TASKING.

TASKING SmartCode -
TriCore User Guide

MA260-800 (v10.1r1) December 07, 2021

Copyright © 2021 TASKING BV.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of TASKING BV. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. TASKING
and its logo are registered trademarks of TASKING Germany GmbH. All other registered or unregistered trademarks
referenced herein are the property of their respective owners and no trademark rights to the same are claimed.

Table of Contents

I O 1= T o > T TS 1
I - = 1 o =2 2
1.1.1. Half Precision FIoating-Pointoiiiiiiiiiii e 3
O - Tox 1 0] o = 1 1Y/ 1= PP 4

1.1.3. Packed Data TYPES .uiuitititit ittt et 5

1.1.4. Changing the Alignment: __unaligned, _ packed__and __align() 7

1.2, ACCESSING MEBMIOIY ..ottt e e e e e e e e e e e 9
1.2.2. Memory QUANIfIEISiuir i 9

1.2.2. Placing an Object at an Absolute Address: __at()coovviiiiiiiiciiieeeeen 11
1.2.3. ACCESSING BilS ..ttt e 12

1.3. Data Type QUANMIEIS . o.veiei i e 13
1.3.1. Circular BUFfErS: _ CIFC ..uuiiiii e 13
1.3.2. Accessing Hardware from C ... 15
1.3.3. SAtUIALION: S ittt e 16

1.3.4. External MCS RAM Data References: __ mcsramccovviiiiiiiiininininanannns, 17

1.4, MUKI=C 0 SUPPOIT .. ettt e et e e 18
1.4.1. Compile Time Core ASSOCIALIONiuirititititeti e e e e eaaans 18

1.5, Shift JIS Kanji SUPPOIT ... e e e e e e a e 25
1.6. Using Assembly in the C SoUrce: _ asm() ..uuiuiriririritiiii e aas 26
N 1] o (= PP 32
1.8. Pragmas to Control the COmMPIIEr ... 40
1.9. Predefined PreproCeSSOr MACIOSi.i.iiiiiieee e e et e e e e e aaaas 48
1.20. SWILCH SEAIEMENTttt et 50
0 I 0 Tod 1o PP 52
I 0 I @ 1|10 To T @0 01Y7=T i o] o PN 52
1.10.2. REGISIET USAQE . vuviiiiiiii ettt e e e e e ettt aaans 54
1.12.3. Inlining FUNCHONS: ININEuiut e 55
1.11.4. Interrupt and Trap FUNCLONSouiuiii e 56
1.11.5. INtrNSIC FUNCHONS ..euitiieet ettt 66

1.12. Compiler Generated SECHONSviiii i 83
1.12.1. RENAME SECHOMNS ...euititiiit ettt aaaes 85
1.12.2. Influence Section DefiNItioNc.iiiiiiiiii 86

B O - o 1= Vo = 87
2.1. C++ Language EXtension KEYWOIScuiuiiiiiiiiiiiiiii e aan 87
2.2, CH+ DialeCt ACCEPIEA .. ot 87
2,20, CHHOB MOUE ...ttt 88
2.2.2. GNU CHt MOGE ...t 89
2.2.3. ANachronisms ACCEPIEAvititit i 90
WA S AN (o] 1 ¢ (o @] o T=T -1 1[0 o = PP 91

ARG oL a o E] o T Vol IR U o] o o o A PN 93
2.4. Template INStANtIAtioNouiniii e 94
2.4.1. InStantiation MOGESuuiiie e 95
2.4.2. Instantiation #pragma Dir€CHIVESoiiiiiiiii e 96
2.4.3. IMPHCIt INCIUSION .o.et e 97

2.5, INlNING FUNCHONS ...eti e e e e e e aans 98
2.6. EXtern INlinNe FUNCHONSouiiii e et 99
2.7. Pragmas to Control the C++ COMPIIETcuiuiii e 99
2.7.1. C pragmas Supported by the C++ compilercccoviiiiiiiii, 100

TASKING SmartCode - TriCore User Guide

2.8. Predefined MACIOSireie e 101
2.9. Precompiled HEAUEISc.uiiiiiie e e e 105
2.9.1. Automatic Precompiled Header ProCeSSINGovuiviniriiiiiiiiieciieeeaen 106
2.9.2. Manual Precompiled Header ProCeSSINGcovuviiiriiiiiiiiiiieieniieeieeeea 109
2.9.3. Other Ways to Control Precompiled Headerscccovviiiiiiiiiiiiiiiicieeen, 109
2.9.4. PerformancCe ISSUESouiuitieii et 110

3. ASSEMDIY LANGUAGEeneeeetei ittt et ettt ettt ettt et 111
3.1, ASSEMDBIY SYNTAX . ..viiiitiiie e 111
3.1.1. Deviations from the Instruction Set Manualc..cooooiiiiiiiiii e, 112

3.2. Assembler Significant CharacCtersc.veiiuiiiiii e 113
3.3. Operands of an Assembly INSIIUCHIONooiiuiiii e 113
3.4, SYMDBDOI NBIMES ..ot e 114
3.4.1. Predefined Preprocessor SYMbOIScoiiiiiiiiii e 114

D RIS OIS ettt 115
3.5.1. Special FUNCHON REJISIEISiviitiii e 116

3.6. ASSEMDIY EXPIESSIONS ...viiiiiiiie ettt ettt e 116
3.6.1. NUMEFIC CONSLANTS ...ttt ettt et aeae e 117
38,2, SIS ittt ettt e 117
3.6.3. EXPresSSioN OPEIALOISuueutinit ittt ettt ettt 118
3.7.WOrking With SECHONSt 119
3.8. BUilt-in ASSEMDBIY FUNCHONSeieiiti e 121
3.9. Assembler Directives and CONIOIScuvuiiieiei e 134
3.9.1. ASSEMDIET DIFECHIVESeeiteeeeeiet et 135
3.9.2. ASSEMDIEr CONLIOISvieeieee e 180

I RO\ F- (o (o @] o T=T = o] I S PPN 194
3.10.1. DEfiNING @ MACKO ...eueeitiee e e 194
3.10.2. CAlliNG @ MBCTO ...eneeeteieee et et 194
3.10.3. Using Operators for Macro ArgUMENTScuveuiiieiiirieineeneeeeeneeneneenes 195
4.USING the C COMPIIET ...ceeei e et enes 201
4. 1. COMPIlALION PIOCESSeniiiie ettt et 201
4.2. Calling the C COMPIIET ...\ e e 202
4.3.The C STArtUP COOEvnieiieee et ettt et ene e 204
4.4. How the Compiler Searches Include Fileso 208
4.5. Compiling fOr DEDUGGING ... vuerieieeie e 208
4.6. Compiler OPtMIZALIONSuireeeee e e e 209
4.6.1. Generic Optimizations (frontend)ccooiiriii i 210
4.6.2. Core Specific Optimizations (backend)c.cooiiiiiiii 213
4.6.3. Optimize for Code Size or EXecution Speedcoviiiiiiiiiiiiiieee, 215

4.7, Static COUE ANAIYSIS ... ettt 219
4.7.1. C Code Checking: CERT €uvuiriiiiieiie et 220
4.7.2. C Code Checking: MISRA C ... 222

4.8. C COMPIlEr ErrOr MESSAGES ... cuvnititii ettt et ettt et et eaenes 223
5.USING the CH+ COMPIIET ... ei et et eenes 225
5.1. Calling the CH+ COMPIIET ..o e 225
5.2. How the C++ Compiler Searches Include Filesooiiiiiiiiii e 227
5.3. C++ Compiler ErOr MESSAQESueuiiiitiee ettt nenes 228
6. USING the ASSEMDIETot et 231
B.1. ASSEMDIY PrOCESSttt et e 231
6.2. Calling the ASSEMDIET ... e 232
6.3. How the Assembler Searches Include Filescooviiiiiiiiii e, 233

TASKING SmartCode - TriCore User Guide

6.4. Assembler OPtiMIZAtIONSie e 234
6.5. Generating @ LISt File ... 235
6.6. ASSEMDIET EITOr MESSAUES .. vuvnitieiteiet ettt 235
7. USING the LINKET ...ttt et et 237
7.1, LINKING PIOCESS ... ettt et et 237
7.0.1. Ph@se 1: LINKING . .enentieee e ettt 239
7.0.2. Phase 2: LOCALNG ..ottt ettt et et 240

7.2. CalliNg the LINKET ...t e 241
7.3. LINKiNG WIth LIDFariesoiei e 242
7.3.1. How the Linker Searches LIbrariescoooiviiiiiiiii e 245
7.3.2. How the Linker Extracts Objects from Librariesocoooveiiiiiiiiniiiniennen. 246

7.4, Incremental LINKINGo.een e e 246
7.5. Linking Core-Specific Projects into a Multi-Core Applicationc.cooviiiiiiiiiinnn... 248
7.6. 1IMporting BiNAry FilES ... 249
7.7. Converting Intel Hex to Binary FOrMALovuiuiiiriie et 250
7.8. LINKer OPtMIZALIONSueitee et 251
7.9. Controlling the Linker With @ SCFPtvuiii e 253
7.9.1. Purpose of the Linker Script Languagecovuviiiiiiiiiiiieeneeeeeeea 253
7.9.2. EClPSE @NA LSL ...eiiitiii e e 253
7.9.3. Preprocessor Macros in the Linker Script Filesoocooiiiiiiiiin, 255
7.9.4. Structure of a Linker SCript Fileooieiii e 257
7.9.5. The Architecture Definitiono 260
7.9.6. The Derivative DefiNItionovuiiiii e 263
7.9.7.The Processor Definitiono 265
7.9.8.The Memory DefiNitionoc.iuiiii e 265
7.9.9. The Section Layout Definition: Locating SeCtoNScccvvvvvinirieiiniiinieennn. 267
7.9.10. Locating in a Multi-core Processor Environmentooooiiiiiiiiiinenenans 268
7.9.11. Locating Private Code Sections iN ROMcooiiiiiiiiiiiiiiie e 270
7.9.12. Stack Size ESUMALIONoviieiiiei e 271

7.00. LINKEE LADEIS ... e e 276
7.11. Generating @ Map File ... 278
7.12. LINKETN ErTOr MESSAUES ... cutueiitiiet ettt ettt et ettt a e 279
8. USING the ULIIIIESenie e et 281
S o] o1 (o] I =d (oo £= 1 o PP 281
8.2. Make ULIlItY @IMK ...t e 283
8.2.1. MAKEFIlE RUIESeeet e 283
8.2.2. MAKETIIE DIFECHIVESv et e e 285
8.2.3. MACrO DEfINItIONS ... ot 285
8.2.4. MaKefile FUNCHONSieii e 287
8.2.5. ConditioNal PrOCESSINGuviiniieietiee e 288
8.2.6. MAKETIIE PAISINGeeeieitiee e 288
8.2.7. Makefile Command ProCESSINGvuieirieiiiiiiiet e 289
8.2.8. Calling the amk Make ULIlItYcovuiriiii e 290

8.3. MaKe ULIlItY MKLCeeeee et et et aeaas 291
8.3.1. Calling the Make ULIlItYcouiiiiiii e 292
8.3.2.Writing a Makefile ... 293

8.4. EClipSe CONSOIE ULIlILYvneeiriiee e et 302
8.4.1. HeadlesSs BUIldooiiiii 302
8.4.2. Generating Makefiles from the Command Lineccooiiiiiiiiiiiiniiinennn, 303

8D, ATCNIVET o 305

TASKING SmartCode - TriCore User Guide

8.5.1. Calling the ArChIVETcoiii e 305
8.5.2. ArChiVEr EXAMPIES ..ottt 307

8.6. HLL ODbjJECE DUMIPET ...ttt e et ettt et eenes 309
8.6.1. INVOCALION ...ttt et e 309
8.6.2. HLL DUMP OULPUL FOIMALeeeiiiiieii e 309

8.7. ELF PatCh ULIlILY ...c.eeie e e 317
8.7.1. ELF Patch Command Filecoouiiiii e 317
8.7.2. Data Reference Modification Filec.coouiiiiiiiii e 318
8.7.3. ELF Symbol Renaming Command Filecooiiiiiiiiiiiiceee 321

8.8, ELF SHrIP ULIlItY ..oeeeeiteee e e e 323
8.8.1. Stripping Debug SECLIONS ... 323
8.8.2. REMOVING NOLE SECLONSeuitiitiiie et 323

8.9. EXpPire Cache ULIlILYc.ouiir e 325
8.10. Proftool ULIlILYoeeie e e 326
9. USING the DEDUGGET ... ettt ettt et et e aaeaes 327
9.1. Reading the Eclipse DOCUMENTALIONc.iuitieiiiei e 327
9.2. Creating a Customized Debug Configurationcooiiiiiiiiiii 327
9.3. Pipeline and Cache During Debuggingccuieiiiiiii e 335
9.4, TrOUDIESNOOLING ... ettt e 335
9.5. TASKING DebUQ PEISPECLIVEvuetieiiiiiei et 336
9.5.1. DEDUG VIBW .ottt ettt et e 337
9.5.2. BreakpPOiNtS VIEWoeiieieee ettt et e 339
9.5.3. File System Simulation (FSS) VIEWciuiiiiiiiiiii e 345
9.5.4. DiSASSEMDBIY VIBW ...o.eiiiii e 346
9.5.5. EXPreSSIONS VIBW ...ttt ettt et et 346
9.5.6. MEMOIY VIBW ...ttt e ettt 347
9.5.7. Compare APPlICAtION VIEWouieii e 348
0.5.8. HEAP VIBW .ot 348
9.5.9. LOGUING VIBW .ttt ettt ettt et 349
9.5.10. RTOS VIBW ...ttt et ettt et e e 349
9.5.11. REQISIEIS VIBW ...ttt ettt 349
9.5.12. TrACE VIBW ..ottt ettt et et ettt 351
9.5.13. DEVICES VIBW ...ttt ettt et e ettt 351

9.6. Programming @ FIash DEVICEcuiuiiiieii e 352
0T [o o @ o1 i o] oI PSPPI 357
10.1. Configuring the Command Line ENVIroNMENtcoouiiiriiiiiiiieee e 363
10.2. C COMPIIEN OPLIONS ...t et e 365
10.3. C++ COMPIIEr OPLIONS ...ttt ettt 464
10.4. ASSEMDIET OPLIONSeuieeit e et 604
10.5. LINKEE OPLIONS ...ttt ettt e 646
10.6. Control Program OPLIONSvuceeit ettt et 707
10.7. Make ULIlity OPHIONS ..ottt et e 784
10.8. Parallel Make ULility OPLIONScueieieeneiie et 812
10.9. ArChiVEr OPLIONS . ..vueit et et 826
10.10. HLL Object DUMPET OPLIONS . ..vetiieitenete ettt et eenes 841
10.11. ELF Patch Utility OPLIONSuvniiieieiie et 874
10.12. ELF Strip Utility OPLONSeuieiitie et 890
10.13. Expire Cache ULility OPLONSvuieieieiie e 900
11. Influencing the BUild TIMeouii e e 911
L0 L SR FIlE et 911

Vi

TASKING SmartCode - TriCore User Guide

122, MIL LINKING ettt ettt e 911
11.3. OptiMIZAtioN OPLIONS ...ceieitite e 912
11.4. AULOMALIC INNNING ..o e e 912
11.5. COAE COMPACLION ...ttt ettt et ettt ettt eas 912
11.6. COMPIIEr CACNE .. .ot 912
10,7, HEAUET FlES ..ot e 913
11.8. Parallel BUIl ... e e 913
11.9. SeCtion CONCALENALIONieeie et et eeaes 914
L2, PO e e 915
12.1. What is Profiling?cooi e 915
12.1.1. Methods of Profilingcooviriiii e 915

12.2. Profiling using Code Instrumentation (Dynamic Profiling)c.ccocoeiviiiiiiinnnen. 916
12.2.1. Step 1: Build your Application for Profilingccocoeiiiiiiiiiiee 917
12.2.2. Step 2: Execute the AppliCationcovviiiiii 919
12.2.3. Step 3: Displaying Profiling ReSUILScooeiiiiii e 921

12.3. Profiling at Compile Time (Static Profiling)cccoviiiii 924
12.3.1. Step 1: Build your Application with Static Profilingcccoiviiiiiinninnn, 924
12.3.2. Step 2: Displaying Static Profiling ReSUItSccocoiiiiiiiie, 925

13. Position Independent Code and DAtAc.ouiuiriniiie e 927
e T 11 1o To [1 o4 i o] o H PRSPPI 927
13.2. PIC/PID EABI MOUEceiiitiieee et et e 927
13.3. PIC/PID AXIAY MOUE ..ot e et 930
13.4. Using the Example PIC/PID PrOJECESvuiuiiiiiiiieiie et 931
13.5. Create Your OWN PIC/PID PrOJECESvuiuiiitiee et 932
13.5.1. Create Your Own PIC/PID EABI Mode Projectsccoveieiiiiniiniiiniennenes, 932
13.5.2. Create Your Own PIC/PID Ax/Ay Mode Projectsccovveveieiiniiiininiennenen, 933
13.5.3. Using Eclipse to Create a PIC/PID Projectccovviiiiiiiiiiiiiieinieen 934

I o = T =T PO PSPPI 937
14.1. LIBrary FUNCHONS ...ttt et 941
T4, 1.0. @SSO N e 941
L4.0. 2. CINIt N o 941
T4.1.3. ClOCK.N o 941
L1414, COMPIEX.N Lo 941
14.1.5. cstart.h and cstart_texX.n ..o 943

T4, 1.6, LN e 943
14.1.7. ctype.h and WCLYPE.N ..o 943
T4.1.8.dDG.N e 944
L4019, ITNO.N L 944
14.1.10. etSiMath.h ... 945
L4100, EXCEPLN Lo 945
L4102, FCNEL N o 946

T4, 103 fONV N L 946
L4114, FlOALN et 947
14.1.15. inttypes.h and Stdint.h ... 947

LA, 006, 10 e 948
L4107, 0S0646.1 .ot 948
14,118, MIESN o 949
T14.1.19. 10CAIEN ..o 949
14.1.20. MAIIOC.N .ot 949
14.1.21. math.h and tgmath.h ... 950

Vii

TASKING SmartCode - TriCore User Guide

14,122, SEUMP.N e 954
L4123, SEVE N o 954
L14.1.24. SIgNAlh oo 954
14.1.25. StAAligN.N oo 955
T14.1.26. SEAANG.N .o 955
14.1.27. SEAALOMIC.N .t 955
14.1.28. StADOOLN ..o 959
14.1.29. StAAEf.N oo 959
T4.1.30. SEAINEN o 960
14.1.31. stdio.h @and WChar.h ... 960
14.1.32. stdlib.h @and Wehar.h ... 968
14.1.33. StANOIELUIN.N L. e 971
14.1.34. string.h and WCharh ... 972
14.1.35. time.h and WChar.h 973
14.1.36. typeinfo.n ..o 976
L4137, UChAIN Lo 976
T14.1.38. UNISEA.N oo 976
14.1.39. VEL00.N Lot 977
T4.1.40. WCNAEN oo 977
L4140 WOEYPE. N e 978

14.2. C LiDrary REENIIANCYvuiiitiiiei et e 979
15, LISt I8 FOIMALS ...ttt e e ettt ettt ens 991
15.1. Assembler List File FOrMALooieieiiii e 991
15.2. Linker Map File FOIMAL 992
16. ODJECE FIlE FOIMALS .. o.ieiii e e ettt eenes 1003
16.1. ELF/DWARF ODJECE FOIMALetvieitiee et 1003
16.2. Intel HEX RECOIT FOIMAL cetitieiit et e 1003
16.3. Motorola S-Record FOIMALc.ouieiiie e 1006
16.4. Binary ODJECE FOIMALttt et e 1008
17. Linker Script LANQUAGE (LSL) .. euriiiiiiii et e 1009
17.1. Structure of a Linker SCrPt Fileou i 1009
17.2. Syntax of the Linker SCript LANQUAGEvvvrieitieiie e nens 1011
17.2.0. PrEPIOCESSING . .neuetentteeeeet et ettt ettt et ettt enen 1011
17.2.2. LeXICAI SYNEAX . .viiietiiiiee ettt e 1012
17.2.3.1dentifiers @nd TAGgS . ..vureeiiie e 1013
17.2.4, EXPrESSIONS ...euteneteet et ettt et et ettt et e 1013
17.2.5. BUIlt-IN FUNCHONSouiieii e 1014
17.2.6. LSL Definitions in the Linker Script Filecoooiiiiiiie, 1017
17.2.7. Memory and Bus Definitionscoviiiiii 1017
17.2.8. Architecture Definitionooiiiiiii 1019
17.2.9. Derivative Definitionouiriiii e 1022
17.2.10. Processor Definition and Board Specificationcccoveviiiiiiniiienenne. 1023
17.2.10. SECHON SEUUP .vneneteeeeet ettt ettt e 1023
17.2.12. Section Layout Definitionoouiiiiiii i 1024
17.2.13. Veneer Layout Definitionoovriiiiii e 1029

17.3. EXPression EVAIUALION ... 1029
17.4. Semantics of the Architecture Definition ..., 1030
17.4.1. Defining an ArchiteCtUIecoiuiii i 1031
17.4.2. Defining INternal BUSESviiiiiiie e 1031
17.4.3. Defining AdAreSS SPACESvuieiiiit it 1032

viii

TASKING SmartCode - TriCore User Guide

17,44, MAPPINGS . enetentie et ettt et e 1035

17.5. Semantics of the Derivative Definitioncooiiiiiii 1038
17.5.1. Defining @ DEIVALIVEc.cuiie i 1039
17.5.2. Instantiating Core ArchiteCturescooeiiiiiiiiii e 1040
17.5.3. Defining Internal Memory and BUSESccuviuiuiiiiiiiie e 1041

17.6. Semantics of the Board Specificationc.coooiiiiiiiii 1042
17.6.1. DEfiNING @ PrOCESSONuiiiitiiie ettt e 1043
17.6.2. Instantiating DENVALIVEScuiiiii e 1043
17.6.3. Defining External Memory and BUSESccooiiiiiiiiiii e 1044

17.7. Semantics of the Section Setup Definitionc.cooiiiiiiii e 1045
17.7.1. Setting UP @ SECHONvieit e 1046

17.8. Semantics of the Section Layout Definitionc..ooooiiiiiiiii e 1048
17.8.1. Defining @ SECtioN LAYOULcuiuitieieiiieee e 1049
17.8.2. Creating and Locating Groups of SECHONSc.vviiriiiiiiiiiiieieeeeen, 1050
17.8.3. Creating or Modifying Special SECONSccviiiiiiiiiii e, 1057
17.8.4. Creating SYMDOIScuiii e 1061
17.8.5. Conditional Group STateMENTScuieieiiii e 1062

17.9. Semantics of the Veneer Layout Definitioncccoveiiiiiiiiiiceee, 1062
17.9.1. VENEEr PIaCEIMENTeuit i 1062

18. Debug Target Configuration FileS ..o 1065
18.1. CUSIOM BOAId SUPPOIT ...ttt ettt aees 1065
18.2. Description of DTC Elements and AttribULeScooovriiiiiii e 1066
18.3. Special Resource Identifiersoouviiiiii 1069
18.4. INitialize EIBMENTS ...t 1070
19. CERT C Secure Coding StANAArdo.veuiriiitiiiee e 1071
19.1. PreproCesSSOr (PRE) ...t 1071
19.2. Declarations and Initialization (DCL)ovuiuiiiitiiii e 1072
19.3. EXPreSSioNS (EXP) ...uieii i e 1073
19,4, INTEEIS (INT) et e et e 1074
19.5. Floating PoiNt (FLP) ... e 1074
19.6. AITAYS (ARR) ..ottt 1075
19.7. Characters and StringS (STR) ...uvuiuiiii e 1075
19.8. Memory Management (MEM) ..o 1075
19.9. ENVIronmMENt (ENV) ..ouiii e 1076
19.10. SIGNAIS (SIG) .rieiiiiii e 1076
19.11. MIiSCENlANEOUS (MSC) ...ttt et e et naeaes 1077
20. MISRA C RUIBS ...ttt et et et et e es 1079
20.1. MISRA C:iL1098 ...ttt 1079
20.2. MISRA C:2004 ..ottt 1083
20.3. MISRA C:2002 ..ot e 1091
21. C Implementation-defined BEhaVIOrc.oiuiiiii e 1099
21.1. C99 Implementation-defined BEAVIOrcocoiiiiiiii e 1099
2101 TrANSIALION L .e e 1099
21.0.2. ENVIFONIMENT ...ttt et et e e eenes 1100
21.0.3. TAENLTIEIS et e 1101
b B O ¢ T = T (=] £ S PP UPPRP 1101
2L L D INEBOBIS .o 1103
21.1.6. FIOAtING-POINTt e 1103
21.1.7. Arrays @nd POINTEIS ...t e 1105
2018 HINES ottt 1105

TASKING SmartCode - TriCore User Guide

21.1.9. Structures, Unions, Enumerations, and Bit-fieldscoooiiiiiiinnne. 1105
21.0.00. QUANFIEIS L .ee e e 1106
21.1.11. Preprocessing DIr€CHVESc.iuiiiiiii e 1106
21.2.12. Library FUNCHONSviitii et 1107
210,13, ArChITECIUIE ..ot et 1112

21.2. C99 Locale-specific BENAVIONovuieii e 1116
21.3. C11 Implementation-defined BEhaVIOrcoviiiiii e 1118
21.3. 1 TrANSIALION .ttt e 1118
21.3.2. ENVIFONMENT ...ttt e aeaas 1119
21.3.3. TAENLFIEIS vt 1120
21.3.4. CRArACTEIS ..ottt et 1120

P R ST] (=T [T £SO 1122
21.3.6. FIOAtING-POINTttt 1123
21.3.7. Arrays @nd POINTEISuitieiit e e 1124

2. 3.8, HINTS ettt 1124
21.3.9. Structures, Unions, Enumerations, and Bit-fieldscoooiiiiiiinns. 1125
21.3.20. QUAKTIEIS et 1126
21.3.11. Preprocessing DIr€CHVEScciuiiiiiiie e 1126
21.3.12. Library FUNCHONSviiiiiit et 1127
21.3.13. ArChITECIUIE ...t et 1132

21.4. C11 Locale-specific BENAVIOKovuieii e 1137
21.5. CTranslation LIMItSc.iuiiiii e e 1139
22. C++ Implementation-defined BEhaVIOro 1141
22.1. C++14 Implementation-defined Behaviorc.cooiiiiiiii e 1141
22.2. C++14 Implementation QUANTITIESvuirieieiiee e eenes 1154

Chapter 1. C Language

This chapter describes the target specific features of the C language, including language extensions that
are not standard in ISO-C. For example, pragmas are a way to control the compiler from within the C
source.

The TASKING C compiler for TriCore™ fully supports the ISO C99 standard and supports all mandatory
language features of the C11 standard, and adds extra possibilities to program the special functions of
the target. C11 is the default of the C compiler.

The TASKING C compiler meets and exceeds the minimum requirements in all cases, only limited by the
amount of memory available to the compiler.

C11 language features

All mandatory ISO C11 language features are supported (ISO/IEC 9899:2011 section 6.10.8.1 Mandatory
macros). Furthermore the C compiler supports the following conditional features (ISO/IEC 9899:2011
section 6.10.8.3 Conditional feature macros):

» atomic types (including the _At omi c type qualifier) and the <st dat oni c. h> header file
(__STDC_NO ATOM CS__ is 0)

« complex types and the <conpl ex. h> header file
« variable length arrays and variably modified types

Other conditional language features such as threads, as mentioned in section 6.10.8.3 Conditional feature
macros and section 6.10.8.2 Environment macros of the ISO/IEC 9899:2011 standard, are not supported.
__STDC_NO _THREADS__ is defined as 1.

Additional language features

In addition to the standard C language, the compiler supports the following:

» extra data types, like __fract, __| accumand __packb

» keywords to specify memory types for data and functions

« attribute to specify alignment and absolute addresses

« intrinsic (built-in) functions that result in target specific assembly instructions
» pragmas to control the compiler from within the C source

 predefined macros

« the possibility to use assembly instructions in the C source

» keywords for inlining functions and programming interrupt routines

* libraries

TASKING SmartCode - TriCore User Guide

All non-standard keywords have two leading underscores (__).

In this chapter the target specific characteristics of the C language are described, including the above

mentioned extensions.

1.1. Data Types

The C compiler supports the ISO C11 defined data types, and additionally fractional types and packed

data types. The sizes of these types are shown in the following table.

CType Size Align Limits
_Bool 1 8 Oorl
signed char 8 8 [-27, 27-1]
unsigned char 8 8 [0, 28-1]
short 16 16 [-2%°, 2151
unsigned short 16 16 [0, 216-1]
int 32 16 [-2%%, 2%
unsigned int 32 16 [0, 232-1]
enum 8 8 [-27 2"-1] or [0, 28-1é
16 16 [-21, 211 or [0, 2°-1]
32 [-23, 231
long 32 16 [-2°1, 2%1.1)
unsigned long 32 16 [0, 232-1]
long long 64 32 [-2%, 2%-1)
unsigned long long 64 32 [0, 264-1]
_Float16 (10-bit significand) 16 16 [-65504.0F,-6.103515625E-05]
[+6.103515625E-05,+65504.0F]
float (23-bit significand) 32 16 [-3.402E+38, —1.175E-38]
[+1.175E-38, +3.402E+38]
double 64 32 [-1.797E+308, -2.225E-308]
long double (52-bit significand) [+2.225E-308, +1.797E+308]
_Imaginary float 32 16 [-3.402E+38i, —1.175E-38i]
[+1.175E-38i, +3.402E+38i]
_Imaginary double 64 32 [-1.797E+308i, -2.225E-308i]
_Imaginary long double [+2.225E-308i, +1.797E+308i]
_Complex float 64 32 real part + imaginary part
_Complex double 128 32 real part + imaginary part
_Complex long double
pointer to data or function 32 32 [0, 232-1]
struct/union * >=64 |32 [0, 2%°-1]

C Language

CType Size Align Limits

_ sfract 16 16 [-1, 1>

__fract 32 32 [-1, 1>
__laccum 64 32 [-131072,131072>
__packb 32 16 ax:[-27, 2"-1]
signed __packb

unsigned __packb 32 16 4x: [0, 28-1]
__packhw 32 16 2x: [-27°, 27°-1)
signed __packhw

unsigned __packhw 32 16 2x: [0, 216-1]
__pack2hw 64 32 ax: [-27°, 211
sighed __pack2hw

unsigned ___pack2hw 64 32 4x: [0, 216-1]

L When you use the enumtype, the compiler will use the smallest suitable integer type (char,
unsi gned char, short, unsi gned short,int,unsigned int,long |ong,unsigned

| ong | ong), unless you use C compiler option --integer-enumeration (always use 32-bit integers
for enumeration).

’The C compiler supports half-precision (16-bit) floating-point via the _Fl oat 16 type using the
binary16 interchange format. See also Section 1.1.1, Half Precision Floating-Point.

3 Structures and unions that are equal to or larger than 64-bit, are word aligned to allow efficient
copy through LD.D and ST.D instructions. See also Section 1.1.3, Packed Data Types.
__bitsizeof() operator

The si zeof operator always returns the size in bytes. Use the __bi t si zeof operator in a similar way
to return the size of an object or type in bits.

__bitsizeof (object | type)
_Atomic type qualifier

The _At om c type qualifier is supported and designates an atomic type as specified in the C11 standard.

1.1.1. Half Precision Floating-Point

The TASKING C compiler supports half precision (16-bit) floating-point via the _Fl oat 16 type using the
binary16 interchange format. The binary16 interchange format is defined in IEEE Std 754-2008 IEEE
Standard for Floating-Point Arithmetic. The _Fl oat 16 type is defined in ISO/IEC TS 18661-3 Draft
Technical Specification — December 4, 2014 WG14 N1896.

TASKING SmartCode - TriCore User Guide

The _FI oat 16 type with binary16 format can represent normalized values in the range of 2% t0 65504.
There are 11 bits of significant precision, approximately 3 decimal digits. Also subnormal values are
supported, as defined by FLT16_HAS_SUBNORMin f | oat . h.

The _Fl oat 16 type is a storage format only. For purposes of arithmetic and other operations, _Fl oat 16
values in C expressions are automatically promoted to f | oat .

Note that all conversions from and to _FI oat 16 involve an intermediate conversion to f | oat . Because
of rounding, this can sometimes produce a different result than a direct conversion.

When you specify C compiler option --fp-model=-soft, the C compiler generates hardware floating-point
instructions for conversions between _Fl oat 16 and f | oat .

Language-level support for the _FI oat 16 data type is independent of whether the C compiler generates
code using hardware floating-point instructions or not. In cases where hardware support is not specified
or not available for the selected core, the C compiler implements conversions between _Fl oat 16 and

f1 oat values as run-time library calls. These run-time functions are called __f _ft ohpand__f _hpt of .

_Float16 __f ftohp(float f); // single precision to half precision
float _ f hptof(_Floatl6 f); // half precision to single precision

1.1.2. Fractional Types

The TASKING C compiler fully supports fractional data types which allow you to use normal expressions:

__fract f, f1, f2; /* Declaration of fractional variables */
f1 =20.5; /* Assignnment of a fractional constants */
f2 = 0.242;

f =fl* f2; /* Miultiplication of two fractionals */

The __sfract type has 1 sign bit + 15 significand bits. The __f r act type has 1 sign bit + 31 significand
bits. The __| accumtype has 1 sign bit + 17 integral bits + 46 significand bits.

The __accumtype is only included for compatibility reasons and is mapped to __| accum

The TriCore instruction set supports most basic operations on fractional types directly. To obtain more
portable code, you can use several intrinsic functions that use fractional types. Fractional values are
automatically saturated.

Section 1.11.5, Intrinsic Functions explains intrinsic functions. Section 1.11.5.2, Fractional Arithmetic
Support lists the intrinsic functions.

Promotion rules

For the three fractional types, the promotion rules are similar to the promotion rules for char, short,
int,l ongandl ong | ong.This means that for an operation on two different fractional types, the smaller
type is promoted to the larger type before the operation is performed.

C Language
When you mix a fractional type with a f | oat or doubl e type, the fractional number is first promoted to
f | oat respectively doubl e.
When you mix an integer type with the __| accumtype, the integer is first promoted to __| accum
Because of the limited range of __sfract and __fract, only a few operations make sense when

combining an integer withan __sfract or__fract .Therefore, the C compiler only supports the following
operations for integers combined with fractional types:

left operand |right result
fractional | * integer |fractional
integer |* fractional |fractional
fractional |/ integer |fractional
fractional |<< integer |fractional
fractional |>> integer |fractional
fractional: __sfract, __ fract

integer: char, short, int, long, long long

1.1.3. Packed Data Types

The TASKING C compiler additionally supports the packed types __packb, __packhwand __pack2hw.

A __packb value consists of four signed or unsigned char values. A ___packhwvalue consists of two
signed or unsigned shor t values. A __pack2hwvalue consists of four signed or unsigned shor t values.

The TriCore instruction set supports a number of arithmetic operations on packed data types directly. For
example, the following function:

__packb add4 (__packb a, __packb b))
{

}

results into the following assembly code:

return a + b;

add4:
add. b d2, d4, d5
retl6

Section 1.11.5, Intrinsic Functions explains intrinsic functions. Section 1.11.5.3, Packed Data Type Support
lists the intrinsic functions.

Halfword packed unions and structures

To minimize space consumed by alignment padding with unions and structures, elements follow the
minimum alignment requirements imposed by the architecture. The TriCore architecture supports access
to 32-bit integer variables on halfword boundaries.

TASKING SmartCode - TriCore User Guide

Because only doubles, circular buffers, __| accumor pointers require the full word access, structures
that do not contain members of these types are automatically halfword (2 bytes) packed.

Structures and unions with a size divisible by 64-bit or larger or structures and unions that contain members
with a size divisible by 64-bit or larger, are word packed to allow efficient access through LD. Dand ST. D
instructions. These load and store operations require word aligned structures with a size divisible by 64-bit
or larger. If necessary, 64-bit (or larger) divisible structure elements are aligned or padded to make the
structure 64-bit accessible. Whether the LD. DY ST. Dinstructions are used or not depends on the tradeoff
value (C compiler option --tradeoff (-t)): only for tradeoff values 0, 1 or 2 these instructions are used.

You can see the difference by using the following code (st r uct . ¢):

t ypedef struct
{

char a
char b;
char ¢
char d

char e;
char f;
char g;
char h;
char j;

} ST_64;

ST 64 st_64_1;
ST 64 st_64_2;

void main(void)

{
}

and use the following invocations:

st 64 1 = st_64 2;

ctc struct.c -t0
ctc struct.c

With #pr agma pack 2 you can disable the LD. DY ST. Dstructure and union copy optimization to ensure
halfword structure and union packing when possible. This "limited" halfword packing only supports
structures and unions that do not contain double, circular buffer, __| accumor pointer type members and
that are not qualified with #pr agnma al i gn to get an alignment larger than two bytes. With #pr agna
pack 0 you turn off halfword packing again.

#pragma pack 2

typedef struct {
unsi gned char ucl;
unsi gned i nt ui 1;

C Language

unsi gned short usl;

unsi gned int ui 2;

unsi gned short us2;
} packed_struct;
#pragma pack 0

When you place a #pr agma pack 0 before a structure or union, its alignment will not be changed:

#pragma pack 0
packed_struct pstruct;

The alignment of data sections and stack can affect the alignment of the base address of a halfword
packed structure. A halfword packed structure can be aligned on a halfword boundary or larger. When
located on the stack or at the beginning of a section, the alignment becomes a word, because of the
minimum required alignment of data sections and stack objects. A stack or data section can contain any
type of object. To avoid wrong word alignment of objects in the section, the section base is also word
aligned.

1.1.4. Changing the Alignment: __unaligned, __packed___and __align()

Normally data, pointers and structure members are aligned according to the table in Section 1.1, Data
Types.

Suppress alignment

With the type qualifier __unal i gned you can specify to suppress the alignment of objects or structure
members. This can be useful to create compact data structures. In this case the alignment will be one
byte for objects and non-bit-field structure members.

At the left side of a pointer declaration you can use the type qualifier __unal i gned to mark the pointer
value as potentially unaligned. This can be useful to access externally defined data. However the compiler
can generate less efficient instructions to dereference such a pointer, to avoid unaligned memory access.

You can always convert a normal pointer to an unaligned pointer. Conversions from an unaligned pointer
to an aligned pointer are also possible. However, the compiler will generate a warning in this situation,
with the exception of the following case: when the logical type of the destination pointer is char orvoi d,
no warning will be generated.

Example:

struct

{

char c;
__unaligned int i; /* aligned at offset 1! */

}os;

__unaligned int * up = & s.1i;

TASKING SmartCode - TriCore User Guide

Packed structures

To prevent alignment gaps in structures, you can use the attribute __packed__. When you use the
attribute __packed___directly after the keyword st r uct , all structure members are marked __unal i gned.
For example the following two declarations are the same:

struct _ packed__

{
char c;
int * i;
} sl
struct
{
char __unaligned c;
int * _unaligned i; /* __unaligned at right side of '*'
to pack pointer nenber */
} s2;

The attribute __packed__ has the same effect as adding the type qualifier __unal i gned to the
declaration to suppress the standard alignment.

You can also use __packed__ in a pointer declaration. In that case it affects the alignment of the pointer
itself, not the value of the pointer. The following two declarations are the same:

int * _ unaligned p;
int * p __ packed__;

Increasing the alignment: __align()

By default the TriCore compiler aligns variables, functions and structure members to the minimum alignment
required by the architecture. See Section 1.1, Data Types. With the attribute __al i gn(n) you can
increase the default alignment of variables, functions or structure members to n bytes. If you apply an
alignment with a value lower than the default alignment of the variable, function or structure member, this
has no effect on the alignment of the variable, function or structure member. The C compiler issues a
warning in that case. The alignment must be a power of two.

Note that unlike variables and functions, structure member alignment is not affected by the C compiler
option --align and the #pr agma al i gn.

When a function is inlined the attribute __al i gn() has no effect on the inlined code, the alignment
attribute is ignored.

Example:

__align(4) int globalvar; /* changed to 4 bytes alignnent
instead of default 2 bytes */

Instead of the attribute __al i gn(n) youcanalsouse __attribute_ ((__align(n))) or
__attribute__((aligned(n))).

C Language

1.2. Accessing Memory

You can use static memory qualifiers to allocate static objects in a particular part of the addressing space
of the processor.

In addition, you can place variables at absolute addresses with the keyword __at () .

1.2.1. Memory Qualifiers

In the C language you can specify that a variable must lie in a specific part of memory. You can do this
with a memory qualifier.

You can specify the following memory qualifiers:

Qualifier |Description Location Maximum |Pointer |[Section types
object size [size
__hear "INear data, direct First 16 KiB of a 256 MB |16 KiB 32-bit neardata, nearrom,
addressable block nearbss,
nearnoclear
__far " |Far data, indirect Anywhere no limit 32-hit fardata, farrom,
addressable farbss, farnoclear
a0 Uninitialized / constant | Sign-extended 16-bit 64 KiB 32-bit aOdata, aOrom,
/ cleared data offset from address albss
register AQ.
_al Uninitialized / constant | Sign-extended 16-bit 64 KiB 32-bit aldata, alrom,
/ cleared data offset from address albss
register Al.
__a8 Uninitialized / constant | Sign-extended 16-bit 64 KiB 32-bit a8data, a8rom,
/ cleared data offset from address a8hss
register A8.
_a9 Uninitialized / constant | Sign-extended 16-bit 64 KiB 32-bit a9data, a9rom,
/ cleared data offset from address a9bss
register A9.

: If you do not specify __near or_f ar, the compiler chooses where to place the declared object.
With the C compiler option --default-near-size (maximum size in bytes for data elements that are
by default located in __near sections) you can specify the size of data objects which the compiler
then by default places in near memory.

All these memory qualifiers (__near, __far, __a0,__al, a8 and __a9) are related to the object
being defined, they influence where the object will be located in memory. They are not part of the type of
the object defined. Therefore, you cannot use these qualifiers in typedefs, type casts or for members of
a struct or union.

TASKING SmartCode - TriCore User Guide

Address registers A0, Al, A8, and A9 are designated as system global registers. They are not part of
either context partition and are not saved/restored across calls. They can be protected against write
access by user applications. AO, A1, A8 and A9 are freely to use on any type of data.

It is not allowed to assign ROM and RAM data to the same group. With the address registers A0, A1, A8
and A9 you can only access ROM or RAM but not both. Mixed ROM and RAM section types are not
allowed for qualifiers __a0, __al, a8 and __a9. When this happens the linker issues the message:

Section .rodata_ax in group ax has nenory type ROM but
expected nmenory type RAM |ike section .data_ax in the sane group

where xis one of 0, 1,8, 9.
For example, it is not allowed to have variable aOr omand aOr amin a single application.

__a0 const int aOromel;
__a0 int aOranel; // Mxing ROMRAM is not all owed

For this example the linker reports that the section . r odat a_a0. a0. aOr omin group a0 has memory
type ROM but expected memory type RAM like section . dat a_a0. a0. aOr amin the same group.

Examples using memory qualifiers

To declare a fast accessible integer in directly addressable memory:

int __near Var_in_near;

To allocate a pointer in far memory (the compiler will not use absolute addressing mode):
__far int * Ptr_in_far;

To declare and initialize a string in AO memory:

char __a0 string[] = "TriCore";

If you use the __near memory qualifier, the compiler generates faster access code for those (frequently
used) variables. Pointers are always 32-bit.

Functions are by default allocated in ROM. In this case you can omit the memory qualifier. You cannot
use memory qualifiers for function return values.

Some examples of using pointers with memory qualifiers:

int __near * p; /* pointer to int in __near menory
(pointer has 32-bit size) */

int __far * g; /* pointer to int in __far menory
(poi nter has 32-bit size) */

voi d mai n(voi d)

{

g =np; /* allowed because pointers are 32-bit */
}

You cannot use memory qualifiers in structure declarations:

10

C Language

struct S {
__near int i; [/* put an integer in near
menory: |ncorrect ! */
__far int * p; /* put an integer pointer in
far nmenory: Incorrect ! */
}

If a library function declares a variable in near memory and you try to redeclare the variable in far memory,
the linker issues an error:

extern int __near foo; /* extern int in near nmenory*/
int _ far foo; /* int in far nenory */
The usage of the variables is always without a storage specifier:

char __near exanpl e;
example = 2;

The generated assembly would be:

nov16 di15, 2
st.b exanpl e, d15

All allocations with the same storage specifiers are collected in units called 'sections'. The section with
the _ near attribute will be located within the first 16 KiB of each 256 MB block.

1.2.2. Placing an Object at an Absolute Address: __ at()

Just like you can declare a variable in a specific part of memory (using memory qualifiers), you can also
place an object or a function at an absolute address in memory.

With the attribute __at () you can specify an absolute address. The address is a 32-hit linear address.
Examples
unsi gned char Display[80*24] _ at(0x2000);

The array Di spl ay is placed at address 0x2000. In the generated assembly, an absolute section is
created. On this position space is reserved for the variable Di spl ay.

int i __at(0x1000) = 1,

void f(void) __at(0xa0001000) { __nop(); }

The function f is placed at address 0xa0001000.
Restrictions

Take note of the following restrictions if you place a variable at an absolute address:

» The argument of the __at () attribute must be a constant address expression. Otherwise the compiler
generates an error.

11

TASKING SmartCode - TriCore User Guide

* You can place only global variables at absolute addresses. Parameters of functions, or automatic
variables within functions cannot be placed at absolute addresses. If they are, the compiler generates
an error.

» Avariable that is declared ext er n, is not allocated by the compiler in the current module. Hence you
should not use the keyword __at () on an external variable. If you do, the compiler ignores the keyword
__at () without generating an error. Use __at () at the definition of the variable.

» You cannot place structure members at an absolute address. If you do, the compiler ignores the keyword
__at () and generates a warning.

 Absolute variables cannot overlap each other. If you declare two absolute variables at the same address,
the assembler and/or linker issues an error. The compiler does not check this.

1.2.3. Accessing Bits

There are several methods to access single bits in a variable. The compiler generates efficient bit operations
where possible.

Masking and shifting
The classic method to extract a single bit in C is masking and shifting.

unsi gned int bitword;
void foo(void)

i f(bitword & 0x0004) Il bit 2 set?

{

bitword &= ~0x0004; /!l clear bit 2
}
bi tword | = 0x0001; /1l set bit O;

}
Built-in macros __getbit() and __putbit()

The compiler has the built-in macros __get bi t () and __put bi t () . These macros expand to the
__extru() and __i maskl dnst () and intrinsic functions to perform the required result.

int * bw

void foo(void)

{ if(_gethit(bw, 2))
{ __putbit(0, bw, 2);

} }_putbit(1, bw, 0);

12

C Language

Accessing bits using a struct/union combination

t ypedef wunion

{

unsi gned i nt word;

struct

{
int b0 : 1;
int bl : 1;
int b2 : 1;
int b3 : 1;
int b4 : 1;
int b5 : 1;
int b6 : 1;
int b7 : 1;
int b8 : 1;
int b9 : 1;
int bl0: 1;
int bll: 1;
int bl2: 1;
int bl3: 1;
int bl4: 1;
int bl5: 1;

} bits;

} bitword_t;

bi tword_t bw;
void foo(void)

i f(bw bits.b3)

{ bw. bits. b3 = 0;
}l;wbits.bo = 1;

}

void reset(void)

{ bw. word = 0;

}

1.3. Data Type Qualifiers

1.3.1. Circular Buffers: __ circ
The TriCore core has support for implementing specific DSP tasks, such as finite impulse response (FIR)

and infinite impulse response (lIR) filters. For the FIR and IIR filters the TriCore architecture supports the
circular addressing mode. The TriCore C compiler supports circular buffers for these DSP tasks. This

13

TASKING SmartCode - TriCore User Guide
way, the TriCore C compiler makes hardware features available at C source level instead of at assembly
level only.

A circular buffer is a linear (one dimensional) array that you can access by moving a pointer through the
data. The pointer can jump from the last location in the array to the first, or vice-versa (the pointer
wraps-around). This way the buffer appears to be continuous. The TriCore C compiler supports the
keyword __ci r ¢ (circular addressing mode) for this type of buffer.

Example:

__fract _ _circ circbuf[10];
__fract __circ * ptr_to_circbuf = circbuf;

Here, ci r cbuf is declared as a circular buffer. The compiler aligns the base address of the buffer on
the access width (in this example an int, so 4 bytes). The compiler keeps the buffer size and uses it to
control pointer arithmetic of pointers that are assigned to the buffer later.

Note that it is not allowed to declare an automatic circular buffer, because circular buffers require an
alignment of 64-bit, but the TriCore stack uses a 32-bit alignment. Use keyword st at i ¢ for local circular
buffers.

Circular pointers

You can perform operations on circular pointers with the usual C pointer arithmetic with the difference
that the pointer will wrap. When you access the circular buffer with a circular pointer, it wraps at the buffer
limits. Circular pointer variables are 64 bits in size.

Example:

while(*Pptr_to_circbuf++);

Indexing

Indexing in the circular buffer, using an integer inde, is treated equally to indexing in a non-circular array.
Example:

int i =circbuf[3];

The index is not calculated modulo; indexing outside the array boundaries yields undefined results.
Intrinsic function __initcirc()

If you want to initialize a circular pointer with a dynamically allocated buffer at run-time, you should use
the intrinsic function __initcirc():

#define N 100

unsi gned short s = sizeof (__fract);

_fract * buf = calloc(N, s);

_fract __circ * ptr_to_circbuf = __initcirc(buf, N* s, 0 * s);

14

C Language

1.3.2. Accessing Hardware from C

Using Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from C. The SFRs are
defined in a special function register file (*.sfr) as symbol names for use with the compiler. An SFR file
contains the names of the SFRs and the bits in the SFRs.

You can find a list of defined SFRs and defined bits by inspecting the SFR file for a specific processor.
The files are located in the sf r subdirectory of the standard i ncl ude directory. The files are named

r egcepu. sf r, where cpu is the CPU specified with the control program option --cpu. The compiler includes
this register file if you specify option --include-file=sfr/regtc49x.sfr.

Instead of including r egt c49x. sfr you can also include a peripheral specific register file such as
I f xW u_r eg. h, which should lead to a performance improvement because not all register files have to
be read.

Example use in C (SFRs from sfr/tc49x/ | f xW u_r eg. h):

#include "sfr/tc49x/1fxWu_reg.h"

voi d set_sfr(void)

{
WU WDTSEC CTRLA. | | = 0xb32a; /* access WDT Control
Regi ster A as a whole */
WU WDTSEC CTRLA. B.LCK = 0x1; /* access LCK bit-field of WDT Control
Regi ster A */
}

Defining Special Function Registers: __sfrbit16, _ sfrbit32, sfrbit64

SFRs are defined in SFR files and are written in C. With the data type qualifiers __sfrbit 16, _sfrbit 32
and __sfrbit 64 you can declare bit-fields in special function registers.

According to the TriCore Embedded Applications Binary Interface, ‘'normal’ bit-fields are accessed as
char, short ori nt. Bit-fields are aligned according to the table in Section 1.1, Data Types.

If you declare bit-fields in special function registers, this behavior is not always desired: some special
function registers require 16-bit, 32-bit or 64-bit access. To force 16-bit, 32-bit or 64-bit access, you can
use the data type qualifiers __sfrbit16, __sfrbit32and__sfrbit64.

When the SFR contains fields, the layout of the SFR is defined by a typedef-ed union. The following
example is part of an SFR file and illustrates the declaration of a special function register using the data
type qualifier __sfrbit 32:

#define Ifx_Strict_16Bit unsigned _ sfrbitl6
#define Ifx_Strict_32Bit unsigned _ sfrbit32
#define Ifx_Strict_64Bit unsigned _ sfrbit64

/* WDT Control Register A */

15

TASKING SmartCode - TriCore User Guide

typedef struct _Ifx WU CTRLA Bits
{

_ 1O Ilfx_Strict_32Bit LCK 1; /* [0:0] Lock Bit - LCK (rwh) */

_ 1O Ilfx_Strict_32Bit PW 15; /* [15:1] Password - PW(rwh) */

O Ifx_Strict_32Bit TCVI:16; /* [31:16] Timer Check Value Inverted (w) */
} 1fx WU CTRLA Bits;

/* WDT Control Register A */

t ypedef union

{
| fx_UReg_32Bit U /* Unsigned access */
| fx_SReg_32Bit I; /* Signed access */
| fx WU CTRLA Bits B; /* Bitfield access */

} 1fx_ WU _CTRLA;

Read-only fields can be marked by using the const keyword.

The SFR is defined by a cast to a ‘typedef-ed union’ pointer. The SFR address is given in parenthesis.
Read-only SFRs are marked by using the const keyword in the macro definition.

#defi ne WI'U WDTSEC CTRLA (*(vol atile |fx_ WU _CTRLA*) 0xFO000174u)
/* Security WDOT Control Register A */

Restrictions

» You can use the __sfrbi t 32 data type qualifier only on i nt bit-field types. The compiler issues an
error if you use for example __sfrbit32 char x : 8;

* You can use the __sfrbit 16 data type qualifier only oni nt or short bit-field types. The compiler
issues an error if you use for example __sfrbit16 char x : 8;

 Whenyou usethe __sfrbit32and__sfrhbit 16 datatype qualifiers on other types than a bit-field,
the compiler ignores this without a warning. For example, __sfrbit 32 i nt gl obal ; is equal to
int global;.

 Structures or unions that contain a member qualified with __sfr bi t 16, are zero padded to complete
a halfword if necessary. The structure or union will be halfword aligned. Structures or unions that contain
a member qualified with __sfr bi t 32, are zero padded to complete a full word if necessary. The
structure or union will be word aligned.

1.3.3. Saturation: __sat

When a variable is declared with the type qualifier __sat , all operations on that variable will be performed
using saturating arithmetic. When an operation is performed on a plain variable and a __sat variable,
the __sat takes precedence, and the operation is done using saturating arithmetic. The type of the result
of such an operation also includes the qualifier __sat , so that another operation on the result will also
be saturated. In this respect, the behavior of the type qualifier __sat is comparable to the unsigned
keyword. You can overrule this behavior by inserting type casts with or without the type qualifier __sat
in an expression.

You can only use the type qualifier __sat ontypei nt (fractional types are always saturated).

