ASARCINC and then in the default include directory.

4.4. Generating a List File

The list file is an additional output file that contains information about the generated code.You can
customize the amount and form of information.

If the assembler generates errors or warnings, these are reported in the list file just below the source line
that caused the error or warning.

To generate a list file

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler » List File.

4. Enable the option Generate list file.

5. (Optional) Enable the options to include that information in the list file.

Example to generate a list file on the command line

The following command generates the list file test.lst:

asarc -l test.asm

See Section 10.1, Assembler List File Format, for an explanation of the format of the list file.

152

TASKING SmartCode - PPU User Guide



4.5. Assembler Error Messages

The assembler reports the following types of error messages in the Problems view of Eclipse.

F ( Fatal errors)

After a fatal error the assembler immediately aborts the assembly process.

E (Errors)

Errors are reported, but the assembler continues assembling. No output files are produced unless you
have set the assembler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the assembler for a situation which may not be correct.You can control
warnings in the C/C++ Build » Settings » Tool Settings » Assembler » Diagnostics page of the Project
» Properties for menu (assembler option --no-warnings).

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

On the command line you can use the assembler option --diag to see an explanation of a diagnostic
message:

asarc --diag=[format:]{all | number,...]

153

Using the Assembler



154

TASKING SmartCode - PPU User Guide



Chapter 5. Using the Linker
This chapter describes the linking process, how to call the linker and how to control the linker with a script
file.

The TASKING linker is a combined linker/locator. The linker phase combines relocatable object files (.o
files, generated by the assembler), and libraries into a single relocatable linker object file (.out). The
locator phase assigns absolute addresses to the linker object file and creates an absolute object file which
you can load into a target processor. From this point the term linker is used for the combined linker/locator.

The linker can simultaneously link and locate all programs for all cores available on a target board. The
target board may be of arbitrary complexity. A simple target board may contain one standard processor
with some external memory that executes one task. A complex target board may contain multiple standard
processors and DSPs combined with configurable IP-cores loaded in an FPGA. Each core may execute
a different program, and external memory may be shared by multiple cores.

The linker takes the following files for input and output:

This chapter first describes the linking process. Then it describes how to call the linker and how to use
its options. An extensive list of all options and their descriptions is included in Section 7.4, Linker Options.

To control the link process, you can write a script for the linker.This chapter shortly describes the purpose
and basic principles of the Linker Script Language (LSL) on the basis of an example. A complete description
of the LSL is included in Linker Script Language.

5.1. Linking Process

The linker combines and transforms relocatable object files (.o) into a single absolute object file. This
process consists of two phases: the linking phase and the locating phase.

In the first phase the linker combines the supplied relocatable object files and libraries into a single
relocatable object file. In the second phase, the linker assigns absolute addresses to the object file so it
can actually be loaded into a target.

155



Terms used in the linking process

DefinitionTerm

Object code in which addresses have fixed absolute values, ready to load into a
target.

Absolute object file

A specification of a location in an address space.Address

The set of possible addresses. A core can support multiple spaces, for example in
a Harvard architecture the addresses that identify the location of an instruction
refer to code space, whereas addresses that identify the location of a data object
refer to a data space.

Address space

A description of the characteristics of a core that are of interest for the linker. This
encompasses the address space(s) and the internal bus structure. Given this
information the linker can convert logical addresses into physical addresses.

Architecture

A section created by the linker. This section contains data that specifies how the
startup code initializes the data and BSS sections. For each section the copy table
contains the following fields:

• action: defines whether a section is copied or zeroed

• destination: defines the section's address in RAM

• source: defines the sections address in ROM, zero for BSS sections

• length: defines the size of the section in MAUs of the destination space

Copy table

An instance of an architecture.Core

The design of a processor. A description of one or more cores including internal
memory and any number of buses.

Derivative

Collection of relocatable object files. Usually each object file in a library contains
one symbol definition (for example, a function).

Library

An address as encoded in an instruction word, an address generated by a core
(CPU).

Logical address

The set of linker script files that are passed to the linker.LSL file

Minimum Addressable Unit. For a given processor the number of bits between an
address and the next address. This is not necessarily a byte or a word.

MAU

The binary machine language representation of the C source.Object code

An address generated by the memory system.Physical address

An instance of a derivative. Usually implemented as a (custom) chip, but can also
be implemented in an FPGA, in which case the derivative can be designed by the
developer.

Processor

Object code in which addresses are represented by symbols and thus relocatable.Relocatable object
file

The process of assigning absolute addresses.Relocation

156

TASKING SmartCode - PPU User Guide



DefinitionTerm

Information about how the linker must modify the machine code instructions when
it relocates addresses.

Relocation
information

A group of instructions and/or data objects that occupy a contiguous range of
addresses.

Section

Attributes that define how the section should be linked or located.Section attributes

The hardware board on which an application is executing. A board contains at least
one processor. However, a complex target may contain multiple processors and
external memory and may be shared between processors.

Target

A reference to a symbol for which the linker did not find a definition yet.Unresolved
reference

5.1.1. Phase 1: Linking

The linker takes one or more relocatable object files and/or libraries as input. A relocatable object file, as
generated by the assembler, contains the following information:

• Header information: Overall information about the file, such as the code size, name of the source file
it was assembled from, and creation date.

• Object code: Binary code and data, divided into various named sections. Sections are contiguous
chunks of code that have to be placed in specific parts of the memory. The program addresses start
at zero for each section in the object file.

• Symbols: Some symbols are exported - defined within the file for use in other files. Other symbols are
imported - used in the file but not defined (external symbols). Generally these symbols are names of
routines or names of data objects.

• Relocation information: A list of places with symbolic references that the linker has to replace with
actual addresses. When in the code an external symbol (a symbol defined in another file or in a library)
is referenced, the assembler does not know the symbol's size and address. Instead, the assembler
generates a call to a preliminary relocatable address (usually 0000), while stating the symbol name.

• Debug information: Other information about the object code that is used by a debugger.The assembler
optionally generates this information and can consist of line numbers, C source code, local symbols
and descriptions of data structures.

The linker resolves the external references between the supplied relocatable object files and/or libraries
and combines the files into a single relocatable linker object file.

The linker starts its task by scanning all specified relocatable object files and libraries. If the linker
encounters an unresolved symbol, it remembers its name and continues scanning. The symbol may be
defined elsewhere in the same file, or in one of the other files or libraries that you specified to the linker.
If the symbol is defined in a library, the linker extracts the object file with the symbol definition from the
library. This way the linker collects all definitions and references of all of the symbols.

Next, the linker combines sections with the same section name and attributes into single sections. The
linker also substitutes (external) symbol references by (relocatable) numerical addresses where possible.

157

Using the Linker



At the end of the linking phase, the linker either writes the results to a file (a single relocatable object file)
or keeps the results in memory for further processing during the locating phase.

The resulting file of the linking phase is a single relocatable object file (.out). If this file contains unresolved
references, you can link this file with other relocatable object files (.o) or libraries (.a) to resolve the
remaining unresolved references.

With the linker command line option --link-only, you can tell the linker to only perform this linking phase
and skip the locating phase. The linker complains if any unresolved references are left.

5.1.2. Phase 2: Locating

In the locating phase, the linker assigns absolute addresses to the object code, placing each section in
a specific part of the target memory.The linker also replaces references to symbols by the actual address
of those symbols. The resulting file is an absolute object file which you can actually load into a target
memory. Optionally, when the resulting file should be loaded into a ROM device the linker creates a
so-called copy table section which is used by the startup code to initialize the data and BSS sections.

Code modification

When the linker assigns absolute addresses to the object code, it needs to modify this code according
to certain rules or relocation expressions to reflect the new addresses. These relocation expressions are
stored in the relocatable object file. Consider the following snippet of x86 code that moves the contents
of variable a to variable b via the eax register:

A1 3412 0000 mov a,%eax   (a defined at 0x1234, byte reversed)
A3 0000 0000 mov %eax,b   (b is imported so the instruction refers to
                            0x0000 since its location is unknown)

Now assume that the linker links this code so that the section in which a is located is relocated by 0x10000
bytes, and b turns out to be at 0x9A12. The linker modifies the code to be:

A1 3412 0100 mov a,%eax   (0x10000 added to the address)
A3 129A 0000 mov %eax,b   (0x9A12 patched in for b)

These adjustments affect instructions, but keep in mind that any pointers in the data part of a relocatable
object file have to be modified as well.

Output formats

The linker can produce its output in different file formats.The default ELF/DWARF format (.elf) contains
an image of the executable code and data, and can contain additional debug information. The Intel-Hex
format (.hex) and Motorola S-record format (.sre) only contain an image of the executable code and
data.You can specify a format with the options --output (-o) and --chip-output (-c).

Controlling the linker

Via a so-called linker script file you can gain complete control over the linker.The script language is called
the Linker Script Language (LSL). Using LSL you can define:

• The memory installed in the embedded target system:

158

TASKING SmartCode - PPU User Guide



To assign locations to code and data sections, the linker must know what memory devices are actually
installed in the embedded target system. For each physical memory device the linker must know its
start-address, its size, and whether the memory is read-write accessible (RAM) or read-only accessible
(ROM).

• How and where code and data should be placed in the physical memory:

Embedded systems can have complex memory systems. If for example on-chip and off-chip memory
devices are available, the code and data located in internal memory is typically accessed faster and
with dissipating less power. To improve the performance of an application, specific code and data
sections should be located in on-chip memory. By writing your own LSL file, you gain full control over
the locating process.

• The underlying hardware architecture of the target processor.

To perform its task the linker must have a model of the underlying hardware architecture of the processor
you are using. For example the linker must know how to translate an address used within the object
file (a logical address) into an offset in a particular memory device (a physical address). In most linkers
this model is hard coded in the executable and can not be modified. For the TASKING linker this
hardware model is described in the linker script file. This solution is chosen to support configurable
cores that are used in system-on-chip designs.

When you want to write your own linker script file, you can use the standard linker script files with
architecture descriptions delivered with the product.

See also Section 5.8, Controlling the Linker with a Script.

5.2. Calling the Linker

In Eclipse you can set options specific for the linker. After you have built your project, the output files are
available in a subdirectory of your project directory, depending on the active configuration you have set
in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

• Build Individual Project ( ).

To build individual projects incrementally, select Project » Build project.

• Rebuild Project ( ). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...

2. Enable the option Start a build immediately and click Clean.

159

Using the Linker



• Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended, but to enable this feature select Project » Build Automatically
and ensure there is a check mark beside the Build Automatically menu item. In order for this option
to work, you must also enable option Build on resource save (Auto build) on the Behavior tab of
the C/C++ Build page of the Project » Properties for dialog.

To access the linker options

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. From the Configuration list, select a configuration or select [ All configurations ].

4. On the Tool Settings tab, select Linker.

5. Select the sub-entries and set the options in the various pages.

Note that when you click Restore Defaults to restore the default tool options, as a side effect the
processor is also reset to its default value on the Processor page (C/C++ Build » Processor).

Invocation syntax on the command line:

larc [ [option]... [file]... ]...

When you are linking multiple files, either relocatable object files (.o) or libraries (.a), it is important to
specify the files in the right order. This is explained in Section 5.3, Linking with Libraries.

Example:

larc -dtc49x.lsl test.o

This links and locates the file test.o and generates the file test.elf.

You can find a detailed description of all linker options in Section 7.4, Linker Options.

5.3. Linking with Libraries

There are two kinds of libraries: system libraries and user libraries.

System library

System libraries are stored in the directories:

160

TASKING SmartCode - PPU User Guide



<installation path>\carc\lib\tc43x  (ppu_tc43x libraries)
<installation path>\carc\lib\tc49x  (ppu_tc49x libraries)
<installation path>\carc\lib\tc4dx  (ppu_tc4dx libraries)

An overview of the system libraries is given in the following table:

DescriptionLibraries

C library with double-precision FPU instructions for ppu_tc49x and
ppu_tc4dx core architectures and single-precision FPU instructions for the
ppu_tc43x core architecture.

libc_fpu.a

Floating-point library (contains floating-point run-time functions that are
needed by the C compiler). This library is only available for the ppu_tc43x
core architecture.

libfp_fpu.a

Run-time library (contains other run-time functions needed by the C
compiler)

librt.a

To link the default C (system) libraries

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Enable the option Link default libraries.

When you want to link system libraries from the command line, you must specify this with the option
--library (-l). For example, to specify the system library libc_fpu.a, type:

larc --library=c_fpu test.o

User library

You can create your own libraries. Section 6.3, Archiver describes how you can use the archiver to create
your own library with object modules.

To link user libraries

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

161

Using the Linker



3. On the Tool Settings tab, select Linker » Libraries.

4. Add your libraries to the Libraries box.

When you want to link user libraries from the command line, you must specify their filenames on the
command line:

larc cstart.o mylib.a

If the library resides in a sub-directory, specify that directory with the library name:

larc cstart.o mylibs\mylib.a

If you do not specify a directory, the linker searches the library in the current directory only.

Library order

The order in which libraries appear on the command line is important. By default the linker processes
object files and libraries in the order in which they appear at the command line. Therefore, when you use
a weak symbol construction, like printf, in an object file or your own library, you must position this
object/library before the C library.

With the option --first-library-first you can tell the linker to scan the libraries from left to right, and extract
symbols from the first library where the linker finds it. This can be useful when you want to use newer
versions of a library routine:

larc --first-library-first a.a test.o b.a

If the file test.o calls a function which is both present in a.a and b.a, normally the function in b.a
would be extracted. With this option the linker first tries to extract the symbol from the first library a.a.

Note that routines in b.a that call other routines that are present in both a.a and b.a are now also
resolved from a.a.

5.3.1. How the Linker Searches Libraries

System libraries

You can specify the location of system libraries in several ways.The linker searches the specified locations
in the following order:

1. The linker first looks in the Library search path that are specified in the Linker » Libraries page in
the C/C++ Build » Settings » Tool Settings tab of the Project Properties dialog (equivalent to the
option --library-directory (-L)). If you specify the -L option without a pathname, the linker stops
searching after this step.

2. When the linker did not find the library (because it is not in the specified library directory or because
no directory is specified), it looks in the path(s) specified in the environment variables LIBPPU_TC43X
/ LIBPPU_TC49X / LIBPPU_TC4DX.

3. When the linker did not find the library, it tries the default lib directory relative to the installation
directory (or a processor specific sub-directory).

162

TASKING SmartCode - PPU User Guide



User library

If you use your own library, the linker searches the library in the current directory only.

5.3.2. How the Linker Extracts Objects from Libraries

A library built with the TASKING archiver ararc always contains an index part at the beginning of the
library. The linker scans this index while searching for unresolved externals. However, to keep the index
as small as possible, only the defined symbols of the library members are recorded in this area.

When the linker finds a symbol that matches an unresolved external, the corresponding object file is
extracted from the library and is processed. After processing the object file, the remaining library index
is searched. If after a complete search of the library unresolved externals are introduced, the library index
will be scanned again. After all files and libraries are processed, and there are still unresolved externals
and you did not specify the linker option --no-rescan, all libraries are rescanned again. This way you do
not have to worry about the library order on the command line and the order of the object files in the
libraries. However, this rescanning does not work for 'weak symbols'. If you use a weak symbol construction,
like printf, in an object file or your own library, you must position this object/library before the C library.

The option --verbose (-v) shows how libraries have been searched and which objects have been extracted.

Resolving symbols

If you are linking from libraries, only the objects that contain symbols to which you refer, are extracted
from the library. This implies that if you invoke the linker like:

larc mylib.a

nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through mylib.a.

It is possible to force a symbol as external (unresolved symbol) with the option --extern (-e):

larc --extern=main mylib.a

In this case the linker searches for the symbol main in the library and (if found) extracts the object that
contains main.

If this module contains new unresolved symbols, the linker looks again in mylib.a.This process repeats
until no new unresolved symbols are found.

5.4. Incremental Linking

With the TASKING linker it is possible to link incrementally. Incremental linking means that you link some,
but not all .o modules to a relocatable object file .out. In this case the linker does not perform the locating
phase. With the second invocation, you specify both new .o files as the .out file you had created with
the first invocation.

Incremental linking is only possible on the command line.

163

Using the Linker



larc --incremental test1.o -otest.out
larc test2.o test.out

This links the file test1.o and generates the file test.out. This file is used again and linked together
with test2.o to create the file test.elf (the default name if no output filename is given in the default
ELF/DWARF format).

With incremental linking it is normal to have unresolved references in the output file until all .o files are
linked and the final .out or .elf file has been reached. The option --incremental (-r) for incremental
linking also suppresses warnings and errors because of unresolved symbols.

5.5. Importing Binary Files

With the TASKING linker it is possible to add a binary file to your absolute output file. In an embedded
application you usually do not have a file system where you can get your data from.

Add a data object in Eclipse

1. Select Linker » Data Objects.

The Data objects box shows the list of object files that are imported.

2. To add a data object, click on the Add button in the Data objects box.

3. Type or select a binary file (including its path).

On the command line you can add raw data to your application with the linker option --import-object.

This makes it possible for example to display images on a device or play audio. The linker puts the raw
data from the binary file in a section. The section is aligned on a 4-byte boundary. The section name is
derived from the filename, in which dots are replaced by an underscore. So, when importing a file called
my.mp3, a section with the name my_mp3 is created. In your application you can refer to the created
section by using linker labels.

For example:

#include <stdio.h>
extern char   _lc_ub_my_mp3; /* linker labels */
extern char   _lc_ue_my_mp3;
char*   mp3 = &_lc_ub_my_mp3;

void main(void)
{
  int size = &_lc_ue_my_mp3 - &_lc_ub_my_mp3;
  int i;
  for (i=0;i<size;i++)
    putchar(mp3[i]);
}

164

TASKING SmartCode - PPU User Guide



If you want to use the export functionality of Eclipse, the binary file has to be part of your project.

5.6. Converting Intel Hex to Binary Format

The linker can convert one or more Intel Hex input files to a single binary output file. This binary output
format is only available for "chip" output, not for "space" output. Multiple Intel Hex files may be used as
input, as long as there are no address conflicts and as long as there is only one program entry point for
a set of multiple Intel Hex files. If more than one entry point is encountered the linker emits an error.

The linker reads the Intel Hex file(s) and stores the contents in an internal database format in as many
sections as there are contiguous memory sections within the Intel Hex file(s). All sections are stored within
the primary hex file address space. Each section is incrementally named using the following format .

.secN_input_file_name

Conversion from the internal database format to the binary output takes place automatically when the
input is detected to be an Intel Hex file and the command line option:

--chip-output=[basename]:format[:addr_size],...

is used with the format field set to BIN and the addr_size left empty.

Any memory location included in the binary file that is not occupied by application data can be filled with
the value specified by linker option --binfill=pattern (default 0x00).

The resulting binary output file has no knowledge of targets or absolute addresses. It is simply a byte
representation of the image data that was read in. The data of a binary output file represents the first
MAU in memory (at offset zero) up to the last data MAU of the application in memory.The resulting binary
file has no memory holes because they are filled with the fill pattern.

Example:

larc myproj_1.hex myproj_2.hex -dtc49x.lsl --core=ppu 
     --chip-output=myproj:bin --binfill=0x2D

5.7. Linker Optimizations

During the linking and locating phase, the linker looks for opportunities to optimize the object code. Both
code size and execution speed can be optimized.

To enable or disable optimizations

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

165

Using the Linker



In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Optimization.

4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Delete unreferenced sections (option -Oc/-OC)

This optimization removes unreferenced sections from the resulting object file.

This optimization considers a section referenced if either of the following two conditions is true:

1. The section is protected from unreferenced section removal, which can be one of:

• the section is assigned an absolute address, either in the object file or in LSL

• the section is selected by exact name in LSL (no wildcard pattern) *

• a symbol defined in the section is referenced in LSL

• the section has the 'protected' section flag set, either in the object file or in LSL

2. The section is referenced via a relocation by another section that is considered referenced.

* If multiple sections of a specific name are created by using section renaming, all of these sections are
protected against unreferenced section removal. With a selection using wildcards, matching sections are
selected, but matching sections that are unreferenced may be removed. See Selecting sections for a
group in Section 12.8.2, Creating and Locating Groups of Sections.

First fit decreasing (option -Ol/-OL)

When the physical memory is fragmented or when address spaces are nested it may be possible that a
given application cannot be located although the size of the available physical memory is larger than the
sum of the section sizes. Enable the first-fit-decreasing optimization when this occurs and re-link your
application.

The linker's default behavior is to place sections in the order that is specified in the LSL file (that is, working
from low to high memory addresses or vice versa). This also applies to sections within an unrestricted
group. If a memory range is partially filled and a section must be located that is larger than the remainder
of this range, then the section and all subsequent sections are placed in a next memory range. As a result
of this gaps occur at the end of a memory range.

When the first-fit-decreasing optimization is enabled the linker will first place the largest sections in the
smallest memory ranges that can contain the section. Small sections are located last and can likely fit in
the remaining gaps.

166

TASKING SmartCode - PPU User Guide



Compress copy table (option -Ot/-OT)

The startup code initializes the application's data areas.The information about which memory addresses
should be zeroed and which memory ranges should be copied from ROM to RAM is stored in the copy
table.

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

Note that this optimization only affects unrestricted sections that require an initialization action in
the copy table.The affected sections get a clustered restriction. Unrestricted sections are sections
that do not have their absolute location or their relative location to other sections restricted. See
also Define the mutual order of sections in an LSL group in Section 12.8.2, Creating and Locating
Groups of Sections.

Delete duplicate code (option -Ox/-OX)

Delete duplicate constant data (option -Oy/-OY)

These two optimizations remove code and constant data that is defined more than once, from the resulting
object file.

5.8. Controlling the Linker with a Script

With the options on the command line you can control the linker's behavior to a certain degree. From
Eclipse it is also possible to determine where your sections will be located, how much memory is available,
which sorts of memory are available, and so on. Eclipse passes these locating directions to the linker via
a script file. If you want even more control over the locating process you can supply your own script.

The language for the script is called the Linker Script Language, or shortly LSL.You can specify the script
file to the linker, which reads it and locates your application exactly as defined in the script. If you do not
specify your own script file, the linker always reads a standard script file which is supplied with the toolset.

5.8.1. Purpose of the Linker Script Language

The Linker Script Language (LSL) serves three purposes:

1. It provides the linker with a definition of the target's core architecture. This definition is supplied with
the toolset.

2. It provides the linker with a specification of the memory attached to the target processor.

3. It provides the linker with information on how your application should be located in memory. This gives
you, for example, the possibility to create overlaying sections.

The linker accepts multiple LSL files.You can use the specifications of the core architectures that TASKING
has supplied in the include.lsl directory. Do not change these files.

167

Using the Linker



If you use a different memory layout than described in the LSL file supplied for the target core, you must
specify this in a separate LSL file and pass both the LSL file that describes the core architecture and your
LSL file that contains the memory specification to the linker. Next you may want to specify how sections
should be located and overlaid.You can do this in the same file or in another LSL file.

LSL has its own syntax. In addition, you can use the standard C preprocessor keywords, such as #include
and #define, because the linker sends the script file first to the C preprocessor before it starts interpreting
the script.

The complete LSL syntax is described in Chapter 12, Linker Script Language (LSL).

5.8.2. Eclipse and LSL

In Eclipse you can specify the size of the stack and heap; the physical memory attached to the processor;
identify that particular address ranges are reserved; and specify which sections are located where in
memory. Eclipse translates your input into an LSL file that is stored in the project directory under the
name project_name.lsl and passes this file to the linker. If you want to learn more about LSL you can
inspect the generated file project_name.lsl.

Because a PPU project is part of a TriCore project you only need to specify an LSL file to the TriCore
project.

To add a generated Linker Script File to your project

1. From the File menu, select File » New » TASKING TriCore C/C++ Project.

The New C/C++ Project wizard appears.

2. Fill in the project settings in each dialog and click Next > until the following dialog appears.

168

TASKING SmartCode - PPU User Guide



3. Enable the option Add linker script file to the project and click Finish.

Eclipse creates your project and the file "project_name.lsl" in the project directory.

If you do not add the linker script file here, you can always add it later with File » New » Linker Script
File (LSL).

To change the Linker Script File in Eclipse

There are two ways of changing the LSL file in Eclipse.

• You can change the LSL file directly in an editor.

1. Double-click on the file project_name.lsl.

The project LSL file opens in the editor area.

169

Using the Linker



2. You can edit the LSL file directly in the project_name.lsl editor.

A * appears in front of the name of the LSL file to indicate that the file has changes.

3. Click  or select File » Save to save the changes.

• You can also make changes to the property pages Memory and Stack/Heap.

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Memory or Stack/Heap.

In the right pane the corresponding property page appears.

3. Make changes to memory and/or stack/heap and click OK.

The project LSL file is updated automatically according to the changes you make in the pages.

You can quickly navigate through the LSL file by using the Outline view (Window » Show View » Outline).

5.8.3. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each
space the linker must know how to perform this conversion. In this context a physical address is an offset

170

TASKING SmartCode - PPU User Guide



on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the interrupt vector table.

This specification is normally written by TASKING. TASKING supplies LSL files in the include.lsl
directory. The file arch_ppu.lsl defines the PPU architecture and defines a vector table.

The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

The linker uses the architecture name in the LSL file to identify the target. For example, the default library
search path can be different for each core architecture.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

TASKING supplies LSL files for each derivative (derivative.lsl), along with "SFR files", which provide
easy access to registers in I/O sub-systems from C and assembly programs. When you build an ASIC
or use a derivative that is not (yet) supported by the TASKING tools, you may have to write a derivative
definition.

The processor definition

The processor definition describes an instance of a derivative. A processor definition is only needed in a
multi-processor embedded system. It allows you to define multiple processors of the same type.

If for a derivative 'A' no processor is defined in the LSL file, the linker automatically creates a processor
named 'A' of derivative 'A'.This is why for single-processor applications it is enough to specify the derivative
in the LSL file.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems.The board specification describes all characteristics of your target board's system buses, memory
devices, I/O sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

171

Using the Linker



• convert a logical address to an offset within a memory device

• locate sections in physical memory

• maintain an overall view of the used and free physical memory within the whole system while locating

The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given address, to place sections in a
given order, and to overlay code and/or data sections.

Example: Skeleton of a Linker Script File

A linker script file that defines a derivative "X'" based on the PPU architecture, its external memory and
how sections are located in memory, may have the following skeleton:

architecture PPU
{
    // Specification of the PPU core architecture.
    // Written by TASKING.
}

derivative X  // derivative name is arbitrary
{
    // Specification of the derivative.
    // Written by TASKING.
    core ppu         // always specify the core
    {
       architecture = PPU;
    }

    bus ppu_bus    // internal bus
    {
       // maps to bus "local_bus" in "ppu" core
    }

    // internal memory
}

memory ext_name
{
    // external memory definition
}

section_layout ppu:linear    // section layout
{
    // section placement statements

    // sections are located in address space 'linear'

172

TASKING SmartCode - PPU User Guide



    // of core 'ppu'
}

Overview of LSL files delivered by TASKING

TASKING supplies the following LSL files in the directory include.lsl.

DescriptionLSL file

Defines the architecture PPU based on the ARC_HS architecture. It also defines
the vector table.

arch_ppu.lsl

Contains a processor and memory definition. It includes the file
vppu_tc43x.lsl, vppu_tc49x.lsl, vppu_tc4dx.lsl respectively.

tc43x.lsl
tc49x.lsl
tc4dx.lsl

Contains a derivative definition. It includes the file vppu.lsl.vppu_tc43x.lsl
vppu_tc49x.lsl
vppu_tc4dx.lsl

Contains a derivative definition for the PPU. It includes the file arch_ppu.lsl.vppu.lsl

This file is used by Eclipse as a template for the project LSL file. It includes
the file cpu.lsl.

template.lsl

This file includes the file derivative.lsl based on your CPU selection.The
CPU is specified by the __CPU__ macro.

cpu.lsl

Contains a default memory definition and section layout based on the tc49x
derivative.This file is used on a command line invocation of the tools. It includes
the file tc49x.lsl.

default.lsl

When you select to add a linker script file when you create a project in Eclipse, Eclipse makes a copy of
the file template.lsl and names it “project_name.lsl".

On the command line, the linker uses the file default.lsl, unless you specify another file with the
linker option --lsl-file (-d).

5.8.4.The Architecture Definition

Although you will probably not need to write an architecture definition (unless you are building your own
processor core) it helps to understand the Linker Script Language and how the definitions are interrelated.

Within an architecture definition the characteristics of a target processor core that are important for the
linking process are defined. These include:

• space definitions: the logical address spaces and their properties

• bus definitions: the I/O buses of the core architecture

• mappings: the address translations between logical address spaces, the connections between logical
address spaces and buses and the address translations between buses

173

Using the Linker



Address spaces

A logical address space is a memory range for which the core has a separate way to encode an address
into instructions. Most microcontrollers and DSPs support multiple address spaces. For example, separate
spaces for code and data. Normally, the size of an address space is 2N, with N the number of bits used
to encode the addresses.

The relation of an address space with another address space can be one of the following:

• one space is a subset of the other. These are often used for "small" absolute or relative addressing.

• the addresses in the two address spaces represent different locations so they do not overlap. This
means the core must have separate sets of address lines for the address spaces. For example, in
Harvard architectures we can identify at least a code and a data memory space.

Address spaces (even nested) can have different minimal addressable units (MAU), alignment restrictions,
and page sizes. All address spaces have a number that identifies the logical space (id). The following
table lists the different address spaces for the architecture PPU as defined in arch_ppu.lsl.

DescriptionMAUIdSpace

Linear address space.81linear

The PPU architecture in LSL notation

The best way to write the architecture definition, is to start with a drawing. The following figure shows a
part of the PPU architecture:

The figure shows one address space called linear. The address space has attributes like a number
that identifies the logical space (id), a MAU and an alignment. In LSL notation the definition of this address
space looks as follows:

space linear
{
     id = 1;
     mau = 8;

     map (size=4G, dest=bus:local_bus);
}

The keyword map corresponds with the arrows in the drawing.You can map:

• address space => address space (not shown in the drawing)

174

TASKING SmartCode - PPU User Guide



• address space => bus

• memory => bus (not shown in the drawing)

• bus => bus (not shown in the drawing)

Next the internal bus, named local_bus must be defined in LSL:

bus local_bus
{
     mau = 8;
     width = 32;  // there are 32 data lines on the bus
}

This completes the LSL code in the architecture definition. Note that all code above goes into the
architecture definition, thus between:

architecture PPU
{
    // All code above goes here.
}

5.8.5.The Derivative Definition

Although you will probably not need to write a derivative definition (unless you are using multiple cores
that both access the same memory device) it helps to understand the Linker Script Language and how
the definitions are interrelated.

A derivative is the design of a processor, as implemented on a chip (or FPGA). It comprises one or more
cores and on-chip memory. The derivative definition includes:

• core definition: an instance of a core architecture

• bus definition: the I/O buses of the core architecture

• memory definitions: internal (or on-chip) memory

Core

Each derivative must have at least one core and each core must have a specification of its core architecture.
This core architecture must be defined somewhere in the LSL file(s).

core ppu
{
    architecture = PPU;
}

Bus

Each derivative can contain a bus definition for connecting external memory. In this example, the bus
ppu_bus maps to the bus local_bus defined in the architecture definition of core ppu:

175

Using the Linker



bus local_bus
{
   mau = 8;
   width = 32;
   map (size=4G, dest=bus:ppu:local_bus);
}

Memory

Memory is usually described in a separate memory definition, but you can specify on-chip memory for a
derivative. For example:

memory internal_code_rom
{
    mau  = 8;
    type = rom;
    size = 2k;
    map( dest=bus:ppu:local_bus, size = 2k, dest_offset = 0x00100000);
         // src_offset is zero by default
}

This completes the LSL code in the derivative definition. Note that all code above goes into the derivative
definition, thus between:

derivative X    // name of derivative
{
    // All code above goes here
}

5.8.6.The Processor Definition

The processor definition is only needed when you write an LSL file for a multi-processor embedded
system. The processor definition explicitly instantiates a derivative, allowing multiple processors of the
same type.

processor name
{
    derivative = derivative_name;
}

If no processor definition is available that instantiates a derivative, a processor is created with the same
name as the derivative.

5.8.7.The Memory Definition

Once the core architecture is defined in LSL, you may want to extend the processor with external (or
off-chip) memory.You need to specify the location and size of the physical external memory devices in
the target system.

The principle is the same as defining the core's architecture but now you need to fill the memory definition:

176

TASKING SmartCode - PPU User Guide



memory name
{
    // memory definitions
}

Suppose your embedded system has 512kB of external ROM, named simrom, 512kB of external RAM,
named simram and 32kB of external NVRAM, named my_nvram (see figure above.) All memories are
connected to the bus local_bus. In LSL this looks like follows:

memory simrom
{
    mau = 8;
    type = rom;
    size = 512k;
    map ( size = 512k, dest_offset=0, dest=bus:X:local_bus);
}

memory simram
{
    mau = 8;
    type = ram;
    size = 512k;
    map ( size = 512k, dest_offset=512k, dest=bus:X:local_bus);
}

memory my_nvram
{
    mau  = 8;
    size = 32k;
    type = ram;
    map ( size = 32k, dest_offset=1M, dest=bus:X:local_bus);
}

If you use a different memory layout than described in the LSL file supplied for the target core, you can
specify this in Eclipse or you can specify this in a separate LSL file and pass both the LSL file that describes
the core architecture and your LSL file that contains the memory specification to the linker.

To add memory using Eclipse

1. From the Project menu, select Properties for

The Properties dialog appears.

177

Using the Linker



2. In the left pane, expand C/C++ Build and select Memory.

In the right pane the Memory page appears.

3. Open the Memory tab and click on the Add... button.

The Add new memory dialog appears.

4. Enter the memory name (for example my_nvram), type (for example nvram) and size.

5. Click on the Add... button.

The Add new mapping dialog appears.

6. You have to specify at least one mapping. Enter the mapping name (optional), address, size and
destination and click OK.

The new mapping is added to the list of mappings.

7. Click OK.

The new memory is added to the list of memories (user memory).

8. Click Apply and Close to close the Properties dialog.

The updated settings are stored in the project LSL file.

If you make changes to the on-chip memory as defined in the architecture LSL file, the memory is copied
to your project LSL file and the line #define __MEMORY is added. If you remove all the on-chip memory
from your project LSL file, also make sure you remove this define.

5.8.8.The Section Layout Definition: Locating Sections

Once you have defined the internal core architecture and optional memory, you can actually define where
your application must be located in the physical memory.

During compilation, the compiler divides the application into sections. Sections have a name, an indication
(section type) in which address space it should be located and attributes like writable or read-only.

In the section layout definition you can exactly define how input sections are placed in address spaces,
relative to each other, and what their absolute run-time and load-time addresses will be.

Example: section propagation through the toolset

To illustrate section placement, the following example of a C program (bat.c) is used. The program
saves the number of times it has been executed in battery back-upped memory, and prints the number.

#define BATTERY_BACKUP_TAG  0xa5f0
#include <stdio.h>

int  uninitialized_data;
int  initialized_data = 1;
#pragma section "non_volatile"

178

TASKING SmartCode - PPU User Guide



int  battery_backup_tag;
int  battery_backup_invok;
#pragma endsection

void main (void)
{
    if (battery_backup_tag != BATTERY_BACKUP_TAG )
    {
        // battery back-upped memory area contains invalid data
        // initialize the memory
        battery_backup_tag = BATTERY_BACKUP_TAG;
        battery_backup_invok = 0;
    }
    printf( "This application has been invoked %d times\n",
             battery_backup_invok++);
}

The compiler assigns names and attributes to sections. With the #pragma section and #pragma
endsection the compiler's default section naming convention is overruled and a section with the name
non_volatile appended is defined. In this section the battery back-upped data is stored.

As a result of the #pragma section "non_volatile", the data objects between the pragma pair
are placed in a section with the name ”.bss.non_volatile". Note that ".bss" sections are cleared at
startup. However, battery back-upped sections should not be cleared and therefore we will change this
section attribute using the LSL.

Section placement

The number of invocations of the example program should be saved in non-volatile (battery back-upped)
memory. This is the memory my_nvram from the example in Section 5.8.7, The Memory Definition.

To control the locating of sections, you need to write one or more section definitions in the LSL file. At
least one for each address space where you want to change the default behavior of the linker. In our
example, we need to locate sections in the address space linear:

section_layout ::linear
{
    // Section placement statements
}

To locate sections, you must create a group in which you select sections from your program. For the
battery back-up example, we need to define one group, which contains the section .bss.non_volatile.
All other sections are located using the defaults specified in the architecture definition. Section
.bss.non_volatile should be placed in non-volatile ram. To achieve this, the run address refers to
our non-volatile memory called my_nvram. Furthermore, the section should not be cleared and therefore
the attribute s (scratch) is assigned to the group:

group ( run_addr = mem:my_nvram, attributes = rws )
{
     select ".bss.non_volatile";
}

179

Using the Linker



This completes the LSL file for the sample architecture and sample program.You can now invoke the
linker with this file and the sample program to obtain an application that works for this architecture.

For a complete description of the Linker Script Language, refer to Chapter 12, Linker Script Language
(LSL).

5.9. Linker Labels

The linker creates labels that you can use to refer to from within the application software. Some of these
labels are real labels at the beginning or the end of a section. Other labels have a second function, these
labels are used to address generated data in the locating phase. The data is only generated if the label
is used.

Linker labels are labels starting with _lc_. The linker assigns addresses to the following labels when
they are referenced:

DescriptionLabel

Begin of section name. Also used to mark the begin of the stack or heap or
copy table.

_lc_ub_name

_lc_b_name

End of section name. Also used to mark the end of the stack or heap. It points
to the section address + section size, in other words the first MAU behind the
section.

_lc_ue_name

_lc_e_name

Start address of an overlay section in ROM._lc_cb_name

End address of an overlay section in ROM._lc_ce_name

Begin of group name. This label appears in the output file even if no reference
to the label exists in the input file.

_lc_gb_name

End of group name. It points to the first MAU behind the last section in the
group. This label appears in the output file even if no reference to the label
exists in the input file.

_lc_ge_name

The linker only allocates space for the stack and/or heap when a reference to either of the section labels
exists in one of the input object files.

If you want to use linker labels in your C source for sections that have a dot (.) in the name, you
have to replace all dots by underscores.

Example: refer to a label with section name with dots from C

Suppose a section has the name .text. When you want to refer to the begin of this section you have to
replace all dots in the section name by underscores:

#include <stdio.h>
extern char _lc_ub__text[];

void main(void)

180

TASKING SmartCode - PPU User Guide



{
    printf("The function main is located at %p\n",
            _lc_ub__text);
}

Example: refer to the stack

Suppose in an LSL file a stack section is defined with the name "stack" (with the keyword stack).You
can refer to the begin and end of the stack from your C source as follows:

#include <stdio.h>
extern char _lc_ub_stack[];
extern char _lc_ue_stack[];
void main()
{
  printf( "Size of stack is %d\n", 
          _lc_ub_stack - _lc_ue_stack );
          /* stack grows from high to low */
}

From assembly you can refer to the end of the stack with:

  .extern _lc_ue_stack   ; end of user stack

5.10. Generating a Map File

The map file is an additional output file that contains information about the location of sections and symbols.
You can customize the type of information that should be included in the map file.

When the linker works on more than one task, a map file can be created for each of the tasks. There is
also an option to create one global map file that includes information for all tasks involved. Use linker
option --global-map-file to generate the global map file. This map file format is very similar to that of the
map file for a single task.

To generate a map file

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Map File.

4. Enable the option Generate XML map file format (.mapxml) for map file viewer.

5. (Optional) Enable the option Generate map file (.map).

181

Using the Linker



6. (Optional) Enable the options to include that information in the map file.

Example on the command line

The following command generates the map file test.map:

larc --map-file test.o

With this command the map file test.map is created.

See Section 10.2, Linker Map File Format for an explanation of the format of the map file.

5.11. Linker Error Messages

The linker reports the following types of error messages in the Problems view of Eclipse.

F ( Fatal errors)

After a fatal error the linker immediately aborts the link/locate process.

E (Errors)

Errors are reported, but the linker continues linking and locating. No output files are produced unless you
have set the linker option --keep-output-files.

W (Warnings)

Warning messages do not result into an erroneous output file. They are meant to draw your attention to
assumptions of the linker for a situation which may not be correct.You can control warnings in the C/C++
Build » Settings » Tool Settings » Linker » Diagnostics page of the Project » Properties for menu
(linker option --no-warnings).

I (Information)

Verbose information messages do not indicate an error but tell something about a process or the state
of the linker. To see verbose information, use the linker option --verbose.

S (System errors)

System errors occur when internal consistency checks fail and should never occur.When you still receive
the system error message

S6##: message

please report the error number and as many details as possible about the context in which the error
occurred.

182

TASKING SmartCode - PPU User Guide



Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

On the command line you can use the linker option --diag to see an explanation of a diagnostic message:

larc --diag=[format:]{all | number,...]

183

Using the Linker



184

TASKING SmartCode - PPU User Guide



Chapter 6. Using the Utilities
The TASKING toolset for Infineon PPU comes with a number of utilities:

A control program. The control program invokes all tools in the toolset and lets you quickly
generate an absolute object file from C and/or assembly source input files. Eclipse uses
the control program to call the compiler, assembler and linker.

ccarc

A make utility to maintain, update, and reconstruct groups of programs. The make utility
looks whether files are out of date, rebuilds them and determines which other files as a
consequence also need to be rebuilt. It supports parallelism which utilizes the multiple
cores found on modern host hardware.

amk

An archiver. With this utility you create and maintain library files with relocatable object
modules (.o) generated by the assembler.

ararc

A high level language (HLL) object dumper.With this utility you can dump information about
an absolute object file (.elf). Key features are a disassembler with HLL source intermixing
and HLL symbol display and a HLL symbol listing of static and global symbols.

hldumparc

6.1. Control Program

The control program is a tool that invokes all tools in the toolset for you. It provides a quick and easy way
to generate the final absolute object file out of your C sources without the need to invoke the compiler,
assembler and linker manually.

Eclipse uses the control program to call the C compiler, assembler and linker, but you can call the control
program from the command line. The invocation syntax is:

ccarc [ [option]... [file]... ]...

Recognized input files

• Files with a .c suffix are interpreted as C source programs and are passed to the compiler.

• Files with a .asm suffix are interpreted as hand-written assembly source files which have to be passed
to the assembler.

• Files with a .src suffix are interpreted as compiled assembly source files. They are directly passed to
the assembler.

• Files with a .a suffix are interpreted as library files and are passed to the linker.

• Files with a .o suffix are interpreted as object files and are passed to the linker.

• Files with a .out suffix are interpreted as linked object files and are passed to the locating phase of
the linker. The linker accepts only one .out file in the invocation.

• Files with a .lsl suffix are interpreted as linker script files and are passed to the linker.

185



Options

The control program accepts several command line options. If you specify an unknown option to the
control program, the control program looks if it is an option for a specific tool. If so, it passes the option
directly to the tool. However, it is recommended to use the control program options --pass-* (-Wc, -Wa,
-Wl) to pass arguments directly to tools.

For a complete list and description of all control program options, see Section 7.5, Control Program
Options.

Example with verbose output

ccarc --verbose test.c

The control program calls all tools in the toolset and generates the absolute object file test.elf. With
option --verbose (-v) you can see how the control program calls the tools:

+ "path\carc" -D__CPU__=tc49x -D__CPU_TC49X__ 
     --core=ppu_tc49x -o cc3248a.src test.c
+ "path\asarc" -D__CPU__=tc49x -D__CPU_TC49X__ 
     --core=ppu_tc49x -o cc3248b.o cc3248a.src
+ "path\larc" -o test.elf -dtc49x.lsl --core=ppu 
     -D__CPU__=tc49x --map-file cc3248b.o -lc_fpu -lrt
     "-Lpath\lib\tc49x"

The control program produces unique filenames for intermediate steps in the compilation process (such
as cc3248a.src and cc3248b.o in the example above) which are removed afterwards, unless you
specify command line option --keep-temporary-files (-t).

Example with argument passing to a tool

ccarc --pass-c=-Oc test.c

The option -Oc is directly passed to the compiler.

186

TASKING SmartCode - PPU User Guide



6.2. Make Utility amk

amk is a make utility that you can use to maintain, update, and reconstruct groups of programs. amk
features parallelism which utilizes the multiple cores found on modern host hardware, hardening for path
names with embedded white space and it has an (internal) interface to provide progress information for
updating a progress bar. It does not use an external command shell (/bin/sh, cmd.exe) but executes
commands directly.

The primary purpose of any make utility is to speed up the edit-build-test cycle. To avoid having to build
everything from scratch even when only one source file changes, it is necessary to describe dependencies
between source files and output files and the commands needed for updating the output files. This is
done in a so called "makefile".

6.2.1. Makefile Rules

A makefile dependency rule is a single line of the form:

[target ...] : [prerequisite ...]

where target and prerequisite are path names to files. Example:

test.o : test.c

This states that target test.o depends on prerequisite test.c. So, whenever the latter is modified the
first must be updated. Dependencies accumulate: prerequisites and targets can be mentioned in multiple
dependency rules (circular dependencies are not allowed however). The command(s) for updating a
target when any of its prerequisites have been modified must be specified with leading white space after
any of the dependency rule(s) for the target in question. Example:

test.o :
  ccarc test.c   # leading white space

Command rules may contain dependencies too. Combining the above for example yields:

test.o : test.c
  ccarc test.c

White space around the colon is not required. When a path name contains special characters such as
':', '#' (start of comment), '=' (macro assignment) or any white space, then the path name must be enclosed
in single or double quotes. Quoted strings can contain anything except the quote character itself and a
newline. Two strings without white space in between are interpreted as one, so it is possible to embed
single and double quotes themselves by switching the quote character.

When a target does not exist, its modification time is assumed to be very old. So, amk will try to make it.
When a prerequisite does not exist possibly after having tried to make it, it is assumed to be very new.
So, the update commands for the current target will be executed in that case. amk will only try to make
targets which are specified on the command line.The default target is the first target in the makefile which
does not start with a dot.

187

Using the Utilities



Static pattern rules

Static pattern rules are rules which specify multiple targets and construct the prerequisite names for each
target based on the target name.

[target ...] : target-pattern : [prerequisite-patterns ...]

The target specifies the targets the rules applies to. The target-pattern and prerequisite-patterns specify
how to compute the prerequisites of each target. Each target is matched against the target-pattern to
extract a part of the target name, called the stem. This stem is substituted into each of the
prerequisite-patterns to make the prerequisite names (one from each prerequisite-pattern).

Each pattern normally contains the character '%' just once. When the target-pattern matches a target,
the '%' can match any part of the target name; this part is called the stem. The rest of the pattern must
match exactly. For example, the target foo.o matches the pattern '%.o', with 'foo' as the stem. The
targets foo.c and foo.elf do not match that pattern.

The prerequisite names for each target are made by substituting the stem for the '%' in each prerequisite
pattern.

Example:

objects = test.o filter.o

all: $(objects)

$(objects): %.o: %.c
    ccarc -c $< -o $@
    echo the stem is $*

Here '$<' is the automatic variable that holds the name of the prerequisite, '$@' is the automatic variable
that holds the name of the target and '$*' is the stem that matches the pattern. Internally this translates
to the following two rules:

test.o: test.c
    ccarc -c test.c -o test.o
    echo the stem is test

filter.o: filter.c
    ccarc -c filter.c -o filter.o
    echo the stem is filter

Each target specified must match the target pattern; a warning is issued for each target that does not.

Special targets

There are a number of special targets. Their names begin with a period.

DescriptionTarget

When the make utility has finished building the specified targets, it continues with
the rules following this target.

.DONE

188

TASKING SmartCode - PPU User Guide



DescriptionTarget

The rules following this target are executed before any other targets are built..INIT

The prerequisites of this target are considered to be phony targets. A phony target
is a target that is not really the name of a file. The rules following a phony target are
executed unconditionally, regardless of whether a file with that name exists or what
its last-modification time is.

For example:

.PHONY: clean

clean:
        rm *.o

With amk clean, the command is executed regardless of whether there is a file
named clean.

.PHONY

6.2.2. Makefile Directives

Directives inside makefiles are executed while reading the makefile. When a line starts with the word
"include" or "-include" then the remaining arguments on that line are considered filenames whose
contents are to be inserted at the current line. "-include" will silently skip files which are not present.
You can include several files. Include files may be nested.

Example:

include makefile2 makefile3

White spaces (tabs or spaces) in front of the directive are allowed.

6.2.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lowercase or uppercase characters, uppercase is an accepted convention.
When a line does not start with white space and contains the assignment operator '=', ':=' or '+=' then the
line is interpreted as a macro definition. White space around the assignment operator and white space
at the end of the line is discarded. Single character macro evaluation happens by prefixing the name with
'$'. To evaluate macros with names longer than one character put the name between parentheses '()' or
curly braces '{}'. Macro names may contain anything, even white space or other macro evaluations.
Example:

DINNER = $(FOOD) and $(BEVERAGE)
FOOD = pizza
BEVERAGE = sparkling water
FOOD += with cheese

With the += operator you can add a string to an existing macro. An extra space is inserted before the
added string automatically.

189

Using the Utilities



Macros are evaluated recursively. Whenever $(DINNER) or ${DINNER} is mentioned after the above,
it will be replaced by the text "pizza with cheese and sparkling water". The left hand side in
a macro definition is evaluated before the definition takes place. Right hand side evaluation depends on
the assignment operator:

Evaluate the macro at the moment it is used.=

Evaluate the replacement text before defining the macro.:=

Subsequent '+=' assignments will inherit the evaluation behavior from the previous assignment. If there
is none, then '+=' is the same as '='.The default value for any macro is taken from the environment. Macro
definitions inside the makefile overrule environment variables. Macro definitions on the amk command
line will be evaluated first and overrule definitions inside the makefile.

190

TASKING SmartCode - PPU User Guide



Predefined macros

DescriptionMacro

This macro translates to a dollar sign.Thus you can use "$$" in the makefile to represent
a single "$".

$

The name of the current target. When a rule has multiple targets, then it is the name
of the target that caused the rule commands to be run.

@

The basename (or stem) of the current target. The stem is either provided via a static
pattern rule or is calculated by removing all characters found after and including the
last dot in the current target name. If the target name is 'test.c' then the stem is
'test' (if the target was not created via a static pattern rule).

*

The name of the first prerequisite.<

The amk path name (quoted if necessary). Optionally followed by the options -n and
-s.

MAKE

The name of the directory where amk is installed (quoted if necessary).ORIGIN

The argument of option -G. If you have nested makes with -G options, the paths are
combined. This macro is defined in the environment (i.e. default macro value).

SUBDIR

The @, * and < macros may be suffixed by 'D' to specify the directory component or by 'F' to specify the
filename component. $(@D) evaluates to the directory name holding the file$(@F). $(@D)/$(@F) is
equivalent to $@. Note that on MS-Windows most programs accept forward slashes, even for UNC path
names.

The result of the predefined macros @, * and < and 'D' and 'F' variants is not quoted, so it may be necessary
to put quotes around it.

Note that stem calculation can cause unexpected values. For example:

$@ $*
    /home/.wine/test      /home/
    /home/test/.project   /home/test/
    /../file              /.

Macro string substitution

When the macro name in an evaluation is followed by a colon and equal sign as in

$(MACRO:string1=string2)

then amk will replace string1 at the end of every word in $(MACRO) by string2 during evaluation. When
$(MACRO) contains quoted path names, the quote character must be mentioned in both the original string
and the replacement string1. For example:

$(MACRO:.o"=.d")

1Internally, amk tokenizes the evaluated text, but performs substitution on the original input text to preserve compatibility here with
existing make implementations and POSIX.

191

Using the Utilities



6.2.4. Makefile Functions

A function not only expands but also performs a certain operation. The following functions are available:

$(filter pattern ...,item ...)

The filter function filters a list of items using a pattern. It returns items that do match any of the pattern
words, removing any items that do not match. The patterns are written using '%',

    ${filter %.c %.h, test.c test.h test.o readme.txt .project output.c}

results in:

    test.c test.h output.c

$(filter-out pattern ...,item ...)

The filter-out function returns all items that do not match any of the pattern words, removing the
items that do match one or more. This is the exact opposite of the filter function.

    ${filter-out %.c %.h, test.c test.h test.o readme.txt .project output.c}

results in:

    test.o readme.txt .project

$(foreach var-name, item ..., action)

The foreach function runs through a list of items and performs the same action for each item. The
var-name is the name of the macro which gets dynamically filled with an item while iterating through the
item list. In the action you can refer to this macro. For example:

    ${foreach T, test filter output, ${T}.c ${T}.h}

results in:

    test.c test.h filter.c filter.h output.c output.h

6.2.5. Conditional Processing

Lines containing ifdef, ifndef, else or endif are used for conditional processing of the makefile.
They are used in the following way:

ifdef macro-name
if-lines
else
else-lines
endif

The if-lines and else-lines may contain any number of lines or text of any kind, even other ifdef, ifndef,
else and endif lines, or no lines at all.The else line may be omitted, along with the else-lines following
it. White spaces (tabs or spaces) in front of preprocessing directives are allowed.

192

TASKING SmartCode - PPU User Guide



First the macro-name after the ifdef command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an else line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the ifndef line instead of ifdef, the macro is tested for not being defined. These
conditional lines can be nested to any level.

You can also add tests based on strings. With ifeq the result is true if the two strings match, with ifneq
the result is true if the two strings do not match. They are used in the following way:

ifeq(string1,string2)
if-lines
else
else-lines
endif

6.2.6. Makefile Parsing

amk reads and interprets a makefile in the following order:

1. When the last character on a line is a backslash (\) (i.e. without trailing white space) then that line and
the next line will be concatenated, removing the backslash and newline.

2. The unquoted '#' character indicates start of comment and may be placed anywhere on a line. It will
be removed in this phase.

# this comment line is continued\
on the next line

3. Trailing white space is removed.

4. When a line starts with white space and it is not followed by a directive or preprocessing directive, then
it is interpreted as a command for updating a target.

5. Otherwise, when a line contains the unquoted text '=', '+=' or ':=' operator, then it will be interpreted as
a macro definition.

6. Otherwise, all macros on the line are evaluated before considering the next steps.

7. When the resulting line contains an unquoted ':' the line is interpreted as a dependency rule.

8. When the first token on the line is "include" or "-include" (which by now must start on the first
column of the line), amk will execute the directive.

9. Otherwise, the line must be empty.

Macros in commands for updating a target are evaluated right before the actual execution takes place
(or would take place when you use the -n option).

193

Using the Utilities



6.2.7. Makefile Command Processing

A line with leading white space (tabs or spaces) without a (preprocessing) directive is considered as a
command for updating a target. When you use the option -j or -J, amk will execute the commands for
updating different targets in parallel. In that case standard input will not be available and standard output
and error output will be merged and displayed on standard output only after the commands have finished
for a target.

You can precede a command by one or more of the following characters:

Do not show the command. By default, commands are shown prior to their output.@

Continue upon error. This means that amk ignores a non-zero exit code of the command.-

Execute the command, even when you use option -n (dry run).+

Execute the command on the foreground with standard input, standard output and error
output available.

|

Built-in commands

DescriptionCommand

This command does nothing. Arguments are ignored.true

This command does nothing, except failing with exit code 1. Arguments are
ignored.

false

Display a line of text.echo arg...

Exit with defined code. Depending on the program arguments and/or the extra
rule options '-' this will cause amk to exit with the provided code. Please note
that 'exit 0' has currently no result.

exit code

Create an argument file suitable for the --option-file (-f) option of all the other
tools. The first argfile argument is the name of the file to be created.
Subsequent arguments specify the contents. An existing argument file is not
modified unless necessary. So, the argument file itself can be used to create
a dependency to options of the command for updating a target.

argfile file arg...

Remove the specified file(s). The following options are available:

Remove directories and their contents recursively.-r, --recursive

Force deletion. Ignore non-existent files, never prompt.-f, --force

Interactive. Prompt before every removal.-i, --interactive

Verbose mode. Explain what is being done.-v, --verbose

Read options from file..-m file

Show usage.-?, --help

rm [option]... file...

194

TASKING SmartCode - PPU User Guide



6.2.8. Calling the amk Make Utility

The invocation syntax of amk is:

amk [option]... [target]... [macro=def]...

For example:

amk test.elf

You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

target

Macro definition.This definition remains fixed for the amk invocation. It overrides any
regular definitions for the specified macro within the makefiles and from the
environment. It is not inherited by subordinate amk's

macro=def

For a complete list and description of all amk make utility options, see Section 7.6,
Parallel Make Utility Options.

option

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

195

Using the Utilities



6.3. Archiver

The archiver ararc is a program to build and maintain your own library files. A library file is a file with
extension .a and contains one or more object files (.o) that may be used by the linker.

The archiver has five main functions:

• Deleting an object module from the library

• Moving an object module to another position in the library file

• Replacing an object module in the library or add a new object module

• Showing a table of contents of the library file

• Extracting an object module from the library

The archiver takes the following files for input and output:

The linker optionally includes object modules from a library if that module resolves an external symbol
definition in one of the modules that are read before.

6.3.1. Calling the Archiver

You can create a library in Eclipse, which calls the archiver or you can call the archiver on the command
line.

To create a library in Eclipse

Instead of creating a PPU absolute ELF file, you can choose to create a library.You do this when you
create a new project with the New C Project wizard.

1. From the File menu, select New » TASKING PPU C Project.

The New C Project wizard appears.

2. Enter a project name.

3. In the Project type box, select TASKING PPU Library and click Next >.

4. Follow the rest of the wizard and click Finish.

196

TASKING SmartCode - PPU User Guide



5. Add the files to your project.

6. Build the project as usual. For example, select Project » Build Project ( ).

Eclipse builds the library. Instead of calling the linker, Eclipse now calls the archiver.

Command line invocation

You can call the archiver from the command line. The invocation syntax is:

ararc key_option [sub_option...] library [object_file]

With a key option you specify the main task which the archiver should perform.You
must always specify a key option.

key_option

Sub-options specify into more detail how the archiver should perform the task that is
specified with the key option. It is not obligatory to specify sub-options.

sub_option

The name of the library file on which the archiver performs the specified action.You
must always specify a library name, except for the options -? and -V. When the library
is not in the current directory, specify the complete path (either absolute or relative) to
the library.

library

The name of an object file.You must always specify an object file name when you
add, extract, replace or remove an object file from the library.

object_file

Options of the archiver utility

The following archiver options are available:

Sub-optionOptionDescription

Main functions (key options)

-a -b -c -n -u -v-rReplace or add an object module

-o -v-xExtract an object module from the library

-v-dDelete object module from library

-a -b -v-mMove object module to another position

-s0 -s1-tPrint a table of contents of the library

-pPrint object module to standard output

Sub-options

-a nameAppend or move new modules after existing module name

-b nameAppend or move new modules before existing module name

-cSuppress the message that is displayed when a new library is
created

-nCreate a new library from scratch

-oPreserve last-modified date from the library

-s{0|1}Print symbols in library modules

197

Using the Utilities



Sub-optionOptionDescription

-uReplace only newer modules

-vVerbose

Miscellaneous

-?Display options

--diagDisplay description of one or more diagnostic messages

-VDisplay version header

-f fileRead options from file

-wnSuppress warnings above level n

For a complete list and description of all archiver options, see Section 7.7, Archiver Options.

6.3.2. Archiver Examples

Create a new library

If you add modules to a library that does not yet exist, the library is created. To create a new library with
the name mylib.a and add the object modules cstart.o and calc.o to it:

ararc -r mylib.a cstart.o calc.o

Add a new module to an existing library

If you add a new module to an existing library, the module is added at the end of the module. (If the
module already exists in the library, it is replaced.)

ararc -r mylib.a mod3.o

Print a list of object modules in the library

To inspect the contents of the library:

ararc -t mylib.a

The library has the following contents:

cstart.o
calc.o
mod3.o

Move an object module to another position

To move mod3.o to the beginning of the library, position it just before cstart.o:

ararc -mb cstart.o mylib.a mod3.o

198

TASKING SmartCode - PPU User Guide



Delete an object module from the library

To delete the object module cstart.o from the library mylib.a:

ararc -d mylib.a cstart.o

Extract all modules from the library

Extract all modules from the library mylib.a:

ararc -x mylib.a

199

Using the Utilities



6.4. HLL Object Dumper

The high level language (HLL) dumper hldumparc is a program to dump information about an absolute
object file (.elf). Key features are a disassembler with HLL source intermixing and HLL symbol display
and a HLL symbol listing of static and global symbols.

6.4.1. Invocation

Command line invocation

You can call the HLL dumper from the command line. The invocation syntax is:

hldumparc [option]... file...

The input file must be an ELF file with or without DWARF debug info (.elf).

The HLL dumper can process multiple input files. Files and options can be intermixed on the command
line. Options apply to all supplied files. If multiple files are supplied, the disassembly of each file is preceded
by a header to indicate which file is dumped. For example:

========== file.elf ==========

For a complete list and description of all options, see Section 7.8, HLL Object Dumper Options. With
hldumparc --help you will see the options on stdout.

6.4.2. HLL Dump Output Format

The HLL dumper produces output in text format by default, but you can also specify the XML output format
with option --output-type=xml. The XML output is mainly for use in the Eclipse editor. Alternatively, you
can use option --adx-format to produce output in the ADX address list format. For more information about
this format, see ADX Specification - Address List Format for A2L Address Calculation - Compiler vendors,
Version 1.10, 2015-04-27.

The output is printed on stdout, unless you specify an output file with --output=filename.

The parts of the output are dumped in the following order:

1. Module list

2. Section list

3. Call graph using the DWARF debug info

4. Section dump (disassembly)

5. HLL symbol table

6. Assembly level symbol table

7. Note sections

8. Debug control flow section

200

TASKING SmartCode - PPU User Guide



With the option --dump-format=flag you can control which parts are shown. By default, all parts are
shown, except for parts 3 and 8.

Example

Suppose we have a simple "Hello World" program in a file called hello.c. We call the control program
as follows:

ccarc -g -t --control-flow-info hello.c

Option -g tells to include DWARF debug information. Option -t tells to keep the intermediate files. Option
--control-flow-info adds control flow information to the output file. This command results (among other
files) in the file hello.elf (the absolute object file).

We can dump information about the ELF file with the following command:

hldumparc -F3 hello.elf

Option -F3 enables all parts. A possible output could be (just a fraction of the actual output is shown):

---------- Module list ----------

Name    Full path
hello.c hello.c

---------- Section list ----------

Address  Size   Align Type    Name
00000494     20     4 text    .text.hello.main
0000056c      6     1 romdata .rodata.hello..1.str
00100004      4     4 bss     .sdata.hello.world
00000572     11     1 romdata .rodata.hello..2.str

---------- Call graph using the DWARF debug info ----------

+-- 0x00000494 main
    |    
    +-- 0x000004e4 printf
        |    
        +-- 0x000000dc _doprint
            |    
            +-- 0x00000238 _io_putc
            |   |    
            |   +-- 0x0000046c fputc
            |       |    
            |       +-- 0x00000228 _flsbuf
            |           |    
            |           +-- 0x00000158 _dofls
            |               |    
            |               +-- 0x0000031c _host_write
            |               |   |    

201

Using the Utilities



            |               |   +-- 0x00000364 _dbg_trap
            |               |    
            |               +-- 0x000003c4 _fflush
            |               |   |    
            |               |   +-- 0x0000031c _host_write *
            |               |   |    
            |               |   +-- 0x000002e8 _host_lseek
            |               |       |    
            |               |       +-- 0x00000364 _dbg_trap
            |               |    
            |               +-- 0x0000031c _host_write *
            |    
            +-- 0x00000238 _io_putc *

---------- Section dump ----------

                               .section .text.hello.main, at(0x00000494)
00000494 f1 c0        main:   push_s %blink
00000496 c3 40 00 00 72 05          mov_s %r0,1394

0000049c 00 50                ld_s %r1,[%gp,0]
0000049e 4a 08 00 00          bl      printf
000004a2 0c 70                mov_s %r0,0
000004a4 d1 c0                pop_s %blink
000004a6 e0 7e                j_s [%blink]
                              .endsec

       .section .data, '.rodata.hello..1.str', at(0x0000056c)
       .db 77,6f,72,6c,64,00                              ; world.
       .endsec

       .section .data, '.rodata.hello..2.str', at(0x00000572)
       .db 48,65,6c,6c,6f,20,25,73,21,0a,00               ; Hello %s!..
       .endsec

       .section .data, '.sdata.hello.world', at(0x00100004)
world:
       .ds 4
       .endsec

---------- HLL symbol table ----------

Address    Size HLL Type             Name
00000294     46 void                 _START()
00000494     20 int                  main()
000004e4     66 int                  printf(const char * restrict format, ...)
00100004      4 char               * world [hello.c]
00100008     20 struct               _dbg_request [dbg.c]
0010001c     80 static char          stdin_buf[80] [_iob.c]
0010006c     80 static char          stdout_buf[80] [_iob.c]

202

TASKING SmartCode - PPU User Guide



001000bc    200 struct _iobuf        _iob[10] [_iob.c]

---------- Assembly level symbol table ----------

Address  Size    Type Name
00000000              
00000000              [.sdata.hello.world]
00000000              hello.c
00000294      46 code _START
00000494      20 code main
000004e4      66 code printf
00100004       4 data world
00100008      20 data _dbg_request
0010001c      80 data stdin_buf
0010006c      80 data stdout_buf
001000bc     200 data _iob

---------- .note sections ----------
00000104 type: TASKING COMPILER NAME
00000110 name: TASKING
00000118 desc: carc

---------- Debug control flow section ----------
start offset : 0
start address: 0x00000494
code size    : 20
#entries     : 0

Module list

This part lists all modules (C files) found in the object file(s). It lists the filename and the complete path
name at the time the module was built.

Section list

This part lists all sections found in the object file(s).

The start address of the section. Hexadecimal, 8 digits, 32-bit.Address

The size (length) of the section in bytes. Decimal, filled up with spaces.Size

The alignment of the section in number of bytes. Decimal, filled up with spaces.Align

The section type.Type

The name of the section. Sections within square brackets [ ] will be copied during
initialization from ROM to the corresponding section name in RAM.

Name

With option --sections=name[,name]... you can specify a list of sections that should be dumped.

203

Using the Utilities



Call graph

The linker can generate a call graph in the linker map file. However, if you only have an ELF file and you
need to test it, you can use the option --dump-format=+callgraph.You can then step through the call
graph to identify the flow for debugging purposes. Some notes about the call graph:

• The call graph starts with the default entry point of the application.

• Recursive calls are marked with 'R'.

• Inline functions are marked with 'I'.

• Indirect function calls are marked with '__INDIRECT__'.

• A function is analyzed only once. When a function is called again, it is not analyzed again and this is
marked with '*'.

• By default the DWARF debug information is used to generate the call graph. When no DWARF
information is available the ELF information is used. Inline functions can only be detected and dumped
when DWARF information is available.

• With option --call-graph-elf-mode you can force the call graph to use ELF symbols even when DWARF
information is available. This can be useful when you want to dump information from an assembly
function.

• With option --call-graph-root=function you can specify the address or function name where to start
the call graph (default: main()).

Section dump

This part contains the disassembly. It consists of the following columns:

Contains the address of the instruction or directive that is shown in the disassembly.
If the section is relocatable the section start address is assumed to be 0. The
address is represented in hexadecimal and has a fixed width. The address is
padded with zeros. No 0x prefix is displayed. For example, on a 32-bit architecture,
the address 0x32 is displayed as 00000032.

address column

Shows the hexadecimal encoding of the instruction (code sections) or it shows the
hexadecimal representation of data (data sections). The encoding column has a
maximum width of eight digits, i.e. it can represent a 32-bit hexadecimal value.
The encoding is padded to the size of the data or instruction. For example, a 16-bit
instruction only shows four hexadecimal digits. The encoding is aligned left and
padded with spaces to fill the eight digits.

encoding column

Displays the label depending on the option --symbols=[hll|asm|none].The default
is asm, meaning that the low level (ELF) symbols are used.With hll, HLL (DWARF)
symbols are used. With none, no symbols will be included in the disassembly.

label column

204

TASKING SmartCode - PPU User Guide



For code sections the instructions are disassembled. Operands are replaced with
labels, depending on the option --symbols=[hll|asm|none].

The contents of data sections are represented by directives. A new directive will
be generated for each symbol. ELF labels in the section are used to determine
the start of a directive. Sections within square brackets [ ] will be copied during
initialization from ROM to the corresponding section name in RAM. ROM sections
are represented with .db, .dh, .dw, .dd kind of directives, depending on the size
of the data. RAM sections are represented with .ds directives, with a size operand
depending on the data size.This can be either the size specified in the ELF symbol,
or the size up to the next label.

disassembly column

With option --hex, no directives will be generated for ROM data sections and no disassembly dump will
be done for code sections. Instead a hex dump is done with the following format:

AAAAAAAA H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 HA HB HC HD HE HF RRRRRRRRRRRRRRRR

where,

A = Address (8 digits, 32-bit)

Hx = Hex contents, one byte (16 bytes max)

R = ASCII representation (16 characters max)

For example:

                          section 7 (.rodata.hello..2.str):
00000572 48 65 6c 6c 6f 20 25 73 21 0a 00                Hello %s!..

With option --hex, RAM sections will be represented with only a start address and a size indicator:

AAAAAAAA Space: 48 bytes

With option --disassembly-intermix you can intermix the disassembly with HLL source code.

HLL symbol table

This part contains a symbol listing based on the HLL (DWARF) symbols found in the object file(s). The
symbols are sorted on address.