16

C Language

Examples:

__sat int si = OX7FFFFFFF;

int i = 0x12345;

unsi gned int ui = OxFFFFFFFF;

si +i [// a saturated addition is perforned,

/] yielding a saturated int

si + ui // a saturated unsigned addition is perforned,
/1 yielding a saturated unsigned int

i +ui // a normal unsigned addition is perfornmned,
/1 yielding an unsigned int

1.3.4. External MCS RAM Data References: _mcsram

You can reference external MCS RAM data from the TriCore with the keyword __ncsr am Only external
variables can be qualified with the keyword __ncsram

Global MCS RAM variables can only be defined in the MCS application. Only types with a size of 32-bit
can have the keyword __ntsr am because only 32-bit types are supported by the MCS in the MCS RAM
space.

To refer to a global variable name in a specific MCS core, you need to prefix the variable name with core_

For example, if in two MCS cores a global variable count is defined, you can reference them externally
by the TriCore:

extern volatile int __ncsram ncs00_count; /* variable count in nts00 */
extern volatile int __ncsram ncs01_count; /* variable count in ntsOl */

__ntsramexternal variables getthe _| c_t _ linker prefix. _| c_t _nmcs00_count and
_lc_t_nts01_count for the example above.

17

TASKING SmartCode - TriCore User Guide

1.4. Multi-Core Support

The TASKING toolset for TriCore has support for multi-core versions of the TriCore.

If you want to build an application for one specific core, you need to select the specific core in Eclipse
(for example, Core 0 (tc0)). If you build your sources on the command line with the control program, you
have to specify control program option --Isl-core=tcO.

1.4.1. Compile Time Core Association
Code and data can be shared, private or cloned:

» Shared. In the default situation all code and data are accessible by all cores. The symbols are located
in shared memory.

 Private. Private means that the code and/or data is copied to, and accessed from, the local scratchpad
memory of one particular core.

» Cloned. Cloned means that code or data is copied to the local scratchpad memory of each binary
compatible core, or a specific core. The core then treats the code/data as if it were private.

Compile time core association

You can determine at compile time, with memory qualifiers or pragmas or options, whether data or code
objects are private or cloned instead of shared for local scratch pad RAM (DSPR/PSPR). This is explained
in the following sections.

Link time core association

Instead of at compile time, you can determine in which memory objects should be located at link time.
This is necessary when you want to restrict a clone section to a subset of the available cores. This is
explained in Section 7.9.10, Locating in a Multi-core Processor Environment.

1.4.1.1. Data Core Association

The term "data core association" (DCA) is used to define:

» whether a data object is accessible from one or multiple cores
« the type of memory where the data will be allocated

» the number of memory instances of the data object

You can use a memory qualifier (__share, __pri vatenor__cl one) or pragma (#pr agna

dat a_cor e_associ at i on) to qualify individual data objects, or you can use an option (C compiler
option --data-core-association) to specify the default data core association. The default data core
association is “share”. This means that when you do not explicitly specify a memory qualifier or a pragma,
all data can be accessed by all cores.

18

C Language

Data core |Memory Accessible [Number of instances Allocation in
association |qualifier from
Share __share All cores One instance. Global RAM or core-local

The data object is shared RAM

between cores. _
Note: when allocated in

core-local RAM the shared
object is accessed via the

mirror page.
Private __privaten|Corenonly [Oneinstance.For one specific|Preferably in core n local
core: core n. RAM. If the memory is full,

other memory is used.

Clone __clone All cores Multiple instances. Core-local RAM
For each core one instance is
allocated. All instances will be
located at identical addresses.

" Note that __pri vat en data objects are private for core n from a compiler point of view, where n depends
on the number of cores supported by the derivative. For example, for a derivative with three cores, n can
be 0, 1 or 2.

Instead of a memory qualifier you can also use a pragma:
#pragma data_core_associ ati on share | privaten | clone | default | restore

With def aul t you switch back to the default behavior. With r est or e you restore the previous value of
the pragma.

Based on the specified data core association the compiler stores the data object in a section with the
following naming convention:

section_type_prefix.share| privaten|cl one. nodul e_nane. synbol _nane

Note however that when you do not specify a memory qualifier or a pragma or when you use #pr agnma
dat a_core_associ ati on def aul t, the data can be accessed by all cores, but the resulting sections
do not have . shar e in the section name. This is the default behavior. The . shar e is only added to the
name if the section was explicitly designated as shared.

Example:

#pragmae data_core_associ ati on clone
_near int var_1; // var_1 ends up in section .zbss.clone.file_1.var_1

#pragme data_core_associ ati on defaul t
_near int var_2; // var_2 ends up in section .zbss.file_1.var_2

For more information on section names see Section 1.12, Compiler Generated Sections.

19

TASKING SmartCode - TriCore User Guide

The linker recognizes the section names, duplicates clone sections for each binary compatible core and
locates core specific code and data in the scratchpad memory of each core, resulting in one absolute
object file (ELF) for each binary compatible set of cores.

1.4.1.2. Code Core Association

The term "code core association" (CCA) is used to define:
+ the core or cores that are allowed to execute a function
« the type of memory where the function will be allocated

» the number of instances that are copied to local scratchpad RAM, i.e. the number of entries in the copy
table

* arestriction on the type of data (defined by a data core association) the code may access

You can use a memory qualifier (__share, __privatenor__cl one) or pragma (#pr agna
code_cor e_associ at i on) to qualify individual functions, or you can use an option (C compiler option
--code-core-association) to change the default code core association. The default code core association
is “share”. This means that when you do not explicitly specify a memory qualifier or a pragma, all code
can be executed by all cores.

Code core |Memory Executes |Number of Allowed access of |Allocation in
association|qualifier on instances DCA qualified data
Share __share Any core |One instance. Shared PFLASH_QO,
The code is Cloned (of PFLASH_1 or
shared between |executing core) core-local RAM
cores.
Private __privat en|Core n only|One instance. Shared Preferably in core n
Private local RAM. If the
Cloned memory is full, other
memory is used.
Clone __clone Any core |Multiple Shared Core-local RAM
instances. Cloned
Each code
instance is
executed by one
core.

" Note that __privaten code is private for core n from a compiler point of view, where n depends on
the number of cores supported by the derivative. For example, for a derivative with three cores, n can be

0,1or2.

Instead of a memory qualifier you can also use a pragma:

#pragma code_core_associ ati on share |

privaten |

clone |

default |

restore

With def aul t you switch back to the default behavior. With r est or e you restore the previous value of

the pragma.

20

C Language
Based on the specified code core association the compiler stores the code object in a section with the
following naming convention:
section_type_prefix.share| privaten|cl one. nodul e_nane. synbol _nane

Note however that when you do not specify a memory qualifier or a pragma or when you use #pr agma
code_core_associ ati on def aul t, the code can be executed by all cores, but the resulting sections
do not have . shar e in the section name. The . shar e is only added to the name if the section was
explicitly designated as shared.

For more information on section names see Section 1.12, Compiler Generated Sections.

The linker recognizes the section names, duplicates clone sections for each binary compatible core and
locates core specific code and data in the scratchpad memory of each core, resulting in one absolute
object file (ELF) for each binary compatible set of cores.

1.4.1.3. Core Association Restrictions

The following restriction apply to core associations:

Run-time bounds data is shared by all cores

For run-time bounds checking, bounds data is generated in a section declared with a fixed section name
'bounds'. No data core association is applied to this section. The linker uses the default core association
share. The bounds data is shared among all cores.

Example (bounds. c):
typedef struct
{
int i;
}os_t;
s_t s;

const int cil =55;
const int ci2 =55;

int main(voi d)
{
s.i = 42;

return cil+ci 2;

}

Use the following command to see the result:

ctc bounds.c --runtine --core=tcl.8 --data-core-associ ati on=share
--code-core-associ ati on=share

21

TASKING SmartCode - TriCore User Guide

Profile data is shared by all cores

For dynamic profiling, profiling data is generated in sections declared with fixed section names *__pr of _".
No data core association is applied to these sections. The linker uses the default core association share.
The profiling data is shared among all cores.

Example (pr of . c):
void fi(int i);
void f2(int i);
void f3(int i);

void f3(int i)

{
if (i)
{
f1(i-1);
f2(i-1);
f3(i-1);
}
}
void f2(int i)
{
if (i)
{
f1(i-1);
f2(i-1);
f3(i-1);
}
}
void fi(int i)
{
if (i)
{
f1(i-1);
f2(i-1);
f3(i-1);
}
}
voi d nmai n(voi d)
{
f1(3);
f2(3);
f3(3);
}

22

C Language

When you compile with:

ctc prof.c --profile --core=tcl.8 --data-core-associ ati on=share
--code-core-associ ati on=share

This results in the following section declarations:

.sdecl '.zbss.prof._999001__ prof _counter_0',6 data
.sdecl '.zbss.prof._999002__ prof _counter_0',6 data
.sdecl '.zbss.prof._999003__ prof _counter_0',6data
.sdecl '.zbss.prof._999004__ prof _counter_0',data

Predefined identifier _ func__ is shared by all cores

You cannot use the data core association symbol qualifiers or pragmas to associate a core with predefined
identifier __f unc__. The linker uses the default core association share. __f unc___is shared among all
cores.

Example (f unc. ¢):

char funcnane[10];

void function(void)

{
for(int i =0; i <6 i++) {
funcname[i] = _ func_ [i];
}
}

When you compile with:

ctc func.c --core=tcl.8 --data-core-associ ati on=share
--code-core-associ ati on=share

This results in the following section declaration:
.sdecl '.rodata.func._999001__ func__', data,rom
No core is associated to a section renamed with the attribute section

No section prefixing is supported on sections that are renamed with attribute sect i on. The linker uses
the default core association share. Of course it is still possible to use the core association section naming
convention in the section attribute to do the core association manually.

Example (secti on. ¢):

int function(void) _ section__("fixed_section_nane")

{
}

return O;

23

TASKING SmartCode - TriCore User Guide

When you compile with:

ctc section.c --core=tcl.8 --data-core-associ ati on=share
--code-core-associ ati on=share

This results in the following section declaration:
.sdecl 'fixed_section_nane', code
Renaming with #pr agma sect i on supports the normal section prefixing.

#pragma section code "nynane"

int function(void)

{
}

results in the following section declaration:

return O;

.sdecl '.text.share.nynane', code

For more details see Section 1.12, Compiler Generated Sections.

1.4.1.4. Core Association and Addressing Modes

You can combine the data core associations with the memory qualifiers from Section 1.2.1, Memory
Qualifiers. The most efficient way is to qualify cloned and private data objects as __near . You can use
the qualifier __near explicitly or you can use the C compiler option --default-near-size=value. All data
objects with a size less than or equal to value are located in __near sections.

Data objects located in scratchpad RAM of core N can be treated as __near by core N. Other cores
need to access the data object through the mirror pages and you have to use __f ar addressing. This
results into the following scheme where __near means that __near access may be used, and __f ar
means that __f ar access must be used:

Code core Data core Applicable addressing mode(s)
association association
Share Share _ far, __a[0]1]8|9]
Private __near
Clone __near
Private (RAM) Share __ far, __a[0]1]8]9]
Private __hear
Clone __hear
Clone Share __far, __a[0]1]8]9]
Clone __hear

24

C Language

As a consequence shared data located in scratchpad memory of core N is accessed via __far addressing,
also by the code executing on core N.

1.4.1.5. Core Association and Function Calls

The code core association affects caller-callee relations. Private functions are not accessible by each
core. Therefore, calling a private function is illegal unless it is guaranteed that the code that contains the
call can only be executed by the core associated with the private function.

Both the C compiler and linker check for illegal function calls. However, the C compiler and linker cannot
check indirect calls and the C compiler cannot check calls to external functions, due to lack of type
information.

The following table shows the relation between function calls and code core associations.

Code core Code core Issues
association of [association of
caller callee
Share Share No issues.
Private No issues.
Clone No issues.
Private Share No issues.
Private Caller and callee must be associated with the same core.
Clone No issues.
Clone Share No issues.
Private lllegal call. A cloned function is not allowed to call a private
function.
Clone No issues.

1.5. Shift JIS Kanji Support

In order to allow for Japanese character support on non-Japanese systems (like PCs), you can use the
Shift JIS Kanji Code standard. This standard combines two successive ASCII characters to represent
one Kaniji character. A valid Kanji combination is only possible within the following ranges:

* First (high) byte is in the range 0x81-0x9f or Oxe0-Oxef.
» Second (low) byte is in the range 0x40-0x7e or 0x80-0xfc

Compiler option -Ak enables support for Shift JIS encoded Kanji multi-byte characters in strings and
(wide) character constants. Without this option, encodings with 0x5c as the second byte conflict with the
use of the backslash (\ ') as an escape character. Shift JIS in comments is supported regardless of this
option.

Note that Shift JIS also includes Katakana and Hiragana.

25

TASKING SmartCode - TriCore User Guide

Example:

/1 Exanpl e usage of Shift JIS Kanji

/1 Do not switch off option -Ak

/1 At the position of the italic text you can

/1 put your Shift JI'S Kanji code

int i; // put Shift JIS Kanji here

char c1;

char c2;

unsi gned int ui;

const char mes[]="put Shift JIS Kanji here";

const unsigned int ar[5]={"'K,"'a,'n",
SRR Y
/1 5 Japanese array

voi d mai n(voi d)

{
i=(int)cl;
i++, /* put Shift JIS Kanji here\
conti nuous comment */
c2=mes[9];
ui =ar[0];
}

1.6. Using Assembly in the C Source: __asm()

With the keyword __asm() you can use assembly instructions in the C source and pass C variables as
operands to the assembly code.

It is recommended to use constructs in C or use intrinsic functions instead of __asn{) . Be aware
that C modules that contain assembly are not portable and harder to compile in other environments.

The compiler does not interpret assembly blocks but passes the assembly code to the assembly source
file; they are regarded as a black box. So, it is your responsibility to make sure that the assembly block
is syntactically correct. Possible errors can only be detected by the assembler.

You need to tell the compiler exactly what happens in the inline assembly code because it uses that for
code generation and optimization. The compiler needs to know exactly which registers are written and
which registers are only read. For example, if the inline assembly writes to a register from which the
compiler assumes that it is only read, the generated code after the inline assembly is based on the fact
that the register still contains the same value as before the inline assembly. If that is not the case the
results may be unexpected. Also, an inline assembly statement using multiple input parameters may be
assigned the same register if the compiler finds that the input parameters contain the same value. As
long as this register is only read this is not a problem.

General syntax of the __asm keyword

__asn("instruction_tenplate"”
[: output_paramli st

26

[
[

instruction_template

%parm_nr[.regnum]

output_param_list

input_param_list

&

constraint _char

C_expression

register_reserve_list

register_name

C Language

i nput _param | i st
register_reserve_list]]]);

Assembly instructions that may contain parameters from the input
list or output list in the form: %parm_nr[.regnum]

Parameter number in the range 0 .. 9. With the optional .regnum you
can access an individual register from a register pair. For example,
with register pair dO/ d1, . O selects register dO.

[["=[&]constraint_char" (C_expression)],...]
[["constraint_char" (C_expression)],...]

Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.

Constraint character: the type of register to be used for the
C_expression. See the table below.

Any C expression. For output parameters it must be an Ivalue, that
is, something that is legal to have on the left side of an assignment.

[["register_name'],...]

Name of the register you want to reserve. For example because this
register gets clobbered by the assembly code. The compiler will not
use this register for inputs or outputs. Note that reserving too many
registers can make register allocation impossible.

Specifying registers for C variables

With a constraint character you specify the register type for a parameter.

You can reserve the registers that are used in the assembly instructions, either in the parameter lists or
in the reserved register list (register_reserve_list). The compiler takes account of these lists, so no
unnecessary register saves and restores are placed around the inline assembly instructions.

Constraint |Type Operand Remark

character

a address register a0 ..al5

b address register pair b2, b4, b6, b12, b14|b2 = pair a2/a3, b4 = a4/a5, ...

d data register do ..d15

e data register pair e0,e2,...,el4d e0 = pair d0/d1, e2 = d2/d3, ...

q data register quad el/e2, ..., el2/el4l

m memory variable memory operand

i immediate value value

number type of operand it is same as %number |Input constraint only. The number

associated with must refer to an output parameter.

Indicates that %onumber and number
are the same register.

27

TASKING SmartCode - TriCore User Guide

If an input parameter is modified by the inline assembly then this input parameter must also be
added to the list of output parameters (see Example 7). If this is not the case, the resulting code
may behave differently than expected since the compiler assumes that an input parameter is not
being changed by the inline assembly.

Loops and conditional jumps

The compiler does not detect loops with multiple __asn{) statements or (conditional) jumps across
__asn() statements and will generate incorrect code for the registers involved.

If you want to create a loop with __asn{() , the whole loop must be contained in a single __asm()
statement. The same counts for (conditional) jumps. As a rule of thumb, all references to a label in an
__asm() statement must be in that same statement. You can use numeric labels for these purposes.

Example 1: no input or output

A simple example without input or output parameters. You can use any instruction or label. When it is
required that a sequence of __asn{) statements generates a contiguous sequence of instructions, then
they can be best combined to a single __asn{) statement. Compiler optimizations can insert instruction(s)
in between __asn() statements. Use newline characters ‘\n’ to continue on a new lineina __asn()
statement. For multi-line output, use tab characters '\t' to indent instructions.

_asn("nop\n"
"\'tnop");

Example 2: using output parameters

Assign the result of inline assembly to a variable. With the constraint mmemory is chosen for the parameter;
the compiler decides where to put the variable. The %@ in the instruction template is replaced with the
name of the variable.

__near int out;
void func(void)

{
__asn("nov dl5, #1234\ n"
"\tst.w 9%, d15"
“=nt (out));
}

Generated assembly code:

nov d15, #1234
st.w out, dl5

Example 3: using input parameters
Assign a variable to a memory location. A data register is chosen for the parameter because of the

constraint d; the compiler decides which register is best to use. The %9 in the instruction template is
replaced with the name of this register. The compiler generates code to move the input variable to the

28

C Language

input register. Because there are no output parameters, the output parameter list is empty. Only the colon
has to be present.

int in;

void initmen(void)

{
_asm "ST.W 0xa0000000, 98"

A (in));
}

Generated assembly code:

ld.w di5,in
ST. W 0xa0000000, d15

Example 4: using input and output parameters

Multiply two C variables and assign the result to a third C variable. Data type registers are necessary for
the input and output parameters (constraint d, %0 for out , %4 for i n1, 92 for i n2 in the instruction
template). The compiler generates code to move the input expressions into the input registers and to
assign the result to the output variable.

int inl, in2, out;

void multiply32(void)

{
__asm("mul %, W, wR"
"=d" (out)
"d" (inl), "d" (in2));
}

Generated assembly code:

ld.w di15,inl

ld.w dO,in2

mul d15, di5, do
st.w out,dl5

Example 5: reserving registers

Sometimes an instruction knocks out certain specific registers. The most common example of this is a
function call, where the called function is allowed to do whatever it likes with some registers. If this is the
case, you can list specific registers that get clobbered by an operation after the inputs.

Same as Example 4, but now register dO is a reserved register. You can do this by adding a reserved
register list (: " d0"). As you can see in the generated assembly code, register d0 is not used (the first
register used is d1).

int inl, in2, out;

29

TASKING SmartCode - TriCore User Guide

void multiply32(void)

{
__asn("mul %O, %, wR"
"=d" (out)
"d" (inl), "d" (in2)
"do")
}

Generated assembly code:

ld.w di5,inl

ld.w di1,in2

nmul d15, di15, di
st.w out,dl5

Example 6: use a register for an intermediate result
The following example demonstrates the use of an intermediate result.

int inl, in2, out;

void test(void)

{
int tenp_result;
__asn("extr %O, 9%, #31, #1" :"=d"(temp_result) :"d"(inl));
__asn("sel %, 9%, 9%, #0" :"=d"(out) :"d"(tenp_result),"d"(in2));
}

Generated assembly code:

ld.w di5,inl

extr d15, d15, #31, #1
ld.w dO,in2

sel d15, di5, do, #0
st.w out,dl5

Example 7: use the same register for input and output

As input constraint you can use a number to refer to an output parameter. This tells the compiler that the
same register can be used for the input and output parameter. When the input and output parameter are
the same C expression, these will effectively be treated as if the input parameter is also used as output.
In that case it is allowed to write to this register. For example:

inline int foo(int parl, int par2, int * par3)

{
int retval ue;
__asn(
"sh od, #-2\n\t"

"add %, %\ n\t"

30

C Language

"st.w [9%],%\n\t"

" nmov %0, 92"

"=&d" (retvalue), "=d" (parl), "=d" (par?2)
;o "1" (parl), "2" (par2), "a" (par3)

)
return retval ue;

}
int result,parm

voi d func(void)

{
}

In this example the "1" constraint for the input parameter par 1 refers to the output parameter par 1, and
similar for the "2" constraint and par 2. In the inline assembly %4 (par 1) and %2 (par 2) are written. This
is allowed because the compiler is aware of this.

result = foo(1000, 1000, &arm ;

This results in the following generated assembly code:

nmov di5, #1000
| ea alsb, parm

nov do, d15
sh dis, #-2
add do, d15
st.w [alb5], do
nov di, do

st.w result,dl

However, when the inline assembly would have been as given below, the compiler would have assumed
that %4 (par 1) and 92 (par 2) were read-only. Because of the i nl i ne keyword the compiler knows that
par 1 and par 2 both contain 1000. Therefore the compiler can optimize and assign the same register to
% and 9%2. This would have given an unexpected result.

__as
"sh 94, #-2\n\t"
"add 92, %\ n\t"
"st.w [98],%\n\t"
" nov %, R"
"=&d" (retval ue)
"d" (parl), "d" (par2), "a" (par3)
)

Generated assembly code:

mv d15, #1000
| ea als, parm

31

TASKING SmartCode - TriCore User Guide

sh d15, #-2

add di5, d15 ; sane register, but is expected read-only
st.w [alb],dl5

nov do, d15

st.w result,do ; contains unexpected result

Example 8: accessing individual registers in a register pair

You can access the individual registers in a register pair by adding a '." after the operand specifier in the
assembly part, followed by the index in the register pair.

int outl, out?2;

voi d foo(doubl e din)
{
_asm("ld.w %, %.0\n"
"\tld.wod, %R.1":"=&d"(outl),"=d"(out2):"e"(din));
}
The first | d. winstruction uses index #0 of argument 2 (which is a double placed in a DxDx register) and

the second | d. winstruction uses index #1. The input operand is located in register pair d4/d5. The
assembly output becomes:

ld.w di5, d4

ld.w dO, e4,1 ; note that e4,1 corresponds to d5
st.w outl,dl5

st.w out2,dO

If the index is not a valid index (for example, the register is not a register pair, or the argument has not a
register constraint), the '." is passed into the assembly output. This way you can still use the "' in assembly
instructions.

1.7. Attributes

You can use the keyword __attri but e__ to specify special attributes on declarations of variables,
functions, types, and fields.

Syntax:
__attribute_ ((nane,...))
or:

nane

The second syntax allows you to use attributes in header files without being concerned about a possible
macro of the same name. This second syntax is only possible on attributes that do not already start with
an underscore. For example, you may use __noreturn__insteadof __attri bute__((noreturn)).

32

C Language

The following attributes are supported:

abs_addr

Youcanuse __attribute__((abs_addr)) to specify that the function or variable should only be
accessed at its absolute address, not relative to anything. This implies that functions will be called indirectly
and variables will be accessed similarly to those qualified with __f ar . The attribute is useful for making
calls or accessing global data from within a Position-Independent Module to "static" software located at
a fixed address in memory.

See C compiler option --pic=A12. See also attribute i f _j unp_t ab.
Example:
extern int global _status __attribute_ ((abs_addr));

When compiled with C compiler option --pic=A12 and specifying the address of the variable with, for
example, a linker script (see Section 7.9, Controlling the Linker with a Script) like this:

"gl obal _status" = 0x80000000 + GLOBAL_STATUS OFFSET;

a read or write to the variable will generate code that will read or write to the absolute address 0x80000000
+ GLOBAL_STATUS_OFFSET.

alias("symbol")

Youcanuse __attribute_ ((alias("synbol"))) to specify that the function declaration appears
in the object file as an alias for another symbol. For example:

void __f() { /* function body */; }
void f() __attribute_ ((weak, alias("__f")));

declares 'f ' to be a weak alias for'__f".

__align(value), aligned(value)

Youcanuse __attribute__ ((__align(n))) toincrease the alignment of variables or functions. If
you apply an alignment with a value lower than the default alignment of the variable or function, this has
no effect on the alignment of the variable or function. The C compiler issues a warning in that case. The
alignment must be a power of two and larger than or equal to 2. When a function is inlined the attribute
has no effect on the inlined code, the attribute is ignored. See also Section 1.1.4, Changing the Alignment:
__unaligned, _ packed __and __align().

Instead of __al i gn() you can also use the GNU compatible attribute al i gned() .
const

Youcanuse __attribute__((const)) to specify that a function has no side effects and will not
access global data. This can help the compiler to optimize code. See also attribute pur e.

The following kinds of functions should not be declared __const __:

33

TASKING SmartCode - TriCore User Guide

A function with pointer arguments which examines the data pointed to.

« A function that calls a non-const function.

export

Youcanuse __attribute__ ((export)) to specify that a variable/function has external linkage and
should not be removed. During MIL linking, the compiler treats external definitions at file scope as if they
were declared st at i c. As a result, unused variables/functions will be eliminated, and the alias checking
algorithm assumes that objects with static storage cannot be referenced from functions outside the current
module. During MIL linking not all uses of a variable/function can be known to the compiler. For example
when a variable is referenced in an assembly file or a (third-party) library. With the expor t attribute the
compiler will not perform optimizations that affect the unknown code.

int i __attribute__((export)); /* 'i' has external |inkage */

flatten

Youcanuse __attribute__ ((flatten)) toforce inlining of all function calls in a function, including
nested function calls.

Unless inlining is impossible or disabled by __attri bute__((noinline)) for one of the calls, the
generated code for the function will not contain any function calls.

format(type,arg_string_index,arg_check_start)

Youcanuse __attribute__ ((format(type,arg_string_index,arg_check_start))) to
specify that functions take pri ntf, scanf, strfti nme or st rf non style arguments and that calls to
these functions must be type-checked against the corresponding format string specification.

type determines how the format string is interpreted, and should be pri ntf, scanf,strfti me or
strfron.

arg_string_index is a constant integral expression that specifies which argument in the declaration of the
user function is the format string argument.

arg_check_start is a constant integral expression that specifies the first argument to check against the
format string. If there are no arguments to check against the format string (that is, diagnostics should only
be performed on the format string syntax and semantics), arg_check_start should have a value of 0. For
strfti me-style formats, arg_check_start must be 0.

Example:
int foo(int i, const char * ny_format, ...) __attribute__((format(printf, 2,

The format string is the second argument of the function f 0o and the arguments to check start with the
third argument.

34

3)));

C Language

if jump_tab

Youcanuse __attribute_ ((if_junp_tab)) onaninitialized global variable to instruct the compiler
to generate jump instructions instead of function addresses when generating initialization of the variable.
You can use it on a single function pointer, an array of function pointers or on a st r uct that contains
function pointers and/or arrays thereof.

The attribute can be useful for decoupling the interface from an implementation and keeping the interface
at a stable memory address, which is easier to do for a small piece of code consisting of jumps than for
a large and changing implementation.

If a jump instruction becomes too far away from its target at link time, the linker will insert long branch
veneers (see Linker option --long-branch-veneers).

Example:

void entry func_1(void);
int entry func_int(int i);

#def i ne AT_BASE 0x80000100

struct static_interface

{
int version;
void (*funcl)(void);
int (*func2)(int);
s
struct static_interface ifs __attribute_ ((if_junp_tab)) __at(AT_BASE)
={ 3, /] offset +0
&entry func_1, /] offset +4

&entry func_int, // offset +8

b

So now a call to a ghost function at address AT_BASE+4 will actually callent ry_func_1() via a jump,
and a call to AT_BASE+8 will call ent ry_func_i nt () .You can use attribute abs_addr in the
Position-Independent Module's code to arrange for the calls to an interface defined this way.

jump

Youcanuse __attribute__ ((junp)) to specify that a function can only be jumped to. The compiler
generates a jump instruction instead of a call instruction. This is for example used in the startup code
generation:

static void __noinline__ _ noreturn__ _ junp__ _start(void);
When you call _start () inyour C source, the compiler generates:

j _start

35

TASKING SmartCode - TriCore User Guide

leaf

Youcanuse __attribute__((Ieaf)) tospecify that a function is a leaf function. A leaf function is
an external function that does not call a function in the current compilation unit, directly or indirectly. The
attribute is intended for library functions to improve dataflow analysis. The attribute has no effect on
functions defined within the current compilation unit.

malloc

Youcanuse __attribute__((malloc)) toimprove optimization and error checking by telling the
compiler that:

» The return value of a call to such a function points to a memory location or can be a null pointer.

» On return of such a call (before the return value is assigned to another variable in the caller), the memory
location mentioned above can be referenced only through the function return value; e.g., if the pointer
value is saved into another global variable in the call, the function is not qualified for the malloc attribute.

* The lifetime of the memory location returned by such a function is defined as the period of program
execution between a) the point at which the call returns and b) the point at which the memory pointer
is passed to the corresponding deallocation function. Within the lifetime of the memory object, no other
calls to malloc routines should return the address of the same object or any address pointing into that
object.

noinline

Youcanuse __attribute__((noinline)) toprevent a function from being considered for inlining.
Same as keyword __noi nl i ne or #pragnma noi nl i ne.

always_inline

With __attribute__((always_inline)) you force the compiler to inline the specified function,
regardless of the optimization strategy of the compiler itself. Same as keyword i nl i ne or #pr agna
i nline.

noreturn

Some standard C function, such as abort and exit cannot return. The C compiler knows this automatically.
Youcanuse __attribute__((noreturn)) to tell the compiler that a function never returns. For
example:

void fatal () __attribute__((noreturn));

void fatal (/* ... */)
{

/* Print error nessage */
exit(1);
}

36

C Language

The function f at al cannot return. The compiler can optimize without regard to what would happen if
f at al ever did return. This can produce slightly better code and it helps to avoid warnings of uninitialized
variables.

pic_call(func_id, descr_tab_ptr)

Youcanuse __attribute_ ((pic_call (func_id, descr_tab_ptr))) tospecify that the function
belongs to a TriCore EABI compliant position-independent module (PIM) and its address should be
calculated using its integer func_id and the pointer to the PIM's descriptor table descr_tab_ptr. See C
compiler option --pic=A12. The compiler will also generate code to set register A12 to the value of that
pointer before making the call as required by the TriCore EABI.

Example:

void ** destab_ptr; // should be set up to point to PIMs descriptor table
void pic_func_2 (const char* s, int i)
__attribute__((pic_call(2, destab_ptr)));

voi d mai n(voi d)

/1 Function call
pic_func_2("test", 42);
}

This function call will transfer control to the third entry (since func_id is zero-based) in the module's entry
function table with the register A12 set to the value of dest ab_ptr.

overloadable

Youcanuse __attribute__ ((overl oadabl e)) to define multiple functions with the same name,
but with different prototypes. This provides a limited form of function overloading. Function overloading
is restricted to direct calls.

It is not possible to have both a normal and an over | oadabl e function of the same name. In that case,
the normal function takes precedence. The over | oadabl e attribute is ignored for functions without a
prototype.

When calling a function for which only overloadable definitions are visible, the function with the best match
is selected. The best match is the function with the correct number of arguments, requiring the least
amount of argument conversions. When there are no matches, or when there are multiple ambiguous
matches, an error is generated.

protect

Youcanuse__attribute_ ((protect)) toexclude avariable/function from the duplicate/unreferenced
section removal optimization in the linker. When you use this attribute, the compiler will add the "protect"”
section attribute to the symbol's section. Example:

int i __attribute__ ((protect));

37

TASKING SmartCode - TriCore User Guide

Note that the protect attribute will not prevent the compiler from removing an unused variable/function
(see the used symbol attribute).

This attribute is the same as #pr agna prot ect/ endpr ot ect .

pure

Youcanuse __attribute__ ((pure)) to specify that a function has no side effects, although it may
read global data. Such pure functions can be subject to common subexpression elimination and loop
optimization. See also attribute const .

section("section_name")

Youcanuse__attribute_ ((section("nanme"))) to specify that a function or variable must appear
in the object file in a particular section. For example:

voi d foobar(void) __attribute__ ((section(".text.foobar")));
int baz __attribute__((section(".zbss.baz")));

puts the function f oobar in the section named . t ext . f oobar, and puts variable baz in the section
named . zbss. baz.

Note that this a GNU style attribute. It does not follow the TriCore EABI guidelines. It does not
add the section prefix as with #pr agma sect i on. It gives you full control over the section name.
So, to be EABI compliant make sure you provide the correct section prefix.

See also #pragnma secti on and Section 1.12, Compiler Generated Sections.

uncached

Youcanuse __attribute__ ((uncached)) for variables to instruct the linker to allocate the
corresponding variable in a non-cached memory segment. If a variable is declared with the attribute
uncached, its corresponding section name includes a '. uncached' prefix, for example,

. zbss. uncached. ny_nodul e. ny_at omi c_var . Atomic variables automatically imply the attribute
uncached. Attribute uncached has no effect on local variables. The C compiler issues a warning that
the attribute uncached is ignored for the automatic object.

used

Youcanuse __attribute_ ((used)) to prevent an unused symbol from being removed by the
compiler. Example:

static const char copyright[] __attribute__((used)) = "Copyright 2021 TASKI NG BV";
When there is no C code referring to the copyr i ght variable, the compiler will normally remove it. The

__attribute__((used)) symbol attribute prevents this. Because the linker should also not remove
this symbol, you should considertouse __attri bute_ ((used, protect)).

38

C Language

unused

Youcanuse __attribute__((unused)) to specify that a variable or function is possibly unused. The
compiler will not issue warning messages about unused variables or functions.

weak

Youcanuse __attribute__ ((weak)) tospecify that the symbol resulting from the function declaration
or variable must appear in the object file as a weak symbol, rather than a global one. This is primarily
useful when you are writing library functions which can be overwritten in user code without causing
duplicate name errors.

See also #pr agma weak.

39

TASKING SmartCode - TriCore User Guide

1.8. Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options. Put pragmas in your C source where you want them to take effect. Unless stated
otherwise, a pragma is in effect from the point where it is included to the end of the compilation unit or
until another pragma changes its status.

The syntax is:

#pragma [| abel :] pragma-spec pragnma-argunents [on | off | default | restore]

or:

_Pragma("[Ilabel :] pragma-spec pragma-argunments [on | off | default | restore]"”)

Some pragmas can accept the following special arguments:

on switch the flag on (same as without argument)
of f switch the flag off

def aul t set the pragma to the initial value

restore restore the previous value of the pragma
Examples:

/1l by default all warnings are shown

#pragnma warni ng 535 /1 disable W35

#pragnma war ni ng 530 /1 also disable W30

const char var_1 = 0x5678; // W30 is not shown

var_2; /1 W35 is not shown

#pragma warni ng restore I/l restore one level, only W35 is disabl ed
const char var_3 = 0x56789; // W30 is shown

#pragma war ni ng defaul t /'l back to default, all warnings are shown
var_4; /1 W35 is shown

Label pragmas

Some pragmas support a label prefix of the form "label:" between #pr agma and the pragma name. Such
a label prefix limits the effect of the pragma to the statement following a label with the specified name.
The r est or e argument on a pragma with a label prefix has a special meaning: it removes the most
recent definition of the pragma for that label.

You can see a label pragma as a kind of macro mechanism that inserts a pragma in front of the statement
after the label, and that adds a corresponding #pragma ... rest ore after the statement.

Compared to regular pragmas, label pragmas offer the following advantages:

» The pragma text does not clutter the code, it can be defined anywhere before a function, or even in a
header file. So, the pragma setting and the source code are uncoupled. When you use different header
files, you can experiment with a different set of pragmas without altering the source code.

40

C Language

» The pragma has an implicit end: the end of the statement (can be a loop) or block. So, no need for
pragma restore / endoptimize etc.

Example:

#pragma | abl:optimze P

volatile int v;

void f(void)

{
int i, a
a = 42,
labl: for(i=1; i<10; i++)
{
/* the entire for loop is part of the pragma optim ze */
a+=i;
}
vV = a;

}
Supported pragmas

The compiler recognizes the following pragmas, other pragmas are ignored. On the command line you
can use ctc --help=pragmas to get a list of all supported pragmas. Pragmas marked with (*) support a
label prefix.

STDC FP_CONTRACT [on | off | default | restore] (*)

This pragma is defined in ISO C99/C11. With this pragma you can control the +contract flag of C compiler
option --fp-model.

alias symbol=defined_symbol

Define symbol as an alias for defined_symbol. It corresponds to a . ALI AS directive at assembly level.
The symbol should not be defined elsewhere, and defined_symbol should be defined with static storage
duration (not extern or automatic).

align {value | default | restore} (*)

Increase the alignment of variables or functions. If you apply an alignment with a value lower than the
default alignment of the variable or function, this has no effect on the alignment of the variable or function.
The C compiler issues a warning in that case. When a function is inlined the pragma has no effect on the
inlined code, the pragma is ignored. The alignment value must be a power of two or 0. Value 0 defaults
to the compiler natural object alignment.

See C compiler option --align.

41

TASKING SmartCode - TriCore User Guide

assume_if {value | default | restore} (*)

Assume that the expression of the i f statement is true or false. You can use this pragma to give branch
prediction hints to the C compiler for the branch target alignment optimization. Branch target alignment
is one of the execution speed optimizations. Reasonable alignment is based on branch prediction. This
pragma affects the subsequent controlling expression of i f statements from this pragma occurrence until
another pragma assune_i f is encountered. Possible values are:

true, theif expression is likely to be true
fal se, theif expression is unlikely to be true
undef , no hints for the i f expression. This is the default value.

Depending on the branch prediction hints, the C compiler generates alignment (. al i gn 8 directive) for
the respective branch target when the C compiler option --branch-target-align is specified. If the hint
has value undef the option has no effect.

Example: (bt a. c)

#if defined(__TASKING)
#define LI KELY(expr) (_Pragnma("assunme_if true")(expr)_Pragma("assume_if restore"))
#define UNLI KELY(expr) (_Pragma("assunme_if false")(expr)_Pragma("assume_if restore"))
#el se
#define LI KELY(expr) (expr)
#define UNLI KELY(expr) (expr)
#endi f

void fO(void);
void f1(void);
void f2(void);
void f3(void);

void f4(int n)
{
fo();
if (LIKELY(n == 0))
f1();
el se
f2();
£30);
}

void f5(int n)
{
f0();
if (UNLIKELY(n == 0))
f1();
el se
f2();
£3();

42

C Language

}
void f6(int n)
{
f0();
if (UNLIKELY(n == 0))
f1(0);
£30);
}

Invoke the C compiler to see the differences, without branch target alignment:
ctc -s bta.c -0 bta_off.src
or with branch target alignment:

ctc --branch-target-align -s bta.c -0 bta_on.src

boolean [on | off | default | restore] (*)

This pragma is used to mark the macros "false” and "true" from the library header file st dbool . h as
"essentially BOOLEAN", which is a concept from the MISRA C:2012 standard.

clear / noclear [on | off | default | restore] (*)

By default, uninitialized global or static variables are cleared to zero on startup. With pragma nocl ear,
this step is skipped. Pragma cl ear resumes normal behavior. This pragma applies to constant data as
well as non-constant data.

See C compiler option --no-clear.

code_core_association {value | default | restore} (*)

Switch to another code core association, where value is one of share, privaten (for core n) or clone. The
code core association of this pragma is assigned to the functions declarations or definitions that follow.

See C compiler option --code-core-association.
compactmaxmatch {value | default | restore} (*)
With this pragma you can control the maximum size of a match.

See C compiler option --compact-max-size.
data_core_association {value | default | restore} (*)

Switch to another data core association, where value is one of share, privaten (for core n) or clone. The
data core association of this pragma is assigned to the data declarations that follow.

See C compiler option --data-core-association.

43

TASKING SmartCode - TriCore User Guide

default_aO_size [value] [default | restore] (*)
With this pragma you can specify a threshold value for __a0 allocation.

See C compiler option --default-a0-size (-Z).

default_al_size [value] [default | restore] (*)
With this pragma you can specify a threshold value for __al allocation.

See C compiler option --default-al-size (-Y).

default_near_size [value] [default | restore] (*)
With this pragma you can specify a threshold value for __near allocation.

See C compiler option --default-near-size (-N).

extension isuffix [on | off | default | restore] (*)

Enables a language extension to specify imaginary floating-point constants. With this extension, you can
use an "i" suffix on a floating-point constant, to make the type _| magi nary.

float 0.5i

extern symbol

Normally, when you use the C keyword ext er n, the compiler generates an . EXTERN directive in the
generated assembly source. However, if the compiler does not find any references to the ext er n symbol
in the C module, it optimizes the assembly source by leaving the . EXTERN directive out.

With this pragma you can force an external reference (. EXTERN assembler directive), even when the
symbol is not used in the module.

for_constant_data_use_memory memory
for_extern_data_use_memory memory
for_initialized_data_use_memory memory
for_uninitialized_data_use_memory memory

Use the specified memory for the type of data mentioned in the pragma name. You can specify the
following memories: near , f ar, a0, al, a8 or a9.

This pragma overrules the pragmas def aul t _a0_si ze, def aul t _al_si ze, def aul t _near _si ze.

fp_negzero [on | off | default | restore] (*)

With this pragma you can control the +negzero flag of C compiler option --fp-model.

44

C Language

fp_nonan [on | off | default | restore] (*)

With this pragma you can control the +nonan flag of C compiler option --fp-model.

fp_rewrite [on | off | default | restore] (*)

With this pragma you can control the +rewrite flag of C compiler option --fp-model.

immediate_in_code [on | off | default | restore] (*)
With this pragma you force the compiler to encode all immediate values into instructions.

See C compiler option --immediate-in-code.

indirect [on | off | default | restore] (*)

Generates code for indirect function calling.
See C compiler option --indirect.

Note that you can use the linker option --long-branch-veneers to resolve out-of-ranch function calls by
the linker automatically.

indirect_runtime [on | off | default | restore] (*)
Generates code for indirect calls to run-time functions.

See C compiler option --indirect-runtime.

inline / noinline / smartinline [default | restore] (*)

See Section 1.11.3, Inlining Functions: inline.

inline_max_incr {value | default | restore} (*)
inline_max_size {value | default | restore} (*)

With these pragmas you can control the automatic function inlining optimization process of the compiler.
It has effect only when you have enable the inlining optimization (C compiler option --optimize=+inline).

See C compiler options --inline-max-incr / --inline-max-size.
loop_alignment {value | default | restore} (*)

Specify the alignment loop bodies will get when --loop=+value is enabled. Loops are only aligned if the
align-loop optimization is enabled and the tradeoff is set to speed (<=2).

See C compiler option --loop-alignment.

45

TASKING SmartCode - TriCore User Guide

macro / nomacro [on | off | default | restore] (*)

Turns macro expansion on or off. By default, macro expansion is enabled.

maxcalldepth {value | default | restore} (*)
With this pragma you can control the maximum call depth. Default is infinite (-1).

See C compiler option --max-call-depth.

message "message" ...

Print the message string(s) on standard output.

nomisrac [nr,...] [default | restore] (*)

Without arguments, this pragma disables MISRA C checking. Alternatively, you can specify a
comma-separated list of MISRA C rules to disable.

See C compiler option --misrac and Section 4.7.2, C Code Checking: MISRA C.

object_comment "string" ... | default | restore (*)

This pragma generates a. conment section in the assembly file with the specified string. After assembling,
this string appears in the generated . o or . el f object file. If you specify this pragma more than once in
the same module, only the last pragma has effect.

See C compiler option --object-comment.

optimize [flags] / endoptimize [default | restore] (*)

You can overrule the C compiler option --optimize for the code between the pragmas opt i mi ze and
endopt i m ze. The pragma works the same as C compiler option --optimize.

See Section 4.6, Compiler Optimizations.

pack {0 | 2 | default | restore} (*)

Specifies packing of structures. See Section 1.1.3, Packed Data Types.

profile [flags] / endprofile [default | restore] (*)
Control the profile settings. The pragma works the same as C compiler option --profile. Note that this

pragma will only be checked at the start of a function. endpr of i | e switches back to the previous profiling
settings.

46

C Language

profiling [on | off | default | restore] (*)

If profiling is enabled on the command line (C compiler option --profile), you can disable part of your
source code for profiling with the pragmas profili ng of f and profiling.

protect / endprotect [on | off | default | restore] (*)

With these pragmas you can protect sections against linker optimizations. This excludes a section from
unreferenced section removal and duplicate section removal by the linker. endpr ot ect restores the
default section protection.

runtime [flags | default | restore] (*)

With this pragma you can control the generation of additional code to check for a number of errors at
run-time. The pragma argument syntax is the same as for the arguments of the C compiler option --runtime.
You can use this pragma to control the run-time checks for individual statements. In addition, objects
declared when the "bounds" sub-option is disabled are not bounds checked. The "malloc" sub-option

cannot be controlled at statement level, as it only extracts an alternative malloc implementation from the
library.

section all ["name" | default | restore] (*)

section type ["name" | default | restore] (*)
section_name_with_module [on | off | default | restore] (*)
section_name_with_symbol [on | off | default | restore] (*)

Changes section names. See Section 1.12, Compiler Generated Sections and C compiler option
--rename-sections for more information.

section code_init | const_init | vector_init

At startup copies corresponding sections to RAM for initialization. See Section 1.12.2, Influence Section
Definition.

section data_overlay

Allow overlaying data sections.

source / nosource [on | off | default | restore] (*)
With these pragmas you can choose which C source lines must be listed as comments in assembly output.

See C compiler option --source.

stdinc [on | off | default | restore] (*)

This pragma changes the behavior of the #i ncl ude directive. When set, the C compiler options
--include-directory and --no-stdinc are ignored.

47

TASKING SmartCode - TriCore User Guide

switch auto | jumptab | linear | lookup | default | restore (*)
With these pragmas you can overrule the C compiler chosen switch method.

See Section 1.10, Switch Statement and C compiler option --switch.

tradeoff level [default | restore] (*)

Specify tradeoff between speed (0) and size (4). See C compiler option --tradeoff

unroll_factor value / endunroll_factor [default | restore] (*)

Specify how many times the following loop should be unrolled, if possible. At the end of the loop use
endunrol | _factor.

See C compiler option --unroll-factor.

user_mode user-0 | user-1 | kernel | hypervisor | default | restore (*)
With this pragma you specify the user mode (I/O privilege mode) the TriCore runs in.

See C compiler option --user-mode.

warning [number,...] [default | restore] (*)

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed.

weak symbol

Mark a symbol as "weak" (. WEAK assembler directive). The symbol must have external linkage, which
means a global or external object or function. A static symbol cannot be declared weak.

A weak external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference. When a weak external reference cannot be resolved, the linker substitutes the null
pointer. If a weak external function remains undefined at the final link time and is called or jumped to by
its absolute address, this would result in a call or jump to address 0, possibly triggering a bus error. The
linker replaces such a call or jump instruction with a nop to prevent the error.

A weak definition can be overruled by a normal global definition. The linker will not complain about the
duplicate definition, and ignore the weak definition.

1.9. Predefined Preprocessor Macros

You can use the following predefined macros in your C source. The macros are useful to create conditional
C code.

48

C Language

Macro Description

__BUILD__ Identifies the build number of the compiler in the format yymmddqq (year,
month, day and quarter in UTC).

__CORE_core___ A symbol is defined depending on the option --core=core. The core is
converted to uppercase and '.' is removed. For example, if --core=tc1.8 is
specified, the symbol __CORE_TC18__is defined. When no --core is
supplied, the compiler also defines __ CORE_TC18__, as tc1.8 s the default
and only core supported.

__CTC__ Identifies the compiler. You can use this symbol to flag parts of the source
which must be recognized by the TASKING ctc compiler only. It expands
to 1.

__CPU__ Expands to the name of the CPU supplied with the control program option
--cpu=cpu. When no --cpu is supplied, or when you do not use the control
program, this symbol is not defined. For example, if --cpu=tc49x is specified
to the control program, the symbol __ CPU__ expands to t c49x.

__CPU_cpu__ A symbol is defined depending on the control program option --cpu=cpu.
The cpu is converted to uppercase. For example, if --cpu=tc49x is specified
to the control program, the symbol __ CPU_TC49X__is defined. When no
--cpu is supplied, or when you do not use the control program, this symbol
is not defined.

_ DATE___ Expands to the compilation date: “mmm dd yyyy”.

__DOUBLE_FP__ Expands to 1.

__DSPC__ Indicates conformation to the DSP-C standard. It expands to 1.

_ DSPC_VERSION__ Expands to the decimal constant 200001L.

__FILE__ Expands to the current source file name.

__FPU__ Expands to 1 when the option --fp-model=+soft is not used. Otherwise
unrecognized as a macro.

__LINE__ Expands to the line number of the line where this macro is called.

__MISRAC_VERSION__

Expands to the MISRA C version used 1998, 2004 or 2012 (option
--misrac-version). The default is 2004.

__PRECISE_LIB_ FP__

Expands to 1 when the option --fp-model=-fastlib is used. The compiler
uses precise library functions for certain floating-point operations. Otherwise
unrecognized as a macro.

__PIC__

Expands to 12 when option --pic=A12 is used. Otherwise unrecognized as
a macro.

__PROF_ENABLE__

Expands to 1 if profiling is enabled, otherwise expands to 0.

__REVISION__

Expands to the revision number of the compiler. Digits are represented as
they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0rl -> 1, v1.0rb -> -1

49

TASKING SmartCode - TriCore User Guide

Macro Description

_ SFRFILE__(cpu) If control program option --cpu=cpu is specified, this macro expands to the
filename of the used SFR file, including the pathname and the < >. The cpu
is the argument of the macro. For example, if --cpu=tc49x is specified, the
macro __SFRFILE__(__CPU__) expandsto__ SFRFILE__ (tc49x),
which expands to <sfr/regt c49x. sfr>.

__STDC__ Identifies the level of ANSI standard. The macro expands to 1 if you set
option --language (Control language extensions), otherwise expands to 0.

__STDC_HOSTED__ Always expands to 0, indicating the implementation is not a hosted
implementation.

__STDC_NO_ATOMICS__ |(C11 only) Expands to 0 to indicate that this implementation supports atomic
types and the st dat om c. h header file.

__STDC_NO_THREADS__ |(C11 only) Expands to 1 to indicate that this implementation does not support
the t hr eads. h header file.

__STDC_VERSION_ Identifies the ISO C version number. Expands to 201112L for ISO C11,
199901L for ISO C99 or 199409L for ISO C90.

__TASKING__ Identifies the compiler as a TASKING compiler. Expands to 1 if a TASKING
compiler is used.

__TIME__ Expands to the compilation time: “hh:mm:ss”

__VERSION__ Identifies the version number of the compiler. For example, if you use version

6.3r1 of the compiler, _ VERSION__ expands to 6003 (dot and revision
number are omitted, minor version number in 3 digits).

Example

#ifdef _ FPU _
/* this part is only valid if an FPU is present */

#endi f

1.10. Switch Statement

The TASKING C compiler supports three ways of code generation for a switch statement: a jump chain
(linear switch), a jump table or a lookup table.

A jump chain is comparable with an if/else-if/else-if/else construction. A jump table table filled with target
addresses for each possible switch value. The switch argument is used as an index within this table. A
lookup table is a table filled with a value to compare the switch argument with and a target address to
jump to. A binary search lookup is performed to select the correct target address.

By default, the compiler will automatically choose the most efficient switch implementation based on code
and data size and execution speed. With the C compiler option --tradeoff you can tell the compiler to put
more emphasis on speed than on ROM size.

50

C Language

Especially for large switch statements, the jump table approach executes faster than the lookup table
approach. Also the jump table has a predictable behavior in execution speed: independent of the switch
argument, every case is reached in the same execution time. However, when the case labels are distributed
far apart, the jump table becomes sparse, wasting code memory. The compiler will not use the jump table
method when the waste becomes excessive.

With a small number of cases, the jump chain method can be faster in execution and shorter in size.

Note that a jump table or lookup table is part of a function and as such is considered code instead of data.

How to overrule the default switch method
You can overrule the compiler chosen switch method by using a pragma:

#pragma switch linear force jump chain code

#pragma switch junptab force jump table code

#pragma switch | ookup force lookup table code

#pragma switch auto let the compiler decide the switch method used (this is the default)

#pragma switch restore restore previous switch method

The switch pragmas must be placed before the swi t ch statement. Nested swi t ch statements use the
same switch method, unless the nested swi t ch is implemented in a separate function which is preceded
by a different switch pragma.

Example:

/* place pragma before function body */

#pragnma switch junptab

voi d test(unsigned char val)

{ I'* function containing the switch */
switch (val)

{
}

/* use junp table */

}

On the command line you can use C compiler option --switch.

51

TASKING SmartCode - TriCore User Guide

1.11. Functions

1.11.1. Calling Convention

Parameter passing

A lot of execution time of an application is spent transferring parameters between functions. The fastest
parameter transport is via registers. Therefore, function parameters are first passed via registers. If no
more registers are available for a parameter, the compiler pushes parameters on the stack.

Registers available for parameter passing are D4, D5, E4, D6, D7, E6, A4, A5, A6, A7. Up to 4 arithmetic
types and 4 pointers can be passed this way. A 64-bit argument is passed in an even/odd data register
pair. Parameter registers skipped because of alignment for a 64-bit argument are used by subsequent
32-bit arguments. Any remaining function arguments are passed on the stack. Stack arguments are
pushed in reversed order, so that the first one is at the lowest address. On function entry, the first stack
parameter is at the address (SP+0).

Structures and unions up to eight bytes are passed via a data register or data register pair. Larger
structures/unions are passed via the stack.

All function arguments passed on the stack are aligned on a multiple of 4 bytes. As a result, the stack
offsets for all types except float are compatible with the stack offsets used by a function declared without
a prototype.

Examples:
void funcl(int i, char * p, char c); /* D4 A4 D5 */
void func2(int i1, double d, int i2); /* D4 E6 D5 */

void func3(char cl1, char c2, char c3[]); /* D4 D5 A4 */
voi d func4(double di, int i1, double d2, int i2);
/* E4 D6 stack D7 */

Function return values

The C compiler uses registers to store C function return values, depending on the function return types.

Return Type Register
Arithmetic, structure or union <= 32 bits D2
Arithmetic, structure or union <= 64 bits D2/D3 (E2)
Pointer A2
Circular pointer A2/A3

When the function returns an arithmetic, structure or union type larger than 64 bits, it is copied to a "return
area" that is allocated by the caller. The address of this area is passed as an implicit first argument in A4.

Stack usage

The user stack on TriCore derivatives is used for parameter passing and the allocation of automatic and
temporary storage. The stack grows from higher addresses to lower addresses. The stack pointer (SP)

52

C Language

points to the bottom (low address) of the stack frame. The stack pointer alignment is 8 bytes. For more
information about the stack and frame layout refer to section 2.2.2 Stack Frame Management in the EABI.

Stack model: __stackparm

The function qualifier __st ackpar mchanges the standard calling convention of a function into a convention
where all function arguments are passed via the stack, conforming a so-called stack model. This qualifier
is only needed for situations where you need to use an indirect call to a function for which you do not
have a valid prototype.

Note that the TASKING TriCore compiler deviates from the EABI at this point. The EABI states
that objects larger than 64 bits must be passed via a pointer and a copy of the object is not
necessary. This is dangerous, because the user is then responsible for the copy object (if required).
Therefore, the TASKING TriCore compiler places ALL arguments on the stack.

The compiler sets the least significant bit of the function pointer when you take the address of a function
declared with the __st ackpar mqualifier, so that these function pointers can be identified at run-time.
The least significant bit of a function pointer address is ignored by the hardware.

Example:

voi d plain_func (int);
void __stackparm stack_func (int);
void call_indirect (unsigned int fp, int arg)
{
typedef __stackparmvoid (*SFP)(int);
typedef void (*RFP)(int);

SFP f p_st ack;
RFP fp_reg;
if (fp &1)

{

fp_stack = (SFP) fp;
fp_stack(arg);

}
el se
{
fp_reg = (RFP) fp;
fp_reg(arg);
}
}
void main (void)
{
call _indirect((unsigned int) plain_func, 1);
call _indirect((unsigned int) stack_func, 2);
}

53

TASKING SmartCode - TriCore User Guide

Function calling modes: __indirect

Functions are by default called with a single word direct call. However, when you link the application and
the target address appears to be out of reach (+/- 16 MB from the cal | orj instruction), the linker
generates an error. In this case you can use the __i ndi r ect keyword to force the less efficient, two
and a half word indirect call to the function:

int __indirect foo(void)

{
}
With C compiler option --indirect you tell the C compiler to generate far calls for all functions.

You can use the linker option --long-branch-veneers to resolve out-of-ranch function calls by the linker
automatically. The linker generates a so-called veneer (a.k.a. trampoline) if the target of a 24-bit PC-relative
call instruction is out-of-range. The call instruction is replaced by an absolute call to the veneer. The
veneer makes an indirect call to the original call target.

1.11.2. Register Usage

The C compiler uses the data registers and address registers according to the convention given in the
following table.

Register Usage Register |Usage

DO EO scratch AO global

D1 scratch Al global

D2 E2 return register for arithmetic types | A2 return register for pointers
and struct/union

D3 most significant part of 64 bit result | A3 scratch

D4 E4 parameter passing Ad parameter passing

D5 parameter passing A5 parameter passing

D6 E6 parameter passing A6 parameter passing

D7 parameter passing A7 parameter passing

D8 E8 saved register A8 global

D9 saved register A9 global

D10 E10 saved register A10 stack pointer

D11 saved register All link register

D12 E12 saved register Al12 saved register

D13 saved register A13 saved register

D14 El4 saved register Al4 saved register

D15 saved register, implicit pointer A15 saved register, implicit pointer

54

C Language

1.11.3. Inlining Functions: inline

With the C compiler option --optimize=+inline, the C compiler automatically inlines small functions in
order to reduce execution time (smart inlining). The compiler inserts the function body at the place the
function is called. The C compiler decides which functions will be inlined. You can overrule this behavior
with the two keywords i nl i ne (ISO-C) and __noi nl i ne.

With the i nl i ne keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)

{
unsigned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

If a function with the keyword i nl i ne is not called at all, the compiler does not generate code for it.

You must define inline functions in the same source module as in which you call the function, because
the compiler only inlines a function in the module that contains the function definition. When you need to
call the inline function from several source modules, you must include the definition of the inline function
in each module (for example using a header file).

With the __noi nl i ne keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs val;

}

Using pragmas: inline, noinline, smartinline

Instead of the i nl i ne qualifier, you can also use #pr agma i nl i ne and #pr agnma noi nl i ne to inline
a function body:

#pragma inline
unsi gned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

#pragma noi nline
void main(void)
{ . .

int i;

i = abs(-1);

55

TASKING SmartCode - TriCore User Guide

If a function has an i nl i ne/__noi nl i ne function qualifier, then this qualifier will overrule the current
pragma setting.

With the #pr agma noi nl i ne/#pragma snarti nl i ne you cantemporarily disable the default behavior
that the C compiler automatically inlines small functions when you turn on the C compiler option
--optimize=+inline.

With the C compiler options --inline-max-incr and --inline-max-size you have more control over the
automatic function inlining process of the compiler.

Combining inline with __asm to create intrinsic functions

With the keyword __asmit is possible to use assembly instructions in the body of an inline function.
Because the compiler inserts the (assembly) body at the place the function is called, you can create your
own intrinsic function. See Section 1.11.5, Intrinsic Functions.

1.11.4. Interrupt and Trap Functions

The TriCore C compiler supports a number of function qualifiers and keywords to program interrupt service
routines (ISR) or trap handlers. Trap handlers may also be defined by the operating system if your target
system uses one.

An interrupt service routine (or: interrupt function, or: interrupt handler) is called when an interrupt event
(or: service request) occurs. This is always an external event; peripherals or external inputs can generate
an interrupt signals to the CPU to request for service. Unlike other interrupt systems, each interrupt has
a unique interrupt request priority number (IRPN). This number (0 to 255) is set as the pending interrupt
priority number (PIPN) in the interrupt control register (ICR) by the interrupt control unit. If multiple interrupts
occur at the same time, the priority number of the request with the highest priority is set, so this interrupt
is handled.

The TriCore vector table provides an entry for each pending interrupt priority number, not for a specific
interrupt source. A request is handled if the priority number is higher than the CPU priority number (CCPN).
An interrupt service routine can be interrupted again by another interrupt request with a higher priority.
Interrupts with priority number 0 are never handled.

A trap service routine (or: trap function, or: trap handler) is called when a trap event occurs. This is always

an event generated within or by the application. For example, a divide by zero or an invalid memory
access.

Overview of function qualifiers

With the following function qualifiers you can declare an interrupt handler or trap handler:

_interrupt() __interrupt_fast()
__interrupt8() __interrupt8_fast()
__hvinterrupt () __hvinterrupt_fast()
__hvinterrupt8() __hvinterrupt8_fast()
__trap() __trap_fast()
__hvtrap()

__vector_table()

56

C Language
There is one special type of trap function which you can call manually, the system call exception (trap
class 6). See Section 1.11.4.4, Defining a Trap Service Routine Class 6: __syscallfunc().
__syscal | func()
During the execution of an interrupt service routine or trap service routine, the system blocks the CPU
from taking further interrupt requests. With the following keywords you can enable interrupts again,

immediately after an interrupt or trap function is called:

__enabl e_ __bisr_()

Multi-core interrupt/trap vector table number

An interrupt vector table, trap vector table and hypervisor trap vector table is present for each core. These
vector tables are defined in the LSL filesi nttabnr. | sl ,traptabnr.|sl and hvtraptabnr.|sl.
The core vector table number nr corresponds to the TriCore core used. The default core ist cO and
therefore, the default vector table number is 0.

The compiler generates a vector table entry for an interrupt function or trap function. With the interrupt
function qualifier __vect or _t abl e you can assign it to one or more core vector table.

Syntax:
__vector_tabl e(vector_table_nunber,...)

When you do not specify __vect or _t abl e for an interrupt function or trap function, the default vector
table number 0 is used for functions with a clone or share code association. See also Section 1.4.1.2,
Code Core Association.

You do not have to specify a vector table number for an interrupt function or trap function with a private
code core association, the vector table corresponds to the private core number association. When you
do specify a vector table number for an interrupt function or trap function with a private code core
association, the number must correspond to the private core number association.

Fast interrupt functions or fast trap functions are only allowed for functions that have a share code core
association and can only be assigned to one vector table.

Restrictions of __vector _tabl e:
e __vector_tabl eis only allowed for multi-core TriCore derivatives.
» __vector_tabl eis only allowed for (fast) interrupt functions or trap qualified functions.

* __vector_t abl e does not accept more vector table numbers than defined by the number of cores
in the TriCore architecture.

e __vector _tabl e does not accept duplicate vector table numbers.

57

TASKING SmartCode - TriCore User Guide

Multi-VM interrupt vector table number

Interrupt vector tables are available for each core on every virtual machine. The compiler generates a
virtual-machine related vector table entry for an interrupt function. With the interrupt function qualifier
__vmyou can assign it to one or more virtual machine vector tables.

Syntax:

__vm(vm_nunber, ...)

Restrictions of __vm

* __vmis only allowed for TriCore 1.8 with virtualization.

* __vmis both allowed and required for non-hv (fast) interrupt functions only if option --virtualization is
enabled.

» __vmdoes not accept more virtual machine numbers than defined by the number of virtual machines
in the TriCore architecture.

» __vmdoes not accept duplicate vector table numbers.

* __vmis only allowed to have one value for fast interrupts.

1.11.4.1. Defining an Interrupt Service Routine: __ [hv]interrupt(), _ [hv]interrupt_fast(),
__[hv]interrupt8(), __[hv]interrupt8_fast()

With the function type qualifier __i nt er r upt () you can declare a function as an interrupt service routine.
The function type qualifier __i nt er rupt () takes one interrupt vector (0..255) as argument.

Interrupt functions cannot return anything and must have a void argument type list:

void __interrupt(vector) [__vector_table(nr,...)]
isr(void)

{

}

The argument vector identifies the entry into the interrupt vector table (0..255). Unlike other interrupt
systems, the priority number (PIPN) of the interrupt now being serviced by the CPU identifies the entry
into the vector table.

For an extensive description of the TriCore interrupt system, see the core Architecture Manual.

The compiler generates an interrupt service frame for interrupts. The difference between a normal function
and an interrupt function is that an interrupt function ends with an RFE instruction instead of a RET, and
that the lower context is saved and restored with a pair of SVLCX / RSLCX instructions when one of the
lower context registers is used in the interrupt handler.

When you define an interrupt service routine with the __i nt er rupt () qualifier, the compiler generates
an entry for the interrupt vector table. This vector jumps to the interrupt handler.

58

C Language

The compiler puts the interrupt vectors in sections with the following naming convention:
.text[.inttabnr].intvec.vector

The optional . i nt t abnr is generated when one of the cores of the TriCore 1.8 is selected. The core
vector table number nr corresponds to the TriCore core used. You can specify a core vector table by
using the interrupt function qualifier __vect or _t abl e.

The following example illustrates the function definition for a function for a software interrupt with vector
number 0x30:

int c;
void __interrupt(Ox30) __vector_table(1) transmt(void)
{
c = 1;
}

This results in a section called ". t ext . i nttabl. i nt vec. 030",

8 byte vector table entry support

An entry in the vector table can be 32 bytes or 8 bytes. For 32 byte entries you can use __i nterrupt ()
as explained above. For 8 byte vector table entries you can use function type qualifier __i nt errupt 8() .

void __interrupt8(vector) [__vector_table(nr,...)]
isr8(void)

{

}

An absolute jump instruction is generated to the interrupt service routine, which restricts the address
range to absolute 24. Loading a 32-bit address and jumping indirectly does not fit in an 8 byte vector.

The compiler puts the 8 byte interrupt vectors in sections with the following naming convention:
.text[.inttabnr].intvec8. vector

8 byte and 32 byte spacing is available at the same time, no LSL configuration is required. Mixing 8 byte
and 32 byte spacing on the same core is not possible, but different cores can use different spacings. You

define at compile which kind of spacing is required.

The vector spacing is configured at startup per core in the Base Interrupt Vector (BIV) with startup macro
__BIV_8BYTE_INIT (see cst art. c). Itis your responsibility that this is conform the spacing required
by the interrupt functions, because the compiler cannot check if usage of interrupt functions qualifiers
corresponds with the BIV configuration. In Eclipse you can set this macro as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Startup Configuration.

59

TASKING SmartCode - TriCore User Guide

In the right pane the Startup Configuration page appears.
3. Enable the option Initialize 8 byte spacing interrupt vector table.
4. Click Apply and Close.

The file cstart.h in your project is updated with the new value.

Fast interrupts

When you define an interrupt service routine with the __i nt errupt _f ast () qualifier, the interrupt
handler is directly placed in the interrupt vector table, thereby eliminating the jump code. There is only
32 bytes of space available for an entry in the vector table, but the compiler does not check this restriction.
Fast interrupts can span more than one vector. Fast interrupts are only restricted to one entry when the
next interrupt vector is also occupied. The linker generates an error when the fast interrupt does not fit
or overlaps with another vector or interrupt.

An entry in the vector table can be 32 bytes or 8 bytes using Base Interrupt Vector 0 (BIV[0]). For 8 byte
fast interrupts you use the __i nterrupt 8_f ast () qualifier.

Hypervisor interrupts
The C compiler supports the following function qualifiers for declaring a hypervisor interrupt handler:

__hvinterrupt(vector)
__hvinterrupt_fast(vector)
__hvinterrupt8(vector)
__hvinterrupt8_fast(vector)

The argument vector identifies the entry into the interrupt vector table and must be in the range 0 .. 255.

When you define an interrupt service routine with one ofthe __hvi nterrupt [8] [_fast] () qualifiers,
the interrupt handler return operation depends on what execution was interrupted. If VM execution was

interrupted, the Return From Hypervisor (RFH) instruction will be executed. If hypervisor execution was
interrupted, the Return From Exception (RFE) instruction will be executed.

The__hvinterrupt[8][_fast] () qualifiers are only accepted when you specify the hypervisor user
mode with C compiler option --user-mode=hypervisor.

Other than a dynamic return sequence, hypervisor ISRs are the same as regular ISRs. The compiler puts
them in the same interrupt vectors as corresponding non-hypervisor ISRs. The function qualifiers
__hvinterrupt8() and __hvi nterrupt 8_fast () are for 8-byte vector table support.
__hvinterrupt_fast() and __hvi nterrupt 8_f ast () are the fast hypervisor interrupt variants.

It is advised to use the hypervisor qualifiers __hvi nterrupt [8] [_fast] () for ISRs that are executed
in hypervisor mode to enable return to VM execution after interrupt was processed. Although
_interrupt[8][_fast] () qualifiers are allowed in hypervisor mode in case it is known that the
interrupt will be received when VM is being executed or if return to VM execution after interrupt was
processed, this is not advised.

60

C Language

1.11.4.2. Defining a Trap Service Routine: __trap(), __trap_fast()

The definition of a trap service routine is similar to the definition of an interrupt service routine. Trap
functions cannot accept arguments and do not return anything:

void _trap(class) [__vector_table(nr,...)]
tsr(void)
{

The argument class identifies the entry into the trap vector table. TriCore defines eight classes of trap
functions. Each class has its own trap handler.

When a trap service routine is called, the d15 register contains the so-called Trap Identification Number
(TIN). This number identifies the cause of the trap. In the trap service routine you can test and branch on
the value in d15 to reach the sub-handler for a specific TIN. With the intrinsic function __get _ti n() you
can use the TIN anywhere in your code.

The following table shows the classes supported by TriCore.

Class |Description

Class 0 |Reset

Class 1 |Internal Protection Traps

Class 2 |Instruction Errors

Class 3|Context Management

Class 4 |System Bus and Peripheral Errors

Class 5 |Assertion Traps

Class 6 |System Call

Class 7 |[Non-Maskable Interrupt

For a complete overview of the trap system and the meaning of the trap identification numbers, see the
core Architecture Manual.

Analogous to interrupt service routines, the compiler generates a trap service frame for interrupts.

When you define a trap service routine with the __t rap() qualifier, the compiler generates an entry for
the interrupt vector table. This vector jumps to the trap handler.

The compiler puts the trap vectors in sections with the following naming convention:
.text[.traptab{0]| 1| 2| 3| 4| 5}].trapvec.cl ass

The optional . t r apt ab0, . trapt abl,. traptab2,.traptab3,.traptab4or.traptab5isgenerated
when one of the cores of the TriCore 1.8 is associated with the trap vector. You can specify a core vector
table by using the interrupt function qualifier __vect or _t abl e.

The following example illustrates the function definition for a reset trap:

61

TASKING SmartCode - TriCore User Guide

int c;

void __trap(0) _ _vector_table(1) rst(void)
{

}

This results in a section called ". t ext . t rapt abl. t rapvec. 000".

c =1,

Fast traps

When you define a trap service routine with the __t rap_f ast () qualifier, the trap handler is directly
placed in the trap vector table, thereby eliminating the jump code. You should only use this when the trap
handler is very small, as there is only 32 bytes of space available in the vector table. The compiler does
not check this restriction.

1.11.4.3. Defining a Hypervisor Trap Service Routine: __hvtrap()

A hypervisor trap causes a switch from the currently executing VM to the hypervisor. The operation of
the hypervisor trap is similar to that of the standard trap mechanism. The __hvt rap() qualifier is only
accepted when you specify the hypervisor user mode with C compiler option --user-mode=hypervisor
(because to return from a trap handler an RFH instruction must be generated that is only available for
the hypervisor mode of TriCore 1.8).

The definition of a hypervisor trap service routine is also similar to the definition of regular trap service
routine. Hypervisor trap functions cannot accept arguments and do not return anything:

void __hvtrap(class) [__vector_table(nr,...)]
htsr(void)

{

}

The argument class identifies the entry into the hypervisor trap vector table. TriCore 1.8 defines eight
classes of trap functions. Each class has its own trap handler.

As with the regular traps, when a hypervisor trap service routine is called, the d15 register contains the
Trap Identification Number (TIN). This number has a different meaning for each hypervisor trap class.
With the intrinsic function __get _t i n() you can use the TIN anywhere in your code.

The following table shows the classes supported by TriCore 1.8.

Class Description TIN information in D15
Class 0 Hypervisor Call (HVCALL) D15 updated with const9 value
Class 1 Interrupt for non-running VM requiring D15 updated with target VM number
hypervisor intervention
Class 2 Level-2 Memory Protection trap TIN=0, L2_MPR
TIN=1, L2_MPW
Class 3 Level-2 Memory protection trap TIN=0, L2_MPX

62

C Language

Class Description TIN information in D15

Class 4 NMI for hypervisor TIN=0

Class 5 Access to a CSFR register that requires TIN=CSFR Read/Write address plus
hypervisor intervention read/write indicator

For a complete overview of the hypervisor trap system and the meaning of the trap identification numbers,
see the TC1.8 Functional Description manual.

The compiler generates a hypervisor trap service frame similar to that for the regular traps.

When you define a hypervisor trap service routine with the __hvt r ap() qualifier, the compiler generates
an entry for the hypervisor trap vector table. This vector jumps to the trap handler.

The compiler puts the trap vectors in sections with the following naming convention:
.text[.hvtraptab{O| 1] 2| 3| 4] 5}]. hvtrapvec. cl ass

The optional . hvt r apt ab0, . hvt rapt abl, . hvtrapt ab2, . hvtrapt ab3, . hvt r apt ab4 or
. hvt r apt ab5 is generated when one of the cores of the TriCore 1.8 is associated with the trap vector.
You can specify a core vector table by using the interrupt function qualifier __vect or _t abl e.

The following example illustrates the function definition for a hypervisor call trap:
int c;

void __hvtrap(0) _ vector _table(1) hypervisor_entry(void)
{

}

This results in a section called ". t ext . hvt r apt abl. hvt r apvec. 000".

c = 1;

1.11.4.4. Defining a Trap Service Routine Class 6: __syscallfunc()

A special kind of trap service routine is the system call trap. With a system call the trap service routine
of class 6 is called. For the system call trap, the trap identification number (TIN) is taken from the immediate
constant specified with the function qualifier __syscal | func():

__syscal Il func(TIN)

The TIN is a value in the range 0 and 255.You can only use __syscal | f unc() in the function declaration.
A function body is useless, because when you call the function declared with __syscal | func(), atrap
class 6 occurs which calls the corresponding trap service routine.

In case of the other traps, when a trap service routine is called, the system places a trap
identification number in d15.

Unlike the other traps, a class 6 trap service routine can contain arguments and return a value (the lower
context is not saved and restored). Arguments that are passed via the stack, remain on the stack of the

63

TASKING SmartCode - TriCore User Guide

caller because it is not possible to pass arguments from the user stack to the interrupt stack on a system
call. This restriction, caused by the TriCore's run-time behavior, cannot be checked by the compiler.

Example

The following example illustrates the definition of a class 6 trap service routine and the corresponding
system call:

#pragma alias syscall _a=trap6
#pragma alias syscall _b=trap6

__syscallfunc(1) int syscall_a(int, int);
__syscallfunc(2) int syscall_b(int, int);

int x;

void main(void)

{

[EnY

syscal |l _a(1, 2); /1 causes a trap class 6 with TIN
syscal |l _b(4,3); /1 causes a trap class 6 with TIN

X =
X =

int _trap(6) trap6(int a, int b) // trap class 6 handler

int tin;
tin = __get_tin(); // get the TIN

switch(tin)
{
case 1:
a += b;
br eak;
case 2:
a -= b;
br eak;
defaul t:
br eak;

}

return a;

}
1.11.4.5. Enabling Interrupt Requests: __enable , bisr_()

Enabling interrupt service requests

During the execution of an interrupt service routine or trap service routine, the system blocks the CPU
from taking further interrupt requests. You can immediately re-enable the system to accept interrupt
requests:

__interrupt(vector) __enable_isr(void)
__trap(class) __enable_ tsr(void)

64

C Language
The compiler generates an enabl e instruction as the first instruction in the routine. The enabl e instruction
sets the interrupt enable bit (ICR.IE) in the interrupt control register.

You can also generate the enabl e instruction with the intrinsic function __enabl e(), but it is not
guaranteed that it will be the first instruction in the routine.

Enabling interrupt service requests and setting CPU priority number

The function qualifier __bi sr_() also re-enables the system to accept interrupt requests. In addition,
the current CPU priority number (CCPN) in the interrupt control register is set:

__interrupt(vector) __bisr_(CCPN) isr(void)
__trap(class) __bisr_(CCPN) tsr(void)

The argument CCPN is a number between 0 and 255. The system accepts all interrupt requests that
have a higher pending interrupt priority number (PIPN) than the current CPU priority number. So, if the
CPU priority number is set to 0, the system accepts all interrupts. If it is set to 255, no interrupts are
accepted.

The compiler generates a bi sr instruction as the first instruction in the routine. The bi sr instruction sets
the interrupt enable bit (ICR.IE) and the current CPU priority number (ICR.CCPN) in the interrupt control
register.

You can also generate the bi sr instruction with the intrinsic function __bi sr (), but it is not guaranteed
that it will be the first instruction in the routine.

Setting the CPU priority number in a Class 6 trap service routine

The bi sr instruction saves the lower context so passing and returning arguments is not possible.
Therefore, you cannot use the function qualifier __bi sr_() for class 6 traps.

Instead, you can use the function qualifier __enabl e_ to set the ICR.IE bit, and the intrinsic function
__mer(int, int) tosetthe ICR.CCPN value at the beginning of a class 6 trap service routine (or
use the intrinsic function __nt cr () to set both the ICR.IE bit and the ICR.CCPN value).

1.11.4.6. Single Entry Vector Table
You can reduce the vector table to a single entry by masking the PIPN.

A minimum vector table can be configured if the BIV masks the PIPN so that any interrupt address
calculation results in the same address.

For exampleincstart. c:
_nter(BIV, (unsigned int)(_lc_u_int_tab) | (Oxff<<3d) | 1);

This configures the BIV register to use a common, single entry where a function interrupt handler is located
to branch to the specific interrupt routine by using an array of function pointers. A pointer to an array is
used to switch the array quickly.

65

TASKING SmartCode - TriCore User Guide

The C library contains functions to support Single Entry Vector Table (SEVT). Interrupt Service Routines
can be installed in the SEVT ISR array for each core, using _sevt _i sr_i nstal | (). For example,
install C function bl i nk() with Interrupt Request Priority Number (IRPN) 1 on core tcO.

#i ncl ude <sevt. h>

extern void blink(void);
_sevt _isr_install(1, &link, 0);

The SEVT ISR handler indirectly calls the functions installed in the SEVT data array. The SEVT ISR
handler is located at interrupt vector table entry 64. The SEVT ISR handler and SEVT data array are
supported by _sevt _i sr_tcO| 1] 2| 3| 4| 5| 6() and _sevt _isrs_tcO| 1| 2| 3| 4| 5] 6[] inCllibrary
modulessevt _tcO0. c/sevt _tcl. c/.../sevt _t c6. c respectively. The SEVT data array can be switched
with _sevt _isr_install _array().SEVT can be enabled by cstart macro __ Bl V_SINGLE_INIT
(seefilescstart*. h).

1.11.5. Intrinsic Functions

Some specific assembly instructions have no equivalence in C. Intrinsic functions give the possibility to
use these instructions. Intrinsic functions are predefined functions that are recognized by the compiler.
The compiler generates the most efficient assembly code for these functions.

The compiler always inlines the corresponding assembly instructions in the assembly source (rather than
calling it as a function). This avoids parameter passing and register saving instructions which are normally
necessary during function calls.

Intrinsic functions produce very efficient assembly code. Though it is possible to inline assembly code by
hand, intrinsic functions use registers even more efficiently. At the same time your C source remains very
readable.

You can use intrinsic functions in C as if they were ordinary C (library) functions. All intrinsics begin with
a double underscore character (__).

The following example illustrates the use of an intrinsic function and its resulting assembly code.
x =_mn(4,5);
The resulting assembly code is inlined rather than being called:

nmovlé d2,#4
mn d2, d2, #5

The intrinsics cover the following subjects:
* Minimum and maximum of (short) integers and (double) floats

* Fractional data type support

Packed data type support

* Interrupt handling

66

C Language

* Insert single assembly instruction
* Register handling

* Insert / extract bit-fields and bits
» Atomic support

* Miscellaneous

Writing your own intrinsic function

Because you can use any assembly instruction with the __asm() keyword, you can use the __asn()
keyword to create your own intrinsic functions. The essence of an intrinsic function is that it is inlined.

1. First write a function with assembly in the body using the keyword __asn{) . See Section 1.6, Using
Assembly in the C Source: __asm()

2. Next make sure that the function is inlined rather than being called. You can do this with the function
qualifieri nl i ne. This qualifier is discussed in more detail in Section 1.11.3, Inlining Functions: inline.

int a, b, result;

inline void __ny_mul(void)

{
}

voi d mai n(voi d)

_asn("mul %, 9%, WR": "=d"(result): "d"(a), "d"(b));

/1 call to function __ny_mul

__ny_mul ();
}

Generated assembly code:

mai n:

_ny_mul code is inlined here
w di5,a

w do, b

mul di5, di5, doO

st.w result,dl5

I d.
I d.
As you can see, the generated assembly code for the function __mmy_rul is inlined rather than called.

1.11.5.1. Minimum and Maximum of (Short) Integers and (Double) Floats

The following table provides an overview of the intrinsic functions that return the minimum or maximum
of a signed integer, unsigned integer or short integer.

67

TASKING SmartCode - TriCore User Guide

Intrinsic Function Description
int __min(int, int); Return minimum of two integers
short __mins(short, short); Return minimum of two short integers

unsigned int __minu(unsigned int, unsigned int); |Return minimum of two unsigned integers

int_max(int, int); Return maximum of two integers

short __maxs(short, short); Return maximum of two short integers

unsigned int __maxu(unsigned int, unsigned int); |Return maximum of two unsigned integers

The following table provides an overview of the intrinsic functions that return the minimum or maximum
of a float or double. The intrinsics require FPU and --fp-model=-trap (non-trapping floating-point execution
model).

Intrinsic Function Description

float __minf(float, float); Return minimum of two floats

double __mindf(double, double); |Return minimum of two doubles

float ___maxf(float, float); Return maximum of two floats

double ___maxdf(double, double); |Return maximum of two doubles

1.11.5.2. Fractional Arithmetic Support

The following table provides an overview of intrinsic functions to convert fractional values. Note that the
TASKING C compiler for TriCore fully supports the fractional type so normally you should not need these
intrinsic functions (except for __mul f r act | ong). For compatibility reasons the TASKING C compiler
does support these functions.

Conversion of fractional values

Intrinsic Function Description

long __mulfractlong(__ fract, long); Integer part of the multiplication ofa __fract and
along

__sfract __round16(__fract); Convert __fract to__sfract

_ fract __getfract(__laccum); Convert __| accumto __fract

short __ clssf(__ sfract); Count the consecutive number of bits that have the
same value as bit 15 ofan __sfract

__sfract __shasfracts(__sfract, int); Left/right shift of an __sfract

__fract __shafracts(__fract, int); Left/right shift of an __fract

__laccum __shaaccum(__laccum, int); Left/right shift of an __| accum

__sfract __mac_sf(__sfracta, __sfract b, __sfract |Multiply-add __sfract.Returns (a+b*c)
c);
_ sfract __mac_r_sf(__sfract, __sfract, __sfract); |Multiply-add with rounding. Returns the rounded
resultof (a+b*c)

68

C Language

Intrinsic Function Description

__sfract __ul6_to_sfract(unsigned short integer);|Convert unsi gned short to__sfract

_ sfract __s16_to_sfract(signed short integer); |Convertsi gned short to__sfract

unsigned short int __sfract_to_ul6(__sfract); Convert __sfract tounsi gned short

signed short int __sfract_to_s16(__sfract); Convert __sfract tosi gned short

1.11.5.3. Packed Data Type Support

The following table provides an overview of the intrinsic functions for initialization of packed data type.

Initialize packed data types

Intrinsic Function

Description

__packb __initpackbl(long);

Initialize __packb with a long integer

__packb __initpackb(int, int, int, int);

Initialize __packb with four integers

unsigned __packb __initupackb(unsigned, unsigned,
unsigned, unsigned);

Idem, but unsigned

__packhw __initpackhwl(long);

Initialize __packhwwith a long integer

__packhw __initpackhw(short, short);

Initialize __packhwwith two short integers

unsigned __packhw __initupackhw(unsigned short,
unsigned short);

Idem, but unsigned

__pack2hw __initpack2hw(short int, short int, short int,
short int);

Initialize __pack2hwwith four short integers

unsigned __pack2hw __initupack2hw(unsigned short int,
unsigned short int, unsigned short int, unsigned short int);

Idem, but unsigned

__pack2hw __initpack2hwli(long long int);

Initialize __pack2hwwith a long long integer

Extract values from packed data types

The following table provides an overview of the intrinsic functions to extract a single byte or halfword from

a__packb, __packhwor __pack2hwdata type.

Intrinsic Function

Description

char __extractbytel(__packb);

Extract first byte froma __packb

unsigned char __extractubytel(_ unsigned packb);

Idem, but unsigned

char __extractbyte2(__packb);

Extract second byte from a __packb

unsigned char __extractubyte2(__unsigned packb);

Idem, but unsigned

char __extractbyte3(__packb);

Extract third byte from a __packb

unsigned char __extractubyte3(__unsigned packb);

Idem, but unsigned

char __extractbyte4(__packb);

Extract fourth byte from a __packb

unsigned char __extractubyte4(__unsigned packb);

Idem, but unsigned

69

TASKING SmartCode - TriCore User Guide

Intrinsic Function

Description

short __extracthw1(__packhw);

Extract first short from a __packhw

unsigned short __extractuhwl(unsigned __packhw);

Idem, but unsigned

short __extracthw2(__packhw);

Extract second short froma __packhw

unsigned short __extractuhw2(unsigned __packhw);

Idem, but unsigned

volatile char __getbytel(__packb *);

Extract first byte from a __packb

volatile unsigned char __getubytel(__unsigned packb *);

Idem, but unsigned

volatile char __getbyte2(__packb *);

Extract second byte from a __packb

volatile unsigned char __getubyte2(__unsigned packb *);

Idem, but unsigned

volatile char __getbyte3(___packb *);

Extract third byte from a __packb

volatile unsigned char __getubyte3(__unsigned packb *);

Idem, but unsigned

volatile char __getbyte4(__packb *);

Extract fourth byte from a __packb

volatile unsigned char __getubyte4(__unsigned packb *);

Idem, but unsigned

volatile short __gethw1(__packhw *);

Extract first short from a __packhw

volatile unsigned short __getuhw1(unsigned __packhw *);

Idem, but unsigned

volatile short __gethw2(__packhw *);

Extract second short from a __packhw

volatile unsigned short __getuhw?2(unsigned __packhw *);

Idem, but unsigned

short __extract2hwl(__pack2hw);

Extract first short from a __pack2hw

unsigned short __extractu2hwl(unsigned ___pack2hwy);

Idem, but unsigned

short __extract2hw2(__pack2hw);

Extract second short from a __pack2hw|

unsigned short __extractuzhw2(unsigned __pack2hw);

Idem, but unsigned

short __extract2hw3(__pack2hw);

Extract third short from a __pack2hw

unsigned short __extractu2hw3(unsigned ___pack2hwy);

Idem, but unsigned

short __extract2hw4(__pack2hw);

Extract fourth short from a __pack2hw

unsigned short __extractu2hw4(unsigned __pack2hwy);

Idem, but unsigned

volatile short int __get2hw1(__pack2hw *);

Extract first short from a __pack2hw

volatile unsigned short int __getu2hwl(unsigned __ pack2hw

*)'

Idem, but unsigned

volatile short int __get2hw2(__pack2hw *);

Extract second short from a __pack2hw|

volatile unsigned short int __getu2hw2(unsigned __pack2hw

)

Idem, but unsigned

volatile short int __get2hw3(__pack2hw *);

Extract third short from a __pack2hw

volatile unsigned short int __getu2hw3(unsigned __pack2hw

*)’

Idem, but unsigned

volatile short int __get2hw4(__pack2hw *);

Extract fourth short from a __pack2hw

volatile unsigned short int __getu2hw4(unsigned __pack2hw

*)’

Idem, but unsigned

70

Insert values into packed data types

C Language

The following table provides an overview of the intrinsic functions to insert a single byte or halfword into

a__packb, __packhwor __pack2hwdata type.

Intrinsic Function

Description

__packb __insertbytel(__packb, char);

Insert char into first byte of a __packb

unsigned __packb __insertubyte1(unsigned __packb,
unsigned char);

Idem, but unsigned

__packb __insertbyte2(__packb, char);

Insert char into second byte of a __packb

unsigned ___packb __insertubyte2(unsigned __packb,
unsigned char);

Idem, but unsigned

__packb __insertbyte3(__packb, char);

Insert char into third byte of a __packb

unsigned __packb __insertubyte3(unsigned __packb,
unsigned char);

Idem, but unsigned

__packb __insertbyte4(__packb, char);

Insert char into fourth byte of a __packb

unsigned __packb __insertubyte4(unsigned __packb,
unsigned char);

Idem, but unsigned

__packhw __inserthwl(__ packhw, short);

Insert short into first halfword ofa ___packhw

unsigned __packhw __insertuhwl(unsigned __packhw,
unsigned short);

Idem, but unsigned

__packhw __inserthw2(__packhw, short);

Insert short into second halfword of a
__packhw

unsigned __packhw __insertuhw2(unsigned __packhw,
unsigned short);

Idem, but unsigned

void __setbytel(__ packb *, char);

Insert char into first byte of a __packb

void __setubytel(unsigned __packb *, unsigned char);

Idem, but unsigned

void __setbyte2(__packb *, char);

Insert char into second byte of a __packb

void __setubyte2(unsigned ___packb *, unsigned char);

Idem, but unsigned

void __setbyte3(__packb *, char);

Insert char into third byte of a __packb

void __setubyte3(unsigned __packb *, unsigned char);

Idem, but unsigned

void __sethyte4(__packb *, char);

Insert char into fourth byte of a __packb

void __setubyte4(unsigned __packb *, unsigned char);

Idem, but unsigned

void __sethwl(__packhw *, short);

Insert short into first halfword of a __packhw

void __setuhw1(unsigned __packhw *, unsigned short);

Idem, but unsigned

void __sethw2(__ packhw *, short);

Insert short into second halfword of a
__packhw

void __setuhw?2(unsigned __packhw *, unsigned short);

Idem, but unsigned

__pack2hw __insert2hw1(__pack2hw, short);

Insert short into first halfword of a
__pack2hw

71

TASKING SmartCode - TriCore User Guide

Intrinsic Function

Description

unsigned __pack2hw __insertu2hw1(unsigned __pack2hw,
unsigned short);

Idem, but unsigned

__pack2hw __insert2hw2(__pack2hw, short);

Insert short into second halfword of a
__pack2hw

unsigned __pack2hw __insertu2hw2(unsigned __pack2hw,
unsigned short);

Idem, but unsigned

__pack2hw __insert2hw3(__pack2hw, short);

Insert short into third halfword of a
__pack2hw

unsigned __pack2hw __insertu2hw3(unsigned __pack2hw,
unsigned short);

Idem, but unsigned

__pack2hw __insert2hw4(__pack2hw, short);

Insert short into fourth halfword of a
__pack2hw

unsigned __pack2hw __insertu2hw4(unsigned ___pack2hw,
unsigned short);

Idem, but unsigned

void __set2hw1(__pack2hw *, short);

Insert short into first halfword of a
__pack2hw

void __setu2hwl(unsigned __pack2hw *, unsigned short);

Idem, but unsigned

void __set2hw?2(__pack2hw *, short);

Insert short into second halfword of a
__pack2hw

void __setu2hw2(unsigned __pack2hw *, unsigned short);

Idem, but unsigned

void __set2hw3(__pack2hw *, short);

Insert short into third halfword of a
__pack2hw

void __setu2hw3(unsigned __pack2hw *, unsigned short);

Idem, but unsigned

void __set2hw4(__pack2hw *, short);

Insert short into fourth halfword of a
__pack2hw

void __setu2hw4(unsigned __pack2hw *, unsigned short);

Idem, but unsigned

Calculate absolute values of packed data type values

The following table provides an overview of the intrinsic functions to calculate the absolute value of packed

data type values.

Intrinsic Function

Description

__packb __absb(__packb);

Absolute value of __packb

__packhw __absh(__packhw);

Absolute value of __packhw

__sat__packhw __abssh(__sat _ packhw);

Absolute value of ___packhw using saturation

Calculate minimum packed data type values

The following table provides an overview of the intrinsic functions to calculate the minimum from two

packed data type values.

72

C Language

Intrinsic Function

Description

__packb __minb(__packb, __packb);

Minimum of two __packb values

unsigned __packb __minbu(unsigned __packb, unsigned | Minimum of two unsigned __packb values

__packb);

__packhw __minh(_packhw,__packhw);

Minimum of two __packhwvalues

unsigned ___packhw __minhu(unsigned __packhw, Minimum of two unsigned __packhwvalues

unsigned ___packhw);

Calculate polynomial product of packed

data type values

Intrinsic Function

Description

unsigned ___pack2hw ___mulpb(unsigned
__packb, unsigned __packb);

Perform polynomial (carry-less) multiplication of two
__packb values. Results are four halfword values packed
into __pack2hw.

1.11.5.4. Interrupt Handling

The following table provides an overview of the intrinsic functions to read or set interrupt handling.

Intrinsic Function

Description

volatile void __enable (void);

Enable interrupts immediately at function entry

volatile void __disable (void);

Disable interrupts.

volatile int __disable_and_save (void);

Disable interrupts and return previous interrupt state (enabled
or disabled).

unsigned int __get_tin(void);

Get the Trap Identification Number (TIN). See Section 1.11.4.2,
Defining a Trap Service Routine: __trap(), __trap_fast().

volatile void __restore (int);

Restore interrupt state.

volatile void __bisr (const unsigned int);

Set CPU priority number [0..255] and enable interrupts
immediately at function entry

volatile void __syscall (int);

Call a system call function number

volatile void __hvcall (const int);

Initiate a class-0 hypervisor trap, providing [0...511] constant
as a Trap Identification Number (TIN) value. See __get_tin().

1.11.5.5. Insert Single Assembly Instruction

The following table provides an overview of the intrinsic functions that you can use to insert a single
assembly instruction. You can also use inline assembly but these intrinsics provide a shorthand for

frequently used assembly instructions.

See Section 1.6, Using Assembly in the C

Source: __asm().

Intrinsic Function

Description

volatile void __debug(void);

Insert DEBUG instruction

73

TASKING SmartCode - TriCore User Guide

Intrinsic Function Description

volatile void __dsync(void); Insert DSYNC instruction

volatile void __isync(void); Insert ISYNC instruction

volatile void ___svlcx(void); Insert SVLCX instruction

volatile void __rslex(void); Insert RSLCX instruction

volatile void __nop(void); Insert NOP instruction

volatile void __Idmst(unsigned int * address, unsigned |Insert LDMST instruction. Note that address must
int mask, unsigned int value); be word-aligned.

volatile unsigned int __swap(unsigned int * place, Insert SWAP instruction. Note that place must be
unsigned int value); word-aligned.

1.11.5.6. Register Handling

Access control registers

The following table provides an overview of the intrinsic functions that you can use to access control
registers.

The double CSFR access intrinsics are useful to support faster swapping of virtual machines by providing
a high performance method of loading and unloading the CSFR register set.

Intrinsic Function Description

volatile int __mfcr(int csfr); Move contents of the addressed Core Special Function Register
(CSFR) into a data register

volatile void __mtcr (int csfr, int |Move contents of a data register (second int) to the addressed CSFR
val); (first int) and generate an ISYNC instruction. The ISYNC instruction
ensures that the effects of the CSFR update are correctly seen by all
following instructions.

volatile long long __mfdcr(int csfr|Move contents of the addressed double CSFR (selected by the value
); csfr and csfr+4) into a data register.

volatile void __mtdcr (int csfr, Move contents of a data register (second argument) to the addressed
long long val); double CSFR (first argument) and generate an ISYNC instruction. The
ISYNC instruction ensures that the effects of the CSFR update are
correctly seen by all following instructions.

See the . sfr filesin the i ncl ude\ sfr directory for a list of the 16-bit CSFRs.
For example:

#include "sfr/regtc49x.sfr"

int get_bhv(void)
{

}

return __nfcr(BHV); // return contents of CSFR BHV

74

C Language

This results in the assembly instruction:
nfcr d2, #45072
Note that if you want to set a single bitin a CSFR you have to create a bit mask. For exampleincst art . c:
_mer(BIV, (unsigned int)(_lc_u_int_tab) | (Oxff<<3) | 1);
Perform register value operations

The following table provides an overview of the intrinsic functions that operate on a register and return a
value in another register.

Intrinsic Function Description

int__clz (int); Count leading zeros in int

int __clo (int); Count leading ones in int

int__cls (int); Count number of redundant sign bits (all consecutive bits with the same

value as bit 31

signed char__satb (int); Return saturated byte

unsigned char __satbu (int); |Return saturated unsigned byte

short __sath (int); Return saturated halfword

unsigned short __sathu (int); |Return saturated unsigned halfword

int_abs (int); Return absolute value
int __abss (int); Return absolute value with saturation
float __fabsf (float f); Return absolute floating-point value

double __ fabs (double d); Return absolute double precision floating-point value

int __parity (int); Return parity

The intrinsic functions in the following table require FPU and --fp-model=-trap (non-trapping floating-point
execution model).

Intrinsic Function Description

float __gseedf(float); Return inverse square root seed floating-point. Generates
the QSEED.F instruction.

double __gseeddf(double); Return inverse square root seed double precision
floating-point. Generates QSEED.DF instruction.

float __maddf(float a, float b, float c); Returna+b*c

double ___madddf(double a, double b, Returna + b *c

double c);

float __msubf(float a, float b, float c); Returna-b*c

double __msubdf(double a, double b, Returna-b*c

double c);

int __ftoin(float); Convert floating-point value to nearest integer value

75

TASKING SmartCode - TriCore User Guide

Intrinsic Function Description

int __dftoin(double); Convert double floating-point value to nearest integer value

int __dftoi(double); Convert double floating-point value to integer value. Rounding
mode is defined by PSW.RM

unsigned int __dftou(double); Convert double floating-point value to unsigned integer value.
Rounding mode is defined by PSW.RM

long long __dftol(double); Convert double floating-point value to 64-bit integer value.
Rounding mode is defined by PSW.RM

unsigned long long __dftoul(double); Convert double floating-point value to unsigned 64-bit integer
value. Rounding mode is defined by PSW.RM

Get or set stack pointer register A10

The following table provides an overview of the intrinsic functions to set or get the stack pointer register
A10.

Intrinsic Function Description
void __set_sp(void *); |Set stack pointer register
void * __get_sp(void); |Get stack pointer register

Example:

define STACK_ALIGN Oxfffffff8
void set(void)

{ void * sp = (void *)((unsigned int)(_lc_ue_ustack) & STACK ALIGN);
__set_sp(sp); /* | oad user stack pointer */

}

void * get(void)

{ return __get_sp();

}

1.11.5.7. Insert / Extract Bit-fields and Bits

Insert / extract bit-fields

The following table provides an overview of the intrinsic functions to insert or extract a bit-field.

Intrinsic Function Description
int __extr (int value, int pos, int width); Extract a bit-field (bit pos to bit pos+width) from value

unsigned int __extru (int value, int pos, int width|Same as __ext r () but return bit-field as unsigned
); integer

76

C Language

Intrinsic Function Description

int __insert (int trg, int src, int pos, int width); |Extract bit-field (width bits starting at bit 0) from src
and insert it in trg at pos.

int __ins(int trg, int trgbit, int src, int srchit); Return trg but replace trgbit by srcbit in src.
int __insn(int trg, int trgbit, int src, int srchit); Return trg but replace trgbit by inverse of srcbit in src.

Atomic load-modify-store

With the following intrinsic function you can perform atomic Load-Modify-Store of a bit-field from an integer
value. This function uses the IMASK and LDMST instruction. The intrinsic writes the number of bits of an
integer value at a certain address location in memory with a bitoffset. The number of bits must be a
constant value. Note that all operands must be word-aligned.

Intrinsic Function Description
void __imaskldmst(int* address, int value, int bitoffset, int bits); | Atomic load-modify-store

Store a single bit

With the intrinsic macro __put bi t () you can store a single bit atomicly in memory at a specified bit
offset. The bit at offset 0 in value is stored at an address location in memory with a bitoffset.

This intrinsic is implemented as a macro definition which uses the __i maskl dnst () intrinsic:

#define _ putbit (value, address, bitoffset) _ inaskldnst
(address, value, bitoffset, 1)

Note that all operands must be word-aligned.

Intrinsic Function Description
void __ putbit(int value, int* address, int bitoffset); | Store a single bit

Load a single bit

With the intrinsic macro __get bi t () you can load a single bit from memory at a specified bit offset. A
bit value is loaded from an address location in memory with a bitoffset and returned as an unsigned integer
value.

This intrinsic is implemented as a macro definition which uses the __ext r u() intrinsic:

#define __getbit(address, bitoffset) _ _extru(*(address), bitoffset, 1)

Intrinsic Function Description
unsigned int __getbit(int * address, int bitoffset);|Load a single bit

Store constant value to single bit

With the intrinsic function __st t () the compiler stores a constant value at a constant bit offset at the
designated constant address. The intrinsic function uses the ST.T instruction to do the store.

77

TASKING SmartCode - TriCore User Guide

Intrinsic Function

Description

void __stt(unsigned char * address, int bitoffset, _Bool value);

Store a constant single bit value.

1.11.5.8. Atomic Intrinsic Functions

Initialization

Intrinsic Function

Description

* obj, type value)

volatile void __c11_atomic_init(volatile _Atomic type

Initializes the atomic object pointed to by obj to
the value value.

Fences

Intrinsic Function

Description

volatile void
__cl11 atomic_thread_fence(memory_order
order)

Depending on the memory order, this operation has either
no effects, is an acquire fence, a release fence, both
acquire and release fence, or sequentially consistent
acquire and release fence.

volatile void
__c11 atomic_signal_fence(memory_order
order)

Equivalentto __c11_at omi c_t hread_f ence, except
that the resulting ordering constraints are established only
between a thread and a signal handler executed in the
same thread.

Lock-free property

Intrinsic Function

Description

volatile _Bool __c11_atomic_is_lock free(volatile
_Atomic type * ohj)

Indicates whether or not the object pointed to by
obj is lock-free.

Operations on atomic types

Intrinsic Function

Description

volatile void __c11_atomic_store(volatile _Atomic
type * obj, type desired, memory_order order)

Atomically replaces the value pointed to by obj with
the value of desired. Memory is affected according
to the value of order.

volatile type __c11_atomic_load(volatile _Atomic
type * obj, memory_order order)

Atomically returns the value pointed to by obj.

volatile type __c11_atomic_exchange(volatile
_Atomic type * obj, type desired, memory_order
order)

Atomically replaces the value pointed to by obj with
the value of desired. Memory is affected according
to the value of order. These operations are atomic

read-modify-write operations.

78

C Language

Intrinsic Function

Description

volatile __Bool

__cl1 atomic_compare_exchange_strong(volatile
_Atomic type * obj, type * expected, type desired,
memory_order success, memory_order failure)

volatile __Bool

__cl1 atomic_compare_exchange_weak(volatile
_Atomic type * obj, type * expected, type desired,
memory_order success, memory_order failure)

Atomically compares the value pointed to by obj for
equality with that in expected. If the comparison is
true, it replaces the value pointed to by obj with
desired, and memory is affected according to the
value of success. If the comparison is false, it
updates the value in expected with the value pointed
to by obj, and memory is affected according to the
value of failure. These operations are atomic
read-modify-write operations.

volatile type __c11_atomic_fetch_key(volatile
_Atomic type * obj, type operand, memory_order
order)

Atomically replaces the value pointed to by obj with
the result of the computation applied to the value
pointed to by obj and the given operand. Memory is
affected according to the value of order. The key
values are:

add (+, addition)

sub (-, subtraction)

or (|, bitwise inclusive or)

xor (%, bitwise exclusive or)

and (&, bitwise and)

Atomic flag type and operations

Intrinsic Function

Description

volatile _Bool
__cl1 atomic_flag_test _and_set(volatile
atomic_flag * obj, memory_order order)

Atomically sets the value pointed to by obj to true.
Memory is affected according to the value of order.

volatile void __c11_atomic_flag_clear(volatile
atomic_flag * obj, memory_order order)

Atomically sets the value pointed to by obj to false.
Memory is affected according to the value of order.

1.11.5.9. Miscellaneous Intrinsic Functions

Multiply and scale back

Intrinsic Function Description

int __mulsc(int a, int b, int offset

);

31-offset.

Multiply two 32-bit numbers to an intermediate 64-bit result, and scale
back the result to 32 bits. To scale back the result, 32 bits are
extracted from the intermediate 64-bit result: bit 63-offset to bit

Cache writeback and invalidation

To support writeback and invalidation of cache address or cache index the following intrinsics are available.

The versions of the cache intrinsics with the "vm" in the name are introduced to provide a mechanism for
the hypervisor to operate on lines from all VMs. They all require C compiler option --core=tc1.8 and the
hypervisor user-mode (see C compiler option --user-mode=hypervisor)

79

TASKING SmartCode - TriCore User Guide

Intrinsic Function

Description

volatile void __cacheawi(unsigned char * p

);

Writeback and invalidate cache address "p".

Generates CACHEA.WI [Ab].

volatile void __cacheiwi(unsigned char * p

);

Writeback and invalidate cache index "p".

Generates CACHEL.WI [Ab].

unsigned char * __cacheawi_bo_post_inc(
unsigned char * p);

Writeback and invalidate cache address "p"

incremented value of “p”.

and return post

Generates CACHEA.WI [Ab+].

unsigned char * volatile
__cacheawivm_bo_post_inc(unsigned char

P

Writeback and invalidate Virtual Machine cache entry at

address "p" and return the post-incremented value of

p".
Generates CACHEA.WI.VM [Ab+].

volatile void __cacheiwivm(unsigned char
*n)
p);

Writeback and invalidate Virtual Machine cache index "p".

Generates CACHEILWI.VM [Ab].

volatile void __cacheiwvm(unsigned char
)

Writeback Virtual Machine cache index "p".

Generates CACHEIL.W.VM [Ab].

volatile void __cacheiivm(unsigned char *p

);

Invalidate Virtual Machine cache index "p".

Generates CACHELL.VM [Ab].

volatile void __cacheawivm(unsigned char
* .
P);

Writeback and invalidate Virtual Machine cache entry at

address "p".

Generates CACHEA.WI.VM [Ab].

volatile void __cacheawvm(unsigned char
* .
p);

Writeback Virtual Machine cache entry at address "p".

Generates CACHEA.W.VM [Ab].

volatile void __cacheaivm(unsigned char *p

);

Invalidate Virtual Machine cache entry at address "p".

Generates CACHEA.I.VM [Ab].

See sync_on_hal t. ¢ for some examples.

Swap

Intrinsic Function

Description

volatile unsigned int ___swapmskw(
unsigned int * memory, unsigned int value,
unsigned int mask);

Swap under mask. Exchanges the values of value and
memory, but only those bits that are allowed by mask. Before
the swapnsk. winstruction is generated, the parameters value
and mask are moved into a double register. Note that memory
must be word-aligned.

80

C Language

Intrinsic Function

Description

volatile unsigned int __cmpswapw(
unsigned int* memory, unsigned int value,

unsigned int compare);

Compare and swap. Exchanges the values of value and
memory if the contents of memory equals compare. Generates
the cnpswap. winstruction. Note that memory must be
word-aligned.

CRC generate

Intrinsic Function

Description

unsigned int __crc32(
unsigned int b, unsigned int
a);

Calculate the CRC32 checksum of a and inverse of b and return the result.
Generates the cr ¢32 instruction. For example:

ld.w di5,b
ld.w dO,a
crc32 d2,di15,do

unsigned int __crc32b(
unsigned int b, unsigned int
a);

Calculate the CRC of 8 bits of a and return the result. The first argument
b contains either an initial seed value, or the cumulative CRC result from
a previous sequence of data. Generates the cr ¢32. b instruction.

unsigned int __crc32bw(
unsigned int b, unsigned int
a);

__crc32.The instructions generated for the __crc32 and __crc32bw

Calculate the CRC of four bytes in big-endian order of a and return the
result. The first argument b contains either an initial seed value, or the
cumulative CRC result from a previous sequence of data. Generates the
cr c32b. winstruction. The intrinsic __cr ¢c32bwis an alias for intrinsic

use the same instruction encoding. The intrinsic __cr c32 generates
instruction cr c32b. w.

unsigned int __crc32Iw(
unsigned int b, unsigned int
a);

Calculate the CRC of four bytes in little-endian order of a and return the
result. The first argument b contains either an initial seed value, or the
cumulative CRC result from a previous sequence of data. Generates the
cr c32l . winstruction.

unsigned int __cren(
unsigned int d, unsigned int
a, unsigned int b);

Calculate the CRC value for 1 to 8 bits of b using a user-defined CRC
algorithm with a CRC width from 1 up to 16 bits and return the result. The
first argument d contains an initial seed value, or the cumulative CRC
result from a previous sequence of data. The second argument a specifies
all parameters of the CRC algorithm. Generates the cr cn instruction.