The start address of the symbol. Hexadecimal, 8 digits, 32-bit.Address

The size of the symbol from the DWARF info in bytes.Size

The HLL symbol type.HLL Type

The name of the HLL symbol.Name

HLL arrays are indicated by adding the size in square brackets to the symbol name. For example:

0010001c     80 static char          stdin_buf[80] [_iob.c]

205

Using the Utilities



With option --expand-symbols=+basic-types HLL struct and union symbols are listed including all fields.
Array members are expanded in one array member per line regardless of the HLL type. For example:

0010001c     80 static char          stdin_buf[80] [_iob.c]
0010001c      1   char
0010001d      1   char
0010001e      1   char
  ...
0010006b      1   char

HLL struct and union symbols are listed by default without fields. For example:

00100008     20 struct               _dbg_request [dbg.c]

With option --expand-symbols all struct, union and array fields are included as well. For the fields the
types and names are indented with two spaces. For example:

00100008     20 struct               _dbg_request [dbg.c]
00100008      4   int                  _errno
0010000c      1   enum                 nr
00100010     12   union                u
00100010      4     struct               exit
00100010      4       int                  status
00100010      8     struct               open
00100010      4       const char         * pathname
00100014      2       unsigned short int   flags
   ...

Functions are displayed with the full function prototype. Size is the size of the function. HLL Type is the
return type of the function. For example:

000004e4     66 int                  printf(const char * restrict format, ...)

The local and static symbols get an identification between square brackets. The filename is printed and
if a function scope is known the function name is printed between the square brackets as well. If multiple
files with the same name exist, the unique part of the path is added. For example:

00004100      4 int                  count [file.c, somefunc()]
00004104      4 int                  count [x\a.c]
00004108      4 int                  count [y\a.c, foo()]

Global symbols do not get information in square brackets.

Assembly level symbol table

This part contains a symbol listing based on the assembly level (ELF) symbols found in the object file(s).
The symbols are sorted on address.

The start address of the symbol. Hexadecimal, 8 digits, 32-bit.Address

The size of the symbol from the ELF info in bytes. If this field is empty, the size is
zero.

Size

206

TASKING SmartCode - PPU User Guide



Code or Data, depending on the section the symbol belongs to. If this field is empty,
the symbol does not belong to a section.

Type

The name of the ELF symbol. Symbol names within square brackets [ ] are the
names of sections that will be copied during initialization from ROM to the
corresponding section name in RAM.

Name

Debug control flow section

When control flow information is present in the ELF file (control program option --control-flow-info), this
part shows information about the basic blocks and their relation.

The start seek offset in bytes from the beginning of the section.start offset

The start address of the basic block.start address

The code size of the basic block.code size

The number of successor basic blocks. This value can be 0 if there are no
successors.

#entries

The destination offset in bytes to the first, second, ... successor from the beginning
of the section.

dest. offset

207

Using the Utilities



208

TASKING SmartCode - PPU User Guide



Chapter 7.Tool Options
This chapter provides a detailed description of the options for the compiler, assembler, linker, control
program, make utility and the archiver.

Tool options in Eclipse (Menu entry)

For each tool option that you can set from within Eclipse, a Menu entry description is available. In Eclipse
you can customize the tools and tool options in the following dialog:

1. From the Project menu, select Properties

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. Open the Tool Settings tab.

You can set all tool options here.

Unless stated otherwise, all Menu entry descriptions expect that you have this Tool Settings tab
open.

The following tables give an overview of all tool options on the Tool Settings tab in Eclipse with hyperlinks
to the corresponding command line options (if available).

Global Options

Description or optionEclipse option

Directory where the TASKING toolset is
installed

Use global 'product directory' preference

Control program option --warnings-as-errorsTreat warnings as errors

Control program option
--keep-temporary-files (-t)

Keep temporary files

Control program option --verbose (-v)Verbose mode of control program

C Compiler

Description or optionEclipse option

Preprocessing

C compiler option --include-fileAutomatic inclusion of '.sfr' file

Control program option --preprocess (-E) /
--no-preprocessing-only

Store preprocessor output in <file>.pre

209



Description or optionEclipse option

Control program option
--preprocess=+comments

Keep comments in preprocessor output

Control program option
--preprocess=-noline

Keep #line info in preprocessor output

C compiler option --defineDefined symbols

C compiler option --include-filePre-include files

Include Paths

C compiler option --include-directoryInclude paths

Language

C compiler option --isoComply to C standard

C compiler option --language=+gccAllow GNU C extensions

C compiler option --language=+commentsAllow // comments in ISO C90 mode

C compiler option --language=-stringsCheck assignment of string literal to non-const string pointer

C compiler option --scharTreat 'char' variables as signed

C compiler option --language=-volatileAllow optimization across volatile access

C compiler option --language=+kanjiAllow Shift JIS Kanji in strings

Floating-Point

Control program option --fp-modelFloating-point model

Allocation

C compiler option --sda-max-data-sizeThreshold for putting data in SDA

Optimization

C compiler option --optimizeOptimization level

C compiler option --tradeoffTrade-off between speed and size

C compiler option --compact-max-sizeMaximum size for code compaction

C compiler option --max-call-depthMaximum call depth for code compaction

C compiler option --inlineAlways inline function calls

C compiler option --inline-max-incrMaximum size increment when inlining (in %)

C compiler option --inline-max-sizeMaximum size for functions to always inline

Control program option --mil-link / --mil-splitBuild for application wide optimizations (MIL linking)

Control program option --mil-link / --mil-splitApplication wide optimization mode

C compiler option --vectorize-infoAuto-vectorization diagnostics

C compiler option --vectorize-noaliasNo auto-vectorization alias checking

C compiler option --vectorize-vccmAssume vector data is in __vccm memory

C compiler option --optimizeCustom Optimization

Debugging

210

TASKING SmartCode - PPU User Guide



Description or optionEclipse option

C compiler option --debug-infoGenerate symbolic debug information

C compiler option --control-flow-infoGenerate control flow information

C compiler option --runtime=+boundsGenerate code for bounds checking

C compiler option --runtime=+caseGenerate code to detect unhandled case in a switch

C compiler option --runtime=+mallocGenerate code for malloc consistency checks

MISRA C

C compiler option --misracMISRA C checking

C compiler option --misrac-versionMISRA C version

C compiler option
--misrac-mandatory-warnings

Warnings instead of errors for mandatory rules

C compiler option
--misrac-required-warnings

Warnings instead of errors for required rules

C compiler option
--misrac-advisory-warnings

Warnings instead of errors for advisory rules

C compiler option --misracCustom 1998 / Custom 2004 / Custom 2012

CERT C Secure Coding

C compiler option --certCERT C secure code checking

C compiler option --warnings-as-errorsWarnings instead of errors

C compiler option --certCustom CERT C

Diagnostics

C compiler option --no-warnings=numSuppress C compiler warnings

C compiler option --no-warningsSuppress all warnings

C compiler option --global-type-checkingPerform global type checking on C code

C compiler option --error-limitMaximum number of emitted errors

Miscellaneous

C compiler option --sourceMerge C source code with generated assembly

C compiler options, Control program optionsAdditional options

Assembler

Description or optionEclipse option

Preprocessing

Assembler option --preprocessor-typeUse TASKING preprocessor

Assembler option --include-fileAutomatic inclusion of '.def' file

Assembler option --defineDefined symbols

Assembler option --include-filePre-include files

211

Tool Options



Description or optionEclipse option

Include Paths

Assembler option --include-directoryInclude paths

Symbols

Assembler option --debug-infoGenerate symbolic debug

Assembler option --case-insensitiveCase insensitive identifiers

Assembler option --emit-locals=+equEmit local EQU symbols

Assembler option --emit-locals=+symbolsEmit local non-EQU symbols

Assembler option --symbol-scopeSet default symbol scope to global

List File

Control program option --list-filesGenerate list file

Assembler option --list-formatList ...

Assembler option --section-info=+listList section summary

Diagnostics

Assembler option --no-warnings=numSuppress warnings

Assembler option --no-warningsSuppress all warnings

Assembler option --section-info=+consoleDisplay section summary

Assembler option --error-limitMaximum number of emitted errors

Miscellaneous

Assembler option --kanjiAllow Shift JIS Kanji in strings

Assembler optionsAdditional options

Linker

Description or optionEclipse option

Output Format

Linker option --output=file:IHEXGenerate Intel Hex format file

Linker option --output=file:SRECGenerate S-records file

Linker option --chip-output=:BIN:0Generate binary file

Linker option
--chip-output=basename:CARR:32

Generate C array file

Linker option --chip-outputCreate file for each memory chip

Linker option --output=file:IHEX:sizeSize of addresses (in bytes) for Intel Hex records

Linker option --output=file:SREC:sizeSize of addresses (in bytes) for Motorola S records

Linker option --hex-format=sEmit start address record

Linker option --hex-format=yEmit list of exported symbols

Libraries

212

TASKING SmartCode - PPU User Guide



Description or optionEclipse option

Control program option --no-default-librariesLink default libraries

Linker option --no-rescanRescan libraries to solve unresolved externals

The libraries are added as files on the
command line.

Libraries

Linker option --library-directoryLibrary search path

Data Objects

Linker option --import-objectData objects

Script File

Linker option --defineDefined symbols

Linker option --lsl-fileLinker script file (.lsl)

Optimization

Linker option --optimize=cDelete unreferenced sections

Linker option --optimize=lUse a 'first-fit decreasing' algorithm

Linker option --optimize=tCompress copy table

Linker option --optimize=xDelete duplicate code

Linker option --optimize=yDelete duplicate data

Map File

Control program option --no-map-fileGenerate map file (.map)

Linker option --map-file=file.mapxml:XMLGenerate XML map file format (.mapxml) for map file viewer

Linker option --map-file-formatInclude ...

Diagnostics

Linker option --no-warnings=numSuppress warnings

Linker option --no-warningsSuppress all warnings

Linker option --error-limitMaximum number of emitted errors

Miscellaneous

Linker option --strip-debugStrip symbolic debug information

Linker option --case-insensitiveLink case insensitive

Linker option
--user-provided-initialization-code

Do not use standard copy table for initialization

Linker option --verboseShow link phases during processing

Linker option --non-romableApplication is not romable

Linker optionsAdditional options

7.1. Configuring the Command Line Environment

If you want to use the tools on the command line, you can set environment variables.

213

Tool Options



You can set the following environment variables:

DescriptionEnvironment variable

With this variable you specify one or more additional directories in which the
assembler looks for include files. See Section 4.3, How the Assembler Searches
Include Files.

ASARCINC

With this variable you specify one or more additional directories in which the C
compiler looks for include files. See Section 3.4, How the Compiler Searches
Include Files.

CARCINC

When this variable is set, the control program prepends the directory specified
by this variable to the names of the tools invoked.

CCARCBIN

With these variables you specify one or more additional directories in which the
linker looks for libraries. See Section 5.3.1, How the Linker Searches Libraries.

LIBPPU_TC43X
LIBPPU_TC49X
LIBPPU_TC4DX

With this variable you specify the directory in which the executables reside.This
allows you to call the executables when you are not in the bin directory. Usually
your system already uses the PATH variable for other purposes. To keep these
settings, you need to add (rather than replace) the path. Use a semicolon (;) to
separate path names.

PATH

With this variable you specify the location where programs can create temporary
files. Usually your system already uses this variable. In this case you do not
need to change it.

TMPDIR

See the documentation of your operating system on how to set environment variables.

214

TASKING SmartCode - PPU User Guide



7.2. C Compiler Options

This section lists all C compiler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the compiler via the control program. Therefore, it uses the syntax of
the control program to pass options and files to the C compiler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C Compiler » Miscellaneous.

4. In the Additional options field, enter one or more command line options.

Because Eclipse uses the control program, you have to precede the option with -Wc to pass the
option via the control program directly to the C compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -n sends output to stdout instead of a file and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on', use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

carc -Oac test.c
carc --optimize=+coalesce,+cse test.c

When you do not specify an option, a default value may become active.

215

Tool Options



C compiler option: --cert

Menu entry

1. Select C Compiler » CERT C Secure Coding.

2. Make a selection from the CERT C secure code checking list.

3. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

Command line syntax

--cert={all | name[-name],...}

Default format: all

Description

With this option you can enable one or more checks for CERT C Secure Coding Standard
recommendations/rules. When you omit the argument, all checks are enabled. name is the name of a
CERT recommendation/rule, consisting of three letters and two digits. Specify only the three-letter
mnemonic to select a whole category. For the list of names you can use, see Chapter 13, CERT C Secure
Coding Standard.

On the command line you can use --diag=cert to see a list of the available checks, or you can use a
three-letter mnemonic to list only the checks in a particular category. For example, --diag=pre lists all
supported preprocessor checks.

Example

To enable the check for CERT rule STR30-C, enter:

carc --cert=str30 test.c

Related information

Chapter 13, CERT C Secure Coding Standard

C compiler option --diag (Explanation of diagnostic messages)

216

TASKING SmartCode - PPU User Guide



C compiler option: --check

Menu entry

-

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler reports any warnings and/or errors.

This option is available on the command line only.

Related information

Assembler option --check (Check syntax)

217

Tool Options



C compiler option: --compact-max-size

Menu entry

1. Select C/C++ Compiler » Optimization.

2. In the Maximum size for code compaction field, enter the maximum size of a match.

Command line syntax

--compact-max-size=value

Default: 200

Description

This option is related to the compiler optimization --optimize=+compact (Code compaction or reverse
inlining). Code compaction is the opposite of inlining functions: large sequences of code that occur more
than once, are transformed into a function. This reduces code size (possibly at the cost of execution
speed).

However, in the process of finding sequences of matching instructions, compile time and compiler memory
usage increase quadratically with the number of instructions considered for code compaction. With this
option you tell the compiler to limit the number of matching instructions it considers for code compaction.

Example

To limit the maximum number of instructions in functions that the compiler generates during code
compaction:

carc --optimize=+compact --compact-max-size=100 test.c

Related information

C compiler option --optimize=+compact (Optimization: code compaction)

C compiler option --max-call-depth (Maximum call depth for code compaction)

218

TASKING SmartCode - PPU User Guide



C compiler option: --control-flow-info

Menu entry

1. Select C Compiler » Debugging.

2. Select Generate control flow information.

Command line syntax

--control-flow-info

Description

Control flow information

With this option the compiler adds control flow information to the output file. The compiler generates a
.debug_control_flow section which describes the basic blocks and their relations. This information
can be used for code coverage analysis on optimized code.

Example

carc --control-flow-info test.c

Related information

C compiler option --debug-info (Debug information)

219

Tool Options



C compiler option: --core

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, make a selection.

Command line syntax

--core=core

You can specify the following core architectures:

PPU core architecture of TC43xppu_tc43x

PPU core architecture of TC49xppu_tc49x

PPU core architecture of TC4Dxppu_tc4dx

Default: ppu_tc49x

Description

With this option you specify the PPU core architecture for which you create your application. The core
architecture determines which instructions are valid and which are not.

Example

To compile the file test.c for the PPU core architecture of the TC49x, enter the following on the command
line:

carc --core=ppu_tc49x test.c

Related information

Control program option --core (Select core architecture)

Assembler option --core (Select core architecture)

220

TASKING SmartCode - PPU User Guide



C compiler option: --debug-info (-g)

Menu entry

1. Select C Compiler » Debugging.

2. To generate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax

--debug-info[=suboption]

-g[suboption]

You can set the following suboptions:

Emit small set of debug information.1 | csmall

Emit default symbolic debug information.2 | ddefault

Emit full symbolic debug information.3 | aall

Default: --debug-info (same as --debug-info=default)

Description

With this option you tell the compiler to add directives to the output file for including symbolic information.
This facilitates high level debugging but increases the size of the resulting assembler file (and thus the
size of the object file). For the final application, compile your C files without debug information.

The DWARF debug format allows for a flexible approach as to how much symbolic information is included,
as long as the structure is valid. Adding all possible DWARF data for a program is not practical. The
amount of DWARF information per compilation unit can be huge. And for large projects, with many object
modules the link time can grow unacceptably long.That is why the compiler has several debug information
levels. In general terms one can say, the higher the level the more DWARF information is produced.

The DWARF data in an object module is not only used for debugging. The toolset can also do "type
checking" of the whole application. In that case the linker will use the DWARF information of all object
modules to determine if every use of a symbol is done with the same type. In other words, if the application
is built with type checking enabled then the compiler will add DWARF information too.

Small set of debug information

With this suboption only DWARF call frame information and type information are generated.This enables
you to inspect parameters of nested functions.The type information improves debugging.You can perform
a stack trace, but stepping is not possible because debug information on function bodies is not generated.
You can use this suboption, for example, to compact libraries.

221

Tool Options



Default debug information

This provides all debug information you need to debug your application. It meets the debugging
requirements in most cases without resulting in oversized assembler/object files.

Full debug information

With this suboption extra debug information is generated about unused typedefs and DWARF "lookup
table sections". Under normal circumstances this extra debug information is not needed to debug the
program. Information about unused typedefs concerns all typedefs, even the ones that are not used for
any variable in the program. (Possibly, these unused typedefs are listed in the standard include files.)
With this suboption, the resulting assembler/object file will increase significantly.

In the following table you see in more detail what DWARF information is included for the debug option
levels.

Remarkstype check-g3-g2-g1Feature

info such as symbol name and type++++basic info

this is information for a debugger to compute
a stack trace when a program has stopped
at a breakpoint

++++call frame

this is information about where symbols live
(e.g. on stack at offset so and so, when the
program counter is in this range)

++symbol lifetime

file name, line number, column number+++line number info

DWARF sections ... this is an optimization
for the DWARF data, it is not essential

+”lookup tables"

in the C code of the program there can be
(many) typedefs that are not used for any
variable. Sometimes this can cause
enormous expansion of the DWARF data and
thus it is only included in -g3.

+unused typedefs

Related information

-

222

TASKING SmartCode - PPU User Guide



C compiler option: --define (-D)

Menu entry

1. Select C Compiler » Preprocessing.

The Defined symbols box shows the symbols that are currently defined.

2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

--define=macro_name[=macro_definition]

-Dmacro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, you can use the option --define (-D) multiple times. If the command line exceeds
the limit of the operating system, you can define the macros in an option file which you then must specify
to the compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

Consider the following C program with conditional code to compile a demo program and a real program:

void main( void )
{
#if DEMO
    demo_func();   /* compile for the demo program */
#else
    real_func();   /* compile for the real program */
#endif
}

223

Tool Options



You can now use a macro definition to set the DEMO flag:

carc --define=DEMO test.c
carc --define=DEMO=1 test.c

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

carc --define="MAX(A,B)=((A) > (B) ? (A) : (B))" test.c

Related information

C compiler option --undefine (Remove preprocessor macro)

C compiler option --option-file (Specify an option file)

224

TASKING SmartCode - PPU User Guide



C compiler option: --dep-file

Menu entry

Eclipse uses this option in the background to create a file with extension .d (one for every input file).

Command line syntax

--dep-file[=file]

Description

With this option you tell the compiler to generate dependency lines that can be used in a Makefile. In
contrast to the option --preprocess=+make, the dependency information will be generated in addition to
the normal output file.

By default, the information is written to a file with extension .d (one for every input file).When you specify
a filename, all dependencies will be combined in the specified file.

Example

carc --dep-file=test.dep test.c

The compiler compiles the file test.c, which results in the output file test.src, and generates
dependency lines in the file test.dep.

Related information

C compiler option --preprocess=+make (Generate dependencies for make)

225

Tool Options



C compiler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | msg[-msg],...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The compiler does
not compile any files.You can specify the following formats: html, rtf or text (default). To create a file
with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given (except for the CERT checks). If
you want the description of one or more selected error messages, you can specify the error message
numbers, separated by commas, or you can specify a range.

With --diag=cert you can see a list of the available CERT checks, or you can use a three-letter mnemonic
to list only the checks in a particular category. For example, --diag=pre lists all supported preprocessor
checks.

Example

To display an explanation of message number 282, enter:

carc --diag=282

This results in the following message and explanation:

226

TASKING SmartCode - PPU User Guide



E282: unterminated comment

Make sure that every comment starting with /* has a matching */.
Nested comments are not possible.

To write an explanation of all errors and warnings in HTML format to file cerrors.html, use redirection
and enter:

carc --diag=html:all > cerrors.html

Related information

Section 3.8, C Compiler Error Messages

C compiler option --cert (Enable individual CERT checks)

227

Tool Options



C compiler option: --error-file

Menu entry

-

Command line syntax

--error-file[=file]

Description

With this option the compiler redirects diagnostic messages to a file. If you do not specify a filename, the
error file will be named after the output file with extension .err.

Example

To write diagnostic messages to errors.err instead of stderr, enter:

carc --error-file=errors.err test.c

Related information

-

228

TASKING SmartCode - PPU User Guide



C compiler option: --error-limit

Menu entry

1. Select C Compiler » Diagnostics.

2. Enter a value in the Maximum number of emitted errors field.

Command line syntax

--error-limit=number

Default: 42

Description

With this option you limit the number of error messages in one compiler run to the specified number.
When the limit is exceeded, the compiler aborts with fatal error message F105.Warnings and informational
messages are not included in the count. When 0 (zero) or a negative number is specified, the compiler
emits all errors. Without this option the maximum number of errors is 42.

Related information

Section 3.8, C Compiler Error Messages

229

Tool Options



C compiler option: --fp-model

Menu entry

1. Select C Compiler » Floating-Point.

2. Make a selection from the Floating-point model list.

3. If you selected Custom, enable one or more individual options.

Command line syntax

--fp-model=flags

You can set the following flags:

allow expression contractionc/C+/-contract

allow less precise library functionsl/L+/-fastlib

allow optimizations to ignore NaN/Infn/N+/-nonan

allow expression rewritingr/R+/-rewrite

ignore sign of -0.0z/Z+/-negzero

alias for --fp-model=CLNRZ (strict)0

alias for --fp-model=cLNRZ (precise)1

alias for --fp-model=clnrz (fast double precision)2

Default: --fp-model=clnrz

Description

With this option you select the floating-point execution model.

With --fp-model=+contract you allow the compiler to contract multiple float operations into a single
operation, with different rounding results. A possible example is fused multiply-add.

With --fp-model=+fastlib you allow the compiler to select faster but less accurate library functions for
certain floating-point operations.

With --fp-model=+nonan you allow the compiler to ignore NaN or Inf input values. An example is to
replace multiply by zero with zero.

With --fp-model=+rewrite you allow the compiler to rewrite expressions by reassociating. This might
result in rounding differences and possibly different exceptions. An example is to rewrite (a*c)+(b*c) as
(a+b)*c.

With --fp-model=+negzero you allow the compiler to ignore the sign of -0.0 values. An example is to
replace (a-a) by zero.

230

TASKING SmartCode - PPU User Guide



Related information

Pragmas STDC FP_CONTRACT, fp_negzero, fp_nonan and fp_rewrite in Section 1.7, Pragmas to
Control the Compiler.

231

Tool Options



C compiler option: --global-type-checking

Menu entry

1. Select C Compiler » Diagnostics.

2. Enable the option Perform global type checking on C code.

Command line syntax

--global-type-checking

Description

The C compiler already performs type checking within each module. Use this option when you want the
linker to perform type checking between modules.

Related information

-

232

TASKING SmartCode - PPU User Guide



C compiler option: --help (-?)

Menu entry

-

Command line syntax

--help[=item]

-?

You can specify the following arguments:

Show the list of intrinsic functionsiintrinsics

Show extended option descriptionsooptions

Show the list of supported pragmasppragmas

Show the list of predefined typedefsttypedefs

Description

Displays an overview of all command line options. With an argument you can specify which extended
information is shown.

Example

The following invocations all display a list of the available command line options:

carc -?
carc --help
carc 

The following invocation displays a list of the available pragmas:

carc --help=pragmas

Related information

-

233

Tool Options



C compiler option: --include-directory (-I)

Menu entry

1. Select C Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.

2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--include-directory=path,...

-Ipath,...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the compiler searches for include files is:

1. The pathname in the C source file and the directory of the C source (only for #include files that are
enclosed in "")

2. The path that is specified with this option.

3. The path that is specified in the environment variable CARCINC when the product was installed.

4. The default directory $(PRODDIR)\include (unless you specified option --no-stdinc).

Example

Suppose that the C source file test.c contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the compiler as follows:

carc --include-directory=myinclude test.c

First the compiler looks for the file stdio.h in the directory myinclude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

234

TASKING SmartCode - PPU User Guide



The compiler now looks for the file myinc.h in the directory where test.c is located. If the file is not
there the compiler searches in the directory myinclude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information

C compiler option --include-file (Include file at the start of a compilation)

C compiler option --no-stdinc (Skip standard include files directory)

235

Tool Options



C compiler option: --include-file (-H)

Menu entry

1. Select C Compiler » Preprocessing.

The Pre-include files box shows the files that are currently included before the compilation starts.

2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax

--include-file=file,...

-Hfile,...

Description

With this option you include one or more extra files at the beginning of each C source file, before other
includes. This is the same as specifying #include "file" at the beginning of each of your C sources.

Example

carc --include-file=stdio.h test1.c test2.c

The file stdio.h is included at the beginning of both test1.c and test2.c.

Related information

C compiler option --include-directory (Add directory to include file search path)

236

TASKING SmartCode - PPU User Guide



C compiler option: --inline

Menu entry

1. Select C Compiler » Optimization.

2. Enable the option Always inline function calls.

Command line syntax

--inline

Description

With this option you instruct the compiler to inline calls to functions without the __noinline function
qualifier whenever possible. This option has the same effect as a #pragma inline at the start of the
source file.

This option can be useful to increase the possibilities for code compaction (C compiler option
--optimize=+compact).

Example

To always inline function calls:

carc --inline test.c

Related information

C compiler option --optimize=+compact (Optimization: code compaction)

Section 1.9.2, Inlining Functions: inline

237

Tool Options



C compiler option: --inline-max-incr / --inline-max-size

Menu entry

1. Select C Compiler » Optimization.

2. In the Maximum size increment when inlining field, enter a value (default -1).

3. In the Maximum size for functions to always inline field, enter a value (default -1).

Command line syntax

--inline-max-incr=percentage  (default: -1)
--inline-max-size=threshold   (default: -1)

Description

With these options you can control the automatic function inlining optimization process of the compiler.
These options only have effect when you have enabled the inlining optimization (option --optimize=+inline
or Optimize most).

Regardless of the optimization process, the compiler always inlines all functions that have the
function qualifier inline.

With the option --inline-max-size you can specify the maximum size of functions that the compiler inlines
as part of the optimization process. The compiler always inlines all functions that are smaller than the
specified threshold. The threshold is measured in compiler internal units and the compiler uses this
measure to decide which functions are small enough to inline. The default threshold is -1, which means
that the threshold depends on the option --tradeoff.

After the compiler has inlined all functions that have the function qualifier inline and all functions that
are smaller than the specified threshold, the compiler looks whether it can inline more functions without
increasing the code size too much.With the option --inline-max-incr you can specify how much the code
size is allowed to increase. The default value is -1, which means that the value depends on the option
--tradeoff.

Example

carc --optimize=+inline --inline-max-incr=40 --inline-max-size=15 test.c

The compiler first inlines all functions with the function qualifier inline and all functions that are smaller
than the specified threshold of 15. If the code size has still not increased with 40%, the compiler decides
which other functions it can inline.

Related information

C compiler option --optimize=+inline (Optimization: automatic function inlining)
Section 1.9.2, Inlining Functions: inline
Section 3.6.3, Optimize for Code Size or Execution Speed

238

TASKING SmartCode - PPU User Guide



C compiler option: --iso (-c)

Menu entry

1. Select C Compiler » Language.

2. From the Comply to C standard list, select ISO C99, ISO C11, or ISO C90.

Command line syntax

--iso={90|99|11}

-c{90|99|11}

Default: --iso=11

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99
refers to the ISO/IEC 9899:1999 (E) standard. C11 refers to the ISO/IEC 9899:2011 (E) standard. C11
is the default.

Example

To select the ISO C99 standard on the command line:

carc --iso=99 test.c

Related information

C compiler option --language (Language extensions)

239

Tool Options



C compiler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the .src file when errors occur during compilation.

Command line syntax

--keep-output-files

-k

Description

If an error occurs during compilation, the resulting .src file may be incomplete or incorrect. With this
option you keep the generated output file (.src) when an error occurs.

By default the compiler removes the generated output file (.src) when an error occurs. This is useful
when you use the make utility. If the erroneous files are not removed, the make utility may process corrupt
files on a subsequent invocation.

Use this option when you still want to inspect the generated assembly source. Even if it is incomplete or
incorrect.

Example

carc --keep-output-files test.c

When an error occurs during compilation, the generated output file test.src will not be removed.

Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

240

TASKING SmartCode - PPU User Guide



C compiler option: --language (-A)

Menu entry

1. Select C Compiler » Language.

2. Enable or disable one or more of the following options:

• Allow GNU C extensions

• Allow // comments in ISO C90 mode

• Check assignment of string literal to non-'const' string pointer

• Allow optimization across volatile access

Command line syntax

--language=[flags]

-A[flags]

You can set the following flags:

enable a number of gcc extensionsg/G+/-gcc

support for Shift JIS Kanji in stringsk/K+/-kanji

// comments in ISO C90 modep/P+/-comments

don't optimize across volatile accessv/V+/-volatile

relaxed const check for string literalsx/X+/-strings

Default: -AGKpVx

Default (without flags): -AGKPVX

Description

With this option you control the language extensions the compiler can accept. By default the C compiler
allows all language extensions, except for gcc extensions.

The option --language (-A) without flags disables all language extensions.

GNU C extensions

The --language=+gcc (-Ag) option enables the following gcc language extensions:

• The identifier __FUNCTION__ expands to the current function name.

• Alternative syntax for variadic macros.

• Alternative syntax for designated initializers.

241

Tool Options



• Allow zero sized arrays.

• Allow empty struct/union.

• Allow unnamed struct/union fields.

• Allow empty initializer list.

• Allow initialization of static objects by compound literals.

• The middle operand of a ? : operator may be omitted.

• Allow a compound statement inside braces as expression.

• Allow arithmetic on void pointers and function pointers.

• Allow a range of values after a single case label.

• Additional preprocessor directive #warning.

• Allow comma operator, conditional operator and cast as lvalue.

• An inline function without "static" or "extern" will be global.

• An "extern inline" function will not be compiled on its own.

For a more complete description of these extensions, you can refer to the UNIX gcc info pages (info
gcc).

Shift JIS Kanji support

With --language=+kanji (-Ak) you tell the compiler to support Shift JIS encoded Kanji multi-byte characters
in strings, (wide) character constants and // comments. Without this option, encodings with 0x5c as the
second byte conflict with the use of the backslash as an escape character. Shift JIS in /*...*/ comments
is supported regardless of this option. Note that Shift JIS also includes Katakana and Hiragana.

Comments in ISO C90 mode

With --language=+comments (-Ap) you tell the compiler to allow C++ style comments (//) in ISO C90
mode (option --iso=90). In ISO C99 mode this style of comments is always accepted.

Check assignment of string literal to non-const string pointer

With --language=+strings (-Ax) you disable warnings about discarded const qualifiers when a string
literal is assigned to a non-const pointer.

char *p;
int main( void )
{
    p = "hello"; // with -AX the compiler issues warning W525
    return 0;
}

242

TASKING SmartCode - PPU User Guide



Optimization across volatile access

With the --language=+volatile (-Av) option, the compiler will block optimizations when reading or writing
a volatile object, by executing all memory and (SFR) register accesses before the access of the volatile
object. The volatile access acts as a memory barrier. With this option you can prevent for example that
code below the volatile object is optimized away to somewhere above the volatile object.

Example:

extern unsigned int variable;
extern volatile unsigned int access;

void TestFunc( unsigned int flag )
{
    access = 0;
    variable |= flag;
    if( variable == 3 )
    {
        variable = 0;
    }
    variable |= 0x8000;
    access = 1;
}

Result with --language=-volatile (default):

TestFunc: .type    func
    st    0,[access]       ; <== Volatile access
    ld    %r1,[variable]
    or    %r0,%r1,%r0
    cmp   %r0,3
    bne   .L2
    mov   %r0,0
.L2:
    or    %r0,%r0,32768
    st    %r0,[variable]   ; <== Moved across volatile access
    st    1,[access]       ; <== Volatile access
    j     [%blink]

Result with --language=+volatile:

TestFunc: .type    func
    st    0,[access]       ; <== Volatile access
    ld    %r1,[variable]
    or    %r0,%r1,%r0
    cmp   %r0,3
    bne   .L2
    mov   %r0,0
.L2:
    or    %r0,%r0,32768
    st    1,[access]       ; <== Volatile access

243

Tool Options



    st    %r0,[variable]   ; <== Not moved
    j     [%blink]

Note that the volatile behavior of the compiler with option --language=-volatile or --language=+volatile
is ISO C compliant in both cases.

Related information

C compiler option --iso (ISO C standard)

Section 1.4, Shift JIS Kanji Support

244

TASKING SmartCode - PPU User Guide



C compiler option: --make-target

Menu entry

-

Command line syntax

--make-target=name

Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file.The default target name is the basename of the input
file, with extension .o.

Example

carc --preprocess=+make --make-target=mytarget.o test.c

The compiler generates dependency lines with the default target name mytarget.o instead of test.o.

Related information

C compiler option --preprocess=+make (Generate dependencies for make)

C compiler option --dep-file (Generate dependencies in a file)

245

Tool Options



C compiler option: --max-call-depth

Menu entry

1. Select C/C++ Compiler » Optimization.

2. In the Maximum call depth for code compaction field, enter a value.

Command line syntax

--max-call-depth=value

Default: -1

Description

This option is related to the compiler optimization --optimize=+compact (Code compaction or reverse
inlining). Code compaction is the opposite of inlining functions: large sequences of code that occur more
than once, are transformed into a function. This reduces code size (possibly at the cost of execution
speed).

During code compaction it is possible that the compiler generates nested calls. This may cause the
program to run out of its stack. To prevent stack overflow caused by too deeply nested function calls, you
can use this option to limit the call depth. This option can have the following values:

Poses no limit to the call depth (default)-1

The compiler will not generate any function calls. (Effectively the same as if you turned of
code compaction with option --optimize=-compact)

0

Code sequences are only reversed if this will not lead to code at a call depth larger than
specified with value. Function calls will be placed at a call depth no larger than value-1.
(Note that if you specified a value of 1, the option --optimize=+compact may remain
without effect when code sequences for reversing contain function calls.)

> 0

This option does not influence the call depth of user written functions.

If you use this option with various C modules, the call depth is valid for each individual module.
The call depth after linking may differ, depending on the nature of the modules.

Related information

C compiler option --optimize=+compact (Optimization: code compaction)

C compiler option --compact-max-size (Maximum size of a match for code compaction)

246

TASKING SmartCode - PPU User Guide



C compiler option: --mil / --mil-split

Menu entry

1. Select C Compiler » Optimization.

2. Enable the option Build for application wide optimizations (MIL linking).

3. Select Optimize less/Build faster or Optimize more/Build slower.

Command line syntax

--mil
--mil-split[=file,...]

Description

With option --mil the C compiler skips the code generator phase and writes the optimized intermediate
representation (MIL) to a file with the suffix .mil. The C compiler accepts .mil files as input files on the
command line.

Option --mil-split does the same as option --mil, but in addition, the C compiler splits the MIL representation
and writes it to separate files with suffix .ms. One file is written for each input file or MIL library specified
on the command line. The .ms files are only updated on a change. The C compiler accepts .ms files as
input files on the command line.

With option --mil-split you can perform application-wide optimizations during the frontend phase by
specifying all modules at once, and still invoke the backend phase one module at a time to reduce the
total compilation time. Application wide code compaction is not possible in this case.

Optionally, you can specify another filename for the .ms file the C compiler generates. Without an
argument, the basename of the C source file is used to create the .ms filename. Note that if you specify
a filename, you have to specify one filename for every input file.

Note that with both options some extra strict type checking is done that can cause building to fail in a way
that is unforeseen and difficult to understand. For example, when you use one of these options in
combination with option --schar and you link the MIL library, you might get the following error:

carc E289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
carc I802: ["installation-dir\carc\include\string.h" 44/17]
           previous declaration of "strlen"
1 errors, 0 warnings

This is caused by the fact that the MIL library is built without --schar.You can workaround this problem
by rebuilding the MIL libraries.

Build for application wide optimizations (MIL linking) and Optimize less/Build faster

This option is standard MIL linking and splitting. Note that you can control the optimizations to be performed
with the optimization settings.

247

Tool Options



Optimize more/Build slower

When you enable this option, the compiler's frontend does not split the MIL stream in separate modules,
but feeds it directly to the compiler's backend, allowing the code compaction to be performed application
wide.

Related information

Section 3.1, Compilation Process

Control program option --mil-link / --mil-split

248

TASKING SmartCode - PPU User Guide



C compiler option: --misrac

Menu entry

1. Select C Compiler » MISRA C.

2. Make a selection from the MISRA C checking list.

3. If you selected Custom, expand the Custom 1998, Custom 2004 or Custom 2012 entry and enable
one or more individual rules.

Command line syntax

--misrac={all | nr[-nr]},...

Description

With this option you specify to the compiler which MISRA C rules must be checked. With the option
--misrac=all the compiler checks for all supported MISRA C rules.

Example

carc --misrac=9-13 test.c

The compiler generates an error for each MISRA C rule 9, 10, 11, 12 or 13 violation in file test.c.

Related information

Section 3.7.2, C Code Checking: MISRA C

C compiler option --misrac-mandatory-warnings

C compiler option --misrac-advisory-warnings

C compiler option --misrac-required-warnings

Linker option --misrac-report

249

Tool Options



C compiler option: --misrac-advisory-warnings / --misrac-required-warnings
/ --misrac-mandatory-warnings

Menu entry

1. Select C Compiler » MISRA C.

2. Make a selection from the MISRA C checking list.

3. Enable one or more of the options:
Warnings instead of errors for mandatory rules
Warnings instead of errors for required rules
Warnings instead of errors for advisory rules.

Command line syntax

--misrac-advisory-warnings
--misrac-required-warnings
--misrac-mandatory-warnings

Description

Normally, if an advisory rule, required rule or mandatory rule is violated, the compiler generates an error.
As a consequence, no output file is generated.With this option, the compiler generates a warning instead
of an error.

Related information

Section 3.7.2, C Code Checking: MISRA C

C compiler option --misrac

Linker option --misrac-report

250

TASKING SmartCode - PPU User Guide



C compiler option: --misrac-version

Menu entry

1. Select C Compiler » MISRA C.

2. Select the MISRA C version: 1998, 2004 or 2012.

Command line syntax

--misrac-version={1998|2004|2012}

Default: 2004

Description

MISRA C rules exist in three versions: MISRA C:1998, MISRA C:2004 and MISRA C:2012. By default,
the C source is checked against the MISRA C:2004 rules. With this option you can select which version
to use.

Related information

Section 3.7.2, C Code Checking: MISRA C

C compiler option --misrac

251

Tool Options



C compiler option: --no-stdinc

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --no-stdinc to the Additional options field.

Command line syntax

--no-stdinc

Description

With this option you tell the compiler not to look in the default include directory relative to the installation
directory, when searching for include files. This way the compiler only searches in the include file search
paths you specified.

Related information

C compiler option --include-directory (Add directory to include file search path)

Section 3.4, How the Compiler Searches Include Files

252

TASKING SmartCode - PPU User Guide



C compiler option: --no-warnings (-w)

Menu entry

1. Select C Compiler » Diagnostics.

The Suppress C compiler warnings box shows the warnings that are currently suppressed.

2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas or as a range, of the warnings you want to suppress (for
example 537,538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

--no-warnings[=number[-number],...]

-w[number[-number],...]

Description

With this option you can suppresses all warning messages or specific warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are suppressed.

• If you specify this option with a number or a range, only the specified warnings are suppressed.You
can specify the option --no-warnings=number multiple times.

Example

To suppress warnings 537 and 538, enter:

carc test.c --no-warnings=537,538

Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

Pragma warning

253

Tool Options



C compiler option: --optimize (-O)

Menu entry

1. Select C Compiler » Optimization.

2. Select an optimization level in the Optimization level box.

Command line syntax

--optimize[=flags]

-Oflags

You can set the following flags:

Coalescer: remove unnecessary movesa/A+/-coalesce

Interprocedural register optimizationsb/B+/-ipro

Common subexpression eliminationc/C+/-cse

Expression simplificatione/E+/-expression

Control flow simplificationf/F+/-flow

Generic assembly code optimizationsg/G+/-glo

Automatic function inliningi/I+/-inline

Instruction schedulerk/K+/-schedule

Loop transformationsl/L+/-loop

Loop auto-vectorizationm/M+/-vectorize

Forward storeo/O+/-forward

Constant propagationp/P+/-propagate

Code compaction (reverse inlining)r/R+/-compact

Subscript strength reductions/S+/-subscript

Unroll small loopsu/U+/-unroll

Convert IF statements using predicatesv/V+/-ifconvert

Software pipeliningw/W+/-pipeline

Peephole optimizationsy/Y+/-peephole

Use the following options for predefined sets of flags:

No optimization
Alias for -OaBCEFGIKLMOPRSUVWY

-O0--optimize=0

No optimizations are performed except for the coalescer (to allow better debug information).The compiler
tries to achieve an optimal resemblance between source code and produced code. Expressions are
evaluated in the same order as written in the source code, associative and commutative properties are
not used.

254

TASKING SmartCode - PPU User Guide



Optimize
Alias for -OabCefgIKLMOPRSUVWy

-O1--optimize=1

Enables optimizations that do not affect the debug ability of the source code. Use this level when you
encounter problems during debugging your source code with optimization level 2.

Optimize more (default)
Alias for -OabcefgIKlMoprsUvWy

-O2--optimize=2

Enables more optimizations to reduce code size and/or execution time. This is the default optimization
level.

Optimize most
Alias for -OabcefgiklMoprsuvwy

-O3--optimize=3

This is the highest optimization level. Use this level to decrease execution time to meet your real-time
requirements.

Default: --optimize=2

Description

With this option you can control the level of optimization. If you do not use this option, the default
optimization level is Optimize more (option --optimize=2 or --optimize).

When you use this option to specify a set of optimizations, you can overrule these settings in your C
source file with #pragma optimize flag / #pragma endoptimize.

In addition to the option --optimize, you can specify the option --tradeoff (-t). With this option you specify
whether the used optimizations should optimize for more speed (regardless of code size) or for smaller
code size (regardless of speed).

Example

The following invocations are equivalent and result all in the default optimization set:

carc test.c

carc --optimize=2 test.c
carc -O2 test.c

carc --optimize test.c
carc -O test.c

carc -OabcefgIKlMoprsUvWy test.c
carc --optimize=+coalesce,+ipro,+cse,+expression,+flow,+glo,
      -inline,-schedule,+loop,-vectorize,+forward,+propagate,
      +compact,+subscript,-unroll,+ifconvert,-pipeline,+peephole test.c

255

Tool Options



Related information

C compiler option --tradeoff (Trade off between speed and size)

Pragma optimize/endoptimize

Section 3.6, Compiler Optimizations

256

TASKING SmartCode - PPU User Guide



C compiler option: --option-file (-f)

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the C compiler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the compiler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

         -> "This is a continuation line"

257

Tool Options



• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

--debug-info
--define=DEMO=1
test.c

Specify the option file to the compiler:

carc --option-file=myoptions

This is equivalent to the following command line:

carc —-debug-info --define=DEMO=1 test.c

Related information

-

258

TASKING SmartCode - PPU User Guide



C compiler option: --output (-o)

Menu entry

Eclipse names the output file always after the C source file.

Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the compiler. Without this option
the basename of the C source file is used with extension .src.

Example

To create the file output.src instead of test.src, enter:

carc --output=output.src test.c

Related information

-

259

Tool Options



C compiler option: --preprocess (-E)

Menu entry

1. Select C Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.

4. (Optional) Enable the option Keep #line info in preprocessor output.

Command line syntax

--preprocess[=flags]

-E[flags]

You can set the following flags:

keep commentsc/C+/-comments

generate a list of included source filesi/I+/-includes

generate a list of macro definitionsl/L+/-list

generate dependencies for makem/M+/-make

strip #line source position informationp/P+/-noline

Default: -ECILMP

Description

With this option you tell the compiler to preprocess the C source.

Under Eclipse the compiler sends the preprocessed output to the file name.pre (where name is the
name of the C source file to compile). Eclipse also compiles the C source.

On the command line, the compiler sends the preprocessed file to stdout. To capture the information in
a file, specify an output file with the option --output.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+includes the compiler will generate a list of all included source files.The preprocessor
output is discarded.

With --preprocess=+list the compiler will generate a list of all macro definitions.The preprocessor output
is discarded.

With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The preprocessor output is discarded. The default target name is the basename of the input file, with the

260

TASKING SmartCode - PPU User Guide



extension .o. With the option --make-target you can specify a target name which overrules the default
target name.

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #line). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example

carc --preprocess=+comments,+includes,-list,-make,-noline test.c --output=test.pre

The compiler preprocesses the file test.c and sends the output to the file test.pre. Comments and
a list of all included source files are included but no list of macro definitions and no dependencies are
generated and the line source position information is not stripped from the output file.

Related information

C compiler option --dep-file (Generate dependencies in a file)

C compiler option --make-target (Specify target name for -Em output)

261

Tool Options



C compiler option: --rename-sections (-R)

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --rename-sections to the Additional options field.

Command line syntax

--rename-sections[=name]

-R[name]

Description

The compiler defaults to a section naming convention, using a prefix indicating the section type, the
module name and a symbol name:

section_type_prefix.module_name.symbol_name

For example, .text.module_name.symbol_name for code sections.

In case a module must be loaded at a fixed address, or a data section needs a special place in memory,
you can use this option to generate different section names (section_type_prefix.name where name
replaces the part module_name.symbol_name).You can then use this unique section name in the linker
script file for locating.

If you use this option without a value or with an empty string, the compiler uses only the section type
prefix as the section name.

Example

To generate the section name section_type_prefix.NEW instead of the default section name
section_type_prefix.module_name.symbol_name, enter:

carc -RNEW test.c

To generate the section name section_type_prefix instead of the default section name
section_type_prefix.module_name.symbol_name, enter:

carc -R test.c

or

carc -R"" test.c

Related information

Section 1.10, Compiler Generated Sections

262

TASKING SmartCode - PPU User Guide



C compiler option: --runtime (-r)

Menu entry

1. Select C Compiler » Debugging.

2. Enable or disable one or more of the following run-time error checking options:

• Generate code for bounds checking

• Generate code to detect unhandled case in a switch

• Generate code for malloc consistency checks

Command line syntax

--runtime[=flag,...]

-r[flags]

You can set the following flags:

bounds checkingb/B+/-bounds

report unhandled case in a switchc/C+/-case

malloc consistency checksm/M+/-malloc

Default (without flags): -rbcm

Description

This option controls a number of run-time checks to detect errors during program execution. Some of
these checks require additional code to be inserted in the generated code, and may therefore slow down
the program execution. The following checks are available:

Bounds checking

Every pointer update and dereference will be checked to detect out-of-bounds accesses, null pointers
and uninitialized automatic pointer variables. This check will increase the code size and slow down the
program considerably. In addition, some heap memory is allocated to store the bounds information.You
may enable bounds checking for individual modules or even parts of modules only (see #pragma
runtime).

Report unhandled case in a switch

Report an unhandled case value in a switch without a default part. This check will add one function call
to every switch without a default part, but it will have little impact on the execution speed.

263

Tool Options



Malloc consistency checks

This option enables the use of wrappers around the functions malloc/realloc/free that will check for common
dynamic memory allocation errors like:

• buffer overflow

• write to freed memory

• multiple calls to free

• passing invalid pointer to free

Enabling this check will extract some additional code from the library, but it will not enlarge your application
code. The dynamic memory usage will increase by a couple of bytes per allocation.

Related information

Pragma runtime

264

TASKING SmartCode - PPU User Guide



C compiler option: --save-irq-regs

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --save-irq-regs to the Additional options field.

Command line syntax

--save-irq-regs[=reg[-reg],...]

Description

With this option you can specify the registers that are implicitly saved (by hardware) during an interrupt.
The argument of this option is a comma-separated list of registers (r0, ..., r29, blink, lp_count) or in the
range form (e.g. "r0-r3"). The resulting list of registers from the r0-r29 range must:

• start at r0

• be continuous by register number

• contain an even number of registers

If you do not specify any register, all registers are saved.

Related information

Section 1.9.3, Interrupt Functions / Exception Handling

265

Tool Options



C compiler option: --schar

Menu entry

1. Select C Compiler » Language.

2. Enable the option Treat 'char' variables as signed.

Command line syntax

--schar

Description

By default char is the same as specifying unsigned char as required by the ABI. With this option
char is the same as signed char.

Note that this option can cause conflicts when you use it in combination with MIL linking. With MIL linking
some extra strict type checking is done that can cause building to fail in a way that is unforeseen and
difficult to understand. For example, when you use option --mil in combination with option --schar and
you link the MIL library, you might get the following error:

carc E289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
carc I802: ["installation-dir\carc\include\string.h" 44/17]
           previous declaration of "strlen"
1 errors, 0 warnings

This is caused by the fact that the MIL library is built without --schar.You can workaround this problem
by rebuilding the MIL libraries.

Related information

Section 1.1, Data Types

266

TASKING SmartCode - PPU User Guide



C compiler option: --sda-max-data-size

Menu entry

1. Select C Compiler » Miscellaneous.

2. In the Threshold for putting data in SDA field, enter a value in bytes.

Command line syntax

--sda-max-data-size=size

Default: 4 (bytes)

Description

By default, data consisting of 4 bytes or less will be placed in the Small Data Area (SDA).With this compiler
option you can change this default limit of 4 bytes.

Instead of this option you can also use pragma sda_max_data_size around an object declaration. For
example,

#pragma sda_max_data_size 16
int arr[4];
#pragma sda_max_data_size restore 

You have to compile the entire program with the same --sda-max-data-size option value. More precisely,
for every object all of its declarations have to be consistent with its definition with respect to the
--sda-max-data-size option value (specified either as a compiler option, or as a pragma). So, if for example
you override the option at a variable definition in some file with a pragma, you have to use the same
pragma around all its extern declarations in other files.

The instruction set supports only a limited addressing range for SDA objects, and it's your responsibility
to make sure all program objects fit into it. Objects accessed as bytes and half-words have even a more
narrow range around the GP pointer: 512 bytes for single bytes and 1 KiB for half-words. If any access
does not fit in the range the linker issues an error like:

larc E121: relocation error in "task1": relocation value 0x103680, 
type R_ARC_SDA16_LD2, offset 0x222, section ".text" at address 0x86d4 
is not within a 11-bit signed range from the value of gp as defined 
by the symbol _SDA_BASE_ 

In this case you should mark some of the excessive variables with the __no_sda qualifier, reduce the
value of the --sda-max-data-size option, or disable automatic SDA allocation completely by using
--sda-max-data-size=0.

Example

To put data objects with a size of 16 bytes or smaller in SDA automatically, enter:

carc --sda-max-data-size=16 test.c

267

Tool Options



Related information

Section 1.3.1, Memory Type Qualifiers

Section 1.3.2, Small Data Area (SDA)

Pragma sda_max_data_size

268

TASKING SmartCode - PPU User Guide



C compiler option: --source (-s)

Menu entry

1. Select C Compiler » Miscellaneous.

2. Enable the option Merge C source code with generated assembly.

Command line syntax

--source

-s

Description

With this option you tell the compiler to merge C source code with generated assembly code in the output
file. The C source lines are included as comments.

Related information

Pragmas source/nosource

269

Tool Options



C compiler option: --static

Menu entry

-

Command line syntax

--static

Description

With this option, the compiler treats external definitions at file scope (except for main) as if they were
declared static. As a result, unused functions will be eliminated, and the alias checking algorithm
assumes that objects with static storage cannot be referenced from functions outside the current module.

This option only makes sense when you specify all modules of an application on the command line.

To overrule this option for a specific function or variable, you can use the export attribute. For example,
when a variable is accessed from assembly:

int i __attribute__((export)); /* 'i' has external linkage */

With the export attribute the compiler will not perform optimizations that affect the unknown code.

Example

carc --static module1.c module2.c module3.c ...

Related information

-

270

TASKING SmartCode - PPU User Guide



C compiler option: --stdout (-n)

Menu entry

-

Command line syntax

--stdout

-n

Description

With this option you tell the compiler to send the output to stdout (usually your screen). No files are
created. This option is for example useful to quickly inspect the output or to redirect the output to other
tools.

Related information

-

271

Tool Options



C compiler option: --tradeoff (-t)

Menu entry

1. Select C Compiler » Optimization.

2. Select a trade-off level in the Trade-off between speed and size box.

Command line syntax

--tradeoff={0|1|2|3|4}

-t{0|1|2|3|4}

Default: --tradeoff=2

Description

If the compiler uses certain optimizations (option --optimize), you can use this option to specify whether
the used optimizations should optimize for more speed (regardless of code size) or for smaller code size
(regardless of speed).

By default the compiler balances speed and size while optimizing (--tradeoff=2).

If you have not specified the option --optimize, the compiler uses the default Optimize more
optimization. In this case it is still useful to specify a trade-off level.

Example

To set the trade-off level for the used optimizations:

carc --tradeoff=4 test.c

The compiler uses the default Optimize more optimization level and optimizes for code size.

Related information

C compiler option --optimize (Specify optimization level)

Section 3.6.3, Optimize for Code Size or Execution Speed

272

TASKING SmartCode - PPU User Guide



C compiler option: --undefine (-U)

Menu entry

1. Select C Compiler » Preprocessing

The Defined symbols box shows the symbols that are currently defined.

2. To remove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax

--undefine=macro_name

-Umacro_name

Description

With this option you can undefine an earlier defined macro as with #undef. This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

current source filename__FILE__

current source line number (int type)__LINE__

hh:mm:ss__TIME__

Mmm dd yyyy__DATE__

level of ANSI standard__STDC__

Example

To undefine the predefined macro __TASKING__:

carc --undefine=__TASKING__ test.c

Related information

C compiler option --define (Define preprocessor macro)

Section 1.8, Predefined Preprocessor Macros

273

Tool Options



C compiler option: --unroll-factor

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --unroll-factor to the Additional options field.

Command line syntax

--unroll-factor=value

Default: --unroll-factor=-1

Description

With the loop unrolling optimization, short loops are eliminated by replacing them with a number of copies
to reduce the number of branches. With this option you specify how many times eligible loops should be
unrolled. When the unroll factor is -1 (default), small loops are unrolled automatically if the loop unrolling
optimization (--optimize=+unroll / -Ou) is enabled and the optimization trade-off is set for speed
(--tradeoff=0 / -t0)).

Loop unrolling is allowed if the remainder of the division of the loop iteration by (value + 1) equals 0. Loop
unrolling is allowed if there is no function call in the loop body.

Instead of this option you can use the following pragmas:

#pragma unroll_factor value
  ...
#pragma endunroll_factor

Example

To allow an unroll factor of four, enter:

carc --optimize=+unroll --unroll-factor=4 --tradeoff=0 test.c

Related information

Pragma unroll_factor

C compiler option --optimize (Specify optimization level)

C compiler option --tradeoff (Trade off between speed and size)

Section 3.6, Compiler Optimizations

274

TASKING SmartCode - PPU User Guide



C compiler option: --verbose (-v)

Menu entry

-

Command line syntax

--verbose

-v

Description

With this option you put the C compiler in verbose mode. The C compiler performs its tasks while it prints
the steps it performs to stdout.

Related information

-

275

Tool Options



C compiler option: --version (-V)

Menu entry

-

Command line syntax

--version

-V

Description

Display version information. The compiler ignores all other options or input files.

Related information

-

276

TASKING SmartCode - PPU User Guide



C compiler option: --vccm-no-clear

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --vccm-no-clear to the Additional options field.

Command line syntax

--vccm-no-clear

Description

Normally uninitialized vector data is emitted in .vbss sections which are cleared (zero initialized) at
program startup. With this option you tell the compiler to generate .vbss sections with the noclear
attribute set. This prevents uninitialized vector data from being cleared at program startup.

Related information

Pragma vccm_noclear

277

Tool Options



C compiler option: --vectorize-info

Menu entry

1. Select C Compiler » Optimization.

2. In the Optimization level box, select Custom Optimization.

3. Select C Compiler » Optimization » Custom Optimization.

4. Enable Auto-vectorization.

5. Select C Compiler » Optimization.

6. Enable Auto-vectorization diagnostics.

Command line syntax

--vectorize-info

Description

With this option you enable additional informational diagnostics about the auto-vectorization optimization,
such as which loops could be vectorized, and which loops could not be vectorized and why.

Related information

C compiler option -Om / --optimize=+vectorize (Loop auto-vectorization)

Loop auto-vectorization optimization

278

TASKING SmartCode - PPU User Guide



C compiler option: --vectorize-noalias

Menu entry

1. Select C Compiler » Optimization.

2. In the Optimization level box, select Custom Optimization.

3. Select C Compiler » Optimization » Custom Optimization.

4. Enable Auto-vectorization.

5. Select C Compiler » Optimization.

6. Enable No auto-vectorization alias checking.

Command line syntax

--vectorize-noalias

Description

By default, any possible aliases will disable auto-vectorization for a loop. An example of a possible alias
is when the same array is accessed by different forms of subscripts, for instance with a different offset
or stride, and at least one of them is used to modify the array. Another example is when an array is
accessed via a non-restrict qualified pointer variable. This option will disable all aliasing checks for
auto-vectorization. With #pragma vectorize_noalias you can selectively disable alias checking for
specific loops.

Related information

C compiler option -Om / --optimize=+vectorize (Loop auto-vectorization)

Loop auto-vectorization optimization

Pragma vectorize_noalias

279

Tool Options



C compiler option: --vectorize-vccm

Menu entry

1. Select C Compiler » Optimization.

2. In the Optimization level box, select Custom Optimization.

3. Select C Compiler » Optimization » Custom Optimization.

4. Enable Auto-vectorization.

5. Select C Compiler » Optimization.

6. Enable Assume vector data is in __vccm memory.

Command line syntax

--vectorize-vccm

Description

By default, the auto-vectorization optimization (-Om) will only consider arrays in __vccm memory to be
able to access them with vector load/store instructions. With this option you can specify that the compiler
may assume that potentially vectorizable data is located in vector memory, even in the absence of the
__vccm qualifier. This means that you are responsible for allocating the data in vector memory, for
instance through the use of a linker script file.

Related information

C compiler option -Om / --optimize=+vectorize (Loop auto-vectorization)

Loop auto-vectorization optimization

280

TASKING SmartCode - PPU User Guide



C compiler option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

--warnings-as-errors[=number[-number],...]

Description

If the compiler encounters an error, it stops compiling. When you use this option without arguments, you
tell the compiler to treat all warnings not suppressed by option --no-warnings (or #pragma warning)
as errors. This means that the exit status of the compiler will be non-zero after one or more compiler
warnings. As a consequence, the compiler now also stops after encountering a warning.

You can limit this option to specific warnings by specifying a comma-separated list of warning numbers
or ranges. In this case, this option takes precedence over option --no-warnings (and #pragma warning).

Related information

C compiler option --no-warnings (Suppress some or all warnings)

Pragma warning

281

Tool Options



7.3. Assembler Options

This section lists all assembler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the assembler via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the assembler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler » Miscellaneous.

4. In the Additional options field, enter one or more command line options.

Because Eclipse uses the control program, Eclipse automatically precedes the option with -Wa to
pass the option via the control program directly to the assembler.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -V displays version header information and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on', use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

asarc -gal test.src
asarc --debug-info=+asm,+local test.src

When you do not specify an option, a default value may become active.

282

TASKING SmartCode - PPU User Guide



Assembler option: --case-insensitive (-c)

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.

Command line syntax

--case-insensitive

-c

Default: case sensitive

Description

With this option you tell the assembler not to distinguish between uppercase and lowercase characters.
By default the assembler considers uppercase and lowercase characters as different characters.

Assembly source files that are generated by the compiler must always be assembled case sensitive.
When you are writing your own assembly code, you may want to specify the case insensitive mode.

Example

When assembling case insensitive, the label LabelName is the same label as labelname.

asarc --case-insensitive test.src

Related information

Assembler control $CASE

283

Tool Options



Assembler option: --check

Menu entry

-

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application.

The assembler reports any warnings and/or errors.

This option is available on the command line only.

Related information

C compiler option --check (Check syntax)

284

TASKING SmartCode - PPU User Guide



Assembler option: --core

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, make a selection.

Command line syntax

--core=core

You can specify the following core architectures:

PPU core architecture of TC43xppu_tc43x

PPU core architecture of TC49xppu_tc49x

PPU core architecture of TC4Dxppu_tc4dx

Default: ppu_tc49x

Description

With this option you specify the PPU core architecture for which you create your application. The core
architecture determines which instructions are valid and which are not.

To avoid conflicts, make sure you specify the same core architecture as you did for the compiler (Eclipse
and the control program do this automatically).

Related information

Control program option --core (Select core architecture)

C compiler option --core (Select core architecture)

285

Tool Options



Assembler option: --debug-info (-g)

Menu entry

1. Select Assembler » Symbols.

2. Select an option from the Generate symbolic debug list.

Command line syntax

--debug-info[=flags]

-g[flags]

You can set the following flags:

Assembly source line informationa/A+/-asm

Pass high level language debug information (HLL)h/H+/-hll

Assembler local symbols debug informationl/L+/-local

Smart debug informations/S+/-smart

Default: --debug-info=+hll

Default (without flags): --debug-info=+smart

Description

With this option you tell the assembler which kind of debug information to emit in the object file.

You cannot specify --debug-info=+asm,+hll. Either the assembler generates assembly source line
information, or it passes HLL debug information.

When you specify --debug-info=+smart, the assembler selects which flags to use. If high level language
information is available in the source file, the assembler passes this information (same as
--debug-info=-asm,+hll,-local). If not, the assembler generates assembly source line information (same
as --debug-info=+asm,-hll,+local).

With --debug-info=AHLS the assembler does not generate any debug information.

Related information

Assembler control $DEBUG

286

TASKING SmartCode - PPU User Guide



Assembler option: --define (-D)

Menu entry

1. Select Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.

2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

--define=macro_name[=macro_definition]

-Dmacro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the assembler preprocessor. If you only specify
a macro name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
assembler with the option --option-file (-f) file.

Defining macros with this option (instead of in the assembly source) is, for example, useful in combination
with conditional assembly as shown in the example below.

This option has the same effect as defining symbols via the .DEFINE, .SET, and .EQU directives
(similar to #define in the C language). With the .MACRO directive you can define more complex
macros.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

287

Tool Options



Example

Consider the following assembly program with conditional code to assemble a demo program and a real
program:

.IF DEMO == 1

...        ; instructions for demo application

.ELSE

...        ; instructions for the real application

.ENDIF

You can now use a macro definition to set the DEMO flag:

asarc --define=DEMO test.src
asarc --define=DEMO=1 test.src

Note that both invocations have the same effect.

Related information

Assembler option --option-file (Specify an option file)

288

TASKING SmartCode - PPU User Guide



Assembler option: --dep-file

Menu entry

-

Command line syntax

--dep-file[=file]

Description

With this option you tell the assembler to generate dependency lines that can be used in a Makefile. The
dependency information will be generated in addition to the normal output file.

By default, the information is written to a file with extension .d. When you specify a filename, all
dependencies will be combined in the specified file.

Example

asarc --dep-file=test.dep test.src

The assembler assembles the file test.src, which results in the output file test.o, and generates
dependency lines in the file test.dep.

Related information

Assembler option --make-target (Specify target name for --dep-file output)

289

Tool Options



Assembler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify.You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 244, enter:

asarc --diag=244

This results in the following message and explanation:

W244: additional input files will be ignored

The assembler supports only a single input file. All other input files are ignored.

290

TASKING SmartCode - PPU User Guide



To write an explanation of all errors and warnings in HTML format to file aserrors.html, use redirection
and enter:

asarc --diag=html:all > aserrors.html

Related information

Section 4.5, Assembler Error Messages

291

Tool Options



Assembler option: --emit-locals

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable one or both of the following options:

• Emit local EQU symbols

• Emit local non-EQU symbols

Command line syntax

--emit-locals[=flag,...]

You can set the following flags:

emit local EQU symbolse/E+/-equs

emit local non-EQU symbolss/S+/-symbols

Default: --emit-locals=ES

Default (without flags): --emit-locals=+symbols

Description

With the option --emit-locals=+equs the assembler also emits local EQU symbols to the object file.
Normally, only global symbols and non-EQU local symbols are emitted. Having local symbols in the object
file can be useful for debugging.

Related information

Assembler directive .EQU

292

TASKING SmartCode - PPU User Guide



Assembler option: --error-file

Menu entry

-

Command line syntax

--error-file[=file]

Description

With this option the assembler redirects diagnostic messages to a file. If you do not specify a filename,
the error file will be named after the output file with extension .ers.

Example

To write diagnostic messages to errors.ers instead of stderr, enter:

asarc --error-file=errors.ers test.src

Related information

Section 4.5, Assembler Error Messages

293

Tool Options



Assembler option: --error-limit

Menu entry

1. Select Assembler » Diagnostics.

2. Enter a value in the Maximum number of emitted errors field.

Command line syntax

--error-limit=number

Default: 42

Description

With this option you tell the assembler to only emit the specified maximum number of errors. When 0
(null) is specified, the assembler emits all errors. Without this option the maximum number of errors is
42.

Related information

Section 4.5, Assembler Error Messages

294

TASKING SmartCode - PPU User Guide



Assembler option: --help (-?)

Menu entry

-

Command line syntax

--help[=item]

-?

You can specify the following arguments:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

asarc -?
asarc --help
asarc

To see a detailed description of the available options, enter:

asarc --help=options

Related information

-

295

Tool Options



Assembler option: --include-directory (-I)

Menu entry

1. Select Assembler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.

2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--include-directory=path,...

-Ipath,...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the assembler searches for include files is:

1. The pathname in the assembly file and the directory of the assembly source.

2. The path that is specified with this option.

3. The path that is specified in the environment variable ASARCINC when the product was installed.

4. The default directory $(PRODDIR)\include.

Example

Suppose that the assembly source file test.src contains the following lines:

.INCLUDE 'myinc.inc'

You can call the assembler as follows:

asarc --include-directory=c:\proj\include test.src

First the assembler looks for the file myinc.inc in the directory where test.src is located. If it does
not find the file, it looks in the directory c:\proj\include (this option). If the file is still not found, the
assembler searches in the environment variable and then in the default include directory.

296

TASKING SmartCode - PPU User Guide



Related information

Assembler option --include-file (Include file at the start of the input file)

297

Tool Options



Assembler option: --include-file (-H)

Menu entry

1. Select Assembler » Preprocessing.

The Pre-include files box shows the files that are currently included before the assembling starts.

2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax

--include-file=file,...

-Hfile,...

Description

With this option (set at project level) you include one extra file at the beginning of the assembly source
file.The specified include file is included before all other includes.This is the same as specifying .INCLUDE
'file' at the beginning of your assembly source.

Example

asarc --include-file=sfr/regppu.def test.src

The file regppu.def in the sfr subdirectory of the include directory is included at the beginning of
test.src before it is assembled.

Related information

Assembler option --include-directory (Add directory to include file search path)

298

TASKING SmartCode - PPU User Guide



Assembler option: --kanji

Menu entry

1. Select Assembler » Miscellaneous.

2. Enable the option Allow Shift JIS Kanji in strings.

Command line syntax

--kanji

Description

With this option you tell the assembler to support Shift JIS encoded Kanji multi-byte characters in strings.
Without this option, encodings with 0x5c as the second byte conflict with the use of the backslash as an
escape character. Shift JIS in comments is supported regardless of this option.

Note that Shift JIS also includes Katakana and Hiragana.

Related information

C compiler option --language=+kanji (Allow Shift JIS Kanji in strings)

299

Tool Options



Assembler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the object file when errors occur during assembling.

Command line syntax

--keep-output-files

-k

Description

If an error occurs during assembling, the resulting object file (.o) may be incomplete or incorrect. With
this option you keep the generated object file when an error occurs.

By default the assembler removes the generated object file when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated object. For example when you know that a
particular error does not result in a corrupt object file.

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

300

TASKING SmartCode - PPU User Guide



Assembler option: --list-file (-l)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.

Command line syntax

--list-file[=file]

-l[file]

Default: no list file is generated

Description

With this option you tell the assembler to generate a list file. A list file shows the generated object code
and the relative addresses. Note that the assembler generates a relocatable object file with relative
addresses.

With the optional file you can specify an alternative name for the list file. By default, the name of the list
file is the basename of the output file with the extension .lst.

Related information

Assembler option --list-format (Format list file)

301

Tool Options



Assembler option: --list-format (-L)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.

Command line syntax

--list-format=flag,...

-Lflags

You can set the following flags:

List section directives (.SECTION)d/D+/-section

List symbol definition directivese/E+/-symbol

List expansion of generic instructionsg/G+/-generic-expansion

List generic instructionsi/I+/-generic

List C preprocessor #line directivesl/L+/-line

List macro definitionsm/M+/-macro

List empty source lines and comment lines (newline)n/N+/-empty-line

List conditional assemblyp/P+/-conditional

List equate and set directives (.EQU, .SET)q/Q+/-equate

List relocations characters ('r')r/R+/-relocations

List HLL symbolic debug informationss/S+/-hll

List equate and set valuesv/V+/-equate-values

Wrap source linesw/W+/-wrap-lines

List macro expansionsx/X+/-macro-expansion

List cycle countsy/Y+/-cycle-count

List define expansionsz/Z+/-define-expansion

Use the following options for predefined sets of flags:

All options disabled
Alias for --list-format=DEGILMNPQRSVWXYZ

-L0--list-format=0

All options enabled
Alias for --list-format=degilmnpqrsvwxyz

-L1--list-format=1

Default: --list-format=dEGilMnPqrsVwXyZ

302

TASKING SmartCode - PPU User Guide



Description

With this option you specify which information you want to include in the list file.

On the command line you must use this option in combination with the option --list-file (-l).

Related information

Assembler option --list-file (Generate list file)

Assembler option --section-info=+list (Display section information in list file)

303

Tool Options



Assembler option: --make-target

Menu entry

-

Command line syntax

--make-target=name

Description

With this option you can overrule the default target name in the make dependencies generated by the
option --dep-file. The default target name is the basename of the input file, with extension .o.