The bit-fields of a are:

a[2: 0] contains M-1, where M is the input data with of b.

a[7: 3] must be zero.

a[8] if set input data bit order of b is treated as little-endian, otherwise
input data bit order is treated as big-endian.

a[9] if set a hit-wise logical inversion is applied to both the result and
seed values.

a[11: 10] must be zero.

a[15: 12] contains N-1, where N is the CRC width in the range[1,16]
a[16+N-1: 16] encodes the coefficients of the generator polynomial.
a[32: 16+N- 1] must be zero.

81

TASKING SmartCode - TriCore User Guide

SHUFFLE generate

Intrinsic Function

Description

unsigned int __shuffle(
unsigned int a, int const9

);

Shuffle the order of the bytes of a according to const 9 and return the result.
The value const 9 contains four 2-byte fields which specify which bytes from
a are chosen to return. The value of each 2-bit byte select field specifies the

index of the source byte from a. Bit 8 of const 9 reverses bits in the bytes of
a. Generates the shuf f | e instruction when const 9 is an immediate value,

otherwise generates a call to a run-time shuffle function that implements the

shuffle algorithm:

unsigned int _ rt_shuffle(unsigned int a, int const9);

Bits const 9[31: 9] are ignored, no error is generated. The shuffle instruction
is only generated when const 9 is an immediate value.

POPCNTW generate

Intrinsic Function

Description

unsigned int __popcntw(unsigned int a);|Count the total number of ones in a and return the result.

Generates the popcnt . winstruction.

LHA generate

Intrinsic Function

Description

off18);

void * __Iha(unsigned int Compute the 32-bit effective address (EA) of absolute address offset

of f 18 and return the EA. EA={ of f 18[17: 0] , 14b' 0} ; Generates the
| ha instruction when of f 18 is an immediate value, otherwise generates
a shift left 14 and move address instruction (sh dx, dy, #14 nov. a
ax, dx).

Wait for asynchronous event

Intrinsic Function

Description

void volatile __wait(void)

; | The processor suspends execution until the next enabled interrupt or

asynchronous trap event is detected. Generates the wai t instruction.

Initialize circular pointer

Intrinsic Function

Description

__circvoid * __initcirc(void * buf, unsigned short | Initialize a circular pointer with a dynamically allocated
bufsize, unsigned short byteindex); buffer at run-time. See also Section 1.3.1, Circular

Buffers: _ circ.

82

C Language

Rotate left/right

Intrinsic Function Description

unsigned int __rol(unsigned int operand, Rotate operand left count times. The bits that are shifted
unsigned int count) out are inserted at the right side (bit 31 is shifted to bit 0).

unsigned int __ror(unsigned int operand, |Rotate operand right count times. The bits that are shifted
unsigned int count) out are inserted at the left side (bit O is shifted to bit 31).

Floating-point rounding direction

Intrinsic Function Description

volatile void Set the floating-point rounding direction using the updf | instruction. round
__fesetround(int round); |must be one of the rounding direction macros FE_TONEAREST, FE_UPWARD,
FE_DONWARD, or FE_ TOMNRDZERQ. If round is not equal to one of the
rounding direction macros, the rounding direction is not changed. This intrinsic
function is used in the startup code.

When compatibility mode (__COMPAT) is enabled the rounding direction is
restored on a RET (Return From Call) instruction.

Intrinsics used by compiler/libraries

Intrinsic Function Description

void * volatile __alloc(__size_t size|Allocate memory. Returns a pointer to memory of size bytes length.
); Returns NULL if there is not enough space left. This function is used
internally for variable length arrays, it is not to be used by end users.

void * __dotdotdot__(void); Variable argument ... operator. Used in library functionva_st art ().
Returns the stack offset to the variable argument list.

volatile void __free(void *p); Deallocates the memory pointed to by p. p must point to memory
earlier allocated by acallto __al | oc().

__codeptr __get_return_address(|Used by the compiler for profiling when you compile with the option
void); --profile. Returns the return address of a function.

1.12. Compiler Generated Sections

The compiler generates code and data in several types of sections. By default the C compiler generates
sections with the following names:

section_type_prefix[.uncached][.core_associ ation]. nodul e_nane. synbol _nane

uncached is only added for atomic variables (see Section 1.7, “uncached”).

A core association, shar e, pri vat en or cl one, is only present for multi-core derivatives. See Section 1.4,
Multi-Core Support.

83

TASKING SmartCode - TriCore User Guide

For interrupt vectors and trap vectors the C compiler generates special section names, where the number
n refers to core n:

.text[.inttabn].intvec.vector_nunber
.text[.traptabn].trapvec. vector_nunber
.text[.hvtraptabn]. hvtrapvec. vect or _nunber

When you use a section renaming pragma, the compiler uses the following section naming convention:

section_type_prefix[.uncached][.core_association][.nodul e_nane][.synbol _nane][. pragna_val ue]

The prefix depends on the type of the section and determines if the section is initialized, constant or
uninitialized and which addressing mode is used. The symbol_name is either the name of an object or
the name of a function.

The following table lists the section types and name prefixes.

Section type |Name prefix [Description

code text program code

neardata .zdata initialized __near data

fardata .data initialized __ far data

nearrom .zrodata constant __near data

farrom .rodata constant __far data

nearbss .zbss uninitialized __near data (cleared)
farbss .bss uninitialized __far data (cleared)
nearnoclear |.zbss uninitialized __near data
farnoclear .bss uninitialized __far data

aOdata .data_a0 initialized __a0 data

alrom .rodata_a0 |[constant a0 data

albss .bss_a0 uninitialized __a0 data (cleared)
aldata data_al initialized __al data

alrom rodata_al |[constant __al data

albss .bss_al uninitialized __al data (cleared)
a8data .data_a8 initialized __a8 data

a8rom .rodata_a8 |[constant a8 data

a8bss .bss_a8 uninitialized __a8 data (cleared)
a9data .data_a9 initialized __a9 data

adrom .srodata_a9 |[constant a9 data

a9bss .bss_a9 uninitialized __a9 data (cleared)

84

C Language

1.12.1. Rename Sections

You can change the default section names with one of the following pragmas. The naming convention
for the renamed section is:

section_type_prefix[.uncached][.core_association][.nodul e_nane][.synbol _nane][. pragna_val ue]

Note however that a symbol at an absolute address (__at) is located in a section that always uses the
default section name.

#pragma section type ["name" | default | restore]

With this pragma all sections of the specified type will be named "prefix.name". For example,
#pragma section neardata "where"

all sections of type near dat a have the name ". zdat a. wher e".

#pragma section type will set section naming for sections of this type conform its name "prefix".
#pragnma section type defaul t will restore the default section naming for sections of this type.

#pragma section type restore will restore the previous setting of #pr agnma. secti on type.

#pragma section all ["name" | default | restore]

With this pragma all sections will be named "prefix.name", unless you use a type specific renaming
pragma. For example,

#pragma section all "here"

all sections have the syntax "prefix[. uncached]. her e". For example, sections of type neardata have
the name ". zdat a. here”

#pragma section al |l will set section naming conform its name "prefix".

#pragma section all default will restore the default section naming (not for sections that have a
type specific renaming pragma).

#pragma section all restore will restore the previous setting of #pr agma section all.
On the command line you can use the C compiler option --rename-sections[=name].

Note that when you use one of the above section renaming pragmas, the module name and symbol name
are no longer part of the section name. Use one or both of the following pragmas to influence the section
naming convention.

#pragma section_name_with_module [on | off | default | restore]
With this pragma all section renaming pragmas will use a renaming scheme like:

section_type_prefix[.uncached].nodul e_nane. pragme_val ue

85

TASKING SmartCode - TriCore User Guide

See also C compiler option --section-name-with-module.
#pragma section_name_with_symbol [on | off | default | restore]
With this pragma all section renaming pragmas will use a renaming scheme like:
section_type_prefix[.uncached].synbol nane. pragna_val ue
See also C compiler option --section-name-with-symbol.
Examples
#pragma section all "renane_1"

/1 .text.renane_1

/1 .data.renane_1
#pragnma section code "rename_2"

/1l .text.renane_2

/1 .data.renane_1
#pragnma section code

/Il .text
/1 .data.renane_1

1.12.2. Influence Section Definition
The following pragmas also influence the section definition:

#pragma section code_init

Code sections are copied from ROM to RAM at program startup.

#pragma section const_init

Sections with constant data are copied from ROM to RAM at program startup.

#pragma section vector_init

Sections with interrupts and trap vectors are copied from ROM to RAM at program startup.

#pragma section data_overlay

The near nocl ear and f ar nocl ear sections can be overlaid by other sections with the same name.
Since by default section naming never leads to sections with the same name, you must force the same
name by using one of the section renaming pragmas. To get noclear sections instead of BSS sections

you must also use #pr agna nocl ear.

86

Chapter 2. C++ Language

The TASKING C++ compiler (cptc) offers a new approach to high-level language programming for the
TriCore family. The C++ compiler accepts the C++ language as defined by the ISO/IEC 14882:2014
standard. It also accepts the language extensions of the C compiler (see Chapter 1, C Language).

This chapter describes the C++ language implementation and some specific features.

Note that the C++ language itself is not described in this document. For more information on the C++
language, see

» The C++ Programming Language (second edition) by Bjarne Straustrup (1991, Addison Wesley)
* ISO/IEC 14882:1998 C++ standard [ANSI]

» ISO/IEC 14882:2003 C++ standard [ISO/IEC]

* ISO/IEC 14882:2011 C++ standard [ISO/IEC]

» ISO/IEC 14882:2014 C++ standard [ISO/IEC]

More information on the standards can be found at http://www.iso.org/

2.1. C++ Language Extension Keywords

The C++ compiler supports the same language extension keywords as the C compiler. When option
--strict is used, the extensions will be disabled.

pragmas

The C++ compiler supports the pragmas as explained in Section 2.7, Pragmas to Control the C++ Compiler.
Pragmas give directions to the code generator of the compiler.

2.2. C++ Dialect Accepted

The C++ compiler by default accepts the complete C++ language as defined by the ISO/IEC 14882:2014
standard (C++ compiler option --c++=14).

With option --c++=03 the C++ compiler accepts the complete C++03 language as defined by the ISO/IEC
14882:2003 standard.

With option --c++=11 the C++ compiler accepts the complete C++11 language as defined by the ISO/IEC
14882:2011 standard.

Selecting C++11 or later also enables exceptions. For C++03 the STLport library is used, while for C++11
and C++14 the libc++ library is used.

You can combine the C++ dialects with the option for strict standard conformance (option --strict.

87

http://www.iso.org/

TASKING SmartCode - TriCore User Guide

2.2.1. C++03 Mode

The following extensions are accepted in C++03 mode. Most of these are also accepted in any other C++
mode (except when strict ANSI/ISO violations are diagnosed as errors or were explicitly noted):

» Afri end declaration for a class may omit the cl ass keyword:

class A {
friend B; // Should be "friend class B"

H

» Constants of scalar type may be defined within classes:

class A{
const int size = 10;
int a[size];

I

* In the declaration of a class member, a qualified name may be used:

struct A {
int A:f(); // Should be int f();

H

 Therestrict keyword is allowed.

* Aconst qualified object with file scope or namespace scope and the __at () attribute will have external
linkage, unless explicitly declared st at i ¢. Examples:

const int i = 5; /1 internal |inkage
const int j __at(0x1234) = 10; /1 external |inkage
static const int k __at(0x1236) = 15; // internal |inkage

Note that no warning is generated when 'j ' is not used.

* Implicit type conversion between a pointer to an ext ern " C' function and a pointer to an ext er n
" C++" function is permitted. Here's an example:

extern "C" void f(); // f's type has extern "C' |inkage
void (*pf)() // pf points to an extern "C++" function
= &f; /1 error unless inmplicit conversion is
/1 allowed

This extension is allowed in environments where C and C++ functions share the same calling
conventions. It is enabled by default.

« A"?" operator whose second and third operands are string literals or wide string literals can be implicitly
converted to "char *"or"wchar _t *".(Recall that in C++ string literals are const . There is a
deprecated implicit conversion that allows conversion of a string literal to "char *", dropping the const .

88

C++ Language
That conversion, however, applies only to simple string literals. Allowing it for the result of a "?" operation
is an extension.)
char *p = x ? "abc" : "def";
Default arguments may be specified for function parameters other than those of a top-level function

declaration (e.g., they are accepted on t ypedef declarations and on pointer-to-function and
pointer-to-member-function declarations).

Non-static local variables of an enclosing function can be referenced in a non-evaluated expression
(e.g., asi zeof expression) inside a local class. A warning is issued.

In C++03 mode (but not other non-C++11 modes), the friend class syntax is extended to allow non-class
types as well as class types expressed through a typedef or without an elaborated type name. For
example:

typedef struct S ST;

class C {
friend S; /1l OK (requires S to be in scope).
friend ST; /1 OK (same as “"friend S;").
friend int; /1 OK (no effect).

friend S const; // Error: cv-qualifiers cannot
/| appear directly.

b

In C++03 mode, mixed string literal concatenations are accepted. (This is a feature carried over from
C99 and also available in GNU modes.)

wchar _t *str = "a" L"b"; // OK, sane as L"ab".

In C++03 mode, variadic macros are accepted. (This is a feature carried over from C99 and also
available in GNU modes.)

In C++03 mode, empty macro arguments are accepted (a feature carried over from C99).

A trailing comma in the definition of an enumeration type is silently accepted (a feature carried over
from C99):

enumE { e, };

In C++03 mode, the C++11 feature ext er n t enpl at e is supported, unless option --strict is applied.

The _Pr agna operator is always supported in all modes, also when option --strict is applied.

2.2.2. GNU C++ Mode

The C++ compiler can be configured to support GNU C++ (command line option --g++). In GNU C++
mode, many extensions provided by the GNU C++ compiler are accepted.

89

TASKING SmartCode - TriCore User Guide

Because the GNU C++ compiler frequently changes behavior between releases, the C++ compiler provides
an option (--gnu_version) to specify a specific version of GCC to emulate. Generally speaking, features
and bugs are emulated to exactly match each known version of GCC, but occasionally the emulation is
approximate and in such cases the C++ compiler is often a little more permissive than GCC on the principle
that it is more important to accept source that GCC accepts than to diagnose every case that GCC
diagnoses. The C++ compiler does not, however, attempt to emulate every GCC command line option;
in particular, GCC options to be extra-permissive are not emulated (however, the severity of specific error
diagnostics can sometimes be decreased to accept constructs that are not by default allowed in GNU
emulation mode).

The following GNU extensions are not supported:

» The forward declaration of function parameters (so they can participate in variable-length array
parameters).

GNU-style complex integral types (complex floating-point types are supported)

Nested functions

* Local structs with variable-length array fields.

2.2.3. Anachronisms Accepted
The following anachronisms are accepted when anachronisms are enabled (with --anachronisms):
» overl oad is allowed in function declarations. It is accepted and ignored.

« Definitions are not required for static data members that can be initialized using default initialization.
The anachronism does not apply to static data members of template classes; they must always be
defined.

» The number of elements in an array may be specified in an array del et e operation. The value is
ignored.

» Asingle oper at or ++() and oper at or - - () function can be used to overload both prefix and postfix
operations.

» The base class name may be omitted in a base class initializer if there is only one immediate base
class.

» Assignment tot hi s in constructors and destructors is allowed. This is allowed only if anachronisms
are enabled and the "assignment to t hi s" configuration parameter is enabled.

» A bound function pointer (a pointer to a member function for a given object) can be cast to a pointer to
a function.

» A nested class hame may be used as a non-nested class name provided no other class of that name
has been declared. The anachronism is not applied to template classes.

» Areference to a non-const type may be initialized from a value of a different type. A temporary is
created, it is initialized from the (converted) initial value, and the reference is set to the temporary.

90

C++ Language

» A reference to a non-const class type may be initialized from an rvalue of the class type or a derived
class thereof. No (additional) temporary is used.

« A function with old-style parameter declarations is allowed and may participate in function overloading
as though it were prototyped. Default argument promotion is not applied to parameter types of such
functions when the check for compatibility is done, so that the following declares the overloading of
two functions named f :

int f(int);
int f(x) char x; { return x; }

Note that in C this code is legal but has a different meaning: a tentative declaration of f is followed by
its definition.

« When option --nonconst-ref-anachronism is set, a reference to a non-const class can be bound to a
class rvalue of the same type or a derived type thereof.

struct A {
A(int);
A operator=(A8);
A operator+(const A&);

3
main () {

A b(1);

b = A1) + A(2); // Allowed as anachroni sm
}

2.2.4. Atomic Operations

In C++11 mode (option --c++=11) or higher, the C++ compiler supports lock-free atomic operations in
machine word size.

The atomic operations are implemented through the use of atomic operations provided by the TriCore
instruction set architecture. The C++ compiler does not use mutexes or other locking mechanisms to stall
threads. The implementation is limited to atomic operations on variables with a type up to 32-bit only.

See the header file"i nstal | ati on_di rectory/ctc/include. cxx/ at om c"foran overview of the
atomic operations that you can use.

Example (at omi c. cpp)

#i ncl ude <at om c>
#i ncl ude <i ostreanp

volatile int data_buffer;
std::atomc_int atonm(1); // This variable is volatile by type definition

voi d thread_on_corel()

{
data_buffer = 2;

++atom // Making atom 2 inforns thread_on_core2 that data_buffer is

91

TASKING SmartCode - TriCore User Guide

/1 valid. The ++ uses the atonmic cnpswap instruction
while (atom!= 3)
{ I* enmpty */ } // Wit until atom becones 3,
/1 set by thread 2, neaning data buffer is updated
std::cout <<data_buffer << std::endl;

/1l If data_buffer is not volatile, data_buffer would still be 2
}
voi d thread_on_core2()
{
while (atom!= 2)
{ I* enmpty */ } // Wit until atom becones 2,
/1 which nmeans that data_buffer can be used
std::cout << data_buffer << std::endl;
data_buffer = 3; // Set data_buffer to 3 and
++at om /1 Informthe other thread that data_buffer
/1 can be used with new val ue
}
int main(void)
{
thread_on_corel();
thread_on_core2();
return O;
}

Use the following command to build the example:
cctc --c++=14 --core=tcl.8 atom c.cpp
Use the options --c++=14 and --core=tc1.8 to enable the use of atomic operations.

Objects of atomic type and the data objects that are protected by atomic types must be allocated in
non-cached memory. You can do this either by disabling the caches or by updating the linker script
language file (LSL file). In the latter case the sections in which the objects are allocated must be selected
and allocated at addresses that correspond to non-cached memaory.

The following LSL part shows how to locate the section . zdat a. at omi c. at omin the not _cached
area of | mur am

#i ncl ude <cpu.lsl>

section_| ayout npe:vtc:absl8

{
group not _cached (run_addr=mem npe: | nuranif not _cached)
{
sel ect ".zdata.atom c. atonf;
}
}

92

C++ Language

2.3. Namespace Support

Namespaces are enabled by default. You can use the command line option --no-namespaces to disable
the features.

When doing name lookup in a template instantiation, some names must be found in the context of the
template definition while others may also be found in the context of the template instantiation. The C++
compiler implements two different instantiation lookup algorithms: the one mandated by the standard
(referred to as "dependent name lookup"), and the one that existed before dependent name lookup was
implemented.

Dependent name lookup is done in strict mode (unless explicitly disabled by another command line option)
or when dependent name processing is enabled by either a configuration flag or command line option.

Dependent Name Processing

When doing dependent name lookup, the C++ compiler implements the instantiation name lookup rules
specified in the standard. This processing requires that non-class prototype instantiations be done. This
in turn requires that the code be written using the t ypenane and t enpl at e keywords as required by
the standard.

Lookup Using the Referencing Context

When not using dependent name lookup, the C++ compiler uses a name lookup algorithm that
approximates the two-phase lookup rule of the standard, but does so in such a way that is more compatible
with existing code and existing compilers.

When a name is looked up as part of a template instantiation but is not found in the local context of the
instantiation, it is looked up in a synthesized instantiation context that includes both names from the
context of the template definition and names from the context of the instantiation. Here's an example:

nanmespace N {
int g(int);
int x = 0;
tenpl ate <class T> struct A {
TFf(Tt) { return g(t); }
Tf() { return x; }

b
}
namespace M {
int x = 99;
doubl e g(doubl e);
N : A<int> ai;
int i =ai.f(0); Il N:A<int>:f(int) calls
Il N :g(int)
int i2 =ai.f(); Il N:A<int> :f() returns
Il 0 (= N:x)

N: : A<doubl e> ad;
double d = ad.f(0); // N :A<doubl e>::f(double)

93

TASKING SmartCode - TriCore User Guide

/1 calls M:g(double)
double d2 = ad.f(); // N :A<double>: :f() also
/1l returns 0 (= N :x)
}

The lookup of names in template instantiations does not conform to the rules in the standard in the
following respects:

 Although only names from the template definition context are considered for names that are not functions,
the lookup is not limited to those names visible at the point at which the template was defined.

» Functions from the context in which the template was referenced are considered for all function calls
in the template. Functions from the referencing context should only be visible for "dependent” function
calls.

Argument Dependent Lookup

When argument-dependent lookup is enabled (this is the default), functions made visible using
argument-dependent lookup overload with those made visible by normal lookup. The standard requires
that this overloading occurs even when the name found by normal lookup is a block ext er n declaration.
The C++ compiler does this overloading, but in default mode, argument-dependent lookup is suppressed
when the normal lookup finds a block ext er n.

This means a program can have different behavior, depending on whether it is compiled with or without
argument-dependent lookup --no-arg-dep-lookup, even if the program makes no use of namespaces.
For example:

struct A { };
A operator+(A, double);
void f() {
A al;
A operator+(A, int);
al + 1.0; // calls operator+(A, double)
/1 with arg-dependent |ookup enabl ed but
/1 otherwise calls operator+(A, int);

2.4. Template Instantiation

The C++ language includes the concept of templates. A template is a description of a class or function
that is a model for a family of related classes or functions.® For example, one can write a template for a
St ack class, and then use a stack of integers, a stack of floats, and a stack of some user-defined type.
In the source, these might be written St ack<i nt >, St ack<f | oat >, and St ack<X>. From a single
source description of the template for a stack, the compiler can create instantiations of the template for
each of the types required.

!Since templates are descriptions of entities (typically, classes) that are parameterizable according to the types they operate upon,
they are sometimes called parameterized types.

94

C++ Language

The instantiation of a class template is always done as soon as it is needed in a compilation. However,
the instantiations of template functions, template variables, member functions of template classes, and
static data members of template classes (hereafter referred to as template entities) are not necessarily
done immediately, for several reasons:

* One would like to end up with only one copy of each instantiated entity across all the object files that
make up a program. (This of course applies to entities with external linkage.)

* The language allows one to write a specialization of a template entity, i.e., a specific version to be used
in place of a version generated from the template for a specific data type. (One could, for example,
write a version of St ack<i nt >, or of just St ack<i nt >: : push, that replaces the template-generated
version; often, such a specialization provides a more efficient representation for a particular data type.)
Since the compiler cannot know, when compiling a reference to a template entity, if a specialization for
that entity will be provided in another compilation, it cannot do the instantiation automatically in any
source file that references it.

» The language also dictates that template functions that are not referenced should not be compiled,
that, in fact, such functions might contain semantic errors that would prevent them from being compiled.
Therefore, a reference to a template class should not automatically instantiate all the member functions
of that class.

(It should be noted that certain template entities are always instantiated when used, e.g., inline functions.)

From these requirements, one can see that if the compiler is responsible for doing all the instantiations
automatically, it can only do so on a program-wide basis. That is, the compiler cannot make decisions
about instantiation of template entities until it has seen all the source files that make up a complete
program.

This C++ compiler provides an instantiation mechanism that does automatic instantiation at link time. For
cases where you want more explicit control over instantiation, the C++ compiler also provides instantiation
modes and instantiation pragmas, which can be used to exert fine-grained control over the instantiation
process.

2.4.1. Instantiation Modes

Normally, when a file is compiled, template entities are instantiated everywhere where they are used.
The overall instantiation mode can, however, be changed by a command line option:

--instantiate=used

Instantiate those template entities that were used in the compilation. This will include all static data
members for which there are template definitions. This is the default.

--instantiate=all

Instantiate all template entities declared or referenced in the compilation unit. For each fully instantiated
template class, all of its member functions and static data members will be instantiated whether or not
they were used. Non-member template functions will be instantiated even if the only reference was a
declaration.

95

TASKING SmartCode - TriCore User Guide

--instantiate=local

Similar to --instantiate=used except that the functions are given internal linkage. This is intended to
provide a very simple mechanism for those getting started with templates. The compiler will instantiate
the functions that are used in each compilation unit as local functions, and the program will link and run
correctly (barring problems due to multiple copies of local static variables.) However, one may end up
with many copies of the instantiated functions, so this is not suitable for production use. --instantiate=local
cannot be used in conjunction with automatic template instantiation. If automatic instantiation is enabled
by default, it will be disabled by the --instantiate=local option.

In the case where the cctc command is given a single file to compile and link, e.g.,
cctc test.cc

the compiler knows that all instantiations will have to be done in the single source file. Therefore, it uses
the --instantiate=used mode and suppresses automatic instantiation.

2.4.2. Instantiation #pragma Directives

Instantiation pragmas can be used to control the instantiation of specific template entities or sets of
template entities. There are three instantiation pragmas:

» The instantiate pragma causes a specified entity to be instantiated.

» The do_not_instantiate pragma suppresses the instantiation of a specified entity. It is typically used
to suppress the instantiation of an entity for which a specific definition will be supplied.

» The can_instantiate pragma indicates that a specified entity can be instantiated in the current
compilation, but need not be; it is used in conjunction with automatic instantiation, to indicate potential
sites for instantiation if the template entity turns out to be required.

The argument to the instantiation pragma may be:

» atemplate class name A<i nt >

» atemplate class declaration cl ass A<i nt >

» a member function name A<i nt >: : f

 a static data member name A<i nt >: : i

 a static data member declarationi nt A<i nt>::i

» a member function declaration voi d A<i nt>::f (int, char)
» atemplate function declaration char* f (i nt, float)

» atemplate variable name x<i nt >

A pragma in which the argument is a template class name (e.g., A<i nt >orcl ass A<i nt >)is equivalent
to repeating the pragma for each member function and static data member declared in the class. When

instantiating an entire class a given member function or static data member may be excluded using the

do_not_instantiate pragma. For example,

96

C++ Language

#pragnma i nstantiate A<int>
#pragma do_not _instantiate A<int>::f

The template definition of a template entity must be present in the compilation for an instantiation to occur.
If an instantiation is explicitly requested by use of the instantiate pragma and no template definition is
available or a specific definition is provided, an error is issued.

tenplate <class T> void f1(T); // No body provided
tenplate <class T> void g1(T); // No body provided

void f1(int) {} // Specific definition
voi d mai n()
{ . .
int i;
doubl e d;
f1(i);
f1(d);
g1(i);
gl(d);
}

#pragma instantiate void f1(int) // error - specific
/1 definition

#pragma instantiate void gl(int) // error - no body
/1 provided

f 1(doubl e) and g1(doubl e) will not be instantiated (because no bodies were supplied) but no errors
will be produced during the compilation (if no bodies are supplied at link time, a linker error will be
produced).

A member function name (e.g., A<i nt >: : f) can only be used as a pragma argument if it refers to a
single user defined member function (i.e., not an overloaded function). Compiler-generated functions are
not considered, so a name may refer to a user defined constructor even if a compiler-generated copy
constructor of the same name exists. Overloaded member functions can be instantiated by providing the
complete member function declaration, as in

#pragnma i nstantiate char* A<int>::f(int, char?*)

The argument to an instantiation pragma may not be a compiler-generated function, an inline function,
or a pure virtual function.

2.4.3. Implicit Inclusion

When implicit inclusion is enabled, the C++ compiler is given permission to assume that if it needs a
definition to instantiate a template entity declared in a . h file it can implicitly include the corresponding

. cc file to get the source code for the definition. For example, if a template entity ABC: : f is declared in
file xyz. h, and an instantiation of ABC: : f is required in a compilation but no definition of ABC: : f appears
in the source code processed by the compilation, the compiler will look to see if a file xyz. cc exists, and
if so it will process it as if it were included at the end of the main source file.

97

TASKING SmartCode - TriCore User Guide

To find the template definition file for a given template entity the C++ compiler needs to know the path
name specified in the original include of the file in which the template was declared and whether the file
was included using the system include syntax (e.g., #i ncl ude <fi | e. h>).This information is not
available for preprocessed source containing #l i ne directives. Consequently, the C++ compiler will not
attempt implicit inclusion for source code containing #| i ne directives.

The file to be implicitly included is found by replacing the file suffix with each of the suffixes specified in
the instantiation file suffix list. The normal include search path mechanism is then used to look for the file
to be implicitly included.

By default, the list of definition file suffixes tried is . c, . cc, . cpp, and . cxX.

Implicit inclusion works well alongside automatic instantiation, but the two are independent. They can be
enabled or disabled independently, and implicit inclusion is still useful when automatic instantiation is not
done.

The implicit inclusion mode can be turned on by the command line option --implicit-include.

Implicit inclusions are only performed during the normal compilation of a file, (i.e., not when doing only
preprocessing). A common means of investigating certain kinds of problems is to produce a preprocessed
source file that can be inspected. When using implicit inclusion it is sometimes desirable for the
preprocessed source file to include any implicitly included files. This may be done using the command
line option --no-preprocessing-only. This causes the preprocessed output to be generated as part of a
normal compilation. When implicit inclusion is being used, the implicitly included files will appear as part
of the preprocessed output in the precise location at which they were included in the compilation.

2.5. Inlining Functions

The C++ compiler supports a minimal form of function inlining. When the C++ compiler encounters a call
of a function declared i nl i ne it can replace the call with the body of the function with the parameters
replaced by the corresponding arguments. When a function call occurs as a statement, the statements
of the function body are inserted in place of the call. When the function call occurs within an expression,
the body of the function is rewritten as one large expression and that expression is inserted in the proper
place in the containing expression. It is not always possible to do this sort of inlining: there are certain
constructs (e.g. loops and inline assembly) that cannot be rendered in expression form. Even when inlining
is done at the statement level, there are certain constructs that are not practical to inline. Calls that cannot
be inlined are left in their original call form, and an out-of-line copy of the function is used. When enabled,
a remark is issued.

When the C++ compiler decides not to inline a function, the keyword i nl i ne is passed to the generated
C file. This allows for the C compiler to decide again whether to inline a function or not.

A function is disqualified for inlining immediately if any of the following are true:
» The function has local static variables.

» The function has local constants.

» The function has local types.

» The function has block scopes.

98

C++ Language

» The function includes pragmas.

» The function has a variable argument list.

2.6. Extern Inline Functions

Depending on the way in which the C++ compiler is configured, out-of-line copies of extern i nli ne
functions are either implemented using static functions, or are instantiated using a mechanism like the
template instantiation mechanism. Note that out-of-line copies of inline functions are only required in
cases where the function cannot be inlined, or when the address of the function is taken (whether explicitly
by the user, by implicitly generated functions, or by compiler-generated data structures such as virtual
function tables or exception handling tables).

When static functions are used, local static variables of the functions are promoted to global variables
with specially encoded names, so that even though there may be multiple copies of the code, there is
only one copy of such global variables. This mechanism does not strictly conform to the standard because
the address of an extern inline function is not constant across translation units.

When the instantiation mechanism is used, the address of an extern inline function is constant across
translation units, but at the cost of requiring the use of one of the template instantiation mechanisms,
even for programs that don't use templates. Definitions of extern inline functions can be provided either
through use of the automatic instantiation mechanism or by use of the --instantiate=used or
--instantiate=all instantiation modes. There is no mechanism to manually control the definition of extern
inline function bodies.

2.7. Pragmas to Control the C++ Compiler

Pragmas are keywords in the C++ source that control the behavior of the compiler. Pragmas overrule
compiler options.

The syntax is:

#pragma pragna- spec

or:

_Pragma(" pragme-spec")

The C++ compiler supports the following pragmas:

instantiate / do_not_instantiate / can_instantiate

These are template instantiation pragmas. They are described in detail in Section 2.4.2, Instantiation
#pragma Directives.

hdrstop / no_pch

These are precompiled header pragmas. They are described in detail in Section 2.9, Precompiled Headers.

99

TASKING SmartCode - TriCore User Guide

once

When placed at the beginning of a header file, indicates that the file is written in such a way that including
it several times has the same effect as including it once. Thus, if the C++ compiler sees #pr agma once
at the start of a header file, it will skip over it if the file is #included again.

A typical idiom is to place an #ifndef guard around the body of the file, with a #define of the guard variable
after the #ifndef:

#pragma once /1 optional
#i f ndef FILE_H
#define FILE H
body of the header file ...
#endi f

The #pragna once is marked as optional in this example, because the C++ compiler recognizes the
#i f ndef idiom and does the optimization even in its absence. #pr agrma once is accepted for compatibility
with other compilers and to allow the programmer to use other guard-code idioms.

2.7.1. C pragmas Supported by the C++ compiler

The C++ compiler supports the following C pragmas with the restriction that the #pr agma can only be
used if it is placed in C++ code adjacent to the variable or function it is meant for:

clear / noclear

By default, uninitialized global or static variables are cleared to zero on startup. With pragma nocl ear,
this step is skipped. Pragma cl ear resumes normal behavior. This pragma applies to constant data as
well as non-constant data. It is mandatory to use #pr agma cl ear /#pr agma nocl ear directly before
the variable and #pr agma nocl ear /#pr agnma cl ear directly after the variable. Unlike in C, these
pragmas do not allow arguments.

#pragma nocl ear /1 adjacent to variable

int var;
#pragma cl ear /1 adjacent to variable

message "message" ...

Print the message string(s) on standard output.

section all "name"

section type "name"
section_name_with_module
section_name_with_symbol

Changes section names. See Section 1.12, Compiler Generated Sections and C compiler option
--rename-sections for more information.

100

section code_init | const_init | vector_init

C++ Language

At startup copies corresponding sections to RAM for initialization. See Section 1.12.2, Influence Section

Definition.

section data_overlay

Allow overlaying data sections.

2.8. Predefined Macros

The C++ compiler defines a number of preprocessing macros. Many of them are only defined under
certain circumstances. This section describes the macros that are provided and the circumstances under

which they are defined.

Macro

Description

__ABI_COMPATIBILITY_VERSION

Defines the ABI compatibility version being
used. This macro is set to 9999, which means
the latest version. This macro is used when
building the C++ library.

__ABI_CHANGES_FOR_RTTI

This macro is set to TRUE, meaning that the
ABI changes for RTTI are implemented. This
macro is used when building the C++ library.

__ABI_CHANGES_FOR_ARRAY_NEW_AND_DELETE

This macro is set to TRUE, meaning that the
ABI changes for array new and delete are
implemented. This macro is used when
building the C++ library.

__ABI_CHANGES_FOR_PLACEMENT DELETE

This macro is set to TRUE, meaning that the
ABI changes for placement delete are
implemented. This macro is used when
building the C++ library.

__ ARRAY_OPERATORS

Defined when array newand del et e are
enabled. This is the default.

__BASE_FILE__ Similarto __FILE__ but indicates the primary
source file rather than the current one (i.e.,
when the current file is an included file).

_BOOL Defined when bool is a keyword. This is the
default.

_ BUILD__ Identifies the build number of the C++ compiler

in the format yymmddqq (year, month, day
and quarter in UTC).

__CHAR_MIN/__CHAR_MAX

Usedinlimts. h to define the
minimum/maximum value of a plain char
respectively.

101

TASKING SmartCode - TriCore User Guide

Macro

Description

__CHAR16_T_AND_CHAR32_T

Defined when char 16_t and char 32_t are
keywords. These keywords are enabled when
you use C++ compiler option --uliterals.

__CHAR16_TYPE__

Defined as the underlying type for char 16_t
when option --g++ or --gnu-version is used.
(GNU version 40400 and above, see
--gnu-version).

_ CHAR32_TYPE__

Defined as the underlying type for char 32_t
when option --g++ or --gnu-version is used.
(GNU version 40400 and above, see
--ghu-version).

__CORE_core___

A symbol is defined depending on the option
--core=core. The core is converted to
uppercase and "' is removed. For example, if
--core=tc1.8 is specified, the symbol
__CORE_TC18__is defined. When no --core
is supplied, the C++ compiler also defines
__CORE_TC18__, as tc1.8 is the default and
only core supported.

_ CPTC__

Identifies the C++ compiler. You can use this
symbol to flag parts of the source which must
be recognized by the cptc C++ compiler only.
It expands to 1.

__cplusplus

Always defined.

CPU__

Expands to the name of the CPU supplied with
the control program option --cpu=cpu. When
no --cpu is supplied, or when you do not use
the control program, this symbol is not defined.
For example, if --cpu=tc49x is specified to the
control program, the symbol __ CPU__
expands tot c49x.

__DATE__

Defined to the date of the compilation in the
form "Mmm dd yyyy".

__DELTA_TYPE

Defines the type of the offset field in the virtual
function table. This macro is used when
building the C++ library.

__DOUBLE_FP__

Expands to 1.

__embedded_cplusplus

Defined as 1 in Embedded C++ mode.

_ EXCEPTIONS

Defined when exception handling is enabled
(--exceptions).

__FILE__

Expands to the current source file name.

102

C++ Language

Macro Description

__FUNCTION__ Defined to the name of the current function.
An error is issued if it is used outside of a
function.

__func__ Same as___FUNCTION__ in C++11 mode and
GNU C++ mode.

__GNUC__ Defined to the GNU C++ major version when
option --g++ or --gnu-version is used. When
the GNU C++ version is X.y.z, this macro is
defined to x.

__GNUC_MINOR__ Defined to the GNU C++ minor version when

option --g++ or --gnu-version is used. When
the GNU C++ version is X.y.z, this macro is
defined toy.

_ GNUC_PATCHLEVEL__

Defined to the GNU C++ patch level version
when option --g++ or --gnu-version is used.
When the GNU C++ version is x.y.z, this
macro is defined to z.

__GNUC_STDC_INLINE__

Defined when option --g++ or --gnu-version
is used and if functions declared i nl i ne will
be handled according to the ISO C99 or later
standards.

_ GNUC_VERSION__

Defined to a string with the GNU C++ version
when option --g++ or --gnu-version is used.
When the GNU C++ version is x.y.z, this
macro is defined to TASKI NG g++ X.y.z
node.

__GNUG__

Defined to the GNU C++ major version when
option --g++ or --gnu-version is used. Testing
it is equivalent to testing (__ GNUC__ &&
__cpl uspl us).

__IMPLICIT_USING_STD

Defined when the standard header files should
implicitly do a using-directive on the st d
namespace (--using-std).

__JMP_BUF_ELEMENT_TYPE

Specifies the type of an element of the setjmp
buffer. This macro is used when building the
C++ library.

__JMP_BUF_NUM_ELEMENTS

Defines the number of elements in the setjmp
buffer. This macro is used when building the
C++ library.

_LINE__ Expands to the line number of the line where
this macro is called.
__NAMESPACES Defined when namespaces are supported (this

is the default, you can disable support for
namespaces with --no-namespaces).

103

TASKING SmartCode - TriCore User Guide

Macro

Description

__NO_LONG_LONG

Defined when the | ong | ong type is not
supported. This is the default.

__NULL_EH_REGION_NUMBER

Defines the value used as the null region
number value in the exception handling tables.
This macro is used when building the C++
library.

_ PLACEMENT_DELETE

Defined when placement delete is enabled.

__PRETTY_FUNCTION__

Defined to the name of the current function.
This includes the return type and parameter
types of the function. An error is issued if it is
used outside of a function.

_ PTRDIFF_MIN /__PTRDIFF_MAX

Used in st di nt . h to define the
minimum/maximum value ofaptrdi ff _t
type respectively.

__PTRDIFF_TYPE__

Defined to be the type of pt rdi ff _t.

__REGION_NUMBER_TYPE

Defines the type of a region number field in
the exception handling tables. This macro is
used when building the C++ library.

__REVISION__

Expands to the revision number of the C++
compiler. Digits are represented as they are;
characters (for prototypes, alphas, betas) are
represented by -1. Examples: v1.0r1 -> 1,
v1.0rb ->-1

__RTTI

Defined when RTTI is enabled (--rtti).

__RUNTIME_USES_NAMESPACES

Defined when the run-time uses namespaces.

__ SFRFILE__(cpu)

If control program option --cpu=cpu is
specified, this macro expands to the filename
of the used SFR file, including the pathname
and the < >. The cpu is the argument of the
macro. For example, if --cpu=tc49x is
specified, the macro
__SFRFILE__(__CPU__) expands to
__SFRFILE__(tc49x), which expands to
<sfr/regtcd9x. sfr>.

__SIGNED_CHARS__

Defined when plain char is signed.

__SIZE_MIN/_SIZE_MAX

Used in st di nt . h to define the
minimum/maximum value of a si ze_t type
respectively.

__SIZE_TYPE__

Defined to be the type of si ze_t .

_ STDC__

Always expands to 0.

104

C++ Language

Macro

Description

_STLP_NO_IOSTREAMS

Defined when option --io-streams is not used.
This disables I/O stream functions in the
STLport C++ library.

__TASKING__ Always defined for the TASKING C++
compiler.
__TIME__ Expands to the compilation time: “hh:mm:ss”

__TYPE_TRAITS_ENABLED

Defined when type traits pseudo-functions (to
ease the implementation of ISO/IEC TR
19768; e.g., __i s_uni on) are enabled. This
is the default in C++ mode.

__ VAR_HANDLE_TYPE

Defines the type of the variable-handle field
in the exception handling tables. This macro
is used when building the C++ library.

__ VARIADIC_TEMPLATES

Defined when C++11 variadic templates are
supported (option --variadic-templates).

__VERSION__

Identifies the version number of the C++
compiler. For example, if you use version 2.1r1
of the compiler, _ VERSION___ expands to
2001 (dot and revision number are omitted,
minor version number in 3 digits).

__VIRTUAL_FUNCTION_INDEX_TYPE

Defines the type of the virtual function index
field of the virtual function table. This macro
is used when building the C++ library.

__WCHAR_MIN/_ WCHAR_MAX

Used in st di nt . h to define the
minimum/maximum value of awchar _t type
respectively.

_WCHAR_T

Defined when wehar _t is a keyword.

2.9. Precompiled Headers

It is often desirable to avoid recompiling a set of header files, especially when they introduce many lines
of code and the primary source files that #i ncl ude them are relatively small. The C++ compiler provides
a mechanism for, in effect, taking a snapshot of the state of the compilation at a particular point and writing
it to a disk file before completing the compilation; then, when recompiling the same source file or compiling
another file with the same set of header files, it can recognize the "snapshot point", verify that the
corresponding precompiled header (PCH) file is reusable, and read it back in. Under the right
circumstances, this can produce a dramatic improvement in compilation time; the trade-off is that PCH

files can take a lot of disk space.

105

TASKING SmartCode - TriCore User Guide

2.9.1. Automatic Precompiled Header Processing

When --pch appears on the command line, automatic precompiled header processing is enabled. This
means the C++ compiler will automatically look for a qualifying precompiled header file to read in and/or
will create one for use on a subsequent compilation.

The PCH file will contain a snapshot of all the code preceding the "header stop" point. The header stop
point is typically the first token in the primary source file that does not belong to a preprocessing directive,
but it can also be specified directly by #pragma hdrstop (see below) if that comes first. For example:

#i ncl ude "xxx. h"
#i ncl ude "yyy. h"
int i;

The header stop pointis i nt (the first non-preprocessor token) and the PCH file will contain a snapshot
reflecting the inclusion of xxx. h and yyy. h. If the first non-preprocessor token or the #pr agrma hdr st op
appears within a #i f block, the header stop point is the outermost enclosing #i f . To illustrate, heres a

more complicated example:

#i ncl ude "xxx.h"
#i fndef YYY_H
#define YYY_H 1
#i ncl ude "yyy. h"
#endi f

#if TEST

int i;

#endi f

Here, the first token that does not belong to a preprocessing directive is again i nt, but the header stop
point is the start of the #i f block containing it. The PCH file will reflect the inclusion of xxx. h and
conditionally the definition of YYY_Hand inclusion of yyy. h; it will not contain the state produced by #i f
TEST.

A PCH file will be produced only if the header stop point and the code preceding it (mainly, the header
files themselves) meet certain requirements:

» The header stop point must appear at file scope -- it may not be within an unclosed scope established
by a header file. For example, a PCH file will not be created in this case:

/1 xxx.h
class A{

/1l xxx.C
#i ncl ude "xxx.h"
int i; };

» The header stop point may not be inside a declaration started within a header file, nor (in C++) may it
be part of a declaration list of a linkage specification. For example, in the following case the header
stop point is int, but since it is not the start of a new declaration, no PCH file will be created:

106

C++ Language

/'l yyy.h
static

/'l yyy.C
#i ncl ude "yyy. h"

int i;
 Similarly, the header stop point may not be inside a #i f block or a #def i ne started within a header
file.

» The processing preceding the header stop must not have produced any errors. (Note: warnings and
other diagnostics will not be reproduced when the PCH file is reused.)

* No references to predefined macros __DATE__ or __TI ME__ may have appeared.
* No use of the #l i ne preprocessing directive may have appeared.
» #pragma no_pch (see below) must not have appeared.

» The code preceding the header stop point must have introduced a sufficient number of declarations to
justify the overhead associated with precompiled headers. The minimum number of declarations required
is 1.

When the host system does not support memory mapping, so that everything to be saved in the
precompiled header file is assigned to preallocated memory (MS-Windows), two additional restrictions

apply:

» The total memory needed at the header stop point cannot exceed the size of the block of preallocated
memory.

* No single program entity saved can exceed 16384, the preallocation unit.

When a precompiled header file is produced, it contains, in addition to the snapshot of the compiler state,
some information that can be checked to determine under what circumstances it can be reused. This
includes:

» The compiler version, including the date and time the compiler was built.
» The current directory (i.e., the directory in which the compilation is occurring).
» The command line options.

» The initial sequence of preprocessing directives from the primary source file, including #i ncl ude
directives.

» The date and time of the header files specified in #i ncl ude directives.

This information comprises the PCH prefix. The prefix information of a given source file can be compared
to the prefix information of a PCH file to determine whether the latter is applicable to the current compilation.

As an illustration, consider two source files:

107

TASKING SmartCode - TriCore User Guide

/1 a.cc
#i ncl ude "xxx.h"
/] Start of code
/1l b.cc
#i ncl ude "xxx. h"
/] Start of code

When a. cc is compiled with --pch, a precompiled header file named a. pch is created. Then, whenb. cc
is compiled (or when a. cc is recompiled), the prefix section of a. pch is read in for comparison with the
current source file. If the command line options are identical, if xxx. h has not been modified, and so
forth, then, instead of opening xxx. h and processing it line by line, the C++ compiler reads in the rest of
a. pch and thereby establishes the state for the rest of the compilation.

It may be that more than one PCH file is applicable to a given compilation. If so, the largest (i.e., the one
representing the most preprocessing directives from the primary source file) is used. For instance, consider
a primary source file that begins with

#i ncl ude "xxx.h"
#i ncl ude "yyy. h"
#i nclude "zzz. h"

If there is one PCH file for xxx. h and a second for xxx. h and yyy. h, the latter will be selected (assuming
both are applicable to the current compilation). Moreover, after the PCH file for the first two headers is
read in and the third is compiled, a new PCH file for all three headers may be created.

When a precompiled header file is created, it takes the name of the primary source file, with the suffix
replaced by an implementation-specified suffix (pch by default). Unless --pch-dir is specified (see below),
it is created in the directory of the primary source file.

When a precompiled header file is created or used, a message such as

"test.cc": creating preconpiled header file "test.pch"

is issued. The user may suppress the message by using the command line option --no-pch-messages.

When the option --pch-verbose is used the C++ compiler will display a message for each precompiled
header file that is considered that cannot be used giving the reason that it cannot be used.

In automatic mode (i.e., when --pch is used) the C++ compiler will deem a precompiled header file obsolete
and delete it under the following circumstances:

« if the precompiled header file is based on at least one out-of-date header file but is otherwise applicable
for the current compilation; or

« ifthe precompiled header file has the same base name as the source file being compiled (e.g., xxx. pch
and xxx. cc) but is not applicable for the current compilation (e.g., because of different command line
options).

This handles some common cases; other PCH file clean-up must be dealt with by other means (e.g., by
the user).

108

C++ Language

Support for precompiled header processing is not available when multiple source files are specified in a
single compilation: an error will be issued and the compilation aborted if the command line includes a
request for precompiled header processing and specifies more than one primary source file.

2.9.2. Manual Precompiled Header Processing

Command line option --create-pch=file-name specifies that a precompiled header file of the specified
name should be created.

Command line option --use-pch=file-name specifies that the indicated precompiled header file should
be used for this compilation; if it is invalid (i.e., if its prefix does not match the prefix for the current primary
source file), a warning will be issued and the PCH file will not be used.

When either of these options is used in conjunction with --pch-dir, the indicated file name (which may
be a path name) is tacked on to the directory name, unless the file name is an absolute path name.

The options --create-pch, --use-pch, and --pch may not be used together. If more than one of these
options is specified, only the last one will apply. Nevertheless, most of the description of automatic PCH
processing applies to one or the other of these modes -- header stop points are determined the same
way, PCH file applicability is determined the same way, and so forth.

2.9.3. Other Ways to Control Precompiled Headers

There are several ways in which the user can control and/or tune how precompiled headers are created
and used.

» #pragma hdrstop may be inserted in the primary source file at a point prior to the first token that does
not belong to a preprocessing directive. It enables you to specify where the set of header files subject
to precompilation ends. For example,

#i ncl ude "xxx. h"
#i ncl ude "yyy. h"
#pragma hdr st op
#i nclude "zzz. h"

Here, the precompiled header file will include processing state for xxx. h and yyy. h but not zzz. h.
(This is useful if the user decides that the information added by what follows the #pragma hdrstop
does not justify the creation of another PCH file.)

» #pragma no_pch may be used to suppress precompiled header processing for a given source file.

« Command line option --pch-dir=directory-name is used to specify the directory in which to search for
and/or create a PCH file.

Moreover, when the host system does not support memory mapping and preallocated memory is used
instead, then one of the command line options --pch, --create-pch, or --use-pch, if it appears at all, must
be the first option on the command line.

109

TASKING SmartCode - TriCore User Guide

2.9.4. Performance Issues

The relative overhead incurred in writing out and reading back in a precompiled header file is quite small
for reasonably large header files.

In general, it does not cost much to write a precompiled header file out even if it does not end up being
used, and if it is used it almost always produces a significant speedup in compilation. The problem is that
the precompiled header files can be quite large (from a minimum of about 250K bytes to several megabytes
or more), and so one probably does not want many of them sitting around.

Thus, despite the faster recompilations, precompiled header processing is not likely to be justified for an
arbitrary set of files with nonuniform initial sequences of preprocessing directives. Rather, the greatest
benefit occurs when a number of source files can share the same PCH file. The more sharing, the less
disk space is consumed. With sharing, the disadvantage of large precompiled header files can be
minimized, without giving up the advantage of a significant speedup in compilation times.

Consequently, to take full advantage of header file precompilation, users should expect to reorder the
#i ncl ude sections of their source files and/or to group #i ncl ude directives within a commonly used
header file.

Below is an example of how this can be done. A common idiom is this:

#i nclude "commfile.h"
#pragma hdr st op
#include ...

where comfi | e. h pulls in, directly and indirectly, a few dozen header files; the #pr agma hdr st op is
inserted to get better sharing with fewer PCH files. The PCH file produced for connfi | e. h can be a bit
over a megabyte in size. Another idiom, used by the source files involved in declaration processing, is
this:

#include "comfile.h"
#i ncl ude "decl _hdrs. h"
#pr agma hdr st op

#i nclude ...

decl _hdr s. h pulls in another dozen header files, and a second, somewhat larger, PCH file is created.
In all, the source files of a particular program can share just a few precompiled header files. If disk space
were at a premium, you could decide to make commfi | e. h pull in all the header files used -- then, a
single PCH file could be used in building the program.

Different environments and different projects will have different needs, but in general, users should be
aware that making the best use of the precompiled header support will require some experimentation
and probably some minor changes to source code.

110

Chapter 3. Assembly Language

This chapter describes the most important aspects of the TASKING assembly language for TriCore. For
a complete overview of the architecture you are using, refer to the target's core Architecture Manual.

3.1. Assembly Syntax

An assembly program consists of statements. A statement may optionally be followed by a comment.
Any source statement can be extended to more lines by including the line continuation character (\) as
the last character on the line. The length of a source statement (first line and continuation lines) is only
limited by the amount of available memory.

Mnemonics, directives and other keywords are case insensitive. Labels, symbols, directive arguments,
and literal strings are case sensitive.

The syntax of an assembly statement is:

[label [:]] [instruction | directive | macro_call] [;conmment]

label A label is a special symbol which is assigned the value and type of the current
program location counter. A label can consist of letters, digits and underscore
characters (). The first character cannot be a digit. The label can also be a
number. A label which is prefixed by whitespace (spaces or tabs) has to be
followed by a colon (:). The size of an identifier is only limited by the amount of
available memory.

number is a number ranging from 1 to 255. This type of label is called a numeric
label or local label. To refer to a numeric label, you must put an n (next) or p
(previous) immediately after the label. This is required because the same label
number may be used repeatedly.

Examples:
LABl1: ; This label is followed by a colon and

; can be prefixed by whitespace

LAB1 ; This label has to start at the beginning
. of aline

1: j 1p ; This is an endl ess | oop
; using nuneric |abels

instruction An instruction consists of a mnemonic and zero, one or more operands. It must

not start in the first column.
Operands are described in Section 3.3, Operands of an Assembly Instruction.
The instructions are described in the target's core Architecture Manual.

directive With directives you can control the assembler from within the assembly source.
Except for preprocessing directives, these must not start in the first column.
Directives are described in Section 3.9, Assembler Directives and Controls.