Example

asarc --dep-file --make-target=../mytarget.o test.src

The assembler generates dependency lines with the default target name ../mytarget.o instead of
test.o.

Related information

Assembler option --dep-file (Generate dependencies in a file)

304

TASKING SmartCode - PPU User Guide



Assembler option: --no-notes

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --no-notes to the Additional options field.

Command line syntax

--no-notes

Description

By default, the assembler generates a note section in the object file. The note section contains compiler
version and invocation information, if supplied in the input file, and version and invocation information of
the assembler. With this option you can suppress the generation of a note section in the output object
file.

Related information

-

305

Tool Options



Assembler option: --no-reg-prefix

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --no-reg-prefix to the Additional options field.

Command line syntax

--no-reg-prefix

Description

By default, the register names in an assembly instruction must have a % prefix. With this option, the
assembler allows you to use registers with or without the % prefix.

When this option is enabled, make sure that there is no ambiguity between non-prefixed register names
and user-defined symbol names used in the assembly code.

Example

With this option enabled, instead of

add %r1,%r2,%r4

you can also write

add r1,r2,r4

Related information

-

306

TASKING SmartCode - PPU User Guide



Assembler option: --no-warnings (-w)

Menu entry

1. Select Assembler » Diagnostics.

The Suppress warnings box shows the warnings that are currently suppressed.

2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
201,202). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

--no-warnings[=number,...]

-w[number,...]

Description

With this option you can suppresses all warning messages or specific warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are suppressed.

• If you specify this option with a number, only the specified warning is suppressed.You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 201 and 202, enter:

asarc test.src --no-warnings=201,202

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

307

Tool Options



Assembler option: --option-file (-f)

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the assembler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the assembler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility.You can specify the option
--option-file multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

         -> "This is a continuation line"

308

TASKING SmartCode - PPU User Guide



• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

--debug-info=+asm,-local
test.src

Specify the option file to the assembler:

asarc --option-file=myoptions

This is equivalent to the following command line:

asarc --debug-info=+asm,-local test.src

Related information

-

309

Tool Options



Assembler option: --output (-o)

Menu entry

Eclipse names the output file always after the input file.

Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the assembler. Without this option,
the basename of the assembly source file is used with extension .o.

Example

To create the file relobj.o instead of asm.o, enter:

asarc --output=relobj.o asm.src

Related information

-

310

TASKING SmartCode - PPU User Guide



Assembler option: --page-length

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-length to the Additional options field.

Command line syntax

--page-length=number

Default: 72

Description

If you generate a list file with the assembler option --list-file, this option sets the number of lines in a page
in the list file. The default is 72, the minimum is 10. As a special case, a page length of 0 turns off page
breaks.

Related information

Assembler option --list-file (Generate list file)

Assembler control $PAGE

311

Tool Options



Assembler option: --page-width

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-width to the Additional options field.

Command line syntax

--page-width=number

Default: 132

Description

If you generate a list file with the assembler option --list-file, this option sets the number of columns per
line on a page in the list file. The default is 132, the minimum is 40.

Related information

Assembler option --list-file (Generate list file)

Assembler control $PAGE

312

TASKING SmartCode - PPU User Guide



Assembler option: --preprocess (-E)

Menu entry

-

Command line syntax

--preprocess

-E

Description

With this option the assembler will only preprocess the assembly source file. The assembler sends the
preprocessed file to stdout.

Related information

-

313

Tool Options



Assembler option: --preprocessor-type (-m)

Menu entry

1. Select Assembler » Preprocessing.

2. Enable or disable the option Use TASKING preprocessor.

Command line syntax

--preprocessor-type=type

-mtype

You can set the following preprocessor types:

No preprocessornnone

TASKING preprocessorttasking

Default: --preprocessor-type=tasking

Description

With this option you select the preprocessor that the assembler will use. By default, the assembler uses
the TASKING preprocessor.

When the assembly source file does not contain any preprocessor symbols, you can specify to the
assembler not to use a preprocessor.

Related information

-

314

TASKING SmartCode - PPU User Guide



Assembler option: --section-info (-t)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable the option List section summary.

and/or

1. Select Assembler » Diagnostics.

2. Enable the option Display section summary.

Command line syntax

--section-info[=flag,...]

-t[flags]

You can set the following flags:

Display section summary on consolec/C+/-console

List section summary in list filel/L+/-list

Default: --section-info=CL

Default (without flags): --section-info=cl

Description

With this option you tell the assembler to display section information. For each section its memory space,
size, total cycle counts and name is listed on stdout and/or in the list file.

The cycle count consists of two parts: the total accumulated count for the section and the total accumulated
count for all repeated instructions. In the case of nested loops it is possible that the total supersedes the
section total.

Example

To writes the section information to the list file and also display the section information on stdout, enter:

asarc --list-file --section-info asm.src

Related information

Assembler option --list-file (Generate list file)

315

Tool Options



Assembler option: --symbol-scope (-i)

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable the option Set default symbol scope to global.

Command line syntax

--symbol-scope=scope

-iscope

You can set the following scope:

Default symbol scope is globalgglobal

Default symbol scope is localllocal

Default: --symbol-scope=local

Description

With this option you tell the assembler how to treat symbols that you have not specified explicitly as global
or local. By default the assembler treats all symbols as local symbols unless you have defined them
explicitly as global.

Related information

Assembler directive .GLOBAL

Assembler directive .LOCAL

Assembler control $IDENT

316

TASKING SmartCode - PPU User Guide



Assembler option: --version (-V)

Menu entry

-

Command line syntax

--version

-V

Description

Display version information. The assembler ignores all other options or input files.

Related information

-

317

Tool Options



Assembler option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

--warnings-as-errors[=number,...]

Description

If the assembler encounters an error, it stops assembling. When you use this option without arguments,
you tell the assembler to treat all warnings as errors. This means that the exit status of the assembler will
be non-zero after one or more assembler warnings. As a consequence, the assembler now also stops
after encountering a warning.

You can limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Assembler option --no-warnings (Suppress some or all warnings)

318

TASKING SmartCode - PPU User Guide



7.4. Linker Options

This section lists all linker options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the linker via the control program. Therefore, it uses the syntax of the
control program to pass options and files to the linker. If there is no equivalent option in Eclipse, you can
specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Miscellaneous.

4. In the Additional options field, enter one or more command line options.

Because Eclipse uses the control program, Eclipse automatically precedes the option with -Wl to
pass the option via the control program directly to the linker.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option --keep-output-files keeps files after an error occurred. When you specify this option
in Eclipse, it will have no effect because Eclipse always removes the output file after an error had occurred.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on', use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

larc -mfkl test.o
larc --map-file-format=+files,+link,+locate test.o

When you do not specify an option, a default value may become active.

319

Tool Options



Linker option: --binfill

Menu entry

-

Command line syntax

--binfill=pattern

Default: 0x00

Description

With this option you can specify an unsigned 32-bit fill pattern for the binary output file.To use this option,
you first need to set the command to inform the linker to produce a binary file.You can do this by setting
the output file type as BIN with linker option --chip-output (-c). If this is not done then option --binfill is
ignored.

Example

To convert two Intel Hex input files to a binary output file and fill the memory gaps with 0x2D, enter the
following on the command line:

larc myproj_1.hex myproj_2.hex -dtc49x.lsl --core=ppu --chip-output=myproj:bin --binfill=0x2D

Related information

Linker option --chip-output

Section 5.6, Converting Intel Hex to Binary Format

320

TASKING SmartCode - PPU User Guide



Linker option: --case-insensitive

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Link case insensitive.

Command line syntax

--case-insensitive

Default: case sensitive

Description

With this option you tell the linker not to distinguish between uppercase and lowercase characters in
symbols. By default the linker considers uppercase and lowercase characters as different characters.

Assembly source files that are generated by the compiler must always be assembled and thus linked
case sensitive. When you have written your own assembly code and specified to assemble it case
insensitive, you must also link the .o file case insensitive.

Related information

Assembler option --case-insensitive

321

Tool Options



Linker option: --c-array-element-type

Menu entry

-

Command line syntax

--c-array-element-type=string

Default: unsigned long

Description

With this option you can overrule the C data type to be used for all C array elements in a C array output
file. The type must be an integral type. Without this option the default data type is unsigned long.

Related information

Section 11.4, C Array Format

Linker option --chip-output (Generate an output file for each chip)

322

TASKING SmartCode - PPU User Guide



Linker option: --chip-output (-c)

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file and/or Generate S-records file and/or Generate
C array file or enable Generate binary file.

3. Enable the option Create file for each memory chip.

4. Optionally, specify the Size of addresses.

Eclipse always uses the project name as the basename for the output file.

Command line syntax

--chip-output=[basename]:format[:addr_size],...

-c[basename]:format[:addr_size],...

You can specify the following formats:

Intel HexIHEX

Motorola S-recordsSREC

BinaryBIN

C arrayCARR

For Intel Hex and Motorola S-records the addr_size specifies the size of the addresses in bytes (record
length). For Intel Hex you can use the values 1, 2 or 4 bytes (default). For Motorola S-records you can
specify: 2 (S1 records), 3 (S2 records) or 4 bytes (S3 records, default). For binary files the value must be
0. For C array files, the address size specifies the number of bits stored in each array element.

Description

With this option the linker generates an output file for each memory chip in the specified format: Intel Hex,
Motorola S-records, binary or C array.You can use the Intel Hex or Motorola S-record output for loading
into a PROM-programmer, or you can use the binary or C array output for importing the application into
a host application. The C array format contains the generated machine code in the form of C code. For
more information see Section 11.4, C Array Format.

The linker generates a file for each ROM or RAM memory defined in the LSL file, where one or more
initialized sections are located. For example:

memory memname
{  type=rom;  }

The name of the file is the name of the Eclipse project or, on the command line, the name of the memory
device that was emitted with extension .hex (Intel Hex), .sre (Motorola S-records) or .bin (binary
without metadata). For the C array format the output is a .c file for the array definition and a .h file for

323

Tool Options



the accompanying header file. Optionally, you can specify a basename which prepends the generated
file name.

The linker also always generates a task-related absolute object file in ELF/DWARF format and a
memory definition file, unless you specify linker option --no-default-output.

Example

To generate Intel Hex output files for each defined memory, enter the following on the command line:

larc --chip-output=myprog:IHEX test1.o

In this case, this generates the file myprog_memname.hex.

To generate C array output files for each defined memory, enter the following on the command line:

larc --chip-output=myprog:CARR:32 test1.o

In this case, this generates the files myprog_memname.c and myprog_memname.h.

Related information

Chapter 11, Object File Formats

Linker option --output (Output file)

Linker option --hex-format (Specify Hex file or C array format settings)

Linker option --no-default-output (No default task-related output files)

Linker option --binfill (Binary fill pattern)

324

TASKING SmartCode - PPU User Guide



Linker option: --define (-D)

Menu entry

1. Select Linker » Script File.

The Defined symbols box shows the symbols that are currently defined.

2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

--define=macro_name[=macro_definition]

-Dmacro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the linker LSL file preprocessor. If you only
specify a macro name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like; just use the option --define (-D) multiple times. If the
command line exceeds the limit of the operating system, you can define the macros in an option file which
you then must specify to the linker with the option --option-file (-f) file.

The definition can be tested by the preprocessor with #if, #ifdef and #ifndef, for conditional locating.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

To define the RESET vector, which is used in the linker script file tc49x.lsl, enter:

larc test.o -otest.elf --lsl-file=tc49x.lsl --define=RESET=0x80000000

Related information

Linker option --option-file (Specify an option file)

325

Tool Options



Linker option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify.You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

With this option the linker does not link/locate any files.

Example

To display an explanation of message number 106, enter:

larc --diag=106

This results in the following message and explanation:

E106: unresolved external: <message>

The linker could not resolve all external symbols.

326

TASKING SmartCode - PPU User Guide



This is an error when the incremental linking option is disabled.
The <message> indicates the symbol that is unresolved.

To write an explanation of all errors and warnings in HTML format to file lkerrors.html, use redirection
and enter:

larc --diag=html:all > lkerrors.html

Related information

Section 5.11, Linker Error Messages

327

Tool Options



Linker option: --error-file

Menu entry

-

Command line syntax

--error-file[=file]

Description

With this option the linker redirects diagnostic messages to a file. If you do not specify a filename, the
error file is larc.elk.

Example

To write diagnostic messages to errors.elk instead of stderr, enter:

larc --error-file=errors.elk test.o

Related information

Section 5.11, Linker Error Messages

328

TASKING SmartCode - PPU User Guide



Linker option: --error-limit

Menu entry

1. Select Linker » Diagnostics.

2. Enter a value in the Maximum number of emitted errors field.

Command line syntax

--error-limit=number

Default: 42

Description

With this option you tell the linker to only emit the specified maximum number of errors. When 0 (null) is
specified, the linker emits all errors. Without this option the maximum number of errors is 42.

Related information

Section 5.11, Linker Error Messages

329

Tool Options



Linker option: --extern (-e)

Menu entry

-

Command line syntax

--extern=symbol,...

-esymbol,...

Description

With this option you force the linker to consider the given symbol as an undefined reference. The linker
tries to resolve this symbol, either the symbol is defined in an object file or the linker extracts the
corresponding symbol definition from a library.

This option is, for example, useful if the startup code is part of a library. Because your own application
does not refer to the startup code, you can force the startup code to be extracted by specifying the symbol
_START as an unresolved external.

Example

Consider the following invocation:

larc mylib.a

Nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through mylib.a.

larc --extern=_START mylib.a

In this case the linker searches for the symbol _START in the library and (if found) extracts the object that
contains _START, the startup code. If this module contains new unresolved symbols, the linker looks
again in mylib.a. This process repeats until no new unresolved symbols are found.

Related information

Section 5.3, Linking with Libraries

330

TASKING SmartCode - PPU User Guide



Linker option: --first-library-first

Menu entry

-

Command line syntax

--first-library-first

Description

When the linker processes a library it searches for symbols that are referenced by the objects and libraries
processed so far. If the library contains a definition for an unresolved reference the linker extracts the
object that contains the definition from the library.

By default the linker processes object files and libraries in the order in which they appear on the command
line. If you specify the option --first-library-first the linker always tries to take the symbol definition from
the library that appears first on the command line before scanning subsequent libraries.

This is for example useful when you are working with a newer version of a library that partially overlaps
the older version. Because they do not contain exactly the same functions, you have to link them both.
However, when a function is present in both libraries, you may want the linker to extract the most recent
function.

Example

Consider the following example:

larc --first-library-first a.a test.o b.a

If the file test.o calls a function which is both present in a.a and b.a, normally the function in b.a
would be extracted. With this option the linker first tries to extract the symbol from the first library a.a.

Note that routines in b.a that call other routines that are present in both a.a and b.a are now
also resolved from a.a.

Related information

Linker option --no-rescan (Rescan libraries to solve unresolved externals)

331

Tool Options



Linker option: --global-map-file

Menu entry

-

Command line syntax

--global-map-file=file[:XML],...

Default: no global map file is generated

Description

With this option you tell the linker to generate a global linker map file that includes information about each
of the tasks.

A global linker map file is a text or XML file that shows how the linker has mapped the sections and
symbols from the various object files (.o) to the linked object file. A locate part shows the absolute position
of each section. External symbols are listed per space with their absolute address, both sorted on symbol
and sorted on address.

Related information

Linker option --global-map-file-format (Format global map file)

Linker option --map-file (Generate map file for a single task)

Section 10.2, Linker Map File Format

332

TASKING SmartCode - PPU User Guide



Linker option: --global-map-file-format

Menu entry

-

Command line syntax

--global-map-file-format=flag,...

You can set the following flags:

Include call graph informationc/C+/-callgraph

Include information on removed sectionsd/D+/-removed

Include processed files informationf/F+/-files

Include information on invocation and toolsi/I+/-invocation

Include link result informationk/K+/-link

Include locate result informationl/L+/-locate

Include memory usage informationm/M+/-memory

Include information of non-alloc sectionsn/N+/-nonalloc

Include overlay informationo/O+/-overlay

Include module local symbols informationq/Q+/-statics

Include cross references informationr/R+/-crossref

Include processor and memory informations/S+/-lsl

Include locate rulesu/U+/-rules

Use the following options for predefined sets of flags:

Link information
Alias for --global-map-file-format=cDfikLMNoQrSU

--global-map-file-format=0

Locate information
Alias for --global-map-file-format=CDfiKlMNoQRSU

--global-map-file-format=1

Most information
Alias for --global-map-file-format=cdfiklmNoQrSu

--global-map-file-format=2

Default: --global-map-file-format=2

Description

With this option you specify which information you want to include in the global map file.

On the command line you must use this option in combination with the option --global-map-file.

333

Tool Options



Related information

Linker option --global-map-file (Generate global map file)

Section 10.2, Linker Map File Format

334

TASKING SmartCode - PPU User Guide



Linker option: --global-type-checking

Menu entry

-

Command line syntax

--global-type-checking

Description

Use this option when you want the linker to check the types of variable and function references against
their definitions, using DWARF 3 debug information.

Related information

-

335

Tool Options



Linker option: --help (-?)

Menu entry

-

Command line syntax

--help[=item]

-?

You can specify the following arguments:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

larc -?
larc --help
larc

To see a detailed description of the available options, enter:

larc --help=options

Related information

-

336

TASKING SmartCode - PPU User Guide



Linker option: --hex-format

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file and enable or disable the option Emit start address
record.

3. Enable the option Generate C array file and enable or disable the option Emit list of exported
symbols.

Command line syntax

--hex-format=flag,...

You can set the following flag:

Emit start address records/S+/-start-address

Emit list of exported symbolsy/Y+/-c-array-symbols

Default: --hex-format=s

Description

With this option you can specify to emit or omit the start address record from the hex file or you can emit
a list of exported symbols for C array files.

Related information

Chapter 11, Object File Formats

Linker option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

337

Tool Options



Linker option: --hex-record-size

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --hex-record-size to the Additional options field.

Command line syntax

--hex-record-size=size

Default: 32

Description

With this option you can set the size (width) of the Intel Hex data records.

Related information

Linker option --output (Output file)

338

TASKING SmartCode - PPU User Guide



Linker option: --import-object

Menu entry

1. Select Linker » Data Objects.

The Data objects box shows the list of object files that are imported.

2. To add a data object, click on the Add button in the Data objects box.

3. Type or select a binary file (including its path).

Use the Edit and Delete button to change a filename or to remove a data object from the list.

Command line syntax

--import-object=file,...

Description

With this option the linker imports a binary file containing raw data and places it in a section. The section
name is derived from the filename, in which dots are replaced by an underscore. So, when importing a
file called my.jpg, a section with the name my_jpg is created. In your application you can refer to the
created section by using linker labels.

Related information

Section 5.5, Importing Binary Files

339

Tool Options



Linker option: --include-directory (-I)

Menu entry

-

Command line syntax

--include-directory=path,...

-Ipath,...

Description

With this option you can specify the path where your LSL include files are located. A relative path will be
relative to the current directory.

The order in which the linker searches for LSL include files is:

1. The pathname in the LSL file and the directory where the LSL file is located (only for #include files that
are enclosed in "")

2. The path that is specified with this option.

3. The default directory $(PRODDIR)\include.lsl.

Example

Suppose that your linker script file mylsl.lsl contains the following line:

#include "myinc.inc"

You can call the linker as follows:

larc --include-directory=c:\proj\include --lsl-file=mylsl.lsl test.o

First the linker looks for the file myinc.inc in the directory where mylsl.lsl is located. If it does not
find the file, it looks in the directory c:\proj\include (this option). Finally it looks in the directory
$(PRODDIR)\include.lsl.

Related information

Linker option --lsl-file (Specify linker script file)

340

TASKING SmartCode - PPU User Guide



Linker option: --incremental (-r)

Menu entry

-

Command line syntax

--incremental

-r

Description

Normally the linker links and locates the specified object files. With this option you tell the linker only to
link the specified files. The linker creates a linker output file .out.You then can link this file again with
other object files until you have reached the final linker output file that is ready for locating.

In the last pass, you call the linker without this option with the final linker output file .out. The linker will
now locate the file.

Example

In this example, the files test1.o, test2.o and test3.o are incrementally linked:

1. larc --incremental test1.o test2.o --output=test.out

test1.o and test2.o are linked

2. larc --incremental test3.o test.out

test3.o and test.out are linked, task1.out is created

3. larc task1.out

task1.out is located

Related information

Section 5.4, Incremental Linking

341

Tool Options



Linker option: --keep-output-files (-k)

Menu entry

Eclipse always removes the output files when errors occurred.

Command line syntax

--keep-output-files

-k

Description

If an error occurs during linking, the resulting output file may be incomplete or incorrect. With this option
you keep the generated output files when an error occurs.

By default the linker removes the generated output file when an error occurs.This is useful when you use
the make utility. If the erroneous files are not removed, the make utility may process corrupt files on a
subsequent invocation.

Use this option when you still want to use the generated file. For example when you know that a particular
error does not result in a corrupt object file, or when you want to inspect the output file, or send it to
TASKING support.

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

342

TASKING SmartCode - PPU User Guide



Linker option: --library (-l)

Menu entry

1. Select Linker » Libraries.

The Libraries box shows the list of libraries that are linked with the project.

2. To add a library, click on the Add button in the Libraries box.

3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.

Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax

--library=name

-lname

Description

With this option you tell the linker to use system library libname.a, where name is a string. The linker
first searches for system libraries in any directories specified with --library-directory, then in the directories
specified with the environment variables LIBPPU_TC43X / LIBPPU_TC49X / LIBPPU_TC4DX, unless
you used the option --ignore-default-library-path.

Example

To search in the system library libc.a (C library):

larc test.o mylib.a --library=c

The linker links the file test.o and first looks in library mylib.a (in the current directory only), then in
the system library libc.a to resolve unresolved symbols.

Related information

Linker option --library-directory (Additional search path for system libraries)

Section 5.3, Linking with Libraries

343

Tool Options



Linker option: --library-directory (-L) / --ignore-default-library-path

Menu entry

1. Select Linker » Libraries.

The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path,...
-Lpath,...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-l), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is $(PRODDIR)\lib.

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variables
LIBPPU_TC43X / LIBPPU_TC49X / LIBPPU_TC4DX. So, the linker ignores steps 2 and 3 as listed
below.

The priority order in which the linker searches for system libraries specified with the option --library (-l)
is:

1. The path that is specified with the option --library-directory.

2. The path that is specified in the environment variables LIBPPU_TC43X / LIBPPU_TC49X /
LIBPPU_TC4DX.

3. The default directory $(PRODDIR)\lib.

Example

Suppose you call the linker as follows:

344

TASKING SmartCode - PPU User Guide



larc test.o --library-directory=c:\mylibs --library=c

First the linker looks in the directory c:\mylibs for library libc.a (this option). If it does not find the
requested libraries, it looks in the directory that is set with the environment variables LIBPPU_TC43X /
LIBPPU_TC49X / LIBPPU_TC4DX. Then the linker looks in the default directory $(PRODDIR)\lib for
libraries.

Related information

Linker option --library (Link system library)

Section 5.3.1, How the Linker Searches Libraries

345

Tool Options



Linker option: --link-only

Menu entry

-

Command line syntax

--link-only

Description

With this option you suppress the locating phase. The linker stops after linking and informs you about
unresolved references.

Related information

Control program option --create=relocatable (-cl) (Stop after linking)

346

TASKING SmartCode - PPU User Guide



Linker option: --lsl-check

Menu entry

-

Command line syntax

--lsl-check

Description

With this option the linker just checks the syntax of the LSL file(s) and exits. No linking or locating is
performed. Use the option --lsl-file to specify the name of the Linker Script File you want to test.

Related information

Linker option --lsl-file (Linker script file)

Linker option --lsl-dump (Dump LSL info)

Section 5.8, Controlling the Linker with a Script

347

Tool Options



Linker option: --lsl-dump

Menu entry

-

Command line syntax

--lsl-dump[=file]

Description

With this option you tell the linker to dump the LSL part of the map file in a separate file, independent of
the option --map-file (generate map file for a single task). If you do not specify a filename, the file
larc.ldf is used.

Related information

Linker option --map-file-format (Map file formatting)

348

TASKING SmartCode - PPU User Guide



Linker option: --lsl-file (-d)

Menu entry

An LSL file can be generated when you create your TriCore project in Eclipse:

1. From the File menu, select File » New » TASKING TriCore C/C++ Project.

The New C/C++ Project wizard appears.

2. Fill in the project settings in each dialog and click Next > until the TriCore Project Settings appear.

3. Enable the option Add linker script file to the project and click Finish.

Eclipse creates your project and the file project.lsl in the project directory.

The LSL file can be specified in the Properties dialog:

1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.lsl) field.

Command line syntax

--lsl-file=file

-dfile

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

• the architecture definition describes the core's hardware architecture.

• the memory definition describes the physical memory available in the system.

• the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file to the linker. If you do not specify this option, the linker uses
a default script file.You can specify the existing file target.lsl or the name of a manually written linker
script file.You can use this option multiple times. The linker processes the LSL files in the order in which
they appear on the command line.

Related information

Linker option --lsl-check (Check LSL file(s) and exit)

Section 5.8, Controlling the Linker with a Script

349

Tool Options



Linker option: --map-file (-M)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.

3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax

--map-file[=file][:XML]

-M[file][:XML]

Default (Eclipse): XML map file is generated

Default (linker): no map file is generated

Description

With this option you tell the linker to generate a linker map file. If you do not specify a filename and you
specified the option --output, the linker uses the same basename as the output file with the extension
.map. If you did not specify the option --output, the linker uses the file task1.map. Eclipse names the
.map file after the project.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (.o) to the linked object file. A locate part shows the absolute position of each section.
External symbols are listed per space with their absolute address, both sorted on symbol and sorted on
address.

Related information

Linker option --map-file-format (Format map file)

Section 10.2, Linker Map File Format

350

TASKING SmartCode - PPU User Guide



Linker option: --map-file-format (-m)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.

3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax

--map-file-format=flag,...

-mflags

You can set the following flags:

Include call graph informationc/C+/-callgraph

Include information on removed sectionsd/D+/-removed

Include processed files informationf/F+/-files

Include information on invocation and toolsi/I+/-invocation

Include link result informationk/K+/-link

Include locate result informationl/L+/-locate

Include memory usage informationm/M+/-memory

Include information of non-alloc sectionsn/N+/-nonalloc

Include overlay informationo/O+/-overlay

Include module local symbols informationq/Q+/-statics

Include cross references informationr/R+/-crossref

Include processor and memory informations/S+/-lsl

Include locate rulesu/U+/-rules

Use the following options for predefined sets of flags:

Link information
Alias for -mcDfikLMNoQrSU

-m0--map-file-format=0

Locate information
Alias for -mCDfiKlMNoQRSU

-m1--map-file-format=1

Most information
Alias for -mcdfiklmNoQrSu

-m2--map-file-format=2

Default: --map-file-format=2

351

Tool Options



Description

With this option you specify which information you want to include in the map file.

On the command line you must use this option in combination with the option --map-file (-M).

Related information

Linker option --map-file (Generate map file for a single task)

Section 10.2, Linker Map File Format

352

TASKING SmartCode - PPU User Guide



Linker option: --misra-c-report

Menu entry

-

Command line syntax

--misra-c-report[=file]

Description

With this option you tell the linker to create a MISRA C Quality Assurance report. This report lists the
various modules in the project with the respective MISRA C settings at the time of compilation. If you do
not specify a filename, the file basename.mcr is used.

Related information

C compiler option --misrac (MISRA C checking)

353

Tool Options



Linker option: --non-romable

Menu entry

-

Command line syntax

--non-romable

Description

With this option you tell the linker that the application must not be located in ROM. The linker will locate
all ROM sections, including a copy table if present, in RAM. When the application is started, the data
sections are re-initialized and the BSS sections are cleared as usual.

This option is, for example, useful when you want to test the application in RAM before you put the final
application in ROM. This saves you the time of flashing the application in ROM over and over again.

If you want to locate your application in RAM only, without using ROM/flash resources of the chip, for
example when you run the debugger in RAM only, also specify the options --no-rom-copy and
--user-provided-initialization-code.

Related information

Linker option --no-rom-copy (Do not generate ROM copy)

Linker option --user-provided-initialization-code (Own initialization code, no standard copy table)

354

TASKING SmartCode - PPU User Guide



Linker option: --no-default-output

Menu entry

-

Command line syntax

--no-default-output

Description

By default the linker generates an absolute object file and a memory definition file for each task. With this
option you specify to the linker not to generate these files, unless explicitly specified.

Example

Invocation to create an Intel Hex output for each chip only:

larc -cmyprog:IHEX --no-default-output test.o

This generates the file myprog_memname.hex. Without --no-default-output also the files task1.elf
and task1.mdf are generated.

Related information

Linker option --chip-output (Generate an output file for each chip)

Control program option --no-map-file (Do not generate map file)

355

Tool Options



Linker option: --no-rescan

Menu entry

1. Select Linker » Libraries.

2. Disable the option Rescan libraries to solve unresolved externals.

Command line syntax

--no-rescan

Description

When the linker processes a library it searches for symbol definitions that are referenced by the objects
and libraries processed so far. If the library contains a definition for an unresolved reference the linker
extracts the object that contains the definition from the library. The linker processes object files and
libraries in the order in which they appear on the command line.

When all objects and libraries are processed the linker checks if there are unresolved symbols left. If so,
the default behavior of the linker is to rescan all libraries in the order given at the command line. The
linker stops rescanning the libraries when all symbols are resolved, or when the linker could not resolve
any symbol(s) during the rescan of all libraries. Notice that resolving one symbol may introduce new
unresolved symbols.

With this option, you tell the linker to scan the object files and libraries only once. When the linker has
not resolved all symbols after the first scan, it reports which symbols are still unresolved. This option is
useful if you are building your own libraries. The libraries are most efficiently organized if the linker needs
only one pass to resolve all symbols.

Related information

Linker option --first-library-first (Scan libraries in given order)

356

TASKING SmartCode - PPU User Guide



Linker option: --no-rom-copy (-N)

Menu entry

-

Command line syntax

--no-rom-copy

-N

Description

With this option the linker will not generate a ROM copy for data sections. A copy table is generated and
contains entries to clear BSS sections. However, no entries to copy data sections from ROM to RAM are
placed in the copy table.

The data sections are initialized when the application is downloaded.The data sections are not re-initialized
when the application is restarted.

Related information

Linker option --non-romable (Application is not romable)

Linker option --user-provided-initialization-code (Own initialization code, no standard copy table)

357

Tool Options



Linker option: --no-warnings (-w)

Menu entry

1. Select Linker » Diagnostics.

The Suppress warnings box shows the warnings that are currently suppressed.

2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
135,136). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

--no-warnings[=number,...]

-w[number,...]

Description

With this option you can suppresses all warning messages or specific warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are suppressed.

• If you specify this option with a number, only the specified warning is suppressed.You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 135 and 136, enter:

larc --no-warnings=135,136 test.o

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

358

TASKING SmartCode - PPU User Guide



Linker option: --optimize (-O)

Menu entry

1. Select Linker » Optimization.

2. Select one or more of the following options:

• Delete unreferenced sections

• Use a 'first-fit decreasing' algorithm

• Compress copy table

• Delete duplicate code

• Delete duplicate data

Command line syntax

--optimize=flag,...

-Oflags

You can set the following flags:

Delete unreferenced sections from the output
file

c/C+/-delete-unreferenced-sections

Use a 'first-fit decreasing' algorithm to locate
unrestricted sections in memory

l/L+/-first-fit-decreasing

Emit smart restrictions to reduce copy table sizet/T+/-copytable-compression

Delete duplicate code sections from the output
file

x/X+/-delete-duplicate-code

Delete duplicate constant data from the output
file

y/Y+/-delete-duplicate-data

Use the following options for predefined sets of flags:

No optimization
Alias for -OCLTXY

-O0--optimize=0

Default optimization
Alias for -OcLtxy

-O1--optimize=1

All optimizations
Alias for -Ocltxy

-O2--optimize=2

Default: --optimize=1

359

Tool Options



Description

With this option you can control the level of optimization.

Note that when you use the flag +copytable-compression, sections affected by the copy table
are located as if they were in a clustered LSL group, if they do not have a locate restriction yet.

Related information

For details about each optimization see Section 5.7, Linker Optimizations.

Define the mutual order of sections in an LSL group in Section 12.8.2, Creating and Locating Groups of
Sections.

360

TASKING SmartCode - PPU User Guide



Linker option: --option-file (-f)

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the linker options you have set in the other
pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the linker.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility.You can specify the option
--option-file multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

         -> "This is a continuation line"

361

Tool Options



• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

--map-file=my.map               (generate a map file)
test.o                          (input file)
--library-directory=c:\mylibs   (additional search path for system libraries)

Specify the option file to the linker:

larc --option-file=myoptions

This is equivalent to the following command line:

larc --map-file=my.map test.o --library-directory=c:\mylibs

Related information

-

362

TASKING SmartCode - PPU User Guide



Linker option: --output (-o)

Menu entry

1. Select Linker » Output Format.

2. Enable one or more output formats.

For some output formats you can specify a number of suboptions.

Eclipse always uses the project name as the basename for the output file.

Command line syntax

--output=[filename][:format[:addr_size][,space_name]]...

-o[filename][:format[:addr_size][,space_name]]...

You can specify the following formats:

ELF/DWARFELF

Intel HexIHEX

Motorola S-recordsSREC

BinaryBIN

Description

By default, the linker generates an output file in ELF/DWARF format, with the name task1.elf.

With this option you can specify an alternative filename, and an alternative output format. The default
output format is the format of the first input file.

You can use the --output option multiple times. This is useful to generate multiple output formats. With
the first occurrence of the --output option you specify the basename (the filename without extension),
which is used for subsequent --output options with no filename specified. If you do not specify a filename,
or you do not specify the --output option at all, the linker uses the default basename taskn.

IHEX and SREC formats

If you specify the Intel Hex format or the Motorola S-records format, you can use the argument addr_size
to specify the size of addresses in bytes (record length). For Intel Hex you can use the values: 1, 2, and
4 (default). For Motorola S-records you can specify: 2 (S1 records), 3 (S2 records, default) or 4 bytes (S3
records). Note that if you make the addr_size too small, the linker might give a fatal object writer error
indicating an address overflow.

With the argument space_name you can specify the name of the address space. The name of the output
file will be filename with the extension .hex or .sre and contains the code and data allocated in the
specified space. If they exist, any other address spaces are also emitted whereas their output files are
named filename_spacename with the extension .hex or .sre.

363

Tool Options



If you do not specify space_name, or you specify a non-existing space, the default address space is filled
in.

Use option --chip-output (-c) to create Intel Hex or Motorola S-record output files for each chip defined
in the LSL file (suitable for loading into a PROM-programmer).

Example

To create the output file myprog.hex of the address space named linear, enter:

larc test.o --output=myprog.hex:IHEX:2,linear

If they exist, any other address spaces are emitted as well and are named myprog_spacename.hex.

Related information

Linker option --chip-output (Generate an output file for each chip)

Linker option --hex-format (Specify Hex file or C array format settings)

364

TASKING SmartCode - PPU User Guide



Linker option: --strip-debug (-S)

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Strip symbolic debug information.

Command line syntax

--strip-debug

-S

Description

With this option you specify not to include symbolic debug information in the resulting output file.

Related information

-

365

Tool Options



Linker option: --user-provided-initialization-code (-i)

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Do not use standard copy table for initialization.

Command line syntax

--user-provided-initialization-code

-i

Description

It is possible to use your own initialization code, for example, to save ROM space. With this option you
tell the linker not to generate a copy table for initialize/clear sections. Use linker labels in your source
code to access the positions of the sections when located.

If the linker detects references to the TASKING initialization code, an error is emitted: it is either the
TASKING initialization routine or your own, not both.

Note that the options --no-rom-copy and --non-romable, may vary independently. The
'copytable-compression' optimization (--optimize=t) is automatically disabled when you enable this option.

Related information

Linker option --no-rom-copy (Do not generate ROM copy)

Linker option --non-romable (Application is not romable)

Linker option --optimize (Specify optimization)

366

TASKING SmartCode - PPU User Guide



Linker option: --verbose (-v)

Menu entry

-

Command line syntax

--verbose

-v

Description

With this option you put the linker in verbose mode. The linker prints the link phases while it processes
the files. The linker prints one entry for each action it executes for a task. When you use this option twice
(-vv) you put the linker in extra verbose mode. In this mode the linker also prints the filenames and it
shows which objects are extracted from libraries and it shows verbose information that would normally
be hidden when you use the normal verbose mode or when you run without verbose. With this option you
can monitor the current status of the linker.

Related information

-

367

Tool Options



Linker option: --version (-V)

Menu entry

-

Command line syntax

--version

-V

Description

Display version information. The linker ignores all other options or input files.

Related information

-

368

TASKING SmartCode - PPU User Guide



Linker option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

--warnings-as-errors[=number,...]

Description

When the linker detects an error or warning, it tries to continue the link process and reports other errors
and warnings. When you use this option without arguments, you tell the linker to treat all warnings as
errors. This means that the exit status of the linker will be non-zero after the detection of one or more
linker warnings. As a consequence, the linker will not produce any output files.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Linker option --no-warnings (Suppress some or all warnings)

369

Tool Options



Linker option: --whole-archive

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --whole-archive to the Additional options field.

Command line syntax

--whole-archive=file

Description

This option tells the linker to directly load all object modules in a library, as if they were placed on the
command line. This is different from libraries specified as input files or with the -l option, which are only
used to resolve references in object files that were loaded earlier.

Example

Suppose the library myarchive.a contains the objects my1.o, my2.o and my3.o. Specifying

larc --whole-archive=myarchive.a

is the same as specifying

larc my1.o my2.o my3.o

Related information

Linker option --library (Link system library)

370

TASKING SmartCode - PPU User Guide



7.5. Control Program Options

The control program ccarc facilitates the invocation of the various components of the TASKING toolset
for Infineon PPU from a single command line.

Options in Eclipse versus options on the command line

Eclipse invokes the compiler, assembler and linker via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the tools. The control program processes command
line options either by itself, or, when the option is unknown to the control program, it looks whether it can
pass the option to one of the other tools. However, for directly passing an option to the C compiler,
assembler or linker, it is recommended to use the control program options --pass-c, --pass-assembler,
--pass-linker.

See the previous sections for details on the options of the tools.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on', use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

ccarc -Wc-Oac test.c
ccarc --pass-c=--optimize=+coalesce,+cse test.c

When you do not specify an option, a default value may become active.

371

Tool Options



Control program option: --address-size

Menu entry

-

Command line syntax

--address-size=addr_size

Description

If you specify IHEX or SREC with the control option --format, you can additionally specify the record
length to be emitted in the output files.

With this option you can specify the size of the addresses in bytes (record length). For Intel Hex you can
use the values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records)
or 4 bytes (S3 records, default).

If you do not specify addr_size, the default address size is generated.

Example

To create the SREC file test.sre with S1 records, type:

ccarc --format=SREC --address-size=2 test.c

Related information

Control program option --format (Set linker output format)

Control program option --output (Output file)

372

TASKING SmartCode - PPU User Guide



Control program option: --case-insensitive

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.

Command line syntax

--case-insensitive

Default: case sensitive

Description

With this option you tell the assembler not to distinguish between uppercase and lowercase characters.
By default the assembler considers uppercase and lowercase characters as different characters.

Assembly source files that are generated by the compiler must always be assembled case sensitive.
When you are writing your own assembly code, you may want to specify the case insensitive mode.

Example

When assembling case insensitive, the label LabelName is the same label as labelname.

ccarc --case-insensitive test.src

Related information

Assembler option --case-insensitive

Assembler control $CASE

373

Tool Options



Control program option: --check

Menu entry

-

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler/assembler reports any warnings and/or errors.

This option is available on the command line only.

Related information

C compiler option --check (Check syntax)

Assembler option --check (Check syntax)

374

TASKING SmartCode - PPU User Guide



Control program option: --control-flow-info

Menu entry

1. Select C Compiler » Debugging.

2. Enable the option Generate control flow information.

Command line syntax

--control-flow-info

Description

Control flow information

With this option the compiler adds control flow information to the output file. The compiler generates a
.debug_control_flow section which describes the basic blocks and their relations. This information
can be used for code coverage analysis on optimized code.

Example

ccarc --control-flow-info test.c

Related information

Section 6.4.2, HLL Dump Output Format

Control program option --debug-info (Debug information)

375

Tool Options



Control program option: --core

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, make a selection.

Command line syntax

--core=core

You can specify the following core architectures:

PPU core architecture of TC43xppu_tc43x

PPU core architecture of TC49xppu_tc49x

PPU core architecture of TC4Dxppu_tc4dx

Default: ppu_tc49x

Description

With this option you specify the PPU core architecture for which you create your application. The core
architecture determines which instructions are valid and which are not. If you use Eclipse or the control
program, the PPU toolset derives the core from the processor you selected. The control program passes
this option to both the C compiler and the assembler.

Example

After

ccarc --core=ppu_tc49x -v -t test.c

the control program will call the tools as follows:

carc  -D__CPU__=tc49x -D__CPU_TC49X__ --core=ppu_tc49x -o test.src test.c
asarc -D__CPU__=tc49x -D__CPU_TC49X__ --core=ppu_tc49x -o test.o test.src
larc  -o test.elf -dtc49x.lsl --core=ppu -D__CPU__=tc49x
      --map-file test.o -lc_fpu -lrt -Linstall-dir\carc\lib\tc49x

Related information

Control program option --cpu (Select processor)

Control program option --cpu-list (Show list of processors)

C compiler option --core (Select core architecture)

Assembler option --core (Select core architecture)

376

TASKING SmartCode - PPU User Guide



Control program option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, make a selection.

Command line syntax

--cpu=id | name | cpu

-Cid | name | cpu

Description

With this option you define the target processor for which you create your application.You can specify a
full processor name, like TC49x, or a base CPU name, like tc49x or its unique id, like tc49x.

The standard list of supported processors is defined in the file processors.xml. This file defines for
each processor its full name (for example, TC49x), its ID, the base CPU name (for example, tc49x) and
the core architecture settings (for example, ppu_tc49x). To show a list of all supported processors you
can use option --cpu-list.

The control program reads the file processors.xml. The lookup sequence for names specified to this
option is as follows:

1. match with the 'id' attribute in processors.xml (case insensitive, for example tc49x)

2. if none matched, match with the 'name' attribute in processors.xml (case insensitive, for example
TC49x)

3. if still none matched, match any of the base CPU names (the 'cpu' attribute in processors.xml, for
example tc49x). If multiple processors exist with the same base CPU, a warning will be issued and
the first one is selected.

4. if still none matched, the control program issues a fatal error.

The preferred use of the option --cpu, is to specify an ID because that is always a unique name. For
example, --cpu=tc49x.The control program will lookup this processor name in the file processors.xml.
The control program passes the options to the underlaying tools. For example, -D__CPU__=tc49x
-D__CPU_TC49X__ to the C compiler and assembler, or -dtc49x.lsl --core=ppu -D__CPU__=tc49x
-D__PROC_TC49X__ to the linker.

Example

To generate the file test.elf for the TC49x processor, enter:

ccarc --cpu=tc49x test.c

377

Tool Options



Related information

Control program option --cpu-list (Show list of processors)

378

TASKING SmartCode - PPU User Guide



Control program option: --cpu-list

Menu entry

-

Command line syntax

--cpu-list[=pattern]

Description

With this option the control program shows a list of supported processors as defined in the file
processors.xml. This can be useful when you want to select a processor name or id for the --cpu
option.

The pattern works similar to the UNIX grep utility.You can use it to limit the output list.

Example

To show a list of all processors, enter:

ccarc --cpu-list

To show all processors of the ppu_tc49x core, enter:

ccarc --cpu-list=ppu_tc49x

--- ~/carc/etc/processors.xml ---
    id           name         CPU          core
    tc49x        TC49x        tc49x        ppu_tc49x

Related information

Control program option --cpu (Select processor)

379

Tool Options



Control program option: --create (-c)

Menu entry

-

Command line syntax

--create[=stage]

-c[stage]

You can specify the following stages:

Stop after the files are linked to a linker object file (.out)lrelocatable

Stop after C files are compiled to MIL (.mil)mmil

Stop after the files are assembled to objects (.o)oobject

Stop after C files are compiled to assembly (.src)sassembly

Default (without flags): --create=object

Description

Normally the control program generates an absolute object file of the specified output format from the file
you supplied as input.With this option you tell the control program to stop after a certain number of phases.

Example

To generate the object file test.o:

ccarc --create test.c

The control program stops after the file is assembled. It does not link nor locate the generated output.

Related information

Linker option --link-only (Link only, no locating)

380

TASKING SmartCode - PPU User Guide



Control program option: --debug-info (-g)

Menu entry

1. Select C Compiler » Debugging.

2. To generate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax

--debug-info[=suboption]

-g[suboption]

You can set the following suboptions:

Emit small set of debug information.1 | csmall

Emit default symbolic debug information.2 | ddefault

Emit full symbolic debug information.3 | aall

Default: --debug-info (same as --debug-info=default)

Description

With this option you tell the control program to include debug information in the generated object file.

The control program passes the option --debug-info (-g) to the C compiler and calls the assembler with
--debug-info=+smart,+local (-gsl).

Related information

C compiler option --debug-info (Generate symbolic debug information)

Assembler option --debug-info (Generate symbolic debug information)

381

Tool Options



Control program option: --define (-D)

Menu entry

1. Select C Compiler » Preprocessing and/or Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.

2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

--define=macro_name[=macro_definition]

-Dmacro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

The control program passes the option --define (-D) to the compiler and the assembler.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

Consider the following C program with conditional code to compile a demo program and a real program:

void main( void )
{
#if DEMO
    demo_func();   /* compile for the demo program */
#else
    real_func();   /* compile for the real program */

382

TASKING SmartCode - PPU User Guide



#endif
}

You can now use a macro definition to set the DEMO flag:

ccarc --define=DEMO test.c
ccarc --define=DEMO=1 test.c

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

ccarc --define="MAX(A,B)=((A) > (B) ? (A) : (B))" test.c

Related information

Control program option --undefine (Remove preprocessor macro)

Control program option --option-file (Specify an option file)

383

Tool Options



Control program option: --dep-file

Menu entry

-

Command line syntax

--dep-file[=file]

Description

With this option you tell the compiler to generate dependency lines that can be used in a Makefile. In
contrast to the option --preprocess=+make, the dependency information will be generated in addition to
the normal output file.

By default, the information is written to a file with extension .d (one for every input file).When you specify
a filename, all dependencies will be combined in the specified file.

Example

ccarc --dep-file=test.dep -t test.c

The compiler compiles the file test.c, which results in the output file test.src, and generates
dependency lines in the file test.dep.

Related information

Control program option --preprocess=+make (Generate dependencies for make)

384

TASKING SmartCode - PPU User Guide



Control program option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify.You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 103, enter:

ccarc --diag=103

This results in message 103 with explanation.

To write an explanation of all errors and warnings in HTML format to file ccerrors.html, use redirection
and enter:

ccarc --diag=html:all > ccerrors.html

385

Tool Options



Related information

Section 3.8, C Compiler Error Messages

386

TASKING SmartCode - PPU User Guide



Control program option: --dry-run (-n)

Menu entry

-

Command line syntax

--dry-run

-n

Description

With this option you put the control program in verbose mode. The control program prints the invocations
of the tools it would use to process the files without actually performing the steps.

Related information

Control program option --verbose (Verbose output)

387

Tool Options



Control program option: --error-file

Menu entry

-

Command line syntax

--error-file

Description

With this option the control program tells the compiler, assembler and linker to redirect diagnostic messages
to a file.

Example

To write diagnostic messages to error files instead of stderr, enter:

ccarc --error-file test.c

Related information

Control Program option --warnings-as-errors (Treat warnings as errors)

388

TASKING SmartCode - PPU User Guide



Control program option: --error-limit

Menu entry

1. Select C Compiler » Diagnostics.

2. Enter a value in the Maximum number of emitted errors field.

Command line syntax

--error-limit=number

Default: 42

Description

With this option you limit the number of error messages in one invocation to the specified number. When
the limit is exceeded, the control program aborts with fatal error message F105.Warnings and informational
messages are not included in the count. When 0 (zero) or a negative number is specified, the control
program emits all errors. Without this option the maximum number of errors is 42. The control program
also passes this option to the C compiler, assembler and linker.

Related information

Section 3.8, C Compiler Error Messages

389

Tool Options



Control program option: --format

Menu entry

-

Command line syntax

--format=format

You can specify the following formats:

ELF/DWARFELF

Intel HexIHEX

Motorola S-recordsSREC

Description

With this option you specify the output format for the resulting (absolute) object file. The default output
format is ELF/DWARF, which can directly be used by the debugger.

If you choose IHEX or SREC, you can additionally specify the address size of the chosen format (option
--address-size).

Example

To generate a Motorola S-record output file:

ccarc --format=SREC test1.c test2.c --output=test.sre

Related information

Control program option --address-size (Set address size for linker IHEX/SREC files)

Control program option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

390

TASKING SmartCode - PPU User Guide



Control program option: --fp-model

Menu entry

1. Select C Compiler » Floating-Point.

2. Make a selection from the Floating-point model list.

3. If you selected Custom, enable one or more individual options.

Command line syntax

--fp-model=flags

You can set the following flags:

allow expression contractionc/C+/-contract

allow less precise library functionsl/L+/-fastlib

allow optimizations to ignore NaN/Infn/N+/-nonan

allow expression rewritingr/R+/-rewrite

ignore sign of -0.0z/Z+/-negzero

alias for --fp-model=CLNRZ (strict)0

alias for --fp-model=cLNRZ (precise)1

alias for --fp-model=clnrz (fast double precision)2

Default: --fp-model=clnrz

Description

With this option you select the floating-point execution model.

With --fp-model=+contract you allow the compiler to contract multiple float operations into a single
operation, with different rounding results. A possible example is fused multiply-add.

With --fp-model=+fastlib you allow the compiler to select faster but less accurate library functions for
certain floating-point operations.

With --fp-model=+nonan you allow the compiler to ignore NaN or Inf input values. An example is to
replace multiply by zero with zero.

With --fp-model=+rewrite you allow the compiler to rewrite expressions by reassociating. This might
result in rounding differences and possibly different exceptions. An example is to rewrite (a*c)+(b*c) as
(a+b)*c.

With --fp-model=+negzero you allow the compiler to ignore the sign of -0.0 values. An example is to
replace (a-a) by zero.

391

Tool Options



Related information

Pragmas STDC FP_CONTRACT, fp_negzero, fp_nonan and fp_rewrite in Section 1.7, Pragmas to
Control the Compiler.

392

TASKING SmartCode - PPU User Guide



Control program option: --help (-?)

Menu entry

-

Command line syntax

--help[=item]

-?

You can specify the following argument:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

ccarc -?
ccarc --help
ccarc

To see a detailed description of the available options, enter:

ccarc --help=options

Related information

-

393

Tool Options



Control program option: --include-directory (-I)

Menu entry

1. Select C Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.

2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--include-directory=path,...

-Ipath,...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory.

The control program passes this option to the compiler and the assembler.

Example

Suppose that the C source file test.c contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the control program as follows:

ccarc --include-directory=myinclude test.c

First the compiler looks for the file stdio.h in the directory myinclude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

The compiler now looks for the file myinc.h in the directory where test.c is located. If the file is not
there the compiler searches in the directory myinclude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information

C compiler option --include-directory (Add directory to include file search path)

C compiler option --include-file (Include file at the start of a compilation)

394

TASKING SmartCode - PPU User Guide



Control program option: --iso

Menu entry

1. Select C Compiler » Language.

2. From the Comply to C standard list, select ISO C99, ISO C11, or ISO C90.

Command line syntax

--iso={90|99|11}

Default: --iso=11

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99
refers to the ISO/IEC 9899:1999 (E) standard. C11 refers to the ISO/IEC 9899:2011 (E) standard. C11
is the default.

Independent of the chosen ISO standard, the control program always links libraries with C11 support.

Example

To select the ISO C99 standard on the command line:

ccarc --iso=99 test.c

Related information

C compiler option --iso (ISO C standard)

395

Tool Options



Control program option: --keep-output-files (-k)

Menu entry

Eclipse always removes generated output files when an error occurs.

Command line syntax

--keep-output-files

-k

Description

If an error occurs during the compilation, assembling or linking process, the resulting output file may be
incomplete or incorrect. With this option you keep the generated output files when an error occurs.

By default the control program removes generated output files when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated files. For example when you know that a particular
error does not result in a corrupt file, or when you want to inspect the output file, or send it to TASKING
support.

The control program passes this option to the compiler, assembler and linker.

Example

ccarc --keep-output-files test.c

When an error occurs during compiling, assembling or linking, the erroneous generated output files will
not be removed.

Related information

C compiler option --keep-output-files

Assembler option --keep-output-files

Linker option --keep-output-files

396

TASKING SmartCode - PPU User Guide



Control program option: --keep-temporary-files (-t)

Menu entry

1. Select Global Options.

2. Enable the option Keep temporary files.

Command line syntax

--keep-temporary-files

-t

Description

By default, the control program removes intermediate files like the .src file (result of the compiler phase)
and the .o file (result of the assembler phase).

With this option you tell the control program to keep temporary files it generates during the creation of
the absolute object file.

Example

ccarc --keep-temporary-files test.c

The control program keeps all intermediate files it generates while creating the absolute object file
test.elf.

Related information

-

397

Tool Options



Control program option: --library (-l)

Menu entry

1. Select Linker » Libraries.

The Libraries box shows the list of libraries that are linked with the project.

2. To add a library, click on the Add button in the Libraries box.

3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.

Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax

--library=name

-lname

Description

With this option you tell the linker via the control program to use system library libname.a, where name
is a string.The linker first searches for system libraries in any directories specified with --library-directory,
then in the directories specified with the environment variables LIBPPU_TC43X / LIBPPU_TC49X /
LIBPPU_TC4DX, unless you used the option --ignore-default-library-path.

Example

To search in the system library libc.a (C library):

ccarc test.o mylib.a --library=c

The linker links the file test.o and first looks in library mylib.a (in the current directory only), then in
the system library libc.a to resolve unresolved symbols.

Related information

Control program option --no-default-libraries (Do not link default libraries)

Control program option --library-directory (Additional search path for system libraries)

Section 5.3, Linking with Libraries

Chapter 9, Libraries

398

TASKING SmartCode - PPU User Guide



Control program option: --library-directory (-L) /
--ignore-default-library-path

Menu entry

1. Select Linker » Libraries.

The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path,...
-Lpath,...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-l), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is $(PRODDIR)\lib.

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variables
LIBPPU_TC43X / LIBPPU_TC49X / LIBPPU_TC4DX. So, the linker ignores steps 2 and 3 as listed
below.

The priority order in which the linker searches for system libraries specified with the option --library (-l)
is:

1. The path that is specified with the option --library-directory.

2. The path that is specified in the environment variables LIBPPU_TC43X / LIBPPU_TC49X /
LIBPPU_TC4DX.

3. The default directory $(PRODDIR)\lib.

Example

Suppose you call the control program as follows:

399

Tool Options



ccarc test.c --library-directory=c:\mylibs --library=c

First the linker looks in the directory c:\mylibs for library libc.a (this option). If it does not find the
requested libraries, it looks in the directory that is set with the environment variables LIBPPU_TC43X /
LIBPPU_TC49X / LIBPPU_TC4DX. Then the linker looks in the default directory $(PRODDIR)\lib for
libraries.

Related information

Control program option --library (Link system library)

Section 5.3.1, How the Linker Searches Libraries

400

TASKING SmartCode - PPU User Guide



Control program option: --list-files

Menu entry

-

Command line syntax

--list-files[=file]

Default: no list files are generated

Description

With this option you tell the assembler via the control program to generate a list file for each specified
input file. A list file shows the generated object code and the relative addresses. Note that the assembler
generates a relocatable object file with relative addresses.

With the optional file you can specify a name for the list file. This is only possible if you specify only one
input file to the control program. If you do not specify a file name, or you specify more than one input file,
the control program names the generated list file(s) after the specified input file(s) with extension .lst.

Note that object files and library files are not counted as input files.

Related information

Assembler option --list-file (Generate list file)

Assembler option --list-format (Format list file)

401

Tool Options



Control program option: --lsl-file (-d)

Menu entry

An LSL file can be generated when you create your TriCore project in Eclipse:

1. From the File menu, select File » New » TASKING TriCore C/C++ Project.

The New C/C++ Project wizard appears.

2. Fill in the project settings in each dialog and click Next > until the TriCore Project Settings appear.

3. Enable the option Add linker script file to the project and click Finish.

Eclipse creates your project and the file project.lsl in the project directory.

The LSL file can be specified in the Properties dialog:

1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.lsl) field.

Command line syntax

--lsl-file=file,...

-dfile,...

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

• the architecture definition describes the core's hardware architecture.

• the memory definition describes the physical memory available in the system.

• the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file via the control program to the linker. If you do not specify
this option, the linker uses a default script file.You can specify the existing file target.lsl or the name
of a manually written linker script file.You can use this option multiple times. The linker processes the
LSL files in the order in which they appear on the command line.

Related information

Section 5.8, Controlling the Linker with a Script

402

TASKING SmartCode - PPU User Guide



Control program option: --make-target

Menu entry

-

Command line syntax

--make-target=name

Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file.The default target name is the basename of the input
file, with extension .o.

Example

ccarc --preprocess=+make --make-target=../mytarget.o test.c

The compiler generates dependency lines with the default target name ../mytarget.o instead of
test.o.

Related information

Control program option --preprocess=+make (Generate dependencies for make)

Control program option --dep-file (Generate dependencies in a file)

403

Tool Options



Control program option: --mil-link / --mil-split

Menu entry

1. Select C Compiler » Optimization.

2. Enable the option Build for application wide optimizations (MIL linking).

3. Select Optimize less/Build faster or Optimize more/Build slower.

Command line syntax

--mil-link
--mil-split[=file,...]

Description

With option --mil-link the C compiler links the optimized intermediate representation (MIL) of all input
files and MIL libraries specified on the command line in the compiler.The result is one single module that
is optimized another time.

Option --mil-split does the same as option --mil-link, but in addition, the resulting MIL representation is
written to a file with the suffix .mil and the C compiler also splits the MIL representation and writes it to
separate files with suffix .ms. One file is written for each input file or MIL library specified on the command
line. The .ms files are only updated on a change.

With option --mil-split you can perform application-wide optimizations during the frontend phase by
specifying all modules at once, and still invoke the backend phase one module at a time to reduce the
total compilation time. Application wide code compaction is not possible in this case.

Optionally, you can specify another filename for the .ms file the C compiler generates. Without an
argument, the basename of the C source file is used to create the .ms filename. Note that if you specify
a filename, you have to specify one filename for every input file.

Note that with both options some extra strict type checking is done that can cause building to fail in a way
that is unforeseen and difficult to understand. For example, when you use one of these options in
combination with option --schar you might get the following error:

carc E289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
carc I802: ["installation-dir\carc\include\string.h" 44/17]
           previous declaration of "strlen"
1 errors, 0 warnings

This is caused by the fact that the MIL library is built without --schar.You can workaround this problem
by rebuilding the MIL libraries.

Build for application wide optimizations (MIL linking) and Optimize less/Build faster

This option is standard MIL linking and splitting. Note that you can control the optimizations to be performed
with the optimization settings.

404

TASKING SmartCode - PPU User Guide



Optimize more/Build slower

When you enable this option, the compiler's frontend does not split the MIL stream in separate modules,
but feeds it directly to the compiler's backend, allowing the code compaction to be performed application
wide.

Related information

Section 3.1, Compilation Process

C compiler option --mil / --mil-split

405

Tool Options



Control program option: --no-default-libraries

Menu entry

1. Select Linker » Libraries.

2. Disable the option Link default libraries.

Command line syntax

--no-default-libraries

Description

By default the control program specifies the standard C libraries (C99) and run-time library to the linker.
With this option you tell the control program not to specify the standard C libraries and run-time library to
the linker.

In this case you must specify the libraries you want to link to the linker with the option --library=library_name
or pass the libraries as files on the command line. The control program recognizes the option --library
(-l) as an option for the linker and passes it as such.

Example

ccarc --no-default-libraries test.c

The control program does not specify any libraries to the linker. In normal cases this would result in
unresolved externals.

To specify your own libraries (libc.a) and avoid unresolved externals:

ccarc --no-default-libraries --library=c test.c

Related information

Control program option --library (Link system library)

Section 5.3.1, How the Linker Searches Libraries

406

TASKING SmartCode - PPU User Guide



Control program option: --no-map-file

Menu entry

1. Select Linker » Map File.

2. Disable the option Generate map file.

Command line syntax

--no-map-file

Description

By default the control program tells the linker to generate a linker map file.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (.o) to the linked object file. A locate part shows the absolute position of each section.
External symbols are listed per space with their absolute address, both sorted on symbol and sorted on
address.

With this option you prevent the generation of a map file.

Related information

-

407

Tool Options



Control program option: --no-warnings (-w)

Menu entry

1. Select C Compiler » Diagnostics.

The Suppress C compiler warnings box shows the warnings that are currently suppressed.

2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas or as a range, of the warnings you want to suppress (for
example 537,538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

--no-warnings[=number[-number],...]

-w[number[-number],...]

Description

With this option you can suppresses all warning messages for the various tools or specific control program
warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings of all tools are suppressed.

• If you specify this option with a number or a range, only the specified control program warnings are
suppressed.You can specify the option --no-warnings=number multiple times.

Example

To suppress all warnings for all tools, enter:

ccarc test.c --no-warnings

Related information

Control program option --warnings-as-errors (Treat warnings as errors)

408

TASKING SmartCode - PPU User Guide



Control program option: --option-file (-f)

Menu entry

-

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the control program.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

         -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

409

Tool Options



--debug-info
--define=DEMO=1
test.c

Specify the option file to the control program:

ccarc --option-file=myoptions

This is equivalent to the following command line:

ccarc --debug-info --define=DEMO=1 test.c

Related information

-

410

TASKING SmartCode - PPU User Guide



Control program option: --output (-o)

Menu entry

Eclipse always uses the project name as the basename for the output file.

Command line syntax

--output=file

-o file

Description

By default, the control program generates a file with the same basename as the first specified input file.
With this option you specify another name for the resulting absolute object file.

The default output format is ELF/DWARF, but you can specify another output format with option --format.

Example

ccarc test.c prog.c

The control program generates an ELF/DWARF object file (default) with the name test.elf.

To generate the file result.elf:

ccarc --output=result.elf test.c prog.c

Related information

Control program option --format (Set linker output format)

Linker option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

411

Tool Options



Control program option: --pass (-W)

Menu entry

1. Select C Compiler » Miscellaneous or Assembler » Miscellaneous or Linker » Miscellaneous.

2. Add an option to the Additional options field.

Be aware that the options in the option file are added to the options you have set in the other pages.
Only in extraordinary cases you may want to use them in combination. The assembler options are
preceded by -Wa and the linker options are preceded by -Wl. For the C options you have to do this
manually.

Command line syntax

Pass option directly to the assembler-Waoption--pass-assembler=option

Pass option directly to the C compiler-Wcoption--pass-c=option

Pass option directly to the linker-Wloption--pass-linker=option

Description

With this option you tell the control program to call a tool with the specified option. The control program
does not use or interpret the option itself, but specifies it directly to the tool which it calls.

Example

To pass the option --verbose directly to the linker, enter:

ccarc --pass-linker=--verbose test.c

Related information

-

412

TASKING SmartCode - PPU User Guide



Control program option: --preprocess (-E) / --no-preprocessing-only

Menu entry

1. Select C Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.

4. (Optional) Enable the option Keep #line info in preprocessor output.

Command line syntax

--preprocess[=flags]

-E[flags]

--no-preprocessing-only

You can set the following flags:

keep commentsc/C+/-comments

generate a list of included source filesi/I+/-includes

generate a list of macro definitionsl/L+/-list

generate dependencies for makem/M+/-make

strip #line source position informationp/P+/-noline

Default: -ECILMP

Description

With this option you tell the compiler to preprocess the C source.The C compiler sends the preprocessed
output to the file name.pre (where name is the name of the C source file to compile). Eclipse also
compiles the C source.

On the command line, the control program stops after preprocessing. If you also want to compile the C
source you can specify the option --no-preprocessing-only. In this case the control program calls the
compiler twice, once with option --preprocess and once for a regular compilation.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+includes the compiler will generate a list of all included source files.The preprocessor
output is discarded.

With --preprocess=+list the compiler will generate a list of all macro definitions.The preprocessor output
is discarded.

413

Tool Options



With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The information is written to a file with extension .d. The preprocessor output is discarded. The default
target name is the basename of the input file, with the extension .o. With the option --make-target you
can specify a target name which overrules the default target name.

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #line). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example

ccarc --preprocess=+comments,-make,-noline --no-preprocessing-only test.c

The compiler preprocesses the file test.c and sends the output to the file test.pre. Comments are
included but no dependencies are generated and the line source position information is not stripped from
the output file. Next, the control program calls the compiler, assembler and linker to create the final object
file test.elf

Related information

Control program option --dep-file (Generate dependencies in a file)

Control program option --make-target (Specify target name for -Em output)

414

TASKING SmartCode - PPU User Guide



Control program option: --schar

Menu entry

1. Select C Compiler » Language.

2. Enable the option Treat 'char' variables as signed.

Command line syntax

--schar

Description

By default char is the same as specifying unsigned char as required by the ABI. With this option
char is the same as signed char.

Note that this option can cause conflicts when you use it in combination with MIL linking. With MIL linking
some extra strict type checking is done that can cause building to fail in a way that is unforeseen and
difficult to understand. For example, when you use option --mil-link in combination with option --schar
you might get the following error:

carc E289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
carc I802: ["installation-dir\carc\include\string.h" 44/17]
           previous declaration of "strlen"
1 errors, 0 warnings

This is caused by the fact that the MIL library is built without --schar.You can workaround this problem
by rebuilding the MIL libraries.

Related information

Section 1.1, Data Types

415

Tool Options



Control program option: --static

Menu entry

-

Command line syntax

--static

Description

This option is directly passed to the compiler.

With this option, the compiler treats external definitions at file scope (except for main) as if they were
declared static. As a result, unused functions will be eliminated, and the alias checking algorithm
assumes that objects with static storage cannot be referenced from functions outside the current module.

This option only makes sense when you specify all modules of an application on the command line.

Example

ccarc --static module1.c module2.c module3.c ...

Related information

-

416

TASKING SmartCode - PPU User Guide



Control program option: --tasking-sfr

Menu entry

1. Select C Compiler » Preprocessing.

2. Enable the option Automatic inclusion of '.sfr' file.

3. Select Assembler » Preprocessing.

4. Enable the option Automatic inclusion of '.def' file.

Command line syntax

--tasking-sfr

Description

By default, the C compiler and assembler do not include a special function register (SFR) file before
compiling/assembling.

With this option the compiler includes the register file regppu.sfr and the assembler includes the file
regppu.def. The control program passes the appropriate -H option to the tools.

Example

To generate the file test.elf for the and automatically include SFR files, enter:

ccarc --tasking-sfr -v -t test.c

The control program will call the tools as follows:

carc  -D__CPU__=tc49x -D__CPU_TC49X__ -Hsfr/regppu.sfr
      -o test.src test.c
asarc -D__CPU__=tc49x -D__CPU_TC49X__ -Hsfr/regppu.def
      -o test.o test.src
larc  -o test.elf -dtc49x.lsl --core=ppu_tc49x -D__CPU__=tc49x
      -D__PROC_TC49X__ --map-file test.o -lc_fpu -lrt 
      "-Linstall-dir\carc\lib\tc49x"

Related information

Section 1.3.4, Accessing Hardware from C

417

Tool Options



Control program option: --undefine (-U)

Menu entry

1. Select C Compiler » Preprocessing

The Defined symbols box shows the symbols that are currently defined.

2. To remove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax

--undefine=macro_name

-Umacro_name

Description

With this option you can undefine an earlier defined macro as with #undef. This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

current source filename__FILE__

current source line number (int type)__LINE__

hh:mm:ss__TIME__

Mmm dd yyyy__DATE__

level of ANSI standard__STDC__

The control program passes the option --undefine (-U) to the compiler.

Example

To undefine the predefined macro __TASKING__:

ccarc --undefine=__TASKING__ test.c

Related information

Control program option --define (Define preprocessor macro)

Section 1.8, Predefined Preprocessor Macros

418

TASKING SmartCode - PPU User Guide



Control program option: --verbose (-v)

Menu entry

1. Select Global Options.

2. Enable the option Verbose mode of control program.

Command line syntax

--verbose

-v

Description

With this option you put the control program in verbose mode. The control program performs its tasks
while it prints the steps it performs to stdout.

Related information

Control program option --dry-run (Verbose output and suppress execution)

419

Tool Options



Control program option: --version (-V)

Menu entry

-

Command line syntax

--version

-V

Description

Display version information. The control program ignores all other options or input files.

Related information

-

420

TASKING SmartCode - PPU User Guide



Control program option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

--warnings-as-errors[=number[-number],...]

Description

If one of the tools encounters an error, it stops processing the file(s). With this option you tell the tools to
treat warnings as errors or treat specific control program warning messages as errors:

• If you specify this option but without numbers, all warnings are treated as errors.

• If you specify this option with a number or a range, only the specified control program warnings are
treated as an error.You can specify the option --warnings-as-errors=number multiple times.

Use one of the --pass-tool options to pass this option directly to a tool when a specific warning for that
tool must be treated as an error. For example, use --pass-c=--warnings-as-errors=number to treat a
specific C compiler warning as an error.

Related information

Control program option --no-warnings (Suppress some or all warnings)

Control program option --pass (Pass option to tool)

421

Tool Options



7.6. Parallel Make Utility Options

When you build a project in Eclipse, Eclipse generates a makefile and uses the make utility amk to build
all your files. However, you can also use the make utility directly from the command line to build your
project.

The invocation syntax is:

amk [option...] [target...] [macro=def]

This section describes all options for the parallel make utility.

For detailed information about the parallel make utility and using makefiles see Section 6.2, Make Utility
amk.

422

TASKING SmartCode - PPU User Guide



Parallel make utility option: --always-rebuild (-a)

Command line syntax

--always-rebuild

-a

Description

Normally the make utility rebuilds only those files that are out of date. With this option you tell the make
utility to rebuild all files, without checking whether they are out of date.

Example

amk -a

Rebuilds all your files, regardless of whether they are out of date or not.

Related information

-

423

Tool Options



Parallel make utility option: --change-dir (-G)

Command line syntax

--change-dir=path

-G path

Description

Normally you must call the make utility from the directory where your makefile and other files are stored.

With the option -G you can call the make utility from within another directory. The path is the path to the
directory where your makefile and other files are stored and can be absolute or relative to your current
directory.

The macro SUBDIR is defined with the value of path.

Example

Suppose your makefile and other files are stored in the directory ..\myfiles.You can call the make
utility, for example, as follows:

amk -G ..\myfiles

Related information

-

424

TASKING SmartCode - PPU User Guide



Parallel make utility option: --diag

Command line syntax

--diag=[format:]{all | msg[-msg],...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify.You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

Example

To display an explanation of message number 169, enter:

amk --diag=451

This results in the following message and explanation:

E451: make stopped

An error has occured while executing one of the commands
of the target, and -k option is not specified.

To write an explanation of all errors and warnings in HTML format to file amkerrors.html, use redirection
and enter:

amk --diag=html:all > amkerrors.html

Related information

-

425

Tool Options



Parallel make utility option: --dry-run (-n)

Command line syntax

--dry-run

-n

Description

With this option you tell the make utility to perform a dry run. The make utility shows what it would do but
does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if you call the make utility.

Example

amk -n

The make utility does not perform any tasks but displays what it would do if called without the option -n.

Related information

Parallel make utility option -s (Do not print commands before execution)

426

TASKING SmartCode - PPU User Guide



Parallel make utility option: --help (-? / -h)

Command line syntax

--help[=item]

-h[item]

-?

You can specify the following arguments:

Show extended option descriptionsooptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

amk -?
amk -h
amk --help

To see a detailed description of the available options, enter:

amk --help=options

Related information

-

427

Tool Options



Parallel make utility option: --jobs (-j) / --jobs-limit (-J)

Menu

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, select C/C++ Build.

In the right pane the C/C++ Build page appears.

3. On the Behavior tab, select Enable parallel build.

4. You can specify the number of parallel jobs, or you can use an optimal number of jobs. In the last
case, amk will fork as many jobs in parallel as cores are available.

Command line syntax

--jobs[=number]
-j[number]

--jobs-limit[=number]
-J[number]

Description

When these options you can limit the number of parallel jobs.The default is 1. Zero means no limit. When
you omit the number, amk uses the number of cores detected.

Option -J is the same as -j, except that the number of parallel jobs is limited by the number of cores
detected.

Example

amk -j3

Limit the number of parallel jobs to 3.

Related information

-

428

TASKING SmartCode - PPU User Guide



Parallel make utility option: --keep-going (-k)

Command line syntax

--keep-going

-k

Description

When during the make process the make utility encounters an error, it stops rebuilding your files.

With the option -k, the make utility only stops building the target that produced the error. All other targets
defined in the makefile are built.

Example

amk -k

If the make utility encounters an error, it stops building the current target but proceeds with the other
targets that are defined in the makefile.

Related information

-

429

Tool Options



Parallel make utility option: --list-targets (-l)

Command line syntax

--list-targets

-l

Description

With this option, the make utility lists all "primary" targets that are out of date.

Example

amk -l
list of targets

Related information

-

430

TASKING SmartCode - PPU User Guide



Parallel make utility option: --makefile (-f)

Command line syntax

--makefile=my_makefile

-f my_makefile

Description

By default the make utility uses the file makefile to build your files.

With this option you tell the make utility to use the specified file instead of the file makefile. Multiple -f
options act as if all the makefiles were concatenated in a left-to-right order.

If you use '-' instead of a makefile name it means that the information is read from stdin.

Example

amk -f mymake

The make utility uses the file mymake to build your files.

Related information

-

431

Tool Options



Parallel make utility option: --no-warnings (-w)

Command line syntax

--no-warnings[=number,...]

-w[number,...]

Description

With this option you can suppresses all warning messages or specific warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are suppressed.

• If you specify this option with a number, only the specified warning is suppressed.You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 751 and 756, enter:

amk --no-warnings=751,756

Related information

Parallel make utility option --warnings-as-errors (Treat warnings as errors)

432

TASKING SmartCode - PPU User Guide



Parallel make utility option: --silent (-s)

Command line syntax

--silent

-s

Description

With this option you tell the make utility to perform its tasks without printing the commands it executes.
Error messages are normally printed.

Example

amk -s

The make utility rebuilds your files but does not print the commands it executes during the make process.

Related information

Parallel make utility option -n (Perform a dry run)

433

Tool Options



Parallel make utility option: --version (-V)

Command line syntax

--version

-V

Description

Display version information. The make utility ignores all other options or input files.

Related information

-

434

TASKING SmartCode - PPU User Guide



Parallel make utility option: --warnings-as-errors

Command line syntax

--warnings-as-errors[=number,...]

Description

If the make utility encounters an error, it stops. When you use this option without arguments, you tell the
make utility to treat all warnings as errors.This means that the exit status of the make utility will be non-zero
after one or more warnings. As a consequence, the make utility now also stops after encountering a
warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Parallel make utility option --no-warnings (Suppress some or all warnings)

435

Tool Options



7.7. Archiver Options

The archiver and library maintainer ararc is a tool to build library files and it offers the possibility to replace,
extract and remove modules from an existing library.

The invocation syntax is:

ararc key_option [sub_option...] library [object_file]

This section describes all options for the archiver. Some suboptions can only be used in combination with
certain key options. They are described together. Suboptions that can always be used are described
separately.

For detailed information about the archiver, see Section 6.3, Archiver.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Overview of the options of the archiver utility

The following archiver options are available:

Sub-optionOptionDescription

Main functions (key options)

-a -b -c -n -u -v-rReplace or add an object module

-o -v-xExtract an object module from the library

-v-dDelete object module from library

-a -b -v-mMove object module to another position

-s0 -s1-tPrint a table of contents of the library

-pPrint object module to standard output

Sub-options

-a nameAppend or move new modules after existing module name

-b nameAppend or move new modules before existing module name

-cSuppress the message that is displayed when a new library is
created

-nCreate a new library from scratch

-oPreserve last-modified date from the library

-s{0|1}Print symbols in library modules

-uReplace only newer modules

-vVerbose

436

TASKING SmartCode - PPU User Guide



Sub-optionOptionDescription

Miscellaneous

-?Display options

--diagDisplay description of one or more diagnostic messages

-VDisplay version header

-f fileRead options from file

-wnSuppress warnings above level n

437

Tool Options



Archiver option: --delete (-d)

Command line syntax

--delete [--verbose]

-d [-v]

Description

Delete the specified object modules from a library. With the suboption --verbose (-v) the archiver shows
which files are removed.

Verbose: the archiver shows which files are removed.-v--verbose

Example

ararc --delete mylib.a obj1.o obj2.o

The archiver deletes obj1.o and obj2.o from the library mylib.a.

ararc -d -v mylib.a obj1.o obj2.o

The archiver deletes obj1.o and obj2.o from the library mylib.a and displays which files are removed.

Related information

-

438

TASKING SmartCode - PPU User Guide



Archiver option: --diag

Command line syntax

--diag=[format:]{all | msg[-msg],...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The archiver does
not perform any actions.You can specify the following formats: html, rtf or text (default). To create a file
with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

Example

To display an explanation of message number 102, enter:

ararc --diag=102

This results in the following message and explanation:

F102: cannot create "<file>"

The output file or a temporary file could not be created. Check if you have
sufficient disk space and if you have write permissions for the specified
file.

To write an explanation of all errors and warnings in HTML format to file arerrors.html, use redirection
and enter:

ararc --diag=html:all > arerrors.html

Related information

-

439

Tool Options



Archiver option: --dump (-p)

Command line syntax

--dump

-p

Description

Print the specified object module(s) in the library to standard output.

This option is only useful when you redirect or pipe the output to other files or tools that serve your own
purposes. Normally you do not need this option.

Example

ararc --dump mylib.a obj1.o > file.o

The archiver prints the file obj1.o to standard output where it is redirected to the file file.o. The effect
of this example is very similar to extracting a file from the library but in this case the 'extracted' file gets
another name.

Related information

-

440

TASKING SmartCode - PPU User Guide



Archiver option: --extract (-x)

Command line syntax

--extract [--modtime] [--verbose]

-x [-o] [-v]

Description

Extract an existing module from the library.

Give the extracted object module the same date as the last-modified
date that was recorded in the library. Without this suboption it
receives the last-modified date of the moment it is extracted.

-o--modtime

Verbose: the archiver shows which files are extracted.-v--verbose

Example

To extract the file obj1.o from the library mylib.a:

ararc --extract mylib.a obj1.o

If you do not specify an object module, all object modules are extracted:

ararc -x mylib.a

Related information

-

441

Tool Options



Archiver option: --help (-?)

Command line syntax

--help[=item]

-?

You can specify the following argument:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

ararc -?
ararc --help
ararc

To see a detailed description of the available options, enter:

ararc --help=options

Related information

-

442

TASKING SmartCode - PPU User Guide



Archiver option: --move (-m)

Command line syntax

--move [-a posname] [-b posname]

-m [-a posname] [-b posname]

Description

Move the specified object modules to another position in the library.

The ordering of members in a library can make a difference in how programs are linked if a symbol is
defined in more than one member.

By default, the specified members are moved to the end of the archive. Use the suboptions -a or -b to
move them to a specified place instead.

Move the specified object module(s) after the existing module
posname.

-a
posname

--after=posname

Move the specified object module(s) before the existing
module posname.

-b
posname

--before=posname

Example

Suppose the library mylib.a contains the following objects (see option --print):

obj1.o
obj2.o
obj3.o

To move obj1.o to the end of mylib.a:

ararc --move mylib.a obj1.o

To move obj3.o just before obj2.o:

ararc -m -b obj3.o mylib.a obj2.o

The library mylib.a after these two invocations now looks like:

obj3.o
obj2.o
obj1.o

Related information

Archiver option --print (-t) (Print library contents)

443

Tool Options



Archiver option: --option-file (-f)

Command line syntax

--option-file=file

-f file

Description

Instead of typing all options on the command line, you can create an option file which contains all options
and flags you want to specify. With this option you specify the option file to the archiver.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file (-f) multiple times.

If you use '-' instead of a filename it means that the options are read from stdin.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

         -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

-x mylib.a obj1.o
-w5

444

TASKING SmartCode - PPU User Guide



Specify the option file to the archiver:

ararc --option-file=myoptions

This is equivalent to the following command line:

ararc -x mylib.a obj1.o -w5

Related information

-

445

Tool Options



Archiver option: --print (-t)

Command line syntax

--print [--symbols=0|1]

-t [-s0|-s1]

Description

Print a table of contents of the library to standard output. With the suboption -s0 the archiver displays all
symbols per object file.

Displays per object the name of the object itself and all symbols in
the object.

-s0--symbols=0

Displays the symbols of all object files in the library in the form
library_name:object_name:symbol_name

-s1--symbols=1

Example

ararc --print mylib.a

The archiver prints a list of all object modules in the library mylib.a:

ararc -t -s0 mylib.a

The archiver prints per object all symbols in the library. For example:

cstart.o
   symbols:
        _START
        _start
        _Exit

Related information

-

446

TASKING SmartCode - PPU User Guide



Archiver option: --replace (-r)

Command line syntax

--replace [--after=posname] [--before=posname]
          [--create] [--new] [--newer-only] [--verbose]

-r [-a posname] [-b posname][-c] [-n] [-u] [-v]

Description

You can use the option --replace (-r) for several purposes:

• Adding new objects to the library

• Replacing objects in the library with the same object of a newer date

• Creating a new library

The option --replace (-r) normally adds a new module to the library. However, if the library already contains
a module with the specified name, the existing module is replaced. If you specify a library that does not
exist, the archiver creates a new library with the specified name.

If you add a module to the library without specifying the suboption -a or -b, the specified module is added
at the end of the archive. Use the suboptions -a or -b to insert them after/before a specified place instead.

Insert the specified object module(s) after the existing
module posname.

-a posname--after=posname

Insert the specified object module(s) before the existing
module posname.

-b posname--before=posname

Suppress the message that is displayed when a new library
is created.

-c--create

Create a new library from scratch. If the library already
exists, it is overwritten.

-n--new

Insert the specified object module only if it is newer than
the module in the library.

-u--newer-only

Verbose: the archiver shows which files are replaced.-v--verbose

The suboptions -a or -b have no effect when an object is added to the library.

Example

Suppose the library mylib.a contains the following object (see option --print):

obj1.o

To add obj2.o to the end of mylib.a:

ararc --replace mylib.a obj2.o

447

Tool Options



To insert obj3.o just before obj2.o:

ararc -r -b obj2.o mylib.a obj3.o

The library mylib.a after these two invocations now looks like:

obj1.o
obj3.o
obj2.o

Creating a new library

To create a new library file, add an object file and specify a library that does not yet exist:

ararc --replace newlib.a obj1.o

The archiver creates the library newlib.a and adds the object obj1.o to it.

To create a new library file and overwrite an existing library, add an object file and specify an existing
library with the supoption --new (-n):

ararc -r -n mylib.a obj1.o

The archiver overwrites the library mylib.a and adds the object obj1.o to it. The new library mylib.a
only contains obj1.o.

Related information

Archiver option --print (-t) (Print library contents)

448

TASKING SmartCode - PPU User Guide



Archiver option: --version (-V)

Command line syntax

--version

-V

Description

Display version information. The archiver ignores all other options or input files.

Related information

-

449

Tool Options



Archiver option: --warning (-w)

Command line syntax

--warning=level

-wlevel

Description

With this suboption you tell the archiver to suppress all warnings above the specified level. The level is
a number between 0 - 9.

The level of a message is printed between parentheses after the warning number. If you do not use the
-w option, the default warning level is 8.

Example

To suppress warnings above level 5:

ararc --extract --warning=5 mylib.a obj1.o

Related information

-

450

TASKING SmartCode - PPU User Guide



7.8. HLL Object Dumper Options

The high level language (HLL) dumper hldumparc is a program to dump information about an absolute
object file (.elf).

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on', use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

hldumparc -FdhMsy test.elf
hldumparc --dump-format=+dump,+hllsymbols,-modules,+sections,+symbols test.elf

When you do not specify an option, a default value may become active.

451

Tool Options



HLL object dumper option: --adx-format (-A)

Command line syntax

--adx-format[=flag],...

-A[flag]...

You can specify one of the following flags:

Force the use of ELF symbols instead of the DWARF debug
info

e/E+/-force-elf-mode

Do not output tags CATEGORY, COMP-UNIT-NAME,
COMP-UNIT-DIR and CALLED-SYMBOLS.

r/R+/-reduced

Default (no flags): --adx-format=ER

Description

With this option you dump the application data in the ADX address list format. The address list format is
based on XML.

With --adx-format=+force-elf-mode, ELF symbols are used instead of the DWARF debug info, resulting
in reduced info.

With --adx-format=+reduced, the tags CATEGORY, COMP-UNIT-NAME, COMP-UNIT-DIR and
CALLED-SYMBOLS are not printed in the XML output.

Note that when you use this option all other output formatting options are ignored.

Example

hldumparc --adx-format hello.elf

<?xml version="1.0"?>
<!-- Using DWARF debug info -->
<ADDRESS-CALCULATOR version="1.0.4" spec="1.10">
  <GENERAL-INFO>
    <MACHINE-TYPE>ARCv2</MACHINE-TYPE>
    <ELF-TYPE>ET_EXEC</ELF-TYPE>
  </GENERAL-INFO>
  <MEMORY-ELEMENT>
    <LABEL-NAME>_dbg_request</LABEL-NAME>
    <CATEGORY>STRUCTURE</CATEGORY>
    <ABSOLUTE-ADDRESS>0x00100008</ABSOLUTE-ADDRESS>
    <SIZE>20</SIZE>
    <DEMANGLED-NAME>_dbg_request</DEMANGLED-NAME>
    <SH-INDEX>27</SH-INDEX>
    <COMP-UNIT-NAME>dbg.c</COMP-UNIT-NAME>
    <COMP-UNIT-DIR>~\carc\lib\src\libc\lib\</COMP-UNIT-DIR>
  </MEMORY-ELEMENT>

452

TASKING SmartCode - PPU User Guide



  <SECTION-ELEMENT>
    <SECTION-NAME>.text.hello.main</SECTION-NAME>
    <SECTION-START-ADDRESS>0x00000494</SECTION-START-ADDRESS>
    <SECTION-SIZE>0x14</SECTION-SIZE>
    <SECTION-INDEX>4</SECTION-INDEX>
    <SECTION-TYPE>PROGBITS</SECTION-TYPE>
  </SECTION-ELEMENT>

hldumparc --adx-format=+reduced hello.elf

<?xml version="1.0"?>
<!-- Using DWARF debug info -->
<ADDRESS-CALCULATOR version="1.0.4" spec="1.10">
  <GENERAL-INFO>
    <MACHINE-TYPE>ARCv2</MACHINE-TYPE>
    <ELF-TYPE>ET_EXEC</ELF-TYPE>
  </GENERAL-INFO>
  <MEMORY-ELEMENT>
    <LABEL-NAME>_dbg_request</LABEL-NAME>
    <ABSOLUTE-ADDRESS>0x00100008</ABSOLUTE-ADDRESS>
    <SIZE>20</SIZE>
    <DEMANGLED-NAME>_dbg_request</DEMANGLED-NAME>
    <SH-INDEX>27</SH-INDEX>
  </MEMORY-ELEMENT>
  <SECTION-ELEMENT>
    <SECTION-NAME>.text.hello.main</SECTION-NAME>
    <SECTION-START-ADDRESS>0x00000494</SECTION-START-ADDRESS>
    <SECTION-SIZE>0x14</SECTION-SIZE>
    <SECTION-INDEX>4</SECTION-INDEX>
    <SECTION-TYPE>PROGBITS</SECTION-TYPE>
  </SECTION-ELEMENT>

hldumparc --adx-format=+force-elf-mode hello.elf

<?xml version="1.0"?>
<!-- Using ELF symbols -->
<ADDRESS-CALCULATOR version="1.0.4" spec="1.10">
  <GENERAL-INFO>
    <MACHINE-TYPE>ARCv2</MACHINE-TYPE>
    <ELF-TYPE>ET_EXEC</ELF-TYPE>
  </GENERAL-INFO>
  <MEMORY-ELEMENT>
    <LABEL-NAME>_dbg_request</LABEL-NAME>
    <CATEGORY>DATA</CATEGORY>
    <ABSOLUTE-ADDRESS>0x00100008</ABSOLUTE-ADDRESS>
    <OFFSET>0x00100008</OFFSET>
    <SIZE>20</SIZE>
  </MEMORY-ELEMENT>
  <SECTION-ELEMENT>
    <SECTION-NAME>.text.hello.main</SECTION-NAME>
    <SECTION-START-ADDRESS>0x00000494</SECTION-START-ADDRESS>

453

Tool Options



    <SECTION-SIZE>0x14</SECTION-SIZE>
    <SECTION-INDEX>4</SECTION-INDEX>
    <SECTION-TYPE>PROGBITS</SECTION-TYPE>
  </SECTION-ELEMENT>
</ADDRESS-CALCULATOR>

Related information

ADX Specification - Address List Format for A2L Address Calculation - Compiler vendors, Version 1.10,
2015-04-27

454

TASKING SmartCode - PPU User Guide



HLL object dumper option: --blank-out (-b)

Command line syntax

--blank-out[=flag]

-b[flag]

You can specify the following format flags:

Black out hexadecimal address and labels.l/L+/-labels

Default: --blank-out=L

Description

With this option you can blank out addresses and optionally labels in all dump phases. Instead of the
addresses and labels crosses (X's) are shown.

The +labels sub-option blanks out hexadecimal addresses and labels. With the -labels sub-option only
hexadecimal addresses are blanked out. This is the default.

This option is useful when you want to compare the output, but want to ignore the addresses and labels.

Example

hldumparc -F2 hello.elf

----------- Section dump ----------

                                       .section .text.hello.main, at(0x00000494)
00000494 f1 c0        main:            push_s %blink
00000496 c3 40 00 00 72 05                   mov_s %r0,1394

0000049c 00 50                         ld_s %r1,[%gp,0]
0000049e 4a 08 00 00                   bl      printf
000004a2 0c 70                         mov_s %r0,0
000004a4 d1 c0                         pop_s %blink
000004a6 e0 7e                         j_s [%blink]
                                       .endsec

hldumparc -F2 --blank-out hello.elf

----------- Section dump ----------

                                       .section .text.hello.main, at(0x00000494)
XXXXXXXX f1 c0        main:            push_s %blink
XXXXXXXX c3 40 00 00 72 05                   mov_s %r0,1394

XXXXXXXX 00 50                         ld_s %r1,[%gp,0]
XXXXXXXX 4a 08 00 00                   bl      printf

455

Tool Options



XXXXXXXX 0c 70                         mov_s %r0,0
XXXXXXXX d1 c0                         pop_s %blink
XXXXXXXX e0 7e                         j_s [%blink]
                                       .endsec

hldumparc -F2 --blank-out=+labels hello.elf

----------- Section dump ----------

                                       .section .text.hello.main, at(0x00000494)
XXXXXXXX f1 c0        XXXXXXXXXX:      push_s %blink
XXXXXXXX c3 40 00 00 72 05                   mov_s %r0,1394

XXXXXXXX 00 50                         ld_s %r1,[%gp,0]
XXXXXXXX 4a 08 00 00                   bl      printf
XXXXXXXX 0c 70                         mov_s %r0,0
XXXXXXXX d1 c0                         pop_s %blink
XXXXXXXX e0 7e                         j_s [%blink]
                                       .endsec

Related information

-

456

TASKING SmartCode - PPU User Guide



HLL object dumper option: --call-graph-elf-mode

Command line syntax

--call-graph-elf-mode

Description

With this option you can force the call graph to use the ELF symbols instead of the DWARF debug info,
for example when dumping from an assembly function.

Related information

Section 6.4.2, HLL Dump Output Format

457

Tool Options



HLL object dumper option: --call-graph-root

Command line syntax

--call-graph-root=function

Description

With this option you can specify the address or function name where to start the call graph. By default,
the call graph starts with main().

Example

To start the call graph from printf() instead of main(), enter:

hldumparc --call-graph-root=printf -F3 hello.elf

The call graph looks something like this:

+-- 0x000004e4 printf
    |    
    +-- 0x000000dc _doprint
        |    
        +-- 0x00000238 _io_putc
        |   |    
        |   +-- 0x0000046c fputc
        |       |    
        |       +-- 0x00000228 _flsbuf
        |           |    
        |           +-- 0x00000158 _dofls
        |               |    
        |               +-- 0x0000031c _host_write
        |               |   |    
        |               |   +-- 0x00000364 _dbg_trap
        |               |    
        |               +-- 0x000003c4 _fflush
        |               |   |    
        |               |   +-- 0x0000031c _host_write *
        |               |   |    
        |               |   +-- 0x000002e8 _host_lseek
        |               |       |    
        |               |       +-- 0x00000364 _dbg_trap
        |               |    
        |               +-- 0x0000031c _host_write *
        |    
        +-- 0x00000238 _io_putc *

Related information

Section 6.4.2, HLL Dump Output Format

458

TASKING SmartCode - PPU User Guide



HLL object dumper option: --class (-c)

Command line syntax

--class[=class]

-c[class]

You can specify one of the following classes:

Dump contents of all sections.aall

Dump contents of code sections.ccode

Dump contents of data sections.ddata

Default: --class=all

Description

With this option you can restrict the output to code or data only. This option affects all parts of the output,
except the module list. The effect is listed in the following table.

Effect of --classOutput part

Not restrictedModule list

Only lists sections of the specified classSection list

Only dumps the contents of the sections of the specified classSection dump

Only lists symbols of the specified classHLL symbol table

Only lists symbols defined in sections of the specified classAssembly level symbol
table

Not restrictedNote sections

By default all sections are included.

Related information

Section 6.4.2, HLL Dump Output Format

459

Tool Options



HLL object dumper option: --copy-table

Command line syntax

--copy-table

Description

With this option the HLL object dumper attempts to translate the specified code address to the destination
address of a copy table copy command during disassembly.

Related information

-

460

TASKING SmartCode - PPU User Guide



HLL object dumper option: --diag

Command line syntax

--diag=[format:]{all | msg[-msg],...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The HLL object
dumper does not process any files.You can specify the following formats: html, rtf or text (default). To
create a file with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

Example

To display an explanation of message number 101, enter:

hldumparc --diag=101

This results in the following message and explanation:

F101: cannot create "<file>"

The output file or a temporary file could not be created.
Check if you have sufficient disk space and if you have
write permissions for the specified file.

To write an explanation of all errors and warnings in HTML format to file hldumperrors.html, use
redirection and enter:

hldumparc --diag=html:all > hldumperrors.html

Related information

-

461

Tool Options



HLL object dumper option: --disassembly-intermix (-i)

Command line syntax

--disassembly-intermix[=flag]

-i[flag]

You can specify the following format flags:

Force the insert to be limited to the first preceding source line.s/S+/-single-line

Default: --disassembly-intermix=S

Description

With this option the disassembly is intermixed with HLL source code. The source is searched for as
described with option --source-lookup-path

The +single-line sub-option forces the insert to be limited to the first preceding source line. With the
-single-line sub-option all source lines that belong to the address are prefixed. For example comments
are thus also visible. This is the default.

Example

hldumparc --disassembly-intermix --source-lookup-path=c:\mylib\src hello.elf

Related information

HLL object dumper option --source-lookup-path

462

TASKING SmartCode - PPU User Guide



HLL object dumper option: --disassembly-without-encoding (-r)

Command line syntax

--disassembly-without-encoding

-r

Description

With this option the address and encoding are not part of the disassembly of a code section.This is useful
when you only want the disassembly part.

Example

hldumparc -F2 hello.elf

----------- Section dump ----------

                                       .section .text.hello.main, at(0x00000494)
00000494 f1 c0        main:            push_s %blink
00000496 c3 40 00 00 72 05                   mov_s %r0,1394

0000049c 00 50                         ld_s %r1,[%gp,0]
0000049e 4a 08 00 00                   bl      printf
000004a2 0c 70                         mov_s %r0,0
000004a4 d1 c0                         pop_s %blink
000004a6 e0 7e                         j_s [%blink]
                                       .endsec

hldumparc -F2 --disassembly-without-encoding hello.elf

----------- Section dump ----------

                .section .text.hello.main, at(0x00000494)
main:            push_s %blink
                 mov_s %r0,1394

                 ld_s %r1,[%gp,0]
                 bl      printf
                 mov_s %r0,0
                 pop_s %blink
                 j_s [%blink]
                .endsec

Related information

-

463

Tool Options



HLL object dumper option: --dump-format (-F)

Command line syntax

--dump-format[=flag,...]

-F[flag]...

You can specify the following format flags:

Dump the call graph of the application.c/C+/-callgraph

Dump the contents of the sections in the object file. Code
sections can be disassembled, data sections are dumped.

d/D+/-dump

Dump the debug control flow section.f/F+/-debug-control-flow

List the high level language symbols, with address, size and
type.

h/H+/-hllsymbols

Print a list of modules found in object file.m/M+/-modules

Dump all ELF .note sections.n/N+/-note

Print a list of sections with start address, length and type.s/S+/-sections

List the low level symbols, with address and length (if known).y/Y+/-symbols

Alias for CDFHMNSY (nothing)0

Alias for CDFhMNSY (only HLL symbols)1

Alias for CdFHMNSY (only section contents)2

Alias for cdfhmnsy (everything)3

Default: --dump-format=CdFhmnsy

Description

With this option you can control which parts of the dump output you want to see.

1. Module list

2. Section list

3. Call graph using the DWARF debug info

4. Section dump (disassembly)

5. HLL symbol table

6. Assembly level symbol table

7. Note sections

8. Debug control flow section

By default, all parts are dumped, except for parts 3 and 8.

464

TASKING SmartCode - PPU User Guide



You can limit the number of sections that will be dumped with the options --sections and --section-types.

Related information

Section 6.4.2, HLL Dump Output Format

465

Tool Options



HLL object dumper option: --expand-symbols (-e)

Command line syntax

--expand-symbols[=flag],...

-e[flag]...

You can specify one of the following flags:

Expand arrays with basic C types.b/B+/-basic-types

Include the full path to the field level.f/F+/-fullpath

Insert gap markers where data is not consecutive.g/G+/-gap-info

Print nesting bars.n/N+/-nesting-indicator

Default (no flags): --expand-symbols=BFGN

Description

With this option you specify that all struct, union and array symbols are expanded with their fields in the
HLL symbol dump.

With --expand-symbols=+basic-types, HLL struct and union symbols are listed including all fields. Array
members are expanded in one array member per line regardless of the HLL type. For the fields the types
and names are indented with 2 spaces.

With --expand-symbols=+fullpath, all fields of structs and unions and all members of non-basic type
arrays are expanded and prefixed with their parent's names.

With --expand-symbols=+gap-info, unused memory in complex data types (structures and unions)
between data objects and between code objects is shown as {gap} parts.This option is useful to optimize
data memory usage. This option only works if debug information is available in the ELF file.

With --expand-symbols=+nesting-indicator, vertical bars (|) are shown to make it easier to see the
expanded structs, unions and arrays.

Example

hldumparc -F1 hello.elf

---------- HLL symbol table ----------

Address    Size HLL Type             Name
00100008     20 struct               _dbg_request [dbg.c]
0010001c     80 static char          stdin_buf[80] [_iob.c]

hldumparc -e -F1 hello.elf

---------- HLL symbol table ----------

466

TASKING SmartCode - PPU User Guide



Address    Size HLL Type             Name
00100008     20 struct               _dbg_request [dbg.c]
00100008      4   int                  _errno
0010000c      1   enum                 nr
00100010     12   union                u
00100010      4     struct               exit
00100010      4       int                  status
00100010      8     struct               open
00100010      4       const char         * pathname
00100014      2       unsigned short int   flags
   ...
0010001c     80 static char          stdin_buf[80] [_iob.c]

hldumparc -eb -F1 hello.elf

---------- HLL symbol table ----------

Address    Size HLL Type             Name
00100008     20 struct               _dbg_request [dbg.c]
00100008      4   int                  _errno
0010000c      1   enum                 nr
00100010     12   union                u
00100010      4     struct               exit
00100010      4       int                  status
00100010      8     struct               open
00100010      4       const char         * pathname
00100014      2       unsigned short int   flags
   ...
0010001c     80 static char          stdin_buf[80] [_iob.c]
0010001c      1   char
0010001d      1   char
0010001e      1   char
  ...
0010006b      1   char

hldumparc -ef -F1 hello.elf

---------- HLL symbol table ----------

Address    Size HLL Type             Name
00100008     20 struct               _dbg_request [dbg.c]
00100008      4   int                  _dbg_request._errno
0010000c      1   enum                 _dbg_request.nr
00100010     12   union                _dbg_request.u
00100010      4     struct               _dbg_request.u.exit
00100010      4       int                  _dbg_request.u.exit.status
00100010      8     struct               _dbg_request.u.open
00100010      4       const char         * _dbg_request.u.open.pathname
00100014      2       unsigned short int   _dbg_request.u.open.flags
   ...
0010001c     80 static char          stdin_buf[80] [_iob.c]

467

Tool Options



hldumparc -eg -F1 hello.elf

---------- HLL symbol table ----------

Address    Size HLL Type             Name
00100008     20 struct               _dbg_request [dbg.c]
00100008      4   int                  _errno
0010000c      1   enum                 nr
0010000d      3                        {gap}
00100010     12   union                u
00100010      4     struct               exit
00100010      4       int                  status
00100014      8                          {gap}
00100010      8     struct               open
00100010      4       const char         * pathname
00100014      2       unsigned short int   flags
00100016      2                            {gap}
00100018      4                          {gap}
   ...
0010001c     80 static char          stdin_buf[80] [_iob.c]

hldumparc -en -F1 hello.elf

---------- HLL symbol table ----------

Address    Size HLL Type             Name
00100008     20 struct               _dbg_request [dbg.c]
00100008      4 | int                  _errno
0010000c      1 | enum                 nr
00100010     12 | union                u
00100010      4 | | struct               exit
00100010      4 | | | int                  status
00100010      8 | | struct               open
00100010      4 | | | const char         * pathname
00100014      2 | | | unsigned short int   flags
   ...
0010001c     80 static char          stdin_buf[80] [_iob.c]

Related information

Section 6.4.2, HLL Dump Output Format

468

TASKING SmartCode - PPU User Guide



HLL object dumper option: --help (-?)

Command line syntax

--help

-?

Description

Displays an overview of all command line options.

Example

The following invocations all display a list of the available command line options:

hldumparc -?
hldumparc --help
hldumparc

Related information

-

469

Tool Options



HLL object dumper option: --hex (-x)

Command line syntax

--hex

-x

Description

With this option you can control the way data sections and code sections are dumped. By default, the
contents of data sections are represented by directives. A new directive will be generated for each symbol.
ELF labels in the section are used to determine the start of a directive. ROM sections are represented
with .db, .dh, .dw, .dd kind of directives, depending on the size of the data. RAM sections are
represented with .ds directives, with a size operand depending on the data size. This can be either the
size specified in the ELF symbol, or the size up to the next label. Code sections are dumped as
disassembly.

With option --hex, no directives will be generated for ROM data sections and no disassembly dump will
be done for code sections. Instead ROM data sections and code sections are dumped as hexadecimal
code with ASCII translation. RAM sections will be represented with only a start address and a size indicator.

Example

hldumparc -F2 --section=.rodata.hello..2.str hello.elf

---------- Section dump ----------

       .section .data, '.rodata.hello..2.str', at(0x00000572)
       .db 48,65,6c,6c,6f,20,25,73,21,0a,00               ; Hello %s!..
       .endsec

hldumparc -F2 --section=.rodata.hello..2.str --hex hello.elf

---------- Section dump ----------

                          section 7 (.rodata.hello..2.str):
00000572 48 65 6c 6c 6f 20 25 73 21 0a 00                Hello %s!..

Related information

Section 6.4.2, HLL Dump Output Format

470

TASKING SmartCode - PPU User Guide



HLL object dumper option: --option-file (-f)

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the HLL object dumper.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

         -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

--symbols=hll
--class=code
hello.elf

471

Tool Options



Specify the option file to the HLL object dumper:

hldumparc --option-file=myoptions

This is equivalent to the following command line:

hldumparc --symbols=hll --class=code hello.elf

Related information

-

472

TASKING SmartCode - PPU User Guide



HLL object dumper option: --output (-o)

Command line syntax

--output=file

-o file

Description

By default, the HLL object dumper dumps the output on stdout. With this option you specify to dump
the information in the specified file.

The default output format is text, but you can specify another output format with option --output-type.

Example

hldumparc --output=dump.txt hello.elf

The HLL object dumper dumps the output in file dump.txt.

Related information

HLL object dumper option --output-type

473

Tool Options



HLL object dumper option: --output-type (-T)

Command line syntax

--output-type[=type]

-T[type]

You can specify one of the following types:

Output human readable text.ttext

Output XML.xxml

Default: --output-type=text

Description

With this option you can specify whether the output is formatted as plain text or as XML.

Related information

HLL object dumper option --output

474

TASKING SmartCode - PPU User Guide



HLL object dumper option: --sections (-s)

Command line syntax

--sections=name,...

-sname,...

Description

With this option you can restrict the output to the specified sections only. This option affects the following
parts of the output:

Effect of --sectionsOutput part

Not restrictedModule list

Only lists the specified sectionsSection list

Only dumps the contents of the specified sectionsSection dump

Not restrictedHLL symbol table

Only lists symbols defined in the specified sectionsAssembly level symbol
table

Not restrictedNote sections

By default all sections are included.

Related information

Section 6.4.2, HLL Dump Output Format

475

Tool Options



HLL object dumper option: --source-lookup-path (-L)

Command line syntax

--source-lookup-path=path

-Lpath

Description

With this option you can specify an additional path where your source files are located. If you want to
specify multiple paths, use the option --source-lookup-path for each separate path.

The order in which the HLL object dumper will search for source files when intermixed disassembly is
used, is:

1. The path obtained from the HLL debug information.

2. The path that is specified with the option --source-lookup-path. If multiple paths are specified, the
paths will be searched for in the order in which they are given on the command line.

Example

Suppose you call the HLL object dumper as follows:

hldumparc --disassembly-intermix --source-lookup-path=c:\mylib\src hello.elf

First the HLL object dumper looks in the directory found in the HLL debug information of file hello.elf
for the location of the source file(s). If it does not find the file(s), it looks in the directory c:\mylib\src.

Related information

HLL object dumper option --disassembly-intermix

476

TASKING SmartCode - PPU User Guide



HLL object dumper option: --symbols (-S)

Command line syntax

--symbols[=type]

-S[type]

You can specify one of the following types:

Display assembly symbols in code dump.aasm

Display HLL symbols in code dump.hhll

Display plain addresses in code dump.nnone

Default: --symbols=asm

Description

With this option you can control symbolic information in the disassembly and data dump. For data sections
this only applies to symbols used as labels at the data addresses. Data within the data sections will never
be replaced with symbols.

Only symbols that are available in the ELF or DWARF information are used. If you build an application
without HLL debug information the --symbols=hll option will result in the same output as with
--symbols=none. The same applies to the --symbols=asm option when all symbols are stripped from
the ELF file.

Example

hldumparc -F2 hello.elf

----------- Section dump ----------

                                       .section .text._Exit._Exit, at(0x000000d4)
000000d4 69 20 40 00  _Exit:           flag    1
000000d8 e0 7e                         j_s [%blink]
                                       .endsec

hldumparc --symbols=none -F2 hello.elf

----------- Section dump ----------

                                       .section .text._Exit._Exit, at(0x000000d4)
000000d4 69 20 40 00                   flag    1
000000d8 e0 7e                         j_s [%blink]
                                       .endsec

Related information

Section 6.4.2, HLL Dump Output Format

477

Tool Options



HLL object dumper option: --version (-V)

Command line syntax

--version

-V

Description

Display version information. The HLL object dumper ignores all other options or input files.

Related information

-

478

TASKING SmartCode - PPU User Guide



HLL object dumper option: --xml-base-filename (-X)

Command line syntax

--xml-base-filename

-X

Description

With this option the <File name> field in the XML output only contains the filename of the object file.
By default, any path name, if present, is printed as well.

Example

hldumparc --output-type=xml --output=hello.xml ../hello.elf

The field <File name="../hello.elf"> is used in hello.xml.

hldumparc --output-type=xml --output=hello.xml -X ../hello.elf

The field <File name="hello.elf"> is used in hello.xml. The path is stripped from the filename.

Related information

HLL object dumper option --output-type

479

Tool Options



480

TASKING SmartCode - PPU User Guide



Chapter 8. Influencing the Build Time
In general many settings have influence on the build time of a project. Any change in the tool settings of
your project source will have more or less impact on the build time.The following sections describe several
issues that can have significant influence on the build time.

8.1. SFR File

SFR files can define such a large number of SFRs that compiling the SFR file alone already takes up a
significant part of the build time. To reduce the build time:

• By default, the tools do not automatically include the SFR file.You should include the SFR file only in
the source modules where the SFRs are used, with a #include directive. In Eclipse make sure that
the automatic inclusion option is disabled.You can find this option on the "C Compiler » Preprocessing"
and the "Assembler » Preprocessing" pages.

When you include the SFR file in the source, be aware that the SFR files are in the sfr subdirectory
of the include files, so you must use: #include <sfr/regppu.sfr>

8.2. MIL Linking

With MIL linking (see Section 3.6.1, Generic Optimizations (frontend)) it is possible to let the compiler
apply optimizations application wide. This can yield significant optimization improvements, but the build
times can also be significantly longer. MIL linking itself can require significant time, but also the changed
build process implies longer build times. The MIL linking settings in Eclipse are:

• Build for application wide optimizations (MIL linking)

This enables MIL linking. The build process changes: the C files are translated to intermediate code
(MIL files) and the generated MIL files of the whole project are linked together by the C compiler. The
next step depends on the setting of the option below.

• Application wide optimization mode: Optimize more/Build slower

When this option is enabled, the compiler runs the code generator immediately on the completely linked
MIL stream, which represents the entire application. This way the code generator can perform several
optimizations, such as "code compaction", at application scope. But this also requires significantly more
memory and requires more time to generate code. Besides that, it is no longer possible to do incremental
builds. With each build the full MIL linking phase and code generation has to be done, even with the
smallest change that would in a normal build (not MIL linking) require only a single module to be
translated.

• Application wide optimization mode: Optimize less/Build faster

When this option is disabled, the compiler splits the MIL stream after MIL linking in separate modules.
This allows the code generation to be performed for the modified modules only, and will therefore be
faster than with the other option enabled. Although the MIL stream is split in separate modules after
MIL linking, it still may happen that modifying a single C source file results in multiple MIL files to be

481



compiled.This is a natural result of global optimizations, where the code generated for multiple modules
was affected by the change.

In general, if you do not need code compaction, for example because you are optimizing fully for speed,
it is recommended to choose Optimize less/Build faster.

8.3. Optimization Options

In general any optimization may require more work to be done by the compiler. But this does not mean
that disabling all optimizations (level 0) gives the fastest compilation time. Disabling optimizations may
result in more code being generated, resulting in more work for other parts of the compiler, like for example
the register allocator.

8.4. Automatic Inlining

Automatic inlining is an optimization which can result in significant longer build time.The overall functions
will get bigger, often making it possible to do more optimizations. But also often resulting in more registers
to be in use in a function, giving the register allocation a tougher job.

8.5. Code Compaction

When you disable the code compaction optimization, the build times may be shorter. Certainly when MIL
linking is used where the full application is passed as a single MIL stream to the code generation. Code
compaction is however an optimization which can make a huge difference when optimizing for code size.
When size matters it makes no sense to disable this option. When you choose to optimize for speed
(--tradeoff=0) the code compaction is automatically disabled.

8.6. Header Files

Many applications include all header files in each module, often by including them all within a single
include file. Processing header files takes time. It is a good programming practice to only include the
header files that are really required in a module, because:

• it is clear what interfaces are used by a module

• an incremental build after modifying a header file results in less modules required to be rebuild

• it reduces compile time

8.7. Parallel Build

The make utility amk, which is used by Eclipse, has a feature to build jobs in parallel. This means that
multiple modules can be compiled in parallel. With today's multi-core processors this means that each
core can be fully utilized. In practice even on single core machines the compile time decreases when

482

TASKING SmartCode - PPU User Guide



using parallel jobs. On multi-core machines the build time even improves further when specifying more
parallel jobs than the number of cores.

In Eclipse you can control the parallel build behavior:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, select C/C++ Build.

In the right pane the C/C++ Build page appears.

3. On the Behavior tab, select Enable parallel build.

4. You can specify the number of parallel jobs, or you can use an optimal number of jobs. In the last
case, amk will fork as many jobs in parallel as cores are available.

483

Influencing the Build Time



484

TASKING SmartCode - PPU User Guide



Chapter 9. Libraries
This chapter contains an overview of all library functions that you can call in your C source. This includes
all functions of the standard C library (ISO C11) and some functions of the floating-point library.

Section 9.1, Library Functions, gives an overview of all library functions you can use, grouped per header
file. A number of functions declared in wchar.h are parallel to functions in other header files. These are
discussed together.

Section 9.2, C Library Reentrancy, gives an overview of which functions are reentrant and which are not.

C library / floating-point library / run-time library

The following libraries are included in the TASKING toolset for Infineon PPU. The control program ccarc
automatically select the appropriate libraries depending on the specified options.

DescriptionLibraries

C library with double-precision FPU instructions for ppu_tc49x and
ppu_tc4dx core architectures and single-precision FPU instructions for the
ppu_tc43x core architecture.

libc_fpu.a

Floating-point library (contains floating-point run-time functions that are
needed by the C compiler). This library is only available for the ppu_tc43x
core architecture.

libfp_fpu.a

Run-time library (contains other run-time functions needed by the C
compiler)

librt.a

For the C library also a MIL library variant is present (file with extension .ma).

Sources for the libraries are present in the directories lib\src, lib\src.* in the form of an executable.
If you run the executable it will extract the sources in the corresponding directory. Note that under Windows
you need to run the self extractor executables as Administrator.

9.1. Library Functions

The tables in the sections below list all library functions, grouped per header file in which they are declared.
Some functions are not completely implemented because their implementation depends on the context
where your application will run.These functions are for example all I/O related functions. Where possible,
these functions are implemented using file system simulation (FSS). This system can be used by the
debugger to simulate an I/O environment which enables you to debug your application.

9.1.1. assert.h

Prints a diagnostic message if NDEBUG is not defined. (Implemented as macro)assert(expr)

For C11 only, the following macro is defined:

#define static_assert _Static_assert

485



9.1.2. complex.h

The complex number z is also written as x+yi where x (the real part) and y (the imaginary part) are real
numbers of types float, double or long double.The real and imaginary part can be stored in structs
or in arrays. This implementation uses arrays because structs may have different alignments.

The header file complex.h also defines the following macros for backward compatibility:

complex    _Complex    /* C99 keyword */
imaginary  _Imaginary  /* C99 keyword */

Parallel sets of functions are defined for double, float and long double. They are respectively named
function, functionf, functionl. All long type functions, though declared in complex.h, are implemented
as the double type variant which nearly always meets the requirement in embedded applications.

This implementation uses the obvious implementation for complex multiplication; and a more sophisticated
implementation for division and absolute value calculations which handles underflow, overflow and infinities
with more care. The ISO C99 #pragma CX_LIMITED_RANGE therefore has no effect.

Trigonometric functions

Returns the complex sine of z.csinlcsinfcsin

Returns the complex cosine of z.ccoslccosfccos

Returns the complex tangent of z.ctanlctanfctan

Returns the complex arc sine sin-1(z).casinlcasinfcasin

Returns the complex arc cosine cos-1(z).cacoslcacosfcacos

Returns the complex arc tangent tan-1(z).catanlcatanfcatan

Returns the complex hyperbolic sine of z.csinhlcsinhfcsinh

Returns the complex hyperbolic cosine of z.ccoshlccoshfccosh

Returns the complex hyperbolic tangent of z.ctanhlctanhfctanh

Returns the complex arc hyperbolic sinus of z.casinhlcasinhfcasinh

Returns the complex arc hyperbolic cosine of z.cacoshlcacoshfcacosh

Returns the complex arc hyperbolic tangent of z.catanhlcatanhfcatanh

Exponential and logarithmic functions

Returns the result of the complex exponential function ez.cexplcexpfcexp

Returns the complex natural logarithm.cloglclogfclog

Power and absolute-value functions

Returns the complex absolute value of z (also known as norm,
modulus or magnitude).

cabslcabsfcabs

Returns the complex value of x raised to the power y (xy) where
both x and y are complex numbers.

cpowlcpowfcpow

486

TASKING SmartCode - PPU User Guide



Returns the complex square root of z.csqrtlcsqrtfcsqrt

Manipulation functions

Returns the argument of z (also known as phase angle).carglcargfcarg

Returns the imaginary part of z as a real (respectively as a double,
float, long double)

cimaglcimagfcimag

Returns the complex conjugate value (the sign of its imaginary part
is reversed).

conjlconjfconj

Returns the value of the projection of z onto the Riemann sphere.cprojlcprojfcproj

Returns the real part of z as a real (respectively as a double,
float, long double)

creallcrealfcreal

9.1.3. ctype.h and wctype.h

The header file ctype.h declares the following functions which take a character c as an integer type
argument. The header file wctype.h declares parallel wide character functions which take a character
c of the wchar_t type as argument.

Descriptionwctype.hctype.h

Returns a non-zero value when c is an alphabetic character or a
number ([A-Z][a-z][0-9]).

iswalnumisalnum

Returns a non-zero value when c is an alphabetic character
([A-Z][a-z]).

iswalphaisalpha

Returns a non-zero value when c is a blank character (tab, space...)iswblankisblank

Returns a non-zero value when c is a control character.iswcntrliscntrl

Returns a non-zero value when c is a numeric character ([0-9]).iswdititisdigit

Returns a non-zero value when c is printable, but not a space.iswgraphisgraph

Returns a non-zero value when c is a lowercase character ([a-z]).iswlowerislower

Returns a non-zero value when c is printable, including spaces.iswprintisprint

Returns a non-zero value when c is a punctuation character (such
as '.', ',', '!').

iswpunctispunct

Returns a non-zero value when c is a space type character (space,
tab, vertical tab, formfeed, linefeed, carriage return).

iswspaceisspace

Returns a non-zero value when c is an uppercase character ([A-Z]).iswupperisupper

Returns a non-zero value when c is a hexadecimal digit
([0-9][A-F][a-f]).

iswxdigitisxdigit

Returns c converted to a lowercase character if it is an uppercase
character, otherwise c is returned.

towlowertolower

Returns c converted to an uppercase character if it is a lowercase
character, otherwise c is returned.

towuppertoupper

487

Libraries



Descriptionwctype.hctype.h

Converts c to a lowercase character, does not check if c really is
an uppercase character. Implemented as macro. This macro
function is not defined in ISO C99.

-_tolower

Converts c to an uppercase character, does not check if c really
is a lowercase character. Implemented as macro. This macro
function is not defined in ISO C99.

-_toupper

Returns a non-zero value when c is in the range of 0 and 127.This
function is not defined in ISO C99.

isascii

Converts c to an ASCII value (strip highest bit). This function is
not defined in ISO C99.

toascii

9.1.4. dbg.h

The header file dbg.h contains the debugger call interface for file system simulation. It contains low level
functions. This header file is not defined in ISO C99.

Low level function to trap debug events_dbg_trap

Low level function for command line argument passing_argcv(const char
*buf,size_t size)

9.1.5. errno.h

External variable that holds implementation defined error codes.int errno

The following error codes are defined as macros in errno.h:

EPERM           1       Operation not permitted
ENOENT          2       No such file or directory
EINTR           3       Interrupted system call
EIO             4       I/O error
EBADF           5       Bad file number
EAGAIN          6       No more processes
ENOMEM          7       Not enough core
EACCES          8       Permission denied
EFAULT          9       Bad address
EEXIST          10      File exists
ENOTDIR         11      Not a directory
EISDIR          12      Is a directory
EINVAL          13      Invalid argument
ENFILE          14      File table overflow
EMFILE          15      Too many open files
ETXTBSY         16      Text file busy
ENOSPC          17      No space left on device
ESPIPE          18      Illegal seek
EROFS           19      Read-only file system
EPIPE           20      Broken pipe

488

TASKING SmartCode - PPU User Guide



ELOOP           21      Too many levels of symbolic links
ENAMETOOLONG    22      File name too long

Floating-point errors

EDOM            23      Argument too large
ERANGE          24      Result too large

Errors returned by printf/scanf

ERR_FORMAT      25      Illegal format string for printf/scanf
ERR_NOFLOAT     26      Floating-point not supported
ERR_NOLONG      27      Long not supported
ERR_NOPOINT     28      Pointers not supported

Encoding errors set by functions like fgetwc, getwc, mbrtowc, etc ...

EILSEQ          29      Invalid or incomplete multibyte or wide character

Errors returned by RTOS

ECANCELED       30      Operation canceled
ENODEV          31      No such device

9.1.6. except.h

The header file except.h contains the PPU specific software floating-point exception handling interface
definition. This header file is not defined in ISO C

Returns the current rounding direction, represented as one of the
values of the rounding direction macros.

__fe_getround_gv( void )

Raises the exceptions represented in the argument.__fe_raiseexcept_gv( mask )

Handles the signaling of an Invalid int operation exception.__signal_double_exception(type,
operator, op1, op2, retval)

Handles the signaling of an Invalid operation exception.__signal_float_exception(type,
operator, op1, op2, retval)

9.1.7. fcntl.h

The header file fcntl.h contains the function open(), which calls the low level function _open(), and
definitions of flags used by the low level function _open(). This header file is not defined in ISO C99.

Opens a file a file for reading or writing. Calls _open.
(FSS implementation)

open

9.1.8. fenv.h

Contains mechanisms to control the floating-point environment.

489

Libraries



Stores the current floating-point environment.fegetenv

Saves the current floating-point environment and installs an environment
that ignores all floating-point exceptions.

feholdexcept

Restores a previously saved (fegetenv or feholdexcept) floating-point
environment.

fesetenv

Saves the currently raised floating-point exceptions, restores a previously
saved floating-point environment and finally raises the saved exceptions.

feupdateenv

Clears the current exception status flags corresponding to the flags specified
in the argument.

feclearexcept

Stores the current setting of the floating-point status flags.fegetexceptflag

Raises the exceptions represented in the argument. As a result, other
exceptions may be raised as well.

feraiseexcept

Sets the current floating-point status flags.fesetexceptflag

Returns the bitwise-OR of the exception macros corresponding to the
exception flags which are currently set and are specified in the argument.

fetestexcept

For each supported exception, a macro is defined. The following exceptions are defined:

FE_DIVBYZERO    FE_INEXACT      FE_INVALID
FE_OVERFLOW     FE_UNDERFLOW    FE_ALL_EXCEPT

Returns the current rounding direction, represented as one of the values of
the rounding direction macros.

fegetround

Sets the current rounding directions.fesetround

For each supported rounding mode, a macro is defined. The following rounding mode macro is defined:

FE_TONEAREST

9.1.9. float.h

The header file float.h defines the characteristics of the real floating-point types float, double and
long double.

float.h used to contain prototypes for the functions copysign(f), isinf(f), isfinite(f),
isnan(f) and scalb(f).These functions have accordingly to the ISO C99 standard been moved
to the header file math.h. See also Section 9.1.18, math.h and tgmath.h.

The following functions are only available for ISO C90:

Copies the sign of the second argument s to the value of the first
argument f and returns the result.

copysignf(float f,float s)

Copies the sign of the second argument s to the value of the first
argument d and returns the result.

copysign(double d,double s)

490

TASKING SmartCode - PPU User Guide



Test the variable f on being an infinite (IEEE-754) value.isinff(float f)

Test the variable d on being an infinite (IEEE-754) value.isinf(double d);

Test the variable f on being a finite (IEEE-754) value.isfinitef(float f)

Test the variable d on being a finite (IEEE-754) value.isfinite(double d)

Test the variable f on being NaN (Not a Number, IEEE-754) .isnanf(float f)

Test the variable d on being NaN (Not a Number, IEEE-754) .isnan(double d)

Returns f * 2^p for integral values without computing 2^N.scalbf(float f,int p)

Returns d * 2^p for integral values without computing 2^N. (See
also scalbn in Section 9.1.18, math.h and tgmath.h)

scalb(double d,int p)

9.1.10. float_config.h

The header file float_config.h contains defines for the configuration of the TASKING floating-point
support. It contains no functions. This header file is not defined in ISO C.

9.1.11. inttypes.h and stdint.h

The header files stdint.h and inttypes.h provide additional declarations for integer types and have
various characteristics. The stdint.h header file contains basic definitions of integer types of certain
sizes, and corresponding sets of macros. This header file clearly refers to the corresponding sections in
the ISO C99 standard.
The inttypes.h header file includes stdint.h and adds portable formatting and conversion functions.
Below the conversion functions from inttypes.h are listed.

Returns the absolute value of jimaxabs(intmax_t j)

Computes numer/denomand numer % denom.The result is stored
in the quot and rem components of the imaxdiv_t structure type.

imaxdiv(intmax_t numer,
intmax_t denom)

Convert string to maximum sized integer. (Compare strtoll)strtoimax(const char *
restrict nptr, char **
restrict endptr, int base)

Convert string to maximum sized unsigned integer. (Compare
strtoull)

strtoumax(const char *
restrict nptr, char **
restrict endptr, int base)

Convert wide string to maximum sized integer. (Compare wcstoll)wcstoimax(const wchar_t *
restrict nptr, wchar_t **
restrict endptr, int base)

Convert wide string to maximum sized unsigned integer. (Compare
wcstoull)

wcstoumax(const wchar_t *
restrict nptr, wchar_t **
restrict endptr, int base)

9.1.12. io.h

The header file io.h contains prototypes for low level I/O functions.This header file is not defined in ISO
C99.

491

Libraries



Used by the functions close and fclose. (FSS implementation)_close(fd)

Used by all file positioning functions: fgetpos, fseek, fsetpos,
ftell, rewind. (FSS implementation)

_lseek(fd,offset,whence)

Used by the functions fopen and freopen. (FSS implementation)_open(fd,flags)

Reads a sequence of characters from a file. (FSS implementation)_read(fd,*buff,cnt)

Used by the function remove. (FSS implementation)_unlink(*name)

Writes a sequence of characters to a file. (FSS implementation)_write(fd,*buffer,cnt)

9.1.13. iso646.h

The header file iso646.h adds tokens that can be used instead of regular operator tokens.

#define and     &&
#define and_eq  &=
#define bitand  &
#define bitor   |
#define compl   ~
#define not     !
#define not_eq  !=
#define or      ||
#define or_eq   |=
#define xor     ^
#define xor_eq  ^= 

9.1.14. libfloat.h

The header file libfloat.h contains defines for the configuration of the TASKING floating-point support.
It contains no functions. This header file is not defined in ISO C.

9.1.15. limits.h

Contains the sizes of integral types, defined as macros.

9.1.16. locale.h

To keep C code reasonable portable across different languages and cultures, a number of facilities are
provided in the header file locale.h.

char *setlocale( int category, const char *locale )

The function above changes locale-specific features of the run-time library as specified by the category
to change and the name of the locale.

The following categories are defined and can be used as input for this function:

LC_ALL      0      LC_NUMERIC   3
LC_COLLATE  1      LC_TIME      4
LC_CTYPE    2      LC_MONETARY  5

492

TASKING SmartCode - PPU User Guide



struct lconv *localeconv( void )

Returns a pointer to type struct lconv with values appropriate for the formatting of numeric
quantities according to the rules of the current locale. The struct lconv in this header file is
conforming the ISO standard.

9.1.17. malloc.h

The header file malloc.h contains prototypes for memory allocation functions. This include file is not
defined in ISO C99, it is included for backwards compatibility with ISO C90. For ISO C99, the memory
allocation functions are part of stdlib.h. See Section 9.1.27, stdlib.h and wchar.h.

Allocates space for an object with size size.
The allocated space is not initialized. Returns a pointer to the
allocated space.

malloc(size)

(C11 only) Allocates space for an object whose alignment is
specified by alignment and with size size.
The allocated space is not initialized. Returns a pointer to the
allocated space.

aligned_alloc(alignment,
size)

Allocates space for n objects with size size.
The allocated space is initialized with zeros. Returns a pointer to
the allocated space.

calloc(nobj,size)

Deallocates the memory space pointed to by ptr which should be
a pointer earlier returned by the malloc or calloc function.

free(*ptr)

Deallocates the old object pointed to by ptr and returns a pointer
to a new object with size size, while preserving its contents.
If the new size is smaller than the old size, some contents at the
end of the old region will be discarded. If the new size is larger than
the old size, all of the old contents are preserved and any bytes in
the new object beyond the size of the old object will have
indeterminate values.

realloc(*ptr,size)

9.1.18. math.h and tgmath.h

The header file math.h contains the prototypes for many mathematical functions. Before ISO C99, all
functions were computed using the double type (the float was automatically converted to double, prior to
calculation). In this ISO C99 version, parallel sets of functions are defined for double, float and long
double. They are respectively named function, functionf, functionl. All long type functions, though
declared in math.h, are implemented as the double type variant which nearly always meets the
requirement in embedded applications.

The header file tgmath.h contains parallel type generic math macros whose expansion depends on the
used type. tgmath.h includes math.h and the effect of expansion is that the correct math.h functions
are called. The type generic macro, if available, is listed in the second column of the tables below.

493

Libraries



Trigonometric and hyperbolic functions

Descriptiontgmath.hmath.h

Returns the sine of x.sinsinlsinfsin

Returns the cosine of x.coscoslcosfcos

Returns the tangent of x.tantanltanftan

Returns the arc sine sin-1(x) of x.asinasinlasinfasin

Returns the arc cosine cos-1(x) of x.acosacoslacosfacos

Returns the arc tangent tan-1(x) of x.atanatanlatanfatan

Returns the result of: tan-1(y/x).atan2atan2latan2fatan2

Returns the hyperbolic sine of x.sinhsinhlsinhfsinh

Returns the hyperbolic cosine of x.coshcoshlcoshfcosh

Returns the hyperbolic tangent of x.tanhtanhltanhftanh

Returns the arc hyperbolic sine of x.asinhasinhlasinhfasinh

Returns the non-negative arc hyperbolic cosine of x.acoshacoshlacoshfacosh

Returns the arc hyperbolic tangent of x.atanhatanhlatanhfatanh

Exponential and logarithmic functions

All of these functions are new in ISO C99, except for exp, log and log10.

Descriptiontgmath.hmath.h

Returns the result of the exponential function ex.expexplexpfexp

Returns the result of the exponential function 2x.exp2exp2lexp2fexp2

Returns the result of the exponential function ex-1.expm1expm1lexpm1fexpm1

Returns the natural logarithm ln(x), x>0.loglogllogflog

Returns the base-10 logarithm of x, x>0.log10log10llog10flog10

Returns the base-e logarithm of (1+x). x <> -1.log1plog1pllog1pflog1p

Returns the base-2 logarithm of x. x>0.log2log2llog2flog2

Returns the signed exponent of x as an integer. x>0.ilogbilogblilogbfilogb

Returns the exponent of x as a signed integer in value in
floating-point notation. x > 0.

logblogbllogbflogb

frexp, ldexp, modf, scalbn, scalbln

Descriptiontgmath.hmath.h

Splits a float x into fraction f and exponent n, so that:
f = 0.0 or 0.5 ≤ | f | ≤ 1.0 and f*2n = x. Returns f, stores n.

frexpfrexplfrexpffrexp

Inverse of frexp. Returns the result of x*2n.
(x and n are both arguments).

ldexpldexplldexpfldexp

494

TASKING SmartCode - PPU User Guide



Descriptiontgmath.hmath.h

Splits a float x into fraction f and integer n, so that:
| f | < 1.0 and f+n=x. Returns f, stores n.

-modflmodffmodf

Computes the result of x*FLT_RADIXn. efficiently, not
normally by computing FLT_RADIXn explicitly.

scalbnscalbnlscalbnfscalbn

Same as scalbn but with argument n as long int.scalblnscalblnlscalblnfscalbln

Rounding functions

Descriptiontgmath.hmath.h

Returns the smallest integer not less than x, as a double.ceilceillceilfceil

Returns the largest integer not greater than x, as a double.floorfloorlfloorffloor

Returns the rounded integer value as an int according
to the current rounding direction. See fenv.h.

rintrintlrintfrint

Returns the rounded integer value as a long int
according to the current rounding direction. See fenv.h.

lrintlrintllrintflrint

Returns the rounded integer value as a long long int
according to the current rounding direction. See fenv.h.

llrintllrintlllrintfllrint

Returns the rounded integer value as a floating-point
according to the current rounding direction. See fenv.h.

nearbyintnearbyintlnearbyintfnearbyint

Returns the nearest integer value of x as int.roundroundlroundfround

Returns the nearest integer value of x as long int.lroundlroundllroundflround

Returns the nearest integer value of x as long long int.llroundllroundllroundfllround

Returns the truncated integer value x.trunctruncltruncftrunc

Remainder after division

Descriptiontgmath.hmath.h

Returns the remainder r of x-ny. n is chosen as
trunc(x/y). r has the same sign as x.

fmodfmodlfmodffmod

Returns the remainder r of x-ny. n is chosen as
trunc(x/y). r may not have the same sign as x.

remainderremainderlremainderfremainder

Same as remainder. In addition, the argument *quo is
given a specific value (see ISO).

remquoremquolremquofremquo

Power and absolute-value functions

Descriptiontgmath.hmath.h

Returns the real cube root of x (=x1/3).cbrtcbrtlcbrtfcbrt

Returns the absolute value of x (|x|). (abs, labs, llabs,
div, ldiv, lldiv are defined in stdlib.h)

fabsfabslfabsffabs

495

Libraries



Descriptiontgmath.hmath.h

Floating-point multiply add. Returns x*y+z.fmafmalfmaffma

Returns the square root of x2+y2.hypothypotlhypotfhypot

Returns x raised to the power y (xy).powerpowlpowfpow

Returns the non-negative square root of x. x 0.sqrtsqrtlsqrtfsqrt

Manipulation functions: copysign, nan, nextafter, nexttoward

Descriptiontgmath.hmath.h

Returns the value of x with the sign of y.copysigncopysignllcopysignfcopysign

Returns a quiet NaN, if available, with content indicated
through tagp.

-nanlnanfnan

Returns the next representable value in the specified
format after x in the direction of y. Returns y is x=y.

nextafternextafterlnextafterfnextafter

Same as nextafter, except that the second argument
in all three variants is of type long double. Returns y if
x=y.

nexttowardnexttowardlnexttowardfnexttoward

Positive difference, maximum, minimum

Descriptiontgmath.hmath.h

Returns the positive difference between: |x-y|.fdimfdimlfdimffdim

Returns the maximum value of their arguments.fmaxfmaxlfmaxffmax

Returns the minimum value of their arguments.fminfminlfminffmin

Error and gamma

Descriptiontgmath.hmath.h

Computes the error function of x.erferflerfferf

Computes the complementary error function of x.ercerfclerfcferfc

Computes the *loge|Γ(x)|lgammalgammallgammaflgamma

Computes Γ(x)tgammatgammaltgammaftgamma

Comparison macros

The next are implemented as macros. For any ordered pair of numeric values exactly one of the
relationships - less, greater, and equal - is true.These macros are type generic and therefore do not have
a parallel function in tgmath.h. All arguments must be expressions of real-floating type.

Descriptiontgmath.hmath.h

Returns the value of (x) > (y)-isgreater

Returns the value of (x) >= (y)-isgreaterequal

496

TASKING SmartCode - PPU User Guide



Descriptiontgmath.hmath.h

Returns the value of (x) < (y)-isless

Returns the value of (x) <= (y)-islessequal

Returns the value of (x) < (y) || (x) > (y)-islessgreater

Returns 1 if its arguments are unordered, 0 otherwise.-isunordered

Classification macros

The next are implemented as macros.These macros are type generic and therefore do not have a parallel
function in tgmath.h. All arguments must be expressions of real-floating type.

Descriptiontgmath.hmath.h

Returns the class of its argument:
FP_INFINITE, FP_NAN, FP_NORMAL, FP_SUBNORMAL or
FP_ZERO

-fpclassify

Returns a nonzero value if and only if its argument has a finite
value

-isfinite

Returns a nonzero value if and only if its argument has an infinite
value

-isinf

Returns a nonzero value if and only if its argument has NaN value.-isnan

Returns a nonzero value if an only if its argument has a normal
value.

-isnormal

Returns a nonzero value if and only if its argument value is
negative.

-signbit

9.1.19. setjmp.h

The setjmp and longjmp in this header file implement a primitive form of non-local jumps, which may
be used to handle exceptional situations. This facility is traditionally considered more portable than
signal.h

Records its caller's environment in env and returns 0.int setjmp(jmp_buf
env)

Restores the environment previously saved with a call to setjmp().void longjmp(jmp_buf
env, int status)

9.1.20. signal.h

Signals are possible asynchronous events that may require special processing. Each signal is named by
a number. The following signals are defined:

Receipt of an interactive attention signal1SIGINT

Detection of an invalid function message2SIGILL

An erroneous arithmetic operation (for example, zero divide, overflow)3SIGFPE

497

Libraries



An invalid access to storage4SIGSEGV

A termination request sent to the program5SIGTERM

Abnormal termination, such as is initiated by the abort function6SIGABRT

The next function sends the signal sig to the program:

int raise(int sig)

The next function determines how subsequent signals will be handled:

signalfunction *signal (int, signalfunction *);

The first argument specifies the signal, the second argument points to the signal-handler function or has
one of the following values:

Default behavior is usedSIG_DFL

The signal is ignoredSIG_IGN

The function returns the previous value of signalfunction for the specific signal, or SIG_ERR if an
error occurs.

9.1.21. stdalign.h

This C11 header file contains the following macro definitions about alignment:

#define alignas _Alignas
#define __alignas_is_defined    1

#define alignof _Alignof
#define __alignof_is_defined    1

9.1.22. stdarg.h

The facilities in this header file gives you a portable way to access variable arguments lists, such as
needed for as fprintf and vfprintf. va_copy is new in ISO C99. This header file contains the
following macros:

Returns the value of the next argument in the variable argument list.
Its return type has the type of the given argument type. A next call to
this macro will return the value of the next argument.

va_arg(va_list ap,type)

This macro duplicates the current state of src in dest, creating a
second pointer into the argument list. After this call, va_arg() may be
used on src and dest independently.

va_copy(va_list dest,
va_list src)

This macro must be called after the arguments have been processed.
It should be called before the function using the macro 'va_start' is
terminated.

va_end(va_list ap)

498

TASKING SmartCode - PPU User Guide



This macro initializes ap. After this call, each call to va_arg() will return
the value of the next argument. In our implementation, va_list cannot
contain any bit type variables. Also the given argument lastarg must
be the last non-bit type argument in the list.

va_start(va_list ap,
lastarg)

9.1.23. stdbool.h

This header file contains the following macro definitions. These names for boolean type and values are
consistent with C++.You are allowed to #undefine or redefine the macros below.