111

TASKING SmartCode - TriCore User Guide

macro_call A call to a previously defined macro. It must not start in the first column. See
Section 3.10, Macro Operations.

comment Comment, preceded by a ; (semicolon).

You can use empty lines or lines with only comments.

Apart from the assembly statements as described above, you can put a so-called ‘control line' in your
assembly source file. These lines start with a $ in the first column and alter the default behavior of the
assembler.

$cont r ol

For more information on controls see Section 3.9, Assembler Directives and Controls.
3.1.1. Deviations from the Instruction Set Manual

.T bit instructions

With respect to all bit variants of branching and arithmetic instructions carrying the . T extension, the
TASKING assembler for TriCore accepts an extra instruction format in addition to the TriCore TC1.8
Instruction Set User Manual (Volume 2) .

For example, the instruction set manual specifies
xor.t do, d5, 31, d1, #31

The TASKING assembler accepts this, but also accepts the following syntax (which is generated by the
C compiler):

xor.t doO,d5: 31, dl: 31
A colon instead of a comma is accepted as delimiter for the bit position.

Both notations generate the same instruction encoding.

Instructions with the SLRO/SSRO opcode formats (LD/ST instructions) expect byte
addressing

The Infineon TriCore instruction set manuals are ambiguous about the addressing used in instructions
that support the SLRO/SSRO opcode formats. According to the instruction set manuals, 4-bit offsets can
be byte, half-word or word addressed (depending on the type of instruction), but implementing the
instruction that way would lead to inconsistencies with other variations of the same instructions that
support a 16-bit offset operand as well (which always expects byte addressing). To prevent this ambiguity,
the TASKING assembler always expects byte addressing and selects the shortest instruction encoding
in which the address (converted to a half-word or word address when necessary) can be fitted.

Example:

Id.h, [al5]0x10 ; 0x10 is always interpreted as a byte address

112

Assembly Language

3.2. Assembler Significant Characters

You can use all ASCII characters in the assembly source both in strings and in comments. Also the
extended characters from the 1ISO 8859-1 (Latin-1) set are allowed.

Some characters have a special meaning to the assembler. Special characters associated with expression
evaluation are described in Section 3.6.3, Expression Operators. Other special assembler characters
are:

Character |Description

; Start of a comment

\ Line continuation character or macro operator: argument concatenation
? Macro operator: return decimal value of a symbol

% Macro operator: return hex value of a symbol

A Macro operator: override local label

" Macro string delimiter or quoted string . DEFI NE expansion character

String constants delimiter

@ Start of a built-in assembly function
* Location counter substitution

Constant number

++ String concatenation operator

[] Substring delimiter

3.3. Operands of an Assembly Instruction

In an instruction, the mnemonic is followed by zero, one or more operands. An operand has one of the
following types:

Operand Description

symbol A symbolic name as described in Section 3.4, Symbol Names. Symbols can also occur
in expressions.

register Any valid register as listed in Section 3.5, Registers.

expression Any valid expression as described in Section 3.6, Assembly Expressions.

address A combination of expression, register and symbol.

Addressing modes

The TriCore assembly language has several addressing modes. These are described in detail in the
target's core Architecture Manual.

113

TASKING SmartCode - TriCore User Guide

3.4. Symbol Names

User-defined symbols

A user-defined symbol can consist of letters, digits and underscore characters (_). The first character
cannot be a digit. The size of an identifier is only limited by the amount of available memory. The case
of these characters is significant. You can define a symbol by means of a label declaration or an equate
or set directive.

Predefined preprocessor symbols

These symbols start and end with two underscore characters, __symbol__, and you can use them in your
assembly source to create conditional assembly. See Section 3.4.1, Predefined Preprocessor Symbols.

Labels

Symbols used for memory locations are referred to as labels. It is allowed to use reserved symbols as
labels as long as the label is followed by a colon.

Reserved symbols

Symbol names and other identifiers starting with a period (.) are reserved for the system (for example for
directives or section names). Identifiers starting with an at sign ('@") are reserved for built-in assembler
functions. Instructions are also reserved. The case of these built-in symbols is insignificant.

Examples
Valid symbol names:

| oop_1
ENTRY
aBc
_aBC

Invalid symbol names:

1 | oop ; starts with a nunber
di5 ; reserved register nanme
. DEFI NE ; reserved directive nane

3.4.1. Predefined Preprocessor Symbols

The TASKING assembler knows the predefined symbols as defined in the table below. The symbols are
useful to create conditional assembly.

Symbol Description

__ASTC__ Identifies the assembler. You can use this symbol to flag parts of the source
which must be recognized by the astc assembler only. It expands to 1.

114

Assembly Language

Symbol Description

__BUILD__ Identifies the build number of the assembler in the format yymmddqq (year,
month, day and quarter in UTC).

__CORE_core___ A symbol is defined depending on the option option --core=core. The core
is converted to uppercase and "." is removed. For example, if --core=tc1.8
is specified, the symbol __CORE_TC18__ is defined. When no --core is
supplied, the assembler also defines __ CORE_TC18__, astc1.8is the default
and only core supported.

_ CPU_cpu__ A symbol is defined depending on the control program option --cpu=cpu.
The cpu is converted to uppercase. For example, if --cpu=tc49x is specified
to the control program, the symbol __ CPU_TC49X__is defined. When no
--cpu is supplied, or when you do not use the control program, this symbol
is not defined.

__FPU__ Expands to 0 if you used option --no-fpu (Disable FPU instructions),
otherwise expands to 1.

_ REVISION__ Expands to the revision number of the assembler. Digits are represented
as they are; characters (for prototypes, alphas, betas) are represented by
-1. Examples: v1.0r1 -> 1, v1.0rb -> -1

__TASKING__ Identifies the assembler as a TASKING assembler. Expands to 1 if a
TASKING assembiler is used.

__UM_HYPERVISOR__ |Expands to 1 if the TriCore runs in hypervisor mode (option
--user-mode=hypervisor).

_ _UM_KERNEL__ Expands to 1 if the TriCore runs in kernel/supervisor mode (option
--user-mode=kernel).
__UM_USER_1__ Expands to 1 if the TriCore runs in User-1 mode (option

--user-mode=user-1).

__VERSION__ Identifies the version number of the assembler. For example, if you use
version 2.1r1 of the assembler, _ VERSION__ expands to 2001 (dot and
revision number are omitted, minor version number in 3 digits).

Example

i f @lef (' __ASTC__'")
; this part is only for the astc assenbl er

endi f
3.5. Registers

The following register names, either uppercase or lowercase, should not be used for user-defined symbol
names in an assembly language source file:

D0 .. D15 (data registers)
EO .. El4 (data register pairs, only the even nunbers)
A0 .. Al5 (address registers)

115

TASKING SmartCode - TriCore User Guide

3.5.1. Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from assembly. The
SFRs are defined in a special function register definition file (*.def) as symbol names for use by the
assembler. The assembler can include the SFR definition file with the command line option --include-file
(-H). SFRs are defined with . EQU directives.

For example (from r egt c49x. def):
PSW .equ Oxfe04
Example use in assembly:

nfcr do, #PSW

andn do, do, #0x7f ; reset counter
insert dO, do, #1, #7, #1 ; enabl e

insert dO, dO, #1, #8, #1 ; set GWbit
ntcr #PSW dO

i sync

Without an SFR file the assembler only knows the general purpose registers DO-D15 and A0-A15.

3.6. Assembly Expressions

An expression is a combination of symbols, constants, operators, and parentheses which represent a
value that is used as an operand of an assembler instruction (or directive).

Expressions can contain user-defined labels (and their associated integer or floating-point values), and
any combination of integers, floating-point numbers, or ASCII literal strings.

Expressions follow the conventional rules of algebra and boolean arithmetic.

Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker. Relocatable expressions can only
contain integral functions; floating-point functions and numbers are not supported by the ELF/DWARF
object format.

The assembler evaluates expressions with 64-bit precision in two's complement.
The syntax of an expression can be any of the following:

* numeric constant

* string

» symbol

116

Assembly Language

» expression binary_operator expression
e unary_operator expression

* (expression)

« function call

All types of expressions are explained in separate sections.

3.6.1. Numeric Constants

Numeric constants can be used in expressions. If there is no prefix, by default the assembler assumes
the number is a decimal number. Prefixes can be used in either lowercase or uppercase.

Base Description Example
Binary A Ob or OB prefix followed by binary digits (0,1). 0B1101

0b11001010
Hexadecimal A Ox or 0X prefix followed by hexadecimal digits (0-9, A-F, a-f). |OX12FF

0x45

Oxf al0
Decimal integer Decimal digits (0-9). 12

1245
Decimal Decimal digits (0-9), includes a decimal point, or an 'E' or 'e’ 6E10
floating-point followed by the exponent. .6

3.14

2.7e10
3.6.2. Strings

ASCII characters, enclosed in single (') or double (") quotes constitute an ASCII string. Strings between
double quotes allow symbol substitution by a . DEFI NE directive, whereas strings between single quotes
are always literal strings. Both types of strings can contain escape characters.

Strings constants in expressions are evaluated to a number (each character is replaced by its ASCII
value). Strings in expressions can have a size of up to 4 characters or less depending on the operand of
an instruction or directive; any subsequent characters in the string are ignored. In this case the assembler
issues a warning. An exception to this rule is when a string is used in a . BYTE assembler directive; in
that case all characters result in a constant value of the specified size. Null strings have a value of 0.

Square brackets ([]) delimit a substring operation in the form:
[string, of fset, | ength]

offset is the start position within string. length is the length of the desired substring. Both values may not
exceed the size of string.

117

TASKING SmartCode - TriCore User Guide

Examples

' ABCD ; (0x41424344)
79 :

"Al"BC :

"AB' +1 ;

v ; null string
.word ' abcdef’ ; (0x64636261)

; warni ng:

"abc' ++' de' ;

[" TASKING , 0, 4] ;

3.6.3. Expression Operators

to enclose a quote double it
or to enclose a quote escape it
(0x4143) string used in expression

are ignored

string val ue truncated
you can concatenate

; two strings with the '++
: This results in
results in the substring ' TASK

oper ator.

"abcde'

The next table shows the assembler operators. They are ordered according to their precedence. Operators
of the same precedence are evaluated left to right. Parenthetical expressions have the highest priority

(innermost first).

Valid operands include numeric constants, literal ASCII strings and symbols.

Most assembler operators can be used with both integer and floating-point values. If one operand has
an integer value and the other operand has a floating-point value, the integer is converted to a floating-point
value before the operator is applied. The result is a floating-point value.

Type Operator Name Description

() parenthesis Expressions enclosed by parenthesis are evaluated
first.

Unary + plus Returns the value of its operand.

- minus Returns the negative of its operand.

~ one's complement Integer only. Returns the one’s complement of its
operand. It cannot be used with a floating-point
operand.

! logical negate Returns 1 if the operands' value is 0; otherwise 0.
For example, if buf is 0 then ! buf is 1. If buf has
a value of 1000 then ! buf is 0.

Arithmetic * multiplication Yields the product of its operands.

/ division Yields the quotient of the division of the first operand
by the second. For integer operands, the divide
operation produces a truncated integer result.

% modulo Integer only. This operator yields the remainder from
the division of the first operand by the second.

+ addition Yields the sum of its operands.

- subtraction Yields the difference of its operands.

118

Assembly Language

Type Operator Name Description
Shift << shift left Integer only. Causes the left operand to be shifted
to the left (and zero-filled) by the number of bits
specified by the right operand.
>> shift right Integer only. Causes the left operand to be shifted
to the right by the number of bits specified by the
right operand. The sign bit will be extended.
Relational < less than Returns an integer 1 if the indicated condition is
-— less than or equal TRUE or an integer 0 if the indicated condition is
FALSE.
> greater than
- greater than or equal For example, if D has a value of 3 gnd E hag avalue
of 5, then the result of the expression D<Eis 1, and
== equal the result of the expression D>E is 0.
I= not equal o]]]
Use tests for equality involving floating-point values
with caution, since rounding errors could cause
unexpected results.
Bit and bit position Specify bit position (right operand) in a data register
Bitwise (left operand) for use in bit operations (instructions
that have the .T data type modifier).
& AND Integer only. Yields the bitwise AND function of its
operand.
[OR Integer only. Yields the bitwise OR function of its
operand.
A exclusive OR Integer only. Yields the bitwise exclusive OR function
of its operands.
Logical && logical AND Returns an integer 1 if both operands are non-zero;
otherwise, it returns an integer O.
I logical OR Returns an integer 1 if either of the operands is

non-zero; otherwise, it returns an integer 1

The relational operators and logical operators are intended primarily for use with the conditional assembly
. i f directive, but can be used in any expression.

3.7.Working with Sections

Sections are absolute or relocatable blocks of contiguous memory that can contain code or data. Some
sections contain code or data that your program declared and uses directly, while other sections are
created by the compiler or linker and contain debug information or code or data to initialize your application.
These sections can be named in such a way that different modules can implement different parts of these
sections. These sections are located in memory by the linker (using the linker script language, LSL) so
that concerns about memory placement are postponed until after the assembly process.

119

TASKING SmartCode - TriCore User Guide

All instructions and directives which generate data or code must be within an active section. The assembler
emits a warning if code or data starts without a section definition and activation. The compiler automatically
generates sections. If you program in assembly you have to define sections yourself.

For more information about locating sections see Section 7.9.9, The Section Layout Definition: Locating
Sections.

Section definition

Sections are defined with the . SDECL directive and have a name. A section may have attributes to instruct
the linker to place it on a predefined starting address, or that it may be overlaid with another section.

. SDECL "nane", type [, attribute]... [AT address]

See the description of the . SDECL directive for a complete description of all possible attributes.

Section activation
Sections are defined once and are activated with the . SECT directive.
. SECT "nane"

The linker will check between different modules and emits an error message if the section attributes do
not match. The linker will also concatenate all matching section definitions into one section. So, all "code"
sections generated by the compiler will be linked into one big "code" chunk which will be located in one
piece. A . SECT directive referring to an earlier defined section is called a continuation. Only the name
can be specified.

Examples

.SDECL ".text.hello.nain", CODE
. SECT ".text.hello.nin"

Defines and activates a relocatable section in CODE memory. Other parts of this section, with the same
name, may be defined in the same module or any other module. Other modules should use the same
. SDECL statement. When necessary, it is possible to give the section an absolute starting address.

. SDECL ".CONST", CODE AT 0x1000
. SECT ". CONST"

Defines and activates an absolute section named . CONST starting at address 0x1000.

.SDECL ".fardata", DATA, CLEAR
. SECT " fardata"

Defines a relocatable named section in DATA memory. The CLEAR attribute instructs the linker to clear
the memory located to this section. When this section is used in another module it must be defined
identically. Continuations of this section in the same module are as follows:

. SECT " fardata"

120

Assembly Language

3.8. Built-in Assembly Functions

The TASKING assembler has several built-in functions to support data conversion, string comparison,
and math computations. You can use functions as terms in any expression.

Syntax of an assembly function
@ unction_nane([argunent[,argunment]...])

Functions start with the '@’ character and have zero or more arguments, and are always followed by
opening and closing parentheses. White space (a blank or tab) is not allowed between the function name
and the opening parenthesis and between the (comma-separated) arguments.

The names of assembly functions are case insensitive.

Overview of mathematical functions

Try to avoid usage of assembler functions that work with float values. The assembler uses IEEE
floating-point routines of the host on which the assembler runs to calculate some fixed floating-point
values. Because of the fact that there are differences between hosts (Windows, Linux and Solaris)
with respect to the number of bits used and rounding mechanism (although all claim to be IEEE
compliant) it is possible that some internal assembler functions return a slightly different value
depending on the input. The difference is usually at position 16 behind the comma.

Function Description

@\BS(expr) Absolute value

@ACS(expr) Arc cosine

@ASN(expr) Arc sine

@AT2(exprl, expr2) Arc tangent of exprl / expr2
@ATN(expr) Arc tangent

@CEL (expr) Ceiling function

@COH(expr) Hyperbolic cosine

@cOos(expr) Cosine

@ LR(expr) Floor function

@.10(expr) Log base 10

@.OG(expr) Natural logarithm
@MX(exprl[, ..., exprN]) Maximum value

@ N(exprl[, ..., exprN]) Minimum value

@POW exprl, expr2) Raise to a power

@RNIY() Random value

@5GN(expr) Returns the sign of an expression as -1, 0 or 1

121

TASKING SmartCode - TriCore User Guide

Function Description

@l N(expr) Sine

@BNH(expr) Hyperbolic sine

@Qr(expr) Square root

@rAN(expr) Tangent

@I'NH(expr) Hyperbolic tangent

@XPN(expr) Exponential function (raise e to a power)

Overview of conversion functions

Function Description

@CVF(expr) Convert integer to floating-point

@Vl (expr) Convert floating-point to integer

@LD(base, value, width[, start]) Shift and mask operation

@ RACT(expr) Convert floating-point to 32-bit fractional
@BFRACT(expr) Convert floating-point to 16-bit fractional
@QNGE exprl, expr2) Concatenate to double word

@ UN(expr) Convert long fractional to floating-point
@RVB(expr[, exprN]) Reverse order of bits in field

@INF(expr) Convert fractional to floating-point

Overview of string functions

Function Description
@CAT(strl, str2) Concatenate strl and str2
@ EN(string) Length of string

@0OS(strl, str2[, start])
@BCP(strl, str2)
@UB(str, exprl, expr2)

Position of str2 in strl
Compare strl with str2
Return substring

Overview of macro functions

Function Description

@\RG ' symbol' | expr) Test if macro argument is present
@CNT() Return number of macro arguments
@/AC(symbol) Test if macro is defined

@MXP() Test if macro expansion is active

122

Assembly Language

Overview of address calculation functions

Function Description

@H (expr) Returns upper 16 bits of expression value

@+ S(expr) Returns upper 16 bits of expression value, adjusted for signed
addition

@O expr) Returns lower 16 bits of expression value

@.OS(expr) Returns lower 16 bits of expression value, adjusted for signed
addition

@.-SB(expr) Least significant byte of the expression

@vBB(expr) Most significant byte of the expression

Overview of PIC/PID support functions

Function Description

@DESOFF(expr) Returns the offset into the descriptor table that holds the
reference address for the section expr belongs to.

@ECOFFHI (expr) Returns the upper 16 bits of the offset to expr from the reference
address of the section it belongs to.

@ECOFFLQ(expr) Returns the lower 16 bits of the offset to expt from the reference
address of the section it belongs to.

Overview of assembler mode functions

Function Description

@ASTC() Returns the name of the assembler executable
@EF("' symbol" | symbol) Returns 1 if symbol has been defined

@EXP(expr) Expression check

@ NT(expr) Integer check

@QST() LIST control flag value

Detailed Description of Built-in Assembly Functions

@ABS(expression)
Returns the absolute value of the expression as an integer value.
Example:

AVAL .SET @BS(-2.1) ; AVAL = 2

123

TASKING SmartCode - TriCore User Guide

@ACS(expression)

Returns the arc cosine of expression as a floating-point value in the range zero to pi. The result of
expression must be between -1 and 1.

Example:

ACCS .SET @ACS(-1.0) ;ACOS = 3.1415926535897931

@ARG('symbol’ | expression)
Returns integer 1 if the macro argument represented by symbol or expression is present, 0 otherwise.

You can specify the argument with a symbol name (the name of a macro argument enclosed in single
guotes) or with expression (the ordinal number of the argument in the macro formal argument list). If you
use this function when macro expansion is not active, the assembler issues a warning.

Example:

JF @R ' TWDDLE') ;is argunment tw ddl e present?
I F @GARE(1) ;is first argunent present?

@ASN(expression)

Returns the arc sine of expression as a floating-point value in the range -pi/2 to pi/2. The result of
expression must be between -1 and 1.

Example:

ARCSINE .SET @ASN(-1.0) ; ARCSINE = -1.570796

@ASTC()

Returns the name of the assembler executable. This is 'astc' for the TriCore assembler.
Example:

ANAME: . byte @ASTC() ; ANAME = 'astc'

@AT2(expressionl,expression2)

Returns the arc tangent of expressionl/expression2 as a floating-point value in the range -pi to pi.
expressionl and expression2 must be separated by a comma.

Example:

ATAN2 .EQU @\T2(-1.0,1.0) ;ATAN2 = -0. 7853982
@ATN(expression)

Returns the arc tangent of expression as a floating-point value in the range -pi/2 to pi/2.

124

Assembly Language

Example:

ATAN . SET @ATN(1.0) ; ATAN = 0. 78539816339744828

@CAT(string1,string2)
Concatenates the two strings into one string. The two strings must be enclosed in single or double quotes.
Example:

.DEFINE ID "@AT(' TASK ,"ING)" ;1D = " TASKI NG

@CEL(expression)
Returns a floating-point value which represents the smallest integer greater than or equal to expression.
Example:

CEIL .SET @CEL(-1.05) yCEIL = -1.0

@CNT()

Returns the number of macro arguments of the current macro expansion as an integer. If you use this
function when macro expansion is not active, the assembler issues a warning.

Example:

ARGCOUNT . SET @NT() ; reserve argunent count
@COH(expression)

Returns the hyperbolic cosine of expression as a floating-point value.
Example:

HYCOS . EQU @COH(VAL) ; conmput e hyperbolic cosine
@COS(expression)

Returns the cosine of expression as a floating-point value.

Example:

.WORD - @OS(@VF(COUNT) * FREQ) ; conpute cosi ne val ue
@CVF(expression)

Converts the result of expression to a floating-point value.

Example:

125

TASKING SmartCode - TriCore User Guide

FLOAT .SET @VF(5) . FLOAT = 5.0

@CVI(expression)

Converts the result of expression to an integer value. This function should be used with caution since the
conversions can be inexact (e.g., floating-point values are truncated).

Example:

INT .SET @Vl (-1.05) INT = -1

@DEF('symbol' | symbol)

Returns 1 if symbol has been defined, 0 otherwise. symbol can be any symbol or label not associated

with a . MACROor . SDECL directive. If symbol is quoted, it is looked up as a . DEFI NE symbol; if it is not
guoted, it is looked up as an ordinary symbol or label.

Example:
. F @EF(' ANGLE') ;is synbol ANGLE defined?
.| F @EF(ANGLE) ; does | abel ANGLE exist?

@DESOFF(expression)

Returns the offset into the descriptor table that holds the reference address for the section expression
belongs to. expression must point to a section.

Example:

I d.a alb, [al2] @ESOFF(func)
addi h. a al5, al5, #@ECOFFHI (f unc)
| ea alb, [al5] @GBECOFFLQ(f unc)

The code above loads the address of the function f unc that is part of a position-independent module
into register al5.

@EXP(expression)

Returns 0 if the evaluation of expression would normally result in an error. Returns 1 if the expression
can be evaluated correctly. With the @XP function, you prevent the assembler from generating an error
if the expression contains an error. No test is made by the assembler for warnings. The expression may
be relative or absolute.

Example:
I F 1T @XP(3/0) ;Do the I'F on error

; assenbl er generates no error
AF 1(3/0) ;assenbl er generates an error

126

Assembly Language

@FLD(base,value,width[,start])

Shift and mask value into base for width bits beginning at bit start. If start is omitted, zero (least significant
bit) is assumed. All arguments must be positive integers and none may be greater than the target word
size. Returns the shifted and masked value.

Example:

VARL . EQU @LD(0,1,1) ;turn bit 0 on, VARI=1

VAR2 . EQU @LD(O0, 3,1) ;turn bit 0 on, VAR2=1

VAR3 . EQU @LD(0, 3, 2) :turn bits 0 and 1 on, VAR3=3

VAR4 .EQU @LD(O0,3,2,1) ;turn bits 1 and 2 on, VAR4=6
VAR5 .EQU @LD(0,1,1,7) ;turn eighth bit on, VAR5=0x80

@FLR(expression)
Returns a floating-point value which represents the largest integer less than or equal to expression.
Example:

FLOOR .SET @LR(2.5) 'FLOOR = 2.0

@FRACT(expression)

Returns the 32-bit fractional representation of the floating-point expression. The expression must be in
the range [-1,+1>.

Example:

.WORD @WRACT(0.1), @RACT(1.0)

@Hl(expression)

Returns the upper 16 bits of a value. @1l (expr essi on) is equivalent to ((expr essi on>>16) &
Oxffff).

Example:

nmov. u d2, #@Q.O(COUNT)
addi h d2, d2, #@H (COUNT) ;upper 16 bits of COUNT

@HIS(expression)

Returns the upper 16 bits of a value, adjusted for a signed addition. @Hl S(expr essi on) is equivalent
to (((expressi on+0x8000) >>16) & Oxffff).

Example:

novh. a a3, #@H S(I1 abel)
| ea a3, [a3] @QOS(| abel)

127

TASKING SmartCode - TriCore User Guide

@INT(expression)

Returns integer 1 if expression has an integer result; otherwise, it returns a 0. The expression may be
relative or absolute.

Example:

.IF @NT(TERM ; Test if result is an integer

@L10(expression)

Returns the base 10 logarithm of expression as a floating-point value. expression must be greater than
zero.

Example:

LOG .EQU @10(100.0) S LOG = 2

@LEN(string)
Returns the length of string as an integer.
Example:

SLEN .SET @EN('string') ;SLEN = 6

@LNG(expressionl,expression2)

Concatenates the 16-bit expressionl and expression2 into a 32-bit word value such that expressionl is
the high half and expression2 is the low half.

Example:

LWORD .WORD @QNGHI, LO ;build I ong word

@LO(expression)
Returns the lower 16 bits of a value. @Q-O(expr essi on) is equivalent to (expressi on & Oxffff).
Example:

nov. u d2, #@Q.Q(COUNT) lower 16 bits of COUNT
addi h d2, d2, #@ (COUNT)

@LOG(expression)

Returns the natural logarithm of expression as a floating-point value. expression must be greater than
zero.

Example:

128

Assembly Language

LOG .EQU @O 100.0) . LOG = 4. 605170

@LOS(expression)

Returns the lower 16 bits of a value, adjusted for a signed addition. @.OS(expr essi on) is equivalent
to (((expressi on+0x8000) & Oxffff) - 0x8000).

Example:

novh.a a3, #@H S(I abel)
| ea a3, [a3] @QOs(| abel)

@LSB(expression)

Returns the least significant byte of the result of the expression. The result of the expression is calculated
as 16 hit.

Example:
VARL . SET @ SB(0x34) ; VARL = 0x34
VAR2 . SET @ SB(0x1234) ; VAR2 = 0x34
VAR3 . SET @.SB(0x654321) ; VAR3 = 0x21
@LST()

Returns the value of the $LI ST OV OFF control flag as an integer. Whenever a $LI ST ON control is
encountered in the assembler source, the flag is incremented; when a $LI1 ST OFF control is encountered,
the flag is decremented.

Example:
.DUP @BS(@ST()) ;1ist unconditionally
@LUN(expression)

Converts the 32-bit expression to a floating-point value. expression should represent a binary fraction.

Example:

DBLFRCL . EQU @UN(0x40000000) ;DBLFRC1 = 0.5

DBLFRC2 .EQU @UN(3928472) : DBLFRC2 = 0. 007354736
DBLFRC3 . EQU @UN(OXE0000000) ; DBLFRC3 = -0.75

@MAC(symbol)
Returns integer 1 if symbol has been defined as a macro name, 0 otherwise.
Example:

AF @/AC(DOMUL) ; does macro DOMUL exi st?

129

TASKING SmartCode - TriCore User Guide

@MAX(expressionl[,expressionN],...)

Returns the maximum value of expressionl, ..., expressionN as a floating-point value.
Example:

MAX: .BYTE @#®X(1,-2.137,3.5) ;MAX = 3.5
@MIN(expressionl[,expressionN],...)

Returns the minimum value of expressionl, ..., expressionN as a floating-point value.

Example:

MN .BYTE @IN(1,-2.137,3.5) :;MN = -2.137

@MSB (expression)

Returns the most significant byte of the result of the expression. The result of the expression is calculated
as 16 bit.

Example:

VARL . SET @/BB(0x34) ; VARL = 0x00

VAR2 . SET @/BB(0x1234) ; VAR2 = 0x12

VAR3 . SET @/BB(0x654321) ; VAR3 = 0x43

@MXP()

Returns integer 1 if the assembler is expanding a macro, 0 otherwise.
Example:

A F @MXP() ; Macro expansi on active?

@POS(stringl,string2[,start])

Returns the position of string2 in string1 as an integer. If string2 does not occur in stringl, the last string
position + 1 is returned.

With start you can specify the starting position of the search. If you do not specify start, the search is
started from the beginning of stringl. Note that the first position in a string is position 0.

Example:

ID1I .EQU @OS(' TASKING , ' ASK') ID1 =1
ID2 .EQU @OS(' ABCDABCD ,'B', 2) ID2 =5
ID3 .EQU @0OS(' TASKING , ' BUG) ID3 =7

130

Assembly Language

@POW(expressionl,expression2)

Returns expressionl raised to the power expression2 as a floating-point value. expressionl and
expression2 must be separated by a comma.

Example:

BUF .EQU @V (@OW?2.0,3.0)) :BUF = 8

@RND()

Returns a random value in the range 0.0 to 1.0.

Example:

SEED .EQU @RND() ;save initial SEED val ue

@RVB(expressionl,expression?2)

Reverse the order of bits in expressionl delimited by the number of bits in expression2. If expression2
is omitted the field is bounded by the target word size. Both expressions must be 16-bit integer values.

Example:

VARL . SET @RVB(0x200) :reverse all bits, VARL=0x40
VAR2 . SET @RVB(0xB02) :reverse all bits, VAR2=0x40D0
VAR3 . SET @VB(0xB02, 2) ;reverse bits 0 and 1,

: VAR3=0xB01

@SCP(stringl,string?2)
Returns integer 1 if the two strings compare, 0 otherwise. The two strings must be separated by a comma.
Example:

.IF @CP(STR,' MAIN) ; does STR equal 'MAIN ?

@SECOFFHI(expression)

Returns the upper 16 bits of the offset to expression from the reference address of the section it belongs
to. expression must point to a section.

Example:

I d.a alb, [al2] @ESOFF(gl obal)
addi h. a alb5, al5, #@ECOFFHI (gl obal)
st.w [al5] @ECOFFLO(gl obal), d15

The code above stores the value of register d15 in a global variable that is part of a position-independent
module.

131

TASKING SmartCode - TriCore User Guide

@SECOFFLO(expression)

Returns the lower 16 bits of the offset to expression from the reference address of the section it belongs
to. expression must point to a section.

Example:

I d.a al5, [al2] @ESOFF(gl obal)
addi h. a alb5, al5, #@ECOFFHI (gl obal)
st.w [al5] @GECOFFLQ(gl obal), d15

The code above stores the value of register d15 in a global variable that is part of a position-independent
module.

@SFRACT (expression)

This function returns the 16-bit fractional representation of the floating-point expression. The expression
must be in the range [-1,+1>.

Example:

.WORD @FRACT(0.1), @FRACT(1.0)

@SGN(expression)

Returns the sign of expression as an integer: -1 if the argument is negative, 0O if zero, 1 if positive. The
expression may be relative or absolute.

Example:

VARL . SET @G\(-1.2e-92) ;VARL = -1
VAR2 . SET @G\(0) VAR = 0
VAR3 . SET @G\(28. 382) VAR = 1

@SIN(expression)
Returns the sine of expression as a floating-point value.
Example:

. WORD @5l N(@CVF(COUNT) * FREQ) ;conpute sine val ue

@SNH(expression)
Returns the hyperbolic sine of expression as a floating-point value.
Example:

HSI NE . EQU @NH(VAL) ; hyperbolic sine

132

Assembly Language

@SQT(expression)

Returns the square root of expression as a floating-point value. expression must be positive.

Example:
SQRT1 .EQU @BQT(3.5) ; SQRT1 = 1. 870829
SQRT2 . EQU @8QT(16) ; SQRT2 = 4

@SUB(string,expressionl,expression?2)

Returns the substring from string as a string. expression1 is the starting position within string, and
expression?2 is the length of the desired string. The assembler issues an error if either expressionl or
expression2 exceeds the length of string. Note that the first position in a string is position 0.

Example:

.DEFINE ID "@UB(' TASKING ,3,4)" ;ID="KING

@TAN(expression)
Returns the tangent of expression as a floating-point value.
Example:

TANGENT . SET @AN(1.0) ; TANGENT = 1.5574077

@TNH(expression)
Returns the hyperbolic tangent of expression as a floating-point value.
Example:

HTAN . SET @NH(1) ; HTAN = 0. 76159415595

@UNF(expression)

Converts expression to a floating-point value. expression should represent a 16-bit binary fraction.
Example:

FRC .EQU @NF(0x4000) ;FRC = 0.5

@XPN(expression)
Returns the exponential function (base e raised to the power of expression) as a floating-point value.
Example:

EXP .EQU @PN(1.0) (EXP = 2.718282

133

TASKING SmartCode - TriCore User Guide

3.9. Assembler Directives and Controls

An assembler directive is simply a message to the assembler. Assembler directives are not translated
into machine instructions. There are three main groups of assembler directives.

» Assembler directives that tell the assembler how to go about translating instructions into machine code.
This is the most typical form of assembly directives. Typically they tell the assembler where to put a
program in memory, what space to allocate for variables, and allow you to initialize memory with data.
When the assembly source is assembled, a location counter in the assembler keeps track of where
the code and data is to go in memory.

The following directives fall under this group:

* Assembly control directives

« Symbol definition and section directives

« Data definition / Storage allocation directives
» High Level Language (HLL) directives

« Directives that are interpreted by the macro preprocessor. These directives tell the macro preprocessor
how to manipulate your assembly code before it is actually being assembled. You can use these
directives to write macros and to write conditional source code. Parts of the code that do not match the
condition, will not be assembled at all.

» Some directives act as assembler options and most of them indeed do have an equivalent assembler
(command line) option. The advantage of using a directive is that with such a directive you can overrule
the assembler option for a particular part of the code. Directives of this kind are called controls. A typical
example is to tell the assembler with an option to generate a list file while with the controls $LI ST ON
and $LI ST OFF you overrule this option for a part of the code that you do not want to appear in the
list file. Controls always appear on a separate line and start with a '$' sign in the first column.

The following controls are available:
* Assembly listing controls
* Miscellaneous controls

Each assembler directive or control has its own syntax. You can use assembler directives and controls
in the assembly code as pseudo instructions.

Some assembler directives can be preceded with a label. If you do not precede an assembler directive
with a label, you must use white space instead (spaces or tabs). The assembler recognizes both uppercase
and lowercase for directives.

134

Assembly Language

3.9.1. Assembler Directives

Overview of assembly control directives

Directive Description

. COMVENT Start comment lines. You cannot use this directive in .IF/.ELSE/.ENDIF
constructs and .MACRO/.DUP definitions.

. END Indicates the end of an assembly module

.FAI L Programmer generated error message

. | NCLUDE Include file

. MESSAGE Programmer generated message

. WARNI NG Programmer generated warning message

Overview of symbol definition and section directives

Directive Description

. ALI AS Create an alias for a symbol

. EQU Set permanent value to a symbol

. EXTERN Import global section symbol

. GLOBAL Declare global section symbol

. LOCAL Declare local section symbol

. ORG Initialize memory space and location counters to create a nameless section
. SDECL Declare a section with name, type and attributes
. SECT Activate a declared section

. SET Set temporary value to a symbol

. Sl ZE Set size of symbol in the ELF symbol table

. TYPE Set symbol type in the ELF symbol table

. VIEAK Mark a symbol as 'weak’

Overview of data definition / storage allocation directives

Directive Description
. ACCUM Define 64-bit constant of 18 + 46 bits format
.ALIGN Align location counter

LASCHL, . ASCH T Z
. BYTE

. DOUBLE

. FLOAT

. FRACT

Define ASCII string without / with ending NULL byte
Define byte
Define a 64-bit floating-point constant

Define a 32-bit floating-point constant

Define a 32-bit constant fraction

135

TASKING SmartCode - TriCore User Guide

Directive Description

. HALF Define half-word (16 bits)

. SFRACT Define a 16-bit constant fraction
. SPACE Define storage

. VORD Define word (32 bits)

Overview of macro preprocessor directives

Directive Description

. DEFI NE Define substitution string

. DUP, . ENDM Duplicate sequence of source lines

. DUPA, . ENDM Duplicate sequence with arguments

. DUPC, . ENDM Duplicate sequence with characters

. DUPF, . ENDM Duplicate sequence in loop
.IF,.ELIF,.ELSE Conditional assembly directive

. ENDI F End of conditional assembly directive
.EXIT™M Exit macro

. MACRO, . ENDM Define macro

. PMACRO Undefine (purge) macro

. UNDEF Undefine . DEFI NE symbol
Overview of HLL directives

Directive Description

. CALLS Pass call tree information and/or stack usage information

. COVPI LER | NVOCATI ON
. COVPI LER_NAME

. COWPI LER_VERSI ON

. M SRAC

Pass C compiler invocation
Pass C compiler name

Pass C compiler version header
Pass MISRA C information

136

Assembly Language

ACCUM

Syntax

[l abel :]. ACCUM expressi on[, expression]. ..

Description

With the . ACCUM(directive the assembler allocates and initializes two words of memory (64 bits) for each
argument. Use commas to separate multiple arguments.

An expression can be:

« afractional fixed point expression (range [-217, 2!

>)
* NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive address locations in sets of two words. If an argument is
NULL its corresponding address location is filled with zeros.

If the evaluated expression is out of the range [-217, 217>, the assembler issues a warning and saturates
the fractional value.

Example

ACC: .ACCUM 0.1,0.2,0.3

Related Information
. FRACT, . SFRACT (Define 32-bit/16-bit constant fraction)

. SPACE (Define Storage)

137

TASKING SmartCode - TriCore User Guide

ALIAS

Syntax

al i as- name . ALI AS synbol - nane
Description

With the . ALI AS directive you can create an alias of a symbol. The C compiler generates this directive
when you use the #pragma al i as.

Example

exit .ALIAS _Exit

Related information

Pragma al i as

138

Assembly Language

ALIGN

Syntax

. ALI GN expression

Description

With the . ALI GNdirective you instruct the assembler to align the location counter. By default the assembler
aligns on one byte.

When the assembler encounters the . ALI GN directive, it advances the location counter to an address
that is aligned as specified by expression and places the next instruction or directive on that address.
The alignment is in minimal addressable units (MAUs). The assembler fills the ‘gap’ with NOP instructions
for code sections or with zeros for data sections. If the location counter is already aligned on the specified
alignment, it remains unchanged. The location of absolute sections will not be changed.

The expression must be a power of two: 2, 4, 8, 16, ... If you specify another value, the assembler changes
the alignment to the next higher power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value occurring in that section.

A label is not allowed before this directive.

Example
.sdecl '.text.nod.csec', code
.sect '.text.nod.csec'
.ALI GN 16 ; the assenbler aligns
instruction ; this instruction at 16 MAUs and
; fills the "gap' with NOP instructions.
.sdecl '.text.nod.csec2',code
.sect '.text.nod.csec2'
.ALIGN 12 ; WRONG not a power of two, the
instruction ; assenbler aligns this instruction at

; 16 MAUs and i ssues a warning.

139

TASKING SmartCode - TriCore User Guide

ASCII, .ASCIIZ

Syntax
[label:] .ASCIl string[,string]...

[label:] .ASCI1Z string[,string]...

Description

With the . ASClI | or . ASCI | Z directive the assembler allocates and initializes memory for each string
argument.

The . ASCI | directive does not add a NULL byte to the end of the string. The . ASCI | Z directive does
add a NULL byte to the end of the string. The "z" in . ASCl | Z stands for "zero". Use commas to separate
multiple strings.

Example

STRING .ASCIl "Hello world"
STRINGZ: .ASCI1Z "Hello world"

Note that with the . BYTE directive you can obtain exactly the same effect:

STRING .BYTE "Hello world" ; Without a NULL byte
STRINGZ: .BYTE "Hello world",0 ; with a NULL byte

Related Information
. BYTE (Define a constant byte)

. SPACE (Define Storage)

140

Assembly Language

.BYTE

Syntax

[label:] .BYTE argunent[, argunent]...

Description

With the . BYTE directive the assembler allocates and initializes a byte of memory for each argument.
An argument can be:

 asingle or multiple character string constant

* an integer expression

* NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive byte locations. If an argument is NULL its corresponding
byte location is filled with zeros.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Integer arguments are stored as is, but must be byte values (within the range 0-255); floating-point
numbers are not allowed. If the evaluated expression is out of the range [-256, +255] the assembler issues
an error. For negative values within that range, the assembler adds 256 to the specified value (for example,
-254 is stored as 2).

String constants

Single-character strings are stored in a byte whose lower seven bits represent the ASCII value of the
character, for example:

.BYTE 'R ;= 0x52

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like ‘\n’ are permitted.

.BYTE "AB',,'C ; = 0x41420043 (second argunent is enpty)
Example

TABLE .BYTE 'two',0,'strings',O
CHARS .BYTE 'A,'B','C,'D

Related Information
.ASCl |, .ASCl | Z (Define ASCII string without/with ending NULL)
. WORD, . HALF (Define a word / halfword)

. SPACE (Define Storage)

141

TASKING SmartCode - TriCore User Guide

.CALLS

Syntax

. CALLS "caller’,’ callee’

or
. CALLS ’'caller’,’’, stack_usage
Description

The first syntax creates a call graph reference between caller and callee. The linker needs this information
to build a call graph. caller and callee are names of functions.

The second syntax specifies stack information. When callee is an empty name, this means we define the
stack usage of the function itself. The value specified is the stack usage in bytes at the time of the call
including the return address.

This information is used by the linker to compute the used stack within the application. The information
is found in the generated linker map file within the Memory Usage.

This directive is generated by the C compiler. Normally you will not use it in hand-coded assembly.
A label is not allowed before this directive.
Example
. CALLS 'nmmin', "' nfunc'
Indicates that the function mai n calls the function nf unc.
. CALLS "main','",8

The function mai n uses 8 bytes on the stack.

142

Assembly Language

.COMMENT

Syntax

.COWENT delimter

delinmter
Description

With the . COMVENT directive you can define one or more lines as comments. The first non-blank character
after the . COMMVENT directive is the comment delimiter. The two delimiters are used to define the comment
text. The line containing the second comment delimiter will be considered the last line of the comment.
The comment text can include any printable characters and the comment text will be produced in the
source listing as it appears in the source file.

A label is not allowed before this directive.

Example

.COMWENT + This is a one |line conment +

.COMWENT * This is a nultiple line
conment. Any nunber of |ines
can be placed between the two
delinmters.

143

TASKING SmartCode - TriCore User Guide

.COMPILER_INVOCATION, .COMPILER_NAME, .COMPILER_VERSION

Syntax

. COWPI LER _VERSI ON "ver si on_header"
. COVPI LER_I NVOCATI ON "i nvocati on"
. COVPI LER_NAME " nane"

Description

The C compiler generates information about itself and the invocation at the start of the assembly source.
This way you can always see how the assembly source file was generated. When you assemble the
source file, this information will appear in . not e sections in the object file.

A label is not allowed before these directives.
Example

. COWPI LER_VERSI ON "TASKI NG Smart Code vx.yrz - Tri Core C conpiler Build yymddqq"
. COWPI LER_| NVOCATION "ctc -g test.c"
. COVPI LER_NAME "ctc"

144

Assembly Language

.DEFINE

Syntax

. DEFI NE synmbol string

Description

With the . DEFI NE directive you define a substitution string that you can use on all following source lines.
The assembler searches all succeeding lines for an occurrence of symbol, and replaces it with string. If
the symbol occurs in a double quoted string it is also replaced. Strings between single quotes are not
expanded.

This directive is useful for providing better documentation in the source program. A symbol can consist
of letters, digits and underscore characters (_), and the first character cannot be a digit.

Macros represent a special case. . DEFI NE directive translations will be applied to the macro definition
as it is encountered. When the macro is expanded, any active . DEFI NE directive translations will again
be applied.

The assembler issues a warning if you redefine an existing symbol.

A label is not allowed before this directive.

Example

Suppose you defined the symbol LEN with the substitution string "32":
. DEFI NE LEN " 32"

Then you can use the symbol LEN for example as follows:

. SPACE LEN
. MESSACE "The length is: LEN'

The assembler preprocessor replaces LEN with "32" and assembles the following lines:

. SPACE 32
. MESSACE "The length is: 32"

Related Information
. UNDEF (Undefine a .DEFINE symbol)

. MACRO, . ENDM(Define a macro)

145

TASKING SmartCode - TriCore User Guide

.DUP, .ENDM

Syntax

[l abel :] .DUP expression
- ENDM

Description

With the . DUP/. ENDMdirective you can duplicate a sequence of assembly source lines. With expression
you specify the number of duplications. If the expression evaluates to a number less than or equal to O,
the sequence of lines will not be included in the assembler output. The expression result must be an
absolute integer and cannot contain any forward references (symbols that have not already been defined).
The . DUP directive may be nested to any level.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

In this example the loop is repeated three times. Effectively, the preprocessor repeats the source lines
(. BYTE 10) three times, then the assembler assembles the result:

.DUP 3

.BYTE 10 ; assenbly source lines
. ENDM

Related Information

. DUPA, . ENDM(Duplicate sequence with arguments)
. DUPC, . ENDM(Duplicate sequence with characters)
. DUPF, . ENDM(Duplicate sequence in loop)

. MACRO, . ENDM(Define a macro)

146

Assembly Language

.DUPA, .ENDM

Syntax

[label:] .DUPA formal _arg, argunment[, argunment]. ..
. ENDM

Description

With the . DUPA/. ENDMdirective you can repeat a block of source statements for each argument. For
each repetition, every occurrence of the formal_arg parameter within the block is replaced with each
succeeding argument string. If an argument includes an embedded blank or other assembler-significant
character, it must be enclosed with single quotes.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example
Consider the following source input statements,

.DUPA VALLUE, 12, , 32, 34
. BYTE VALUE
. ENDM

This is expanded as follows:

.BYTE 12
.BYTE VALUE ; results in a warning
.BYTE 32
.BYTE 34

The second statement results in a warning of the assembler that the local symbol VALUE is not defined
in this module and is made external.

Related Information

. DUP, . ENDM(Duplicate sequence of source lines)

. DUPC, . ENDM(Duplicate sequence with characters)
. DUPF, . ENDM(Duplicate sequence in loop)

. MACRO, . ENDM(Define a macro)

147

TASKING SmartCode - TriCore User Guide

.DUPC, .ENDM

Syntax

[label:] .DUPC formal _arg, string
- ENDM

Description

With the . DUPC/. ENDMdirective you can repeat a block of source statements for each character within
string. For each character in the string, the formal_arg parameter within the block is replaced with that
character. If the string is empty, then the block is skipped.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example
Consider the following source input statements,

.DUPC VALLUE, ' 123’
. BYTE VALUE
. ENDM

This is expanded as follows:

.BYTE 1
.BYTE 2
.BYTE 3

Related Information

. DUP, . ENDM(Duplicate sequence of source lines)

. DUPA, . ENDM(Duplicate sequence with arguments)
. DUPF, . ENDM(Duplicate sequence in loop)

. MACRO, . ENDM(Define a macro)

148

Assembly Language

.DUPF, .ENDM

Syntax

[label:] .DUPF formal _arg,[start], end[,increment]
. ENDM

Description

With the . DUPF/. ENDMdirective you can repeat a block of source statements (end - start) + 1/ increment
times. start is the starting value for the loop index; end represents the final value. increment is the increment
for the loop index; it defaults to 1 if omitted (as does the start value). The formal_arg parameter holds the
loop index value and may be used within the body of instructions.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example
Consider the following source input statements,

. DUPF NUM 0, 7

MOV D\ NUM #0

. ENDM

This is expanded as follows:

MOV DO, #0
MOV D1, #0
MOV D2, #0
MOV D3, #0
MOV D4, #0
MOV D5, #0
MOV D6, #0
MOV D7, #0

Related Information

. DUP, . ENDM(Duplicate sequence of source lines)

. DUPA, . ENDM(Duplicate sequence with arguments)
. DUPC, . ENDM(Duplicate sequence with characters)

. MACRO, . ENDM(Define a macro)

149

TASKING SmartCode - TriCore User Guide

.END
Syntax

. END
Description

With the optional . END directive you tell the assembler that the end of the module is reached. If the
assembler finds assembly source lines beyond the . END directive, it ignores those lines and issues a
warning.

You cannot use the . END directive in a macro expansion.
The assembler does not allow a label with this directive.

When you use assembler option --require-end, the . END directive is mandatory.

Example

; source |ines
. END ; End of assenbly nodul e

Related Information

150

Assembly Language

.EQU

Syntax

synbol . EQU expression

Description

With the . EQU directive you assign the value of expression to symbol permanently. The expression can
be relocatable or absolute and forward references are allowed. Once defined, you cannot redefine the
symbol. With the . GLOBAL directive you can declare the symbol global.

Example

To assign the value 0x400 permanently to the symbol MYSYMBOL:

MYSYMBOL . EQU 0x4000

You cannot redefine the symbol MYSYMBOL after this.

Related Information

. SET (Set temporary value to a symbol)

151

TASKING SmartCode - TriCore User Guide

EXITM

Syntax

.EXIT™

Description

With the . EXI TMdirective the assembler will immediately terminate a macro expansion. It is useful when
you use it with the conditional assembly directive . | F to terminate macro expansion when, for example,
error conditions are detected.

A label is not allowed before this directive.
Example

CALC .MNMACRO XVAL, YVAL

AF XVAL<0

.FAIL " Macro paraneter value out of range'
.EXITM ;Exit macro

. ENDI F

. ENDM

Related Information

. DUP, . ENDM(Duplicate sequence of source lines)

. DUPA, . ENDM(Duplicate sequence with arguments)
. DUPC, . ENDM(Duplicate sequence with characters)
. DUPF, . ENDM(Duplicate sequence in loop)

. MACRO, . ENDM(Define a macro)

152

Assembly Language

.EXTERN

Syntax

. EXTERN synbol [, synbol]. ..

Description

With the . EXTERNdirective you define an external symbol. It means that the specified symbol is referenced
in the current module, but is not defined within the current module. This symbol must either have been
defined outside of any module or declared as globally accessible within another module with the . GLOBAL
directive.

If you do not use the . EXTERN directive and the symbol is not defined within the current module, the
assembler issues a warning and inserts the . EXTERN directive.

A label is not allowed with this directive.

Example
. EXTERN AA, CC, DD ;defined el sewhere
.sdecl ".text.code", code
.sect ".text.code"
MOV DO, #AA : AA is used here

Related Information
. GLOBAL (Declare global section symbol)

. LOCAL (Declare local section symbol)

153

TASKING SmartCode - TriCore User Guide

.FAIL

Syntax

.FAIL {str|exp}[,{str|exp}]...

Description

With the . FAI L directive you tell the assembler to print an error message to st der r during the assembling
process.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated error. If you use expressions, the
assembler outputs the result. The assembler outputs a space between each argument.

The total error count will be incremented as with any other error. The . FAI L directive is for example
useful in combination with conditional assembly for exceptional condition checking. The assembly process
proceeds normally after the error has been printed.

With this directive the assembler exits with exit code 1 (an error).
A label is not allowed with this directive.
Example
.FAIL 'Paraneter out of range'
This results in the error:
E143: ["filenane" |ine] Paraneter out of range
Related Information
. MESSACE (Programmer generated message)

. WARNI NG (Programmer generated warning)

154

Assembly Language

.FLOAT, .DOUBLE

Syntax
[l abel :].FLOAT expression[, expression]...

[l abel :]. DOUBLE expression[, expression]...

Description

With the . FLOAT or . DOUBLE directive the assembler allocates and initializes a floating-point number
(32 hits) or a double (64 bits) in memory for each argument.

An expression can be:
« afloating-point expression
* NULL (indicated by two adjacent commas: ,,)

You can represent a constant as a signed whole number with fraction or with the 'e’ format as used in the
C language. For example, 12. 457 and +0. 27E- 13 are legal floating-point constants.

If the evaluated argument is too large to be represented in a single word / double-word, the assembler
issues an error and truncates the value.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

FLT: . FLOAT 12. 457, +0. 27E- 13
DBL: .DOUBLE 12.457,+0.27E-13

Related Information

. SPACE (Define Storage)

155

TASKING SmartCode - TriCore User Guide

.FRACT, .SFRACT

Syntax

[l abel :]. FRACT expression[, expression]...
[1abel :].SFRACT expression[, expression]...
Description

With the . FRACT or . SFRACT directive the assembler allocates and initializes a 32-bit or 16-bit constant
fraction in memory for each argument. Use commas to separate multiple arguments.

An expression can be:
« afractional fixed point expression (range [-1, +1>)
* NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive address locations in sets of two bytes. If an argument is
NULL its corresponding address location is filled with zeros.

If the evaluated expression is out of the range [-1, +1>, the assembler issues a warning and saturates
the fractional value.

Example
FRCT: .FRACT 0.1,0.2,0.3
SFRCT: .SFRACT 0.1,0.2,0.3

Related Information
. ACCUM (Define 64-bit constant fraction in 18+46 bits format)

. SPACE (Define Storage)

156

Assembly Language

.GLOBAL
Syntax

. GLOBAL synbol [, synbol]. ..
Description

All symbols or labels defined in the current section or module are local to the module by default. You can
change this default behavior with assembler option --symbol-scope=global.

With the . GLOBAL directive you declare one of more symbols as global. It means that the specified
symbols are defined within the current section or module, and that those definitions should be accessible
by all modules.

To access a symbol, defined with . GLOBAL, from another module, use the . EXTERN directive.

Only program labels and symbols defined with . EQU can be made global.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.
The assembler does not allow a label with this directive.

Example

LOOPA .EQU 1 ; definition of synmbol LOOPA
.GLOBAL LOCOPA ; LOCOPA will be globally
; accessi bl e by other nodul es

Related Information
. EXTERN (Import global section symbol)

. LOCAL (Declare local section symbol)

157

TASKING SmartCode - TriCore User Guide

IF, .ELIF, .ELSE, .ENDIF

Syntax

.1 F expression

[.ELIF expression] ; the .ELIF directive is optional
[. ELSE] ; the .ELSE directive is optional
. ENDI F

Description

With the . | F/. ENDI F directives you can create a part of conditional assembly code. The assembler
assembles only the code that matches a specified condition.

The expression must evaluate to an absolute integer and cannot contain forward references. If expression
evaluates to zero, the IF-condition is considered FALSE, any non-zero result of expression is considered
as TRUE.