#define bool                            _Bool
#define true                            1
#define false                           0
#define __bool_true_false_are_defined   1

9.1.24. stddef.h

This header file defines the types for common use:

Signed integer type of the result of subtracting two pointers.ptrdiff_t

Unsigned integral type of the result of the sizeof operator.size_t

Integer type to represent character codes in large character sets.wchar_t

Besides these types, the following macros are defined:

Expands to the null pointer constant (void *) 0.NULL

Expands to an integer constant expression with type size_t that is the offset
in bytes of _member within structure type _type.

offsetof(_type,
_member)

9.1.25. stdint.h

See Section 9.1.11, inttypes.h and stdint.h

9.1.26. stdio.h and wchar.h

Types

The header file stdio.h contains functions for performing input and output. A number of functions also
have a parallel wide character function or macro, defined in wchar.h. The header file wchar.h also
includes stdio.h.

In the C language, many I/O facilities are based on the concept of streams. The stdio.h header file
defines the data type FILE which holds the information about a stream. A FILE object is created with
the function fopen. The pointer to this object is used as an argument in many of the in this header file.
The FILE object can contain the following information:

• the current position within the stream

499

Libraries



• pointers to any associated buffers

• indications of for read/write errors

• end of file indication

The header file also defines type fpos_t as an unsigned long.

Macros

Descriptionstdio.h

Expands to the null pointer constant (void *) 0.NULL

Size of the buffer used by the setbuf/setvbuf function: 512BUFSIZ

End of file indicator. Expands to -1.EOF

End of file indicator. Expands to UINT_MAX (defined in limits.h)
NOTE: WEOF need not to be a negative number as long as its value does not
correspond to a member of the wide character set. (Defined in wchar.h).

WEOF

Number of files that can be opened simultaneously: 10FOPEN_MAX

Maximum length of a filename: 100FILENAME_MAX

Expand to an integer expression, suitable for use as argument to the setvbuf function._IOFBF
_IOLBF
_IONBF

Size of the string used to hold temporary file names: 8 (tmpxxxxx)L_tmpnam

Maximum number of unique temporary filenames that can be generated: 0x8000TMP_MAX

Expand to an integer expression, suitable for use as the third argument to the fseek
function.

SEEK_CUR
SEEK_END
SEEK_SET

Expressions of type "pointer to FILE" that point to the FILE objects associated with
standard error, input and output streams.

stderr
stdin
stdout

File access

Descriptionstdio.h

Opens a file for a given mode. Available modes are:fopen(name,mode)

500

TASKING SmartCode - PPU User Guide



Descriptionstdio.h

"r"   read; open text file for reading
"w"   write; create text file for writing;

if the file already exists, its contents is discarded
"a"   append; open existing text file or

create new text file for writing at end of file
"r+"  open text file for update; reading and writing
"w+"  create text file for update; previous

contents if any is discarded
"a+"  append; open or create text file for update,

writes at end of file

(FSS implementation)

Flushes the data stream and closes the specified file that was previously
opened with fopen. (FSS implementation)

fclose(name)

If stream is an output stream, any buffered but unwritten date is written.
Else, the effect is undefined. (FSS implementation)

fflush(name)

Similar to fopen, but rather than generating a new value of type FILE *,
the existing value is associated with a new stream. (FSS implementation)

freopen(name,mode,
stream)

If buffer is NULL, buffering is turned off for the stream. Otherwise, setbuf
is equivalent to:(void) setvbuf(stream,buffer,_IOFBF,BUFSIZ).

setbuf(stream,buffer)

Controls buffering for the stream; this function must be called before reading
or writing. Mode can have the following values:
_IOFBF causes full buffering
_IOLBF causes line buffering of text files
_IONBF causes no buffering.
If buffer is not NULL, it will be used as a buffer; otherwise a buffer will be
allocated. size determines the buffer size.

setvbuf(stream,buffer,mode,
size)

Formatted input/output

The format string of printf related functions can contain plain text mixed with conversion specifiers.
Each conversion specifier should be preceded by a '%' character. The conversion specifier should be
built in order:

• Flags (in any order):

specifies left adjustment of the converted argument.-

a number is always preceded with a sign character.
+ has higher precedence than space.

+

a negative number is preceded with a sign, positive numbers with a space.space

specifies padding to the field width with zeros (only for numbers).0

specifies an alternate output form. For o, the first digit will be zero. For x or X, "0x" and "0X"
will be prefixed to the number. For e, E, f, g, G, the output always contains a decimal point,
trailing zeros are not removed.

#

501

Libraries



• A number specifying a minimum field width. The converted argument is printed in a field with at least
the length specified here. If the converted argument has fewer characters than specified, it will be
padded at the left side (or at the right when the flag '-' was specified) with spaces. Padding to numeric
fields will be done with zeros when the flag '0' is also specified (only when padding left). Instead of a
numeric value, also '*' may be specified, the value is then taken from the next argument, which is
assumed to be of type int.

• A period. This separates the minimum field width from the precision.

• A number specifying the maximum length of a string to be printed. Or the number of digits printed after
the decimal point (only for floating-point conversions). Or the minimum number of digits to be printed
for an integer conversion. Instead of a numeric value, also '*' may be specified, the value is then taken
from the next argument, which is assumed to be of type int.

• A length modifier 'h', 'hh', 'l', 'll', 'L', 'j', 'z' or 't'. 'h' indicates that the argument is to be treated as a short
or unsigned short. 'hh' indicates that the argument is to be treated as a char or unsigned char.
'l' should be used if the argument is a long integer, 'll' for a long long. 'L' indicates that the argument
is a long double. 'j' indicates a pointer to intmax_t or uintmax_t, 'z' indicates a pointer to size_t
and 't' indicates a pointer to ptrdiff_t.

Flags, length specifier, period, precision and length modifier are optional, the conversion character is not.
The conversion character must be one of the following, if a character following '%' is not in the list, the
behavior is undefined:

Printed asCharacter

int, signed decimald, i

int, unsigned octalo

int, unsigned hexadecimal in lowercase or uppercase respectivelyx, X

int, unsigned decimalu

int, single character (converted to unsigned char)c

char *, the characters from the string are printed until a NULL character is found. When the
given precision is met before, printing will also stop

s

doublef, F

doublee, E

doubleg, G

doublea, A

int *, the number of characters written so far is written into the argument. This should be a
pointer to an integer in default memory. No value is printed.

n

pointerp

No argument is converted, a '%' is printed.%

printf conversion characters

All arguments to the scanf related functions should be pointers to variables (in default memory) of the
type which is specified in the format string.

502

TASKING SmartCode - PPU User Guide



The format string can contain :

• Blanks or tabs, which are skipped.

• Normal characters (not '%'), which should be matched exactly in the input stream.

• Conversion specifications, starting with a '%' character.

Conversion specifications should be built as follows (in order) :

• A '*', meaning that no assignment is done for this field.

• A number specifying the maximum field width.

• The conversion characters d, i, n, o, u and x may be preceded by 'h' if the argument is a pointer to
short rather than int, or by 'hh' if the argument is a pointer to char, or by 'l' (letter ell) if the argument
is a pointer to long or by 'll' for a pointer to long long, 'j' for a pointer to intmax_t or uintmax_t,
'z' for a pointer to size_t or 't' for a pointer to ptrdiff_t. The conversion characters e, f, and g
may be preceded by 'l' if the argument is a pointer to double rather than float, and by 'L' for a pointer
to a long double.

• A conversion specifier. '*', maximum field width and length modifier are optional, the conversion character
is not. The conversion character must be one of the following, if a character following '%' is not in the
list, the behavior is undefined.

Length specifier and length modifier are optional, the conversion character is not.The conversion character
must be one of the following, if a character following '%' is not in the list, the behavior is undefined.

Scanned asCharacter

int, signed decimal.d

int, the integer may be given octal (i.e. a leading 0 is entered) or hexadecimal (leading "0x"
or "0X"), or just decimal.

i

int, unsigned octal.o

int, unsigned decimal.u

int, unsigned hexadecimal in lowercase or uppercase.x

single character (converted to unsigned char).c

char *, a string of non white space characters. The argument should point to an array of
characters, large enough to hold the string and a terminating NULL character.

s

floatf, F

floate, E

floatg, G

floata, A

int *, the number of characters written so far is written into the argument. No scanning is done.n

pointer; hexadecimal value which must be entered without 0x- prefix.p

503

Libraries



Scanned asCharacter

Matches a string of input characters from the set between the brackets. A NULL character is
added to terminate the string. Specifying [ ]...] includes the ']' character in the set of scanning
characters.

[...]

Matches a string of input characters not in the set between the brackets. A NULL character
is added to terminate the string. Specifying [^]...] includes the ']' character in the set.

[^...]

Literal '%', no assignment is done.%

scanf conversion characters

Descriptionwchar.hstdio.h

Performs a formatted read from the given stream.
Returns the number of items converted
successfully. (FSS implementation)

fwscanf(stream,
format, ...)

fscanf(stream,
format, ...)

Performs a formatted read from stdin. Returns
the number of items converted successfully. (FSS
implementation)

wscanf(format, ...)scanf(format,...)

Performs a formatted read from the string s.
Returns the number of items converted
successfully.

swscanf(*s, format,
...)

sscanf(*s, format,
...)

Same as fscanf/fwscanf, but extra arguments
are given as variable argument list arg. (See
Section 9.1.22, stdarg.h)

vfwscanf(stream,
format, arg)

vfscanf(stream,
format, arg)

Same as sscanf/swscanf, but extra arguments
are given as variable argument list arg. (See
Section 9.1.22, stdarg.h)

vwscanf(format, arg)vscanf(format, arg)

Same as scanf/wscanf, but extra arguments
are given as variable argument list arg. (See
Section 9.1.22, stdarg.h)

vswscanf(*s, format,
arg)

vsscanf(*s, format,
arg)

Performs a formatted write to the given stream.
Returns EOF/WEOF on error. (FSS
implementation)

fwprintf(stream,
format, ...)

fprintf(stream,
format, ...)

Performs a formatted write to the stream stdout.
Returns EOF/WEOF on error. (FSS
implementation)

wprintf(format, ...)printf(format, ...)

Performs a formatted write to string s. Returns
EOF/WEOF on error.

-sprintf(*s, format,
...)

Same as sprintf, but n specifies the maximum
number of characters (including the terminating
null character) to be written.

swprintf(*s, n,
format, ...)

snprintf(*s, n,
format, ...)

Same as fprintf/fwprintf, but extra
arguments are given as variable argument list
arg. (See Section 9.1.22, stdarg.h) (FSS
implementation)

vfwprintf(stream,
format, arg)

vfprintf(stream,
format, arg)

504

TASKING SmartCode - PPU User Guide



Descriptionwchar.hstdio.h

Same as printf/wprintf, but extra arguments
are given as variable argument list arg. (See
Section 9.1.22, stdarg.h) (FSS implementation)

vwprintf(format,
arg)

vprintf(format, arg)

Same as sprintf/swprintf, but extra
arguments are given as variable argument list
arg. (See Section 9.1.22, stdarg.h)

vswprintf(*s,
format, arg)

vsprintf(*s, format,
arg)

The C library functions printf(), fprintf(), vfprintf(), vsprintf(), ... call one single function,
_doprint(), that deals with the format string and arguments. The same applies to all scanf type
functions, which call the function _doscan(), and also for the wprintf and wscanf type functions
which call _dowprint() and _dowscan() respectively. The C library contains three versions of these
routines: int, long and long long versions. If you use floating-point the formatter function for
floating-point _doflt() or _dowflt() is called. Depending on the formatting arguments you use, the
correct routine is used from the library. Of course the larger the version of the routine the larger your
produced code will be.

Note that when you call any of the printf/scanf routines indirectly, the arguments are not known and always
the long long version with floating-point support is used from the library.

Example:

#include <stdio.h>

long L;

void main(void)
{
    printf( "This is a long: %ld\n", L );
}

The linker extracts the long version without floating-point support from the library.

See also the description of #pragma weak in Section 1.7, Pragmas to Control the Compiler.

Character input/output

Descriptionwchar.hstdio.h

Reads one character from stream. Returns the
read character, or EOF/WEOF on error. (FSS
implementation)

fgetwc(stream)fgetc(stream)

Same as fgetc/fgetwc except that is
implemented as a macro.
(FSS implementation)
NOTE: Currently #defined as
getchar()/getwchar() because FILE I/O is
not supported. Returns the read character, or
EOF/WEOF on error.

getwc(stream)getc(stream)

505

Libraries



Descriptionwchar.hstdio.h

Reads one character from the stdin stream.
Returns the character read or EOF/WEOF on
error. Implemented as macro.
(FSS implementation)

getwchar(stdin)getchar(stdin)

Reads at most the next n-1 characters from the
stream into array s until a newline is found.
Returns s or NULL or EOF/WEOF on error. (FSS
implementation)

fgetws(*s, n,
stream)

fgets(*s, n, stream)

(C90/C99 only) Reads characters from the stdin
stream into array s until end-of-file is encountered
or a newline is found. The newline is replaced by
a NULL character. Returns s or NULL on EOF.
(FSS implementation)

-gets(*s)

Pushes character c back onto the input stream.
Returns EOF/WEOF on error.

ungetwc(c, stream)ungetc(c, stream)

Put character c onto the given stream. Returns
EOF/WEOF on error. (FSS implementation)

fputwc(c, stream)fputc(c, stream)

Same as fpuc/fputwc except that is
implemented as a macro. (FSS implementation)

putwc(c, stream)putc(c, stream)

Put character c onto the stdout stream. Returns
EOF/WEOF on error.
Implemented as macro. (FSS implementation)

putwchar(c, stdout)putchar(c, stdout)

Writes string s to the given stream. Returns
EOF/WEOF on error. (FSS implementation)

fputws(*s, stream)fputs(*s, stream)

Writes string s to the stdout stream. Returns
EOF/WEOF on error. (FSS implementation)

-puts(*s)

Direct input/output

Descriptionstdio.h

Reads nobj members of size bytes from the given stream into
the array pointed to by ptr. Returns the number of elements
successfully read. (FSS implementation)

fread(ptr,size,nobj,stream)

Writes nobj members of size bytes from to the array pointed to
by ptr to the given stream. Returns the number of elements
successfully written. (FSS implementation)

fwrite(ptr,size,nobj,stream)

Random access

Descriptionstdio.h

Sets the position indicator for stream. (FSS implementation)fseek(stream, offset,
origin)

When repositioning a binary file, the new position origin is given by the following macros:

506

TASKING SmartCode - PPU User Guide



SEEK_SET 0 offset characters from the beginning of the file
SEEK_CUR 1 offset characters from the current position in the file
SEEK_END 2 offset characters from the end of the file

Returns the current file position for stream, or -1L on error.
(FSS implementation)

ftell(stream)

Sets the file position indicator for the stream to the beginning of the file. This
function is equivalent to:
(void) fseek(stream,0L,SEEK_SET);
clearerr(stream);
(FSS implementation)

rewind(stream)

Stores the current value of the file position indicator for stream in the object
pointed to by pos. (FSS implementation)

fgetpos(stream,pos)

Positions stream at the position recorded by fgetpos in *pos. (FSS
implementation)

fsetpos(stream,pos)

Operations on files

Descriptionstdio.h

Removes the named file, so that a subsequent attempt to open it fails. Returns a
non-zero value if not successful.

remove(file)

Changes the name of the file from old name to new name. Returns a non-zero
value if not successful.

rename(old,new)

Creates a temporary file of the mode "wb+" that will be automatically removed when
closed or when the program terminates normally. Returns a file pointer.

tmpfile()

Creates new file names that do not conflict with other file names currently in use.
The new file name is stored in a buffer which must have room for L_tmpnam
characters. Returns a pointer to the temporary name. The file names are created
in the current directory and all start with "tmp". At most TMP_MAX unique file names
can be generated.

tmpnam(buffer)

Error handling

Descriptionstdio.h

Clears the end of file and error indicators for stream.clearerr(stream)

Returns a non-zero value if the error indicator for stream is set.ferror(stream)

Returns a non-zero value if the end of file indicator for stream is set.feof(stream)

Prints s and the error message belonging to the integer errno. (See
Section 9.1.5, errno.h )

perror(*s)

9.1.27. stdlib.h and wchar.h

The header file stdlib.h contains general utility functions which fall into the following categories (Some
have parallel wide character, declared in wchar.h)

507

Libraries



• Numeric conversions

• Random number generation

• Memory management

• Environment communication

• Searching and sorting

• Integer arithmetic

• Multibyte/wide character and string conversions.

Macros

Predefined exit codes that can be used in the exit function.EXIT_SUCCES
0
EXIT_FAILURE
1

Highest number that can be returned by the rand/srand function.RAND_MAX
32767

Maximum number of bytes in a multibyte character for the extended character set
specified by the current locale (category LC_CTYPE, see Section 9.1.16, locale.h).

MB_CUR_MAX 1

Numeric conversions

The following functions convert the initial portion of a string *s to a double, int, long int and long
long int value respectively.

double      atof(*s)
int         atoi(*s)
long        atol(*s)
long long   atoll(*s)

The following functions convert the initial portion of the string *s to a float, double and long double value
respectively. *endp will point to the first character not used by the conversion.

wchar.hstdlib.h

float       wcstof(*s,**endp)
double      wcstod(*s,**endp)
long double wcstold(*s,**endp)

float       strtof(*s,**endp)
double      strtod(*s,**endp)
long double strtold(*s,**endp)

The following functions convert the initial portion of the string *s to a long, long long, unsigned
long and unsigned long long respectively. Base specifies the radix. *endp will point to the first
character not used by the conversion.

508

TASKING SmartCode - PPU User Guide



wchar.hstdlib.h

long wcstol (*s,**endp,base)
long long wcstoll
            (*s,**endp,base)
unsigned long wcstoul
            (*s,**endp,base)
unsigned long long wcstoull
            (*s,**endp,base)

long strtol (*s,**endp,base)
long long strtoll
            (*s,**endp,base)
unsigned long strtoul
            (*s,**endp,base)
unsigned long long strtoull
            (*s,**endp,base)

Random number generation

Returns a pseudo random integer in the range 0 to RAND_MAX.rand

Same as rand but uses seed for a new sequence of pseudo random numbers.srand(seed)

Memory management

Allocates space for an object with size size.
The allocated space is not initialized. Returns a pointer to the allocated
space.

malloc(size)

(C11 only) Allocates space for an object whose alignment is specified by
alignment and with size size.
The allocated space is not initialized. Returns a pointer to the allocated
space.

aligned_alloc(alignment,
size)

Allocates space for n objects with size size.
The allocated space is initialized with zeros. Returns a pointer to the
allocated space.

calloc(nobj,size)

Deallocates the memory space pointed to by ptr which should be a pointer
earlier returned by the malloc or calloc function.

free(*ptr)

Deallocates the old object pointed to by ptr and returns a pointer to a new
object with size size, while preserving its contents.
If the new size is smaller than the old size, some contents at the end of
the old region will be discarded. If the new size is larger than the old size,
all of the old contents are preserved and any bytes in the new object
beyond the size of the old object will have indeterminate values.

realloc(*ptr,size)

Environment communication

Causes abnormal program termination. If the signal SIGABRT is caught,
the signal handler may take over control. (See Section 9.1.20, signal.h).

abort()

func points to a function that is called (without arguments) when the
program normally terminates.

atexit(*func)

Causes normal program termination. Acts as if main() returns with status
as the return value. Status can also be specified with the predefined macros
EXIT_SUCCES or EXIT_FAILURE.

exit(status)

509

Libraries



Same as exit, but not registered by the atexit function or signal
handlers registered by the signal function are called.

_Exit(status)

(C11 only) Registers the function pointed to by func to be called (without
arguments) when quick_exit is called. Returns zero if the registration
succeeds, nonzero if it fails.

at_quick_exit(*func)

(C11 only) Causes normal program termination. Calls all functions
registered by the at_quick_exit function, in the reverse order of their
registration, and then calls _Exit.

quick_exit(status)

Searches an environment list for a string s. Returns a pointer to the
contents of s.
NOTE: this function is not implemented because there is no OS.

getenv(*s)

Passes the string s to the environment for execution.
NOTE: this function is not implemented because there is no OS.

system(*s)

Searching and sorting

This function searches in an array of n members, for the object pointed to by
key. The initial base of the array is given by base. The size of each member
is specified by size. The given array must be sorted in ascending order,
according to the results of the function pointed to by cmp. Returns a pointer
to the matching member in the array, or NULL when not found.

bsearch(*key,
*base, n, size,
*cmp)

This function sorts an array of n members using the quick sort algorithm. The
initial base of the array is given by base. The size of each member is specified
by size. The array is sorted in ascending order, according to the results of the
function pointed to by cmp.

qsort(*base, n,
size, *cmp)

Integer arithmetic

Compute the absolute value of an int, long int, and long long int j
respectively.

int abs(j)
long labs(j)
long long llabs(j)

Compute x/y and x%y in a single operation. X and y have respectively type
int, long int and long long int. The result is stored in the members
quot and rem of struct div_t, ldiv_t and lldiv_t which have the
same types.

div_t div(x,y)
ldiv_t ldiv(x,y)
lldiv_t lldiv(x,y)

Multibyte/wide character and string conversions

Determines the number of bytes in the multibyte character pointed to by s. At
most n characters will be examined. (See also mbrlen in Section 9.1.33,
wchar.h).

mblen(*s,n)

Converts the multibyte character in s to a wide character code and stores it in
pwc. At most n characters will be examined.

mbtowc(*pwc,*s,n)

Converts the wide character wc into a multibyte representation and stores it
in the string pointed to by s. At most MB_CUR_MAX characters are stored.

wctomb(*s,wc)

510

TASKING SmartCode - PPU User Guide



Converts a sequence of multibyte characters in the string pointed to by s into
a sequence of wide characters and stores at most n wide characters into the
array pointed to by pwcs. (See also mbsrtowcs in Section 9.1.33, wchar.h).

mbstowcs(*pwcs,*s,n)

Converts a sequence of wide characters in the array pointed to by pwcs into
multibyte characters and stores at most n multibyte characters into the string
pointed to by s. (See also wcsrtowmb in Section 9.1.33, wchar.h).

wcstombs(*s,*pwcs,n)

9.1.28. stdnoreturn.h

This C11 header file contains the following macro definition:

#define noreturn _Noreturn

9.1.29. string.h and wchar.h

This header file provides numerous functions for manipulating strings. By convention, strings in C are
arrays of characters with a terminating null character. Most functions therefore take arguments of type
*char. However, many functions have also parallel wide character functions which take arguments of
type *wchar_t. These functions are declared in wchar.h.

Copying and concatenation functions

Descriptionwchar.hstring.h

Copies n characters from *s2 into *s1 and returns *s1. If
*s1 and *s2 overlap the result is undefined.

wmemcpy(*s1,*s2,n)memcpy(*s1,*s2,n)

Same as memcpy, but overlapping strings are handled
correctly. Returns *s1.

wmemmove(*s1,*s2,n)memmove(*s1,*s2,n)

Copies *s2 into *s1 and returns *s1. If *s1 and *s2 overlap
the result is undefined.

wcscpy(*s1,*s2)strcpy(*s1,*s2)

Copies not more than n characters from *s2 into *s1 and
returns *s1. If *s1 and *s2 overlap the result is undefined.

wcsncpy(*s1,*s2,n)strncpy(*s1,*s2,n)

Appends a copy of *s2 to *s1 and returns *s1. If *s1 and
*s2 overlap the result is undefined.

wcscat(*s1,*s2)strcat(*s1,*s2)

Appends not more than n characters from *s2 to *s1 and
returns *s1. If *s1 and *s2 overlap the result is undefined.

wcsncat(*s1,*s2,n)strncat(*s1,*s2,n)

Comparison functions

Descriptionwchar.hstring.h

Compares the first n characters of *s1 to the first n
characters of *s2. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2.

wmemcmp(*s1,*s2,n)memcmp(*s1,*s2,n)

Compares string *s1 to *s2. Returns < 0 if *s1 < *s2, 0 if *s1
= = *s2, or > 0 if *s1 > *s2.

wcscmp(*s1,*s2)strcmp(*s1,*s2)

511

Libraries



Descriptionwchar.hstring.h

Compares the first n characters of *s1 to the first n
characters of *s2. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2.

wcsncmp(*s1,*s2,n)strncmp(*s1,*s2,n)

Performs a local-specific comparison between string *s1
and string *s2 according to the LC_COLLATE category of
the current locale. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2. (See Section 9.1.16, locale.h)

wcscoll(*s1,*s2)strcoll(*s1,*s2)

Transforms (a local) string *s2 so that a comparison
between transformed strings with strcmp gives the same
result as a comparison between non-transformed strings
with strcoll. Returns the transformed string *s1.

wcsxfrm(*s1,*s2,n)strxfrm(*s1,*s2,n)

Search functions

Descriptionwchar.hstring.h

Checks the first n characters of *s on the occurrence of
character c. Returns a pointer to the found character.

wmemchr(*s,c,n)memchr(*s,c,n)

Returns a pointer to the first occurrence of character c in
*s or the null pointer if not found.

wcschr(*s,c)strchr(*s,c)

Returns a pointer to the last occurrence of character c in *s
or the null pointer if not found.

wcsrchr(*s,c)strrchr(*s,c)

Searches *s for a sequence of characters specified in *set.
Returns the length of the first sequence found.

wcsspn(*s,*set)strspn(*s,*set)

Searches *s for a sequence of characters not specified in
*set. Returns the length of the first sequence found.

wcscspn(*s,*set)strcspn(*s,*set)

Same as strspn/wcsspn but returns a pointer to the first
character in *s that also is specified in *set.

wcspbrk(*s,*set)strpbrk(*s,*set)

Searches for a substring *sub in *s. Returns a pointer to the
first occurrence of *sub in *s.

wcsstr(*s,*sub)strstr(*s,*sub)

A sequence of calls to this function breaks the string *s into
a sequence of tokens delimited by a character specified in
*dlm. The token found in *s is terminated with a null
character. Returns a pointer to the first position in *s of the
token.

wcstok(*s,*dlm)strtok(*s,*dlm)

Miscellaneous functions

Descriptionwchar.hstring.h

Fills the first n bytes of *s with character c and returns *s.wmemset(*s,c,n)memset(*s,c,n)

Typically, the values for errno come from int errno. This
function returns a pointer to the associated error message.
(See also Section 9.1.5, errno.h)

-strerror(errno)

Returns the length of string *s.wcslen(*s)strlen(*s)

512

TASKING SmartCode - PPU User Guide



9.1.30. time.h and wchar.h

The header file time.h provides facilities to retrieve and use the (calendar) date and time, and the
process time. Time can be represented as an integer value, or can be broken-down in components. Two
arithmetic data types are defined which are capable of holding the integer representation of times:

clock_t unsigned long long
time_t unsigned long

The type struct tm below is defined according to ISO C99 with one exception: this implementation
does not support leap seconds. The struct tm type is defines as follows:

struct tm
{
  int   tm_sec;       /* seconds after the minute - [0, 59]   */
  int   tm_min;       /* minutes after the hour - [0, 59]     */
  int   tm_hour;      /* hours since midnight - [0, 23]       */
  int   tm_mday;      /* day of the month - [1, 31]           */
  int   tm_mon;       /* months since January - [0, 11]       */
  int   tm_year;      /* year since 1900                      */
  int   tm_wday;      /* days since Sunday - [0, 6]           */
  int   tm_yday;      /* days since January 1 - [0, 365]      */
  int   tm_isdst;     /* Daylight Saving Time flag            */
};

Time manipulation

Returns the application's best approximation to the processor time used by the
program since it was started.This low-level routine reads the 64-bit real-time counter
(RTC). To determine the time in seconds, the result of clock should be divided by
the value defined by CLOCKS_PER_SEC. This value is hard-coded to 500000000
(500MHz).

clock

Returns the difference t1-t0 in seconds.difftime(t1,t0)

Converts the broken-down time in the structure pointed to by tp, to a value of type
time_t. The return value has the same encoding as the return value of the time
function.

mktime(tm *tp)

Returns the current calendar time. This value is also assigned to *timer.time(*timer)

Time conversion

Converts the broken-down time in the structure pointed to by tp into a string in the
form Mon Feb 04 16:15:14 2013\n\0. Returns a pointer to this string.

asctime(tm *tp)

Converts the calender time pointed to by timer to local time in the form of a string.
This is equivalent to: asctime(localtime(timer))

ctime(*timer)

Converts the calender time pointed to by timer to the broken-down time, expressed
as UTC. Returns a pointer to the broken-down time.

gmtime(*timer)

513

Libraries



Converts the calendar time pointed to by timer to the broken-down time, expressed
as local time. Returns a pointer to the broken-down time.

localtime(*timer)

Formatted time

The next function has a parallel function defined in wchar.h:

wchar.htime.h

wcsftime(*s,smax,*fmt,tm *tp)strftime(*s,smax,*fmt,tm *tp)

Formats date and time information from struct tm *tp into *s according to the specified format *fmt.
No more than smax characters are placed into *s. The formatting of strftime is locale-specific using
the LC_TIME category (see Section 9.1.16, locale.h).

You can use the next conversion specifiers:

abbreviated weekday name%a

full weekday name%A

abbreviated month name%b

full month name%B

locale-specific date and time representation (same as %a %b %e %T %Y)%c

last two digits of the year%C

day of the month (01-31)%d

same as %m/%d/%y%D

day of the month (1-31), with single digits preceded by a space%e

ISO 8601 date format: %Y-%m-%d%F

last two digits of the week based year (00-99)%g

week based year (0000–9999)%G

same as %b%h

hour, 24-hour clock (00-23)%H

hour, 12-hour clock (01-12)%I

day of the year (001-366)%j

month (01-12)%m

minute (00-59)%M

replaced by newline character%n

locale's equivalent of AM or PM%p

locale's 12-hour clock time; same as %I:%M:%S %p%r

same as %H:%M%R

second (00-59)%S

replaced by horizontal tab character%t

514

TASKING SmartCode - PPU User Guide



ISO 8601 time format: %H:%M:%S%T

ISO 8601 weekday number (1-7), Monday as first day of the week%u

week number of the year (00-53), week 1 has the first Sunday%U

ISO 8601 week number (01-53) in the week-based year%V

weekday (0-6, Sunday is 0)%w

week number of the year (00-53), week 1 has the first Monday%W

local date representation%x

local time representation%X

year without century (00-99)%y

year with century%Y

ISO 8601 offset of time zone from UTC, or nothing%z

time zone name, if any%Z

%%%

9.1.31. uchar.h

The C11 header file uchar.h declares types and functions for manipulating Unicode characters.

This header file declares the types:

Unsigned integer type used for 16-bit characters.char16_t

Unsigned integer type used for 32-bit characters.char32_t

Unsigned integer type of the result of the sizeof operator.size_t

Integer type to represent character codes in large character sets.wchar_t

The functions perform conversions between multibyte characters and Unicode characters. In these
functions, ps points to struct mbstate_t which holds the conversion state information necessary to
convert between sequences of multibyte characters and Unicode characters:

typedef struct
{
     wchar_t         wc_value;  /* wide character value solved
                                   so far */
     unsigned short  n_bytes;   /* number of bytes of solved
                                   multibyte */
     unsigned short  encoding;  /* encoding rule for wide
                                   character <=> multibyte
                                   conversion */
} mbstate_t;

Converts a multibyte character *s to a 16-bit character *pc16 according
to conversion state ps.

mbrtoc16(*pc16,*s,n,*ps)

Converts a 16-bit character c16 to a multibyte character according to
conversion state ps and stores the multibyte character in *s.

c16rtomb(*s,c16,*ps)

515

Libraries



Converts a multibyte character *s to a 32-bit character *pc32 according
to conversion state ps.

mbrtoc32(*pc32,*s,n,*ps)

Converts a 32-bit character c32 to a multibyte character according to
conversion state ps and stores the multibyte character in *s.

c32rtomb(*s,c32,*ps)

9.1.32. unistd.h

The file unistd.h contains standard UNIX I/O functions. These functions are all implemented using file
system simulation. Except for lstat and fstat which are not implemented. This header file is not
defined in ISO C99.

Use file system simulation to check the permissions of a file on the host. mode
specifies the type of access and is a bit pattern constructed by a logical OR of
the following values:

  R_OK   Checks read permission.
  W_OK   Checks write permission.
  X_OK   Checks execute (search) permission.
  F_OK   Checks to see if the file exists.

(FSS implementation)

access(*name,mode)

Use file system simulation to change the current directory on the host to the
directory indicated by path. (FSS implementation)

chdir(*path)

File close function. The given file descriptor should be properly closed. This
function calls _close(). (FSS implementation)

close(fd)

Use file system simulation to retrieve the current directory on the host. Returns
the directory name. (FSS implementation)

getcwd(*buf,size)

Moves read-write file offset. Calls _lseek(). (FSS implementation)lseek(fd,offset,whence)

Reads a sequence of characters from a file.This function calls _read(). (FSS
implementation)

read(fd,*buff,cnt)

Use file system simulation to stat() a file on the host platform. (FSS
implementation)

stat(*name,*buff)

This function is identical to stat(), except in the case of a symbolic link, where
the link itself is 'stat'-ed, not the file that it refers to. (Not implemented)

lstat(*name,*buff)

This function is identical to stat(), except that it uses a file descriptor instead
of a name. (Not implemented)

fstat(fd,*buff)

Removes the named file, so that a subsequent attempt to open it fails. (FSS
implementation)

unlink(*name)

Write a sequence of characters to a file. Calls _write(). (FSS implementation)write(fd,*buff,cnt)

9.1.33. wchar.h

Many functions in wchar.h represent the wide character variant of other functions so these are discussed
together. (See Section 9.1.26, stdio.h and wchar.h, Section 9.1.27, stdlib.h and wchar.h, Section 9.1.29,
string.h and wchar.h and Section 9.1.30, time.h and wchar.h).

516

TASKING SmartCode - PPU User Guide



The remaining functions are described below. They perform conversions between multibyte characters
and wide characters. In these functions, ps points to struct mbstate_t which holds the conversion state
information necessary to convert between sequences of multibyte characters and wide characters:

typedef struct
{
     wchar_t         wc_value;  /* wide character value solved
                                   so far */
     unsigned short  n_bytes;   /* number of bytes of solved
                                   multibyte */
     unsigned short  encoding;  /* encoding rule for wide
                                   character <=> multibyte
                                   conversion */
} mbstate_t;

When multibyte characters larger than 1 byte are used, this struct will be used to store the conversion
information when not all the bytes of a particular multibyte character have been read from the source. In
this implementation, multibyte characters are 1 byte long (MB_CUR_MAX and MB_LEN_MAX are defined
as 1) and this will never occur.

Determines whether the object pointed to by ps, is an initial conversion
state. Returns a non-zero value if so.

mbsinit(*ps)

Restartable version of mbstowcs. See Section 9.1.27, stdlib.h and
wchar.h.The initial conversion state is specified by ps.The input sequence
of multibyte characters is specified indirectly by src.

mbsrtowcs(*pwcs,**src,n,*ps)

Restartable version of wcstombs. See Section 9.1.27, stdlib.h and
wchar.h. The initial conversion state is specified by ps. The input wide
string is specified indirectly by src.

wcsrtombs(*s,**src,n,*ps)

Converts a multibyte character *s to a wide character *pwc according to
conversion state ps. See also mbtowc in Section 9.1.27, stdlib.h and
wchar.h.

mbrtowc(*pwc,*s,n,*ps)

Converts a wide character wc to a multibyte character according to
conversion state ps and stores the multibyte character in *s.

wcrtomb(*s,wc,*ps)

Returns the wide character corresponding to character c. Returns WEOF
on error.

btowc(c)

Returns the multibyte character corresponding to the wide character c.
The returned multibyte character is represented as one byte. Returns
EOF on error.

wctob(c)

Inspects up to n bytes from the string *s to see if those characters
represent valid multibyte characters, relative to the conversion state held
in *ps.

mbrlen(*s,n,*ps)

9.1.34. wctype.h

Most functions in wctype.h represent the wide character variant of functions declared in ctype.h and
are discussed in Section 9.1.3, ctype.h and wctype.h. In addition, this header file provides extensible,
locale specific functions and wide character classification.

517

Libraries



Constructs a value of type wctype_t that describes a class of wide characters
identified by the string *property. If property identifies a valid class of wide characters
according to the LC_TYPE category (see Section 9.1.16, locale.h) of the current
locale, a non-zero value is returned that can be used as an argument in the
iswctype function.

wctype(*property)

Tests whether the wide character wc is a member of the class represented by
wctype_t desc. Returns a non-zero value if tested true.

iswctype(wc,desc)

Equivalent to locale specific testFunction

iswctype(wc,wctype("alnum"))iswalnum(wc)

iswctype(wc,wctype("alpha"))iswalpha(wc)

iswctype(wc,wctype("cntrl"))iswcntrl(wc)

iswctype(wc,wctype("digit"))iswdigit(wc)

iswctype(wc,wctype("graph"))iswgraph(wc)

iswctype(wc,wctype("lower"))iswlower(wc)

iswctype(wc,wctype("print"))iswprint(wc)

iswctype(wc,wctype("punct"))iswpunct(wc)

iswctype(wc,wctype("space"))iswspace(wc)

iswctype(wc,wctype("upper"))iswupper(wc)

iswctype(wc,wctype("xdigit"))iswxditig(wc)

Constructs a value of type wctype_t that describes a mapping between wide
characters identified by the string *property. If property identifies a valid mapping
of wide characters according to the LC_TYPE category (see Section 9.1.16, locale.h)
of the current locale, a non-zero value is returned that can be used as an argument
in the towctrans function.

wctrans(*property)

Transforms wide character wc into another wide character, described by desc.towctrans(wc,desc)

Equivalent to locale specific transformationFunction

towctrans(wc,wctrans("tolower")towlower(wc)

towctrans(wc,wctrans("toupper")towupper(wc)

9.2. C Library Reentrancy

Some of the functions in the C library are reentrant, others are not. The table below shows the functions
in the C library, and whether they are reentrant or not. A dash '-' means that the function is reentrant.
Note that some of the functions are not reentrant because they set the global variable 'errno' (or call other
functions that eventually set 'errno'). If your program does not check this variable and errno is the only
reason for the function not being reentrant, these functions can be assumed reentrant as well.

The explanation of the cause why a function is not reentrant sometimes refers to a footnote because the
explanation is too lengthy for the table.

518

TASKING SmartCode - PPU User Guide



Not reentrant becauseFunction

Uses global File System Simulation buffer, _dbg_request_close

Uses I/O functions which modify iob[ ]. See (1)._doflt

Uses indirect access to static iob[ ] array. See (1)._doprint

Uses indirect access to iob[ ] and calls ungetc (access to local static
ungetc[ ] buffer). See (1).

_doscan

See exit._Exit

Uses iob[ ], which is not reentrant. See (1)._filbuf

Uses iob[ ]. See (1)._flsbuf

Uses iob[ ]. See (1)._getflt

Defines static iob[ ]. See (1)._iob

Uses global File System Simulation buffer, _dbg_request_lseek

Uses global File System Simulation buffer, _dbg_request_open

Uses global File System Simulation buffer, _dbg_request_read

Uses global File System Simulation buffer, _dbg_request_unlink

Uses global File System Simulation buffer, _dbg_request_write

Calls exitabort

-abs labs llabs

Uses global File System Simulation buffer, _dbg_requestaccess

Sets errno.acos acosf acosl

Sets errno via calls to other functions.acosh acoshf acoshl

See malloc (5).aligned_alloc

asctime defines static array for broken-down time string.asctime

Sets errno.asin asinf asinl

Sets errno via calls to other functions.asinh asinhf asinhl

at_quick_exit defines static array with function pointers to execute
when quick_exit is called.

at_quick_exit

-atan atanf atanl

-atan2 atan2f atan2l

Sets errno via calls to other functions.atanh atanhf atanhl

atexit defines static array with function pointers to execute at exit of
program.

atexit

-atof

-atoi

-atol

-bsearch

-btowc

519

Libraries



Not reentrant becauseFunction

Sets errno. Uses static internal_state variable.c16rtomb

Sets errno. Uses static internal_state variable.c32rtomb

Sets errno via calls to other functions.cabs cabsf cabsl

Sets errno via calls to other functions.cacos cacosf cacosl

Sets errno via calls to other functions.cacosh cacosh cfacoshl

calloc uses static buffer management structures. See malloc (5).calloc

-carg cargf cargl

Sets errno via calls to other functions.casin casinf casinl

Sets errno via calls to other functions.casinh casinh cfasinhl

Sets errno via calls to other functions.catan catanf catanl

Sets errno via calls to other functions.catanh catanhf catanhl

-cbrt cbrtf cbrtl

Sets errno via calls to other functions.ccos ccosf ccosl

Sets errno via calls to other functions.ccosh ccoshf ccoshl

-ceil ceilf ceill

Sets errno via calls to other functions.cexp cexpf cexpl

Uses global File System Simulation buffer, _dbg_requestchdir

-cimag cimagf cimagl

Calls fclose. See (1)cleanup

Modifies iob[ ]. See (1)clearerr

-clock

Sets errno via calls to other functions.clog clogf clogl

Calls _closeclose

-conj conjf conjl

-copysign copysignf
copysignl

-cos cosf cosl

cosh calls exp(), which sets errno. If errno is discarded, cosh is
reentrant.

cosh coshf coshl

Sets errno via calls to other functions.cpow cpowf cpowl

-cproj cprojf cprojl

-creal crealf creall

Sets errno via calls to other functions.csin csinf csinl

Sets errno via calls to other functions.csinh csinhf csinhl

Sets errno via calls to other functions.csqrt csqrtf csqrtl

Sets errno via calls to other functions.ctan ctanf ctanl

520

TASKING SmartCode - PPU User Guide



Not reentrant becauseFunction

Sets errno via calls to other functions.ctanh ctanhf ctanhl

Calls asctimectime

-difftime

-div ldiv lldiv

-erf erfl erff

-erfc erfcf erfcl

Calls fclose indirectly which uses iob[ ] calls functions in _atexit
array. See (1). To make exit reentrant kernel support is required.

exit

Sets errno.exp expf expl

Sets errno.exp2 exp2f exp2l

Sets errno via calls to other functions.expm1 expm1f expm1l

-fabs fabsf fabsl

Uses values in iob[ ]. See (1).fclose

-fdim fdimf fdiml

Writes FPU_STATUS_WORD bits.feclearexcept

- (reads FPU_STATUS_WORD bits)fegetenv

- (reads FPU_STATUS_WORD bits via calls to other functions)fegetexceptflag

- (reads FPU_CTRL bits)fegetround

Reads/writes FPU_STATUS_WORD bits via calls to other functions.feholdexcept

Uses values in iob[ ]. See (1).feof

Writes FPU_STATUS_WORD bits.feraiseexcept

Uses values in iob[ ]. See (1).ferror

Writes FPU_STATUS_WORD bits.fesetenv

Writes FPU_STATUS_WORD bits via calls to other functions.fesetexceptflag

Writes FPU_CTRL bits via calls to other functions.fesetround

- (reads FPU_STATUS_WORD bits)fetestexcept

Writes FPU_STATUS_WORD bits via calls to other functions.feupdateenv

Modifies iob[ ]. See (1).fflush

Uses pointer to iob[ ]. See (1).fgetc fgetwc

Sets the variable errno and uses pointer to iob[ ]. See (1) / (2).fgetpos

Uses iob[ ]. See (1).fgets fgetws

-floor floorf floorl

-fma fmaf fmal

-fmax fmaxf fmaxl

-fmin fminf fminl

521

Libraries



Not reentrant becauseFunction

-fmod fmodf fmodl

Uses iob[ ] and calls malloc when file open for buffered IO. See (1)fopen

-fpclassify

Uses iob[ ]. See (1).fprintf fwprintf

Uses iob[ ]. See (1).fputc fputwc

Uses iob[ ]. See (1).fputs fputws

Calls fgetc. See (1).fread

free uses static buffer management structures. See malloc (5).free

Modifies iob[ ]. See (1).freopen

-frexp frexpf frexpl

Uses iob[ ]. See (1)fscanf fwscanf

Uses iob[ ] and calls _lseek. Accesses ungetc[ ] array. See (1).fseek

Uses iob[ ] and sets errno. See (1) / (2).fsetpos

(Not implemented)fstat

Uses iob[ ] and sets errno. Calls _lseek. See (1) / (2).ftell

Uses iob[ ]. See (1).fwrite

Uses iob[ ]. See (1).getc getwc

Uses iob[ ]. See (1).getchar getwchar

Uses global File System Simulation buffer, _dbg_requestgetcwd

Skeleton only.getenv

Uses iob[ ]. See (1).gets getws

gmtime defines static structuregmtime

Sets errno via calls to other functions.hypot hypotf hypotl

Sets errno.ilogb ilogbf ilogbl

-imaxabs

-imaxdiv

-isalnum iswalnum

-isalpha iswalpha

-isascii iswascii

-isblank iswblank

-iscntrl iswcntrl

-isdigit iswdigit

-isfinite

-isgraph iswgraph

-isgreater

522

TASKING SmartCode - PPU User Guide



Not reentrant becauseFunction

-isgreaterequal

-isinf

-isless

-islessequal

-islessgreater

-islower iswlower

-isnan

-isnormal

-isprint iswprint

-ispunct iswpunct

-isspace iswspace

-isunordered

-isupper iswupper

-iswalnum

-iswalpha

-iswcntrl

-iswctype

-iswdigit

-iswgraph

-iswlower

-iswprint

-iswpunct

-iswspace

-iswupper

-iswxditig

-isxdigit iswxdigit

Sets errno. See (2).ldexp ldexpf ldexpl

Sets errno.lgamma lgammaf lgammal

-llrint llrintf llrintl

Sets errno.llround llroundf llroundl

N.A.; skeleton functionlocaleconv

-localtime

Sets errno. See (2).log logf logl

Sets errno via calls to other functions.log10 log10f log10l

Sets errno.log1p log1pf log1pl

523

Libraries



Not reentrant becauseFunction

Sets errno.log2 log2f log2l

Sets errno.logb logbf logbl

-longjmp

-lrint lrintf lrintl

Sets errno.lround lroundf lroundl

Calls _lseeklseek

(Not implemented)lstat

Needs kernel support. See (5).malloc

N.A., skeleton functionmblen

Sets errno.mbrlen

Sets errno. Uses static internal_state variable.mbrtoc16

Sets errno. Uses static internal_state variable.mbrtoc32

Sets errno. Uses static internal_state variable.mbrtowc

-mbsinit

Sets errno.mbsrtowcs

N.A., skeleton functionmbstowcs

N.A., skeleton functionmbtowc

-memchr wmemchr

-memcmp wmemcmp

-memcpy wmemcpy

-memmove wmemmove

-memset wmemset

-mktime

-modf modff modfl

-nan nanf nanl

-nearbyint nearbyintf
nearbyintl

-nextafter nextafterf
nextafterl

-nexttoward nexttowardf
nexttowardl

-offsetof

Calls _openopen

Uses errno. See (2)perror

Sets errno. See (2)pow powf powl

Uses iob[ ]. See (1)printf wprintf

524

TASKING SmartCode - PPU User Guide



Not reentrant becauseFunction

Uses iob[ ]. See (1)putc putwc

Uses iob[ ]. See (1)putchar putwchar

Uses iob[ ]. See (1)puts

-qsort

Calls _Exit.quick_exit

Updates the signal handler tableraise

Uses static variable to remember latest random number. Must
diverge from ISO C standard to define reentrant rand. See (4).

rand

Calls _readread

See malloc (5).realloc

-remainder remainderf
remainderl

Uses global File System Simulation buffer, _dbg_requestremove

-remquo remquof remquol

Uses global File System Simulation buffer, _dbg_requestrename

Eventually calls _lseekrewind

-rint rintf rintl

-round roundf roundl

-scalbln scalblnf scalblnl

-scalbn scalbnf scalbnl

Uses iob[ ], calls _doscan. See (1).scanf wscanf

Sets iob[ ]. See (1).setbuf

-setjmp

N.A.; skeleton functionsetlocale

Sets iob and calls malloc. See (1) / (5).setvbuf

Updates the signal handler tablesignal

-signbit

-sin sinf sinl

Sets errno via calls to other functions.sinh sinhf sinhl

Sets errno. See (2).snprintf swprintf

Sets errno. See (2).sprintf

Sets errno. See (2).sqrt sqrtf sqrtl

See randsrand

Sets errno via calls to other functions.sscanf swscanf

Uses global File System Simulation buffer, _dbg_requeststat

-strcat wcscat

525

Libraries



Not reentrant becauseFunction

-strchr wcschr

-strcmp wcscmp

-strcoll wcscoll

-strcpy wcscpy

-strcspn wcscspn

-strerror

-strftime wcsftime

-strlen wcslen

-strncat wcsncat

-strncmp wcsncmp

-strncpy wcsncpy

-strpbrk wcspbrk

-strrchr wcsrchr

-strspn wcsspn

-strstr wcsstr

-strtod wcstod

-strtof wcstof

Sets errno via calls to other functions.strtoimax

strtok saves last position in string in local static variable.This function
is not reentrant by design. See (4).

strtok wcstok

Sets errno. See (2).strtol wcstol

-strtold wcstold

Sets errno. See (2).strtoul wcstoul

Sets errno. See (2).strtoull wcstoull

Sets errno via calls to other functions.strtoumax

-strxfrm wcsxfrm

N.A; skeleton functionsystem

Sets errno. See (2).tan tanf tanl

Sets errno via call to other functions.tanh tanhf tanhl

Sets errno.tgamma tgammaf tgammal

Uses static variable which defines initial start timetime

Uses iob[ ]. See (1).tmpfile

Uses local buffer to build filename.
Function can be adapted to use user buffer.This makes the function
non ISO C. See (4).

tmpnam

-toascii

526

TASKING SmartCode - PPU User Guide



Not reentrant becauseFunction

-tolower

-toupper

-towctrans

-towlower

-towupper

-trunc truncf truncl

Uses static buffer to hold unget characters for each file. Can be
moved into iob structure. See (1).

ungetc ungetwc

Uses global File System Simulation buffer, _dbg_requestunlink

Uses iob[ ]. See (1).vfprintf vfwprintf

Calls _doscanvfscanf vfwscanf

Uses iob[ ]. See (1).vprintf vwprintf

Calls _doscanvscanf vwscanf

Sets errno.vsprintf vswprintf

Sets errno.vsscanf vswscanf

Sets errno. Uses static internal_state variable.wcrtomb

Sets errno.wcsrtombs

Sets errno via calls to other functions.wcstoimax

N.A.; skeleton functionwcstombs

Sets errno via calls to other functions.wcstoumax

-wctob

N.A.; skeleton functionwctomb

-wctrans

-wctype

Calls _writewrite

Table: C library reentrancy

Several functions in the C library are not reentrant due to the following reasons:

• The iob[] structure is static. This influences all I/O functions.

• The ungetc[] array is static. This array holds the characters (one for each stream) when ungetc()
is called.

• The variable errno is globally defined. Numerous functions read or modify errno

• _doprint and _doscan use static variables for e.g. character counting in strings.

• Some string functions use locally defined (static) buffers. This is prescribed by ANSI.

527

Libraries



• malloc uses a static heap space.

The following description discusses these items in more detail. The numbers at the beginning of each
paragraph relate to the number references in the table above.

(1) iob structures

The I/O part of the C library is not reentrant by design. This is mainly caused by the static declaration of
the iob[] array. The functions which use elements of this array access these elements via pointers (
FILE * ).

Building a multi-process system that is created in one link-run is hard to do. The C language scoping
rules for external variables make it difficult to create a private copy of the iob[] array. Currently, the
iob[] array has external scope. Thus it is visible in every module involved in one link phase. If these
modules comprise several tasks (processes) in a system each of which should have its private copy of
iob[], it is apparent that the iob[] declaration should be changed. This requires adaptation of the
library to the multi-tasking environment.The library modules must use a process identification as an index
for determining which iob[] array to use. Thus the library is suitable for interfacing to that kernel only.

Another approach for the iob[] declaration problem is to declare the array static in one of the modules
which create a task.Thus there can be more than one iob[] array is the system without having conflicts
at link time.This brings several restrictions: Only the module that holds the declaration of the static iob[]
can use the standard file handles stdin, stdout and stderr (which are the first three entries in iob[]).
Thus all I/O for these three file handles should be located in one module.

(2) errno declaration

Several functions in the C library set the global variable errno. After completion of the function the user
program may consult this variable to see if some error occurred. Since most of the functions that set
errno already have a return type (this is the reason for using errno) it is not possible to check successful
completion via the return type.

The library routines can set errno to the values defined in errno.h. See the file errno.h for more
information.

errno can be set to ERR_FORMAT by the print and scan functions in the C library if you specify illegal
format strings.

errno will never be set to ERR_NOLONG or ERR_NOPOINT since the C library supports long and
pointer conversion routines for input and output.

errno can be set to ERANGE by the following functions: exp(), strtol(), strtoul() and tan().
These functions may produce results that are out of the valid range for the return type. If so, the result of
the function will be the largest representable value for that type and errno is set to ERANGE.

errno is set to EDOM by the following functions: acos(), asin(), log(), pow() and sqrt(). If the
arguments for these functions are out of their valid range ( e.g. sqrt( -1 ) ), errno is set to EDOM.

errno can be set to ERR_POS by the file positioning functions ftell(), fsetpos() and fgetpos().

(3) ungetc

528

TASKING SmartCode - PPU User Guide



Currently the ungetc buffer is static. For each file entry in the iob[] structure array, there is one character
available in the buffer to unget a character.

(4) local buffers

tmpnam() creates a temporary filename and returns a pointer to a local static buffer. This is according
to the ANSI definition. Changing this function such that it creates the name in a user specified buffer
requires another calling interface. Thus the function would be no longer portable.

strtok() scans through a string and remembers that the string and the position in the string for
subsequent calls.This function is not reentrant by design. Making it reentrant requires support of a kernel
to store the information on a per process basis.

rand() generates a sequence of random numbers. The function uses the value returned by a previous
call to generate the next value in the sequence. This function can be made reentrant by specifying the
previous random value as one of the arguments. However, then it is no longer a standard function.

(5) malloc

Malloc uses a heap space which is assigned at locate time. Thus this implementation is not reentrant.
Making a reentrant malloc requires some sort of system call to obtain free memory space on a per process
basis. This is not easy to solve within the current context of the library. This requires adaptation to a
kernel.

This paragraph on reentrancy applies to multi-process environments only. If reentrancy is required
for calling library functions from an exception handler, another approach is required. For such a
situation it is of no use to allocate e.g. multiple iob[] structures. In such a situation several pieces
of code in the library have to be declared 'atomic': this means that interrupts have to be disabled
while executing an atomic piece of code.

529

Libraries



530

TASKING SmartCode - PPU User Guide



Chapter 10. List File Formats
This chapter describes the format of the assembler list file and the linker map file.

10.1. Assembler List File Format

The assembler list file is an additional output file of the assembler that contains information about the
generated code. For details on how to generate a list file, see Section 4.4, Generating a List File.

The list file consists of a page header and a source listing.

Page header

The page header is repeated on every page:

TASKING SmartCode vx.yrz - PPU assembler  Build yymmddqq
Title                                                           Page 1

ADDR CODE      CYCLES  LINE SOURCE LINE

The first line contains version information. The second line can contain a title which you can specify with
the assembler control $TITLE and always contains a page number.The third line is empty and the fourth
line contains the headings of the columns for the source listing.

With the assembler controls $LIST ON/OFF, $PAGE, and with the assembler option --list-format you
can format the list file.

Source listing

The following is a sample part of a listing. An explanation of the different columns follows below.

ADDR CODE      CYCLES  LINE SOURCE LINE
                          1         ; Module start
                          .
                          .
0000                      7         .section        .text
                          8         .global main
                          9 ; Function main
0000                     10 main:   .type   func
0000 FC1CC8B7  1    1    11         push    %blink
0004 0A20800F  1    2    12         mov     %r0,.1.str
     rrrrrrrr
000C rr0rrrrr  1    3    13         bl      printf
0010 4A200000  1    4    14         mov     %r0,0
0014 04141F34  1    5    15         pop     %blink
0018 2020C007  1    6    16         j       [%blink]
                         17         ; End of function
                         18         .endsec ; End of section

531



                          .
                          .
0000                     44 buf:    .ds  4
  |  RESERVED
0003

This column contains the memory address.The address is a hexadecimal number
that represents the offset from the beginning of a relocatable section or the absolute
address for an absolute section. The address only appears on lines that generate
object code.

ADDR

This is the object code generated by the assembler for this source line, displayed
in hexadecimal format.The displayed code need not be the same as the generated
code that is entered in the object module. The code can also be relocatable code.
In this case the letter 'r' is printed for the relocatable code part in the listing. For
lines that allocate space, the code field contains the text "RESERVED". For lines
that initialize a buffer, the code field lists one value followed by the word
"REPEATS".

CODE

The first number in this column is the number of instruction cycles needed to
execute the instruction(s) as generated in the CODE field. The second number is
the accumulated cycle count of this section.

CYCLES

This column contains the line number. This is a decimal number indicating each
input line, starting from 1 and incrementing with each source line.

LINE

This column contains the source text. This is a copy of the source line from the
assembly source file.

SOURCE LINE

For the .SET and .EQU directives the ADDR and CODE columns do not apply. The symbol value is listed
instead.

10.2. Linker Map File Format

The linker map file is an additional output file of the linker that shows how the linker has mapped the
sections and symbols from the various object files (.o) to output sections. Locate information is not
present, because that is not available for an Infineon PPU project. External symbols are listed per space
with their absolute address, both sorted on symbol and sorted on address. For details on how to generate
a map file, see Section 5.10, Generating a Map File.

With the linker option --map-file-format you can specify which parts of the map file you want to see. To
specify the same for the global map file, use linker option --global-map-file-format. Both options have
the same defaults and accept the same arguments.

In Eclipse the linker map file (project.mapxml) is generated in the output directory of the build configuration,
usually Debug or Release.You can open the map file by double-clicking on the file name.

Each page displays a part of the map file.You can use the drop-down list or the Outline view to navigate
through the different tables and you can use the following buttons.

532

TASKING SmartCode - PPU User Guide



DescriptionActionIcon

Goes back one page in the history list.Back

Goes forward one page in the history list.Forward

Shows the next table from the drop-down list.Next Table

Shows the previous table from the drop-down list.Previous Table

When you right-click in the view, a popup menu appears (for example, to reset the layout of a table). The
meaning of the different parts is:

Tool and Invocation

This part of the map file contains information about the linker, its version header information, binary
location and which options are used to call it.

Processed Files

This part of the map file shows all processed files. This also includes object files that are extracted from
a library, with the symbol that led to the extraction. This part is not available when you use MIL linking
(control program option --mil-link).

Link Result

This part of the map file shows per object file how the link phase has mapped the sections from the various
object files (.o) to output sections.

The name of an input object file.[in] File

A section name and id from the input object file.The number between '( )' uniquely
identifies the section.

[in] Section

The size of the input section.[in] Size

The offset relative to the start of the output section.[out] Offset

The resulting output section name and id.[out] Section

The size of the output section.[out] Size

Module Local Symbols

This part of the map file shows a table for each local scope within an object file. Each table has three
columns, 1 the symbol name, 2 the address of the symbol and 3 the space where the symbol resides in.
The table is sorted on symbol name within each space.

By default this part is not shown in the map file.You have to turn this part on manually with linker option
--map-file-format=+statics (module local symbols).

533

List File Formats



Cross References

This part of the map file lists all symbols defined in the object modules and for each symbol the object
modules that contain a reference to the symbol are shown. Also, symbols that remain undefined are
shown. This part is not available when you use MIL linking (control program option --mil-link).

Call Graph

This part of the map file contains a schematic overview that shows how (library) functions call each other.
To obtain call graph information, the assembly file must contain .CALLS directives.

The following example is a part of a call graph in the textual version of the map file (.map):

_START [0,104]
|
+-- main [4,104]
|   |
|   +-- printf [20,100]
|       |
|       +-- _doprint [16,80]
|           |
|           +-- _io_putc [4,64]
|               |
|               +-- fputc [4,60]
|                   |
|                   +-- _flsbuf [0,56]
|                       |
|                       +-- _dofls [20,56]
|                           |
|                           +-- _flsbuf.c:.cocofun_1 [0,0]
|                           |
|                           +-- _fflush *
|                           |
|                           +-- _host_write *
|
+-- exit [8,68]

• A * after a function name indicates that the call tree starting with this function is shown separately, with
a * in front of the function name.

• A * in front of a function name indicates that the function is not considered a "root" in the call graph
since it is called by one or more other functions.

• An additional R (not shown in this example) indicates this function is part of a recursive call chain. If
both a leaf and the root of a tree are marked this way, all nodes in between are in a recursive chain.

• An '__INDIRECT__' entry (not shown in this example) indicates an indirect function call. It is not an
actual function. Each function listed as a caller of the __INDIRECT__ placeholder symbol places a call
through a function pointer. Each function listed as a callee of the __INDIRECT__ placeholder symbol
has its address taken (and used).

534

TASKING SmartCode - PPU User Guide



• [ ] after a function contains information about the stack usage. The first field is the amount of stack
used by the function and the second field is the amount of stack used by the function including its
callees.

In the graphical version of the map file, you can expand or collapse a single node. Use the  /  buttons
to expand/collapse all nodes in the call graph. Hover the mouse over a function (root, callee or node) to
see information about the stack usage.

DescriptionMeaningIcon

This function is the top of the call graph. If there are interrupt handlers, there
can be several roots.

Root

This function is referenced by several No leaf functions. Right-click on the
function and select Expand all References to see all functions that
reference this function. Select Back to Caller to return to the calling function.

Callee

A normal node (function) in the call graph.Node

This function calls a function which is listed separately in the call graph.
Right-click on the function and select Go to Callee to see the callee. Hover
the mouse over the function to see a popup with all callees.

Caller

Overlay

This part of the map file shows how the stack is organized. This part also shows the locate overlay
information if you used overlay groups in the linker script file.

Processor and Memory

This part of the map file shows the processor and memory information of the linker script file.

By default this part is not shown in the map file.You have to turn this part on manually with linker option
--map-file-format=+lsl (processor and memory info).You can print this information to a separate file with
linker option --lsl-dump.

You can expand or collapse a part of the information.

Removed Sections

This part of the map file shows the sections which are removed from the output file as a result of the
optimization option to delete unreferenced sections and or duplicate code or constant data (linker option
--optimize=cxy).

The name of the section which has been removed.Section

The name of the input object file where the section is removed from.File

The name of the library where the object file is part of.Library

The symbols that were present in the section.Symbol

The reason why the section has been removed. This can be because the section
is unreferenced or duplicated.

Reason

535

List File Formats



536

TASKING SmartCode - PPU User Guide



Chapter 11. Object File Formats
The linker can generate machine code in several output formats: ELF/DWARF, Intel Hex, Motorola
S-records and C array. The C array format is a special one, where the generated machine code is in the
form of C code. The following sections describe each format.

11.1. ELF/DWARF Object Format

The TASKING toolset for Infineon PPU by default produces objects in the ELF/DWARF 3 format.

For a complete description of the ELF format, please refer to the Tool Interface Standard (TIS).

For a complete description of the DWARF format, please refer to the DWARF Debugging Information
Format Version 3. See http://dwarfstd.org/

11.2. Intel Hex Record Format

Intel Hex records describe the hexadecimal object file format for 8-bit, 16-bit and 32-bit microprocessors.
The hexadecimal object file is an ASCII representation of an absolute binary object file. There are six
different types of records:

• Data Record (8-, 16, or 32-bit formats)

• End of File Record (8-, 16, or 32-bit formats)

• Extended Segment Address Record (16, or 32-bit formats)

• Start Segment Address Record (16, or 32-bit formats)

• Extended Linear Address Record (32-bit format only)

• Start Linear Address Record (32-bit format only)

To generate an Intel Hex output file:

1. From the Project menu, select Properties for project.

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Output Format.

4. Enable the option Generate Intel Hex format file.

5. (Optional) Specify the Size of addresses (in bytes) for Intel Hex records.

6. (Optional) Enable or disable the option Emit start address record.

537

http://dwarfstd.org/


By default the linker generates records in the 32-bit format (4-byte addresses).

General Record Format

In the output file, the record format is:

checksumcontenttypeoffsetlength:

where:

is the record header.:

is the record length which specifies the number of bytes of the content field. This
value occupies one byte (two hexadecimal digits). The linker outputs records of
255 bytes (32 hexadecimal digits) or less; that is, length is never greater than 0xFF.

length

is the starting load offset specifying an absolute address in memory where the
data is to be located when loaded by a tool. This field is two bytes long. This field
is only used for Data Records. In other records this field is coded as four ASCII
zero characters ('0000').

offset

is the record type. This value occupies one byte (two hexadecimal digits). The
record types are:

Record TypeByte Type

Data00

End of file01

Extended segment address (not used)02

Start segment address (not used)03

Extended linear address (32-bit)04

Start linear address (32-bit)05

type

is the information contained in the record. This depends on the record type.content

is the record checksum. The linker computes the checksum by first adding the
binary representation of the previous bytes (from length to content). The linker
then computes the result of sum modulo 256 and subtracts the remainder from
256 (two's complement). Therefore, the sum of all bytes following the header is
zero.

checksum

538

TASKING SmartCode - PPU User Guide



Extended Linear Address Record

The Extended Linear Address Record specifies the two most significant bytes (bits 16-31) of the absolute
address of the first data byte in a subsequent Data Record:

checksumupper_address04000002:

The 32-bit absolute address of a byte in a Data Record is calculated as:

  ( address + offset + index ) modulo 4G

where:

is the base address, where the two most significant bytes are the upper_address
and the two least significant bytes are zero.

address

is the 16-bit offset from the Data Record.offset

is the index of the data byte within the Data Record (0 for the first byte).index

Example:

:0200000400FFFB
 | |   | |   |_ checksum
 | |   | |_ upper_address
 | |   |_ type
 | |_ offset
 |_ length

Data Record

The Data Record specifies the actual program code and data.

checksumdata00offsetlength:

The length byte specifies the number of data bytes. The linker has an option (--hex-record-size) that
controls the length of the output buffer for generating Data records. The default buffer length is 32 bytes.

The offset is the 16-bit starting load offset. Together with the address specified in the Extended Address
Record it specifies an absolute address in memory where the data is to be located when loaded by a tool.

Example:

:0F00200000232222754E00754F04AF4FAE4E22C3
 | |   | |                             |_ checksum
 | |   | |_ data
 | |   |_ type
 | |_ offset
 |_ length

539

Object File Formats



Start Linear Address Record

The Start Linear Address Record contains the 32-bit program execution start address.

checksumaddress05000004:

With linker option --hex-format=S you can prevent the linker from emitting this record.

Example:

:0400000500FF0003F5
 | |   | |       |_ checksum
 | |   | |_ address
 | |   |_ type
 | |_ offset
 |_ length

End of File Record

The hexadecimal file always ends with the following end-of-file record:

:00000001FF
 | |   | |_ checksum
 | |   |_ type
 | |_ offset
 |_ length

11.3. Motorola S-Record Format

To generate a Motorola S-record output file:

1. From the Project menu, select Properties for project.

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Output Format.

4. Enable the option Generate S-records file.

5. (Optional) Specify the Size of addresses (in bytes) for Motorola S records.

By default, the linker produces output in Motorola S-record format with three types of S-records (4-byte
addresses): S0, S3 and S7. Depending on the size of addresses you can force other types of S-records.
They have the following layout:

540

TASKING SmartCode - PPU User Guide



S0 - record

checksumcomment0000lengthS0

A linker generated S-record file starts with an S0 record with the following contents:

        l a r c
S00700006C61726356

The S0 record is a comment record and does not contain relevant information for program execution.

where:

is a comment record and does not contain relevant information for program
execution.

S0

represents the number of bytes in the record, not including the record type and
length byte. This value occupies one byte (two hexadecimal digits).

length

contains the name of the linker.comment

is the record checksum. The linker computes the checksum by first adding the
binary representation of the bytes following the record type (starting with the length
byte) to just before the checksum.Then the one's complement is calculated of this
sum. The least significant byte of the result is the checksum. The sum of all bytes
following the record type is 0xFF.

checksum

S1 / S2 / S3 - record

This record is the program code and data record for 2-byte, 3-byte or 4-byte addresses respectively.

checksumcode bytesaddresslengthS1

checksumcode bytesaddresslengthS2

checksumcode bytesaddresslengthS3

where:

is the program code and data record for 2-byte addresses.S1

is the program code and data record for 3-byte addresses.S2

is the program code and data record for 4-byte addresses (this is the default).S3

represents the number of bytes in the record, not including the record type and
length byte. This value occupies one byte (two hexadecimal digits).

length

contains the code or data address.address

contains the actual program code and data.code bytes

is the record checksum. The checksum calculation is identical to S0.checksum

541

Object File Formats



Example:

S3070000FFFE6E6825
  | |       |   |_ checksum
  | |       |_ code
  | |_ address
  |_ length

S7 / S8 / S9 - record

This record is the termination record for 4-byte, 3-byte or 2-byte addresses respectively.

checksumaddresslengthS7

checksumaddresslengthS8

checksumaddresslengthS9

where:

is the termination record for 4-byte addresses (this is the default). S7 is the
corresponding termination record for S3 records.

S7

is the termination record for 3-byte addresses. S8 is the corresponding termination
record for S2 records.

S8

is the termination record for 2-byte addresses. S9 is the corresponding termination
record for S1 records.

S9

represents the number of bytes in the record, not including the record type and
length byte. This value occupies one byte (two hexadecimal digits).

length

contains the program start address.address

is the record checksum. The checksum calculation is identical to S0.checksum

Example:

S70500000000FA
  | |       |_checksum
  | |_ address
  |_ length

11.4. C Array Format

The linker can emit the generated machine code in the form of C code. This is useful for the integration
of PPU code in applications where the CPU is programmed with a non-TASKING compiler. Note that no
symbolic debugging is possible unless you use the debug information from the ELF file.

The C array output format consists of a C source file with data encoded in a C array initializer combined
with a C header file that contains necessary declarations and optionally provides access to the exported
symbols of the program.You can use the C array format only for chip output files where, as with normal

542

TASKING SmartCode - PPU User Guide



hex files, each memory gets its own output file that contains data for that memory only. The intended
target for output files in C array format is a programmable peripheral where an application compiled for
the peripheral is imported into a host application as C code. This "host application" must initialize the
programmable peripheral's memory using the data in the C array(s).

Generate the C array output format

To generate a C array output file on the command line use linker option
--chip-output=basename:CARR:32. For example with the following call to the control program:

ccarc -t -Wl--chip-output=myproject:CARR:32 myproject.c

This results in the files myproject_xrom.c and myproject_xrom.h, where the basename is appended
with an underscore and the full name of the memory represented in the file.

To generate a C array output file in the Eclipse IDE:

1. From the Project menu, select Properties for project.

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Output Format.

4. Enable the option Generate C array file.

5. (Optional) Enable the option Emit list of exported symbols.

C array source file

The C array source file contains an initialized array with the data of the memory. Each non-zero element
of the C array corresponds to an assembled instruction or an initialized memory mapped variable. The
array starts with the first initialized Minimal Addressable Unit (MAU) in the memory and ends with the last
initialized MAU in the same memory. Any non-initialized MAUs in between are assigned the value 0.
Sections that are marked as clear are emitted as zero values. Sections that are marked as scratch will
not appear in the C array output unless they occupy space between initialized/cleared sections.

Example (part of) output of a C array source file:

#include "myproject_xrom.h"

unsigned long myproject_xrom[] = {
 0x00000988, /* 0 */
 0x00100018, /* 1 */
 0x00100018, /* 2 */
 0x00000000, /* 3 */
 0x00000050, /* 4 */
 0x00000009, /* 5 */
 0x00100068, /* 6 */

543

Object File Formats



 0x00100068, /* 7 */
 0x00000000, /* 8 */
 0x00000050, /* 9 */
 0x00000012, /* 10 */
    ...
 0x20676E69, /* 853 */
 0x6D617865, /* 854 */
 0x2E656C70, /* 855 */
};

By default the C array data elements have data type unsigned long.You can overrule this default with
linker option  --c-array-element-type.

C array header file

The C array header file contains a define for the offset from the start of the memory where the data array
starts (in MAUs). Furthermore it contains a define for the size of the data array in MAUs of the memory
and an extern declaration of the data array that is defined in the C source file.

Example output of a C array header file:

#ifndef MYPROJECT_XROM_H
#define MYPROJECT_XROM_H

extern unsigned long myproject_xrom[];

/* Locations of symbols as index in the associated C array */

/* Offset to the start of the C array within the memory in bytes */
#define OFFSET_MYPROJECT_XROM 0

/* Size of the C array in bytes */
#define SIZE_MYPROJECT_XROM 3426

#endif /* MYPROJECT_XROM_H */

The C array header file can also contain a list of preprocessor variable definitions for each label mentioned
in the PPU application. With the linker option --hex-format=+c-array-symbols the linker emits a list of
exported symbols in the header file for each "C array" output C source file. An exported symbol is
represented by a preprocessor definition where the name is the full basename of the file translated to
upper case and with colon(s) replaced by underscore(s), followed by an underscore and the name of the
exported variable, while the value is the index of the variable's location in the data array. Symbols with a
name that is not guaranteed to be a valid C identifier are emitted inside a comment block.

Example:

/* Locations of symbols as index in the associated C array */
#define MYPROJECT_XROM_main 754
#define MYPROJECT_XROM__START 610
/* #define MYPROJECT_XROM_.vector.0 610 */
#define MYPROJECT_XROM__doprint 56

544

TASKING SmartCode - PPU User Guide



#define MYPROJECT_XROM___printf_int2 56
#define MYPROJECT_XROM_printf 774
#define MYPROJECT_XROM__doclose 597
#define MYPROJECT_XROM_fputc 728
#define MYPROJECT_XROM_myvar 10
...
#define MYPROJECT_XROM__doexit 802
#define MYPROJECT_XROM__do_quick_exit 802
#define MYPROJECT_XROM__dofree 802
#define MYPROJECT_XROM__Exit 54
#define MYPROJECT_XROM___init 738
#define MYPROJECT_XROM__lc_ub_table 825

If the C array is directly mapped to the PPU memory, the software of the host CPU can use these
preprocessor variables for direct access of PPU program variables. For example, the host CPU could
overwrite the value 0x12 of variable myvar with 0x14 using the following C code statement:

myproject_XROM[MYPROJECT_XROM_myvar] = 0x14;

11.5. Binary Object Format

With linker option --chip-output=:BIN:0 you tell the linker to produce a binary output file for each memory
chip.

The data of a binary output file represents the first MAU (minimal addressable unit) in the memory (at
offset zero) up to the last data MAU of the application in the memory. Any memory location included in
the file that is not occupied by application data is set to zero.

545

Object File Formats



546

TASKING SmartCode - PPU User Guide



Chapter 12. Linker Script Language (LSL)
To make full use of the linker, you can write a script with information about the architecture of the target
processor and locating information.The language for the script is called the Linker Script Language (LSL).
This chapter first describes the structure of an LSL file. The next section contains a summary of the LSL
syntax. In the remaining sections, the semantics of the Linker Script Language is explained.

The TASKING linker is a target independent linker/locator that can simultaneously link and locate all
programs for all cores available on a target board. The target board may be of arbitrary complexity. A
simple target board may contain one standard processor with some external memory that executes one
task. A complex target board may contain multiple standard processors and DSPs combined with
configurable IP-cores loaded in an FPGA. Each core may execute a different program, and external
memory may be shared by multiple cores.

LSL serves two purposes. First it enables you to specify the characteristics (that are of interest to the
linker) of your specific target board and of the cores installed on the board. Second it enables you to
specify how sections should be located in memory.

12.1. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each
space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the vector table.

This specification is normally written by TASKING. TASKING supplies LSL files in the include.lsl
directory. The architecture definition of the LSL file should not be changed by you unless you also modify
the core's hardware architecture. If the LSL file describes a multi-core system an architecture definition
must be available for each different type of core.

See Section 12.4, Semantics of the Architecture Definition for detailed descriptions of LSL in the architecture
definition.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

When you build an ASIC or use a derivative that is not (yet) supported by the TASKING tools, you may
have to write a derivative definition.

547



When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

See Section 12.5, Semantics of the Derivative Definition for a detailed description of LSL in the derivative
definition.

The processor definition

The processor definition describes an instance of a derivative.Typically the processor definition instantiates
one derivative only (single-core processor). A processor that contains multiple cores having the same
(homogeneous) or different (heterogeneous) architecture can also be described by instantiating multiple
derivatives of the same or different types in separate processor definitions.

See Section 12.6, Semantics of the Board Specification for a detailed description of LSL in the processor
definition.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

See Section 12.6.3, Defining External Memory and Buses, for more information on how to specify the
external physical memory layout. Internal memory for a processor should be defined in the derivative
definition for that processor.

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems.The board specification describes all characteristics of your target board's system buses, memory
devices, I/O sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

• convert a logical address to an offset within a memory device

• locate sections in physical memory

• maintain an overall view of the used and free physical memory within the whole system while locating

The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given load-address or run-time address,
to place sections in a given order, and to overlay code and/or data sections.

Which object files (sections) constitute the task that will run on a given core is specified on the command
line when you invoke the linker. The linker will link and locate all sections of all tasks simultaneously.
From the section layout definition the linker can deduce where a given section may be located in memory,

548

TASKING SmartCode - PPU User Guide



form the board specification the linker can deduce which physical memory is (still) available while locating
the section.

See Section 12.8, Semantics of the Section Layout Definition, for more information on how to locate a
section at a specific place in memory.

Skeleton of a Linker Script File

architecture architecture_name
{
    // Specification core architecture
}

derivative derivative_name
{
    // Derivative definition
}

processor processor_name
{
    // Processor definition
}

memory and/or bus definitions

section_layout space_name
{
    // section placement statements
}

12.2. Syntax of the Linker Script Language

This section describes what the LSL language looks like. An LSL document is stored as a file coded in
UTF-8 with extension .lsl. Before processing an LSL file, the linker preprocesses it using a standard
C preprocessor. Following this, the linker interprets the LSL file using a scanner and parser. Finally, the
linker uses the information found in the LSL file to guide the locating process.

12.2.1. Preprocessing

When the linker loads an LSL file, the linker first processes it with a C-style prepocessor. As such, it strips
C and C++ comments. Lines starting with the # character are taken as commands for the preprocessor.
You can use the standard ISO C99 preprocessor directives, including:

#include "file"
#include <file>

Preprocess and include file file at this point in the LSL file.

For example:

549

Linker Script Language (LSL)



#include "arch.lsl"

Preprocess and include the file arch.lsl at this point in the LSL file.

#if condition
#else
#endif

If the condition evaluates to a non-zero value, copy the following lines, up to an #else or #endif
command, skip lines between #else and #endif, if present. If the condition evaluates to zero, skip the
lines up to the #else command, or #endif if no #else is present, and copy the lines between the
#else and #endif commands.

#ifdef identifier
#else
#endif

Same as #if, but with defined(identifier) as condition.

#error text

Causes a fatal error the given message (optional).

12.2.2. Lexical Syntax

The following lexicon is used to describe the syntax of the Linker Script Language:

A is defined as B=A ::= B

A is defined as B and C; B is followed by C=A ::= B C

A is defined as B or C=A ::= B | C

zero or one occurrence of B=<B>0|1

zero of more occurrences of B=<B>>=0

one of more occurrences of B=<B>>=1

a character sequence starting with 'a'-'z', 'A'-'Z' or '_'. Following
characters may also be digits and dots '.'

=IDENTIFIER

sequence of characters not starting with \n, \r or \t=STRING

" STRING " (double quoted string)=DQSTRING

octal number, starting with a zero (06, 045)=OCT_NUM

decimal number, not starting with a zero (14, 1024)=DEC_NUM

550

TASKING SmartCode - PPU User Guide



hexadecimal number, starting with '0x' (0x0023, 0xFF00)=HEX_NUM

OCT_NUM, DEC_NUM and HEX_NUM can be followed by a k (kilo), M (mega), or G (giga).

Characters in bold are characters that occur literally. Words in italics are higher order terms that are
defined in the same or in one of the other sections.

To write comments in LSL file, you can use the C style '/* */' or C++ style '//'.

12.2.3. Identifiers and Tags

arch_name         ::= IDENTIFIER
bus_name          ::= IDENTIFIER
core_name         ::= IDENTIFIER
derivative_name   ::= IDENTIFIER
file_name         ::= DQSTRING
group_name        ::= IDENTIFIER
heap_name         ::= section_name
map_name          ::= IDENTIFIER
mem_name          ::= IDENTIFIER
proc_name         ::= IDENTIFIER
section_name      ::= DQSTRING
space_name        ::= IDENTIFIER
stack_name        ::= section_name
symbol_name       ::= DQSTRING
tag_attr          ::= (tag<,tag>>=0)
tag               ::= tag = DQSTRING

A tag is an arbitrary text that can be added to a statement.

12.2.4. Expressions

The expressions and operators in this section work the same as in ISO C.

number            ::= OCT_NUM
                    | DEC_NUM
                    | HEX_NUM

expr              ::= number
                    | symbol_name
                    | unary_op expr
                    | expr binary_op expr
                    | expr ? expr : expr
                    | ( expr )
                    | function_call

unary_op          ::= !    // logical NOT
                    | ~    // bitwise complement
                    | -    // negative value

551

Linker Script Language (LSL)



binary_op         ::= ^    // exclusive OR
                    | *    // multiplication
                    | /    // division
                    | %    // modulus
                    | +    // addition
                    | -    // subtraction
                    | >>   // right shift
                    | <<   // left shift
                    | ==   // equal to
                    | !=   // not equal to
                    | >    // greater than
                    | <    // less than
                    | >=   // greater than or equal to
                    | <=   // less than or equal to
                    | &    // bitwise AND
                    | |    // bitwise OR
                    | &&   // logical AND
                    | ||   // logical OR

12.2.5. Built-in Functions

function_call     ::= absolute ( expr )
                    | addressof ( addr_id )
                    | checksum ( checksum_algo , expr , expr )
                    | exists ( section_name )
                    | max ( expr , expr )
                    | min ( expr , expr )
                    | sizeof ( size_id )

addr_id           ::= sect : section_name
                    | group : group_name
                    | mem : mem_name

checksum_algo     ::= crc32w

size_id           ::= sect : section_name
                    | group : group_name
                    | mem : mem_name

• Every space, bus, memory, section or group you refer to, must be defined in the LSL file.

• The addressof() and sizeof() functions with the group or sect argument can only be used in
the right hand side of an assignment. The sizeof() function with the mem argument can be used
anywhere in section layouts.

• The checksum() function can only be used in a struct statement.

You can use the following built-in functions in expressions. All functions return a numerical value. This
value is a 64-bit signed integer.

552

TASKING SmartCode - PPU User Guide



absolute()

int absolute( expr )

Converts the value of expr to a positive integer.

absolute( "labelA"-"labelB" )

addressof()

int addressof( addr_id )

Returns the offset of addr_id, which is a named section, group, or memory in the address space of the
section layout. If the referenced object is a group or memory, it must be defined in the LSL file. To get
the offset of the section with the name asect:

addressof( sect: "asect")

This function only works in assignments and struct statements.

checksum()

int checksum( checksum_algo, expr, expr )

Returns the computed checksum over a contiguous address range. The first argument specifies how the
checksum must be computed (see below), the second argument is an expression that represents the
start address of the range, while the third argument represents the end address (exclusive). The value
of the end address expression must be strictly larger than the value of the start address (i.e. the size of
the checksum address range must be at least one MAU). Each address in the range must point to a valid
memory location. Memory locations in the address range that are not occupied by a section are filled with
zeros.

The only checksum algorithm (checksum_algo) currently supported is crc32w. This algorithm computes
the checksum using a Cyclic Redundancy Check with the "CRC-32" polynomial 0xEDB88320. The input
range is processed per 4-byte word. Those 4 bytes are passed to the checksum algorithm in reverse
order if the target architecture is little-endian. For big-endian targets, this checksum algorithm is equal to
a regular byte-wise CRC-32 implementation. Both the start address and end address values must be
aligned on 4 MAUs.The behavior of this checksum algorithm is undefined when used in an address space
that has a MAU size not equal to 8.

checksum( crc32w,
    addressof( mem:foo ),
    addressof( mem:foo ) + sizeof( mem:foo ) )

This function only works in struct statements.

exists()

int exists( section_name )

553

Linker Script Language (LSL)



The function returns 1 if the section section_name exists in one or more object file, 0 otherwise. If the
section is not present in input object files, but generated from LSL, the result of this function is undefined.

To check whether the section mysection exists in one of the object files that is specified to the linker:

exists( "mysection" )

max()

int max( expr, expr )

Returns the value of the expression that has the largest value. To get the highest value of two symbols:

max( "sym1" , "sym2")

min()

int min( expr, expr )

Returns the value of the expression hat has the smallest value. To get the lowest value of two symbols:

min( "sym1" , "sym2")

sizeof()

int sizeof( size_id )

Returns the size of the object (group, section or memory) the identifier refers to. To get the size of the
section "asection":

sizeof( sect: "asection" )

The group and sect arguments only works in assignments and struct statements. The mem
argument can be used anywhere in section layouts. If the referenced object is a group or memory,
it must be defined in the LSL file.

12.2.6. LSL Definitions in the Linker Script File

description       ::= <definition>>=1

definition        ::= architecture_definition
                    | derivative_definition
                    | board_spec
                    | section_definition
                    | section_setup

• At least one architecture_definition must be present in the LSL file.

554

TASKING SmartCode - PPU User Guide



12.2.7. Memory and Bus Definitions

mem_def           ::= memory mem_name <tag_attr>0|1 {  <mem_descr ;>>=0 }

• A mem_def defines a memory with the mem_name as a unique name.

mem_descr         ::= type = <reserved>0|1 mem_type
                    | mau = expr
                    | size = expr
                    | speed = number
                    | priority = number
                    | exec_priority = number
                    | fill <= fill_values>0|1

                    | mapping

• A mem_def contains exactly one type statement.

• A mem_def contains exactly one mau statement (non-zero size).

• A mem_def contains exactly one size statement.

• A mem_def contains zero or one priority (or speed) statement (if absent, the default value is 1).

• A mem_def contains zero or one exec_priority statement.

• A mem_def contains zero or one fill statement.

• A mem_def contains at least one mapping

mem_type          ::= rom        // attrs = rx
                    | ram        // attrs = rw
                    | nvram      // attrs = rwx
                    | blockram

fill_values       ::= expr
                    | [ expr <, expr>>=0 ]

bus_def           ::= bus bus_name {  <bus_descr ;>>=0 }

• A bus_def statement defines a bus with the given bus_name as a unique name within a core
architecture.

bus_descr         ::= mau = expr
                    | width = expr  // bus width, nr
                    |               // of data bits 
                    | mapping       // legal destination
                                    // 'bus' only

• The mau and width statements appear exactly once in a bus_descr. The default value for width is
the mau size.

• The bus width must be an integer times the bus MAU size.

555

Linker Script Language (LSL)



• The MAU size must be non-zero.

• A bus can only have a mapping on a destination bus (through dest = bus: ).

mapping           ::= map <map_name>0|1 ( map_descr <, map_descr>>=0 )

map_descr         ::= dest = destination
                    | dest_dbits = range
                    | dest_offset = expr
                    | size = expr
                    | src_dbits = range
                    | src_offset = expr
                    | reserved
                    | priority = number
                    | exec_priority = number
                    | tag

• A map_descr requires at least the size and dest statements.

• A map_descr contains zero or one priority statement (if absent, the default value is 0).

• A map_descr contains zero or one exec_priority statement.

• Each map_descr can occur only once.

• You can define multiple mappings from a single source.

• Overlap between source ranges or destination ranges is not allowed.

• If the src_dbits or dest_dbits statement is not present, its value defaults to the width value if
the source/destination is a bus, and to the mau size otherwise.

• The reserved statement is allowed only in mappings defined for a memory.

destination       ::= space : space_name
                    | bus : <proc_name | 

core_name :>0|1 bus_name

• A space_name refers to a defined address space.

• A proc_name refers to a defined processor.

• A core_name refers to a defined core.

• A bus_name refers to a defined bus.

• The following mappings are allowed (source to destination)

• space => space

• space => bus

• bus => bus

556

TASKING SmartCode - PPU User Guide



• memory => bus

range             ::= expr .. expr

• With address ranges, the end address is not part of the range.

12.2.8. Architecture Definition

architecture_definition
                  ::= architecture arch_name
                      <( parameter_list )>0|1

                      <extends arch_name
                              <( argument_list )>0|1 >0|1

{ <arch_spec>>=0 }

• An architecture_definition defines a core architecture with the given arch_name as a unique
name.

• At least one space_def and at least one bus_def have to be present in an
architecture_definition.

• An architecture_definition that uses the extends construct defines an architecture that inherits
all elements of the architecture defined by the second arch_name. The parent architecture must be
defined in the LSL file as well.

parameter_list    ::= parameter <, parameter>>=0

parameter         ::= IDENTIFIER <= expr>0|1

argument_list     ::= expr <, expr>>=0

arch_spec         ::= bus_def
                    | space_def
                    | endianness_def

space_def         ::= space space_name <tag_attr>0|1 { <space_descr;>>=0 }

• A space_def defines an address space with the given space_name as a unique name within an
architecture.

space_descr       ::= space_property ;
                    | section_definition  //no space ref
                    | vector_table_statement
                    | reserved_range

space_property    ::= id = number // as used in object
                    | mau = expr
                    | align = expr
                    | page_size = expr <[ range ] <| [ range ]>>=0>0|1

                    | page
                    | direction = direction
                    | stack_def

557

Linker Script Language (LSL)



                    | heap_def
                    | copy_table_def
                    | start_address
                    | mapping

• A space_def contains exactly one id and one mau statement.

• A space_def contains at most one align statement.

• A space_def contains at most one page_size statement.

• A space_def contains at least one mapping.

stack_def         ::= stack stack_name ( stack_descr
                            <, stack_descr >>=0 )

• A stack_def defines a stack with the stack_name as a unique name.

stack_descr       ::= min_size = expr
                    | grows = direction
                    | align = expr
                    | fixed
                    | entry_points = entry_point_list
                    | attributes
                    | tag

entry_point_list  ::= symbol_name
                    | [ symbol_name <, symbol_name >>=0 ]

• The min_size statement must be present.

• The min_size value must be 1 or greater.

• You can specify at most one align statement and one grows statement.

• Each stack definition can have one or more entry_points statements for stack estimation. The
symbol_name corresponds to the caller name in the .CALLS directive as generated by the compiler.

heap_def          ::= heap heap_name ( heap_descr
                            <, heap_descr >>=0 )

• A heap_def defines a heap with the heap_name as a unique name.

heap_descr        ::= min_size = expr
                    | grows = direction
                    | align = expr
                    | fixed
                    | attributes
                    | tag

• The min_size statement must be present.

• The min_size value must be 1 or greater.

558

TASKING SmartCode - PPU User Guide



• You can specify at most one align statement and one grows statement.

direction         ::= low_to_high
                    | high_to_low

• If you do not specify the grows statement, the stack and heap grow low-to-high.

copy_table_def    ::= copytable <( copy_table_descr
                            <, copy_table_descr >>=0 )>0|1

• A space_def contains at most one copytable statement.

• Exactly one copy table must be defined in one of the spaces.

copy_table_descr  ::= align = expr
                    | copy_unit = expr
                    | dest <space_name>0|1 = space_name
                    | page
                    | tag

• The copy_unit is defined by the size in MAUs in which the startup code moves data.

• The dest statement is only required when the startup code initializes memory used by another processor
that has no access to ROM.

• A space_name refers to a defined address space.

start_addr        ::= start_address ( start_addr_descr
                               <, start_addr_descr>>=0 )

start_addr_descr  ::= run_addr = expr
                    | symbol = symbol_name

• A symbol_name refers to the section that contains the startup code.

vector_table_statement
                  ::= vector_table section_name

( vecttab_spec <, vecttab_spec>>=0 )
{ <vector_def>>=0 }

vecttab_spec      ::= vector_size = expr
                    | size = expr
                    | id_symbol_prefix = symbol_name
                    | run_addr = addr_absolute
                    | template = section_name
                    | template_symbol = symbol_name
                    | vector_prefix = section_name
                    | fill = vector_value
                    | no_inline
                    | copy
                    | tag

vector_def        ::= vector ( vector_spec <, vector_spec>>=0 );

559

Linker Script Language (LSL)



vector_spec       ::= id = vector_id_spec
                    | fill = vector_value
                    | optional
                    | tag

vector_id_spec    ::= number
                    | [ range ] <, [ range ]>>=0

vector_value      ::= symbol_name
                    | [ number <, number>>=0 ]
                    | loop <[ expr ]>0|1

reserved_range    ::= reserved <tag_attr>0|1 expr .. expr ;

• The end address is not part of the range.

endianness_def    ::= endianness { <endianness_type;>>=1 }

endianness_type   ::= big
                    | little

12.2.9. Derivative Definition

derivative_definition
                  ::= derivative derivative_name
                      <( parameter_list )>0|1

                      <extends derivative_name <( argument_list )>0|1

                            <, derivative_name <( argument_list )>0|1>>=0 >0|1

{ <derivative_spec>>=0 }

• A derivative_definition defines a derivative with the given derivative_name as a unique
name.

derivative_spec   ::= core_def
                    | bus_def
                    | mem_def
                    | section_definition // no processor name
                    | section_setup

core_def          ::= core core_name { <core_descr ;>>=0 }

• A core_def defines a core with the given core_name as a unique name.

• At least one core_def must be present in a derivative_definition.

core_descr        ::= architecture = arch_name
                      <( argument_list )>0|1

                    | endianness = ( endianness_type
                               <, endianness_type>>=0 )

• An arch_name refers to a defined core architecture.

560

TASKING SmartCode - PPU User Guide



• Exactly one architecture statement must be present in a core_def.

12.2.10. Processor Definition and Board Specification

board_spec        ::= proc_def
                    | bus_def
                    | mem_def

proc_def          ::= processor proc_name
{ proc_descr ; }

proc_descr        ::= derivative = derivative_name
                      <( argument_list )>0|1

• A proc_def defines a processor with the proc_name as a unique name.

• If you do not explicitly define a processor for a derivative in an LSL file, the linker defines a processor
with the same name as that derivative.

• A derivative_name refers to a defined derivative.

• A proc_def contains exactly one derivative statement.

12.2.11. Section Setup

section_setup     ::= section_setup space_ref <tag_attr>0|1

{ <section_setup_item>>=0 }

section_setup_item
                  ::= vector_table_statement
                    | reserved_range
                    | stack_def ;
                    | heap_def ;
                    | copy_table_def ;
                    | start_address ;

12.2.12. Section Layout Definition

section_definition ::= section_layout <space_ref>0|1

                       <( space_layout_properties )>0|1

{ <section_statement>>=0 }

• A section definition inside a space definition does not have a space_ref.

• All global section definitions have a space_ref.

space_ref         ::= <proc_name>0|1 : <core_name>0|1

: space_name <| space_name>>=0

• If more than one processor is present, the proc_name must be given for a global section layout.

561

Linker Script Language (LSL)



• If the section layout refers to a processor that has more than one core, the core_name must be given
in the space_ref.

• A proc_name refers to a defined processor.

• A core_name refers to a defined core.

• A space_name refers to a defined address space.

space_layout_properties
                  ::= space_layout_property <, space_layout_property >>=0

space_layout_property
                  ::= locate_direction
                    | tag

locate_direction  ::= direction = direction

direction         ::= low_to_high
                    | high_to_low

• A section layout contains at most one direction statement.

• If you do not specify the direction statement, the locate direction of the section layout is
low-to-high.

section_statement
                  ::= simple_section_statement ;
                    | aggregate_section_statement

simple_section_statement
                  ::= assignment
                    | select_section_statement
                    | special_section_statement

assignment        ::= symbol_name assign_op expr

assign_op         ::= =
                    | :=

select_section_statement
                  ::= select <ref_tree>0|1 <section_name>0|1

                      <section_selections>0|1

• Either a section_name or at least one section_selection must be defined.

section_selections
                  ::= ( section_selection
                        <, section_selection>>=0 )

section_selection
                  ::= attributes = < <+|-> attribute>>0

                    | tag

562

TASKING SmartCode - PPU User Guide



• +attribute means: select all sections that have this attribute.

• -attribute means: select all sections that do not have this attribute.

special_section_statement
                  ::= heap heap_name <stack_heap_mods>0|1

                    | stack stack_name <stack_heap_mods>0|1

                    | copytable
                    | reserved section_name <reserved_specs>0|1

• Special sections cannot be selected in load-time groups.

stack_heap_mods   ::= ( stack_heap_mod <, stack_heap_mod>>=0 )

stack_heap_mod    ::= size = expr
                    | tag

reserved_specs    ::= ( reserved_spec <, reserved_spec>>=0 )

reserved_spec     ::= attributes
                    | fill_spec
                    | size = expr
                    | alloc_allowed = absolute | ranged

• If a reserved section has attributes r, rw, x, rx or rwx, and no fill pattern is defined, the section is
filled with zeros. If no attributes are set, the section is created as a scratch section (attributes ws, no
image).

fill_spec         ::= fill = fill_values

fill_values       ::= expr
                    | [ expr <, expr>>=0 ]

aggregate_section_statement
                  ::= { <section_statement>>=0 }
                    | group_descr
                    | if_statement
                    | section_creation_statement
                    | struct_statement

group_descr       ::= group <group_name>0|1 <( group_specs )>0|1

section_statement

• For every group with a name, the linker defines a label.

• No two groups for address spaces of a core can have the same group_name.

group_specs       ::= group_spec <, group_spec >>=0

group_spec        ::= group_alignment
                    | attributes
                    | copy
                    | nocopy

563

Linker Script Language (LSL)



                    | group_load_address
                    | fill <= fill_values>0|1

                    | group_page
                    | group_run_address
                    | group_type
                    | allow_cross_references
                    | priority = number
                    | tag

• The allow-cross-references property is only allowed for overlay groups.

• The copy and nocopy properties cannot be applied both to the same group.

• Sub groups inherit all properties from a parent group.

group_alignment   ::= align = expr

attributes        ::= attributes = <attribute>>=1

attribute         ::= r    // readable sections
                    | w    // writable sections
                    | x    // executable code sections
                    | i    // initialized sections
                    | s    // scratch sections
                    | b    // blanked (cleared) sections
                    | p    // protected sections

group_load_address
                  ::= load_addr <= load_or_run_addr>0|1

group_page        ::= page <= expr>0|1

                    | page_size = expr <[ range ] <| [ range ]>>=0>0|1

group_run_address ::= run_addr <= load_or_run_addr>0|1

group_type        ::= clustered
                    | contiguous
                    | ordered
                    | overlay

• For non-contiguous groups, you can only specify group_alignment and attributes.

• The overlay keyword also sets the contiguous property.

• The clustered property cannot be set together with contiguous or ordered on a single group.

load_or_run_addr  ::= addr_absolute
                    | addr_range <| addr_range>>=0

addr_absolute     ::= expr
                    | memory_reference [ expr ]

• An absolute address can only be set on ordered groups.

564

TASKING SmartCode - PPU User Guide



addr_range        ::= [ expr .. expr ]
                    | memory_reference
                    | memory_reference [ expr .. expr ]

• The parent of a group with an addr_range or page restriction cannot be ordered, contiguous or
clustered.

• The end address is not part of the range.

memory_reference  ::= mem : <proc_name :>0|1 mem_name </ map_name>0|1

• A proc_name refers to a defined processor.

• A mem_name refers to a defined memory.

• A map_name refers to a defined memory mapping.

if_statement      ::= if ( expr ) section_statement
                      <else section_statement>0|1

section_creation_statement
                  ::= section section_name ( section_specs )

{ <section_statement2>>=0 }

section_specs     ::= section_spec <, section_spec >>=0

section_spec      ::= attributes
                    | fill_spec
                    | size = expr
                    | blocksize = expr
                    | overflow = section_name
                    | tag

section_statement2
                  ::= select_section_statement ;
                    | group_descr2
                    | { <section_statement2>>=0 }

group_descr2      ::= group <group_name>0|1

( group_specs2 )
section_statement2

group_specs2      ::= group_spec2 <, group_spec2 >>=0

group_spec2       ::= group_alignment
                    | attributes
                    | load_addr
                    | nocopy
                    | tag

struct_statement
                  ::= struct { <struct_item>>=0 }

565

Linker Script Language (LSL)



struct_item       ::= expr : number ;

12.3. Expression Evaluation

Only constant expressions are allowed, including sizes, but not addresses, of sections in object files.

All expressions are evaluated with 64-bit precision integer arithmetic. The result of an expression can be
absolute or relocatable. A symbol you assign is created as an absolute symbol. Symbol references are
only allowed in symbol assignments and struct statements.

566

TASKING SmartCode - PPU User Guide



12.4. Semantics of the Architecture Definition

Keywords in the architecture definition

architecture
   extends
endianness          big  little
bus
   mau
   width
   map
space
   id
   mau
   align
   page_size
   page
   direction        low_to_high  high_to_low

stack
      min_size
      grows         low_to_high  high_to_low
      align
      fixed
      entry_points
      attributes    b
   heap
      min_size
      grows         low_to_high  high_to_low
      align
      fixed
      attributes    b

copytable
      align
      copy_unit
      dest
      page

vector_table
      vector_size
      size
      id_symbol_prefix
      run_addr
      template
      template_symbol
      vector_prefix
      fill
      no_inline
      copy
      vector
         id

567

Linker Script Language (LSL)



         fill       loop
         optional

reserved
start_address

      run_addr
      symbol

map

map
      dest          bus  space
      dest_dbits
      dest_offset
      size
      src_dbits
      src_offset
      priority
      exec_priority

12.4.1. Defining an Architecture

With the keyword architecture you define an architecture and assign a unique name to it. The name
is used to refer to it at other places in the LSL file:

architecture name
{

definitions
}

If you are defining multiple core architectures that show great resemblance, you can define the common
features in a parent core architecture and extend this with a child core architecture that contains specific
features. The child inherits all features of the parent. With the keyword extends you create a child core
architecture:

architecture name_child_arch extends name_parent_arch
{

definitions
}

A core architecture can have any number of parameters. These are identifiers which get values assigned
on instantiation or extension of the architecture.You can use them in any expression within the core
architecture. Parameters can have default values, which are used when the core architecture is instantiated
with less arguments than there are parameters defined for it. When you extend a core architecture you
can pass arguments to the parent architecture. Arguments are expressions that set the value of the
parameters of the sub-architecture.

architecture name_child_arch (parm1,parm2=1)
extends name_parent_arch (arguments)

{
definitions

}

568

TASKING SmartCode - PPU User Guide



12.4.2. Defining Internal Buses

With the bus keyword you define a bus (the combination of data and corresponding address bus). The
bus name is used to identify a bus and does not conflict with other identifiers. Bus descriptions in an
architecture definition or derivative definition define internal buses. Some internal buses are used to
communicate with the components outside the core or processor. Such buses on a processor have
physical pins reserved for the number of bits specified with the width statements.

• The mau field specifies the MAU size (Minimum Addressable Unit) of the data bus.This field is required
and must be non-zero.

• The width field specifies the width (number of address lines) of the data bus. The default value is the
MAU size.

• The map keyword specifies how this bus maps onto another bus (if so). Mappings are described in
Section 12.4.4, Mappings.

bus bus_name
{

mau = 8;
width = 8;
map ( map_description );

}

12.4.3. Defining Address Spaces

With the space keyword you define a logical address space. The space name is used to identify the
address space and does not conflict with other identifiers.

• The id field defines how the addressing space is identified in object files. In general, each address
space has a unique ID.The linker locates sections with a certain ID in the address space with the same
ID. This field is required.

• The mau field specifies the MAU size (Minimum Addressable Unit) of the space. This field is required
and must be non-zero.

• The align value must be a power of two. The linker uses this value to compute the start addresses
when sections are concatenated. An align value of n means that objects in the address space have to
be aligned on n MAUs.

• The page_size field sets the page alignment and page size in MAUs for the address space. It must
be a power of 2. The default value is 1. If one or more page ranges are supplied the supplied value
only sets the page alignment. The ranges specify the available space in each page, as offsets to the
page start, which is aligned at the page alignment.

See also the page keyword in subsection Locating a group in Section 12.8.2, Creating and Locating
Groups of Sections.

• With the optional direction field you can specify how all sections in this space should be located.
This can be either from low_to_high addresses (this is the default) or from high_to_low addresses.

569

Linker Script Language (LSL)



• The map keyword specifies how this address space maps onto an internal bus or onto another address
space. Mappings are described in Section 12.4.4, Mappings.

Stacks and heaps

• The stack keyword defines a stack in the address space and assigns a name to it. The architecture
definition must contain at least one stack definition. Each stack of a core architecture must have a
unique name. See also the stack keyword in Section 12.8.3, Creating or Modifying Special Sections.

The stack is described in terms of a minimum size (min_size) and the direction in which the stack
grows (grows). This can be either from low_to_high addresses (stack grows upwards, this is the
default) or from high_to_low addresses (stack grows downwards). The min_size is required.

By default, the linker tries to maximize the size of the stacks and heaps. After locating all sections, the
largest remaining gap in the space is used completely for the stacks and heaps. If you specify the
keyword fixed, you can disable this so-called 'balloon behavior'. The size is also fixed if you used a
stack or heap in the software layout definition in a restricted way. For example when you override a
stack with another size or select a stack in an ordered group with other sections.

A stack may have an attributes property with value b. Such a stack must be cleared at program
startup. No other attributes are allowed.

Optionally you can specify an alignment for the stack with the argument align. This alignment must
be equal or larger than the alignment that you specify for the address space itself.

For each stack, a stack size estimation may be computed (and listed in a map file) from a call graph.
Each root node of the call graph is treated as a separate thread that can run independently from the
other threads. Root nodes can be specified using the entry_points keyword. The estimated stack
usage for a root node is the highest sum of stack usage values along a path to a leaf node. The total
estimated stack usage of a link task is the sum of the calculated stack usage of such independent call
graphs.

A stack definition may have one or more entry_points statements that specify the code that uses
that stack - all functions that are reachable (by calls) from the entry points are considered to be using
the stack at run-time. Each symbol name specified as an entry point must match a node in the call
graph, which must not have more than one caller. As a result of the entry point specification, the specific
call (edge) is removed from the call graph (so the symbol becomes a root). A symbol may be declared
as entry point for multiple stacks.

• The heap keyword defines a heap in the address space and assigns a name to it. The definition of a
heap is similar to the definition of a stack. See also the heap keyword in Section 12.8.3, Creating or
Modifying Special Sections.

Stacks and heaps are only generated by the linker if the corresponding linker labels are referenced in the
object files.

See Section 12.8, Semantics of the Section Layout Definition, for information on creating and placing
stack sections.

570

TASKING SmartCode - PPU User Guide



Copy tables

• The copytable keyword defines a copy table in the address space. The content of the copy table is
created by the linker and contains the start address and size of all sections that should be initialized
by the startup code.You must define exactly one copy table in one of the address spaces (for a core).

Optionally you can specify an alignment for the copy table with the argument align. This alignment
must be equal or larger than the alignment that you specify for the address space itself. If smaller, the
alignment for the address space is used.

The copy_unit argument specifies the size in MAUs of information chunks that are copied. If you do
not specify the copy unit, the MAU size of the address space itself is used.

The dest argument specifies the destination address space that the code uses for the copy table. The
linker uses this information to generate the correct addresses in the copy table.The memory into where
the sections must be copied at run-time, must be accessible from this destination space.

Sections generated for the copy table may get a page restriction with the address space's page size,
by adding the page argument.

Vector table

• The vector_table keyword defines a vector table with n vectors of size m (This is an internal LSL
object similar to an LSL group.) The run_addr argument specifies the location of the first vector (id=0).
This can be a simple address or an offset in memory (see the description of the run-time address in
subsection Locating a group in Section 12.8.2, Creating and Locating Groups of Sections). A vector
table defines symbols _lc_ub_foo and _lc_ue_foo pointing to start and end of the table.

vector_table "vector_table" (vector_size=m, size=n, run_addr=x, ...)

See the following example of a vector table definition:

vector_table "vector_table" (vector_size = 4, size = 16, run_addr=0,
                    template=".text.handler.address",
                    template_symbol="_lc_vector_handler",
                    vector_prefix="_vector_",
                    id_symbol_prefix="foo",
                    no_inline,
                    /* default: empty, or */
                    fill="foo", /* or */ 
                    fill=[1,2,3,4], /* or */ 
                    fill=loop)
{
    vector (id=23, fill="main", optional);
    vector (id=12, fill=[0xab, 0x21, 0x32, 0x43]);
    vector (id=[1..11], fill=[0]);
    vector (id=[18..23], fill=loop);
}

571

Linker Script Language (LSL)



The template argument defines the name of the section that holds the code to jump to a handler
function from the vector table. This template section does not get located and is removed when the
locate phase is completed. This argument is required.

The template_symbol argument is the symbol reference in the template section that must be replaced
by the address of the handler function. This symbol name should start with the linker prefix for the
symbol to be ignored in the link phase. This argument is required.

The vector_prefix argument defines the names of vector sections: the section for a vector with id
vector_id is $(vector_prefix)$(vector_id). Vectors defined in C or assembly source files that should be
included in the vector table must have the correct symbol name. The compiler uses the prefix that is
defined in the default LSL file(s); if this attribute is changed, the vectors declared in C source files are
not included in the vector table. When a vector supplied in an object file has exactly one relocation, the
linker will assume it is a branch to a handler function, and can be removed when the handler is inlined
in the vector table. Otherwise, no inlining is done. This argument is required.

With the optional no_inline argument the vectors handlers are not inlined in the vector table.

With the optional copy argument a ROM copy of the vector table is made and the vector table is copied
to RAM at startup.

With the optional id_symbol_prefix argument you can set an internal string representing a symbol
name prefix that may be found on symbols in vector handler code. When the linker detects such a
symbol in a handler, the symbol is assigned the vector number. If the symbol was already assigned a
vector number, a warning is issued.

The fill argument sets the default contents of vectors. If nothing is specified for a vector, this setting
is used. See below. When no default is provided, empty vectors may be used to locate large vector
handlers and other sections. Only one fill argument is allowed.

The vector field defines the content of vector with the number specified by id. If a range is specified
for id ([p..q,s..t]) all vectors in the ranges (inclusive) are defined the same way.

With fill=symbol_name, the vector must jump to this symbol. If the section in which the symbol is
defined fits in the vector table (size may be >m), locate the section at the location of the vector.
Otherwise, insert code to jump to the symbol's value. A template interrupt handler section name +
symbol name for the target code must be supplied in the LSL file.

fill=[value(s)], fills the vector with the specified MAU values.

With fill=loop the vector jumps to itself. With the optional [offset] you can specify an offset from the
vector table entry.

When the keyword optional is set on a vector specification with a symbol value and the symbol is
not found, no error is reported. A default fill value is used if the symbol was not found.With other values
the attribute has no effect.

Reserved address ranges

• The reserved keyword specifies to reserve a part of an address space even if not all of the range is
covered by memory. See also the reserved keyword in Section 12.8.3, Creating or Modifying Special
Sections.

572

TASKING SmartCode - PPU User Guide



Start address

• The start_address keyword specifies the start address for the position where the C startup code is
located.When a processor is reset, it initializes its program counter to a certain start address, sometimes
called the reset vector. In the architecture definition, you must specify this start address in the correct
address space in combination with the name of the label in the application code which must be located
here.

The run_addr argument specifies the start address (reset vector). If the core starts executing using
an entry from a vector table, and directly jumps to the start label, you should omit this argument.

The symbol argument specifies the name of the label in the application code that should be located
at the specified start address.The symbol argument is required.The linker will resolve the start symbol
and use its value after locating for the start address field in IEEE-695 files and Intel Hex files. If you
also specified the run_addr argument, the start symbol (label) must point to a section. The linker
locates this section such that the start symbol ends up on the start address.

space space_name
{

id = 1;
mau = 8;
align = 8;
page_size = 1;
stack name (min_size = 1k, grows = low_to_high);
reserved start_address .. end_address;
start_address ( run_addr = 0x0000,

symbol = "start_label" )
map ( map_description );

}

12.4.4. Mappings

You can use a mapping when you define a space, bus or memory. With the map field you specify how
addresses from the source (space, bus or memory) are translated to addresses of a destination (space,
bus). The following mappings are possible:

• space => space

• space => bus

• bus => bus

• memory => bus

With a mapping you specify a range of source addresses you want to map (specified by a source offset
and a size), the destination to which you want to map them (a bus or another address space), and the
offset address in the destination.

• The dest argument specifies the destination. This can be a bus or another address space (only for
a space to space mapping). This argument is required.

573

Linker Script Language (LSL)



• The src_offset argument specifies the offset of the source addresses. In combination with size, this
specifies the range of address that are mapped. By default the source offset is 0x0000.

• The size argument specifies the number of addresses that are mapped. This argument is required.

• The dest_offset argument specifies the position in the destination to which the specified range of
addresses is mapped. By default the destination offset is 0x0000.

If you are mapping a bus to another bus, the number of data lines of each bus may differ. In this case
you have to specify a range of source data lines you want to map (src_dbits = begin..end) and the
range of destination data lines you want to map them to (dest_dbits = first..last).

• The src_dbits argument specifies a range of data lines of the source bus. By default all data lines
are mapped.

• The dest_dbits argument specifies a range of data lines of the destination bus. By default, all data
lines from the source bus are mapped on the data lines of the destination bus (starting with line 0).

A mapping can optionally have a name which can be referenced in an address assignment.

If you define a memory and the memory mapping must not be used by default when locating sections in
address spaces, you can specify the reserved argument. This marks all address space areas that the
mapping points to as reserved. If a section has an absolute or address range restriction, the reservation
is lifted and the section may be located at these locations. This feature is only useful when more than
one mapping is available for a range of memory addresses, otherwise the memory keyword with the same
name would be used.

For example:

memory xrom
{
    mau = 8;
    size = 1M;
    type = rom;

map cached   (dest=bus:mycore:local_bus, dest_offset=0x80000000,
                  size=1M);

map uncached (dest=bus:mycore:local_bus, dest_offset=0xa0000000,
                  size=1M, reserved);
}

Mapping priority

If you define a memory you can set a locate priority on a mapping with the keywords priority and
exec_priority. The values of these priorities are relative which means they add to the priority of
memories. Whereas a priority set on the memory applies to all address space areas reachable through
any mapping of the memory, a priority set on a mapping only applies to address space areas reachable
through the mapping. The memory mapping with the highest priority is considered first when locating. To
set only a priority for non-executable (data) sections, add a priority keyword with the desired value
and an exec_priority set to zero. To set only a priority for executable (code) sections, simply set an
exec_priority keyword to the desired value.

574

TASKING SmartCode - PPU User Guide



The default for a mapping priority is zero, while the default for exec_priority is the same as the
specified priority. If you specify a value for priority in LSL it must be greater than zero. A value
for exec_priority must be greater or equal to zero.

For more information about priority values see the description of the memory priority keyword.

memory myram
{
    mau = 8;
    size = 112k;
    type = ram;

map (dest=bus:mycore:local_bus, dest_offset=0xd0000000,
              size=112k, priority=8, exec_priority=0);

map (dest=bus:mycore:local_bus, dest_offset=0x70000000,
              size=112k);
}

From space to space

If you map an address space to another address space (nesting), you can do this by mapping the subspace
to the containing larger space. In this example a small space of 64 kB is mapped on a large space of 16
MB.

space small
{
   id = 2;
   mau = 4;

map (src_offset = 0, dest_offset = 0,
dest = space : large, size = 64k);

}

From space to bus

All spaces that are not mapped to another space must map to a bus in the architecture:

space large
{
   id = 1;
   mau = 4;

map (src_offset = 0, dest_offset = 0,
dest = bus:bus_name, size = 16M );

}

From bus to bus

The next example maps an external bus called e_bus to an internal bus called i_bus. This internal bus
resides on a core called mycore.The source bus has 16 data lines whereas the destination bus has only
8 data lines. Therefore, the keywords src_dbits and dest_dbits specify which source data lines are
mapped on which destination data lines.

575

Linker Script Language (LSL)



architecture mycore
{
    bus i_bus
    {
       mau = 4;
    }

    space i_space
    {
       map (dest=bus:i_bus, size=256);
    }
}

bus e_bus
{
   mau = 16;
   width = 16;
   map (dest = bus:mycore:i_bus, src_dbits = 0..7, dest_dbits = 0..7 )
}

It is not possible to map an internal bus to an external bus.

12.5. Semantics of the Derivative Definition

Keywords in the derivative definition

derivative
   extends
core
   architecture
bus
   mau
   width
   map
memory
   type             reserved rom  ram  nvram  blockram
   mau
   size
   speed
   priority
   exec_priority
   fill
   map
section_layout
section_setup

map
      dest          bus  space

576

TASKING SmartCode - PPU User Guide



      dest_dbits
      dest_offset
      size
      src_dbits
      src_offset
      priority
      exec_priority
      reserved

12.5.1. Defining a Derivative

With the keyword derivative you define a derivative and assign a unique name to it.The name is used
to refer to it at other places in the LSL file:

derivative name
{

definitions
}

If you are defining multiple derivatives that show great resemblance, you can define the common features
in one or more parent derivatives and extend this with a child derivative that contains specific features.
The child inherits all features of the parent (cores and memories). With the keyword extends you create
a child derivative:

derivative name_child_deriv extends name_parent_derivs
{

definitions
}

As with a core architecture, a derivative can have any number of parameters. These are identifiers which
get values assigned on instantiation or extension of the derivative.You can use them in any expression
within the derivative definition.

derivative name_child_deriv (parm1,parm2=1)
extends name_parent_deriv (arguments)

{
definitions

}

12.5.2. Instantiating Core Architectures

With the keyword core you instantiate a core architecture in a derivative.

• With the keyword architecture you tell the linker that the given core has a certain architecture. The
architecture name refers to an existing architecture definition in the same LSL file.

For example, if you have two cores (called mycore_1 and mycore_2) that have the same architecture
(called mycorearch), you must instantiate both cores as follows:

core mycore_1
{

577

Linker Script Language (LSL)



architecture = mycorearch;
}

core mycore_2
{

architecture = mycorearch;
}

If the architecture definition has parameters you must specify the arguments that correspond with the
parameters. For example mycorearch1 expects two parameters which are used in the architecture
definition:

core mycore
{

architecture = mycorearch1 (1,2);
}

12.5.3. Defining Internal Memory and Buses

With the keyword memory you define physical memory that is present on the target board. The memory
name is used to identify the memory and does not conflict with other identifiers. It is common to define
internal memory (on-chip) in the derivative definition. External memory (off-chip memory) is usually defined
in the board specification (See Section 12.6.3, Defining External Memory and Buses).

• The type field specifies a memory type:

• rom: read-only memory - it can only be written at load-time

• ram: random access volatile writable memory - writing at run-time is possible while writing at load-time
has no use since the data is not retained after a power-down

• nvram: non volatile ram - writing is possible both at load-time and run-time

• blockram: writing is possible both at load-time and run-time. Changes are applied in RAM, so after
a full device reset the data in a blockram reverts to the original state.

The optional reserved qualifier before the memory type, tells the linker not to locate any section in
the memory by default.You can locate sections in such memories using an absolute address or range
restriction (see subsection Locating a group in Section 12.8.2, Creating and Locating Groups of Sections).

• The mau field specifies the MAU size (Minimum Addressable Unit) of the memory. This field is required
and must be non-zero.

• The size field specifies the size in MAU of the memory. This field is required.

• The priority field specifies a locate priority for a memory. The speed field has the same meaning
but is considered deprecated. By default, a memory has its priority set to 1. The memories with the
highest priority are considered first when trying to locate a rule. Subsequently, the next highest priority
memories are added if the rule was not located successfully, and so on until the lowest priority that is
available is reached or the rule is located. The lowest priority value is zero. Sections with an ordered

578

TASKING SmartCode - PPU User Guide



and/or contiguous restriction are not affected by the locate priority. If such sections also have a page
restriction, the locate priority is still used to select a page.

• If an exec_priority is specified for a memory, the regular priority (either specified or its default
value) does not apply to locate rules with only executable sections. Instead, the supplied value applies
for such rules. Additionally, the exec_priority value is used for any executable unrestricted sections,
even if they appear in an unrestricted rule together with non-executable sections.

• The map field specifies how this memory maps onto an (internal) bus. The mapping can have a name.
Mappings are described in Section 12.4.4, Mappings.

• The optional fill field contains a bit pattern that the linker writes to all memory addresses that remain
unoccupied during the locate process. The result of the expression, or list of expressions, is used as
values to write to memory, each in MAU.

memory mem_name
{

type = rom;
mau = 8;
fill = 0xaa;
size = 64k;
priority = 2;
map map_name ( map_description );

}

With the bus keyword you define a bus in a derivative definition. Buses are described in Section 12.4.2,
Defining Internal Buses.

12.6. Semantics of the Board Specification

Keywords in the board specification

processor
derivative

bus
   mau
   width
   map
memory
   type             reserved  rom  ram  nvram  blockram
   mau
   size
   speed
   priority
   exec_priority
   fill
   map

map
      dest          bus  space

579

Linker Script Language (LSL)



      dest_dbits
      dest_offset
      size
      src_dbits
      src_offset
      priority
      exec_priority
      reserved

12.6.1. Defining a Processor

If you have a target board with multiple processors that have the same derivative, you need to instantiate
each individual processor in a processor definition. This information tells the linker which processor has
which derivative and enables the linker to distinguish between the present processors.

If you use processors that all have a unique derivative, you may omit the processor definitions.
In this case the linker assumes that for each derivative definition in the LSL file there is one
processor. The linker uses the derivative name also for the processor.

With the keyword processor you define a processor.You can freely choose the processor name. The
name is used to refer to it at other places in the LSL file:

processor proc_name
{

processor definition
}

12.6.2. Instantiating Derivatives

With the keyword derivative you tell the linker that the given processor has a certain derivative. The
derivative name refers to an existing derivative definition in the same LSL file.

For example, if you have two processors on your target board (called myproc_1 and myproc_2) that
have the same derivative (called myderiv), you must instantiate both processors as follows:

processor myproc_1
{

derivative = myderiv;
}

processor myproc_2
{

derivative = myderiv;
}

If the derivative definition has parameters you must specify the arguments that correspond with the
parameters. For example myderiv1 expects two parameters which are used in the derivative definition:

processor myproc
{

580

TASKING SmartCode - PPU User Guide



derivative = myderiv1 (2,4);
}

12.6.3. Defining External Memory and Buses

It is common to define external memory (off-chip) and external buses at the global scope (outside any
enclosing definition). Internal memory (on-chip memory) is usually defined in the scope of a derivative
definition.

With the keyword memory you define physical memory that is present on the target board. The memory
name is used to identify the memory and does not conflict with other identifiers. If you define memory
parts in the LSL file, only the memory defined in these parts is used for placing sections.

If no external memory is defined in the LSL file and if the linker option to allocate memory on demand is
set then the linker will assume that all virtual addresses are mapped on physical memory.You can override
this behavior by specifying one or more memory definitions.

memory mem_name
{

type = rom;
mau = 8;
fill = 0xaa;
size = 64k;
priority = 2;
map map_name ( map_description );

}

For a description of the keywords, see Section 12.5.3, Defining Internal Memory and Buses.

With the keyword bus you define a bus (the combination of data and corresponding address bus). The
bus name is used to identify a bus and does not conflict with other identifiers. Bus descriptions at the
global scope (outside any definition) define external buses.These are buses that are present on the target
board.

bus bus_name
{

mau = 8;
width = 8;
map ( map_description );

}

For a description of the keywords, see Section 12.4.2, Defining Internal Buses.

You can connect off-chip memory to any derivative: you need to map the off-chip memory to a bus and
map that bus on the internal bus of the derivative you want to connect it to.

581

Linker Script Language (LSL)



12.7. Semantics of the Section Setup Definition

Keywords in the section setup definition

section_setup
stack

      min_size
      grows         low_to_high  high_to_low
      align
      fixed
      id
   heap
      min_size
      grows         low_to_high  high_to_low
      align
      fixed
      id

copytable
      align
      copy_unit
      dest
      page

vector_table
      vector_size
      size
      id_symbol_prefix
      run_addr
      template
      template_symbol
      vector_prefix
      fill
      no_inline
      copy
      vector
         id
         fill       loop
         optional

reserved
start_address

      run_addr
      symbol

12.7.1. Setting up a Section

With the keyword section_setup you can define stacks, heaps, copy tables, vector tables, start address
and/or reserved address ranges outside their address space definition.

section_setup ::my_space
{

582

TASKING SmartCode - PPU User Guide



vector table statements
reserved address range
stack definition
heap definition
copy table definition
start adress

}

See the subsections Stacks and heaps, Copy tables, Start address, Vector table and Reserved address
ranges in Section 12.4.3, Defining Address Spaces for details on the keywords stack, heap, copytable,
vector_table and reserved.

12.8. Semantics of the Section Layout Definition

Keywords in the section layout definition

section_layout
   direction     low_to_high  high_to_low
group

align
   attributes    + -  r w x b i s p
   copy
   nocopy

fill
ordered

   contiguous
clustered
overlay

   allow_cross_references
load_addr

      mem
run_addr

      mem
page

   page_size
priority

select
stack
   size
heap
   size
reserved
   size
   attributes    r w x
   fill
   alloc_allowed absolute ranged
copytable
section
   size

583

Linker Script Language (LSL)



   blocksize
   attributes    r w x
   fill
   overflow
struct
   checksum

if
else

12.8.1. Defining a Section Layout

With the keyword section_layout you define a section layout for exactly one address space. In the
section layout you can specify how input sections are placed in the address space, relative to each other,
and what the absolute run and load addresses of each section will be.

You can define one or more section definitions. Each section definition arranges the sections in one
address space.You can precede the address space name with a processor name and/or core name,
separated by colons.You can omit the processor name and/or the core name if only one processor is
defined and/or only one core is present in the processor. A reference to a space in the only core of the
only processor in the system would look like "::my_space". A reference to a space of the only core on
a specific processor in the system could be "my_chip::my_space". The next example shows a section
definition for sections in the my_space address space of the processor called my_chip:

section_layout my_chip::my_space ( locate_direction )
{

section statements
}

Locate direction

With the optional keyword direction you specify whether the linker starts locating sections from
low_to_high (default) or from high_to_low. In the second case the linker starts locating sections at
the highest addresses in the address space but preserves the order of sections when necessary (one
processor and core in this example).

section_layout ::my_space ( direction = high_to_low )
{

section statements
}

If you do not explicitly tell the linker how to locate a section, the linker decides on the basis of the
section attributes in the object file and the information in the architecture definition and memory
parts where to locate the section.

584

TASKING SmartCode - PPU User Guide



12.8.2. Creating and Locating Groups of Sections

Sections are located per group. A group can contain one or more (sets of) input sections as well as other
groups. Per group you can assign a mutual order to the sets of sections and locate them into a specific
memory part.

group ( group_specifications )
{

section_statements
}

With the section_statements you generally select sets of sections to form the group.This is described
in subsection Selecting sections for a group.

Instead of selecting sections, you can also modify special sections like stack and heap or create a reserved
section. This is described in Section 12.8.3, Creating or Modifying Special Sections.

With the group_specifications you actually locate the sections in the group. This is described in
subsection Locating a group.

Selecting sections for a group

With the keyword select you can select one or more sections for the group.You can select a section
by name or by attributes. If you select a section by name, you can use a wildcard pattern:

matches with all section names*

matches with a single character in the section name?

takes the next character literally\

matches with a single 'a', 'b' or 'c' character[abc]

matches with any single character in the range 'a' to 'z'[a-z]

group ( ... )
{

select "mysection";
select "*";

}

The first select statement selects the section with the name "mysection". The second select
statement selects all sections that were not selected yet.

A section is selected by the first select statement that matches, in the union of all section layouts for the
address space. Global section layouts are processed in the order in which they appear in the LSL file.
Internal core architecture section layouts always take precedence over global section layouts.

When you use wildcards, the linker skips sections with an absolute address from the selection process,
for example, a start section already having an absolute start address.

Note that when you select sections with an exact name (no wildcards), all sections with that name are
automatically protected against unreferenced section removal.With a selection using wildcards, matching
sections are selected, but matching sections that are unreferenced may be removed.

585

Linker Script Language (LSL)



• The attributes field selects all sections that carry (or do not carry) the given attribute.With +attribute
you select sections that have the specified attribute set. With -attribute you select sections that do not
have the specified attribute set.You can specify one or more of the following attributes:

• r readable sections

• w writable sections

• x executable sections

• i initialized sections

• b sections that should be cleared at program startup

• s scratch sections (not cleared and not initialized)

• p protected sections

To select all read-only sections:

group ( ... )
{

select (attributes = +r-w);
}

Keep in mind that all section selections are restricted to the address space of the section layout in which
this group definition occurs.

• With the ref_tree field you can select a group of related sections. The relation between sections is
often expressed by means of references. By selecting just the 'root' of tree, the complete tree is selected.
This is for example useful to locate a group of related sections in special memory (e.g. fast memory).
The (referenced) sections must meet the following conditions in order to be selected:

1. The sections are within the section layout's address space

2. The sections match the specified attributes

3. The sections have no absolute restriction (as is the case for all wildcard selections)

For example, to select the code sections referenced from foo1:

group refgrp (contiguous, run_addr=mem:ext_c)
{

select ref_tree "foo1" (attributes=+x);
}

If section foo1 references foo2 and foo2 references foo3, then all these sections are selected by
the selection shown above.

Locating a group

group group_name ( group_specifications )
{

586

TASKING SmartCode - PPU User Guide



section_statements
}

With the group_specifications you actually define how the linker must locate the group.You can
roughly define three things: 1) assign properties to the sections in a group like alignment and read/write
attributes, 2) define the mutual order in the address space for sections in the group and 3) restrict the
possible addresses for the sections in a group.

The linker creates labels that allow you to refer to the begin and end address of a group from within the
application software. Labels _lc_gb_group_name and _lc_ge_group_name mark the begin and end
of the group respectively, where the begin is the lowest address used within this group and the end is the
highest address used. Notice that a group not necessarily occupies all memory between begin and end
address. The given label refers to where the section is located at run-time (versus load-time).

1. Assign properties to the sections in a group like alignment and read/write attributes.

These properties are assigned to all sections in the group (and subgroups) and override the attributes
of the input sections.

• The align field tells the linker to align all sections in the group according to the align value. The
alignment of a section is first determined by its own initial alignment and the defined alignment for
the address space. Alignments are never decreased, if multiple alignments apply to a section, the
largest one is used.

• The attributes field tells the linker to assign one or more attributes to all sections in the group.
This overrules the default attributes. By default the linker uses the attributes of the input sections.
You can set the r, w, or rw attributes and you can switch between the b and s attributes.

• The copy field tells the linker to locate a read-only section in RAM and generate a ROM copy and
a copy action in the copy table.This property makes the sections in the group writable which causes
the linker to generate ROM copies for the sections.

• The effect of the nocopy field is the opposite of the copy field. It prevents the linker from generating
ROM copies of the selected sections.You cannot apply both copy and nocopy to the same
statement.

2. Define the mutual order of sections in an LSL group.

By default, a group is unrestricted which means that the linker has total freedom to place the sections
of the group in the address space.

Note that when you use the linker optimization option --optimize=+copytable-compression,
unrestricted sections affected by the copy table are located as if they were in a clustered LSL
group. This option is enabled by default.

• The ordered keyword tells the linker to locate the sections in the same order in the address space
as they appear in the group (but not necessarily adjacent).

Suppose you have an ordered group that contains the sections 'A', 'B' and 'C'. By default the linker
places the sections in the address space like 'A' - 'B' - 'C', where section 'A' gets the lowest possible
address. With direction=high_to_low in the section_layout space properties, the linker

587

Linker Script Language (LSL)



places the sections in the address space like 'C' - 'B' - 'A', where section 'A' gets the highest possible
address.

• The contiguous keyword tells the linker to locate the sections in the group in a single address
range.Within a contiguous group the input sections are located in arbitrary order, however the group
occupies one contiguous range of memory. Due to alignment of sections there can be 'alignment
gaps' between the sections.

When you define a group that is both ordered and contiguous, this is called a sequential group.
In a sequential group the linker places sections in the same order in the address space as they
appear in the group and it occupies a contiguous range of memory.

• The clustered keyword tells the linker to locate the sections in the group in a number of contiguous
blocks. It tries to keep the number of these blocks to a minimum. If enough memory is available, the
group will be located as if it was specified as contiguous. Otherwise, it gets split into two or more
blocks.

If a contiguous or clustered group contains alignment gaps, the linker can locate sections that are
not part of the group in these gaps. To prevent this, you can use the fill keyword. If the group is
located in RAM, the gaps are treated as reserved (scratch) space. If the group is located in ROM,
the alignment gaps are filled with zeros by default.You can however change the fill pattern by
specifying a bit pattern.The result of the expression, or list of expressions, is used as values to write
to memory, each in MAU.

• The overlay keyword tells the linker to overlay the sections in the group. The linker places all
sections in the address space using a contiguous range of addresses. (Thus an overlay group is
automatically also a contiguous group.) To overlay the sections, all sections in the overlay group
share the same run-time address.

For each input section within the overlay the linker automatically defines two symbols. The symbol
_lc_cb_section_name is defined as the load-time start address of the section. The symbol
_lc_ce_section_name is defined as the load-time end address of the section. C (or assembly)
code may be used to copy the overlaid sections.

If sections in the overlay group contain references between groups, the linker reports an error. The
keyword allow_cross_references tells the linker to accept cross-references. Normally, it does
not make sense to have references between sections that are overlaid.

group ovl (overlay)
{
    group a
    {
        select "my_ovl_p1";
        select "my_ovl_p2";
    }
    group b
    {
        select "my_ovl_q1";
    }
}

588

TASKING SmartCode - PPU User Guide



It may be possible that one of the sections in the overlay group already has been defined in
another group where it received a load-time address. In this case the linker does not overrule
this load-time address and excludes the section from the overlay group.

3. Restrict the possible addresses for the sections in a group.

The load-time address specifies where the group's elements are loaded in memory at download time.
The run-time address specifies where sections are located at run-time, that is when the program is
executing. If you do not explicitly restrict the address in the LSL file, the linker assigns addresses to
the sections based on the restrictions relative to other sections in the LSL file and section alignments.
The program is responsible for copying overlay sections at appropriate moment from its load-time
location to its run-time location (this is typically done by the startup code).

• The run_addr keyword defines the run-time address. If the run-time location of a group is set
explicitly, the given order between groups specify whether the run-time address propagates to the
parent group or not.The location of the sections in a group can be restricted either to a single absolute
address, or to a number of address ranges (not including the end address). With an expression you
can specify that the group should be located at the absolute address specified by the expression:

group (ordered, run_addr = 0xa00f0000)

A group with an absolute address must be ordered, the first section in the group is located at the
specified absolute address.

You can use the '[offset]' variant to locate the group at the given absolute offset in memory:

group (ordered, run_addr = mem:A[0x1000])

A group with an absolute address must be ordered, the first section in the group is located at the
specified absolute offset in memory.

A range can be an absolute space address range, written as [ expr .. expr ], a complete memory
device, written as mem:mem_name, or a memory address range, mem:mem_name[expr .. expr
]

group (run_addr = mem:my_dram)

You can use the '|' to specify an address range of more than one physical memory device:

group (run_addr = mem:A | mem:B)

When used in top-level section layouts, a memory name refers to a board-level memory.You can
select on-chip memory with mem:proc_name:mem_name. If the memory has multiple parallel
mappings towards the current address space, you can select a specific named mapping in the
memory by appending /map_name to the memory specifier. The linker then maps memory offsets
only through that mapping, so the address(es) where the sections in the group are located are
determined by that memory mapping.

group (run_addr = mem:CPU1:A/cached)

589

Linker Script Language (LSL)



• The load_addr keyword changes the meaning of the section selection in the group: the linker
selects the load-time ROM copy of the named section(s) instead of the regular sections. Just like
run_addr you can specify an absolute address or an address range.

group (contiguous, load_addr)
{
  select "mydata";  // select ROM copy of mydata:
                    // "[mydata]"
}

The load-time and run-time addresses of a group cannot be set at the same time. If the load-time
property is set for a group, the group (only) restricts the positioning at load-time of the group's
sections. It is not possible to set the address of a group that has a not-unrestricted parent group.

The properties of the load-time and run-time start address are:

• At run-time, before using an element in an overlay group, the application copies the sections from
their load location to their run-time location, but only if these two addresses are different. For
non-overlay sections this happens at program start-up.

• The start addresses cannot be set to absolute values for unrestricted groups.

• For non-overlay groups that do not have an overlay parent, the load-time start address equals the
run-time start address.

• For any group, if the run-time start address is not set, the linker selects an appropriate address.

• If an ordered group or sequential group has an absolute address and contains sections that have
separate page restrictions (not defined in LSL), all those sections are located in a single page. In
other cases, for example when an unrestricted group has an address range assigned to it, the
paged sections may be located in different pages.

For overlays, the linker reserves memory at the run-time start address as large as the largest element
in the overlay group.

• The page keyword tells the linker to place the group in one page. Instead of specifying a run-time
address, you can specify a page and optional a page number. Page numbers start from zero. If you
omit the page number, the linker chooses a page.

The page keyword refers to pages in the address space as defined in the architecture definition.

• With the page_size keyword you can override the page alignment and size set on the address
space. When you set the page size to zero, the linker removes simple (auto generated) page
restrictions from the selected sections. See also the page_size keyword in Section 12.4.3, Defining
Address Spaces.

• With the priority keyword you can change the order in which sections are located. This is useful
when some sections are considered important for good performance of the application and a small
amount of fast memory is available. The value is a number for which the default is 1, so higher
priorities start at 2. Sections with a higher priority are located before sections with a lower priority,
unless their relative locate priority is already determined by other restrictions like run_addr and
page.

590

TASKING SmartCode - PPU User Guide



group (priority=2)
{
  select "importantcode1";
  select "importantcode2";
}

12.8.3. Creating or Modifying Special Sections

Instead of selecting sections, you can also create a reserved section or an output section or modify special
sections like a stack or a heap. Because you cannot define these sections in the input files, you must use
the linker to create them.

Stack

• The keyword stack tells the linker to reserve memory for the stack. The name for the stack section
refers to the stack as defined in the architecture definition. If no name was specified in the architecture
definition, the default name is stack.

With the keyword size you can specify the size for the stack. If the size is not specified, the linker uses
the size given by the min_size argument as defined for the stack in the architecture definition. Normally
the linker automatically tries to maximize the size, unless you specified the keyword fixed.

group ( ... )
{

stack "mystack" ( size = 2k );
}

The linker creates two labels to mark the begin and end of the stack, _lc_ub_stack_name for the
begin of the stack and _lc_ue_stack_name for the end of the stack. The linker allocates space for
the stack when there is a reference to either of the labels.

See also the stack keyword in Section 12.4.3, Defining Address Spaces.

Heap

• The keyword heap tells the linker to reserve a dynamic memory range for the malloc() function.
Each heap section has a name. With the keyword size you can change the size for the heap. If the
size is not specified, the linker uses the size given by the min_size argument as defined for the heap
in the architecture definition. Normally the linker automatically tries to maximize the size, unless you
specified the keyword fixed.

group ( ... )
{

heap "myheap" ( size = 2k );
}

The linker creates two labels to mark the begin and end of the heap, _lc_ub_heap_name for the begin
of the heap and _lc_ue_heap_name for the end of the heap. The linker allocates space for the heap
when a reference to either of the section labels exists in one of the input object files.