If the optional . ELSE and/or . ELI F directives are not present, then the source statements following the
. | Fdirective and up to the next . ENDI F directive will be included as part of the source file being assembled
only if the expression had a non-zero result.

If the expression has a value of zero, the source file will be assembled as if those statements between
the . | F and the . ENDI F directives were never encountered.

If the . ELSE directive is present and expression has a nonzero result, then the statements between the
. | Fand . ELSE directives will be assembled, and the statement between the . ELSE and . ENDI F directives
will be skipped. Alternatively, if expression has a value of zero, then the statements between the . | F and
. ELSE directives will be skipped, and the statements between the . ELSE and . ENDI F directives will be
assembled.

You can nest . | F directives to any level. The . ELSE and . ELI F directive always refer to the nearest
previous . | F directive.

A label is not allowed with this directive.
Example

Suppose you have an assemble source file with specific code for a test version, for a demo version and
for the final version. Within the assembly source you define this code conditionally as follows:

I F TEST
; code for the test version
. ELI F DEMO

; code for the denp version
. ELSE

158

Assembly Language
; code for the final version
. ENDI F

Before assembling the file you can set the values of the symbols TEST and DEMOin the assembly source
before the . | F directive is reached. For example, to assemble the demo version:

TEST .SET 0O
DEMO . SET 1

You can also define the symbols on the command line with the assembler option --define (-D):

astc --defi ne=DEMO - -defi ne=TEST=0 test.asm

159

TASKING SmartCode - TriCore User Guide

INCLUDE

Syntax

. I NCLUDE "fil ename" | <fil enane>

Description

With the . | NCLUDE directive you include another file at the exact location where the . | NCLUDE occurs.
This happens before the resulting file is assembled. The . | NCLUDE directive works similarly to the

#i ncl ude statement in C. The source from the include file is assembled as if it followed the point of the
. | NCLUDE directive. When the end of the included file is reached, assembly of the original file continues.

The string specifies the filename of the file to be included. The filename must be compatible with the
operating system (forward/backward slashes) and can contain a directory specification.

If an absolute pathname is specified, the assembler searches for that file. If a relative path is specified
or just a filename, the order in which the assembler searches for include files is:

1. The current directory if you use the "filename" construction.
The current directory is not searched if you use the <filename> syntax.
2. The path that is specified with the assembler option --include-directory.
3. The path that is specified in the environment variable ASTCI NC when the product was installed.
4. The default i ncl ude directory in the installation directory.

The assembler does not allow a label with this directive.

Example
. I NCLUDE ' st orage\ nem asmi ; include file
. I NCLUDE <dat a. asn® ; Do not look in

; current directory

160

Assembly Language

.LOCAL

Syntax

. LOCAL synmbol [, synmbol] . ..

Description

All symbols or labels defined in the current section or module are local to the module by default. You can
change this default behavior with assembler option --symbol-scope=global.

With the . LOCAL directive you declare one of more symbols as local. It means that the specified symbols
are explicitly local to the module in which you define them.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.
The assembler does not allow a label with this directive.
Example

.SDECL ".data.io", DATA

. SECT ".data.io"
.LOCAL LOCPA ; LOOPA is local to this section
LOOPA . HALF 0x100 ; assigns the val ue 0x100 to LOOPA

Related Information
. EXTERN (Import global section symbol)

. GLOBAL (Declare global section symbol)

161

TASKING SmartCode - TriCore User Guide

.MACRO, .ENDM

Syntax

macr o_nanme . MACRO [argunent [, argument]...]
rracr o_definition_statenents
. ENDM

Description

With the . MACROdirective you define a macro. Macros provide a shorthand method for handling a repeated
pattern of code or group of instructions. You can define the pattern as a macro, and then call the macro
at the points in the program where the pattern would repeat.

The definition of a macro consists of three parts:

» Header, which assigns a name to the macro and defines the arguments (. MACRO directive).
» Body, which contains the code or instructions to be inserted when the macro is called.

» Terminator, which indicates the end of the macro definition (. ENDMdirective).

The arguments are symbolic names that the macro processor replaces with the literal arguments when
the macro is expanded (called). Each formal argument must follow the same rules as symbol names: the
name can consist of letters, digits and underscore characters (_). The first character cannot be a digit.
Argument names cannot start with a percent sign (%).

Macro definitions can be nested but the nested macro will not be defined until the primary macro is
expanded.

You can use the following operators in macro definition statements:

Operator [Name Description

\ Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

? Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

A Macro local label override Prevents name mangling on labels in macros.

Example
The macro definition:

CONST. D . MACRO dx, v : header
novh dx, #@i s(v) ; body

162

addi dx, dx, #@ os(V)
. ENDM

The macro call:

. SDECL ".text", code
. SECT "text"
CONST. D d4, 0x12345678

The macro expands as follows:

movh d4, #@i s(0x12345678)
addi d4, d4, #@ os(0x12345678)

Related Information

Section 3.10, Macro Operations

. DUP, . ENDM(Duplicate sequence of source lines)

. DUPA, . ENDM(Duplicate sequence with arguments)
. DUPC, . ENDM(Duplicate sequence with characters)
. DUPF, . ENDM(Duplicate sequence in loop)

. PMACRO (Undefine macro)

. DEFI NE (Define a substitution string)

;term nat or

Assembly Language

163

TASKING SmartCode - TriCore User Guide

.MESSAGE

Syntax

. MESSAGE {str|exp}[,{str]|exp}]...

Description

With the . MESSAGE directive you tell the assembiler to print a message to st der r during the assembling
process.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated message. If you use expressions,
the assembler outputs the result. The assembler outputs a space between each argument.

The error and warning counts will not be affected. The . MESSAGE directive is for example useful in
combination with conditional assembly to indicate which part is assembled. The assembling process
proceeds normally after the message has been printed.

This directive has no effect on the exit code of the assembler.

A label is not allowed with this directive.

Example

. DEFI NE LONG " SHORT"
.MESSACE 'This is a LONG string'
.MESSACE "This is a LONG string"

Within single quotes, the defined symbol LONGis not expanded. Within double quotes the symbol LONG
is expanded so the actual message is printed as:

This is a LONG string
This is a SHORT string

Related Information
. FAI L (Programmer generated error)

. WARNI NG (Programmer generated warning)

164

Assembly Language

.MISRAC

Syntax

. M SRAC string

Description

The C compiler can generate the . M SRAC directive to pass the compiler's MISRA C settings to the object
file. The linker performs checks on these settings and can generate a report. It is not recommended to
use this directive in hand-coded assembly.

Example

.M SRAC ' M SRA- C: 2004, 64, e2, Ob, e, el1, 27, 6, ef 83, el,
ef, 66, cb75, af 1, ef f, e7, e7f, 8d, 63, 87ff 7, 6ff 3, 4'

Related Information
Section 4.7.2, C Code Checking: MISRA C

C compiler option --misrac

165

TASKING SmartCode - TriCore User Guide

.ORG

Syntax

.ORG [abs-loc][,sect_type][,attribute]...

Description

With the . ORGdirective you can specify an absolute location (abs_loc) in memory of a section. This is
the same as a . SDECL/ . SECT without a section name.

This directive uses the following arguments:

abs-loc Initial value to assign to the run-time location counter. abs-loc must be an absolute
expression. If abs_loc is not specified, then the value is zero.

sect_type |An optional section type: code or data

attribute An optional section attribute: init, noread, noclear, max, rom, group(string), cluster(string),
protect

For more information about the section types and attributes see the assembler directive . SDECL.
The section type and attributes are case insensitive. A label is not allowed with this directive.

Example

; define a section at |ocation 100 deci mal
.org 100

; define a relocatable nanel ess section
.org

; define a relocatable data section
.org , data

; define a data section at 0x8000
.org 0x8000, dat a

Related Information
. SDECL (Declare section name and attributes)

. SECT (Activate a declared section)

166

Assembly Language

.PMACRO
Syntax

. PMACRO synbol [, synbol]. ..
Description

With the . PMACROdirective you tell the assembler to undefine the specified macro, so that later uses of
the symbol will not be expanded.

The assembler does not allow a label with this directive.

Example
. PMACRO MAC1, MAC2

This statement causes the macros named MACL and MAC2 to be undefined.

Related Information

. MACRO, . ENDM(Define a macro)

167

TASKING SmartCode - TriCore User Guide

.SDECL
Syntax

. SDECL "name",type[,attribute]... [AT address]
Description

With the . SDECL directive you can define a section with a name, type and optional attributes. Before any
code or data can be placed in a section, you must use the . SECT directive to activate the section.

The name specifies the name of the section. The type operand specifies the section’s type and must be
one of:

Type Description
CODE |Code section.
DATA |Data section.
DEBUG | Debug section.

The section type and attributes are case insensitive.

The defined attributes are:

Attribute Description Allowed on type
AT address Locate the section at the given address. CODE, DATA
CLEAR Sections are zeroed at startup. DATA

CLUSTER(‘name* | Cluster code sections with companion debug sections. Used |CODE, DATA,
) by the linker during removal of unreferenced sections. The name |DEBUG

must be unique for this module (not for the application). To
prevent naming conflicts with other symbols, the prefix

". cl ust er."is added to the cluster name during object file
generation.

CONCAT Concatenate sections. Used by the linker to merge sections |DATA
with the same name.

INIT Defines that the section contains initialization data, which is |CODE, DATA
copied from ROM to RAM at program startup.

LINKONCE ‘tag' |For internal use only.

MAX When data sections with the same name occur in different object | DATA
modules with the MAX attribute, the linker generates a section
of which the size is the maximum of the sizes in the individual
object modules.

NOCLEAR Sections are not zeroed at startup. This is a default attribute for | DATA
data sections. This attribute is only useful with BSS sections,
which are cleared at startup by default.

NOREAD Defines that the section can be executed from but not read. CODE

168

Assembly Language

Attribute Description Allowed on type

PROTECT Tells the linker to exclude a section from unreferenced section | CODE, DATA
removal and duplicate section removal.

ROM Section contains data to be placed in ROM. This ROM area is | CODE, DATA

not executable.

Section names

The name of a section can have a special meaning for locating sections. The name of code sections
should always start with ". t ext ". With data sections, the prefix in the name is important. The prefix
determines if the section is initialized, constant or uninitialized and which addressing mode is used. See
the following table.

Name prefix | Type of section

.bss uninitialized data

.bss a0 uninitialized data, a0 addressing
.bss_al uninitialized data, al addressing
.bss_a8 uninitialized data, a8 addressing
.bss_a9 uninitialized data, a9 addressing
.data initialized data

.data_a0 initialized data, a0 addressing
.data_al initialized data, al addressing
.data_a8 initialized data, a8 addressing
.data_a9 initialized data, a9 addressing
data constant data, al addressing (read only constants, literal data)
.rodata constant data

.rodata_a0 |constant data, a0 addressing
.rodata_al |constant data, al addressing
.rodata_a8 |constant data, a8 addressing
.rodata_a9 |constant data, a9 addressing
.sbss uninitialized data, a0 addressing
.sdata initialized data, a0 addressing
text program code

.zbss uninitialized data, abs 18 addressing
.zdata initialized data, abs 18 addressing
.zrodata constant data, abs 18 addressing

Note that the compiler uses the following hame convention:

prefi x. nodul e_nane. functi on_or _obj ect _nane

169

TASKING SmartCode - TriCore User Guide

Also note that you cannot use the @ sign in section names. The assembler strips the @ sign and any
following characters from the section name.

Example

.sdecl ".text.t.mmin", CODE ; decl are code section
. sect ".text.t.min" ;activate section
.sdecl ".data.t.varl", DATA ; declare data section
. sect ". data.t.varl" ;activate section
.sdecl ".text.intvec.00a", CODE ; declare interrupt

; vector table entry for interrupt 10
. sect ".text.intvec. 00a" ; activate section
.sdecl ".data.t.abssec",data at 0x100

; absolute section

. sect " . data.t.abssec" ;activate section

Related Information
. SECT (Activate a declared section)

. ORG(Initialize a nameless section)

170

Assembly Language

SECT

Syntax

. SECT "nane" [, RESET]

Description

With the . SECT directive you activate a previously declared section with the name name. Before you can
activate a section, you must define the section with the . SDECL directive. You can activate a section as
many times as you need.

With the attribute RESET you can reset counting storage allocation in data sections that have section
attribute MAX.

Example
.sdecl ".zdata.t.var2", DATA ; declare data section
. sect ".zdata.t.var2" ; activate section

Related Information
. SDECL (Declare section name and attributes)

. ORG (Initialize a nameless section)

171

TASKING SmartCode - TriCore User Guide

SET

Syntax

symbol . SET expression
.SET synbol expression

Description

With the . SET directive you assign the value of expression to symbol temporarily. If a symbol was defined
with the . SET directive, you can redefine that symbol in another part of the assembly source, using the
. SET directive again. Symbols that you define with the . SET directive are always local: you cannot define
the symbol global with the . GLOBAL directive.

The . SET directive is useful in establishing temporary or reusable counters within macros. expression
must be absolute and forward references are allowed.

Example

COUNT .SET O ; Initialize count. Later on you can
; assign other values to the synbol

Related Information

. EQU (Set permanent value to a symbol)

172

Assembly Language

SIZE

Syntax
.Sl ZE synbol , expression
Description
With the . SI ZE directive you set the size of the specified symbol to the value represented by expression.

The . Sl ZE directive may occur anywhere in the source file unless the specified symbol is a function. In
this case, the . S| ZE directive must occur after the function has been defined.

Example

main: .type func
; function main

retl6
mai n_function_end:
. Si ze mai n, mai n_functi on_end- nai n

Related Information

. TYPE (Set symbol type)

173

TASKING SmartCode - TriCore User Guide

.SPACE

Syntax

[l abel :] .SPACE expression

Description

The . SPACE directive reserves a block in memory. The reserved block of memory is not initialized to any
value.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

The expression specifies the number of MAUs (Minimal Addressable Units) to be reserved, and how
much the location counter will advance. The expression must evaluate to an integer greater than zero
and cannot contain any forward references (symbols that have not yet been defined). For the TriCore the
MAU size is 8 (1 byte).

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

To reserve 12 bytes (not initialized) of memory in a TriCore data section:

.sdecl ".zbss.tst.uninit", DATA
. sect ".zbss.tst.uninit"
uninit .SPACE 12 ; Sanpl e buffer

Related Information

. BYTE (Define a constant byte)

174

Assembly Language

.TYPE
Syntax
synbol .TYPE typeid

Description

With the . TYPE directive you set a symbol's type to the specified value in the ELF symbol table. Valid
symbol types are:

FUNC The symbol is associated with a function or other executable code.
OBJECT The symbol is associated with an object such as a variable, an array, or a structure.
FILE The symbol name represents the filename of the compilation unit.

Labels in code sections have the default type FUNC. Labels in data sections have the default type OBJECT.
Example
Afunc: .type func

Related Information

. Sl ZE (Set symbol size)

175

TASKING SmartCode - TriCore User Guide

.UNDEF

Syntax

. UNDEF synbol

Description

With the . UNDEF directive you can undefine a substitution string that was previously defined with the
. DEFI NE directive. The substitution string associated with symbol is released, and symbol will no longer
represent a valid . DEFI NE substitution or macro.

The assembler issues a warning if you undefine a non-existing symbol.
The assembler does not allow a label with this directive.
Example

The following example undefines the LEN substitution string that was previously defined with the . DEFI NE
directive:

. UNDEF LEN

Related Information

. DEFI NE (Define a substitution string)

176

Assembly Language

WARNING

Syntax

. WARNI NG {str|exp}[,{str|exp}]...

Description

With the . WARNI NG directive you tell the assembler to print a warning message to st der r during the
assembling process.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated warning. If you use expressions,
the assembler outputs the result. The assembler outputs a space between each argument.

The total warning count will be incremented as with any other warning. The . WARNI NG directive is for
example useful in combination with conditional assembly to indicate which part is assembled. The
assembling process proceeds normally after the message has been printed.

This directive has no effect on the exit code of the assembler, unless you use the assembler option
--warnings-as-errors. In that case the assembler exits with exit code 1 (an error).

A label is not allowed with this directive.
Example
.WARNI NG ' Paraneter out of range'
This results in the warning:
WL44: ["filename" |ine] Paraneter out of range
Related Information
. FAI L (Programmer generated error)

. MESSACE (Programmer generated message)

177

TASKING SmartCode - TriCore User Guide

WEAK

Syntax

. EAK synbol [, synbol] . ..

Description

With the . VEAK directive you mark one or more symbols as 'weak'. The symbol can be defined in the
same module with the . GLOBAL directive or the . EXTERN directive. If the symbol does not already exist,
it will be created.

A 'weak' external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference.

When a weak external reference cannot be resolved, the linker substitutes the null pointer. If instructions
that call or jump to an absolute address (JA, CALLA, JLA, or FCALLA) target an undefined weak symbol,
the linker replaces them with a NOP. This is done in order to prevent a possible bus error when making
a jump or a call to address 0.

You can overrule a weak definition with a . GLOBAL definition in another module. The linker will not
complain about the duplicate definition, and ignore the weak definition.

Only program labels and symbols defined with . EQU can be made weak.

Example

LOOPA .EQU 1 ; definition of synmbol LOOPA
.GLOBAL LOOPA ; LOOPA will be globally
; accessi bl e by other nodul es
. \EAK LOCPA ; mark symbol LOOPA as weak

Related Information
. EXTERN (Import global section symbol)

. GLOBAL (Declare global section symbol)

178

Assembly Language

.WORD, .HALF

Syntax

[label:] .WORD argument[, argunent]...
[label:] .HALF argument[, argunent]...

Description

With the . WORD or . HALF directive the assembler allocates and initializes one word (32 bits) or a halfword
(16 bits) of memory for each argument.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

An argument can be a single- or multiple-character string constant, an expression or empty.

Multiple arguments are stored in sets of four or two bytes. One or more arguments can be null (indicated
by two adjacent commas), in which case the corresponding byte location will be filled with zeros.

The value of the arguments must be in range with the size of the directive; floating-point numbers are not
allowed. If the evaluated argument is too large to be represented in a word / halfword, the assembler
issues a warning and truncates the value.

String constants

Single-character strings are stored in the most significant byte of a word / halfword, where the lower seven
bits in that byte represent the ASCII value of the character, for example:

.WORD 'R ; 0x52000000
.HALF 'R ; 0x5200

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like ‘\n’ are permitted.

.WORD ' ABCD ;= 0x44434241
Example

When a string is supplied as argument of a directive that initializes multiple bytes, each character in the
string is stored in consecutive bytes whose lower seven bits represent the ASCII value of the character.
For example:

HTBL: .HALF 'ABC,,'D ; results in 0x424100004400 , the 'C is truncated
WBL: . WORD ' ABC ; results in 0x43424100

Related Information
. BYTE (Define a constant byte)

. SPACE (Define Storage)

179

TASKING SmartCode - TriCore User Guide

3.9.2. Assembler Controls

Controls start with a $ as the first character on the line. Unknown controls are ignored after a warning is
issued.

Overview of assembler listing controls

Control Description

$LI ST OV OFF Print / do not print source lines to list file

$PACE Generate form feed in list file

$PAGE settings Define page layout for assembly list file

$PRCTL Send control string to printer

$STI TLE Set program subtitle in header of assembly list file
$TI TLE Set program title in header of assembly list file

Overview of miscellaneous assembler controls

Control Description

$CASE QV OFF Case sensitive user names ON/OFF

$DEBUG ON/ OFF Generation of symbolic debug ON/OFF

$DEBUG " flags" Select debug information

$HW ONLY Prevent substitution of assembly instructions by smaller or faster instructions
$1 DENT LOCAL/ GLOBAL |Assembler treats labels by default as local or global

$NO_FPU Do not allow single precision floating-point instructions

$OBIECT Alternative name for the generated object file

$TC18 Allow TriCore 1.8 instructions

$WARNI NG OFF [num] Suppress all or some warnings

180

Assembly Language

$CASE

Syntax

$CASE ON
$CASE OFF

Default
$CASE ON
Description

With the $CASE ONand $CASE COFF controls you specify wether the assembler operates in case sensitive
mode or not. By default the assembler operates in case sensitive mode. This means that all user-defined
symbols and labels are treated case sensitive, so LAB and Lab are distinct.

Note that the instruction mnemonics, register names, directives and controls are always treated case
insensitive.

Example

; begin of source
$CASE OFF ; assenbler in case insensitive node

Related Information

Assembler option --case-insensitive

181

TASKING SmartCode - TriCore User Guide

$DEBUG

Syntax

$DEBUG ON
$DEBUG COFF
$DEBUG "fl ags"”

Default
$DEBUG " AhLS"
Description

With the $DEBUG ON and $DEBUG OFF controls you turn the generation of debug information on or off.
($DEBUG ONiis similar to the assembler option --debug-info=+local (-gl).

If you use the $DEBUG control with flags, you can set the following flags:

a/A Assembly source line information

h/H Pass high level language debug information (HLL)
I/l Assembler local symbols debug information

s/S Smart debug information

You cannot specify $DEBUG " ah" . Either the assembler generates assembly source line information, or
it passes HLL debug information.

Example

; begin of source
$DEBUG ON ; generate |ocal synbols debug information

Related Information

Assembler option --debug-info

182

Assembly Language

$HW_ONLY
Syntax

$HW ONLY
Description

Normally the assembler replaces instructions by other, smaller or faster instructions. For example, the
instruction j eq doO, #0, | abel 1 isreplaced byjz dO, | abel 1.

With the $HW ONLY control you instruct the assembler to encode all instruction as they are. The assembler
does not substitute instructions with other, faster or smaller instructions.

Example

; begin of source

$HW ONLY ; the assenbl er does not substitute
pinstructions with other, smaller or
; faster instructions.

Related Information

Assembler option --optimize=+generics

183

TASKING SmartCode - TriCore User Guide

$IDENT

Syntax

$1 DENT LOCAL
$1 DENT GLOBAL

Default

$! DENT LOCAL

Description

With the controls $I DENT LOCAL and $1 DENT GLOBAL you tell the assembler how to treat symbols that
you have not specified explicitly as local or global with the assembler directives . LOCAL or . GLOBAL.

By default the assembler treats all symbols as local symbols unless you have defined them to be global
explicitly.

Example

; begin of source
$I DENT GLOBAL ; assenbly |abels are gl obal by default

Related Information
Assembler directive .GLOBAL
Assembler directive .LOCAL

Assembler option --symbol-scope

184

Assembly Language

$LIST ON/OFF

Syntax

$LI ST ON
$LI ST OFF

Default

$LI ST ON

Description

If you generate a list file with the assembler option --list-file, you can use the $LI ST ONand $LI ST
OFF controls to specify which source lines the assembler must write to the list file. Without the assembler
option --list-file these controls have no effect. The controls take effect starting at the next line.

The $LI ST ONcontrol actually increments a counter that is checked for a positive value and is symmetrical
with respect to the $L1 ST OFF control. Note the following sequence:

; Counter value currently 1

$LI ST ON ;. Counter value = 2
$LI ST ON ;. Counter value = 3
$LI ST OFF ;. Counter value = 2
$LI ST OFF ;. Counter value =1

The listing still would not be disabled until another $L1 ST OFF control was issued.

Example

.. : source line inlist file
$LI ST OFF

.. : source line not inlist file
$LI ST ON

: source line alsoinlist file

Related Information
Assembler option --list-file

Assembler function @LST()

185

TASKING SmartCode - TriCore User Guide

$NO_FPU

Syntax

$NO_FPU

Description

By default, the assembler accepts and encodes single precision floating-point (FPU) instructions in the
assembly source file. With the $NO_FPU control you tell the assembler that FPU instructions are not

allowed in the assembly source file.

When you use this control, the define __ FPU__is set to 0. By default the define __FPU__issetto 1
which tells the assembler to accept single precision floating-point instructions.

Example
; begin of source
$NO_FPU ; the use of single precision FPU instructions

;in this source is not allowed.

Related Information

Assembler option --no-fpu

186

Assembly Language

$OBJIECT

Syntax

$OBJECT "file"
$OBJECT OFF

Default
$OBJECT
Description

With the $OBJECT control you can specify an alternative name for the generated object file. With the
$OBJECT OFF control, the assembler does not generate an object file at all.

Example

; Begin of source
$obj ect "x1.0" ; generate object file x1.0

Related Information

Assembler option --output

187

TASKING SmartCode - TriCore User Guide

$PAGE

Syntax

$PAGE [pagew dt h[, pagel engt h[, bl ankl ef t[, bl ankt op[, bl ankbt nj]]]

Default

$PACGE 132,72,0,0,0

Description

If you generate a list file with the assembler option --list-file, you can use the $PAGE control to format

the generated list file.

The arguments may be any positive absolute integer expression, and must be separated by commas.

pagewidth

Number of columns per line. The default is 132, the minimum is 40.

pagelength

Total number of lines per page. The default is 72, the minimum is 10.
As a special case, a page length of 0 turns off page breaks.

blankleft

Number of blank columns at the left of the page. The default is 0, the
minimum is 0, and the maximum must maintain the relationship: blankleft
< pagewidth.

blanktop

Number of blank lines at the top of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

blankbtm

Number of blank lines at the bottom of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

If you use the $PAGE control without arguments, it causes a 'formfeed': the next source line is printed on
the next page in the list file. The $PACE control itself is not printed.

Example

$PAGE

$PACGE 96

$PAGE ,,, 3,3

Related Information

fornfeed, the next source line is printed
on the next page in the list file.

set page width to 96. Note that you can
omit the last four argunents.

use 3 line top/bottom margins.

Assembler option --list-file

188

Assembly Language

$PRCTL

Syntax

$PRCTL exp|string[,exp|string]...

Description

If you generate a list file with the assembler option --list-file, you can use the $PRCTL control to send
control strings to the printer.

The $PRCTL control simply concatenates its arguments and sends them to the listing file (the control line
itself is not printed unless there is an error).

You can specify the following arguments:

expr A byte expression which may be used to encode non-printing control characters, such as ESC.

string An assembler string, which may be of arbitrary length, up to the maximum assembler-defined
limits.

The $PRCTL control can appear anywhere in the source file; the assembler sends out the control string
at the corresponding place in the listing file.

If a $PRCTL control is the last line in the last input file to be processed, the assembler insures that all
error summaries, symbol tables, and cross-references have been printed before sending out the control
string. In this manner, you can use a $PRCTL control to restore a printer to a previous mode after printing
is done.

Similarly, if the $PRCTL control appears as the first line in the first input file, the assembler sends out the
control string before page headings or titles.

Example

$PRCTL $1B,'FE ; Reset HP LaserJet printer

Related Information

Assembler option --list-file

189

TASKING SmartCode - TriCore User Guide

$STITLE

Syntax

$STI TLE "string"
Default

$STI TLE ""

Description

If you generate a list file with the assembler option --list-file, you can use the $STI TLE control to specify
the program subtitle which is printed at the top of all succeeding pages in the assembler list file below
the title.

The specified subtitle is valid until the assembler encounters a new $STI TLE control. By default, the
subtitle is empty.

The $STI TLE control itself will not be printed in the source listing.
If the page width is too small for the title to fit in the header, it will be truncated.
Example

$TI TLE "This is the title'
$STITLE 'This is the subtitle'

Related Information
Assembler option --list-file

Assembler control $TITLE

190

Assembly Language

$TC18
Syntax
$TC18
Description

With the $TC18 control you instruct the assembler to accept and encode TriCore 1.8 instructions in the
assembly source file.

When you use this control, the define __ CORE_TC18__is set to 1. When no control and no --core option
is given, the default core is TC1.8 and the define __ CORE_TC18__issetto 1.

Example

; begin of source
$TC18 ; the use of TriCore 1.8 instructions
;in this source is allowed.

Related Information

Assembler option --core

191

TASKING SmartCode - TriCore User Guide

$TITLE
Syntax
$TI TLE "string"
Default

$TITLE "

Description

If you generate a list file with the assembler option --list-file, you can use the $TI TLE control to specify
the program title which is printed at the top of each page in the assembler list file.

The specified title is valid until the assembler encounters a new $TI TLE control. By default, the title is
empty.

The $TI TLE control itself will not be printed in the source listing.

If the page width is too small for the title to fit in the header, it will be truncated.
Example

$TITLE 'This is the title'

Related Information

Assembler option --list-file

Assembler control $STITLE

192

Assembly Language

$WARNING OFF

Syntax

$WARNI NG OFF [nunber]
Default

All warnings are reported.
Description

This control allows you to disable all or individual warnings. The number argument must be a valid warning
message number.

Example

$WARNI NG OFF ; all warning messages are suppressed
$WARNI NG OFF 135 ; suppress warni ng nessage 135

Related Information

Assembler option --no-warnings

193

TASKING SmartCode - TriCore User Guide

3.10. Macro Operations

Macros provide a shorthand method for inserting a repeated pattern of code or group of instructions. You
can define the pattern as a macro, and then call the macro at the points in the program where the pattern
would repeat.

Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly.

When a macro is called, the assembler executes the macro and replaces the call by the resulting in-line
source statements. 'In-line' means that all replacements act as if they are on the same line as the macro
call. The generated statements may contain substitutable arguments. The statements produced by a
macro can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions as any
other statements.

Macros can be nested. The assembler processes nested macros when the outer macro is expanded.

3.10.1. Defining a Macro
The first step in using a macro is to define it.
The definition of a macro consists of three parts:
» Header, which assigns a name to the macro and defines the arguments (. MACROdirective).
» Body, which contains the code or instructions to be inserted when the macro is called.
» Terminator, which indicates the end of the macro definition (. ENDMdirective).
A macro definition takes the following form:
nmacro_nanme . MACRO [argunent[, argunent]...]
lm-a;:ro_defi nition_statenents
- ENDM
For more information on the definition see the description of the . MACRO directive.

The . DUP, . DUPA, . DUPC, and . DUPF directives are specialized macro forms to repeat a block of source
statements. You can think of them as a simultaneous definition and call of an unnamed macro. The source
statements between the . DUP, . DUPA, . DUPC, and . DUPF directives and the . ENDMdirective follow the
same rules as macro definitions.

3.10.2. Calling a Macro

To invoke a macro, construct a source statement with the following format:
[l abel] macro_nanme [argunent[,argunment]...] [; comment]

where,

194

Assembly Language

label An optional label that corresponds to the value of the location counter
at the start of the macro expansion.

macro_name The name of the macro. This may not start in the first column.

argument One or more optional, substitutable arguments. Multiple arguments

must be separated by commas.

comment An optional comment.

The following applies to macro arguments:

Each argument must correspond one-to-one with the formal arguments of the macro definition. If the
macro call does not contain the same number of arguments as the macro definition, the assembler
issues a warning.

If an argument has an embedded comma or space, you must surround the argument by single quotes
0-

You can declare a macro call argument as null in three ways:

enter delimiting commas in succession with no intervening spaces

macr onane ARGL, , ARG ; the second argument is a null argunent

terminate the argument list with a comma, the arguments that normally would follow, are now
considered null

macr onane ARGL, ; the second and all follow ng argunents are null

declare the argument as a null string

No character is substituted in the generated statements that reference a null argument.

3.10.3. Using Operators for Macro Arguments

The assembler recognizes certain text operators within macro definitions which allow text substitution of
arguments during macro expansion. You can use these operators for text concatenation, numeric
conversion, and string handling.

Operator |[Name Description

\

Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

Macro string delimiter Allows the use of macro arguments as literal strings.

Macro local label override Prevents name mangling on labels in macros.

195

TASKING SmartCode - TriCore User Guide

Example: Argument Concatenation Operator -\

Consider the following macro definition:

SWAP_MEM . MACRO REGL, RE&R ;Swap nenory contents
LD. W DO, [A REGL] ;use DO as tenp
LD. W D1, [A REQ] ;use D1 as tenp

ST.W [A\REGL], D1
ST.W [A\ RE®], DO
. ENDM

The macro is called as follows:
SWAP_MEM O, 1
The macro expands as follows:

LD. W DO, [AO]
LD.W D1, [Al]
ST.W [A0], D1
ST.W [A1], DO

The macro preprocessor substitutes the character '0' for the argument REGL, and the character '1' for the
argument REG2. The concatenation operator (\) indicates to the macro preprocessor that the substitution
characters for the arguments are to be concatenated with the character 'A'.

Without the '\' operator the macro would expand as:

LD. W DO, [AREGL]
LD.W DI, [AREG?]
ST.W [AREGL], D1
ST.W [AREG], DO

which results in an assembler error (invalid operand).

Example: Decimal Value Operator - ?

Instead of substituting the formal arguments with the actual macro call arguments, you can also use the
value of the macro call arguments.

Consider the following source code that calls the macro SWAP_SYMafter the argument AREG has been
set to 0 and BREG has been set to 1.

AREG . SET 0
BREG . SET 1
SWAP_SYM AREG, BREG

If you want to replace the arguments with the value of AREG and BREG rather than with the literal strings
" AREG and' BREG , you can use the ? operator and modify the macro as follows:

SWAP_SYM . MACRO REGL, RE&Q2 ;Swap nmenory contents
LD. W DO, _I| ab\ ?REGL ;yuse DO as tenp

196

Assembly Language

LD. W D1, _| ab\ ?REQ ;use D1 as tenp
ST.W _| ab\ ?REGL, D1

ST. W _| ab\ ?REG2, DO

. ENDM

The macro first expands as follows:

LD.W DO, _| ab\ ?AREG
LD.W D1, | ab\ ?BREG
ST.W _| ab\ ?AREG, D1
ST.W _| ab\ ?BREG, D0

Then ?AREGis replaced by '0' and ?BREG s replaced by "1

LD.W DO, |ab\1l
LD.W D1, |ab\2
ST.W _lab\1,D1L
ST.W _lab\2, D0

Because of the concatenation operator '\' the strings are concatenated:

LD.W DO, |abl
LD.W D1, |ab2
ST.W _labil, D1
ST.W _|ab2, DO

Example: Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator (?) except that it returns the
hexadecimal value of a symbol.

Consider the following macro definition:

GEN_LAB . MACRO LAB, VAL, STMI
LAB\ %/AL STMT
. ENDM

The macro is called after NUMhas been set to 10:

NUM . SET 10
GEN_LAB HEX, NUM NOP

The macro expands as follows:
HEXA NOP

The W/AL argument is replaced by the character 'A" which represents the hexadecimal value 10 of the
argument VAL.

197

TASKING SmartCode - TriCore User Guide

Example: Argument String Operator - "

To generate a literal string, enclosed by single quotes ('), you must use the argument string operator (*)
in the macro definition.

Consider the following macro definition:

STR_MAC . MACRO STRI NG
.BYTE "STRING'
. ENDM

The macro is called as follows:
STR_MAC ABCD

The macro expands as follows:
. BYTE ' ABCD

Within double quotes . DEFI NE directive definitions can be expanded. Take care when using constructions
with single quotes and double quotes to avoid inappropriate expansions. Since . DEFI NE expansion
occurs before macro substitution, any . DEFI NE symbols are replaced first within a macro argument string:

. DEFINE LONG 'short'

STR_MAC . MACRO STRI NG
. MESSACE 'This is a LONG STRI NG
.MESSACE "This is a LONG STRI NG'
. ENDM

If the macro is called as follows:
STR_MAC sentence
it expands as:

. MESSAGE 'This is a LONG STRI NG
.MESSAGE 'This is a short sentence'

Macro Local Label Override Operator -~

If you use labels in macros, the assembler normally generates another unique name for the labels (such
as LAB__M_L000001).

The macro ~-operator prevents name mangling on macro local labels.
Consider the following macro definition:

INNT . MACRO addr
LAB: LD.W DO, “addr
. ENDM

The macro is called as follows:

198

Assembly Language

LAB:
INIT LAB

The macro expands as:
LAB__M L0O00001: LD.W DO, LAB

If you would have omitted the * operator, the macro preprocessor would choose another name for LAB
because the label already exists. The macro would expand like:

LAB__M L000001: LD.W DO, LAB__M L0O00001

199

TASKING SmartCode - TriCore User Guide

200

Chapter 4. Using the C Compiler

This chapter describes the compilation process and explains how to call the C compiler.

The TASKING toolset for TriCore under Eclipse uses the TASKING makefile generator and make utility
to build your entire embedded project, from C source till the final ELF/DWARF object file which serves
as input for the debugger.

Although in Eclipse you cannot run the C compiler separately from the other tools, this section discusses
the options that you can specify for the C compiler.

On the command line it is possible to call the C compiler separately from the other tools. However, it is
recommended to use the control program for command line invocations of the toolset (see Section 8.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line.

The C compiler takes the following files for input and output:
Csource file

~

| » compiler intermediate file

C compiler .
- .mil

assembly file
.src

This chapter first describes the compilation process which consists of a frontend and a backend part.
Next it is described how to call the C compiler and how to use its options. An extensive list of all options
and their descriptions is included in Section 10.2, C Compiler Options. Finally, a few important basic tasks
are described, such as including the C startup code and performing various optimizations.

4.1. Compilation Process

During the compilation of a C program, the C compiler runs through a number of phases that are divided
into two parts: frontend and backend.

The backend part is not called for each C statement, but starts after a complete C module or set of modules
has been processed by the frontend (in memory). This allows better optimization.

The C compiler requires only one pass over the input file which results in relative fast compilation.
Frontend phases

1. The preprocessor phase:

The preprocessor includes files and substitutes macros by C source. It uses only string manipulations
on the C source. The syntax for the preprocessor is independent of the C syntax but is also described
in the ISO/IEC 9899:2011(E) standard.

201

TASKING SmartCode - TriCore User Guide

. The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

. The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs a syntactic and semantic
analysis of the program, and generates an intermediate representation of the program. This code is
called MIL (Medium level Intermediate Language).

. The frontend optimization phase:

Target processor independent optimizations are performed by transforming the intermediate code.

Backend phases

1.

Instruction selector phase:

This phase reads the MIL input and translates it into Low level Intermediate Language (LIL). The LIL
objects correspond to a processor instruction, with an opcode, operands and information used within
the C compiler.

. Peephole optimizer/instruction scheduler/software pipelining phase:

This phase replaces instruction sequences by equivalent but faster and/or shorter sequences, rearranges
instructions and deletes unnecessary instructions.

. Register allocator phase:

This phase chooses a physical register to use for each virtual register. When there are not enough
physical registers, virtual registers are spilled to the stack. Intermediate results of any optimization can
live, for some time, on the stack or in physical registers.

. The backend optimization phase:

Performs target processor independent and dependent optimizations which operate on the Low level
Intermediate Language.

. The code generation/formatter phase:

This phase reads through the LIL operations to generate assembly language output.

4.2. Calling the C Compiler

The TASKING toolset for TriCore under Eclipse uses the TASKING makefile generator and make utility
to build your entire project. After you have built your project, the output files are available in a subdirectory
of your project directory, depending on the active configuration you have set in the C/C++ Build » Settings
page of the Project » Properties for dialog.

202

Using the C Compiler

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

* Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (3. This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click Clean.

 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behavior tab of the C/C++ Build page of the Project » Properties for dialog.

See also Chapter 11, Influencing the Build Time.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you need to set them for each
configuration. Based on the target processor, the compiler includes a special function register file. This
is a regular include file which enables you to use virtual registers that are located in memory.

You can specify the target processor when you create a new project with the New C/C++ Project wizard
(File » New » TASKING TriCore C/C++ Project), but you can always change the processor in the project
properties dialog.

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.
3. From the Configuration list, select a configuration or select[Al l configurations].

4. From the Processor selection list, select a processor.

203

TASKING SmartCode - TriCore User Guide

To access the C/C++ compiler options
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. From the Configuration list, select a configuration or select[Al Il configurations].
4. On the Tool Settings tab, select C/C++ Compiler.
5. Select the sub-entries and set the options in the various pages.
Note that the C/C++ compiler options are used to create an object file from a C or C++ file. The

options you enter in the Assembler page are not only used for hand-coded assembly files, but
also for intermediate assembly files.

Note that when you click Restore Defaults to restore the default tool options, as a side effect the
processor is also reset to its default value on the Processor page (C/C++ Build » Processor).

You can find a detailed description of all C compiler options in Section 10.2, C Compiler Options.

Invocation syntax on the command line:

ctc [[option]... [file]...]...

4.3.The C Startup Code

You need the run-time startup code to build an executable application. The startup code consists of the
following components:

« Initialization code. This code is executed when the program is initiated and before the function mai n()
is called. It initializes the processor's registers and the application C variables.

 Exit code. This controls the close down of the application after the program's main function terminates.

» Trap vector table. This contains default trap vectors. See also Section 1.11.4, Interrupt and Trap
Functions.

Multi-core startup code files

For a multi-core derivative multiple startup code files are available. For core 0, the regular startup code
flescstart.c and cstart. h are used. For other cores core-specific startup code files are available,

204

Using the C Compiler

cstart_tcn.candcstart _tcn. h for core n. These startup code files work both for projects with a
virtual core vt ¢, and for projects without a vt c.

The startup code for core 0O calls the start symbol for each additional core using a cross-task linker symbol
reference. The entry point for core nis _st art _t cn when the macro __NO_VTCis not defined. Otherwise,
the startup code (for core 0) uses the symbol __ | c_t _tcn___start_tcn_no_vt c as entry point.

To add the C startup code to your project

When you create a new project with the New C/C++ Project wizard (File » New » TASKING TriCore
C/C++ Project), fill in the dialogs and enable the option Add startup file(s) to the project in the following
dialog (this is the default setting).

Mew C/C++ Project O X
TriCore Project Settings —

€3 Select a processorto continue

Processor selection

[Infineon AURIX 3G Family

Expand All

Expand Selected

Collapse All
Multi-core configuration
Actions
Add startup file(s) to the project
Add linker script file to the project
Ii?;' < Back Next = Finish Cancel

This adds the files cstart. c and cst art . h (or the _t ccor e variants) to your project. These files are
copiesofl i b/src/cstart*. candi ncl ude/ cstart*. h.If you do not add the startup code here,
you can always add it later with File » New » Startup Files.

To change the C startup code configuration and registers
The project Properties dialog contains two pages where you can change the C startup code.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Startup Configuration or Startup Registers.

In the right pane the Startup Configuration page or Startup Registers page appears.

205

TASKING SmartCode - TriCore User Guide

206

Properties for myproject

type filter text

Resource
Builders
~w C/C++ Build

Build Variables
Environment
Legging
Memeory
Processor
Settings
Stack/Heap
Startup Cenfiguration
Startup Registers

C/C++ General

Project References

Run/Debug Settings

A
@

Startup Configuration

Startup files

Startup source file directory: ‘ S{workspace_loc/${ProjName}}

Startup header file directory: ‘ S{workspace_loc/${ProjName}}

coretcd coretc] coretc? coretc3 coretcd coretc5 coretch

Settings

[Initialize base address of interrupt vector table

[initialize single entry interrupt vector table

[initialize 8 byte spacing interrupt vector table

[A Initialize base address of trap vector table

[Initialize base address of hypervisor trap vector table
[Initialize CSA lists

Reserve number of CSAs for FCD trap handler (allowed values: 1-4):
Initialize and clear C variables

[Initialize user stack pointer

[Initialize interrupt stack pointer

Initialize al and a1 for _a/_al addressing

Initialize 38 and a9 for _a8/_a8 addressing (0S suppert)

[initialize reunding mode

FE_TONEAREST, FE_UPWARD, FE_DOWMWARD or FE_TOWARDZERO:

Call Depth Counter (set PSW.CDC):
[Use the user stack (clear PSW.IS)
[A Watchdog disable

[Safety watchdog disable
Compatibility mode:

[JEnable passing arge/argy to main()
Buffer size for argw:

[initialize clocks per sec
Oscillator frequency Hz
[IPLL K2 rampup

[]Start TC1

[Cstart TC2

[1start TC2

[5tart TC4

[15tart TC5

] X
- - 8
A
| Browse...
| Browse...
v

On the Startup Configuration page, you can make changes to the C startup code configuration.

On the Startup Registers page, you can specify the registers and their settings that must be known
to the startup code. Enable the option Initialize in startup code to add a register setting to the startup
code. If you made changes to a register and you want to reset the register to its original value, click
on the Default button.

Click Apply and Close.

The file cstart.h in your project is updated with the new values.

Using the C Compiler

The values of the startup registers for a project are only set to their default values at project
creation for the at that time selected processor.

When you switch to a different processor afterwards, in the Project » Properties for » C/C++
Build » Processor property page, the registers are not set to their defaults again. The reason for
that is that you may have set specific values in the startup registers that you want to keep.

If you want to set all registers to their default values for the selected processor, you can do that
any time by clicking on the Restore Defaults button on the Project » Properties for » C/C++
Build » Startup Registers property page.

When you use Import Board Configuration wizard to import (register) settings required for a certain
board, only the registers needed to get the board going in the default situation are changed.

To change the C startup code in Eclipse manually

1. Double-click on the file cstart.corcstart. h.

The file opens in the editor area.

lc| estart.c &3 = O

#pragma weak exit
fpragma extern Exit
#pragma profiling off
#pragma tradeoff 4
#pragma runtime BCM
#pragma immediate in code

#if _ USE RARGC ARGV

fpragma noclear /* bss clearing not
static char argov[_ ARGCV BUFSIZE] _ align(4):

#pragma clear

extern int argcv(const char *, size t);

fendif

f* linker definitions */

extern _ far void _1lc ue ustack[]:
extern _ far void _lc ue_istack[]:
extern _ far wvoid _1lc u int tabl[]:

extern _ far void _lc u trap tabl[]:

£ >

2. You can edit the C startup code directly in the editor.
A * appears in front of the name of the file to indicate that the file has changes.

3. click 5 or select File » Save to save the changes.

207

TASKING SmartCode - TriCore User Guide

4.4. How the Compiler Searches Include Files

When you use include files (with the #i ncl ude statement), you can specify their location in several ways.
The compiler searches the specified locations in the following order:

1. If the #i ncl ude statement contains an absolute pathname, the compiler looks for this file. If no path
or a relative path is specified, the compiler looks in the same directory as the source file. This is only

possible for include files that are enclosed in ™.

This first step is not done for include files enclosed in <>.

2. When the compiler did not find the include file, it looks in the directories that are specified in the C/C++
Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-I)).

3. When the compiler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable CTClI NC.

4. When the compiler still did not find the include file, it finally tries the default include directory relative
to the installation directory (unless you specified option --no-stdinc).

Example
Suppose that the C source file t est . ¢ contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the compiler as follows:
ctc -Inyinclude test.c

First the compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current directory.
If it was not found, the compiler searches in the environment variable CTCl NC and then in the default
i ncl ude directory.

The compiler now looks for the file nyi nc. h, in the directory where t est . c is located. If the file is not
there the compiler searches in the directory nyi ncl ude. If it was still not found, the compiler searches
in the environment variable CTClI NC and then in the default i ncl ude directory.

4.5. Compiling for Debugging

Compiling your files is the first step to get your application ready to run on a target. However, during
development of your application you first may want to debug your application.

To create an object file that can be used for debugging, you must instruct the compiler to include symbolic
debug information in the source file.

208

Using the C Compiler

To include symbolic debug information

1.

3.

4.

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

On the Tool Settings tab, select C/C++ Compiler » Debugging.

Select Default in the Generate symbolic debug information box.

Debug and optimizations

Due to different compiler optimizations, it might be possible that certain debug information is optimized
away. Therefore, if you encounter strange behavior during debugging it might be necessary to reduce
the optimization level, so that the source code is still suitable for debugging. For more information on
optimization see Section 4.6, Compiler Optimizations.

Invocation syntax on the command line

The invocation syntax on the command line is:

ctc -g file.c

4.6. Compiler Optimizations

The compiler has a number of optimizations which you can enable or disable.

1.

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

From the Configuration list, select a configuration or select[Al |l configurations].
On the Tool Settings tab, select C/C++ Compiler » Optimization.

Select an optimization level in the Optimization level box.

or:

In the Optimization level box select Custom optimization and enable the optimizations you want
on the Custom optimization page.

209

TASKING SmartCode - TriCore User Guide

Optimization levels

The TASKING C compiler offers four optimization levels and a custom level, at each level a specific set
of optimizations is enabled.

» Level 0 - No optimization: No optimizations are performed. The compiler tries to achieve a 1-to-1
resemblance between source code and produced code. Expressions are evaluated in the order written
in the source code, associative and commutative properties are not used.

* Level 1 - Optimize: Enables optimizations that do not affect the debug-ability of the source code. Use
this level when you encounter problems during debugging your source code with optimization level 2.

* Level 2 - Optimize more (default): Enables more optimizations to reduce the memory footprint and/or
execution time. This is the default optimization level.

* Level 3 - Optimize most: This is the highest optimization level. Use this level when your
program/hardware has become too slow to meet your real-time requirements.

» Custom optimization: you can enable/disable specific optimizations on the Custom optimization page.
Optimization pragmas
If you specify a certain optimization, all code in the module is subject to that optimization. Within the C

source file you can overrule the C compiler options for optimizations with #pr agna opti m ze fl ag
and #pragnma endopti m ze. Nesting is allowed:

#pragma optim ze e /* Enabl e expression
sinplification */
C source ...
#pragma optim ze c /* Enabl e common expression
elim nation. Expression
C source ... sinplification still enabled */

#pragma endoptimn ze /* Di sabl e cormopn expressi on

elimnation */
#pragma endoptim ze /* Di sabl e expression
sinplification */

The compiler optimizes the code between the pragma pair as specified.

You can enable or disable the optimizations described in the following subsection. The command line
option for each optimization is given in brackets.

4.6.1. Generic Optimizations (frontend)

Common subexpression elimination (CSE) (option -Oc/-OC)
The compiler detects repeated use of the same (sub-)expression. Such a "common" expression is replaced

by a variable that is initialized with the value of the expression to avoid recomputation. This method is
called common subexpression elimination (CSE).

210

Using the C Compiler

A CSE can live in a register, on stack or can be recomputed when required.
Expression simplification (option -Oe/-OE)

Multiplication by 0 or 1 and additions or subtractions of O are removed. Such useless expressions may
be introduced by macros or by the compiler itself (for example, array subscripting).

Constant propagation (option -Op/-OP)
A variable with a known value is replaced by that value.
Automatic function inlining (option -Oi/-Ol)

Small functions that are not too often called, are inlined. This reduces execution time at the cost of code
size.

Control flow simplification (option -Of/-OF)

A number of techniques to simplify the flow of the program by removing unnecessary code and reducing
the number of jumps. For example:

» Switch optimization: A number of optimizations of a switch statement are performed, such as removing
redundant case labels or even removing an entire switch.

« Jump chaining: A (conditional) jump to a label which is immediately followed by an unconditional jump
may be replaced by a jump to the destination label of the second jump. This optimization speeds up
execution.

» Conditional jump reversal: A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the code size and the execution
time.

» Dead code elimination: Code that is never reached, is removed. The compiler generates a warning
messages because this may indicate a coding error.

Subscript strength reduction (option -Os/-OS)

An array or pointer subscripted with a loop iterator variable (or a simple linear function of the iterator
variable), is replaced by the dereference of a pointer that is updated whenever the iterator is updated.

Loop transformations (option -Ol/-OL)

Transform a loop with the entry point at the bottom, to a loop with the entry point at the top. This enables
constant propagation in the initial loop test and code motion of loop invariant code by the CSE optimization.

Forward store (option -Oo/-00)

A temporary variable is used to cache multiple assignments (stores) to the same non-automatic variable.

211

TASKING SmartCode - TriCore User Guide

MIL linking (Control program option --mil-link)

The frontend phase performs its optimizations on the MIL code. When all C modules and/or MIL modules
of an application are given to the C compiler in a single invocation, the C compiler will link MIL code of
the modules to a complete application automatically. Next, the frontend will run its optimizations again
with application scope. After this, the MIL code is passed on to the backend, which will generate a single
. sr c file for the whole application. Linking with the run-time library, floating-point library and C library is
still necessary. Linking with the C library is required because this library contains some hand-coded
assembly functions, that are not linked in at MIL level.

In the ISO C standard a "translation unit" is a preprocessed source file together with all the headers and
source files included via the preprocessing directive #i ncl ude. After MIL linking the compiler will treat
the linked sources files as a single translation unit, allowing global optimizations to be performed, that
otherwise would be limited to a single module.

a

Optional

....... + _._._._._._+_._._._._._._._
C compiler (MIL link + BE)

source

assembler

|

MIL splitting (option --mil-split)

When you specify that the C compiler has to use MIL splitting, the C compiler will first link the application
at MIL level as described above. However, after rerunning the optimizations the MIL code is not passed
on to the backend. Instead the frontend writes a . ns file for each input file or library. A . ns file has the
same formatasa. mi | file.Only . ns files that really change are updated. The advantage of this approach
is that it is possible to use the make utility to translate only those parts of the application to a . sr ¢ file
that really have changed. MIL splitting is therefore a more efficient build process than MIL linking. The
penalty for this is that the code compaction optimization in the backend does not have application scope.
As with MIL linking, it is still required to link with the normal libraries to build an ELF file.

212

Using the C Compiler

Cfile 1 Cfile 2 L. Cfile N

MIL file 1

MIL file 2 MIL libs

:g_

MIL split MIL split MIL split

files

L

C compiler (BE

asm
sources

source 1 source 2

assembler
ohject ohject
files libs

To read more about how MIL linking influences the build process of your application, see Section 11.2,
MIL Linking.

ssembler ssembler ssembler

e

Note that with both options some extra strict type checking is done that can cause building to fail in a way
that is unforeseen and difficult to understand. For example, when you use one of these options in
combination with option --uchar and you link the MIL library, you might get the following error:

ctc E289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type

ctc 1802: ["installation-dir\ctc\include\string.h" 44/17]
previ ous declaration of "strlen"
1 errors, O warnings

This is caused by the fact that the MIL library is built without --uchar. You can workaround this problem
by rebuilding the MIL libraries.

4.6.2. Core Specific Optimizations (backend)

Coalescer (option -Oa/-OA)

The coalescer seeks for possibilities to reduce the number of moves (MOV instruction) by smart use of
registers. This optimizes both speed and code size.

Peephole optimizations (option -Oy/-QY)

The generated assembly code is improved by replacing instruction sequences by equivalent but faster
and/or shorter sequences, or by deleting unnecessary instructions.

213

TASKING SmartCode - TriCore User Guide

Align loop bodies (option -On/-ON)
Loop bodies are aligned to lower the number of fetches required to retrieve the loop body.

Loops are only aligned when both the loop alignment optimization option (this option) and option
--loop=+value are enabled and the trade-off between speed and size is less than 3. (--tradeoff={0..2}).
This is because loop alignment is a speed optimization that will cost code size.