591

Linker Script Language (LSL)



Reserved section

• The keyword reserved tells the linker to create an area or section of a given size. The linker will not
locate any other sections in the memory occupied by a reserved section, with some exceptions. Each
reserved section has a name. With the keyword size you can specify a size for a given reserved area
or section.

group ( ... )
{

reserved "myreserved" ( size = 2k );
}

The optional fill field contains a bit pattern that the linker writes to all memory addresses that remain
unoccupied during the locate process. The result of the expression, or list of expressions, is used as
values to write to memory, each in MAU. The first MAU of the fill pattern is always the first MAU in the
section.

By default, no sections can overlap with a reserved section.With alloc_allowed=absolute sections
that are located at an absolute address due to an absolute group restriction can overlap a reserved
section.The same applies for reserved sections with alloc_allowed=ranged set. Sections restricted
to a fixed address range can also overlap a reserved section.

With the attributes field you can set the access type of the reserved section. The linker locates the
reserved section in its space with the restrictions that follow from the used attributes, r, w or x or a valid
combination of them. The allowed attributes are shown in the following table. A value between < and
> in the table means this value is set automatically by the linker.

Resulting section propertiesProperties set in LSL

contentmemoryaccessfilledattributes

executable<rom>yesx

data<rom>ryesr

scratch<rom>rnor

executable<rom>ryesrx

data<ram>rwyesrw

scratch<ram>rwnorw

executable<ram>rwyesrwx

group ( ... )
{

reserved "myreserved" ( size = 2k, 
attributes = rw, fill = 0xaa );

}

If you do not specify any attributes, the linker will reserve the given number of maus, no matter what
type of memory lies beneath. If you do not specify a fill pattern, no section is generated.

The linker creates two labels to mark the begin and end of the section, _lc_ub_name for the begin of
the section and _lc_ue_name for the end of the reserved section.

592

TASKING SmartCode - PPU User Guide



Output sections

• The keyword section tells the linker to accumulate sections obtained from object files ("input sections")
into an output section of a fixed size in the locate phase.You can select the input sections with select
statements.You can use groups inside output sections, but you can only set the align, attributes,
nocopy and load_addr properties and the load_addr property cannot have an address specified.

The fill field contains a bit pattern that the linker writes to all unused space in the output section.
When all input sections have initialized code or data you must specify a fill pattern. If you do not specify
a fill pattern, all input sections must be scratch sections (not cleared and not initialized), or BSS sections.
The fill pattern is aligned at the start of the output section.

In the following example, the sections myinput1 and myinput2 are assumed to have initialized data,
so the fill keyword is needed on the output section.

As with a reserved section you can use the attributes field to set the access type of the output
section.

group ( ... )
{

section "myoutput" ( size = 4k, attributes = r,
fill = 0xaa )

   {
select "myinput1";
select "myinput2";

   }
}

The available room for input sections is determined by the size, blocksize and overflow fields.
With the keyword size you specify the fixed size of the output section. Input sections are placed from
output section start towards higher addresses (offsets). When the end of the output section is reached
and one or more input sections are not yet placed, an error is emitted. If however, the overflow field
is set to another output section, remaining sections are located as if they were selected for the overflow
output section.

In the following example, the sections .data.tsk1.* and .data.tsk2.* do not contain initialized
data, so the fill keyword should not be used on the output section.

group ( ... )
{

section "tsk1_data" (size=4k, attributes=rw,
                       overflow = "overflow_data")
  {
          select ".data.tsk1.*"
  }

section "tsk2_data" (size=4k, attributes=rw,
overflow = "overflow_data")

  {
          select ".data.tsk2.*"
  }

section "overflow_data" (size=4k, attributes=rw)

593

Linker Script Language (LSL)



  {
  }
}

With the keyword blocksize , the size of the output section will adapt to the size of its content. For
example:

group flash_area (run_addr = 0x10000)
{

section "flash_code" (blocksize=4k, attributes=rx,
                         fill=0)
   {
     select "*.flash";
   }
}

If the content of the section is 1 mau, the size will be 4 KiB, if the content is 11 KiB, the section will be
12 KiB, etc. If you use size in combination with blocksize, the size value is used as default (minimal)
size for this section. If it is omitted, the default size will be of blocksize. It is not allowed to omit both
size and blocksize from the section definition.

The linker creates two labels to mark the begin and end of the section, _lc_ub_name for the begin of
the section and _lc_ue_name for the end of the output section.

When the copy property is set on an enclosing group, a ROM copy is created for the output section
and the output section itself is made writable causing it to be located in RAM by default. For this to
work, the output section and its input sections must be read-only and the output section must have a
fill property.

A copy table can also be inserted into an output section, but only if two additional conditions are met:

• The copy table is the last section added to the output section.

• There must be sufficient room in the output section to accommodate the additional size of the copy
table.

A copy table will likely increase in size after being added to the output section, so if you would add
sections after the copy table selection, this would overwrite part of the copy table. The linker will emit
an error message if either of the conditions is not met.

group ( ... )
{

section "myoutput_tbl" ( size = 4k, attributes = r, fill = 0)
   {
      select "myinput";

select "table"; // select the copy table
   }
}

594

TASKING SmartCode - PPU User Guide



Copy table

• The keyword copytable tells the linker to select a section that is used as copy table. The content of
the copy table is created by the linker. It contains the start address and length of all sections that should
be initialized by the startup code.

The linker creates two labels to mark the begin and end of the section, _lc_ub_table for the begin
of the section and _lc_ue_table for the end of the copy table. The linker generates a copy table
when a reference to either of the section labels exists in one of the input object files.

Structures

• A struct statement in a section_layout creates a section and fills it with numbers that each occupy
one or more MAUs. The new section must be named by providing a double-quoted string after the
struct keyword. Each element has the form expr : number ;, where the expression provides the value
to insert in the section and the number determines the number of MAUs occupied by the expression
value. Elements are placed in the section in the order in which they appear in the struct body without
any gaps between them. Multi-MAU elements are split into MAUs according to the endianness of the
target. A struct section is read-only and it cannot be copied to RAM at startup (using the copy group
attribute). No default alignment is set.

For example,

struct "mystruct"
{
  0x1234                                       : 2;
  addressof( mem:foo )                         : 4;
  addressof( mem:foo ) + sizeof( mem:foo )     : 4;
  checksum( crc32w,
    addressof( mem:foo ),
    addressof( mem:foo ) + sizeof( mem:foo ) ) : 4}
}

12.8.4. Creating Symbols

You can tell the linker to create symbols before locating by putting assignments in the section layout
definition. Symbol names are represented by double-quoted strings. Any string is allowed, but object files
may not support all characters for symbol names.You can use two different assignment operators. With
the simple assignment operator '=', the symbol is created unconditionally. With the ':=' operator, the
symbol is only created if it already exists as an undefined reference in an object file.

The expression that represents the value to assign to the symbol may contain references to other symbols.
If such a referred symbol is a special section symbol, creation of the symbol in the left hand side of the
assignment will cause creation of the special section.

section_layout 
{
   "_lc_bs" := "_lc_ub_stack";
    // when the symbol _lc_bs occurs as an undefined reference 

595

Linker Script Language (LSL)



    // in an object file, the linker allocates space for the stack
}

12.8.5. Conditional Group Statements

Within a group, you can conditionally select sections or create special sections.

• With the if keyword you can specify a condition. The succeeding section statement is executed if the
condition evaluates to TRUE (1).

• The optional else keyword is followed by a section statement which is executed in case the if-condition
evaluates to FALSE (0).

group ( ... )
{

if ( exists( "mysection" ) )
      select "mysection";

else
      reserved "myreserved" ( size=2k );
}

596

TASKING SmartCode - PPU User Guide



Chapter 13. CERT C Secure Coding Standard
The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities.The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

This chapter contains an overview of the CERT C Secure Coding Standard recommendations and rules
that are supported by the TASKING toolset.

For details see the CERT C Secure Coding Standard web site. For general information about CERT
secure coding, see www.cert.org/secure-coding.

Identifiers

Each rule and recommendation is given a unique identifier. These identifiers consist of three parts:

• a three-letter mnemonic representing the section of the standard

• a two-digit numeric value in the range of 00-99

• the letter "C" indicates that this is a C language guideline

The three-letter mnemonic is used to group similar coding practices and to indicate to which category a
coding practice belongs.

The numeric value is used to give each coding practice a unique identifier. Numeric values in the range
of 00-29 are reserved for recommendations, while values in the range of 30-99 are reserved for rules.

C compiler invocation

With the C compiler option --cert you can enable one or more checks for the CERT C Secure Coding
Standard recommendations/rules. With --diag=cert you can see a list of the available checks, or you can
use a three-letter mnemonic to list only the checks in a particular category. For example, --diag=pre lists
all supported checks in the preprocessor category.

13.1. Preprocessor (PRE)

Use parentheses within macros around parameter names

Parenthesize all parameter names in macro definitions to avoid precedence problems.

PRE01-C

597

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
http://www.cert.org/secure-coding
http://doc.tasking.com/cert/pre01.html


Macro replacement lists should be parenthesized

Macro replacement lists should be parenthesized to protect any lower-precedence operators
from the surrounding expression. The example below is syntactically correct, although the
!= operator was omitted. Enclosing the constant -1 in parenthesis will prevent the incorrect
interpretation and force a compiler error:

#define EOF -1  // should be (-1)
int getchar(void);
void f(void)
{
  if (getchar() EOF) // != operator omitted
  {
    /* ... */
  }
}

PRE02-C

Wrap multi-statement macros in a do-while loop

When multiple statements are used in a macro, enclose them in a do-while statement, so
the macro can appear safely inside if clauses or other places that expect a single statement
or a statement block. Braces alone will not work in all situations, as the macro expansion is
typically followed by a semicolon.

PRE10-C

Do not conclude a single statement macro definition with a semicolon

Macro definitions consisting of a single statement should not conclude with a semicolon. If
required, the semicolon should be included following the macro expansion. Inadvertently
inserting a semicolon can change the control flow of the program.

PRE11-C

13.2. Declarations and Initialization (DCL)

Declare objects with appropriate storage durations

The lifetime of an automatic object ends when the function returns, which means that a
pointer to the object becomes invalid.

DCL30-C

Declare identifiers before using them

The ISO C90 standard allows implicit typing of variables and functions. Because implicit
declarations lead to less stringent type checking, they can often introduce unexpected and
erroneous behavior or even security vulnerabilities. The ISO C99 standard requires type
identifiers and forbids implicit function declarations. For backwards compatibility reasons,
the TASKING C compiler assumes an implicit declaration and continues translation after
issuing a warning message (W505 or W535).

DCL31-C

598

TASKING SmartCode - PPU User Guide

http://doc.tasking.com/cert/pre02.html
http://doc.tasking.com/cert/pre10.html
http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/dcl30.html
http://doc.tasking.com/cert/dcl31.html


Guarantee that mutually visible identifiers are unique

The compiler encountered two or more identifiers that are identical in the first 31 characters.
The ISO C99 standard allows a compiler to ignore characters past the first 31 in an identifier.
Two distinct identifiers that are identical in the first 31 characters may lead to problems when
the code is ported to a different compiler.

DCL32-C

Do not invoke a function using a type that does not match the function definition

This warning is generated when a function pointer is set to refer to a function of an
incompatible type. Calling this function through the function pointer will result in undefined
behavior. Example:

void my_function(int a);
int main(void)
{
  int (*new_function)(int a) = my_function;
  return (*new_function)(10); /* the behavior is undefined */
}

DCL35-C

13.3. Expressions (EXP)

Do not take the size of a pointer to determine the size of the pointed-to type

The size of the object(s) allocated by malloc(), calloc() or realloc() should be a multiple of
the size of the base type of the result pointer. Therefore, the sizeof expression should be
applied to this base type, and not to the pointer type.

EXP01-C

Do not ignore values returned by functions

The compiler gives this warning when the result of a function call is ignored at some place,
although it is not ignored for other calls to this function. This warning will not be issued when
the function result is ignored for all calls, or when the result is explicitly ignored with a (void)
cast.

EXP12-C

Do not depend on order of evaluation between sequence points

Between two sequence points, an object should only be modified once. Otherwise the behavior
is undefined.

EXP30-C

Do not access a volatile object through a non-volatile reference

If an attempt is made to refer to an object defined with a volatile-qualified type through use
of an lvalue with non-volatile-qualified type, the behavior is undefined.

EXP32-C

Do not reference uninitialized memory

Uninitialized automatic variables default to whichever value is currently stored on the stack
or in the register allocated for the variable. Consequently, uninitialized memory can cause a
program to behave in an unpredictable or unplanned manner and may provide an avenue
for attack.

EXP33-C

599

CERT C Secure Coding Standard

http://doc.tasking.com/cert/dcl32.html
http://doc.tasking.com/cert/dcl35.html
http://doc.tasking.com/cert/exp01.html
http://doc.tasking.com/cert/exp12.html
http://doc.tasking.com/cert/exp30.html
http://doc.tasking.com/cert/exp32.html
http://doc.tasking.com/cert/exp33.html


Ensure a null pointer is not dereferenced

Attempting to dereference a null pointer results in undefined behavior, typically abnormal
program termination.

EXP34-C

Call functions with the arguments intended by the API

When a function is properly declared with function prototype information, an incorrect call
will be flagged by the compiler. When there is no prototype information available at the call,
the compiler cannot check the number of arguments and the types of the arguments. This
message is issued to warn about this situation.

EXP37-C

Do not call offsetof() on bit-field members or invalid types

The behavior of the offsetof() macro is undefined when the member designator parameter
designates a bit-field.

EXP38-C

13.4. Integers (INT)

Ensure that unsigned integer operations do not wrap

A constant with an unsigned integer type is truncated, resulting in a wrap-around.

INT30-C

Do not shift a negative number of bits or more bits than exist in the operand

The shift count of the shift operation may be negative or greater than or equal to the size of
the left operand. According to the C standard, the behavior of such a shift operation is
undefined. Make sure the shift count is in range by adding appropriate range checks.

INT34-C

Evaluate integer expressions in a larger size before comparing or assigning to that size

If an integer expression is compared to, or assigned to a larger integer size, that integer
expression should be evaluated in that larger size by explicitly casting one of the operands.

INT35-C

13.5. Floating Point (FLP)

Do not use floating point variables as loop counters

To avoid problems with limited precision and rounding, floating point variables should not be
used as loop counters.

FLP30-C

Take granularity into account when comparing floating point values

Floating point arithmetic in C is inexact, so floating point values should not be tested for exact
equality or inequality.

FLP35-C

Beware of precision loss when converting integral types to floating point

Conversion from integral types to floating point types without sufficient precision can lead to
loss of precision.

FLP36-C

600

TASKING SmartCode - PPU User Guide

http://doc.tasking.com/cert/exp34.html
http://doc.tasking.com/cert/exp37.html
http://doc.tasking.com/cert/exp38.html
http://doc.tasking.com/cert/int30.html
http://doc.tasking.com/cert/int34.html
http://doc.tasking.com/cert/int35.html
http://doc.tasking.com/cert/flp30.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html


13.6. Arrays (ARR)

Do not apply the sizeof operator to a pointer when taking the size of an array

A function parameter declared as an array, is converted to a pointer by the compiler.Therefore,
the sizeof operator applied to this parameter yields the size of a pointer, and not the size of
an array.

ARR01-C

Ensure that array types in expressions are compatible

Using two or more incompatible arrays in an expression results in undefined behavior.

ARR34-C

Do not allow loops to iterate beyond the end of an array

Reading or writing of data outside the bounds of an array may lead to incorrect program
behavior or execution of arbitrary code.

ARR35-C

13.7. Characters and Strings (STR)

Do not attempt to modify string literals

Writing to a string literal has undefined behavior, as identical strings may be shared and/or
allocated in read-only memory.

STR30-C

Size wide character strings correctly

Wide character strings may be improperly sized when they are mistaken for narrow strings
or for multi-byte character strings.

STR33-C

Cast characters to unsigned types before converting to larger integer sizes

A signed character is sign-extended to a larger signed integer value. Use an explicit cast, or
cast the value to an unsigned type first, to avoid unexpected sign-extension.

STR34-C

Do not specify the bound of a character array initialized with a string literal

The compiler issues this warning when the character buffer initialized by a string literal does
not provide enough room for the terminating null character.

STR36-C

13.8. Memory Management (MEM)

Allocate and free memory in the same module, at the same level of abstraction

The compiler issues this warning when the result of the call to malloc(), calloc() or realloc()
is discarded, and therefore not free()d, resulting in a memory leak.

MEM00-C

Use realloc() only to resize dynamically allocated arrays

Only use realloc() to resize an array. Do not use it to transform an object to an object of a
different type.

MEM08-C

601

CERT C Secure Coding Standard

http://doc.tasking.com/cert/arr01.html
http://doc.tasking.com/cert/arr34.html
http://doc.tasking.com/cert/arr35.html
http://doc.tasking.com/cert/str30.html
http://doc.tasking.com/cert/str33.html
http://doc.tasking.com/cert/str34.html
http://doc.tasking.com/cert/str36.html
http://doc.tasking.com/cert/mem00.html
http://doc.tasking.com/cert/mem08.html


Do not access freed memory

When memory is freed, its contents may remain intact and accessible because it is at the
memory manager's discretion when to reallocate or recycle the freed chunk. The data at the
freed location may appear valid. However, this can change unexpectedly, leading to
unintended program behavior. As a result, it is necessary to guarantee that memory is not
written to or read from once it is freed.

MEM30-C

Free dynamically allocated memory exactly once

Freeing memory multiple times has similar consequences to accessing memory after it is
freed. The underlying data structures that manage the heap can become corrupted. To
eliminate double-free vulnerabilities, it is necessary to guarantee that dynamic memory is
freed exactly once.

MEM31-C

Detect and handle memory allocation errors

The result of realloc() is assigned to the original pointer, without checking for failure. As a
result, the original block of memory is lost when realloc() fails.

MEM32-C

Use the correct syntax for flexible array members

Use the ISO C99 syntax for flexible array members instead of an array member of size 1.

MEM33-C

Only free memory allocated dynamically

Freeing memory that is not allocated dynamically can lead to corruption of the heap data
structures.

MEM34-C

Allocate sufficient memory for an object

The compiler issues this warning when the size of the object(s) allocated by malloc(), calloc()
or realloc() is smaller than the size of an object pointed to by the result pointer. This may be
caused by a sizeof expression with the wrong type or with a pointer type instead of the object
type.

MEM35-C

13.9. Environment (ENV)

All atexit handlers must return normally

The compiler issues this warning when an atexit() handler is calling a function that does not
return. No atexit() registered handler should terminate in any way other than by returning.

ENV32-C

13.10. Signals (SIG)

Call only asynchronous-safe functions within signal handlersSIG30-C

Do not call longjmp() from inside a signal handler

Invoking the longjmp() function from within a signal handler can lead to undefined behavior
if it results in the invocation of any non-asynchronous-safe functions, likely compromising
the integrity of the program.

SIG32-C

602

TASKING SmartCode - PPU User Guide

http://doc.tasking.com/cert/mem30.html
http://doc.tasking.com/cert/mem31.html
http://doc.tasking.com/cert/mem32.html
http://doc.tasking.com/cert/mem33.html
http://doc.tasking.com/cert/mem34.html
http://doc.tasking.com/cert/mem35.html
http://doc.tasking.com/cert/env32.html
http://doc.tasking.com/cert/sig30.html
http://doc.tasking.com/cert/sig32.html


13.11. Miscellaneous (MSC)

Ensure your random number generator is properly seeded

Ensure that the random number generator is properly seeded by calling srand().

MSC32-C

603

CERT C Secure Coding Standard

http://doc.tasking.com/cert/msc32.html


604

TASKING SmartCode - PPU User Guide



Chapter 14. MISRA C Rules
This chapter contains an overview of the supported and unsupported MISRA C rules.

14.1. MISRA C:1998

This section lists all supported and unsupported MISRA C:1998 rules.

See also Section 3.7.2, C Code Checking: MISRA C.

A number of MISRA C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

x means that the rule is not supported by the TASKING C compiler. (R) is a required rule, (A) is an advisory
rule.

The code shall conform to standard C, without language extensions.(R)1.

Other languages should only be used with an interface standard.(A)2.x

Inline assembly is only allowed in dedicated C functions.(A)3.

Provision should be made for appropriate run-time checking.(A)4.x

Only use characters and escape sequences defined by ISO C.(R)5.

Character values shall be restricted to a subset of ISO 106460-1.(R)6.x

Trigraphs shall not be used.(R)7.

Multibyte characters and wide string literals shall not be used.(R)8.

Comments shall not be nested.(R)9.

Sections of code should not be "commented out".

In general, it is not possible to decide whether a piece of comment is C code that is
commented out, or just some pseudo code. Instead, the following heuristics are used
to detect possible C code inside a comment:

• a line ends with ';', or

• a line starts with '}', possibly preceded by white space

(A)10.

Identifiers shall not rely on significance of more than 31 characters.(R)11.

The same identifier shall not be used in multiple name spaces.(A)12.

Specific-length typedefs should be used instead of the basic types.(A)13.

Use unsigned char or signed char instead of plain char.(R)14.

Floating-point implementations should comply with a standard.(A)15.x

The bit representation of floating-point numbers shall not be used.
A violation is reported when a pointer to a floating-point type is converted to a pointer
to an integer type.

(R)16.

605



typedef names shall not be reused.(R)17.

Numeric constants should be suffixed to indicate type.
A violation is reported when the value of the constant is outside the range indicated
by the suffixes, if any.

(A)18.

Octal constants (other than zero) shall not be used.(R)19.

All object and function identifiers shall be declared before use.(R)20.

Identifiers shall not hide identifiers in an outer scope.(R)21.

Declarations should be at function scope where possible.(A)22.

All declarations at file scope should be static where possible.(A)23.x

Identifiers shall not have both internal and external linkage.(R)24.

Identifiers with external linkage shall have exactly one definition.(R)25.x

Multiple declarations for objects or functions shall be compatible.(R)26.

External objects should not be declared in more than one file.(A)27.x

The register storage class specifier should not be used.(A)28.

The use of a tag shall agree with its declaration.(R)29.

All automatics shall be initialized before being used .
This rule is checked using worst-case assumptions. This means that violations are
reported not only for variables that are guaranteed to be uninitialized, but also for
variables that are uninitialized on some execution paths.

(R)30.

Braces shall be used in the initialization of arrays and structures.(R)31.

Only the first, or all enumeration constants may be initialized.(R)32.

The right hand operand of && or || shall not contain side effects.(R)33.

The operands of a logical && or || shall be primary expressions.(R)34.

Assignment operators shall not be used in Boolean expressions.(R)35.

Logical operators should not be confused with bitwise operators.(A)36.

Bitwise operations shall not be performed on signed integers.(R)37.

A shift count shall be between 0 and the operand width minus 1.
This violation will only be checked when the shift count evaluates to a constant value
at compile time.

(R)38.

The unary minus shall not be applied to an unsigned expression.(R)39.

sizeof should not be used on expressions with side effects.(A)40.

The implementation of integer division should be documented.(A)41.x

The comma operator shall only be used in a for condition.(R)42.

Don't use implicit conversions which may result in information loss.(R)43.

Redundant explicit casts should not be used.(A)44.

Type casting from any type to or from pointers shall not be used.(R)45.

606

TASKING SmartCode - PPU User Guide



The value of an expression shall be evaluation order independent.
This rule is checked using worst-case assumptions. This means that a violation will
be reported when a possible alias may cause the result of an expression to be
evaluation order dependent.

(R)46.

No dependence should be placed on operator precedence rules.(A)47.

Mixed arithmetic should use explicit casting.(A)48.

Tests of a (non-Boolean) value against 0 should be made explicit.(A)49.

F.P. variables shall not be tested for exact equality or inequality.(R)50.

Constant unsigned integer expressions should not wrap-around.(A)51.

There shall be no unreachable code.(R)52.

All non-null statements shall have a side-effect.(R)53.

A null statement shall only occur on a line by itself.(R)54.

Labels should not be used.(A)55.

The goto statement shall not be used.(R)56.

The continue statement shall not be used.(R)57.

The break statement shall not be used (except in a switch).(R)58.

An if or loop body shall always be enclosed in braces.(R)59.

All if, else if constructs should contain a final else.(A)60.

Every non-empty case clause shall be terminated with a break.(R)61.

All switch statements should contain a final default case.(R)62.

A switch expression should not represent a Boolean case.(A)63.

Every switch shall have at least one case.(R)64.

Floating-point variables shall not be used as loop counters.(R)65.

A for should only contain expressions concerning loop control.
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

(A)66.

Iterator variables should not be modified in a for loop.(A)67.

Functions shall always be declared at file scope.(R)68.

Functions with variable number of arguments shall not be used.(R)69.

Functions shall not call themselves, either directly or indirectly.
A violation will be reported for direct or indirect recursive function calls in the source
file being checked. Recursion via functions in other source files, or recursion via
function pointers is not detected.

(R)70.

Function prototypes shall be visible at the definition and call.(R)71.

The function prototype of the declaration shall match the definition.(R)72.

Identifiers shall be given for all prototype parameters or for none.(R)73.

Parameter identifiers shall be identical for declaration/definition.(R)74.

Every function shall have an explicit return type.(R)75.

607

MISRA C Rules



Functions with no parameters shall have a void parameter list.(R)76.

An actual parameter type shall be compatible with the prototype.(R)77.

The number of actual parameters shall match the prototype.(R)78.

The values returned by void functions shall not be used.(R)79.

Void expressions shall not be passed as function parameters.(R)80.

const should be used for reference parameters not modified.(A)81.

A function should have a single point of exit.(A)82.

Every exit point shall have a return of the declared return type.(R)83.

For void functions, return shall not have an expression.(R)84.

Function calls with no parameters should have empty parentheses.(A)85.

If a function returns error information, it should be tested.
A violation is reported when the return value of a function is ignored.

(A)86.

#include shall only be preceded by other directives or comments.(R)87.

Non-standard characters shall not occur in #include directives.(R)88.

#include shall be followed by either <filename> or "filename".(R)89.

Plain macros shall only be used for constants/qualifiers/specifiers.(R)90.

Macros shall not be #define'd and #undef'd within a block.(R)91.

#undef should not be used.(A)92.

A function should be used in preference to a function-like macro.(A)93.

A function-like macro shall not be used without all arguments.(R)94.

Macro arguments shall not contain pre-preprocessing directives.
A violation is reported when the first token of an actual macro argument is '#'.

(R)95.

Macro definitions/parameters should be enclosed in parentheses.(R)96.

Don't use undefined identifiers in pre-processing directives.(A)97.

A macro definition shall contain at most one # or ## operator.(R)98.

All uses of the #pragma directive shall be documented.
This rule is really a documentation issue.The compiler will flag all #pragma directives
as violations.

(R)99.

defined shall only be used in one of the two standard forms.(R)100.

Pointer arithmetic should not be used.(A)101.

No more than 2 levels of pointer indirection should be used.
A violation is reported when a pointer with three or more levels of indirection is
declared.

(A)102.

No relational operators between pointers to different objects.
In general, checking whether two pointers point to the same object is impossible.The
compiler will only report a violation for a relational operation with incompatible pointer
types.

(R)103.

Non-constant pointers to functions shall not be used.(R)104.

Functions assigned to the same pointer shall be of identical type.(R)105.

608

TASKING SmartCode - PPU User Guide



Automatic address may not be assigned to a longer lived object.(R)106.

The null pointer shall not be de-referenced.
A violation is reported for every pointer dereference that is not guarded by a NULL
pointer test.

(R)107.

All struct/union members shall be fully specified.(R)108.

Overlapping variable storage shall not be used.
A violation is reported for every union declaration.

(R)109.

Unions shall not be used to access the sub-parts of larger types.
A violation is reported for a union containing a struct member.

(R)110.

Bit-fields shall have type unsigned int or signed int.(R)111.

Bit-fields of type signed int shall be at least 2 bits long.(R)112.

All struct/union members shall be named.(R)113.

Reserved and standard library names shall not be redefined.(R)114.

Standard library function names shall not be reused.(R)115.

Production libraries shall comply with the MISRA C restrictions.(R)116.x

The validity of library function parameters shall be checked.(R)117.x

Dynamic heap memory allocation shall not be used.(R)118.

The error indicator errno shall not be used.(R)119.

The macro offsetof shall not be used.(R)120.

<locale.h> and the setlocale function shall not be used.(R)121.

The setjmp and longjmp functions shall not be used.(R)122.

The signal handling facilities of <signal.h> shall not be used.(R)123.

The <stdio.h> library shall not be used in production code.(R)124.

The functions atof/atoi/atol shall not be used.(R)125.

The functions abort/exit/getenv/system shall not be used.(R)126.

The time handling functions of library <time.h> shall not be used.(R)127.

14.2. MISRA C:2004

This section lists all supported and unsupported MISRA C:2004 rules.

See also Section 3.7.2, C Code Checking: MISRA C.

A number of MISRA C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

x means that the rule is not supported by the TASKING C compiler. (R) is a required rule, (A) is an advisory
rule.

609

MISRA C Rules



Environment

All code shall conform to ISO 9899:1990 "Programming languages - C", amended
and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC
9899/COR2:1996.

(R)1.1

No reliance shall be placed on undefined or unspecified behavior.(R)1.2

Multiple compilers and/or languages shall only be used if there is a common defined
interface standard for object code to which the languages/compilers/assemblers
conform.

(R)1.3x

The compiler/linker shall be checked to ensure that 31 character significance and
case sensitivity are supported for external identifiers.

(R)1.4x

Floating-point implementations should comply with a defined floating-point standard.(A)1.5x

Language extensions

Assembly language shall be encapsulated and isolated.(R)2.1

Source code shall only use /* ... */ style comments.(R)2.2

The character sequence /* shall not be used within a comment.(R)2.3

Sections of code should not be "commented out". In general, it is not possible to
decide whether a piece of comment is C code that is commented out, or just some
pseudo code. Instead, the following heuristics are used to detect possible C code
inside a comment: - a line ends with ';', or - a line starts with '}', possibly preceded by
white space

(A)2.4

Documentation

All usage of implementation-defined behavior shall be documented.(R)3.1x

The character set and the corresponding encoding shall be documented.(R)3.2x

The implementation of integer division in the chosen compiler should be determined,
documented and taken into account.

(A)3.3x

All uses of the #pragma directive shall be documented and explained. This rule is
really a documentation issue. The compiler will flag all #pragma directives as
violations.

(R)3.4

The implementation-defined behavior and packing of bit-fields shall be documented
if being relied upon.

(R)3.5

All libraries used in production code shall be written to comply with the provisions of
this document, and shall have been subject to appropriate validation.

(R)3.6x

Character sets

Only those escape sequences that are defined in the ISO C standard shall be used.(R)4.1

Trigraphs shall not be used.(R)4.2

610

TASKING SmartCode - PPU User Guide



Identifiers

Identifiers (internal and external) shall not rely on the significance of more than 31
characters.

(R)5.1

Identifiers in an inner scope shall not use the same name as an identifier in an outer
scope, and therefore hide that identifier.

(R)5.2

A typedef name shall be a unique identifier.(R)5.3

A tag name shall be a unique identifier.(R)5.4

No object or function identifier with static storage duration should be reused.(A)5.5

No identifier in one name space should have the same spelling as an identifier in
another name space, with the exception of structure and union member names.

(A)5.6

No identifier name should be reused.(A)5.7

Types

The plain char type shall be used only for storage and use of character values.(R)6.1

signed and unsigned char type shall be used only for the storage and use of
numeric values.

(R)6.2

typedefs that indicate size and signedness should be used in place of the basic
types.

(A)6.3

Bit-fields shall only be defined to be of type unsigned int or signed int.(R)6.4

Bit-fields of type signed int shall be at least 2 bits long.(R)6.5

Constants

Octal constants (other than zero) and octal escape sequences shall not be used.(R)7.1

Declarations and definitions

Functions shall have prototype declarations and the prototype shall be visible at both
the function definition and call.

(R)8.1

Whenever an object or function is declared or defined, its type shall be explicitly
stated.

(R)8.2

For each function parameter the type given in the declaration and definition shall be
identical, and the return types shall also be identical.

(R)8.3

If objects or functions are declared more than once their types shall be compatible.(R)8.4

There shall be no definitions of objects or functions in a header file.(R)8.5

Functions shall be declared at file scope.(R)8.6

Objects shall be defined at block scope if they are only accessed from within a single
function.

(R)8.7

An external object or function shall be declared in one and only one file.(R)8.8

611

MISRA C Rules



An identifier with external linkage shall have exactly one external definition.(R)8.9

All declarations and definitions of objects or functions at file scope shall have internal
linkage unless external linkage is required.

(R)8.10x

The static storage class specifier shall be used in definitions and declarations of
objects and functions that have internal linkage.

(R)8.11

When an array is declared with external linkage, its size shall be stated explicitly or
defined implicitly by initialization.

(R)8.12

Initialization

All automatic variables shall have been assigned a value before being used.This rule
is checked using worst-case assumptions. This means that violations are reported
not only for variables that are guaranteed to be uninitialized, but also for variables
that are uninitialized on some execution paths.

(R)9.1

Braces shall be used to indicate and match the structure in the non-zero initialization
of arrays and structures.

(R)9.2

In an enumerator list, the "=" construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

(R)9.3

Arithmetic type conversions

The value of an expression of integer type shall not be implicitly converted to a different
underlying type if:
a) it is not a conversion to a wider integer type of the same signedness, or
b) the expression is complex, or
c) the expression is not constant and is a function argument, or
d) the expression is not constant and is a return expression.

(R)10.1

The value of an expression of floating type shall not be implicitly converted to a
different type if:
a) it is not a conversion to a wider floating type, or
b) the expression is complex, or
c) the expression is a function argument, or
d) the expression is a return expression.

(R)10.2

The value of a complex expression of integer type may only be cast to a type of the
same signedness that is no wider than the underlying type of the expression.

(R)10.3

The value of a complex expression of floating type may only be cast to a type that is
no wider than the underlying type of the expression.

(R)10.4

If the bitwise operators ~ and << are applied to an operand of underlying type
unsigned char or unsigned short, the result shall be immediately cast to the
underlying type of the operand.

(R)10.5

A "U" suffix shall be applied to all constants of unsigned type.(R)10.6

612

TASKING SmartCode - PPU User Guide



Pointer type conversions

Conversions shall not be performed between a pointer to a function and any type
other than an integral type.

(R)11.1

Conversions shall not be performed between a pointer to object and any type other
than an integral type, another pointer to object type or a pointer to void.

(R)11.2

A cast should not be performed between a pointer type and an integral type.(A)11.3

A cast should not be performed between a pointer to object type and a different pointer
to object type.

(A)11.4

A cast shall not be performed that removes any const or volatile qualification
from the type addressed by a pointer.

(R)11.5

Expressions

Limited dependence should be placed on C's operator precedence rules in
expressions.

(A)12.1

The value of an expression shall be the same under any order of evaluation that the
standard permits. This rule is checked using worst-case assumptions. This means
that a violation will be reported when a possible alias may cause the result of an
expression to be evaluation order dependent.

(R)12.2

The sizeof operator shall not be used on expressions that contain side effects.(R)12.3

The right-hand operand of a logical && or || operator shall not contain side effects.(R)12.4

The operands of a logical && or || shall be primary-expressions.(R)12.5

The operands of logical operators (&&, || and !) should be effectively Boolean.
Expressions that are effectively Boolean should not be used as operands to operators
other than (&&, || and !).

(A)12.6

Bitwise operators shall not be applied to operands whose underlying type is signed.(R)12.7

The right-hand operand of a shift operator shall lie between zero and one less than
the width in bits of the underlying type of the left-hand operand.This violation will only
be checked when the shift count evaluates to a constant value at compile time.

(R)12.8

The unary minus operator shall not be applied to an expression whose underlying
type is unsigned.

(R)12.9

The comma operator shall not be used.(R)12.10

Evaluation of constant unsigned integer expressions should not lead to wrap-around.(A)12.11

The underlying bit representations of floating-point values shall not be used. A violation
is reported when a pointer to a floating-point type is converted to a pointer to an
integer type.

(R)12.12

The increment (++) and decrement (--) operators should not be mixed with other
operators in an expression.

(A)12.13

Control statement expressions

Assignment operators shall not be used in expressions that yield a Boolean value.(R)13.1

613

MISRA C Rules



Tests of a value against zero should be made explicit, unless the operand is effectively
Boolean.

(A)13.2

Floating-point expressions shall not be tested for equality or inequality.(R)13.3

The controlling expression of a for statement shall not contain any objects of floating
type.

(R)13.4

The three expressions of a for statement shall be concerned only with loop control.
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

(R)13.5

Numeric variables being used within a for loop for iteration counting shall not be
modified in the body of the loop.

(R)13.6

Boolean operations whose results are invariant shall not be permitted.(R)13.7

Control flow

There shall be no unreachable code.(R)14.1

All non-null statements shall either:
a) have at least one side effect however executed, or
b) cause control flow to change.

(R)14.2

Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment provided that the first character following the null statement
is a white-space character.

(R)14.3

The goto statement shall not be used.(R)14.4

The continue statement shall not be used.(R)14.5

For any iteration statement there shall be at most one break statement used for loop
termination.

(R)14.6

A function shall have a single point of exit at the end of the function.(R)14.7

The statement forming the body of a switch, while, do ... while or for
statement be a compound statement.

(R)14.8

An if (expression) construct shall be followed by a compound statement. The
else keyword shall be followed by either a compound statement, or another if
statement.

(R)14.9

All if ... else if constructs shall be terminated with an else clause.(R)14.10

Switch statements

A switch label shall only be used when the most closely-enclosing compound statement
is the body of a switch statement.

(R)15.1

An unconditional break statement shall terminate every non-empty switch clause.(R)15.2

The final clause of a switch statement shall be the default clause.(R)15.3

A switch expression shall not represent a value that is effectively Boolean.(R)15.4

Every switch statement shall have at least one case clause.(R)15.5

614

TASKING SmartCode - PPU User Guide



Functions

Functions shall not be defined with variable numbers of arguments.(R)16.1

Functions shall not call themselves, either directly or indirectly. A violation will be
reported for direct or indirect recursive function calls in the source file being checked.
Recursion via functions in other source files, or recursion via function pointers is not
detected.

(R)16.2

Identifiers shall be given for all of the parameters in a function prototype declaration.(R)16.3

The identifiers used in the declaration and definition of a function shall be identical.(R)16.4

Functions with no parameters shall be declared with parameter type void.(R)16.5

The number of arguments passed to a function shall match the number of parameters.(R)16.6

A pointer parameter in a function prototype should be declared as pointer to const
if the pointer is not used to modify the addressed object.

(A)16.7

All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

(R)16.8

A function identifier shall only be used with either a preceding &, or with a
parenthesized parameter list, which may be empty.

(R)16.9

If a function returns error information, then that error information shall be tested. A
violation is reported when the return value of a function is ignored.

(R)16.10

Pointers and arrays

Pointer arithmetic shall only be applied to pointers that address an array or array
element.

(R)17.1x

Pointer subtraction shall only be applied to pointers that address elements of the
same array.

(R)17.2x

>, >=, <, <= shall not be applied to pointer types except where they point to the same
array. In general, checking whether two pointers point to the same object is impossible.
The compiler will only report a violation for a relational operation with incompatible
pointer types.

(R)17.3

Array indexing shall be the only allowed form of pointer arithmetic.(R)17.4

The declaration of objects should contain no more than 2 levels of pointer indirection.
A violation is reported when a pointer with three or more levels of indirection is
declared.

(A)17.5

The address of an object with automatic storage shall not be assigned to another
object that may persist after the first object has ceased to exist.

(R)17.6

Structures and unions

All structure or union types shall be complete at the end of a translation unit.(R)18.1

An object shall not be assigned to an overlapping object.(R)18.2

An area of memory shall not be reused for unrelated purposes.(R)18.3x

615

MISRA C Rules



Unions shall not be used.(R)18.4

Preprocessing directives

#include statements in a file should only be preceded by other preprocessor
directives or comments.

(A)19.1

Non-standard characters should not occur in header file names in #include
directives.

(A)19.2

The #include directive shall be followed by either a <filename> or "filename"
sequence.

(R)19.3x

C macros shall only expand to a braced initializer, a constant, a parenthesized
expression, a type qualifier, a storage class specifier, or a do-while-zero construct.

(R)19.4

Macros shall not be #define'd or #undef'd within a block.(R)19.5

#undef shall not be used.(R)19.6

A function should be used in preference to a function-like macro.(A)19.7

A function-like macro shall not be invoked without all of its arguments.(R)19.8

Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives. A violation is reported when the first token of an actual macro argument
is '#'.

(R)19.9

In the definition of a function-like macro each instance of a parameter shall be enclosed
in parentheses unless it is used as the operand of # or ##.

(R)19.10

All macro identifiers in preprocessor directives shall be defined before use, except in
#ifdef and #ifndef preprocessor directives and the defined() operator.

(R)19.11

There shall be at most one occurrence of the # or ## preprocessor operators in a
single macro definition.

(R)19.12

The # and ## preprocessor operators should not be used.(A)19.13

The defined preprocessor operator shall only be used in one of the two standard
forms.

(R)19.14

Precautions shall be taken in order to prevent the contents of a header file being
included twice.

(R)19.15

Preprocessing directives shall be syntactically meaningful even when excluded by
the preprocessor.

(R)19.16

All #else, #elif and #endif preprocessor directives shall reside in the same file
as the #if or #ifdef directive to which they are related.

(R)19.17

Standard libraries

Reserved identifiers, macros and functions in the standard library, shall not be defined,
redefined or undefined.

(R)20.1

The names of standard library macros, objects and functions shall not be reused.(R)20.2

The validity of values passed to library functions shall be checked.(R)20.3x

616

TASKING SmartCode - PPU User Guide



Dynamic heap memory allocation shall not be used.(R)20.4

The error indicator errno shall not be used.(R)20.5

The macro offsetof, in library <stddef.h>, shall not be used.(R)20.6

The setjmp macro and the longjmp function shall not be used.(R)20.7

The signal handling facilities of <signal.h> shall not be used.(R)20.8

The input/output library <stdio.h> shall not be used in production code.(R)20.9

The library functions atof, atoi and atol from library <stdlib.h> shall not be
used.

(R)20.10

The library functions abort, exit, getenv and system from library <stdlib.h>
shall not be used.

(R)20.11

The time handling functions of library <time.h> shall not be used.(R)20.12

Run-time failures

Minimization of run-time failures shall be ensured by the use of at least one of:
a) static analysis tools/techniques;
b) dynamic analysis tools/techniques;
c) explicit coding of checks to handle run-time faults.

(R)21.1x

14.3. MISRA C:2012

This section lists all supported and unsupported MISRA C:2012 rules.

See also Section 3.7.2, C Code Checking: MISRA C.

A number of MISRA C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

x means that the rule is not supported by the TASKING C compiler. (M) is a mandatory rule, (R) is a
required rule, (A) is an advisory rule.

A standard C environment

The program shall contain no violations of the standard C syntax and constraints,
and shall not exceed the implementation's translation limits.

(R)1.1

Language extensions should not be used.(A)1.2

There shall be no occurrence of undefined or critical unspecified behavior.(R)1.3

Unused code

A project shall not contain unreachable code.(R)2.1

There shall be no dead code.(R)2.2

A project should not contain unused type declarations.(A)2.3

617

MISRA C Rules



A project should not contain unused tag declarations.(A)2.4

A project should not contain unused macro declarations.(A)2.5

A function should not contain unused label declarations.(A)2.6

There should be no unused parameters in functions.(A)2.7

Comments

The character sequences /* and // shall not be used within a comment.(R)3.1

Line-splicing shall not be used in // comments.(R)3.2

Character sets and lexical conventions

Octal and hexadecimal escape sequences shall be terminated.(R)4.1

Trigraphs should not be used.(A)4.2

Identifiers

External identifiers shall be distinct.(R)5.1

Identifiers declared in the same scope and name space shall be distinct.(R)5.2

An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope.

(R)5.3

Macro identifiers shall be distinct.(R)5.4

Identifiers shall be distinct from macro names.(R)5.5

A typedef name shall be a unique identifier.(R)5.6

A tag name shall be a unique identifier.(R)5.7

Identifiers that define objects or functions with external linkage shall be unique.(R)5.8

Identifiers that define objects or functions with internal linkage should be unique.(A)5.9

Types

Bit-fields shall only be declared with an appropriate type.(R)6.1

Single-bit named bit-fields shall not be of a signed type.(R)6.2

Literals and constants

Octal constants shall not be used.(R)7.1

A "u" or "U" suffix shall be applied to all integer constants that are represented in an
unsigned type.

(R)7.2

The lowercase character "l" shall not be used in a literal suffix trivial.(R)7.3

A string literal shall not be assigned to an object unless the object's type is "pointer
to const-qualified char".

(R)7.4

618

TASKING SmartCode - PPU User Guide



Declarations and definitions

Types shall be explicitly specified.(R)8.1

Function types shall be in prototype form with named parameters.(R)8.2

All declarations of an object or function shall use the same names and type qualifiers.(R)8.3

A compatible declaration shall be visible when an object or function with external
linkage is defined.

(R)8.4

An external object or function shall be declared once in one and only one file.(R)8.5

An identifier with external linkage shall have exactly one external definition.(R)8.6

Functions and objects should not be defined with external linkage if they are referenced
in only one translation unit.

(A)8.7

The static storage class specifier shall be used in all declarations of objects and
functions that have internal linkage.

(R)8.8

An object should be defined at block scope if its identifier only appears in a single
function.

(A)8.9

An inline function shall be declared with the static storage class.(R)8.10

When an array with external linkage is declared, its size should be explicitly specified.(A)8.11

Within an enumerator list, the value of an implicitly-specified enumeration constant
shall be unique.

(R)8.12

A pointer should point to a const-qualified type whenever possible.(A)8.13

The restrict type qualifier shall not be used.(R)8.14

Initialization

The value of an object with automatic storage duration shall not be read before it has
been set.

(M)9.1

The initializer for an aggregate or union shall be enclosed in braces.(R)9.2

Arrays shall not be partially initialized.(R)9.3

An element of an object shall not be initialized more than once.(R)9.4

Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

(R)9.5

The essential type model

Operands shall not be of an inappropriate essential type.(R)10.1

Expressions of essentially character type shall not be used inappropriately in addition
and subtraction operations.

(R)10.2

The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category.

(R)10.3

Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category.

(R)10.4

619

MISRA C Rules



The value of an expression should not be cast to an inappropriate essential type.(A)10.5

The value of a composite expression shall not be assigned to an object with wider
essential type.

(R)10.6

If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed then the other operand shall not have wider
essential type.

(R)10.7

The value of a composite expression shall not be cast to a different essential type
category or a wider essential type.

(R)10.8

Pointer type conversions

Conversions shall not be performed between a pointer to a function and any other
type.

(R)11.1

Conversions shall not be performed between a pointer to an incomplete type and any
other type.

(R)11.2

A cast shall not be performed between a pointer to object type and a pointer to a
different object type.

(R)11.3

A conversion should not be performed between a pointer to object and an integer
type.

(A)11.4

A conversion should not be performed from pointer to void into pointer to object.(A)11.5

A cast shall not be performed between pointer to void and an arithmetic type.(R)11.6

A cast shall not be performed between pointer to object and a non-integer arithmetic
type.

(R)11.7

A cast shall not remove any const or volatile qualification from the type pointed
to by a pointer.

(R)11.8

The macro NULL shall be the only permitted form of integer null pointer constant.(R)11.9

Expressions

The precedence of operators within expressions should be made explicit.(A)12.1

The right hand operand of a shift operator shall lie in the range zero to one less than
the width in bits of the essential type of the left hand operand.

(R)12.2

The comma operator should not be used.(A)12.3

Evaluation of constant expressions should not lead to unsigned integer wrap-around.(A)12.4

The sizeof operator shall not have an operand which is a function parameter
declared as "array of type".

(M)12.5

Side effects

Initializer lists shall not contain persistent side effects.(R)13.1

The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders.

(R)13.2

620

TASKING SmartCode - PPU User Guide



A full expression containing an increment (++) or decrement (--) operator should
have no other potential side effects other than that caused by the increment or
decrement operator.

(A)13.3

The result of an assignment operator should not be used.(A)13.4

The right hand operand of a logical && or || operator shall not contain persistent side
effects.

(R)13.5

The operand of the sizeof operator shall not contain any expression which has
potential side effects.

(M)13.6

Control statement expressions

A loop counter shall not have essentially floating type.(R)14.1

A for loop shall be well-formed.(R)14.2

Controlling expressions shall not be invariant.(R)14.3

The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type.

(R)14.4

Control flow

The goto statement should not be used.(A)15.1

The goto statement shall jump to a label declared later in the same function.(R)15.2

Any label referenced by a goto statement shall be declared in the same block, or in
any block enclosing the goto statement.

(R)15.3

There should be no more than one break or goto statement used to terminate any
iteration statement.

(A)15.4

A function should have a single point of exit at the end.(A)15.5

The body of an iteration-statement or a selection-statement shall be a
compound-statement.

(R)15.6

All if ... else if constructs shall be terminated with an else statement.(R)15.7

Switch statements

All switch statements shall be well-formed.(R)16.1

A switch label shall only be used when the most closely-enclosing compound statement
is the body of a switch statement.

(R)16.2

An unconditional break statement shall terminate every switch-clause.(R)16.3

Every switch statement shall have a default label.(R)16.4

A default label shall appear as either the first or the last switch label of a switch
statement.

(R)16.5

Every switch statement shall have at least two switch-clauses.(R)16.6

A switch-expression shall not have essentially Boolean type.(R)16.7

621

MISRA C Rules



Functions

The features of <stdarg.h> shall not be used.(R)17.1

Functions shall not call themselves, either directly or indirectly.(R)17.2

A function shall not be declared implicitly.(M)17.3

All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

(M)17.4

The function argument corresponding to a parameter declared to have an array type
shall have an appropriate number of elements.

(A)17.5

The declaration of an array parameter shall not contain the static keyword between
the [ ].

(M)17.6

The value returned by a function having non-void return type shall be used.(R)17.7

A function parameter should not be modified.(A)17.8

Pointers and arrays

A pointer resulting from arithmetic on a pointer operand shall address an element of
the same array as that pointer operand.

(R)18.1

Subtraction between pointers shall only be applied to pointers that address elements
of the same array.

(R)18.2

The relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object.

(R)18.3

The +, -, += and -= operators should not be applied to an expression of pointer type.(A)18.4

Declarations should contain no more than two levels of pointer nesting.(A)18.5

The address of an object with automatic storage shall not be copied to another object
that persists after the first object has ceased to exist.

(R)18.6

Flexible array members shall not be declared.(R)18.7

Variable-length array types shall not be used.(R)18.8

Overlapping storage

An object shall not be assigned or copied to an overlapping object.(M)19.1

The union keyword should not be used.(A)19.2

Preprocessing directives

#include directives should only be preceded by preprocessor directives or
comments.

(A)20.1

The ', " or \ characters and the /* or // character sequences shall not occur in a
header file name.

(R)20.2

The #include directive shall be followed by either a <filename> or "filename"
sequence.

(R)20.3

622

TASKING SmartCode - PPU User Guide



A macro shall not be defined with the same name as a keyword.(R)20.4

#undef should not be used.(A)20.5

Tokens that look like a preprocessing directive shall not occur within a macro argument(R)20.6

Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses.

(R)20.7

The controlling expression of a #if or #elif preprocessing directive shall evaluate
to 0 or 1.

(R)20.8

All identifiers used in the controlling expression of #if or #elif preprocessing
directives shall be #define'd before evaluation.

(R)20.9

The # and ## preprocessor operators should not be used.(A)20.10

A macro parameter immediately following a # operator shall not immediately be
followed by a ## operator.

(R)20.11

A macro parameter used as an operand to the # or ## operators, which is itself subject
to further macro replacement, shall only be used as an operand to these operators.

(R)20.12

A line whose first token is # shall be a valid preprocessing directive.(R)20.13

All #else, #elif and #endif preprocessor directives shall reside in the same file
as the #if, #ifdef or #ifndef directive to which they are related.

(R)20.14

Standard libraries

#define and #undef shall not be used on a reserved identifier or reserved macro
name.

(R)21.1

A reserved identifier or macro name shall not be declared.(R)21.2

The memory allocation and deallocation functions of <stdlib.h> shall not be used.(R)21.3

The standard header file <setjmp.h> shall not be used.(R)21.4

The standard header file <signal.h> shall not be used.(R)21.5

The Standard Library input/output functions shall not be used.(R)21.6

The atof, atoi, atol and atoll functions of <stdlib.h> shall not be used.(R)21.7

The library functions abort, exit and system of <stdlib.h> shall not be used.(R)21.8

The library functions bsearch and qsort of <stdlib.h> shall not be used.(R)21.9

The Standard Library time and date functions shall not be used(R)21.10

The standard header file <tgmath.h> shall not be used.(R)21.11

The exception handling features of <fenv.h> should not be used.(A)21.12

Any value passed to a function in <ctype.h> shall be representable as an unsigned
char or be the value EOF.

(M)21.13

The Standard Library function memcmp shall not be used to compare null terminated
strings.

(R)21.14

The pointer arguments to the Standard Library functions memcpy, memmove and
memcmp shall be pointers to qualified or unqualified versions of compatible types

(R)21.15

623

MISRA C Rules



The pointer arguments to the Standard Library function memcmp shall point to either
a pointer type, an essentially signed type, an essentially unsigned type, an essentially
Boolean type or an essentially enum type

(R)21.16

Use of the string handling functions from <string.h> shall not result in accesses
beyond the bounds of the objects referenced by their pointer parameters.

(M)21.17

The size_t argument passed to any function in <string.h> shall have an
appropriate value.

(M)21.18

The pointers returned by the Standard Library functions localeconv, getenv,
setlocale or, strerror shall only be used as if they have pointer to const-qualified
type.

(M)21.19

The pointer returned by the Standard Library functions asctime, ctime, gmtime,
localtime, localeconv, getenv, setlocale or strerror shall not be used
following a subsequent call to the same function.

(M)21.20

Resources

All resources obtained dynamically by means of Standard Library functions shall be
explicitly released.

(R)22.1x

A block of memory shall only be freed if it was allocated by means of a Standard
Library function.

(M)22.2x

The same file shall not be open for read and write access at the same time on different
streams.

(R)22.3x

There shall be no attempt to write to a stream which has been opened as read-only.(M)22.4x

A pointer to a FILE object shall not be dereferenced.(M)22.5x

The value of a pointer to a FILE shall not be used after the associated stream has
been closed.

(M)22.6x

The macro EOF shall only be compared with the unmodified return value from any
Standard Library function capable of returning EOF.

(R)22.7x

The value of errno shall be set to zero prior to a call to an errno-setting-function.(R)22.8x

The value of errno shall be tested against zero after calling an errno-setting-function.(R)22.9x

The value of errno shall only be tested when the last function to be called was an
errno-setting-function.

(R)22.10x

624

TASKING SmartCode - PPU User Guide



Chapter 15. C Implementation-defined
Behavior
The TASKING C compiler for the Infineon PPU fully supports the ISO C standard, but some parts of the
ISO C standard are implementation-defined. This chapter describes how the implementation-defined
areas and the locale-specific areas of the C language are implemented in the TASKING C compiler for
ISO C99 and ISO C11. Below are some remarks on the other behaviors as mentioned in the standard.

Unspecified behavior

Unspecified behavior is the use of an unspecified value, or other behavior where the ISO C standard
provides two or more possibilities and imposes no further requirements on which is chosen in any instance.
Some of the unspecified behaviors are relevant to users of the TASKING C compiler for the Infineon PPU.
Some unspecified behaviors are specified in the ABI. The silicon vendor is responsible for the ABI.

Undefined behavior

Undefined behavior is behavior, upon use of a non-portable or erroneous program construct or of erroneous
data, for which the ISO C standard imposes no requirements.

Some undefined behaviors may trigger a compiler error or warning. TASKING does not provide any
guarantees about whether or not the compiler issues an error or warning. It is important to know whether
your software contains undefined behaviors since this will make the source non-portable between compiler
vendors and between other processors.

The MISRA C and CERT coding guides do not refer to undefined behaviors explicitly.

15.1. C99 Implementation-defined Behavior

Implementation-defined behavior is unspecified behavior where each implementation documents how
the choice is made.

The following sections describe the implementation-defined characteristics. The section numbers listed
in parenthesis refer to the corresponding sections in the ISO C99 standard. The order in this chapter is
the same as used in Annex J.3 of the ISO/IEC 9899:1999 (E) standard.

15.1.1.Translation

• How a diagnostic is identified (3.10, 5.1.1.3).

The C compiler diagnostics are explained in Section 3.8, C Compiler Error Messages.

• Whether each nonempty sequence of white-space characters other than new-line is retained or replaced
by one space character in translation phase 3 (5.1.1.2).

White-space is retained.

625



15.1.2. Environment

• The mapping between physical source file multibyte characters and the source character set in translation
phase 1 (5.1.1.2).

Use of variable length encoded characters in the source file in comments and string literals is permitted.
A one-on-one mapping is done without interpretation of multibyte characters.

• The name and type of the function called at program startup in a freestanding environment (5.1.2.1).

The function called at program startup (in cstart.c) is called main. The prototype for main in
cstart.c is:

extern int main( int argc, char *argv[] );

• The effect of program termination in a freestanding environment (5.1.2.1).

Execution is halted if the program is executed under control of a debugger, otherwise the program will
loop forever in function _Exit().

• An alternative manner in which the main function may be defined (5.1.2.2.1).

You can change the definition of main by altering file cstart.c.

• The values given to the strings pointed to by the argv argument to main (5.1.2.2.1).

The strings get their values from the arguments given in file cstart.c. The program arguments are
treated case sensitive.

• What constitutes an interactive device (5.1.2.3).

The streams stdin, stdout and stderr are treated as interactive devices.The debugger uses these
streams with File System Simulation (FSS) windows to interact.

• The set of signals, their semantics, and their default handling (7.14).

The signals are described in Section 9.1.20, signal.h.

• Signal values other than SIGFPE, SIGILL, and SIGSEGV that correspond to a computational exception
(7.14.1.1).

There are no other values that correspond to a computational exception. All signal values are described
in Section 9.1.20, signal.h.

• Signals for which the equivalent of signal(sig, SIG_IGN); is executed at program startup (7.14.1.1).

By default the implementation does not ignore any signals at program startup.

626

TASKING SmartCode - PPU User Guide



• The set of environment names and the method for altering the environment list used by the getenv
function (7.20.4.5).

There are no implementation-defined environment names that are used by the getenv function. A
skeleton is provided for the getenv function in the C library, because the embedded environment has
no operating system. The getenv function calls the name as a void function.

• The manner of execution of the string by the system function (7.20.4.6).

A skeleton is provided for the system() function in the C library, because the embedded environment
has no operating system. The system() function calls the string as a void function.

15.1.3. Identifiers

• Which additional multibyte characters may appear in identifiers and their correspondence to universal
character names (6.4.2).

No additional multibyte characters are supported in an identifier.

• The number of significant initial characters in an identifier (5.2.4.1, 6.4.2).

All characters in an identifier are significant.

15.1.4. Characters

• The number of bits in a byte (3.6).

There are eight bits in a byte.

• The values of the members of the execution character set (5.2.1).

Only 8-bit characters are supported. The values of the execution character set are the same as that of
the source character set. The same representation value is used for each member in the characters
sets except for the escape sequences.

• The unique value of the member of the execution character set produced for each of the standard
alphabetic escape sequences (5.2.2).

The following table contains an overview of the escape sequences and their byte value in the execution
character set.

ValueEscape sequence

7\a

8\b

12\f

10\n

13\r

9\t

627

C Implementation-defined Behavior



ValueEscape sequence

11\v

• The value of a char object into which has been stored any character other than a member of the basic
execution character set (6.2.5).

Any 8-bit value can be stored in a char object.

• Which of signed char or unsigned char has the same range, representation, and behavior as
"plain" char (6.2.5, 6.3.1.1).

By default "plain" char is the same as specifying unsigned char. With C compiler option --schar
you can change the default to signed char.

• The mapping of members of the source character set (in character constants and string literals) to
members of the execution character set (6.4.4.4, 5.1.1.2).

The mapping is one-to-one. The values of the execution character set are the same as that of the
source character set. The same representation value is used for each member in the characters sets
except for the escape sequences.

• The value of an integer character constant containing more than one character or containing a character
or escape sequence that does not map to a single-byte execution character (6.4.4.4).

For any character constant containing more than one character, a warning is issued and the value is
truncated to type signed char.

• The value of a wide character constant containing more than one multibyte character, or containing a
multibyte character or escape sequence not represented in the extended execution character set
(6.4.4.4).

A wide character constant can contain at most two multibyte characters. Its value is the concatenation
of the multibyte characters represented in a signed short int.

• The current locale used to convert a wide character constant consisting of a single multibyte character
that maps to a member of the extended execution character set into a corresponding wide character
code (6.4.4.4).

By default, the "C" locale is used.

• The current locale used to convert a wide string literal into corresponding wide character codes (6.4.5).

By default, the "C" locale is used.

• The value of a string literal containing a multibyte character or escape sequence not represented in
the execution character set (6.4.5).

All source characters can be represented in the execution character set.

628

TASKING SmartCode - PPU User Guide



15.1.5. Integers

• Any extended integer types that exist in the implementation (6.2.5).

All types are described in Section 1.1, Data Types.

• Whether signed integer types are represented using sign and magnitude, two’s complement, or one’s
complement, and whether the extraordinary value is a trap representation or an ordinary value (6.2.6.2).

Signed integer types are represented in two's complement. The most significant bit is the sign bit. 1 is
negative, 0 is positive.

• The rank of any extended integer type relative to another extended integer type with the same precision
(6.3.1.1).

All types are described in Section 1.1, Data Types.

• The result of, or the signal raised by, converting an integer to a signed integer type when the value
cannot be represented in an object of that type (6.3.1.3).

At compile time, when converting integer types and a value does not
fit in a type, the compiler issues a warning and the value is truncated. At run-time no warning or signal
is given and the value is truncated.

• The results of some bitwise operations on signed integers (6.5).

The result of E1>>E2 is E1 right shifted E2 bit positions. If E1 has a signed type and a negative value,
the shift behavior is implemented as an arithmetic shift. The empty position in the most significant bit
is filled with a copy of the original most significant bit.

15.1.6. Floating-Point

• The accuracy of the floating-point operations and of the library functions in <math.h> and <complex.h>
that return floating-point results (5.2.4.2.2).

A float has an exponent of 8 bits and a significand of 24 bits. A double or long double has an
exponent of 11 bits and a significand of 53 bits. This is conform IEEE-754 for single precision and
double precision floating-point. Internally the compiler uses a significand of 80 bits. The results of
floating-point operations are rounded to the nearest IEEE-754 format.

The accuracy of sqrt is defined unknown.

• The rounding behaviors characterized by non-standard values of FLT_ROUNDS (5.2.4.2.2).

No non-standard values are used.

• The evaluation methods characterized by non-standard negative values of FLT_EVAL_METHOD
(5.2.4.2.2).

FLT_EVAL_METHOD is defined as 0. No non-standard values are used.

629

C Implementation-defined Behavior



• The direction of rounding when an integer is converted to a floating-point number that cannot exactly
represent the original value (6.3.1.4).

For FPU instructions, the rounding mode is used. For software floating-point instructions, the round to
nearest method is used. FLT_ROUNDS is ignored.

• The direction of rounding when a floating-point number is converted to a narrower floating-point number
(6.3.1.5).

The round to nearest method is used. FLT_ROUNDS is ignored.

• How the nearest representable value or the larger or smaller representable value immediately adjacent
to the nearest representable value is chosen for certain floating constants (6.4.4.2).

The round to nearest method is used. FLT_ROUNDS is ignored.

• Whether and how floating expressions are contracted when not disallowed by the FP_CONTRACT
pragma (6.5).

Pragma FP_CONTRACT is equivalent to compiler option --fp-model=+contract. This has only effect
for fused multiply-and-accumulate (FMA) operations. FMA operations are not supported by the IEEE
754-1985 standard. The result of FMA operations is only rounded once at the end of the FMA.You can
disable FMAs with the compiler option --fp-model=-contract.

• The default state for the FENV_ACCESS pragma (7.6.1).

The default state of pragma FENV_ACCESS is "off". This pragma is ignored.

• Additional floating-point exceptions, rounding modes, environments, and classifications, and their macro
names (7.6, 7.12).

No additional floating-point exceptions, rounding modes, environments, and classifications are defined.

• The default state for the FP_CONTRACT pragma (7.12.2).

The default state of pragma FP_CONTRACT is set by the contract flag of compiler option --fp-model.
The default state is "on".

• Whether the "inexact" floating-point exception can be raised when the rounded result actually does
equal the mathematical result in an IEC 60559 conformant implementation (F.9).

No "inexact" floating-point exceptions are raised.

• Whether the "underflow" (and "inexact") floating-point exception can be raised when a result is tiny but
not inexact in an IEC 60559 conformant implementation (F.9).

No floating-point exceptions are raised.

630

TASKING SmartCode - PPU User Guide



15.1.7. Arrays and Pointers

• The result of converting a pointer to an integer or vice versa (6.3.2.3).

All non-pointer conversions to and from a 32-bit pointer are implemented as a conversion to or from a
32-bit integer type.

• The size of the result of subtracting two pointers to elements of the same array (6.5.6).

The size of ptrdiff_t is 32 bits. The difference in address location is expressed in bytes.

15.1.8. Hints

• The extent to which suggestions made by using the register storage-class specifier are effective
(6.7.1).

The compiler does not make assumptions based on the register storage-class specifier. So, basically
this keyword is ignored, except that you cannot take the address of a register variable.The compiler
issues an error in that case.

• The extent to which suggestions made by using the inline function specifier are effective (6.7.4).

With the inline keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself. For more information see Section 1.9.2, Inlining Functions:
inline.

15.1.9. Structures, Unions, Enumerations, and Bit-fields

• Whether a "plain" int bit-field is treated as a signed int bit-field or as an unsigned int bit-field
(6.7.2, 6.7.2.1).

By default an int bit-field is treated as signed int.You can still add the keyword unsigned to treat
a particular int bit-field as unsigned.

• Allowable bit-field types other than _Bool, signed int, and unsigned int (6.7.2.1).

All integer types as specified in Section 1.1, Data Types are allowable bit-field types.

• Whether a bit-field can straddle a storage-unit boundary (6.7.2.1).

A bit-field cannot straddle a storage-unit boundary. If insufficient space remains, the bit-field is put into
the next unit.

• The order of allocation of bit-fields within a unit (6.7.2.1).

Allocation starts at the least significant bit up to the most significant bit. If the following bit-field fits within
the same unit, it is allocated starting at the next available bit.

631

C Implementation-defined Behavior



• The alignment of non-bit-field members of structures (6.7.2.1). This should present no problem unless
binary data written by one implementation is read by another.

The alignment of non-bit-field members of structures is the same as the alignment for data types as
specified in Section 1.1, Data Types.

• The integer type compatible with each enumerated type (6.7.2.2).

The compiler chooses the smallest suitable integer type (char, unsigned char, short, unsigned
short or int).

15.1.10. Qualifiers

• What constitutes an access to an object that has volatile-qualified type (6.7.3).

Any reference to an object with volatile type results in an access. The order in which volatile
objects are accessed is defined by the order expressed in the source code. References to non-volatile
objects are scheduled in arbitrary order, within the constraints given by dependencies.

If the compiler option --language=+volatile (-Av) is set, all references to non-volatile objects result in
an access before the access to a volatile object that occurs subsequently in the source file takes
place. The volatile access acts as a memory barrier.

15.1.11. Preprocessing Directives

• How sequences in both forms of header names are mapped to headers or external source file names
(6.4.7).

Sequences in header names are mapped to file names as is. The backslash "\" is not interpreted as
an escape sequence.The backslash "\" (Windows) or forward slash "/" (Windows and UNIX) is interpreted
as a standard directory separator.

• Whether the value of a character constant in a constant expression that controls conditional inclusion
matches the value of the same character constant in the execution character set (6.10.1).

A character constant in a constant expression that controls conditional inclusion matches the value of
the same character constant in the execution character set.

• Whether the value of a single-character character constant in a constant expression that controls
conditional inclusion may have a negative value (6.10.1).

A single-character character constant in a constant expression that controls conditional inclusion may
have a negative value.

• The places that are searched for an included < > delimited header, and how the places are specified
or the header is identified (6.10.2).

How the compiler searches for include files is explained in Section 3.4, How the Compiler Searches
Include Files.

632

TASKING SmartCode - PPU User Guide



• How the named source file is searched for in an included " " delimited header (6.10.2).

How the compiler searches for include files is explained in Section 3.4, How the Compiler Searches
Include Files.

• The method by which preprocessing tokens (possibly resulting from macro expansion) in a #include
directive are combined into a header name (6.10.2).

Preprocessing tokens in a #include directive are combined the same way as outside a #include
directive.

• The nesting limit for #include processing (6.10.2).

There is no nesting limit for #include processing.

• Whether the # operator inserts a \ character before the \ character that begins a universal character
name in a character constant or string literal (6.10.3.2).

The # operator inserts a \ character before every \ character in a character constant or string literal.

• The behavior on each recognized non-STDC #pragma directive (6.10.6).

All non-STDC pragmas are described in Section 1.7, Pragmas to Control the Compiler.

• The definitions for __DATE__ and __TIME__ when respectively, the date and time of translation are
not available (6.10.8).

The date and time of translation are always available, macros __DATE__ and __TIME__ are always
defined.

15.1.12. Library Functions

• Any library facilities available to a freestanding program, other than the minimal set required by clause
4 (5.1.2.1).

All library functions are described in Chapter 9, Libraries. Some functions are not completely implemented
because their implementation depends on the context where your application will run. These functions
are for example all I/O related functions. Where possible, these functions are implemented using file
system simulation (FSS). This system can be used by the debugger to simulate an I/O environment
which enables you to debug your application. If the application runs under control of the debugger and
FSS is used, then the low-level behavior is equal to the host system's file access behavior.