The loop alignment optimization is limited by loop characteristics. Only loops that are below the loop body
instruction count threshold, size threshold or cycles threshold are aligned. These individual thresholds
can be toggled with the loop control option --loop=i/l,s/S,t/T. The threshold values can be set with the
options --loop-cycle-threshold, --loop-instruction-threshold and --loop-size-threshold.

The default alignment value is 32 bytes, because this is equal to a 256-bit fetch line. This alignment value
can be overruled when --loop=v is enabled and another alignment value is defined with option
--loop-alignment.

Instruction Scheduler (option -Ok/-OK)

The instruction scheduler is a backend optimization that acts upon the generated instructions. When two
instructions need the same machine resource - like a bus, register or functional unit - at the same time,
they suffer a structural hazard, which stalls the pipeline. This optimization tries to rearrange instructions
to avoid structural hazards, for example by inserting another non-related instruction, or pairing a L/S
instruction with a data arithmetic instruction in order to fill both pipelines as much as possible.

First the instruction stream is partitioned into basic blocks. A new basic block starts at a label, or right
after a jump instruction. Unschedulable instructions and, when -Av is enabled, instructions that access
volatile objects, each get their own basic block. Next, the scheduler searches the instructions within a
basic block, looking for places where the pipeline stalls. After identifying these places it tries to rebuild
the basic block using the existing instructions, while avoiding the pipeline stalls. In this process data
dependencies between instructions are honoured.

Note that the function inlining optimization happens in the frontend of the compiler. The instruction
scheduler has no knowledge about the origin of the instructions.

Unroll small loops (option -Ou/-OU)
To reduce the number of branches, short loops are eliminated by replacing them with a number of copies.
IF conversion (option -Ov/-QV)

IF - ELSE constructions are transformed into predicated instructions. This avoids unnecessary jumps
while the predicated instructions are optimized by the pipeline scheduler and the predicate optimization.

Software pipelining (option -Ow/-OW)

A number of techniques to optimize loops. For example, within a loop the most efficient order of instructions
is chosen by the pipeline scheduler and it is examined what instructions can be executed in parallel.

214

Using the C Compiler

Code compaction (reverse inlining) (option -Or/-OR)

Compaction is the opposite of inlining functions: chunks of code that occur more than once, are transformed
into a function. This reduces code size at the cost of execution speed. The size of the chunks of code to
be inlined depends on the setting of the C compiler option --tradeoff (-t). See the subsection Code
Compaction in Section 4.6.3, Optimize for Code Size or Execution Speed.

Code compaction is disabled when compiling with C compiler option --pic=A12.

Note that if you use section renaming, by default, the compiler only performs code compaction on sections
that have the same section type prefix and name given by the section renaming pragma or option. The
module name and symbol name are not relevant in this case. When you use C compiler option
--relax-compact-name-check, the compiler does not perform this section name check, but performs
code compaction whenever possible.

Use of SIMD instructions (option -Om/-OM)

The iteration counts of loops are reduced where possible by taking advantage of the TriCore SIMD
instructions. This optimizes speed, but may cause a slight increase in code size.

Generic assembly optimizations (option -Og/-OG)

A set of optimizations on the generated assembly code that increase speed and decrease code size,
similar to peephole optimizations applied within and across basic blocks. The set includes but is not limited
to:

» removal of unused code

» removal of superfluous code
* loop optimizations

« flow optimizations

* load/store optimizations

 addressing mode optimizations

4.6.3. Optimize for Code Size or Execution Speed

You can tell the compiler to focus on execution speed or code size during optimizations. You can do this
by specifying a size/speed trade-off level from 0 (speed) to 4 (size). This trade-off does not turn optimization
phases on or off. Instead, its level is a weight factor that is used in the different optimization phases to
influence the heuristics. The higher the level, the more the compiler focuses on code size optimization.
To choose a trade-off value read the description below about which optimizations are affected and the
impact of the different trade-off values.

Note that the trade-off settings are directions and there is no guarantee that these are followed. The
compiler may decide to generate different code if it assessed that this would improve the result.

To specify the size/speed trade-off optimization level:

215

TASKING SmartCode - TriCore User Guide

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Optimization.
4. Select a trade-off level in the Trade-off between speed and size box.

See also C compiler option --tradeoff (-t)

Instruction Selection

Trade-off levels 0, 1 and 2: the compiler selects the instructions with the smallest number of cycles.
Trade-off levels 3 and 4: the compiler selects the instructions with the smallest number of bytes.

Switch Jump Chain versus Jump Table

Instruction selection for the swi t ch statements follows different trade-off rules. A switch statement can
result in a jump chain or a jump table. The compiler makes the decision between those by measuring
and weighing bytes and cycles. This weigh is controlled with the trade-off values:

Trade-off value Time Size
0 100% 0%

1 75% 25%
2 50% 50%
3 25% 75%
4 0% 100%

Loop Optimization

For a top-loop, the loop is entered at the top of the loop. A bottom-loop is entered at the bottom. Every
loop has a test and a jump at the bottom of the loop, otherwise it is not possible to create a loop. Some
top-loops also have a conditional jump before the loop. This is only necessary when the number of loop
iterations is unknown. The number of iterations might be zero, in this case the conditional jump jumps
over the loop.

Bottom loops always have an unconditional jump to the loop test at the bottom of the loop.

Trade-off value Try to rewrite top-loops to [Optimize loops for
bottom-loops size/speed
no speed
yes speed
yes speed

216

Using the C Compiler

Trade-off value

Try to rewrite top-loops to

Optimize loops for

bottom-loops size/speed
yes size
yes size
Example:
int a;
voidi(int I, int m)
{
int i;
for (i =m i <1I; i++)
{
a++;
}
return;
}
Coded as a bottom loop (compiled with --tradeoff=4) is:
j .L2 ;; unconditional junp to |loop test at bottom
. L3:
ld.w di5,1
add16 di5, #1
st.w a,dl5
add16 d5, #1
.L2: ;; loop entry point

jlt ds, d4,.L3

Coded as a top loop (compiled with --tradeoff=0) is:

iterations is known

|d.w di5,a ;; test for at least one loop iteration
jlt d5, d4, . L2 :; can be omtted when nunber of
. L3: ;; loop entry point
add16 di5, #1
add16 d5, #1
jlt d5, d4, . L3
.L2:

st.w a,dl5

Align Loop Bodies (-On)

Trade-off levels 0, 1 and 2: the compiler allows the align loop bodies optimization.

Trade-off levels 3 and 4: the compiler disables the align loop bodies optimization.

217

TASKING SmartCode - TriCore User Guide

Automatic Function Inlining

You can enable automatic function inlining with the option --optimize=+inline (-Oi) or by using #pr agna
optim ze +inline.This option is also part of the -O3 predefined option set.

When automatic inlining is enabled, you can use the options --inline-max-incr and --inline-max-size (or
their corresponding pragmas i nl i ne_max_i ncr / inline_max_si ze) to control automatic inlining.
By default their values are set to -1. This means that the compiler will select a value depending upon the
selected trade-off level. The defaults are:

Trade-off value inline-max-incr inline-max-size
0 100 50

1 50 25

2 20 20

3 10 10

4 0 0

For example with trade-off value 1, the compiler inlines all functions that are smaller or equal to 25 internal
compiler units. After that the compiler tries to inline even more functions as long as the function will not
grow more than 50%.

When these options/pragmas are set to a value >= 0, the specified value is used instead of the values
from the table above.

Static functions that are called only once, are always inlined, independent of the values chosen for
inline-max-incr and inline-max-size.

Code Compaction
Trade-off levels 0 and 1: code compaction is disabled.
Trade-off level 2: only code compaction of matches outside loops.

Trade-off level 3: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 10.

Trade-off level 4: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 100.

For loops where the iteration count is unknown an iteration count of 10 is assumed.
For the execution frequency the compiler also accounts nested loops.

See C compiler option --compact-max-size

218

Using the C Compiler

4.7. Static Code Analysis

Static code analysis (SCA) is a relatively new feature in compilers. Various approaches and algorithms
exist to perform SCA, each having specific pros and cons.

SCA Implementation Design Philosophy
SCA is implemented in the TASKING compiler based on the following design criteria:

* An SCA phase does not take up an excessive amount of execution time. Therefore, the SCA can be
performed during a normal edit-compile-debug cycle.

» SCA is implemented in the compiler front-end. Therefore, no new makefiles or work procedures have
to be developed to perform SCA.

» The number of emitted false positives is kept to a minimum. A false positive is a message that indicates
that a correct code fragment contains a violation of a rule/recommendation. A number of warnings is
issued in two variants, one variant when it is guaranteed that the rule is violated when the code is
executed, and the other variant when the rules is potentially violated, as indicated by a preceding
warning message.

For example see the following code fragment:

extern int some_condition(int);
void f(void)

{
char buf[10];

int i;
for (i =0; i <= 10; i++)
{

if (some_condition(i))

{
}

buf[i] = 0; /* subscript may be out of bounds */

}

As you can see in this example, if i =10 the array buf [] might be accessed beyond its upper boundary,
depending on the result of sone_condi ti on(i).If the compiler cannot determine the result of this
function at run-time, the compiler issues the warning "subscript is possibly out of bounds" preceding
the CERT warning "ARR35: do not allow loops to iterate beyond the end of an array". If the compiler
can determine the result, or if the i f statement is omitted, the compiler can guarantee that the "subscript
is out of bounds".

* The SCA implementation has real practical value in embedded system development. There are no real
objective criteria to measure this claim. Therefore, the TASKING compilers support well known standards
for safety critical software development such as the MISRA guidelines for creating software for safety
critical automotive systems and secure "CERT C Secure Coding Standard" released by CERT. CERT
is founded by the US government and studies internet and networked systems security vulnerabilities,
and develops information to improve security.

219

TASKING SmartCode - TriCore User Guide

Effect of optimization level on SCA results
The SCA implementation in the TASKING compilers has the following limitations:

» Some violations of rules will only be detected when a particular optimization is enabled, because they
rely on the analysis done for that optimization, or on the transformations performed by that optimization.
In particular, the constant propagation and the CSE/PRE optimizations are required for some checks.
It is preferred that you enable these optimizations. These optimizations are enabled with the default
setting of the optimization level (-02).

» Some checks require cross-module inspections and violations will only be detected when multiple
source files are compiled and linked together by the compiler in a single invocation.

4.7.1. C Code Checking: CERT C

The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities. The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

For details about the standard, see the CERT C Secure Coding Standard web site. For general information
about CERT secure coding, see www.cert.org/secure-coding.

Versions of the CERT C standard

Version 1.0 of the CERT C Secure Coding Standard is available as a book by Robert C. Seacord
[Addison-Wesley]. Whereas the web site is a wiki and reflects the latest information, the book serves as
a fixed point of reference for the development of compliant applications and source code analysis tools.

The rules and recommendations supported by the TASKING compiler reflect the version of the CERT
web site as of June 1 2009.

The following rules/recommendations implemented by the TASKING compiler, are not part of the book:
PRE11-C, FLP35-C, FLP36-C, MSC32-C

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 19, CERT C Secure Coding Standard.

Priority and Levels of CERT C

Each CERT C rule and recommendation has an assigned priority. Three values are assigned for each
rule on a scale of 1 to 3 for

* severity - how serious are the consequences of the rule being ignored
1. low (denial-of-service attack, abnormal termination)
2. medium (data integrity violation, unintentional information disclosure)

3. high (run arbitrary code)

220

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
http://www.cert.org/secure-coding
http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html
http://doc.tasking.com/cert/msc32.html

Using the C Compiler

« likelihood - how likely is it that a flaw introduced by ignoring the rule could lead to an exploitable

vulnerability

1. unlikely

2. probable

3. likely
» remediation cost - how expensive is it to comply with the rule

1. high (manual detection and correction)

2. medium (automatic detection and manual correction)

3. low (automatic detection and correction)

The three values are then multiplied together for each rule. This product provides a measure that can be
used in prioritizing the application of the rules. These products range from 1 to 27. Rules and
recommendations with a priority in the range of 1-4 are level 3 rules (low severity, unlikely, expensive to
repair flaws), 6-9 are level 2 (medium severity, probable, medium cost to repair flaws), and 12-27 are
level 1 (high severity, likely, inexpensive to repair flaws).

The TASKING compiler checks most of the level 1 and some of the level 2 CERT C recommendations/rules.

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 19, CERT C Secure Coding Standard.

To apply CERT C code checking to your application
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » CERT C Secure Coding.
4. Make a selection from the CERT C secure code checking list.

5. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

On the command line you can use the option --cert.
ctc --cert={all | nane [-nane],...]
With --diag=cert you can see a list of the available checks, or you can use a three-letter mnemonic to

list only the checks in a particular category. For example, --diag=pre lists all supported checks in the
preprocessor category.

221

TASKING SmartCode - TriCore User Guide

4.7.2. C Code Checking: MISRA C

The C programming language is a standard for high level language programming in embedded systems,
yetitis considered somewhat unsuitable for programming safety-related applications. Through enhanced
code checking and strict enforcement of best practice programming rules, TASKING MISRA C code
checking helps you to produce more robust code.

MISRA C specifies a subset of the C programming language which is intended to be suitable for embedded
automotive systems. It consists of a set of rules, defined in MISRA-C:2004, Guidelines for the Use of the
C Language in Critical Systems (Motor Industry Research Association (MIRA), 2004).

The compiler also supports MISRA C:1998, the first version of MISRA C and MISRA C: 2012, the latest
version of MISRA C. You can select the version with the following C compiler option:

--m srac-versi on=1998
--m srac-versi on=2004
--m srac-versi on=2012

In your C source files you can check against the MISRA C version used. For example:

#if _ M SRAC VERSION__ == 1998
#elif __ M SRAC_VERSI ON__ == 2004
#elif _ M SRAC_VERSION__ == 2012
#endi f

For a complete overview of all MISRA C rules, see Chapter 20, MISRA C Rules.

Implementation issues

The MISRA C implementation in the compiler supports nearly all rules. Only a few rules are not supported
because they address documentation, run-time behavior, or other issues that cannot be checked by static
source code inspection, or because they require an application-wide overview.

During compilation of the code, violations of the enabled MISRA C rules are indicated with error messages
and the build process is halted.

MISRA C rules are divided in mandatory rules, required rules and advisory rules. If rules are violated,
errors are generated causing the compiler to stop. With the following options warnings, instead of errors,
are generated:

--m srac- mandat or y- war ni ngs

--m srac-required-warni ngs
--m srac-advi sory-war ni ngs

222

Using the C Compiler

Note that not all MISRA C violations will be reported when other errors are detected in the input
source. For instance, when there is a syntax error, all semantic checks will be skipped, including
some of the MISRA C checks. Also note that some checks cannot be performed when the
optimizations are switched off.

Quality Assurance report

To ensure compliance to the MISRA C rules throughout the entire project, the TASKING linker can
generate a MISRA C Quality Assurance report. This report lists the various modules in the project with
the respective MISRA C settings at the time of compilation. You can use this in your company's quality
assurance system to provide proof that company rules for best practice programming have been applied
in the particular project.

To apply MISRA C code checking to your application
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » MISRA C.
4. Select the MISRA C version (1998, 2004 or 2012).

5. Inthe MISRA C checking box select a MISRA C configuration. Select a predefined configuration
for conformance with the required rules in the MISRA C guidelines.

6. (Optional) In the Custom 1998, Custom 2004 or Custom 2012 entry, specify the individual rules.
On the command line you can use the option --misrac.

ctc --misrac={all | nunber [-nunber],...]

4.8. C Compiler Error Messages

The C compiler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the compiler immediately aborts compilation.

E (Errors)

Errors are reported, but the compiler continues compilation. No output files are produced unless you have
set the C compiler option --keep-output-files (the resulting output file may be incomplete).

223

TASKING SmartCode - TriCore User Guide

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the compiler for a situation which may not be correct. You can control warnings
in the C/C++ Build » Settings » Tool Settings » C/C++ Compiler » Diagnostics page of the Project
» Properties for menu (C compiler option --no-warnings).

| (Information)

Information messages are always preceded by an error message. Information messages give extra
information about the error.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

SO##: internal consistency check failed - please report

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the C compiler option --diag to see an explanation of a diagnostic
message:

ctc --diag=[format:]{all | nunber,...]

224

Chapter 5. Using the C++ Compiler

This chapter describes the compilation process and explains how to call the C++ compiler. You should
be familiar with the C++ language and with the ISO C language.

The C++ compiler can be seen as a preprocessor or front end which accepts C++ source files or sources
using C++ language features. The output generated by the TriCore C++ compiler (cptc) is intermediate
C, which can be translated with the TriCore C compiler (ctc).

The C++ compiler is part of a complete toolset, the TASKING toolset for TriCore. For details about the C
compiler see Chapter 4, Using the C Compiler.

The C++ compiler takes the following files for input and output:

C++ source file
.CC

C++ compiler

intermediate C file
.ic

Although in Eclipse you cannot run the C++ compiler separately from the other tools, this section discusses
the options that you can specify for the C++ compiler.

On the command line it is possible to call the C++ compiler separately from the other tools. However, it
is recommended to use the control program for command line invocations of the toolset (see Section 8.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line. Eclipse also uses the control program to call the C++ compiler. Files with the extensions . C, . cc,

. Cpp or. cxx are seen as C++ source files and passed to the C++ compiler.

The C++ compiler accepts the C++ language of the ISO/IEC 14882:2014 C++ standard, with some minor
exceptions documented in Chapter 2, C++ Language. It also accepts embedded C++ language extensions.

The C++ compiler does no optimization. Its goal is to produce quickly a complete and clean parsed form
of the source program, and to diagnose errors. It does complete error checking, produces clear error
messages (including the position of the error within the source line), and avoids cascading of errors. It
also tries to avoid seeming overly finicky to a knowledgeable C or C++ programmer.

5.1. Calling the C++ Compiler

Under Eclipse you cannot run the C++ compiler separately. However, you can set options specific for the
C++ compiler. After you have built your project, the output files are available in a subdirectory of your
project directory, depending on the active configuration you have set in the C/C++ Build » Settings page
of the Project » Properties for dialog.

225

TASKING SmartCode - TriCore User Guide

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (!*!). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

* Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click Clean.

» Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behavior tab of the C/C++ Build page of the Project » Properties for dialog.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you need to set them for each
configuration. Based on the target processor, the compiler includes a special function register file. This
is a regular include file which enables you to use virtual registers that are located in memory.

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.
3. From the Configuration list, select a configuration or select[Al configurations].

4. From the Processor selection list, select a processor.

To access the C/C++ compiler options
1. From the Project menu, select Properties for

The Properties dialog appears.

226

Using the C++ Compiler

In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

From the Configuration list, select a configuration or select[Al |l configurations].
On the Tool Settings tab, select C/C++ Compiler.

Select the sub-entries and set the options in the various pages.

Note that C++ compiler options are only enabled if you have added a C++ file to your project, a
file with the extension . cc, . cpp or . cxx.

Note that the options you enter in the Assembler page are also used for intermediate assembly
files.

Note that when you click Restore Defaults to restore the default tool options, as a side effect the
processor is also reset to its default value on the Processor page (C/C++ Build » Processor).

You can find a detailed description of all C++ compiler options in Section 10.3, C++ Compiler Options.

Invocation syntax on the command line:

c

ptc [[option]... [file]...]...

5.2. How the C++ Compiler Searches Include Files

When you use include files (with the #i ncl ude statement), you can specify their location in several ways.
The C++ compiler searches the specified locations in the following order:

1.

If the #i ncl ude statement contains an absolute pathname, the C++ compiler looks for this file. If no
path or a relative path is specified, the C++ compiler looks in the same directory as the source file.

This is only possible for include files that are enclosed in ™.

This first step is not done for include files enclosed in <>.

. When the C++ compiler did not find the include file, it looks in the directories that are specified in the
C/C++ Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the
Project Properties dialog (equivalent to the --include-directory (-I) command line option).

. When the C++ compiler did not find the include file (because it is not in the specified include directory
or because no directory is specified), it looks in the path(s) specified in the environment variable
CPTCI NC.

227

TASKING SmartCode - TriCore User Guide

4. When the C++ compiler still did not find the include file, it finally tries the default i ncl ude. cpp and
i ncl ude directory relative to the installation directory.

5. If the include file is still not found, the directories specified in the --sys-include option are searched.

If the include directory is specified as -, e.g., -I-, the option indicates the point in the list of - or
--include-directory options at which the search for file names enclosed in <. . . > should begin. That is,
the search for <. . . > names should only consider directories named in -l or --include-directory options
following the -I-, and the directories of items 3 and 4 above. -I- also removes the directory containing the
current input file (item 1 above) from the search path for file names enclosed in". . ."

An include directory specified with the --sys-include option is considered a "system" include directory.
Warnings are suppressed when processing files found in system include directories.

If the filename has no suffix it will be searched for by appending each of a set of include file suffixes.
When searching in a given directory all of the suffixes are tried in that directory before moving on to the
next search directory. The default set of suffixes is, no extension and . st dh. The default can be overridden
using the --incl-suffixes command line option. A null file suffix cannot be used unless it is present in the
suffix list (that is, the C++ compiler will always attempt to add a suffix from the suffix list when the filename
has no suffix).

Example
Suppose that the C++ source file t est . cc contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the C++ compiler as follows:
cptc -Inyinclude test.cc

First the C++ compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current
directory. If it was not found, the C++ compiler searches in the environment variable CPTClI NC and then
in the defaulti ncl ude directory.

The C++ compiler now looks for the file myi nc. h, in the directory where t est . cc is located. If the file
is not there the C++ compiler searches in the directory myi ncl ude. If it was still not found, the C++

compiler searches in the environment variable CPTCl NC and then in the default i ncl ude. cpp and
i ncl ude directories.

5.3. C++ Compiler Error Messages
The C++ compiler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

Catastrophic errors, also called 'fatal errors', indicate problems of such severity that the compilation cannot
continue. For example: command-line errors, internal errors, and missing include files. If multiple source
files are being compiled, any source files after the current one will not be compiled.

228

Using the C++ Compiler

E (Errors)

Errors indicate violations of the syntax or semantic rules of the C++ language. Compilation continues,
but object code is not generated.

W (Warnings)

Warnings indicate something valid but questionable. Compilation continues and object code is generated
(if no errors are detected). You can control warnings in the C/C++ Build » Settings » Tool Settings »
C/C++ Compiler » Diagnostics page of the Project » Properties for menu (C++ compiler option
--no-warnings).

R (Remarks)

Remarks indicate something that is valid and probably intended, but which a careful programmer may
want to check. These diagnostics are not issued by default. Compilation continues and object code is
generated (if no errors are detected). To enable remarks, enable the option Issue remarks on C++ code
in the C/C++ Build » Settings » Tool Settings » C/C++ Compiler » Diagnostics page of the Project
» Properties for menu (C++ compiler option --remarks).

S (Internal errors)

Internal compiler errors are caused by failed internal consistency checks and should never occur. However,
if such a 'SYSTEM' error appears, please report the occurrence to TASKING. Please include a small C++
program causing the error.

Message format

By default, diagnostics are written in a form like the following:

cptc E0020: ["test.cc" 3] identifier "nanme" is undefined

With the command line option --error-file=file you can redirect messages to a file instead of st derr .

Note that the message identifies the file and line involved. Long messages are wrapped to additional lines
when necessary.

With the option C/C++ Build » Settings » Tool Settings » Global Options » Treat warnings as errors
(option --warnings-as-errors) you can change the severity of warning messages to errors.

With the command line option --diag you can see a list of all messages.
For some messages, a list of entities is useful; they are listed following the initial error message:

cptc E0308: ["test.cc" 4] nore than one instance of overl oaded
function "f" matches the argunent |ist:
function "f(int)"
function "f(float)"
argunment types are: (double)

229

TASKING SmartCode - TriCore User Guide

In some cases, some additional context information is provided; specifically, such context information is
useful when the C++ compiler issues a diagnostic while doing a template instantiation or while generating
a constructor, destructor, or assignment operator function. For example:

cptc E0265: ["test.cc" 7] "A::A()" is inaccessible
detected during inplicit generation of "B::B()" at line 7

Without the context information, it is very hard to figure out what the error refers to.

Termination Messages

The C++ compiler writes sign-off messages to st der r (the Problems view in Eclipse) if errors are detected.
For example, one of the following forms of message

n errors detected in the conpilation of "file".
1 catastrophic error detected in the conpilation of "file".

n errors and 1 catastrophic error detected in the conpilation of "file".

is written to indicate the detection of errors in the compilation. No message is written if no errors were
detected. The following message

Error limt reached.

is written when the count of errors reaches the error limit (see the option --error-limit); compilation is
then terminated. The message

Conpi | ation term nated.

is written at the end of a compilation that was prematurely terminated because of a catastrophic error.
The message

Conpi | ati on aborted

is written at the end of a compilation that was prematurely terminated because of an internal error. Such
an error indicates an internal problem in the compiler. If such an internal error appears, please report the
occurrence to TASKING. Please include a small C++ program causing the error.

230

Chapter 6. Using the Assembler

This chapter describes the assembly process and explains how to call the assembler.

The assembler converts hand-written or compiler-generated assembly language programs into machine
language, resulting in object files in the ELF/DWARF object format.

The assembler takes the following files for input and output:

assembly file
. 8¥C

assembler

relocatable object file
.0

assembly file (hand coded)
.asm

list file . 1st

————% error messages .ers

The following information is described:
» The assembly process.

» How to call the assembler and how to use its options. An extensive list of all options and their descriptions
is included in Section 10.4, Assembler Options.

» The various assembler optimizations.
» How to generate a list file.

» Types of assembler messages.

6.1. Assembly Process

The assembler generates relocatable output files with the extension . 0. These files serve as input for
the linker.

Phases of the assembly process

» Parsing of the source file: preprocessing of assembler directives and checking of the syntax of
instructions

« Instruction grouping and reordering
» Optimization (instruction size and generic instructions)
» Generation of the relocatable object file and optionally a list file

The assembler integrates file inclusion and macro facilities. See Section 3.10, Macro Operations for more
information.

231

TASKING SmartCode - TriCore User Guide

6.2. Calling the Assembler

The TASKING toolset for TriCore under Eclipse uses the TASKING makefile generator and make utility
to build your entire project. After you have built your project, the output files are available in a subdirectory
of your project directory, depending on the active configuration you have set in the C/C++ Build » Settings
page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

* Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (“), This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click Clean.

 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behavior tab of the C/C++ Build page of the Project » Properties for dialog.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you need to set them for each
configuration.

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

3. From the Configuration list, select a configuration or select[All configurations].

232

Using the Assembler

4. From the Processor selection list, select a processor.

To access the assembler options
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. From the Configuration list, select a configuration or select[All configurations].
4. On the Tool Settings tab, select Assembler.
5. Select the sub-entries and set the options in the various pages.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

Note that when you click Restore Defaults to restore the default tool options, as a side effect the
processor is also reset to its default value on the Processor page (C/C++ Build » Processor).

You can find a detailed description of all assembler options in Section 10.4, Assembler Options.

Invocation syntax on the command line:
astc [[option]... [file]...]...

The input file must be an assembly source file (. asmor . src).

6.3. How the Assembler Searches Include Files

When you use include files (with the . | NCLUDE directive), you can specify their location in several ways.
The assembler searches the specified locations in the following order:

1. If the . | NCLUDE directive contains an absolute path name, the assembler looks for this file. If no path
or a relative path is specified, the assembler looks in the same directory as the source file.

2. When the assembler did not find the include file, it looks in the directories that are specified in the
Assembler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-I)).

3. When the assembler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable ASTCI NC.

233

TASKING SmartCode - TriCore User Guide

4. When the assembiler still did not find the include file, it finally tries the default include directory relative
to the installation directory.

Example

Suppose that the assembly source file t est . asmcontains the following lines:
. I NCLUDE ' nyi nc. i nc'

You can call the assembler as follows:

astc -1nyinclude test.asm

First the assembler looks for the file myi nc. asm in the directory where t est . asmis located. If the file
is not there the assembler searches in the directory nyi ncl ude. If it was still not found, the assembler
searches in the environment variable ASTCl NC and then in the default i ncl ude directory.

6.4. Assembler Optimizations
The assembler can perform various optimizations that you can enable or disable.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » Optimization.
4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Allow generic instructions (option -Og/-OG)

When this option is enabled, you can use generic instructions in your assembly source. The assembler
tries to replace instructions by faster or smaller instructions. For example, the instruction j eq

do, #0, | abel 1 isreplaced by j z dO, | abel 1.

By default this option is enabled. Because shorter instructions may influence the number of cycles, you

may want to disable this option when you have written timed code. In that case the assembler encodes
all instructions as they are.

Optimize instruction size (option -Os/-0OS)

When this option is enabled, the assembler tries to find the shortest possible operand encoding for
instructions. By default this option is enabled.

234

Using the Assembler

6.5. Generating a List File

The list file is an additional output file that contains information about the generated code. You can
customize the amount and form of information.

If the assembler generates errors or warnings, these are reported in the list file just below the source line
that caused the error or warning.

To generate alist file

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler » List File.

4. Enable the option Generate list file.

5. (Optional) Enable the options to include that information in the list file.

Example on the command line
The following command generates the listfile t est . | st :
astc -1 test.asm

See Section 15.1, Assembler List File Format, for an explanation of the format of the list file.

6.6. Assembler Error Messages
The assembler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the assembler immediately aborts the assembly process.

E (Errors)

Errors are reported, but the assembler continues assembling. No output files are produced unless you
have set the assembler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the assembler for a situation which may not be correct. You can control

235

TASKING SmartCode - TriCore User Guide

warnings in the C/C++ Build » Settings » Tool Settings » Assembler » Diagnostics page of the Project
» Properties for menu (assembler option --no-warnings).

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the assembler option --diag to see an explanation of a diagnostic
message:

astc --diag=[format:]{all | nunber,...]

236

Chapter 7. Using the Linker

This chapter describes the linking process, how to call the linker and how to control the linker with a script
file.

The TASKING linker is a combined linker/locator. The linker phase combines relocatable object files (. 0
files, generated by the assembler), and libraries into a single relocatable linker object file (. out). The

locator phase assigns absolute addresses to the linker object file and creates an absolute object file which
you can load into a target processor. From this point the term linker is used for the combined linker/locator.

The linker can simultaneously link and locate all programs for all cores available on a target board. The

target board may be of arbitrary complexity. A simple target board may contain one standard processor

with some external memory that executes one task. A complex target board may contain multiple standard
processors and DSPs combined with configurable IP-cores loaded in an FPGA. Each core may execute
a different program, and external memory may be shared by multiple cores.

The linker takes the following files for input and output:

relocatable object files
.0

relocatable linker object file
.out

relocatable object library
.a

linker script file

1s1 linker map file .map

--------- » error messages .elk

relocatable linker object file memory definition file .mdf

.out
Intel Hex ELF/DWARF Motorola S-record Binary
absolute object file absolute objectfile absolute object file absolute object file
.hex elf .5re .bin

This chapter first describes the linking process. Then it describes how to call the linker and how to use
its options. An extensive list of all options and their descriptions is included in Section 10.5, Linker Options.

To control the link process, you can write a script for the linker. This chapter shortly describes the purpose
and basic principles of the Linker Script Language (LSL) on the basis of an example. A complete description
of the LSL is included in Linker Script Language.

7.1. Linking Process

The linker combines and transforms relocatable object files (. 0) into a single absolute object file. This
process consists of two phases: the linking phase and the locating phase.

In the first phase the linker combines the supplied relocatable object files and libraries into a single
relocatable object file. In the second phase, the linker assigns absolute addresses to the object file so it
can actually be loaded into a target.

237

TASKING SmartCode - TriCore User Guide

Terms used in the linking process

Term

Definition

Address
Address space

Architecture

Copy table

Core
Derivative

Library

Link task

Logical address

LSL file
MAU

Object code
Physical address
Processor

238

Absolute object file

Object code in which addresses have fixed absolute values, ready to load into a
target.

A specification of a location in an address space.

The set of possible addresses. A core can support multiple spaces, for example in
a Harvard architecture the addresses that identify the location of an instruction
refer to code space, whereas addresses that identify the location of a data object
refer to a data space.

A description of the characteristics of a core that are of interest for the linker. This
encompasses the address space(s) and the internal bus structure. Given this
information the linker can convert logical addresses into physical addresses.

A section created by the linker. This section contains data that specifies how the
startup code initializes the data and BSS sections. For each section the copy table
contains the following fields:

« action: defines whether a section is copied or zeroed
» destination: defines the section's address in RAM
* source: defines the sections address in ROM, zero for BSS sections

« length: defines the size of the section in MAUs of the destination space

An instance of an architecture.

The design of a processor. A description of one or more cores including internal
memory and any number of buses.

Collection of relocatable object files. Usually each object file in a library contains
one symbol definition (for example, a function).

A scope for linking: resolving symbols from object files and libraries. Such a task
is associated with one core in the LSL file(s). Other LSL cores may be imported
into this core, associating two or more hardware cores with one link task.

An address as encoded in an instruction word, an address generated by a core
(CPU).

The set of linker script files that are passed to the linker.

Minimum Addressable Unit. For a given processor the number of bits between an
address and the next address. This is not necessarily a byte or a word.

The binary machine language representation of the C source.
An address generated by the memory system.

An instance of a derivative. Usually implemented as a (custom) chip, but can also
be implemented in an FPGA, in which case the derivative can be designed by the
developer.

Using the Linker

Term

Definition

Relocatable object
file
Relocation

Relocation
information

Section

Section attributes

Object code in which addresses are represented by symbols and thus relocatable.

The process of assigning absolute addresses.

Information about how the linker must modify the machine code instructions when
it relocates addresses.

A group of instructions and/or data objects that occupy a contiguous range of
addresses.

Attributes that define how the section should be linked or located.

Target The hardware board on which an application is executing. A board contains at least
one processor. However, a complex target may contain multiple processors and
external memory and may be shared between processors.

Unresolved A reference to a symbol for which the linker did not find a definition yet.

reference

7.1.1. Phase 1: Linking

The linker takes one or more relocatable object files and/or libraries as input. A relocatable object file, as
generated by the assembler, contains the following information:

» Header information: Overall information about the file, such as the code size, name of the source file
it was assembled from, and creation date.

» Object code: Binary code and data, divided into various named sections. Sections are contiguous
chunks of code that have to be placed in specific parts of the memory. The program addresses start
at zero for each section in the object file.

» Symbols: Some symbols are exported - defined within the file for use in other files. Other symbols are
imported - used in the file but not defined (external symbols). Generally these symbols are names of
routines or names of data objects.

» Relocation information: A list of places with symbolic references that the linker has to replace with
actual addresses. When in the code an external symbol (a symbol defined in another file or in a library)
is referenced, the assembler does not know the symbol's size and address. Instead, the assembler
generates a call to a preliminary relocatable address (usually 0000), while stating the symbol name.

« Debug information: Other information about the object code that is used by a debugger. The assembler
optionally generates this information and can consist of line numbers, C source code, local symbols
and descriptions of data structures.

The linker resolves the external references between the supplied relocatable object files and/or libraries
and combines the files into a single relocatable linker object file.

The linker starts its task by scanning all specified relocatable object files and libraries. If the linker
encounters an unresolved symbol, it remembers its name and continues scanning. The symbol may be
defined elsewhere in the same file, or in one of the other files or libraries that you specified to the linker.
If the symbol is defined in a library, the linker extracts the object file with the symbol definition from the
library. This way the linker collects all definitions and references of all of the symbols.

239

TASKING SmartCode - TriCore User Guide

Next, the linker combines sections with the same section name and attributes into single sections. The
linker also substitutes (external) symbol references by (relocatable) numerical addresses where possible.
At the end of the linking phase, the linker either writes the results to a file (a single relocatable object file)
or keeps the results in memory for further processing during the locating phase.

The resulting file of the linking phase is a single relocatable object file (. out). If this file contains unresolved
references, you can link this file with other relocatable object files (. 0) or libraries (. a) to resolve the
remaining unresolved references.

With the linker command line option --link-only, you can tell the linker to only perform this linking phase
and skip the locating phase. The linker complains if any unresolved references are left.

7.1.2. Phase 2: Locating

In the locating phase, the linker assigns absolute addresses to the object code, placing each section in
a specific part of the target memory. The linker also replaces references to symbols by the actual address
of those symbols. The resulting file is an absolute object file which you can actually load into a target
memory. Optionally, when the resulting file should be loaded into a ROM device the linker creates a
so-called copy table section which is used by the startup code to initialize the data and BSS sections.

Code modification

When the linker assigns absolute addresses to the object code, it needs to modify this code according
to certain rules or relocation expressions to reflect the new addresses. These relocation expressions are
stored in the relocatable object file. Consider the following snippet of x86 code that moves the contents
of variable a to variable b via the eax register:

Al 3412 0000 nov a, %eax (a defined at 0x1234, byte reversed)
A3 0000 0000 mov %ax, b (b is inported so the instruction refers to
0x0000 since its |location is unknown)

Now assume that the linker links this code so that the section in which a is located is relocated by 0x10000
bytes, and b turns out to be at 0x9A12. The linker modifies the code to be:

Al 3412 0100 nov a, %eax (0x10000 added to the address)
A3 129A 0000 nmov %ax, b (0x9A12 patched in for b)

These adjustments affect instructions, but keep in mind that any pointers in the data part of a relocatable
object file have to be modified as well.

Output formats

The linker can produce its output in different file formats. The default ELF/DWARF format (. el f) contains
an image of the executable code and data, and can contain additional debug information. The Intel-Hex
format (. hex) and Motorola S-record format (. sr e) only contain an image of the executable code and
data. You can specify a format with the options --output (-0) and --chip-output (-c).

Controlling the linker

Via a so-called linker script file you can gain complete control over the linker. The script language is called
the Linker Script Language (LSL). Using LSL you can define:

240

Using the Linker

» The memory installed in the embedded target system:

To assign locations to code and data sections, the linker must know what memory devices are actually
installed in the embedded target system. For each physical memory device the linker must know its
start-address, its size, and whether the memory is read-write accessible (RAM) or read-only accessible
(ROM).

» How and where code and data should be placed in the physical memory:

Embedded systems can have complex memory systems. If for example on-chip and off-chip memory
devices are available, the code and data located in internal memory is typically accessed faster and
with dissipating less power. To improve the performance of an application, specific code and data
sections should be located in on-chip memory. By writing your own LSL file, you gain full control over
the locating process.

» The underlying hardware architecture of the target processor.

To perform its task the linker must have a model of the underlying hardware architecture of the processor
you are using. For example the linker must know how to translate an address used within the object
file (a logical address) into an offset in a particular memory device (a physical address). In most linkers
this model is hard coded in the executable and can not be modified. For the TASKING linker this
hardware model is described in the linker script file. This solution is chosen to support configurable
cores that are used in system-on-chip designs.

When you want to write your own linker script file, you can use the standard linker script files with
architecture descriptions delivered with the product.

See also Section 7.9, Controlling the Linker with a Script.

7.2. Calling the Linker

In Eclipse you can set options specific for the linker. After you have built your project, the output files are
available in a subdirectory of your project directory, depending on the active configuration you have set
in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

* Build Individual Project (),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (3. This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...

2. Enable the option Start a build immediately and click Clean.

241

TASKING SmartCode - TriCore User Guide

 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended, but to enable this feature select Project » Build Automatically
and ensure there is a check mark beside the Build Automatically menu item. In order for this option
to work, you must also enable option Build on resource save (Auto build) on the Behavior tab of
the C/C++ Build page of the Project » Properties for dialog.

To access the linker options
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. From the Configuration list, select a configuration or select[Al configurations].
4. On the Tool Settings tab, select Linker.
5. Select the sub-entries and set the options in the various pages.

Note that when you click Restore Defaults to restore the default tool options, as a side effect the
processor is also reset to its default value on the Processor page (C/C++ Build » Processor).

You can find a detailed description of all linker options in Section 10.5, Linker Options.

Invocation syntax on the command line:
I'tc [[option]... [file]...]...

When you are linking multiple files, either relocatable object files (. 0) or libraries (. a), it is important to
specify the files in the right order. This is explained in Section 7.3, Linking with Libraries.

Example:
ltc -dtc49x.1sl test.o

This links and locates the file t est . 0 and generates the filet est . el f.

7.3. Linking with Libraries

There are two kinds of libraries: system libraries and user libraries.

System library

System libraries are stored in the directories:

242

<Tri Core installation path>\1ib\tcl8

Using the Linker

(TriCore 1.8 libraries)

<TriCore installation path>\1ib\pic\tcl8 (TriCore 1.8 PIC/PID libraries)

An overview of the system libraries is given in the following table:

libfp[t]_fpu.a

Libraries Description

libclw].a C libraries

libc[w]_fpu.a Optional letter:
w =wide-character support (control program option --c++=11, --io-streams)
_fpu = with FPU instructions (default, control program option
--fp-model=-soft)

libfp[t].a Floating-point libraries

Optional letter:

t = trapping (control program option --fp-model=+trap)

_fpu = with FPU instructions (default, control program option
--fp-model=-soft)

libcp[x]_fpu.a

librt.a Run-time library
libpb.a Profiling libraries
libpc.a pb = block/function counter
libpct.a pc = call graph
libpd.a pct = call graph and timing
libpt.a pd = dummy

pt = function timing
libcp[x].a C++ libraries

Optional letter:

X = exception handling

_fpu = with FPU instructions (default, control program option
--fp-model=-soft)

libstlx.a STLport C++ libraries (exception handling variants only)
libstlx_fpu.a Optional letter:
_fpu = with FPU instructions (default, control program option
--fp-model=-soft)
libcxxx.a libc++ libraries (exception handling variants only)
libcxxx_fpu.a Optional letter:

_fpu = with FPU instructions (default, control program option
--fp-model=-soft)

PIC/PID system libraries

The extension to the TriCore EABI guidelines for Position Independent Code and Data imposes certain
requirements on the generated code so the code compiled with C compiler option --pic=A12 should only
be linked with libraries compiled with the same option. Position-independent versions of some of the
libraries and limited set of functions within the libraries are provided in:

<TriCore installation path>\1ib\pic\tcl8

These libraries were compiled with C compiler option --pic=A12 and follow the EABI guidelines:

243

TASKING SmartCode - TriCore User Guide

PIC/PID Libraries Description

libclw].a C libraries, only picinit. o
libc[w]_fpu.a

libfp[t].a Floating-point libraries, all modules
libfp[t]_fpu.a

librt.a Run-time library, all modules

Those libraries and functions of libraries that are not available in --pic=A12 mode can still be used by a
Position-Independent Module (PIM) by way of performing a call to a function from the "static" software
that is located at an absolute address. In this case, a regular version of the function linked into the static
software is used. The only drawback in this scenario is that the developer of the PIM must know the
absolute address of the function at PIM link time. See attributes abs_addr andi f _j unp_t ab; the latter
can help to provide the PIM with an interface to functions of the "static" software at a stable address.

Sources

Sources for the libraries are present in the directories | i b\ src, | i b\ src. * in the form of an executable.
If you run the executable it will extract the sources in the corresponding directory.

To link the default C (system) libraries

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Enable the option Link default libraries.

When you want to link system libraries from the command line, you must specify this with the option
--library (-1). For example, to specify the system library | i bc. a, type:

Itc --library=c test.o

User library

You can create your own libraries. Section 8.5, Archiver describes how you can use the archiver to create
your own library with object modules.

To link user libraries
1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.

244

Using the Linker

In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Libraries.
4. Add your libraries to the Libraries box.

When you want to link user libraries from the command line, you must specify their filenames on the
command line:

Itc start.o nylib.a
If the library resides in a sub-directory, specify that directory with the library name:
Itc start.o nylibs\nylib.a

If you do not specify a directory, the linker searches the library in the current directory only.

Library order

The order in which libraries appear on the command line is important. By default the linker processes
object files and libraries in the order in which they appear at the command line. Therefore, when you use
a weak symbol construction, like pri nt f , in an object file or your own library, you must position this
object/library before the C library.

With the option --first-library-first you can tell the linker to scan the libraries from left to right, and extract
symbols from the first library where the linker finds it. This can be useful when you want to use newer
versions of a library routine:

Itc --first-library-first a.a test.o b.a

If the file t est . o calls a function which is both presentin a. a and b. a, normally the functionin b. a
would be extracted. With this option the linker first tries to extract the symbol from the first library a. a.

Note that routines in b. a that call other routines that are present in both a. a and b. a are now also
resolved from a. a.

7.3.1. How the Linker Searches Libraries

System libraries

You can specify the location of system libraries in several ways. The linker searches the specified locations
in the following order:

1. The linker first looks in the Library search path that are specified in the Linker » Libraries page in
the C/C++ Build » Settings » Tool Settings tab of the Project Properties dialog (equivalent to the
option --library-directory (-L)). If you specify the -L option without a pathname, the linker stops
searching after this step.

2. When the linker did not find the library (because it is not in the specified library directory or because
no directory is specified), it looks in the path(s) specified in the environment variable L1 BTC1V1_8.

245

TASKING SmartCode - TriCore User Guide

3. When the linker did not find the library, it tries the default | i b directory relative to the installation
directory (or a processor specific sub-directory).

User library

If you use your own library, the linker searches the library in the current directory only.

7.3.2. How the Linker Extracts Objects from Libraries

A library built with the TASKING archiver artc always contains an index part at the beginning of the library.
The linker scans this index while searching for unresolved externals. However, to keep the index as small
as possible, only the defined symbols of the library members are recorded in this area.

When the linker finds a symbol that matches an unresolved external, the corresponding object file is
extracted from the library and is processed. After processing the object file, the remaining library index
is searched. If after a complete search of the library unresolved externals are introduced, the library index
will be scanned again. After all files and libraries are processed, and there are still unresolved externals
and you did not specify the linker option --no-rescan, all libraries are rescanned again. This way you do
not have to worry about the library order on the command line and the order of the object files in the
libraries. However, this rescanning does not work for ‘weak symbols'. If you use a weak symbol construction,
like pri nt f, in an object file or your own library, you must position this object/library before the C library.

The option --verbose (-v) shows how libraries have been searched and which objects have been extracted.

Resolving symbols

If you are linking from libraries, only the objects that contain symbols to which you refer, are extracted
from the library. This implies that if you invoke the linker like:

Itc nmylib.a

nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through nyl i b. a.

It is possible to force a symbol as external (unresolved symbol) with the option --extern (-e):
Itc --extern=nain nylib.a

In this case the linker searches for the symbol i n in the library and (if found) extracts the object that
contains mai n.

If this module contains new unresolved symbols, the linker looks againin myl i b. a. This process repeats
until no new unresolved symbols are found.

7.4. Incremental Linking

With the TASKING linker it is possible to link incrementally. Incremental linking means that you link some,
but not all . o modules to a relocatable object file . out . In this case the linker does not perform the locating
phase. With the second invocation, you specify both new . o files as the . out file you had created with
the first invocation.

246

Using the Linker

Incremental linking is only possible on the command line.

Itc --increnmental testl.o -otest.out
Itc test2.0 test.out

This links the file t est 1. o and generates the file t est . out . This file is used again and linked together
with t est 2. o to create the file t est . el f (the default name if no output filename is given in the default
ELF/DWARF format).

With incremental linking it is normal to have unresolved references in the output file until all . o files are
linked and the final . out or . el f file has been reached. The option --incremental (-r) for incremental
linking also suppresses warnings and errors because of unresolved symbols.

247

TASKING SmartCode - TriCore User Guide

7.5. Linking Core-Specific Projects into a Multi-Core Application

The TASKING toolset for TriCore has support for multi-core versions of the TriCore. To build an application
for such a multi-core processor it is sufficient to specify the correct processor in Eclipse or to the control
program (control program option --cpu).

By default, all cores share code and data, although actual use of functions and variables is determined
by the application. If, instead, you want to build an application for a specific core with its own code and
data (a separate namespace), you need to select the specific core in Eclipse (for example, TriCore core
0) for the core-specific project. If you build your sources on the command line with the control program,
apart from --cpu you also have to specify control program option --Isl-core=tcn for core n. Your main
project should always be a core 0 project that has project references to core-specific projects.

How to share code and data

When sharing data, make sure it is not aO/al/a8/a9 data if the specific register does not have the same
value on the different cores. In the application that references the variable, declare the variable with prefix
"lc_s nane"or" | c_t core_nane". See Section 7.10, Linker Labels.

When sharing code, make sure the code does not use a0/al/a8/a9 data if the specific register does not
have the same value on the different cores. The same symbol prefixes are used as for variables. Calls
from the shared code will use functions from the application where the code is defined, so e.g. a call to
C library function mal | oc() from shared code would reference the "wrong" heap.

To select a single-core configuration

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Processor.
In the right pane the Processor settings appear.

3. From the Processor Selection list, select a processor.

4. From the Multi-core configuration list, select a TriCore single-core.

Add the core-specific projects to the main core 0 project

1. Inthe C/C++ Projects view, right-click on the name of main core 0 TriCore project and select
Properties.

The Properties dialog appears.
2. Inthe left pane, select Project References.

3. Inthe right pane, select the core-specific projects that must be part of the TriCore project and click
Apply and Close.

248

Using the Linker

Build the project
1. Make the core O project the active project.
2. From the Project menu, select Build project.

Eclipse will create linker . out files for the core-specific projects other than core 0. They will be linked to
the main core 0 project to produce the final ELF absolute object file.

When you build your project, the linker is called with linker option --core=mpe:tcn, where n is the core
number, and the macro __NO_VTCis defined with linker option -D. The macro __NO_VTC must also be
defined with C compiler option -D when compiling the startup code. The control program passes the
proper defines to the tools when you use control program option --Isl-core=tcn.

Using the control program

1. Build the core projects other than core 0 to . out files. For example,

cctc -Ctc49x --1lsl-core=tcl source_tcl.c cstart_tcl.c --link-only -t -0 tcl.out
cctc -Ctcd49x --1sl-core=tc2 source_tc2.c cstart_tc2.c --link-only -t -0 tc2.out

2. Build the core 0 project with link tasks for each core. For example,

cctc -Ctc49x --Isl-core=tcO ntproject.c cstart.c --newtask=tcl,tcl.out --newtask=tc2,tc2.out

7.6. Importing Binary Files

With the TASKING linker it is possible to add a binary file to your absolute output file. In an embedded
application you usually do not have a file system where you can get your data from.

Add a data object in Eclipse
1. Select Linker » Data Objects.
The Data objects box shows the list of object files that are imported.
2. To add a data object, click on the Add button in the Data objects box.
3. Type or select a binary file (including its path).
On the command line you can add raw data to your application with the linker option --import-object.

This makes it possible for example to display images on a device or play audio. The linker puts the raw
data from the binary file in a section. The section is aligned on a 4-byte boundary. The section name is
derived from the filename, in which dots are replaced by an underscore. So, when importing a file called
ny. np3, a section with the name my_np3 is created. In your application you can refer to the created
section by using linker labels.

For example:

249

TASKING SmartCode - TriCore User Guide

#i ncl ude <stdio. h>

__far extern char _lc_ub_ny_nmp3; /* linker |abels */
__far extern char _lc_ue_ny_np3;

char* mp3 = & | c_ub_ny_np3;

voi d nmai n(voi d)
{
int size = &lc_ue_nmy_m3 - & Ilc_ub_ny_np3;
int i;
for (i=0;i<size;i++)
put char (mp3[i]);

Because the compiler does not know in which space the linker will locate the imported binary, you
have to make sure the symbols refer to the same space in which the linker will place the imported
binary. You do this by using the memory qualifier __f ar, otherwise the linker cannot bind your
linker symbols.

Also note that if you want to use the export functionality of Eclipse, the binary file has to be part
of your project.

7.7. Converting Intel Hex to Binary Format

The linker can convert one or more Intel Hex input files to a single binary output file. This binary output

format is only available for "chip" output, not for "space" output. Multiple Intel Hex files may be used as

input, as long as there are no address conflicts and as long as there is only one program entry point for
a set of multiple Intel Hex files. If more than one entry point is encountered the linker emits an error.

The linker reads the Intel Hex file(s) and stores the contents in an internal database format in as many
sections as there are contiguous memory sections within the Intel Hex file(s). All sections are stored within
the primary hex file address space. Each section is incrementally named using the following format .

.secN_input_file_nanme

Conversion from the internal database format to the binary output takes place automatically when the
input is detected to be an Intel Hex file and the command line option:

- -chi p-out put =[basenane] : f or mat [: addr _si ze], . ..
is used with the format field set to BIN and the addr_size left empty.

Any memory location included in the binary file that is not occupied by application data can be filled with
the value specified by linker option --binfill=pattern (default 0x00).

The resulting binary output file has no knowledge of targets or absolute addresses. It is simply a byte
representation of the image data that was read in. The data of a binary output file represents the first
MAU in memory (at offset zero) up to the last data MAU of the application in memory. The resulting binary
file has no memory holes because they are filled with the fill pattern.

250

Using the Linker

Example:

Itc myproj_1. hex nyproj_2.hex -dtc49x.lsl --core=npe:vtc
--chi p-out put =myproj : bin --binfill=0x2D

7.8. Linker Optimizations

During the linking and locating phase, the linker looks for opportunities to optimize the object code. Both
code size and execution speed can be optimized.

To enable or disable optimizations

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Optimization.

4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Delete unreferenced sections (option -Oc/-OC)
This optimization removes unreferenced sections from the resulting object file.
This optimization considers a section referenced if either of the following two conditions is true:
1. The section is protected from unreferenced section removal, which can be one of:
« the section is assigned an absolute address, either in the object file or in LSL
« the section is selected by exact name in LSL (no wildcard pattern) :
» a symbol defined in the section is referenced in LSL
« the section has the 'protected’ section flag set, either in the object file or in LSL
2. The section is referenced via a relocation by another section that is considered referenced.

i multiple sections of a specific name are created by using section renaming, all of these sections are
protected against unreferenced section removal. With a selection using wildcards, matching sections are
selected, but matching sections that are unreferenced may be removed. See Selecting sections for a
group in Section 17.8.2, Creating and Locating Groups of Sections.

251

TASKING SmartCode - TriCore User Guide

First fit decreasing (option -OI/-OL)

When the physical memory is fragmented or when address spaces are nested it may be possible that a
given application cannot be located although the size of the available physical memory is larger than the
sum of the section sizes. Enable the first-fit-decreasing optimization when this occurs and re-link your
application.

The linker's default behavior is to place sections in the order that is specified in the LSL file (that is, working
from low to high memory addresses or vice versa). This also applies to sections within an unrestricted
group. If a memory range is partially filled and a section must be located that is larger than the remainder
of this range, then the section and all subsequent sections are placed in a next memory range. As a result
of this gaps occur at the end of a memory range.