In the implementation in the C library, the basic sequences of a multibyte character consist of single
bytes (MB_LEN_MAX is set to 1). If you want full multibyte support, you need to change the C library.
See the notes in the header files stdio.h and wchar.h for more information.

• The format of the diagnostic printed by the assert macro (7.2.1.1).

The assert() function is implemented as a macro in assert.h. The output is:

Assertion failed: (expression) file filename, line linenumber

when the parameter evaluates to zero.

633

C Implementation-defined Behavior



• The representation of the floating-point status flags stored by the fegetexceptflag function (7.6.2.2).

Floating-point exceptions are not supported. Function fegetexceptflag does nothing.

• Whether the feraiseexcept function raises the "inexact" floating-point exception in addition to the
"overflow" or "underflow" floating-point exception (7.6.2.3).

Floating-point exceptions are not supported. Function feraiseexcept does nothing.

• Strings other than "C" and "" that may be passed as the second argument to the setlocale function
(7.11.1.1).

No other strings are predefined. A NULL pointer as the second argument returns the "C" locale. Any
other string than "C" or "" can be passed as the second argument to the setlocale function and
results in NULL.

• The types defined for float_t and double_t when the value of the FLT_EVAL_METHOD macro is
less than 0 or greater than 2 (7.12).

The FLT_EVAL_METHOD macro can only have the values 0, 1 or 2.

• Domain errors for the mathematical functions, other than those required by this International Standard
(7.12.1).

No other domain errors exist, other than those required by the standard.

• The values returned by the mathematical functions on domain errors (7.12.1).

On domain errors (errno is set to EDOM), the mathematical functions return a value as specified in the
following table.

Return value on EDOMMath function

0.0acos(|x| > 1.0)

0.0asin(|x| > 1.0)

-HUGE_VALlog(x < 0.0)

0.0pow(x <= 0.0)

-NaNsqrt(x < 0.0)

• The values returned by the mathematical functions on underflow range errors, whether errno is set
to the value of the macro ERANGE when the integer expression math_errhandling & MATH_ERRNO
is nonzero, and whether the "underflow" floating-point exception is raised when the integer expression
math_errhandling & MATH_ERREXCEPT is nonzero. (7.12.1).

On underflow range errors, the mathematical functions return 0.0. math_errhandling is set to
MATH_ERRNO. Trapping and non-trapping versions of the library are available. With a non-trapping
library errno is not set to ERANGE on underflow range errors, with a trapping library no underflow
exception is raised.

634

TASKING SmartCode - PPU User Guide



• Whether a domain error occurs or zero is returned when an fmod function has a second argument of
zero (7.12.10.1).

Zero (0.0) is returned when an fmod function has a second argument of zero.

• The base-2 logarithm of the modulus used by the remquo functions in reducing the quotient (7.12.10.3).

The remquo function calculates at least 8 bits of the quotient.

• Whether the equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal handler,
and, if not, the blocking of signals that is performed (7.14.1.1).

The equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal handler.

• The null pointer constant to which the macro NULL expands (7.17).

Macro NULL is defined as (void *) 0.

• Whether the last line of a text stream requires a terminating new-line character (7.19.2).

Both a new-line character (\n) and end-of-file (EOF) are recognized as the termination character of a
line.

• Whether space characters that are written out to a text stream immediately before a new-line character
appear when read in (7.19.2).

Space characters written to a stream immediately before a new-line character are preserved.

• The number of null characters that may be appended to data written to a binary stream (7.19.2).

I/O related functions are implemented using file system simulation (FSS). This system can be used by
the debugger to simulate an I/O environment. If the application runs under control of the debugger and
FSS is used, then the low-level behavior is equal to the host system's file access behavior. The library
does not append any null characters. It depends on the open() function on the host environment what
happens.You can write your own _open() function if necessary.

• Whether the file position indicator of an append-mode stream is initially positioned at the beginning or
end of the file (7.19.3).

I/O related functions are implemented using file system simulation (FSS). This system can be used by
the debugger to simulate an I/O environment. If the application runs under control of the debugger and
FSS is used, then the low-level behavior is equal to the host system's file access behavior. Where the
file position indicator of an append-mode stream is initially positioned depends on the open() function
on the host environment.You can write your own _open() function if necessary.

• Whether a write on a text stream causes the associated file to be truncated beyond that point (7.19.3).

I/O related functions are implemented using file system simulation (FSS). This system can be used by
the debugger to simulate an I/O environment. If the application runs under control of the debugger and
FSS is used, then the low-level behavior is equal to the host system's file access behavior. Whether a
write on a text stream causes the associated file to be truncated beyond that point depends on how
the low-level file routines are implemented in your application.

635

C Implementation-defined Behavior



• The characteristics of file buffering (7.19.3).

Files can be unbuffered, fully buffered or line buffered. What actually happens depends on how the
low-level file routines are implemented in your application.

• Whether a zero-length file actually exists (7.19.3).

This depends on how the low-level file routines are implemented in your application.

• The rules for composing valid file names (7.19.3).

This depends on how the low-level file routines are implemented in your application.

• Whether the same file can be simultaneously open multiple times (7.19.3).

This depends on how the low-level file routines are implemented in your application.

• The nature and choice of encodings used for multibyte characters in files (7.19.3).

Use of variable length encoded characters in files in comments and string literals is permitted.

• The effect of the remove function on an open file (7.19.4.1).

This depends on how the low-level file routines are implemented in your application.

• The effect if a file with the new name exists prior to a call to the rename function (7.19.4.2).

This depends on how the low-level file routines are implemented in your application.

• Whether an open temporary file is removed upon abnormal program termination (7.19.4.3).

This depends on how the low-level file routines are implemented in your application.

• Which changes of mode are permitted (if any), and under what circumstances (7.19.5.4).

The freopen() function first calls fclose() and then calls _fopen() with the new mode.

• The style used to print an infinity or NaN, and the meaning of any n-char or n-wchar sequence printed
for a NaN (7.19.6.1, 7.24.2.1).

The style used to print an infinity or NaN is inf and nan respectively (INF or NAN for the F conversion
specifier). n-char or n-wchar sequences are not used for nan.

• The output for %p conversion in the fprintf or fwprintf function (7.19.6.1, 7.24.2.1).

The argument is treated as having type void *. The value will be printed as a hexadecimal value,
similar to %x.

• The interpretation of a - character that is neither the first nor the last character, nor the second where
a ̂  character is the first, in the scanlist for %[ conversion in the fscanf or fwscanf function (7.19.6.2,
7.24.2.1).

A - character is treated as a normal character.

636

TASKING SmartCode - PPU User Guide



• The set of sequences matched by a %p conversion and the interpretation of the corresponding input
item in the fscanf or fwscanf function (7.19.6.2, 7.24.2.2).

The format of %p matches the format of %x.The input for %p is a hexadecimal value, which is converted
to a value with type void *.

• The value to which the macro errno is set by the fgetpos, fsetpos, or ftell functions on failure
(7.19.9.1, 7.19.9.3, 7.19.9.4).

If errno is set to a value depends on how the low-level file routines are implemented in your application.

• The meaning of any n-char or n-wchar sequence in a string representing a NaN that is converted by
the strtod, strtof, strtold, wcstod, wcstof, or wcstold function (7.20.1.3, 7.24.4.1.1).

An n-char or n-wchar sequence in a string representing a NaN is ignored.

• Whether or not the strtod, strtof, strtold, wcstod, wcstof, or wcstold function sets errno
to ERANGE when underflow occurs (7.20.1.3, 7.24.4.1.1).

errno is set to ERANGE when underflow occurs and the value returned is 0.0.

• Whether the calloc, malloc, and realloc functions return a null pointer or a pointer to an allocated
object when the size requested is zero (7.20.3).

NULL is returned when a size of zero is requested.

• Whether open streams with unwritten buffered data are flushed, open streams are closed, or temporary
files are removed when the abort or _Exit function is called (7.20.4.1, 7.20.4.4).

When the abort() or _Exit() function is called, open streams with unwritten buffered data are not
flushed, open streams are not closed, and temporary files are not removed.

• The termination status returned to the host environment by the abort, exit, or _Exit function
(7.20.4.1, 7.20.4.3, 7.20.4.4).

exit() and _Exit() use the input value as termination status. abort() calls _Exit() with
EXIT_FAILURE.

• The value returned by the system function when its argument is not a null pointer (7.20.4.6).

A skeleton is provided for the system() function in the C library, because the embedded environment
has no operating system. The system() function returns the value 0.

• The local time zone and Daylight Saving Time (7.23.1).

The default time zone is UTC. Daylight Saving Time is not available (tm_isdst=-1).

• The range and precision of times representable in clock_t and time_t (7.23).

clock_t is defined as unsigned long long, time_t is defined as unsigned long.The resolution
of the clock is defined by CLOCKS_PER_SEC, which value is hard-coded to 500000000 (500MHz).

637

C Implementation-defined Behavior



• The era for the clock function (7.23.2.1).

The clock function returns the current processor time. It reads the 64-bit real-time counter (RTC).

• The replacement string for the %Z specifier to the strftime, and wcsftime functions in the "C" locale
(7.23.3.5, 7.24.5.1).

%Z is replaced by the time zone name, by default UTC.

• Whether or when the trigonometric, hyperbolic, base-e exponential, base-e logarithmic, error, and log
gamma functions raise the "inexact" floating-point exception in an IEC 60559 conformant implementation
(F.9).

The "inexact" floating-point exception is not supported.

• Whether the functions in <math.h> honor the rounding direction mode in an IEC 60559 conformant
implementation (F.9).

The round to nearest method is used. FLT_ROUNDS is defined as 1.

15.1.13. Architecture

• The values or expressions assigned to the macros specified in the headers <float.h>, <limits.h>,
and <stdint.h> (5.2.4.2, 7.18.2, 7.18.3).

Macros in <float.h>:

ValueMacro <float.h>

2FLT_RADIX

0FLT_EVAL_METHOD

1 (round to nearest)FLT_ROUNDS

24FLT_MANT_DIG

6FLT_DIG

1.19209290E-07FFLT_EPSILON

1.17549435E-38FFLT_MIN

-125FLT_MIN_EXP

-37FLT_MIN_10_EXP

3.40282347E+38FFLT_MAX

+128FLT_MAX_EXP

+38FLT_MAX_10_EXP

53[L]DBL_MANT_DIG

15[L]DBL_DIG

2.2204460492503131E-16[L]DBL_EPSILON

2.2250738585072014E-308[L]DBL_MIN

638

TASKING SmartCode - PPU User Guide



ValueMacro <float.h>

-1021[L]DBL_MIN_EXP

-307[L]DBL_MIN_10_EXP

1.7976931348623157E+308[L]DBL_MAX

+1024[L]DBL_MAX_EXP

+308[L]DBL_MAX_10_EXP

17 (for double FP), 9 (for single FP)DECIMAL_DIG

11FLT16_MANT_DIG

3FLT16_DIG

9.765625E-4FFLT16_EPSILON

6.103515625E-05FFLT16_MIN

-13FLT16_MIN_EXP

-4FLT16_MIN_10_EXP

65504.0FFLT16_MAX

+16FLT16_MAX_EXP

+4FLT16_MAX_10_EXP

1FLT16_HAS_SUBNORM

FLT16_MINFLT16_TRUE_MIN

5FLT16_DECIMAL_DIG

Macros in <limits.h>:

ValueMacro <limits.h>

8CHAR_BIT

-SCHAR_MAX-1SCHAR_MIN

0x7fSCHAR_MAX

0xffUUCHAR_MAX

__CHAR_MIN (min value of 'plain' char)CHAR_MIN

__CHAR_MAX (max value of 'plain' char)CHAR_MAX

1MB_LEN_MAX

-SHRT_MAX-1SHRT_MIN

0x7fffSHRT_MAX

0xffffUUSHRT_MAX

-INT_MAX-1INT_MIN

0x7fffffffINT_MAX

0xffffffffUUINT_MAX

-LONG_MAX-1LONG_MIN

639

C Implementation-defined Behavior



ValueMacro <limits.h>

0x7fffffffLLONG_MAX

0xffffffffULULONG_MAX

-LLONG_MAX-1LLONG_MIN

0x7fffffffffffffffLLLLONG_MAX

0xffffffffffffffffULLULLONG_MAX

The limit macros in <stdint.h> for exact-width, minimum-width and fastest-width integer types have
the same ranges as char, short, int, long and long long. Furthermore the following macros are
defined:

ValueMacro <stdint.h>

INT32_MININTPTR_MIN

INT32_MAXINTPTR_MAX

UINT32_MAXUINTPTR_MAX

INT64_MININTMAX_MIN

INT64_MAXINTMAX_MAX

UINT64_MAXUINTMAX_MAX

__PTRDIFF_MINPTRDIFF_MIN

__PTRDIFF_MAXPTRDIFF_MAX

INT32_MINSIG_ATOMIC_MIN

INT32_MAXSIG_ATOMIC_MAX

__SIZE_MAXSIZE_MAX

__WCHAR_MINWCHAR_MIN

__WCHAR_MAXWCHAR_MAX

0WINT_MIN

UINT32_MAXWINT_MAX

• The number, order, and encoding of bytes in any object (when not explicitly specified in this International
Standard) (6.2.6.1).

All types are described in Section 1.1, Data Types.

• The value of the result of the sizeof operator (6.5.3.4).

The value of the size of the data types is described in Section 1.1, Data Types. Divide the size by 8 to
get bytes, because the table lists the size of the data types in bits.

640

TASKING SmartCode - PPU User Guide



15.2. C99 Locale-specific Behavior

Locale-specific behavior is behavior that depends on local conventions of nationality, culture, and language
that each implementation documents.

The following items describe the locale-specific characteristics, as indicated in Annex J.4 of the ISO/IEC
9899:1999 (E) standard.

• Additional members of the source and execution character sets beyond the basic character set (5.2.1).

The compiler accepts all one-byte characters in the host's default character set. Use of variable length
encoded characters in the source file in comments and string literals is permitted.

In the implementation in the C library, the basic sequences of a multibyte character consist of single
bytes (MB_LEN_MAX is set to 1). If you want full multibyte support, you need to change the C library.
See the notes in the header files stdio.h and wchar.h for more information.

• The presence, meaning, and representation of additional multibyte characters in the execution character
set beyond the basic character set (5.2.1.2).

Use of variable length encoded characters in the source file in comments and string literals is permitted.

• The shift states used for the encoding of multibyte characters (5.2.1.2).

A multibyte character must be a single byte when in the initial shift state.

• The direction of writing of successive printing characters (5.2.2).

The direction of writing depends on the application and the display device.

• The decimal-point character (7.1.1).

The default decimal-point character is a '.'.

• The set of printing characters (7.4, 7.25.2).

The set of printing characters are the characters for which the isprint() function returns true. Printing
characters are characters in the range 32 (space) to 126.

• The set of control characters (7.4, 7.25.2).

The set of control characters are the characters for which the iscntrl() function returns true. Control
characters are characters in the range 0 to 31 and 127.

• The sets of characters tested for by the isalpha, isblank, islower, ispunct, isspace, isupper,
iswalpha, iswblank, iswlower, iswpunct, iswspace, or iswupper functions (7.4.1.2, 7.4.1.3,
7.4.1.7, 7.4.1.9, 7.4.1.10, 7.4.1.11, 7.25.2.1.2, 7.25.2.1.3, 7.25.2.1.7, 7.25.2.1.9, 7.25.2.1.10, 7.25.2.1.11).

The characters tested for are specified in the following table.

Characters testedFunction

a-z, A-Zisalpha

641

C Implementation-defined Behavior



Characters testedFunction

' ' (space), '\t' (tab)isblank

a-zislower

!, ", #, $, %, &, ', (, ), *, +, ,, -, ., /, :, ;, <, =, >, ?, @, [, \, ], ^, _, `, {, |, }, ~ispunct

' ' (space), '\t', '\n', '\v', '\f', '\r'isspace

A-Zisupper

• The native environment (7.11.1.1).

The native environment is the same as the "C" locale.

• Additional subject sequences accepted by the numeric conversion functions (7.20.1, 7.24.4.1).

No additional subject sequences are accepted.

• The collation sequence of the execution character set (7.21.4.3, 7.24.4.4.2).

Only the "C" locale is supported.The strcoll() function is the same as the strcmp() function.The
wcscoll() function is the same as the wcscmp() function.

• The contents of the error message strings set up by the strerror function (7.21.6.2).

The error message strings returned by strerror() depend on the argument. Typically, the values
for the argument come from errno.h. For a list of messages see Section 9.1.5, errno.h).

• The formats for time and date (7.23.3.5, 7.24.5.1).

English names for months and days are used.

%c is replaced by the following date and time representation: %a %b %e %H:%M:%S %Y

%x is replaced by the following date representation: %m/%d/%y

%X is replaced by the following time representation: %H:%M:%S

• Character mappings that are supported by the towctrans function (7.25.1).

The character mappings supported by the towctrans() function are defined in wctype.h:_to_lower
and _to_upper.

• Character classifications that are supported by the iswctype function (7.25.1).

The character classifications supported by the iswctype() function are defined in wctype.h:_alnum,
_alpha, _cntrl, _digit, _graph, _lower, _print, _punct, _space, _upper, _xdigit and
_blank.

642

TASKING SmartCode - PPU User Guide



15.3. C11 Implementation-defined Behavior

Implementation-defined behavior is unspecified behavior where each implementation documents how
the choice is made.

The following sections describe the implementation-defined characteristics. The section numbers listed
in parenthesis refer to the corresponding sections in the ISO C11 standard. The order in this chapter is
the same as used in Annex J.3 of the ISO/IEC 9899:2011 (E) standard.

15.3.1.Translation

• How a diagnostic is identified (3.10, 5.1.1.3).

The C compiler diagnostics are explained in Section 3.8, C Compiler Error Messages.

• Whether each nonempty sequence of white-space characters other than new-line is retained or replaced
by one space character in translation phase 3 (5.1.1.2).

White-space is retained.

15.3.2. Environment

• The mapping between physical source file multibyte characters and the source character set in translation
phase 1 (5.1.1.2).

Use of variable length encoded characters in the source file in comments and string literals is permitted.
A one-on-one mapping is done without interpretation of multibyte characters.

• The name and type of the function called at program startup in a freestanding environment (5.1.2.1).

The function called at program startup (in cstart.c) is called main. The prototype for main in
cstart.c is:

extern int main( int argc, char *argv[] );

• The effect of program termination in a freestanding environment (5.1.2.1).

Execution is halted if the program is executed under control of a debugger, otherwise the program will
loop forever in function _Exit().

• An alternative manner in which the main function may be defined (5.1.2.2.1).

You can change the definition of main by altering file cstart.c.

• The values given to the strings pointed to by the argv argument to main (5.1.2.2.1).

The strings get their values from the arguments given in file cstart.c. The program arguments are
treated case sensitive.

643

C Implementation-defined Behavior



• What constitutes an interactive device (5.1.2.3).

The streams stdin, stdout and stderr are treated as interactive devices.The debugger uses these
streams with File System Simulation (FSS) windows to interact.

• Whether a program can have more than one thread of execution in a freestanding environment (5.1.2.4).

There is only a single thread of execution.

• The set of signals, their semantics, and their default handling (7.14).

The signals are described in Section 9.1.20, signal.h.

• Signal values other than SIGFPE, SIGILL, and SIGSEGV that correspond to a computational exception
(7.14.1.1).

There are no other values that correspond to a computational exception. All signal values are described
in Section 9.1.20, signal.h.

• Signals for which the equivalent of signal(sig, SIG_IGN); is executed at program startup (7.14.1.1).

By default the implementation does not ignore any signals at program startup.

• The set of environment names and the method for altering the environment list used by the getenv
function (7.22.4.5).

There are no implementation-defined environment names that are used by the getenv function. A
skeleton is provided for the getenv function in the C library, because the embedded environment has
no operating system. The getenv function calls the name as a void function.

• The manner of execution of the string by the system function (7.22.4.6).

A skeleton is provided for the system() function in the C library, because the embedded environment
has no operating system. The system() function calls the string as a void function.

15.3.3. Identifiers

• Which additional multibyte characters may appear in identifiers and their correspondence to universal
character names (6.4.2).

No additional multibyte characters are supported in an identifier.

• The number of significant initial characters in an identifier (5.2.4.1, 6.4.2).

All characters in an identifier are significant.

15.3.4. Characters

• The number of bits in a byte (3.6).

There are eight bits in a byte.

644

TASKING SmartCode - PPU User Guide



• The values of the members of the execution character set (5.2.1).

Only 8-bit characters are supported. The values of the execution character set are the same as that of
the source character set. The same representation value is used for each member in the characters
sets except for the escape sequences.

• The unique value of the member of the execution character set produced for each of the standard
alphabetic escape sequences (5.2.2).

The following table contains an overview of the escape sequences and their byte value in the execution
character set.

ValueEscape sequence

7\a

8\b

12\f

10\n

13\r

9\t

11\v

• The value of a char object into which has been stored any character other than a member of the basic
execution character set (6.2.5).

Any 8-bit value can be stored in a char object.

• Which of signed char or unsigned char has the same range, representation, and behavior as
"plain" char (6.2.5, 6.3.1.1).

By default "plain" char is the same as specifying unsigned char. With C compiler option --schar
you can change the default to signed char.

• The mapping of members of the source character set (in character constants and string literals) to
members of the execution character set (6.4.4.4, 5.1.1.2).

The mapping is one-to-one. The values of the execution character set are the same as that of the
source character set. The same representation value is used for each member in the characters sets
except for the escape sequences.

• The value of an integer character constant containing more than one character or containing a character
or escape sequence that does not map to a single-byte execution character (6.4.4.4).

For any character constant containing more than one character, a warning is issued and the value is
truncated to type signed char.

• The value of a wide character constant containing more than one multibyte character or a single multibyte
character that maps to multiple members of the extended execution character set, or containing a

645

C Implementation-defined Behavior



multibyte character or escape sequence not represented in the extended execution character set
(6.4.4.4).

A wide character constant can contain at most two multibyte characters. Its value is the concatenation
of the multibyte characters represented in a signed short int.

• The current locale used to convert a wide character constant consisting of a single multibyte character
that maps to a member of the extended execution character set into a corresponding wide character
code (6.4.4.4).

By default, the "C" locale is used.

• Whether differently-prefixed wide string literal tokens can be concatenated and, if so, the treatment of
the resulting multibyte character sequence (6.4.5).

Differently-prefixed wide string literals can be concatenated. The encoding prefix of the first literal
determines the treatment of all literals.

• The current locale used to convert a wide string literal into corresponding wide character codes (6.4.5).

By default, the "C" locale is used.

• The value of a string literal containing a multibyte character or escape sequence not represented in
the execution character set (6.4.5).

All source characters can be represented in the execution character set.

• The encoding of any of wchar_t, char16_t, and char32_t where the corresponding standard
encoding macro (__STDC_ISO_10646__, __STDC_UTF_16__, or __STDC_UTF_32__) is not defined
(6.10.8.2).

The C compiler implements these typedefs with the following types:

ImplementationTypedef

signed shortwchar_t

unsigned shortchar16_t

unsigned intchar32_t

15.3.5. Integers

• Any extended integer types that exist in the implementation (6.2.5).

All types are described in Section 1.1, Data Types.

• Whether signed integer types are represented using sign and magnitude, two’s complement, or ones’
complement, and whether the extraordinary value is a trap representation or an ordinary value (6.2.6.2).

Signed integer types are represented in two's complement. The most significant bit is the sign bit. 1 is
negative, 0 is positive.

646

TASKING SmartCode - PPU User Guide



• The rank of any extended integer type relative to another extended integer type with the same precision
(6.3.1.1).

All types are described in Section 1.1, Data Types.

• The result of, or the signal raised by, converting an integer to a signed integer type when the value
cannot be represented in an object of that type (6.3.1.3).

At compile time, when converting integer types and a value does not
fit in a type, the compiler issues a warning and the value is truncated. At run-time no warning or signal
is given and the value is truncated.

• The results of some bitwise operations on signed integers (6.5).

The result of E1>>E2 is E1 right shifted E2 bit positions. If E1 has a signed type and a negative value,
the shift behavior is implemented as an arithmetic shift. The empty position in the most significant bit
is filled with a copy of the original most significant bit.

15.3.6. Floating-Point

• The accuracy of the floating-point operations and of the library functions in <math.h> and <complex.h>
that return floating-point results (5.2.4.2.2).

A float has an exponent of 8 bits and a significand of 24 bits. A double or long double has an
exponent of 11 bits and a significand of 53 bits. This is conform IEEE-754 for single precision and
double precision floating-point. Internally the compiler uses a significand of 80 bits. The results of
floating-point operations are rounded to the nearest IEEE-754 format.

The accuracy of sqrt is defined unknown.

• The accuracy of the conversions between floating-point internal representations and string
representations performed by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>
(5.2.4.2.2).

The accuracy of the conversions is unknown.

• The rounding behaviors characterized by non-standard values of FLT_ROUNDS (5.2.4.2.2).

No non-standard values are used.

• The evaluation methods characterized by non-standard negative values of FLT_EVAL_METHOD
(5.2.4.2.2).

FLT_EVAL_METHOD is defined as 0. No non-standard values are used.

• The presence or absence of subnormal numbers (5.2.4.2.2)

Subnormals support is characterized as present: macros FLT_HAS_SUBNORM,
FLT16_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM are defined to 1.

647

C Implementation-defined Behavior



• The direction of rounding when an integer is converted to a floating-point number that cannot exactly
represent the original value (6.3.1.4).

For FPU instructions, the rounding mode is used. For software floating-point instructions, the round to
nearest method is used. FLT_ROUNDS is ignored.

• The direction of rounding when a floating-point number is converted to a narrower floating-point number
(6.3.1.5).

The round to nearest method is used. FLT_ROUNDS is ignored.

• How the nearest representable value or the larger or smaller representable value immediately adjacent
to the nearest representable value is chosen for certain floating constants (6.4.4.2).

The round to nearest method is used. FLT_ROUNDS is ignored.

• Whether and how floating expressions are contracted when not disallowed by the FP_CONTRACT
pragma (6.5).

Pragma FP_CONTRACT is equivalent to compiler option --fp-model=+contract. This has only effect
for fused multiply-and-accumulate (FMA) operations. FMA operations are not supported by the IEEE
754-1985 standard. The result of FMA operations is only rounded once at the end of the FMA.You can
disable FMAs with the compiler option --fp-model=-contract.

• The default state for the FENV_ACCESS pragma (7.6.1).

The default state of pragma FENV_ACCESS is "off". This pragma is ignored.

• Additional floating-point exceptions, rounding modes, environments, and classifications, and their macro
names (7.6, 7.12).

No additional floating-point exceptions, rounding modes, environments, and classifications are defined.

• The default state for the FP_CONTRACT pragma (7.12.2).

The default state of pragma FP_CONTRACT is set by the contract flag of compiler option --fp-model.
The default state is "on".

15.3.7. Arrays and Pointers

• The result of converting a pointer to an integer or vice versa (6.3.2.3).

All non-pointer conversions to and from a 32-bit pointer are implemented as a conversion to or from a
32-bit integer type.

• The size of the result of subtracting two pointers to elements of the same array (6.5.6).

The size of ptrdiff_t is 32 bits. The difference in address location is expressed in bytes.

648

TASKING SmartCode - PPU User Guide



15.3.8. Hints

• The extent to which suggestions made by using the register storage-class specifier are effective
(6.7.1).

The compiler does not make assumptions based on the register storage-class specifier. So, basically
this keyword is ignored, except that you cannot take the address of a register variable.The compiler
issues an error in that case.

• The extent to which suggestions made by using the inline function specifier are effective (6.7.4).

With the inline keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself. For more information see Section 1.9.2, Inlining Functions:
inline.

15.3.9. Structures, Unions, Enumerations, and Bit-fields

• Whether a "plain" int bit-field is treated as a signed int bit-field or as an unsigned int bit-field
(6.7.2, 6.7.2.1).

By default an int bit-field is treated as signed int.You can still add the keyword unsigned to treat
a particular int bit-field as unsigned.

• Allowable bit-field types other than _Bool, signed int, and unsigned int (6.7.2.1).

All integer types as specified in Section 1.1, Data Types are allowable bit-field types.

• Whether atomic types are permitted for bit-fields (6.7.2.1).

Atomic types are not permitted for bit-fields.

• Whether a bit-field can straddle a storage-unit boundary (6.7.2.1).

A bit-field cannot straddle a storage-unit boundary. If insufficient space remains, the bit-field is put into
the next unit.

• The order of allocation of bit-fields within a unit (6.7.2.1).

Allocation starts at the least significant bit up to the most significant bit. If the following bit-field fits within
the same unit, it is allocated starting at the next available bit.

• The alignment of non-bit-field members of structures (6.7.2.1). This should present no problem unless
binary data written by one implementation is read by another.

The alignment of non-bit-field members of structures is the same as the alignment for data types as
specified in Section 1.1, Data Types.

• The integer type compatible with each enumerated type (6.7.2.2).

The compiler chooses the smallest suitable integer type (char, unsigned char, short, unsigned
short or int).

649

C Implementation-defined Behavior



15.3.10. Qualifiers

• What constitutes an access to an object that has volatile-qualified type (6.7.3).

Any reference to an object with volatile type results in an access. The order in which volatile
objects are accessed is defined by the order expressed in the source code. References to non-volatile
objects are scheduled in arbitrary order, within the constraints given by dependencies.

If the compiler option --language=+volatile (-Av) is set, all references to non-volatile objects result in
an access before the access to a volatile object that occurs subsequently in the source file takes
place. The volatile access acts as a memory barrier.

15.3.11. Preprocessing Directives

• The locations within #pragma directives where header name preprocessing tokens are recognized
(6.4, 6.4.7).

Within a #pragma directive, header name preprocessing tokens are not recognized.

• How sequences in both forms of header names are mapped to headers or external source file names
(6.4.7).

Sequences in header names are mapped to file names as is. The backslash "\" is not interpreted as
an escape sequence.The backslash "\" (Windows) or forward slash "/" (Windows and UNIX) is interpreted
as a standard directory separator.

• Whether the value of a character constant in a constant expression that controls conditional inclusion
matches the value of the same character constant in the execution character set (6.10.1).

A character constant in a constant expression that controls conditional inclusion matches the value of
the same character constant in the execution character set.

• Whether the value of a single-character character constant in a constant expression that controls
conditional inclusion may have a negative value (6.10.1).

A single-character character constant in a constant expression that controls conditional inclusion may
have a negative value.

• The places that are searched for an included < > delimited header, and how the places are specified
or the header is identified (6.10.2).

How the compiler searches for include files is explained in Section 3.4, How the Compiler Searches
Include Files.

• How the named source file is searched for in an included " " delimited header (6.10.2).

How the compiler searches for include files is explained in Section 3.4, How the Compiler Searches
Include Files.

650

TASKING SmartCode - PPU User Guide



• The method by which preprocessing tokens (possibly resulting from macro expansion) in a #include
directive are combined into a header name (6.10.2).

Preprocessing tokens in a #include directive are combined the same way as outside a #include
directive.

• The nesting limit for #include processing (6.10.2).

There is no nesting limit for #include processing.

• Whether the # operator inserts a \ character before the \ character that begins a universal character
name in a character constant or string literal (6.10.3.2).

The # operator inserts a \ character before every \ character in a character constant or string literal.

• The behavior on each recognized non-STDC #pragma directive (6.10.6).

All non-STDC pragmas are described in Section 1.7, Pragmas to Control the Compiler.

• The definitions for __DATE__ and __TIME__ when respectively, the date and time of translation are
not available (6.10.8.1).

The date and time of translation are always available, macros __DATE__ and __TIME__ are always
defined.

15.3.12. Library Functions

• Any library facilities available to a freestanding program, other than the minimal set required by clause
4 (5.1.2.1).

All library functions are described in Chapter 9, Libraries. Some functions are not completely implemented
because their implementation depends on the context where your application will run. These functions
are for example all I/O related functions. Where possible, these functions are implemented using file
system simulation (FSS). This system can be used by the debugger to simulate an I/O environment
which enables you to debug your application. If the application runs under control of the debugger and
FSS is used, then the low-level behavior is equal to the host system's file access behavior.

In the implementation in the C library, the basic sequences of a multibyte character consist of single
bytes (MB_LEN_MAX is set to 1). If you want full multibyte support, you need to change the C library.
See the notes in the header files stdio.h and wchar.h for more information.

• The format of the diagnostic printed by the assert macro (7.2.1.1).

The assert() function is implemented as a macro in assert.h. The output is:

Assertion failed: (expression) file filename, line linenumber

when the parameter evaluates to zero.

• The representation of the floating-point status flags stored by the fegetexceptflag function (7.6.2.2).

Floating-point exceptions are not supported. Function fegetexceptflag does nothing.

651

C Implementation-defined Behavior



• Whether the feraiseexcept function raises the "inexact" floating-point exception in addition to the
"overflow" or "underflow" floating-point exception (7.6.2.3).

Floating-point exceptions are not supported. Function feraiseexcept does nothing.

• Strings other than "C" and "" that may be passed as the second argument to the setlocale function
(7.11.1.1).

No other strings are predefined. A NULL pointer as the second argument returns the "C" locale. Any
other string than "C" or "" can be passed as the second argument to the setlocale function and
results in NULL.

• The types defined for float_t and double_t when the value of the FLT_EVAL_METHOD macro is
less than 0 (7.12).

The FLT_EVAL_METHOD macro can only have the values 0, 1 or 2.

• Domain errors for the mathematical functions, other than those required by this International Standard
(7.12.1).

No other domain errors exist, other than those required by the standard.

• The values returned by the mathematical functions on domain errors or pole errors (7.12.1).

On domain errors (errno is set to EDOM), the mathematical functions return a value as specified in the
following table.

Return value on EDOMMath function

0.0acos(|x| > 1.0)

0.0asin(|x| > 1.0)

-HUGE_VALlog(x < 0.0)

0.0pow(x <= 0.0)

-NaNsqrt(x < 0.0)

• The values returned by the mathematical functions on underflow range errors, whether errno is set
to the value of the macro ERANGE when the integer expression math_errhandling & MATH_ERRNO
is nonzero, and whether the "underflow" floating-point exception is raised when the integer expression
math_errhandling & MATH_ERREXCEPT is nonzero. (7.12.1).

On underflow range errors, the mathematical functions return 0.0. math_errhandling is set to
MATH_ERRNO. Trapping and non-trapping versions of the library are available. With a non-trapping
library errno is not set to ERANGE on underflow range errors, with a trapping library no underflow
exception is raised.

• Whether a domain error occurs or zero is returned when an fmod function has a second argument of
zero (7.12.10.1).

Zero (0.0) is returned when an fmod function has a second argument of zero.

652

TASKING SmartCode - PPU User Guide



• Whether a domain error occurs or zero is returned when a remainder function has a second argument
of zero (7.12.10.2).

A domain error occurs.

• The base-2 logarithm of the modulus used by the remquo functions in reducing the quotient (7.12.10.3).

The remquo function calculates at least 8 bits of the quotient.

• Whether a domain error occurs or zero is returned when a remquo function has a second argument
of zero (7.12.10.3).

A domain error occurs.

• Whether the equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal handler,
and, if not, the blocking of signals that is performed (7.14.1.1).

The equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal handler.

• The null pointer constant to which the macro NULL expands (7.19).

Macro NULL is defined as (void *) 0.

• Whether the last line of a text stream requires a terminating new-line character (7.21.2).

Both a new-line character (\n) and end-of-file (EOF) are recognized as the termination character of a
line.

• Whether space characters that are written out to a text stream immediately before a new-line character
appear when read in (7.21.2).

Space characters written to a stream immediately before a new-line character are preserved.

• The number of null characters that may be appended to data written to a binary stream (7.21.2).

I/O related functions are implemented using file system simulation (FSS). This system can be used by
the debugger to simulate an I/O environment. If the application runs under control of the debugger and
FSS is used, then the low-level behavior is equal to the host system's file access behavior. The library
does not append any null characters. It depends on the open() function on the host environment what
happens.You can write your own _open() function if necessary.

• Whether the file position indicator of an append-mode stream is initially positioned at the beginning or
end of the file (7.21.3).

I/O related functions are implemented using file system simulation (FSS). This system can be used by
the debugger to simulate an I/O environment. If the application runs under control of the debugger and
FSS is used, then the low-level behavior is equal to the host system's file access behavior. Where the
file position indicator of an append-mode stream is initially positioned depends on the open() function
on the host environment.You can write your own _open() function if necessary.

653

C Implementation-defined Behavior



• Whether a write on a text stream causes the associated file to be truncated beyond that point (7.21.3).

I/O related functions are implemented using file system simulation (FSS). This system can be used by
the debugger to simulate an I/O environment. If the application runs under control of the debugger and
FSS is used, then the low-level behavior is equal to the host system's file access behavior. Whether a
write on a text stream causes the associated file to be truncated beyond that point depends on how
the low-level file routines are implemented in your application.

• The characteristics of file buffering (7.21.3).

Files can be unbuffered, fully buffered or line buffered. What actually happens depends on how the
low-level file routines are implemented in your application.

• Whether a zero-length file actually exists (7.21.3).

This depends on how the low-level file routines are implemented in your application.

• The rules for composing valid file names (7.21.3).

This depends on how the low-level file routines are implemented in your application.

• Whether the same file can be simultaneously open multiple times (7.21.3).

This depends on how the low-level file routines are implemented in your application.

• The nature and choice of encodings used for multibyte characters in files (7.21.3).

Use of variable length encoded characters in files in comments and string literals is permitted.

• The effect of the remove function on an open file (7.21.4.1).

This depends on how the low-level file routines are implemented in your application.

• The effect if a file with the new name exists prior to a call to the rename function (7.21.4.2).

This depends on how the low-level file routines are implemented in your application.

• Whether an open temporary file is removed upon abnormal program termination (7.21.4.3).

This depends on how the low-level file routines are implemented in your application.

• Which changes of mode are permitted (if any), and under what circumstances (7.21.5.4).

The freopen() function first calls fclose() and then calls _fopen() with the new mode.

• The style used to print an infinity or NaN, and the meaning of any n-char or n-wchar sequence printed
for a NaN (7.21.6.1, 7.29.2.1).

The style used to print an infinity or NaN is inf and nan respectively (INF or NAN for the F conversion
specifier). n-char or n-wchar sequences are not used for nan.

654

TASKING SmartCode - PPU User Guide



• The output for %p conversion in the fprintf or fwprintf function (7.21.6.1, 7.29.2.1).

The argument is treated as having type void *. The value will be printed as a hexadecimal value,
similar to %x.

• The interpretation of a - character that is neither the first nor the last character, nor the second where
a ̂  character is the first, in the scanlist for %[ conversion in the fscanf or fwscanf function (7.21.6.2,
7.29.2.1).

A - character is treated as a normal character.

• The set of sequences matched by a %p conversion and the interpretation of the corresponding input
item in the fscanf or fwscanf function (7.21.6.2, 7.29.2.2).

The format of %p matches the format of %x.The input for %p is a hexadecimal value, which is converted
to a value with type void *.

• The value to which the macro errno is set by the fgetpos, fsetpos, or ftell functions on failure
(7.21.9.1, 7.21.9.3, 7.21.9.4).

If errno is set to a value depends on how the low-level file routines are implemented in your application.

• The meaning of any n-char or n-wchar sequence in a string representing a NaN that is converted by
the strtod, strtof, strtold, wcstod, wcstof, or wcstold function (7.22.1.3, 7.29.4.1.1).

An n-char or n-wchar sequence in a string representing a NaN is ignored.

• Whether or not the strtod, strtof, strtold, wcstod, wcstof, or wcstold function sets errno
to ERANGE when underflow occurs (7.22.1.3, 7.29.4.1.1).

errno is set to ERANGE when underflow occurs and the value returned is 0.0.

• Whether the calloc, malloc, and realloc functions return a null pointer or a pointer to an allocated
object when the size requested is zero (7.22.3).

NULL is returned when a size of zero is requested.

• Whether open streams with unwritten buffered data are flushed, open streams are closed, or temporary
files are removed when the abort or _Exit function is called (7.22.4.1, 7.22.4.4).

When the abort() or _Exit() function is called, open streams with unwritten buffered data are not
flushed, open streams are not closed, and temporary files are not removed.

• The termination status returned to the host environment by the abort, exit, _Exit, or quick_exit
function (7.22.4.1, 7.22.4.4, 7.22.4.5, 7.22.4.7).

abort() calls _Exit() with EXIT_FAILURE.

exit() and quick_exit call _Exit() with their input value.

_Exit() returns the input value to the host environment.

655

C Implementation-defined Behavior



• The value returned by the system function when its argument is not a null pointer (7.22.4.6).

A skeleton is provided for the system() function in the C library, because the embedded environment
has no operating system. The system() function returns the value 0.

• The range and precision of times representable in clock_t and time_t (7.27).

clock_t is defined as unsigned long long, time_t is defined as unsigned long.The resolution
of the clock is defined by CLOCKS_PER_SEC, which value is hard-coded to 500000000 (500MHz).

• The local time zone and Daylight Saving Time (7.27.1).

The default time zone is UTC. Daylight Saving Time is not available (tm_isdst=-1).

• The era for the clock function (7.27.2.1).

The clock function returns the current processor time. It reads the 64-bit real-time counter (RTC).

• The TIME_UTC epoch (7.27.2.5).

The timespec_get() function is based on the clock() function.Therefore, the epoch is the starting
time of the clock() function.

• The replacement string for the %Z specifier to the strftime, and wcsftime functions in the "C" locale
(7.27.3.5, 7.29.5.1).

%Z is replaced by the time zone name, by default UTC.

• Whether the functions in <math.h> honor the rounding direction mode in an IEC 60559 conformant
implementation, unless explicitly specified otherwise (F.10).

The round to nearest method is used. FLT_ROUNDS is defined as 1.

15.3.13. Architecture

• The values or expressions assigned to the macros specified in the headers <float.h>, <limits.h>,
and <stdint.h> (5.2.4.2, 7.20.2, 7.20.3).

Macros in <float.h>:

ValueMacro <float.h>

2FLT_RADIX

0FLT_EVAL_METHOD

1 (round to nearest)FLT_ROUNDS

24FLT_MANT_DIG

6FLT_DIG

1.19209290E-07FFLT_EPSILON

1.17549435E-38FFLT_MIN

656

TASKING SmartCode - PPU User Guide



ValueMacro <float.h>

-125FLT_MIN_EXP

-37FLT_MIN_10_EXP

3.40282347E+38FFLT_MAX

+128FLT_MAX_EXP

+38FLT_MAX_10_EXP

1FLT_HAS_SUBNORM

FLT_MINFLT_TRUE_MIN

9FLT_DECIMAL_DIG

53[L]DBL_MANT_DIG

15[L]DBL_DIG

2.2204460492503131E-16[L]DBL_EPSILON

2.2250738585072014E-308[L]DBL_MIN

-1021[L]DBL_MIN_EXP

-307[L]DBL_MIN_10_EXP

1.7976931348623157E+308[L]DBL_MAX

+1024[L]DBL_MAX_EXP

+308[L]DBL_MAX_10_EXP

1[L]DBL_HAS_SUBNORM

DBL_MIN[L]DBL_TRUE_MIN

17 (for double FP), 9 (for single FP)[L]DBL_DECIMAL_DIG

17 (for double FP), 9 (for single FP)DECIMAL_DIG

11FLT16_MANT_DIG

3FLT16_DIG

9.765625E-4FFLT16_EPSILON

6.103515625E-05FFLT16_MIN

-13FLT16_MIN_EXP

-4FLT16_MIN_10_EXP

65504.0FFLT16_MAX

+16FLT16_MAX_EXP

+4FLT16_MAX_10_EXP

1FLT16_HAS_SUBNORM

FLT16_MINFLT16_TRUE_MIN

5FLT16_DECIMAL_DIG

657

C Implementation-defined Behavior



Macros in <limits.h>:

ValueMacro <limits.h>

8CHAR_BIT

-SCHAR_MAX-1SCHAR_MIN

0x7fSCHAR_MAX

0xffUUCHAR_MAX

__CHAR_MIN (min value of 'plain' char)CHAR_MIN

__CHAR_MAX (max value of 'plain' char)CHAR_MAX

1MB_LEN_MAX

-SHRT_MAX-1SHRT_MIN

0x7fffSHRT_MAX

0xffffUUSHRT_MAX

-INT_MAX-1INT_MIN

0x7fffffffINT_MAX

0xffffffffUUINT_MAX

-LONG_MAX-1LONG_MIN

0x7fffffffLLONG_MAX

0xffffffffULULONG_MAX

-LLONG_MAX-1LLONG_MIN

0x7fffffffffffffffLLLLONG_MAX

0xffffffffffffffffULLULLONG_MAX

The limit macros in <stdint.h> for exact-width, minimum-width and fastest-width integer types have
the same ranges as char, short, int, long and long long. Furthermore the following macros are
defined:

ValueMacro <stdint.h>

INT32_MININTPTR_MIN

INT32_MAXINTPTR_MAX

UINT32_MAXUINTPTR_MAX

INT64_MININTMAX_MIN

INT64_MAXINTMAX_MAX

UINT64_MAXUINTMAX_MAX

__PTRDIFF_MINPTRDIFF_MIN

__PTRDIFF_MAXPTRDIFF_MAX

INT32_MINSIG_ATOMIC_MIN

INT32_MAXSIG_ATOMIC_MAX

658

TASKING SmartCode - PPU User Guide



ValueMacro <stdint.h>

__SIZE_MAXSIZE_MAX

__WCHAR_MINWCHAR_MIN

__WCHAR_MAXWCHAR_MAX

0WINT_MIN

UINT32_MAXWINT_MAX

• The result of attempting to indirectly access an object with automatic or thread storage duration from
a thread other than the one with which it is associated (6.2.4).

Threads are not supported (__STDC_NO_THREADS__ = 1).

• The number, order, and encoding of bytes in any object (when not explicitly specified in this International
Standard) (6.2.6.1).

All types are described in Section 1.1, Data Types.

• Whether any extended alignments are supported and the contexts in which they are supported (6.2.8).

For automatic objects, an extended alignment of 8 is supported. For statically allocated objects, extended
alignments greater than or equal to 8 are supported.

• Valid alignment values other than those returned by an _Alignof expression for fundamental types,
if any (6.2.8).

Any nonnegative integral power of two can be used as additional alignment value.

• The value of the result of the sizeof and _Alignof operators (6.5.3.4).

The values of the size and alignment of the data types are described in Section 1.1, Data Types. Divide
the numbers by 8 to get bytes.

15.4. C11 Locale-specific Behavior

Locale-specific behavior is behavior that depends on local conventions of nationality, culture, and language
that each implementation documents.

The following items describe the locale-specific characteristics, as indicated in Annex J.4 of the ISO/IEC
9899:2011 (E) standard.

• Additional members of the source and execution character sets beyond the basic character set (5.2.1).

The compiler accepts all one-byte characters in the host's default character set. Use of variable length
encoded characters in the source file in comments and string literals is permitted.

In the implementation in the C library, the basic sequences of a multibyte character consist of single
bytes (MB_LEN_MAX is set to 1). If you want full multibyte support, you need to change the C library.
See the notes in the header files stdio.h and wchar.h for more information.

659

C Implementation-defined Behavior



• The presence, meaning, and representation of additional multibyte characters in the execution character
set beyond the basic character set (5.2.1.2).

Use of variable length encoded characters in the source file in comments and string literals is permitted.

• The shift states used for the encoding of multibyte characters (5.2.1.2).

A multibyte character must be a single byte when in the initial shift state.

• The direction of writing of successive printing characters (5.2.2).

The direction of writing depends on the application and the display device.

• The decimal-point character (7.1.1).

The default decimal-point character is a '.'.

• The set of printing characters (7.4, 7.30.2).

The set of printing characters are the characters for which the isprint() function returns true. Printing
characters are characters in the range 32 (space) to 126.

• The set of control characters (7.4, 7.30.2).

The set of control characters are the characters for which the iscntrl() function returns true. Control
characters are characters in the range 0 to 31 and 127.

• The sets of characters tested for by the isalpha, isblank, islower, ispunct, isspace, isupper,
iswalpha, iswblank, iswlower, iswpunct, iswspace, or iswupper functions (7.4.1.2, 7.4.1.3,
7.4.1.7, 7.4.1.9, 7.4.1.10, 7.4.1.11, 7.30.2.1.2, 7.30.2.1.3, 7.30.2.1.7, 7.30.2.1.9, 7.30.2.1.10, 7.30.2.1.11).

The characters tested for are specified in the following table.

Characters testedFunction

a-z, A-Zisalpha

' ' (space), '\t' (tab)isblank

a-zislower

!, ", #, $, %, &, ', (, ), *, +, ,, -, ., /, :, ;, <, =, >, ?, @, [, \, ], ^, _, `, {, |, }, ~ispunct

' ' (space), '\t', '\n', '\v', '\f', '\r'isspace

A-Zisupper

• The native environment (7.11.1.1).

The native environment is the same as the "C" locale.

• Additional subject sequences accepted by the numeric conversion functions (7.22.1, 7.29.4.1).

No additional subject sequences are accepted.

660

TASKING SmartCode - PPU User Guide



• The collation sequence of the execution character set (7.24.4.3, 7.29.4.4.2).

Only the "C" locale is supported.The strcoll() function is the same as the strcmp() function.The
wcscoll() function is the same as the wcscmp() function.

• The contents of the error message strings set up by the strerror function (7.24.6.2).

The error message strings returned by strerror() depend on the argument. Typically, the values
for the argument come from errno.h. For a list of messages see Section 9.1.5, errno.h).

• The formats for time and date (7.27.3.5, 7.29.5.1).

English names for months and days are used.

%c is replaced by the following date and time representation: %a %b %e %H:%M:%S %Y

%x is replaced by the following date representation: %m/%d/%y

%X is replaced by the following time representation: %H:%M:%S

• Character mappings that are supported by the towctrans function (7.30.1).

The character mappings supported by the towctrans() function are defined in wctype.h:_to_lower
and _to_upper.

• Character classifications that are supported by the iswctype function (7.30.1).

The character classifications supported by the iswctype() function are defined in wctype.h:_alnum,
_alpha, _cntrl, _digit, _graph, _lower, _print, _punct, _space, _upper, _xdigit and
_blank.

661

C Implementation-defined Behavior



662

TASKING SmartCode - PPU User Guide


	TASKING SmartCode - PPU User Guide
	Table of Contents
	Chapter 1. C Language
	1.1. Data Types
	1.1.1. Half Precision Floating-Point
	1.1.2. Vector Data Types

	1.2. Changing the Alignment: __aligned__()
	1.3. Accessing Memory
	1.3.1. Memory Type Qualifiers
	1.3.2. Small Data Area (SDA)
	1.3.3. Vector Closely Coupled Memory (VCCM)
	1.3.4. Accessing Hardware from C

	1.4. Shift JIS Kanji Support
	1.5. Using Assembly in the C Source: __asm()
	1.6. Attributes
	1.7. Pragmas to Control the Compiler
	1.8. Predefined Preprocessor Macros
	1.9. Functions
	1.9.1. Calling Convention and Register Usage
	1.9.2. Inlining Functions: inline
	1.9.3. Interrupt Functions / Exception Handling
	1.9.3.1. Defining an Interrupt Service Routine: __interrupt()

	1.9.4. Intrinsic Functions
	1.9.4.1. Intrinsics Used By Compiler and Libraries
	1.9.4.2. SIMD Intrinsics
	1.9.4.3. DSP Intrinsics
	1.9.4.4. Miscellaneous Intrinsics
	1.9.4.5. Vector Support Intrinsics
	1.9.4.6. Writing Your Own Intrinsic Function


	1.10. Compiler Generated Sections
	1.10.1. Rename Sections


	Chapter 2. Assembly Language
	2.1. Assembly Syntax
	2.2. Assembler Significant Characters
	2.3. Operands of an Assembly Instruction
	2.4. Symbol Names
	2.4.1. Predefined Preprocessor Symbols

	2.5. Registers
	2.5.1. Special Function Registers

	2.6. Assembly Expressions
	2.6.1. Numeric Constants
	2.6.2. Strings
	2.6.3. Expression Operators

	2.7. Working with Sections
	2.8. Built-in Assembly Functions
	2.9. Assembler Directives and Controls
	2.9.1. Assembler Directives
	.{, .}
	.ALIAS
	.ALIGN
	.ASCII, .ASCIIZ
	.BS, .BSB, .BSH, .BSW, .BSD
	.CALLS
	.COMPILER_INVOCATION, .COMPILER_NAME, .COMPILER_VERSION
	.DB, .DH, .DW, .DD
	.DEFINE
	.DS, .DSB, .DSH, .DSW, .DSD
	.END
	.EQU
	.EXITM
	.EXTERN
	.FLOAT, .DOUBLE
	.FOR, .ENDFOR
	.GLOBAL
	.IF, .ELIF, .ELSE, .ENDIF
	.INCLUDE
	.LOCAL
	.MACRO, .ENDM
	.MESSAGE
	.MISRAC
	.PMACRO
	.REPEAT, .ENDREP
	.SECTION, .ENDSEC
	.SET
	.SIZE
	.SOURCE
	.TYPE
	.UNDEF
	.WEAK

	2.9.2. Assembler Controls
	$CASE
	$DEBUG
	$IDENT
	$LIST ON/OFF
	$PAGE
	$PRCTL
	$STITLE
	$TITLE
	$WARNING OFF


	2.10. Macro Operations
	2.10.1. Defining a Macro
	2.10.2. Calling a Macro
	2.10.3. Using Operators for Macro Arguments

	2.11. Alias Instructions
	2.11.1. Branch on Compare Alias Instructions
	2.11.2. Pop and Push Alias Instructions for Load and Store
	2.11.3. Alias Instructions for FCVT32 Encodings
	2.11.4. Alias Instructions for FCVT32_64 Encoding
	2.11.5. Alias Instructions for FCVT64 Encoding
	2.11.6. Alias Instructions for FCVT64_32 Encoding
	2.11.7. Floating-point Absolute Alias Instructions for BCLR Encoding
	2.11.8. Floating-point Negate Alias Instructions for BXOR Encoding
	2.11.9. NOP Alias Instruction for MOV Encoding
	2.11.10. Vector FPU Alias Instructions


	Chapter 3. Using the C Compiler
	3.1. Compilation Process
	3.2. Calling the C Compiler
	3.3. The C Startup Code
	3.4. How the Compiler Searches Include Files
	3.5. Compiling for Debugging
	3.6. Compiler Optimizations
	3.6.1. Generic Optimizations (frontend)
	3.6.2. Core Specific Optimizations (backend)
	3.6.3. Optimize for Code Size or Execution Speed

	3.7. Static Code Analysis
	3.7.1. C Code Checking: CERT C
	3.7.2. C Code Checking: MISRA C

	3.8. C Compiler Error Messages

	Chapter 4. Using the Assembler
	4.1. Assembly Process
	4.2. Calling the Assembler
	4.3. How the Assembler Searches Include Files
	4.4. Generating a List File
	4.5. Assembler Error Messages

	Chapter 5. Using the Linker
	5.1. Linking Process
	5.1.1. Phase 1: Linking
	5.1.2. Phase 2: Locating

	5.2. Calling the Linker
	5.3. Linking with Libraries
	5.3.1. How the Linker Searches Libraries
	5.3.2. How the Linker Extracts Objects from Libraries

	5.4. Incremental Linking
	5.5. Importing Binary Files
	5.6. Converting Intel Hex to Binary Format
	5.7. Linker Optimizations
	5.8. Controlling the Linker with a Script
	5.8.1. Purpose of the Linker Script Language
	5.8.2. Eclipse and LSL
	5.8.3. Structure of a Linker Script File
	5.8.4. The Architecture Definition
	5.8.5. The Derivative Definition
	5.8.6. The Processor Definition
	5.8.7. The Memory Definition
	5.8.8. The Section Layout Definition: Locating Sections

	5.9. Linker Labels
	5.10. Generating a Map File
	5.11. Linker Error Messages

	Chapter 6. Using the Utilities
	6.1. Control Program
	6.2. Make Utility amk
	6.2.1. Makefile Rules
	6.2.2. Makefile Directives
	6.2.3. Macro Definitions
	6.2.4. Makefile Functions
	6.2.5. Conditional Processing
	6.2.6. Makefile Parsing
	6.2.7. Makefile Command Processing
	6.2.8. Calling the amk Make Utility

	6.3. Archiver
	6.3.1. Calling the Archiver
	6.3.2. Archiver Examples

	6.4. HLL Object Dumper
	6.4.1. Invocation
	6.4.2. HLL Dump Output Format


	Chapter 7. Tool Options
	7.1. Configuring the Command Line Environment
	7.2. C Compiler Options
	C compiler option: --cert
	C compiler option: --check
	C compiler option: --compact-max-size
	C compiler option: --control-flow-info
	C compiler option: --core
	C compiler option: --debug-info (-g)
	C compiler option: --define (-D)
	C compiler option: --dep-file
	C compiler option: --diag
	C compiler option: --error-file
	C compiler option: --error-limit
	C compiler option: --fp-model
	C compiler option: --global-type-checking
	C compiler option: --help (-?)
	C compiler option: --include-directory (-I)
	C compiler option: --include-file (-H)
	C compiler option: --inline
	C compiler option: --inline-max-incr / --inline-max-size
	C compiler option: --iso (-c)
	C compiler option: --keep-output-files (-k)
	C compiler option: --language (-A)
	C compiler option: --make-target
	C compiler option: --max-call-depth
	C compiler option: --mil / --mil-split
	C compiler option: --misrac
	C compiler option: --misrac-advisory-warnings / --misrac-required-warnings / --misrac-mandatory-warnings
	C compiler option: --misrac-version
	C compiler option: --no-stdinc
	C compiler option: --no-warnings (-w)
	C compiler option: --optimize (-O)
	C compiler option: --option-file (-f)
	C compiler option: --output (-o)
	C compiler option: --preprocess (-E)
	C compiler option: --rename-sections (-R)
	C compiler option: --runtime (-r)
	C compiler option: --save-irq-regs
	C compiler option: --schar
	C compiler option: --sda-max-data-size
	C compiler option: --source (-s)
	C compiler option: --static
	C compiler option: --stdout (-n)
	C compiler option: --tradeoff (-t)
	C compiler option: --undefine (-U)
	C compiler option: --unroll-factor
	C compiler option: --verbose (-v)
	C compiler option: --version (-V)
	C compiler option: --vccm-no-clear
	C compiler option: --vectorize-info
	C compiler option: --vectorize-noalias
	C compiler option: --vectorize-vccm
	C compiler option: --warnings-as-errors

	7.3. Assembler Options
	Assembler option: --case-insensitive (-c)
	Assembler option: --check
	Assembler option: --core
	Assembler option: --debug-info (-g)
	Assembler option: --define (-D)
	Assembler option: --dep-file
	Assembler option: --diag
	Assembler option: --emit-locals
	Assembler option: --error-file
	Assembler option: --error-limit
	Assembler option: --help (-?)
	Assembler option: --include-directory (-I)
	Assembler option: --include-file (-H)
	Assembler option: --kanji
	Assembler option: --keep-output-files (-k)
	Assembler option: --list-file (-l)
	Assembler option: --list-format (-L)
	Assembler option: --make-target
	Assembler option: --no-notes
	Assembler option: --no-reg-prefix
	Assembler option: --no-warnings (-w)
	Assembler option: --option-file (-f)
	Assembler option: --output (-o)
	Assembler option: --page-length
	Assembler option: --page-width
	Assembler option: --preprocess (-E)
	Assembler option: --preprocessor-type (-m)
	Assembler option: --section-info (-t)
	Assembler option: --symbol-scope (-i)
	Assembler option: --version (-V)
	Assembler option: --warnings-as-errors

	7.4. Linker Options
	Linker option: --binfill
	Linker option: --case-insensitive
	Linker option: --c-array-element-type
	Linker option: --chip-output (-c)
	Linker option: --define (-D)
	Linker option: --diag
	Linker option: --error-file
	Linker option: --error-limit
	Linker option: --extern (-e)
	Linker option: --first-library-first
	Linker option: --global-map-file
	Linker option: --global-map-file-format
	Linker option: --global-type-checking
	Linker option: --help (-?)
	Linker option: --hex-format
	Linker option: --hex-record-size
	Linker option: --import-object
	Linker option: --include-directory (-I)
	Linker option: --incremental (-r)
	Linker option: --keep-output-files (-k)
	Linker option: --library (-l)
	Linker option: --library-directory (-L) / --ignore-default-library-path
	Linker option: --link-only
	Linker option: --lsl-check
	Linker option: --lsl-dump
	Linker option: --lsl-file (-d)
	Linker option: --map-file (-M)
	Linker option: --map-file-format (-m)
	Linker option: --misra-c-report
	Linker option: --non-romable
	Linker option: --no-default-output
	Linker option: --no-rescan
	Linker option: --no-rom-copy (-N)
	Linker option: --no-warnings (-w)
	Linker option: --optimize (-O)
	Linker option: --option-file (-f)
	Linker option: --output (-o)
	Linker option: --strip-debug (-S)
	Linker option: --user-provided-initialization-code (-i)
	Linker option: --verbose (-v)
	Linker option: --version (-V)
	Linker option: --warnings-as-errors
	Linker option: --whole-archive

	7.5. Control Program Options
	Control program option: --address-size
	Control program option: --case-insensitive
	Control program option: --check
	Control program option: --control-flow-info
	Control program option: --core
	Control program option: --cpu (-C)
	Control program option: --cpu-list
	Control program option: --create (-c)
	Control program option: --debug-info (-g)
	Control program option: --define (-D)
	Control program option: --dep-file
	Control program option: --diag
	Control program option: --dry-run (-n)
	Control program option: --error-file
	Control program option: --error-limit
	Control program option: --format
	Control program option: --fp-model
	Control program option: --help (-?)
	Control program option: --include-directory (-I)
	Control program option: --iso
	Control program option: --keep-output-files (-k)
	Control program option: --keep-temporary-files (-t)
	Control program option: --library (-l)
	Control program option: --library-directory (-L) / --ignore-default-library-path
	Control program option: --list-files
	Control program option: --lsl-file (-d)
	Control program option: --make-target
	Control program option: --mil-link / --mil-split
	Control program option: --no-default-libraries
	Control program option: --no-map-file
	Control program option: --no-warnings (-w)
	Control program option: --option-file (-f)
	Control program option: --output (-o)
	Control program option: --pass (-W)
	Control program option: --preprocess (-E) / --no-preprocessing-only
	Control program option: --schar
	Control program option: --static
	Control program option: --tasking-sfr
	Control program option: --undefine (-U)
	Control program option: --verbose (-v)
	Control program option: --version (-V)
	Control program option: --warnings-as-errors

	7.6. Parallel Make Utility Options
	Parallel make utility option: --always-rebuild (-a)
	Parallel make utility option: --change-dir (-G)
	Parallel make utility option: --diag
	Parallel make utility option: --dry-run (-n)
	Parallel make utility option: --help (-? / -h)
	Parallel make utility option: --jobs (-j) / --jobs-limit (-J)
	Parallel make utility option: --keep-going (-k)
	Parallel make utility option: --list-targets (-l)
	Parallel make utility option: --makefile (-f)
	Parallel make utility option: --no-warnings (-w)
	Parallel make utility option: --silent (-s)
	Parallel make utility option: --version (-V)
	Parallel make utility option: --warnings-as-errors

	7.7. Archiver Options
	Archiver option: --delete (-d)
	Archiver option: --diag
	Archiver option: --dump (-p)
	Archiver option: --extract (-x)
	Archiver option: --help (-?)
	Archiver option: --move (-m)
	Archiver option: --option-file (-f)
	Archiver option: --print (-t)
	Archiver option: --replace (-r)
	Archiver option: --version (-V)
	Archiver option: --warning (-w)

	7.8. HLL Object Dumper Options
	HLL object dumper option: --adx-format (-A)
	HLL object dumper option: --blank-out (-b)
	HLL object dumper option: --call-graph-elf-mode
	HLL object dumper option: --call-graph-root
	HLL object dumper option: --class (-c)
	HLL object dumper option: --copy-table
	HLL object dumper option: --diag
	HLL object dumper option: --disassembly-intermix (-i)
	HLL object dumper option: --disassembly-without-encoding (-r)
	HLL object dumper option: --dump-format (-F)
	HLL object dumper option: --expand-symbols (-e)
	HLL object dumper option: --help (-?)
	HLL object dumper option: --hex (-x)
	HLL object dumper option: --option-file (-f)
	HLL object dumper option: --output (-o)
	HLL object dumper option: --output-type (-T)
	HLL object dumper option: --sections (-s)
	HLL object dumper option: --source-lookup-path (-L)
	HLL object dumper option: --symbols (-S)
	HLL object dumper option: --version (-V)
	HLL object dumper option: --xml-base-filename (-X)


	Chapter 8. Influencing the Build Time
	8.1. SFR File
	8.2. MIL Linking
	8.3. Optimization Options
	8.4. Automatic Inlining
	8.5. Code Compaction
	8.6. Header Files
	8.7. Parallel Build

	Chapter 9. Libraries
	9.1. Library Functions
	9.1.1. assert.h
	9.1.2. complex.h
	9.1.3. ctype.h and wctype.h
	9.1.4. dbg.h
	9.1.5. errno.h
	9.1.6. except.h
	9.1.7. fcntl.h
	9.1.8. fenv.h
	9.1.9. float.h
	9.1.10. float_config.h
	9.1.11. inttypes.h and stdint.h
	9.1.12. io.h
	9.1.13. iso646.h
	9.1.14. libfloat.h
	9.1.15. limits.h
	9.1.16. locale.h
	9.1.17. malloc.h
	9.1.18. math.h and tgmath.h
	9.1.19. setjmp.h
	9.1.20. signal.h
	9.1.21. stdalign.h
	9.1.22. stdarg.h
	9.1.23. stdbool.h
	9.1.24. stddef.h
	9.1.25. stdint.h
	9.1.26. stdio.h and wchar.h
	9.1.27. stdlib.h and wchar.h
	9.1.28. stdnoreturn.h
	9.1.29. string.h and wchar.h
	9.1.30. time.h and wchar.h
	9.1.31. uchar.h
	9.1.32. unistd.h
	9.1.33. wchar.h
	9.1.34. wctype.h

	9.2. C Library Reentrancy

	Chapter 10. List File Formats
	10.1. Assembler List File Format
	10.2. Linker Map File Format

	Chapter 11. Object File Formats
	11.1. ELF/DWARF Object Format
	11.2. Intel Hex Record Format
	11.3. Motorola S-Record Format
	11.4. C Array Format
	11.5. Binary Object Format

	Chapter 12. Linker Script Language (LSL)
	12.1. Structure of a Linker Script File
	12.2. Syntax of the Linker Script Language
	12.2.1. Preprocessing
	12.2.2. Lexical Syntax
	12.2.3. Identifiers and Tags
	12.2.4. Expressions
	12.2.5. Built-in Functions
	12.2.6. LSL Definitions in the Linker Script File
	12.2.7. Memory and Bus Definitions
	12.2.8. Architecture Definition
	12.2.9. Derivative Definition
	12.2.10. Processor Definition and Board Specification
	12.2.11. Section Setup
	12.2.12. Section Layout Definition

	12.3. Expression Evaluation
	12.4. Semantics of the Architecture Definition
	12.4.1. Defining an Architecture
	12.4.2. Defining Internal Buses
	12.4.3. Defining Address Spaces
	12.4.4. Mappings

	12.5. Semantics of the Derivative Definition
	12.5.1. Defining a Derivative
	12.5.2. Instantiating Core Architectures
	12.5.3. Defining Internal Memory and Buses

	12.6. Semantics of the Board Specification
	12.6.1. Defining a Processor
	12.6.2. Instantiating Derivatives
	12.6.3. Defining External Memory and Buses

	12.7. Semantics of the Section Setup Definition
	12.7.1. Setting up a Section

	12.8. Semantics of the Section Layout Definition
	12.8.1. Defining a Section Layout
	12.8.2. Creating and Locating Groups of Sections
	12.8.3. Creating or Modifying Special Sections
	12.8.4. Creating Symbols
	12.8.5. Conditional Group Statements


	Chapter 13. CERT C Secure Coding Standard
	13.1. Preprocessor (PRE)
	13.2. Declarations and Initialization (DCL)
	13.3. Expressions (EXP)
	13.4. Integers (INT)
	13.5. Floating Point (FLP)
	13.6. Arrays (ARR)
	13.7. Characters and Strings (STR)
	13.8. Memory Management (MEM)
	13.9. Environment (ENV)
	13.10. Signals (SIG)
	13.11. Miscellaneous (MSC)

	Chapter 14. MISRA C Rules
	14.1. MISRA C:1998
	14.2. MISRA C:2004
	14.3. MISRA C:2012

	Chapter 15. C Implementation-defined Behavior
	15.1. C99 Implementation-defined Behavior
	15.1.1. Translation
	15.1.2. Environment
	15.1.3. Identifiers
	15.1.4. Characters
	15.1.5. Integers
	15.1.6. Floating-Point
	15.1.7. Arrays and Pointers
	15.1.8. Hints
	15.1.9. Structures, Unions, Enumerations, and Bit-fields
	15.1.10. Qualifiers
	15.1.11. Preprocessing Directives
	15.1.12. Library Functions
	15.1.13. Architecture

	15.2. C99 Locale-specific Behavior
	15.3. C11 Implementation-defined Behavior
	15.3.1. Translation
	15.3.2. Environment
	15.3.3. Identifiers
	15.3.4. Characters
	15.3.5. Integers
	15.3.6. Floating-Point
	15.3.7. Arrays and Pointers
	15.3.8. Hints
	15.3.9. Structures, Unions, Enumerations, and Bit-fields
	15.3.10. Qualifiers
	15.3.11. Preprocessing Directives
	15.3.12. Library Functions
	15.3.13. Architecture

	15.4. C11 Locale-specific Behavior