When the first-fit-decreasing optimization is enabled the linker will first place the largest sections in the
smallest memory ranges that can contain the section. Small sections are located last and can likely fit in
the remaining gaps.

Compress copy table (option -Ot/-OT)

The startup code initializes the application's data areas. The information about which memory addresses
should be zeroed and which memory ranges should be copied from ROM to RAM is stored in the copy
table.

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

Note that this optimization only affects unrestricted sections that require an initialization action in
the copy table. The affected sections get a clustered restriction. Unrestricted sections are sections
that do not have their absolute location or their relative location to other sections restricted. See
also Define the mutual order of sections in an LSL group in Section 17.8.2, Creating and Locating
Groups of Sections.

Delete duplicate code (option -Ox/-OX)

Delete duplicate constant data (option -Oy/-QY)

These two optimizations remove code and constant data that is defined more than once, from the resulting
object file.

Note that when these linker optimizations are enabled, different C objects or functions may have
identical addresses. This means that you cannot distinguish these objects or functions with a
pointer comparison as described in the ISO C standard (C99/C11 6.5.9p6). If your application
relies on pointer comparisons to distinguish different objects and/or functions, disable these linker
optimizations.

252

Using the Linker

7.9. Controlling the Linker with a Script

With the options on the command line you can control the linker's behavior to a certain degree. From
Eclipse it is also possible to determine where your sections will be located, how much memory is available,
which sorts of memory are available, and so on. Eclipse passes these locating directions to the linker via
a script file. If you want even more control over the locating process you can supply your own script.

The language for the script is called the Linker Script Language, or shortly LSL. You can specify the script
file to the linker, which reads it and locates your application exactly as defined in the script. If you do not
specify your own script file, the linker always reads a standard script file which is supplied with the toolset.

7.9.1. Purpose of the Linker Script Language
The Linker Script Language (LSL) serves three purposes:

1. It provides the linker with a definition of the target's core architecture. This definition is supplied with
the toolset.

2. It provides the linker with a specification of the memory attached to the target processor.

3. It provides the linker with information on how your application should be located in memory. This gives
you, for example, the possibility to create overlaying sections.

The linker accepts multiple LSL files. You can use the specifications of the core architectures that TASKING
has supplied in the i ncl ude. | sl directory. Do not change these files.

If you use a different memory layout than described in the LSL file supplied for the target core, you must
specify this in a separate LSL file and pass both the LSL file that describes the core architecture and your
LSL file that contains the memory specification to the linker. Next you may want to specify how sections
should be located and overlaid. You can do this in the same file or in another LSL file.

LSL has its own syntax. In addition, you can use the standard C preprocessor keywords, such as #i ncl ude
and #def i ne, because the linker sends the script file first to the C preprocessor before it starts interpreting
the script.

The complete LSL syntax is described in Chapter 17, Linker Script Language (LSL).

7.9.2. Eclipse and LSL

In Eclipse you can specify the size of the stack and heap; the physical memory attached to the processor;
identify that particular address ranges are reserved; and specify which sections are located where in
memory. Eclipse translates your input into an LSL file that is stored in the project directory under the
name project_name. | sl and passes this file to the linker. If you want to learn more about LSL you can
inspect the generated file project_name. | sl .

To add a generated Linker Script File to your project
1. From the File menu, select File » New » TASKING TriCore C/C++ Project.

The New C/C++ Project wizard appears.

253

TASKING SmartCode - TriCore User Guide

2. Fillin the project settings in each dialog and click Next > until the following dialog appears.

Mew C/C++ Project O *
TriCore Project Settings —,

€3 Select 3 processorto continue

Processor selection

[Infineon AURIX 3G Family Expand All

Expand Selected

Collapse All

Multi-core configuration

Actions
Add startup file(s) to the project
Add linker script file to the project

) < Back Next = Finish Cancel

3. Enable the option Add linker script file to the project and click Finish.
Eclipse creates your project and the file "project_name. | sl " in the project directory.

If you do not add the linker script file here, you can always add it later with File » New » Linker Script
File (LSL).

To change the Linker Script File in Eclipse
There are two ways of changing the LSL file in Eclipse.
» You can change the LSL file directly in an editor.

1. Double-click on the file project_name. | sl .

The project LSL file opens in the editor area.

254

Using the Linker

[l myproject.lsl % = 0
/{ TASKING TriCore toolset ~
// Eclipse project linker script file

= #if defined(_ PROC_TC49X__
#define _ REDEFINE_ON_CHIP_ITEMS
#include "tc49x,1s1"
processor mpe

{
h

derivative my_tc49x extends tc49x

derivative = my_tc49x;

{
memory pflash@e (tag="cn-chip")
{
mau = 8;
type = rom;
size = 2M;
map cached{dest=bus:sri, dest_offset-0x20000000, size=2M);
map not_cached(dest=bus:sri, dest offset=0xaf0ec080, size=2
£ >

2. You can edit the LSL file directly in the project_name. | s| editor.
A * appears in front of the name of the LSL file to indicate that the file has changes.

3. Click [=] or select File » Save to save the changes.

» You can also make changes to the property pages Memory and Stack/Heap.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Memory or Stack/Heap.
In the right pane the corresponding property page appears.
3. Make changes to memory and/or stack/heap and click Apply and Close.

The project LSL file is updated automatically according to the changes you make in the pages.

You can quickly navigate through the LSL file by using the Outline view (Window » Show View » Outline).

7.9.3. Preprocessor Macros in the Linker Script Files

The linker script files contain several predefined preprocessor macros. If for some reason you need to
change a default value, you can use Eclipse or the linker option --define to define a new value, or add
this option via the control program to the linker.

For example, to set the user stack size from the command line to 24k, enter:

cctc -W--defi ne=USTACK=24k test.c

With option -WI the control program passes the macro definition to the linker.

255

TASKING SmartCode - TriCore User Guide

The following macros are available in the linker script files.

Macro

Description

AO_START / A1_START/
A8_START / A9_START

Specifies the fixed address of the AO/A1/A8/A9-addressable
segment for all cores.

CSA Specifies the size of the context save area (same as (CSA_TCO0).

CSA_TCn Specifies the size of the context save area for the specified TriCore
core n.

CSA_START Specifies the start address of the context save area (same as

CSA_START_TCO).

CSA_START_TCn

Specifies the start address of the context save area for the specified
TriCore core n.

HEAP Specifies the size of the heap.

HVTRAPTAB Specifies the start address of the hypervisor trap table (same as
HVTRAPTABO).

HVTRAPTABN Specifies the start address of the hypervisor trap table for the
specified TriCore core n.

INTTAB Specifies the start address of the interrupt table (same as INTTABO).

INTTABN Specifies the start address of the interrupt table for the specified
TriCore core n.

INTTABNVMm Specifies the start address of the interrupt table for the specified
VM m on TriCore core n.

ISTACK Specifies the size of the interrupt stack (same as ISTACK_TCO0)..

ISTACK_TCn Specifies the size of the interrupt stack for the specified TriCore

core n.

MCSO00_ORAM .. MCSxx_ORAM

Identifies the offset of the memory for core MCSQ0 .. MCSxx from
the GTM base address.

RESET Specifies the reset address.

TRAPTAB Specifies the start address of the trap table (same as TRAPTABO).

TRAPTABN Specifies the start address of the trap table for the specified TriCore
core n.

USTACK Specifies the size of the user stack (same as USTACK_TCO).

USTACK_TCn Specifies the size of the user stack for the specified TriCore core

n.

__DISABLE_SCR_BOOT_MAGIC

If defined as 1, no SCR boot magic section will be generated.

__ISTACK_ENTRY_POINTS

Specifies the entry points for stack estimation of the interrupt stack.

__ISTACKn_ENTRY_POINTS

Specifies the entry points for stack estimation of the interrupt stack
for the specified TriCore core n. Multiple entry points are separated
by commas and enclosed in square brackets [] .

256

Using the Linker

Macro Description

_ MAX_CONCURRENT_HANDLERS | Specifies the number of interrupt and trap handlers that should
contribute to stack size estimation. Defining this macro adds a

t hr eads keyword to ust ack, with the macro value increased by
one.

__NO_VTC When this macro is defined, the virtual core vt ¢ is not available,
S0 a separate link task is needed for each TriCore core. By default
this macro is undefined.

_ REDEFINE_ON_CHIP_ITEMS |If defined as 1, no on-chip memories are defined.

__TCn_Ax_START Specifies the fixed address of the Ax-addressable segment for core
n, available when macro __NO_VTC is defined. This macro
overrides the value set with Ax_START for core n. By default this
macro is not set.

__USTACK_ENTRY_POINTS Specifies the entry points for stack estimation of the user stack.

__USTACKn_ENTRY_POINTS Specifies the entry points for stack estimation of the user stack for
the specified TriCore core n. Multiple entry points are separated by
commas and enclosed in square brackets [] .

7.9.4. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each
space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the interrupt vector table.

This specification is normally written by TASKING. TASKING supplies LSL files in the i ncl ude. | sl
directory. The file t c_nt_ar ch. | sl defines the base architecture for all multi-core TriCore cores. The
filetclvl_8. | sl extends the base architecture for the TriCore core.

The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

The linker uses the architecture name in the LSL file to identify the target. For example, the default library
search path can be different for each core architecture.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

257

TASKING SmartCode - TriCore User Guide
When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

TASKING supplies LSL files for each derivative (deri vat i ve. | sl), along with "SFR files", which provide
easy access to registers in /O sub-systems from C and assembly programs. When you build an ASIC
or use a derivative that is not (yet) supported by the TASKING tools, you may have to write a derivative
definition.

The processor definition

The processor definition describes an instance of a derivative. A processor definition is only needed in a
multi-processor embedded system. It allows you to define multiple processors of the same type.

If for a derivative 'A' no processor is defined in the LSL file, the linker automatically creates a processor
named 'A' of derivative 'A'. This is why for single-processor applications it is enough to specify the derivative
in the LSL file.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems. The board specification describes all characteristics of your target board's system buses, memory
devices, 1/0 sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

» convert a logical address to an offset within a memory device
* locate sections in physical memory

* maintain an overall view of the used and free physical memory within the whole system while locating
The section layout definition (optional)
The optional section layout definition enables you to exactly control where input sections are located.

Features are provided such as: the ability to place sections at a given address, to place sections in a
given order, and to overlay code and/or data sections.

Example: Skeleton of a Linker Script File

A linker script file that defines a derivative "X based on the TC1V1.8 architecture, its external memory
and how sections are located in memory, may have the following skeleton:

architecture TC1V1. 8
{

258

Using the Linker

/1 Specification of the TClV1.8 core architecture
/1 Witten by TASKI NG

}
derivative X [// derivative nane is arbitrary
{
/1 Specification of the derivative
/1 Witten by TASKI NG
core vtc /1 always specify the core
{
architecture = TC1VL. 8;
import tcO; // add all address spaces of core tcO to core vtc
}
core tcO /1 always specify the core
{
architecture = TC1VL. 8;
space_i d_offset = 100
copyt abl e_space = vtc:linear;
}
bus sri _bus /'l internal bus
{
/1 maps to bus "fpi_bus" in "vtc" and "tc0" core
}
/'l internal menory
}
processor npe /1 processor nane is arbitrary
{
derivative = X
/1l You can omt this part, except if you use a
/1l multi-core system
}
menory ext _nanme
{
/1l external nmenory definition
}
section_|l ayout npe:vtc:linear /1 section |ayout
{
/'l section placenent statenments
/] sections are |located in address space 'linear’
/1l of core 'vtc' of processor 'npe'
}

259

TASKING SmartCode - TriCore User Guide

Overview of LSL files delivered by TASKING

TASKING supplies the following LSL files in the directory i ncl ude. | sl .

LSL file

Description

tc_nc_arch. | sl

Defines the base architecture (TC) for all multi-core TriCore cores.

ncs_arch. | sl

Defines the base architecture (MCS4.0) for all MCS cores.

base_addr ess_groups. | sl

Groups sections that belong to A0, A1, A8 or A9. It is included in the file
t c49x. | sl . See also linker option --auto-base-register

inttabn. | sl

Defines a core n specific interrupt vector table. It is included in derivative
LSL files that have multi-core support.

hvt rapt abn. | sl

Defines a core n specific hypervisor trap vector table. It is included in
derivative LSL files that have multi-core support.

traptabn. | sl

Defines a core n specific trap vector table. It is included in derivative LSL
files that have multi-core support.

tclvl 8.1sl

Extends the base architecture for core TC1V1.8. It includes the file
tc_nc_arch.|sl.

derivative. |l sl

Defines the derivative and defines a multi-core processor (npe). Contains
a memory definition and section layout. It includes the filet clv1_8. 1 sl .
The selection of the derivative is based on your CPU selection (control
program option --cpu).

t c49x. | sl

Defines the TC49x derivative for core TC1V1.8.

tenpl ate. | sl

This file is used by Eclipse as a template for the project LSL file. It includes
the file cpu. | sl .

templ ate_pic.|sl

This file is used by Eclipse as a template for a PIC/PID project LSL file. It
includes the file pi c. | sl .

cpu. | sl

This file includes the file deri vati ve. | s| based on your CPU selection.
The CPU is specified by the __ CPU__ macro.

default.| sl

Contains a default memory definition and section layout based on the tc49x
derivative. This file is used on a command line invocation of the tools, when
no CPU is selected (no option --cpu).

extmem | sl Template file with a specification of the external memory attached to the
target processor.
pic.lsl This file contains definitions for the creation of position independent modules.

When you select to add a linker script file when you create a project in Eclipse, Eclipse makes a copy of
the file t enpl at e. | s| and names it “project_name. | sl ". On the command line, the linker uses the file
def aul t. | sl , unless you specify another file with the linker option --Isl-file (-d).

7.9.5.The Architecture Definition

Although you will probably not need to write an architecture definition (unless you are building your own
processor core) it helps to understand the Linker Script Language and how the definitions are interrelated.

260

Using the Linker
Within an architecture definition the characteristics of a target processor core that are important for the
linking process are defined. These include:
» space definitions: the logical address spaces and their properties
* bus definitions: the core local buses and I/0 buses of the core architecture

* mappings: the address translations between logical address spaces, the connections between logical
address spaces and buses and the address translations between buses

Address spaces

A logical address space is a memory range for which the core has a separate way to encode an address
into instructions. Most microcontrollers and DSPs support multiple address spaces. For example, the
TriCore's 32-bit linear address space encloses 16 24-bit sub-spaces and 16 14-bit sub-spaces. See also
the section "Memory Model" in the TriCore Architecture Manual. Normally, the size of an address space
is 2V with N the number of bits used to encode the addresses.

The relation of an address space with another address space can be one of the following:
» one space is a subset of the other. These are often used for "small" absolute or relative addressing.

 the addresses in the two address spaces represent different locations so they do not overlap. This
means the core must have separate sets of address lines for the address spaces. For example, in
Harvard architectures we can identify at least a code and a data memory space.

Address spaces (even nested) can have different minimal addressable units (MAU), alignment restrictions,
and page sizes. All address spaces have a number that identifies the logical space (id).

The following table lists the different address spaces for the architecture TCas definedint c_nt_ar ch. | sl
for multi-core processors.

Space|ld [MAU |Description ELF sections

linear |1 |8 Linear address space text*, .data*, .sdata*, .Idata*, .rodata*, .bss*, .sbss*,
table, istack, ustack

abs24 (2 (8 Absolute 24-bit addressable space
abs18 (3 |8 Absolute 18-bit addressable space |.zdata, .zrodata, .zbss

csa 4 18 Context Save Area csa.*

The MCS has one address space for architecture MCS as defined in ncs_arch. | sl .

Space|ld [MAU |Description ELF sections

mcs |1 (8 MCS address space |.mcstext, .mcsdata

The MCS is described in a separate manual. See the SmartCode - MCS User Guide for more information.

261

TASKING SmartCode - TriCore User Guide

The TriCore architecture in LSL notation

The best way to write the architecture definition, is to start with a drawing. The following figure shows a
part of the TriCore architecture:

space linear bus fai_tus
———— ————
|rspace ahs18-i_" man = 8
| g=g | width =32

I rnaw =5 |

The figure shows two address spaces called | i near and abs18. The address space abs18 is a subset
of the address space | i near . All address spaces have attributes like a number that identifies the logical
space (id), a MAU and an alignment. In LSL notation the definition of these address spaces looks as
follows:

space |inear

{
id = 1;
mau = 8;
map (src_of fset =0x00000000, dest _of f set =0x00000000,
si ze=4G, dest =bus: f pi _bus);
}
space absl18
{
id = 3;
mau = 8;
map (src_of fset =0x00000000, dest _of f set =0x00000000,
si ze=16k, dest=space:linear);
map (src_of fset =0x10000000, dest _of f set =0x10000000,
si ze=16k, dest=space:linear);
map (src_of fset =0x20000000, dest _of f set =0x20000000,
si ze=16k, dest=space:linear);
...
}
Mappings

The keyword map corresponds with the arrows in the drawing. You can map:
» address space => address space
» address space => bus

* memory => bus (not shown in the drawing)

262

Using the Linker

* bus => bus (not shown in the drawing)

Buses

Next the internal bus, named f pi _bus must be defined in LSL:

bus fpi _bus
{

mau = 8;

width = 32; // there are 32 data lines on the bus
}

Architecture definition

This completes the LSL code in the architecture definition. Note that all code above goes into the
architecture definition, thus between:

architecture TC1V1. 8

/1 Al code above goes here.

}
7.9.6.The Derivative Definition

Although you will probably not need to write a derivative definition (unless you are using multiple cores
that both access the same memory device) it helps to understand the Linker Script Language and how
the definitions are interrelated.

A derivative is the design of a processor, as implemented on a chip (or FPGA). It comprises one or more
cores and on-chip memory. The derivative definition includes:

» core definition: an instance of a core architecture
» bus definition: the I/O buses of the core architecture

» memory definitions: internal (or on-chip) memory

Core

Each derivative must have at least one core and each core must have a specification of its core architecture.
This core architecture must be defined somewhere in the LSL file(s).

A link task (resolving symbols from object files and libraries) is associated with one core in the LSL file(s).
In a multi-core environment you can combine multiple cores with the same architecture into a single link
task. This is done by importing one or more cores into a root core with ani npor t statement. By importing
a core the hardware resources of that core are made available to the link task associated with the core
that contains the i nport statement. The imported cores share a single symbol namespace. The address
spaces in each imported core must have a unique ID in the link task. For each imported core is specified
that the space IDs of the imported core start at a specific offset. If writable sections for a core must be
initialized by using the copy table of a different core, this is specified by a copyt abl e_space.

263

TASKING SmartCode - TriCore User Guide

The following example is part of t c49x. | sl delivered with the product.

core vtc

{
architecture = TC1V1. 8;

import tcO; // add all address spaces of tcO for |inking

}
core tcO // core O
{
architecture = TC1V1. 8;
space_id_offset = 100; // add 100 to all space IDs in
/1 the architecture definition
copytabl e_space = vtc:linear; // use copytable fromcore vtc
}

So, for TriCore multi-core architectures, core vt c is used for resolving symbols, linking and locating all
addresses of all TriCore cores, because the memory map is virtually the same for all cores.

Bus

Each derivative can contain a bus definition for connecting external memory. In this example, the bus
sri _bus maps to the bus f pi _bus defined in the architecture definition of core vt ¢ and t cO:

bus sri _bus

{
mau = 8;
w dth = 32;
map (dest=bus:vtc:fpi_bus, dest_offset=0, size=4Q;
map (dest=bus:tcO:fpi_bus, dest_offset=0, size=4Q
}
Memory

External memory is usually described in a separate memory definition, but you can specify on-chip memory
for a derivative. For example, the TriCore contains internal memory called f | ash with a size 128 MB.
This is physical memory which is mapped to the internal bus sri _bus:

menory flash

{

mau = 8;

size = 128M

type = rom

map (dest=bus: npe:sri, dest_offset=0xa0000000, size=128M;
}

This completes the LSL code in the derivative definition. Note that all code above goes into the derivative
definition, thus between:

derivative X // nanme of derivative

{

264

Using the Linker

/1 Al code above goes here

}

7.9.7.The Processor Definition

The processor definition is only needed when you write an LSL file for a multi-processor embedded
system. The processor definition explicitly instantiates a derivative, allowing multiple processors of the
same type.

processor nane

{
}

If no processor definition is available that instantiates a derivative, a processor is created with the same
name as the derivative.

derivative = derivative_nang;

For TriCore derivatives that have multiple processor cores, TASKING defines a "multi-core processor
environment" (mpe) in each deri vati ve. | sl file. For example:

processor npe

{
}
7.9.8.The Memory Definition

derivative = tc49x;

Once the core architecture is defined in LSL, you may want to extend the processor with external (or
off-chip) memory. You need to specify the location and size of the physical external memory devices in
the target system.

The principle is the same as defining the core's architecture but now you need to fill the memory definition:

nenory nane

/1 menory definitions
FrIBfrOry Code_Forn
-y—— — —] 0
ran = 8
-y —— —]
16k
‘._L_"_‘"‘——..
~ T Tem=ep,

FIEMNORY Y _Hustarm

Suppose your embedded system has 16 KiB of external ROM, named code_r omand 2 KiB of external
NVRAM, named nmy _nvsr am Both memories are connected to the bus f pi _bus. In LSL this looks like:

265

TASKING SmartCode - TriCore User Guide

nmenory code_rom

{

mau = 8;

size = 16k;

type = rom

map(dest =bus: npe: f pi _bus, dest_of fset =0xa0000000, size=16k);
}
Menory ny_nvsram
{

mau = 8;

size = 2k;

type = nvram

map(dest =bus: npe: fpi _bus, dest_offset =0xc0000000, size=2k);
}

If you use a different memory layout than described in the LSL file supplied for the target core, you can
specify this in Eclipse or you can specify this in a separate LSL file and pass both the LSL file that describes
the core architecture and your LSL file that contains the memory specification to the linker.

To add memory using Eclipse
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Memory.
In the right pane the Memory page appears.
3. Open the Memory tab and click on the Add... button.
The Add new memory dialog appears.
4. Enter the memory name (for example my_nvsr am, type (for example nvr am) and size.
5. Click on the Add... button.
The Add new mapping dialog appears.

6. You have to specify at least one mapping. Enter the mapping name (optional), address, size and
destination and click OK.

The new mapping is added to the list of mappings.
7. Click OK.

The new memory is added to the list of memories (user memory).
8. Click Apply and Close to close the Properties dialog.

The updated settings are stored in the project LSL file.

266

Using the Linker

If you make changes to the on-chip memory as defined in the architecture LSL file, the memory is copied
to your project LSL file and the line #def i ne __REDEFI NE_ON_CHI P_I| TEMS is added. If you remove
all the on-chip memory from your project LSL file, also make sure you remove this define.

7.9.9. The Section Layout Definition: Locating Sections

Once you have defined the internal core architecture and optional memory, you can actually define where
your application must be located in the physical memory.

During compilation, the compiler divides the application into sections. Sections have a name, an indication
(section type) in which address space it should be located and attributes like writable or read-only.

In the section layout definition you can exactly define how input sections are placed in address spaces,
relative to each other, and what their absolute run-time and load-time addresses will be.

Example: section propagation through the toolset

To illustrate section placement, the following example of a C program (bat . c¢) is used. The program
saves the number of times it has been executed in battery back-upped memory, and prints the number.

#def i ne BATTERY_BACKUP_TAG O0xa5f0
#i ncl ude <stdio. h>

int uninitialized_data;

int initialized_data = 1;

#pragnma section all "non_volatile"
#pragma nocl ear

int battery_backup_tag;

int battery_backup_invok;

#pragnma cl ear

#pragnma section all

void nain (void)

{
if (battery_backup_tag != BATTERY_BACKUP_TAG)
/1 battery back-upped nenory area contains invalid data
/1 initialize the nenory
battery_backup_tag = BATTERY_BACKUP_TAG
battery_backup_i nvok = 0;
}
printf("This application has been invoked % tines\n",
battery_backup_i nvok++);
}

The compiler assigns names and attributes to sections. With the #pr agma sect i on the compiler's
default section naming convention is overruled and a section with the name non_vol ati | e is defined.
In this section the battery back-upped data is stored.

267

TASKING SmartCode - TriCore User Guide

By default the compiler creates a section with the name ". zbss. bat " of section type dat a to store
uninitialized data objects. The section prefix ". zbss" tells the linker to locate the section in address space
abs18 and that the section content should be filled with zeros at startup.

As aresult of the #pragma section all "non_vol atil e", the data objects between the pragma
pair are placed in a section with the name ”. zbss. non_vol ati | e". Note that". zbss" sections are
cleared at startup. However, battery back-upped sections should not be cleared and therefore we used
#pr agma nocl ear.

Section placement

The number of invocations of the example program should be saved in non-volatile (battery back-upped)
memory. This is the memory nmy_nvsr amfrom the example in Section 7.9.8, The Memory Definition.

To control the locating of sections, you need to write one or more section definitions in the LSL file. At
least one for each address space where you want to change the default behavior of the linker. In our
example, we need to locate sections in the address space abs18:

section_layout ::absl18
{
sel ect "ELF sections”;
/1 Section placenent statenments

}

The space, in this case abs18, and the ELF sections must be a valid combination from the table in
Section 7.9.5, The Architecture Definition.

To locate sections, you must create a group in which you select sections from your program. For the
battery back-up example, we need to define one group, which contains the section . zbss. non_vol ati | e.
All other sections are located using the defaults specified in the architecture definition. Section

.zbss. non_vol ati | e should be placed in non-volatile ram. To achieve this, the run address refers to
our non-volatile memory called my_nvsram

group (run_addr = mem my_nvsram)

{
}

This completes the LSL file for the sample architecture and sample program. You can now invoke the
linker with this file and the sample program to obtain an application that works for this architecture.

sel ect ".zbss.non_volatile";

For a complete description of the Linker Script Language, refer to Chapter 17, Linker Script Language
(LSL).

7.9.10. Locating in a Multi-core Processor Environment

Locating in core local RAM with link time core association

For TriCore derivatives that have multi-core support, the preferred way of locating is to use the core vt ¢
and just specify the addresses where you want to locate a section. Instead of determining the core at

268

Using the Linker

compile time, for example by using __pri vat e0 in your C source, you can use link time core association:
omit the keyword in your C source and locate the section directly at the correct location in RAM as follows:

section_|l ayout npe:vtc:linear // core vtc containing all address spaces
{ /1 of all cores

group psprO (run_addr = mem npe: pspr0, copy) // tcO nmenory psprO
{

}

select "*.pspr0"; // select sections for psprO

}

The copy keyword tells to copy the section from ROM to RAM at program startup.

If you do use __pri vat e0 in your C source, you have to use npe: t c0 instead of npe: vt ¢, because
section selections are restricted to the address space of the section layout in which the group definition
occurs.

Locating clone sections

Instead of using the __cl one keyword in C you can create a clone section in LSL with the

secti on_set up keyword in combination with modi fy i nput . For more details about these LSL
keywords, see Section 17.7.1, Setting up a Section. The following example shows a definition for a
multi-core TriCore with six cores with clone sections in address space | i near in five of the available
cores.

section_setup :vtc:linear

{
nodi fy i nput (space = npe:vtc:npe_tcO_linear|npe_tcl_|inear|npe_tc2_linear|
npe_tc4_linear| npe_tc5_linear)
{
select ".text.file_1.func_1";
}
}

Note that core 3 is not included in this example.
In order to locate this section e.g. at a dedicated address in the core local memory use an entry like:

section_layout :vtc:npe_tcO_linear|npe_tcl |inear|npe_tc2_linear|
nmpe_tc4_linear|npe_tc5_linear

{
group MY_CLONE_FUNCTI ON (ordered, run_addr = 0xC0000800)
{
select ".text.file_ 1.func_1";
}
}

269

TASKING SmartCode - TriCore User Guide

7.9.11. Locating Private Code Sections in ROM

For TriCore derivatives that have multi-core support, private code sections are by default located in
core-local RAM. If however all core-local RAM is used, you can tell the linker to locate private code
sections in ROM. You can do this by adding the keywords nocopy, attri but es=rx to the group
specification in LSL. See also Section 1.4, Multi-Core Support.

The following example shows the function mai n() in mai n. ¢ that calls function pO() that is marked as
__privateOinprivateO.c.

/* main.c */

extern void __private0 pO(void);
extern int i;

int main(void)

po();

return i;
}
/* private0O.c */
int i;

void _ _privateO pO(void)
{

}

To specify that the section . t ext . pri vat e0. pri vat e0. p0 must be located in ROM instead of core-local
RAM, you can specify the following LSL part:

i ++;

/1l nocopy. | sl

section_| ayout npe:tcO:linear

{
group PRIV (run_addr = nem npe: pfl ash00, nocopy, attributes=rx)
{
sel ect ".text.privateO.private0. p0";
}
}

The keyword nocopy specifies that the code section is not copied from ROM to RAM at program startup
and at t ri but es=r x marks the section read-only and executable.

After the following invocation on the command line, you can inspect the resulting map file to see the
results.

cctc -Ctcd49x main.c private0.c -W-dnocopy. | sl
Part of map file:

+ Space npe:tcO:linear (MAU = 8bit)

270

Using the Linker

| Chip | Group | Section | Size (MAU) |

7.9.12. Stack Size Estimation

The TriCore architecture defines two stacks: the user stack (ust ack) and the interrupt stack (i st ack).
Several TriCore devices have more than one TriCore core, each of which has its own pair of ust ack
and i st ack. It is possible to calculate the stack usage for interrupt handlers and the stack usage for
each core separately.

The TriCore architecture has one stack pointer register. The ustack/istack switch is done by loading a
different value into the stack pointer register. This means the compiler does not know what stack a function
will use, nor on which cores a function will run. Instead, the linker must associate code with stack areas.
This can be done through the linker script language (LSL).

If a separate program is run on a specific core n, then the stack usage of this program can be computed
separately by defining LSL macro __USTACKn_ENTRY_PO NTS to the name of the symbol (between
double quotes) that represents the main function for this program. ent ry_poi nt s statements are used
for this. Multiple symbols can be specified by listing them between square brackets [], separated by
commas. Each symbol name must correspond to the caller name of a . CALLS directive as generated by
the compiler.

The LSL files use __USTACKn_ENTRY_PQO NTS or __| STACKn_ENTRY_PO NTS for core n.

Create a multi-core project and specify the stack entry points

The following example multi-core project shows you how to specify stack entry points for the core local
user stacks ust ack_t c1 and ust ack_t c2. In the SmartCode Eclipse IDE perform the following steps:

1. From the File menu, select New » TASKING TriCore C/C++ Project.

The New C/C++ Project wizard appears.

271

TASKING SmartCode - TriCore User Guide

New C/C++ Project m} X
C/C++ Project —

Create a new C/C++ project for the TASKING VX-toolset for TriCore

Project name: | stack_roots

Use default location

C:/Users/name/workspace/stack_roots Browse...

Project type:
v 17 TASKING TriCare Application
® Empty Project
® Hello World € Project
® Hello World C++ Project
7 TASKING TriCore Position Independent Module
7 TASKING TriCore Library
7 TASKING TriCore MIL Library

@ <Back Finish Cancel

2. Enter a name for your project, for example st ack_r oot s.

3. Inthe Project type box, expand TASKING TriCore Application and select Hello World C Project.
This creates the file st ack_r oot s. ¢ with a simple main function.

4. Click Next.

The TriCore Project Settings page appears.

Mew C/C++ Project] X
TriCore Project Settings —

Set options to create a TriCore project

Processor selection

[Infincon AURIX 3G Family Expand All
TC49x
Expand Selected

Collapse Al

Multi-core configuration

Use configuration: | All cores v
Actions

[Add startup file(s) to the project
[4] Add linker script file to the project

@ <Back Finish Cancel

5. Select a multi-core processor. In this example we choose the TC49x.

272

6.

7.

In the Multi-core configuration select All cores.

Enable all Actions checkboxes and click Next.

The Target Settings page appears.

Mew C/C++ Project O x

Target Settings —

Create a configuration to launch the debugger

Mame: | stack_roots

Target . i- Initialization | [5] Project| ¢4 Arguments| % Source|] Miscellaneous

Target settings ~

(O Show all targets (@) Show targets for TC40x

Target: TiiCore 1.8 Instruction Set Simulator

Configuration:

[Add launch cenfiguration to the project

@ < Back Next » Cancel

Select the simulator and click Finish.

Replace the contents of st ack_r oot s. ¢ with the following source:

#ifdef _ CPU

#include _ SFRFILE (_ CPU)
#endi f

#define CORE __nfcr(CORE_I D)

int f1(int n)

{
return n * 7 + 29;
}
void mai n_tcO(void)
{
i nt arr[28];
i nt i;
arr[0] = 8;

for (i =1; i < 28; ++i)
{
arr[i+1] = fl(arr[i]);

Using the Linker

273

TASKING SmartCode - TriCore User Guide

}
}
int f2(int n)
{ return n * 5 + 83;
}
void nmain_tcl(void)
{ i nt arr[78];
int i;
arr[0] = 194;
for (i =1; i < 78; ++i)
{ arr[i+1] = f2(arr[i]);
} }
int f3(int n)
{ return n * 5 + 83;
}
voi d nmain_tc2(void)
{ i nt arr[23];
int i;
arr[0] = 14;
for (i =1; i < 23; ++i)
i arr[i+1] = f3(arr[i]);
}

int main(int argc, char ** argv)
{
swi tch (CORE)
{
case O:
mai n_tcO();
br eak;
case 1:
main_tcl();
br eak;
case 2:

274

10.

11.

Using the Linker

main_tc2();
br eak;

}

return O;

Open file st ack_r oot s. | sI and add the following two lines at the beginning of the file
#define _ USTACK1_ENTRY_PO NTS "main_tcl"

#define _ USTACK2_ ENTRY_PO NTS "main_tc2"

From the Project menu, select Properties for stack_roots, select C/C++ Build » Startup

Configuration, and in the core tc0 tab enable Start TC1 and Start TC2. and click Apply and Close.

This will start the other cores from the main core 0.

Build the project

» From the Project menu, select Rebuild stack_roots.

This creates files in the Debug folder of your project.

Examine the stack size estimation in the linker map file

1.

2.

From the Debug folder in your project, double-click on st ack_r oot s. mapxm to open the map file.

From the Select table list, select Used Resources: Estimated stack usage. You will see results
similar to this.

[E] stack_roots.mapxml &2 = 8

Select table: |Used Resources: Estimated stack usage ~ | |] [

Stack Mame Used Recursive Entry points
ustack_tcD O OOO000TD no _START
istack_tcl w0 no

ustack_tcl O DOOD0138 no main_tcl
istack_tcl w0 no

ustack_tc2 O OOO000GD no main_tc2
istack_tc2 w0 no

As you can see, apart from the default ust ack_t cO and i st ack_t cO, there are now also stack
estimations for the stacks ust ack_t c1 and ust ack_t c2. These entry points are now also visible
in the call graph as root functions.

275

TASKING SmartCode - TriCore User Guide

The Used column contains an estimation of the stack usage. The linker calculates the required stack
size by using information (. CALLS directives) generated by the compiler. If for example recursion is
detected, the calculated stack size is inaccurate; therefore this is an estimation only. The calculated
stack size is supposed to be smaller than the actual allocated stack size. If that is not the case, then
a warning is given.

The Entry Points column contains a list of entry points used for estimation of the stack usage.

7.10. Linker Labels

The linker creates labels that you can use to refer to from within the application software. Some of these
labels are real labels at the beginning or the end of a section. Other labels have a second function, these
labels are used to address generated data in the locating phase. The data is only generated if the label
is used.

Linker labels are labels starting with _| c¢_. The linker assigns addresses to the following labels when
they are referenced:

Label Description

_lc_ub_nane Begin of section name. Also used to mark the lowest address of the stack or
heap or copy table.

_lc_b_nane

_lc_ue_nane End of section name. Also used to mark the highest address of the stack or
heap. It points to the section address + section size, in other words the first

_lc_e_nanme MAU behind the section.

_lc_cb_nane Start address of an overlay section in ROM.

_lc_ce_nane End address of an overlay section in ROM.

_lc_gb_nanme Begin of group name. This label appears in the output file even if no reference
to the label exists in the input file.

_lc_ge_nane End of group name. It points to the first MAU behind the last section in the
group. This label appears in the output file even if no reference to the label
exists in the input file.

_lc_s_nane Variable name is mapped through memory in shared memory situations.

_lc_t_core_nane Variable or linker label name in the specified core is mapped to the address
space of the referred section. This way you can refer to a variable or linker
label on a specific core on the same processor.

The linker only allocates space for the stack and/or heap when a reference to either of the section labels
exists in one of the input object files.

Additionally, the linker script file defines the following symbols:

Symbol Description

_lc_cp Start of copy table. Same as _| ¢_ub_t abl e.The copy table gives the source
and destination addresses of sections to be copied. This table will be generated
by the linker only if this label is used.

276

Using the Linker

Symbol Description
_lc_bh Begin of heap. Same as _| ¢c_ub_heap.
_lc_eh End of heap. Same as _| c_ue_heap.

If you want to use linker labels in your C source for sections that have a dot (.) in the name, you
have to replace all dots by underscores.

Example: refer to a label with section name with dots from C
Suppose the C source file f 00. ¢ contains the following:

int myfunc(int a)
{

/* sonme source |ines */
return 1;

}

This results in a section with the name . t ext . f 0oo. nyf unc.
In the following source file mai n. c all dots of the section name are replaced by underscores:

#i ncl ude <stdio. h>
extern char _lc_ub__text_foo_mnmyfunc[];

voi d mai n(voi d)
{
printf("The function nyfunc is |ocated at %)\n",
_lc_ub__text_foo_nyfunc);

}
Example: refer to an MCS variable or linker label from TriCore C source

From within the TriCore source you can access MCS variables. The same symbol name can be defined
in different MCS cores. To uniquely select a variable from a core, you prefix the variable name with

_l c_t_core_.When the linker sees the _| c_t _, it removes the linker label prefix, and the core name
prefix. The remainder is a symbol name, that has to be found inside the core.

For example, when a symbol count is defined in assembly sources of two different MCS cores, you can
access them from a TriCore C source file as follows:

extern int _lc_ t ncs00 _count; /* variable count in ncs00 */
extern int _lc t ncs0l count; /* variable count in ncsOl */

void mai n(int argc, char **argv)
{
_lc_t_ncs00_count
_lc_t_ncs01_count

0;
1

277

TASKING SmartCode - TriCore User Guide
Note that you can also refer to MCS linker labels from the TriCore C source. For example, to refer to the
beginning of a group with the name My_MCS_CODE, you can use:

/* linker label _lc_gb_MY_MCS CODE in nts00 */
extern char _lc_t_ncs00__|c_gh_MY_MCS_CODE[];

Example: refer to the stack

Suppose in an LSL file a stack section is defined with the name "ust ack" (with the keyword st ack). You
can refer to the begin and end of the stack from your C source as follows:

#i ncl ude <stdio. h>

extern char _Ic_ub_ustack[];
extern char _Ic_ue_ustack[];
voi d mai n()

{
printf("Size of stack is %\n",

_lc_ue_ustack - _|Ic_ub_ustack);
}
From assembly you can refer to the end of the stack with:
.extern _|lc_ue_ustack ; end of user stack

See Section 1.11.1, Calling Convention and section 2.2.2 Stack Frame Management in the TriCore EABI
for more information about the stack.

7.11. Generating a Map File

The map file is an additional output file that contains information about the location of sections and symbols.
You can customize the type of information that should be included in the map file.

When the linker works on more than one task, a map file can be created for each of the tasks. There is
also an option to create one global map file that includes information for all tasks involved. Use linker
option --global-map-file to generate the global map file. This map file format is very similar to that of the
map file for a single task.

To generate a map file

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Map File.

4. Enable the option Generate XML map file format (.mapxml) for map file viewer.

278

Using the Linker

5. (Optional) Enable the option Generate map file (.map).

6. (Optional) Enable the options to include that information in the map file.

Example on the command line

The following command generates the map file t est . map:
Itc --map-file test.o

With this command the map file t est . nap is created.

See Section 15.2, Linker Map File Format for an explanation of the format of the map file.

7.12. Linker Error Messages

The linker reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the linker immediately aborts the link/locate process.

E (Errors)

Errors are reported, but the linker continues linking and locating. No output files are produced unless you
have set the linker option --keep-output-files.

W (Warnings)

Warning messages do not result into an erroneous output file. They are meant to draw your attention to
assumptions of the linker for a situation which may not be correct. You can control warnings in the C/C++
Build » Settings » Tool Settings » Linker » Diagnostics page of the Project » Properties for menu
(linker option --no-warnings).

I (Information)

Verbose information messages do not indicate an error but tell something about a process or the state
of the linker. To see verbose information, use the linker option --verbose.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

S6##. nessage

please report the error number and as many details as possible about the context in which the error
occurred.

279

TASKING SmartCode - TriCore User Guide

Display detailed information on diagnostics
1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.
2. In the Problems view right-click on a message.
A popup menu appears.
3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.
On the command line you can use the linker option --diag to see an explanation of a diagnostic message:

Itc --diag=[format:]{all | nunber,...]

280

Chapter 8. Using the Utilities

The TASKING toolset for TriCore comes with a number of utilities:

ccte A control program. The control program invokes all tools in the toolset and lets you quickly
generate an absolute object file from C and/or assembly source input files. Eclipse uses
the control program to call the compiler, assembler and linker.

amk A make utility to maintain, update, and reconstruct groups of programs. The make utility
looks whether files are out of date, rebuilds them and determines which other files as a
consequence also need to be rebuilt. It supports parallelism which utilizes the multiple
cores found on modern host hardware.

mktc A make utility for backwards compatibility with older versions of the toolset. Not
recommended for new projects.

eclipsec The Eclipse console utility. You can use it to perform a headless build or generate makefiles
from the command line without starting the IDE.

artc An archiver. With this utility you create and maintain library files with relocatable object
modules (. 0) generated by the assembler.

hldumptc A high level language (HLL) object dumper. With this utility you can dump information about
an absolute object file (. el f). Key features are a disassembler with HLL source intermixing
and HLL symbol display and a HLL symbol listing of static and global symbols.

elfpatch A utility to change one or more section names, modify data references and/or ELF symbol
names within a relocatable ELF object file (. 0), relocatable linker object file (. out) or
library (. a).

elfstrip A utility to strip debug sections and/or note sections from an absolute ELF file (. el f) ora
relocatable ELF object file (. 0).

expiretc A utility to limit the size of the cache by removing all files older than a few days or by
removing older files until the total size of the cache is smaller than a specified size.

proftool A utility used by the TASKING Profiler perspective in Eclipse to display profiling information.

8.1. Control Program

The control program is a tool that invokes all tools in the toolset for you. It provides a quick and easy way
to generate the final absolute object file out of your C/C++ sources without the need to invoke the compiler,
assembler and linker manually.

Eclipse uses the control program to call the C++ compiler, C compiler, assembler and linker, but you can
call the control program from the command line. The invocation syntax is:

cctc [[option]... [file]... ...

Recognized input files

* Fileswitha . C,. cc, . cxx or. cpp suffix are interpreted as C++ source programs and are passed to
the C++ compiler.

281

TASKING SmartCode - TriCore User Guide

» Files with a . ¢ suffix are interpreted as C source programs and are passed to the compiler.

 Files with a . asmsuffix are interpreted as hand-written assembly source files which have to be passed
to the assembler.

» Files with a . sr c suffix are interpreted as compiled assembly source files. They are directly passed to
the assembler.

» Files with a . a suffix are interpreted as library files and are passed to the linker.
» Files with a . o suffix are interpreted as object files and are passed to the linker.

» Files with a . out suffix are interpreted as linked object files and are passed to the locating phase of
the linker. The linker accepts only one . out file in the invocation.

» Files with a . | sl suffix are interpreted as linker script files and are passed to the linker.

Options

The control program accepts several command line options. If you specify an unknown option to the
control program, the control program looks if it is an option for a specific tool. If so, it passes the option
directly to the tool. However, it is recommended to use the control program options --pass-* (-Wcp, -Wc,
-Wa, -WI) to pass arguments directly to tools.

For a complete list and description of all control program options, see Section 10.6, Control Program
Options.

Example with verbose output
cctc --verbose test.c

The control program calls all tools in the toolset and generates the absolute object file t est . el f . With
option --verbose (-v) you can see how the control program calls the tools:

+ "path\ctc" -0 cc3248a.src test.c

+ "path\astc" -0 cc3248b.0 cc3248a.src

+ "path\ltc" -o test.elf -dextmem|sl -ddefault.lsl --map-file
cc3248b.o "-Lpath\lib\tcl" -lc -Ifp -Irt

The control program produces unique filenames for intermediate steps in the compilation process (such
as cc3248a. src and cc3248b. o in the example above) which are removed afterwards, unless you
specify command line option --keep-temporary-files (-t).

Example with argument passing to a tool
cctc --pass-c=-Cc test.c

The option -Oc is directly passed to the compiler.

282

Using the Utilities

8.2. Make Utility amk

amk is a make utility that you can use to maintain, update, and reconstruct groups of programs. amk
features parallelism which utilizes the multiple cores found on modern host hardware, hardening for path
names with embedded white space and it has an (internal) interface to provide progress information for
updating a progress bar. It does not use an external command shell (/ bi n/ sh, cnd. exe) but executes
commands directly.

The primary purpose of any make utility is to speed up the edit-build-test cycle. To avoid having to build
everything from scratch even when only one source file changes, it is necessary to describe dependencies
between source files and output files and the commands needed for updating the output files. This is
done in a so called "makefile”.

8.2.1. Makefile Rules

A makefile dependency rule is a single line of the form:
[target ...] : [prerequisite ...]

where target and prerequisite are path names to files. Example:
test.o : test.c

This states that target t est . o depends on prerequisite t est . ¢. So, whenever the latter is modified the
first must be updated. Dependencies accumulate: prerequisites and targets can be mentioned in multiple
dependency rules (circular dependencies are not allowed however). The command(s) for updating a
target when any of its prerequisites have been modified must be specified with leading white space after
any of the dependency rule(s) for the target in question. Example:

test.o :
cctc test.c # | eadi ng white space

Command rules may contain dependencies too. Combining the above for example yields:

test.o : test.c
cctc test.c

White space around the colon is not required. When a path name contains special characters such as
"', '#' (start of comment), '=" (macro assignment) or any white space, then the path name must be enclosed
in single or double quotes. Quoted strings can contain anything except the quote character itself and a
newline. Two strings without white space in between are interpreted as one, so it is possible to embed
single and double quotes themselves by switching the quote character.

When a target does not exist, its modification time is assumed to be very old. So, amk will try to make it.
When a prerequisite does not exist possibly after having tried to make it, it is assumed to be very new.
So, the update commands for the current target will be executed in that case. amk will only try to make
targets which are specified on the command line. The default target is the first target in the makefile which
does not start with a dot.

283

TASKING SmartCode - TriCore User Guide

Static pattern rules

Static pattern rules are rules which specify multiple targets and construct the prerequisite names for each
target based on the target name.

[target ...] : target-pattern : [prerequisite-patterns ...]

The target specifies the targets the rules applies to. The target-pattern and prerequisite-patterns specify
how to compute the prerequisites of each target. Each target is matched against the target-pattern to
extract a part of the target name, called the stem. This stem is substituted into each of the
prerequisite-patterns to make the prerequisite names (one from each prerequisite-pattern).

Each pattern normally contains the character '%' just once. When the target-pattern matches a target,
the '%' can match any part of the target name; this part is called the stem. The rest of the pattern must
match exactly. For example, the target f 00. 0 matches the pattern '% o', with 'f 00" as the stem. The
targets f 00. ¢ and f 0o. el f do not match that pattern.

The prerequisite names for each target are made by substituting the stem for the '%' in each prerequisite
pattern.

Example:

objects =test.o filter.o

all: $(objects)

$(objects): %o %c
cctc -c $< -0 $@

echo the stemis $*

Here '$<' is the automatic variable that holds the name of the prerequisite, '$@is the automatic variable
that holds the name of the target and '$*' is the stem that matches the pattern. Internally this translates
to the following two rules:

test.o: test.c
cctc -c test.c -o test.o
echo the stemis test

filter.o: filter.c
cctc -c filter.c -o filter.o
echo the stemis filter

Each target specified must match the target pattern; a warning is issued for each target that does not.

Special targets

There are a number of special targets. Their names begin with a period.

Target Description

. DONE When the make utility has finished building the specified targets, it continues with
the rules following this target.

284

Using the Utilities

Target Description
ANT The rules following this target are executed before any other targets are built.
. PHONY The prerequisites of this target are considered to be phony targets. A phony target

is a target that is not really the name of a file. The rules following a phony target are
executed unconditionally, regardless of whether a file with that name exists or what
its last-modification time is.

For example:

. PHONY: cl ean

cl ean:
rm*.o

With ank cl ean, the command is executed regardless of whether there is a file
named cl ean.

8.2.2. Makefile Directives

Directives inside makefiles are executed while reading the makefile. When a line starts with the word

"i ncl ude" or "-i ncl ude" then the remaining arguments on that line are considered filenames whose
contents are to be inserted at the current line. "- i ncl ude" will silently skip files which are not present.
You can include several files. Include files may be nested.

Example:
i ncl ude nakefil e2 nakefile3

White spaces (tabs or spaces) in front of the directive are allowed.

8.2.3. Macro Definitions

A macro is a symbol hame that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lowercase or uppercase characters, uppercase is an accepted convention.
When a line does not start with white space and contains the assignment operator '=', ":=' or '+=' then the
line is interpreted as a macro definition. White space around the assignment operator and white space
at the end of the line is discarded. Single character macro evaluation happens by prefixing the name with
'$". To evaluate macros with names longer than one character put the name between parentheses '()' or
curly braces '{}'. Macro names may contain anything, even white space or other macro evaluations.
Example:

DI NNER = $(FOOD) and $(BEVERAGE)
FOOD = pi zza

BEVERAGE = sparkling water

FOOD += with cheese

With the += operator you can add a string to an existing macro. An extra space is inserted before the
added string automatically.

285

TASKING SmartCode - TriCore User Guide

Macros are evaluated recursively. Whenever $(DI NNER) or ${ DI NNER} is mentioned after the above,

it will be replaced by the text "pi zza wi th cheese and sparkling wat er". The left hand side in

a macro definition is evaluated before the definition takes place. Right hand side evaluation depends on
the assignment operator:

= Evaluate the macro at the moment it is used.
1= Evaluate the replacement text before defining the macro.

Subsequent '+=' assignments will inherit the evaluation behavior from the previous assignment. If there
is none, then '+='is the same as '=". The default value for any macro is taken from the environment. Macro
definitions inside the makefile overrule environment variables. Macro definitions on the amk command
line will be evaluated first and overrule definitions inside the makefile.

Predefined macros

Macro Description

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent
a single "$".

@ The name of the current target. When a rule has multiple targets, then it is the name

of the target that caused the rule commands to be run.

* The basename (or stem) of the current target. The stem is either provided via a static
pattern rule or is calculated by removing all characters found after and including the
last dot in the current target name. If the target name is 't est . ¢' then the stem is

't est ' (if the target was not created via a static pattern rule).

< The name of the first prerequisite.

MAKE The amk path name (quoted if necessary). Optionally followed by the options -n and
-S.

ORIG N The name of the directory where amk is installed (quoted if necessary).

SUBDI R The argument of option -G. If you have nested makes with -G options, the paths are

combined. This macro is defined in the environment (i.e. default macro value).

The @, * and < macros may be suffixed by 'D' to specify the directory component or by 'F' to specify the
filename component. $(@) evaluates to the directory name holding the file$(@) . $(@) / $(@) is
equivalent to $@ Note that on MS-Windows most programs accept forward slashes, even for UNC path
names.

The result of the predefined macros @, * and < and 'D' and 'F' variants is not quoted, so it may be necessary
to put quotes around it.

Note that stem calculation can cause unexpected values. For example:

$@ $*

/hone/ . wi ne/test / hone/

/ hone/test/. project [hone/ test/
/.. lfile /.

286

Using the Utilities

Macro string substitution
When the macro name in an evaluation is followed by a colon and equal sign as in
$(MACRQO stringl=string2)

then amk will replace stringl at the end of every word in $(MACRO) by string2 during evaluation. When
$(MACRO) contains quoted path names, the quote character must be mentioned in both the original string
and the replacement stringl. For example:

$(MACRO. . 0" =. d")

8.2.4. Makefile Functions
A function not only expands but also performs a certain operation. The following functions are available:

$(filter pattern ...,item ...)

Thefil t er function filters a list of items using a pattern. It returns items that do match any of the pattern
words, removing any items that do not match. The patterns are written using '%,

${filter %c %h, test.c test.h test.o readne.txt .project output.c}
results in:

test.c test.h output.c

$(filter-out pattern ...,item ...)

The fil ter-out function returns all items that do not match any of the pattern words, removing the
items that do match one or more. This is the exact opposite of the fi | t er function.

${filter-out %c %h, test.c test.h test.o readne.txt .project output.c}
results in:

test.o readne.txt .project

$(foreach var-name, item ..., action)

The f or each function runs through a list of items and performs the same action for each item. The
var-name is the name of the macro which gets dynamically filled with an item while iterating through the
item list. In the action you can refer to this macro. For example:

${foreach T, test filter output, ${T}.c ${T}.h}
results in:

test.c test.h filter.c filter.h output.c output.h

1Intemally, amk tokenizes the evaluated text, but performs substitution on the original input text to preserve compatibility here with
existing make implementations and POSIX.

287

TASKING SmartCode - TriCore User Guide

8.2.5. Conditional Processing

Lines containing i f def , i f ndef, el se or endi f are used for conditional processing of the makefile.
They are used in the following way:

i fdef macro-nane

if-l1ines
el se

el se-1ines
endi f

The if-lines and else-lines may contain any number of lines or text of any kind, even otheri f def ,i f ndef,
el se and endi f lines, or no lines at all. The el se line may be omitted, along with the else-lines following
it. White spaces (tabs or spaces) in front of preprocessing directives are allowed.

First the macro-name after the i f def command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an el se line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the i f ndef line instead of i f def , the macro is tested for not being defined. These
conditional lines can be nested to any level.

You can also add tests based on strings. With i f eq the result is true if the two strings match, with i f neq
the result is true if the two strings do not match. They are used in the following way:

i feq(stringl, string2)

if-l1ines
el se

el se-1ines
endi f

8.2.6. Makefile Parsing

amk reads and interprets a makefile in the following order:

1. When the last character on a line is a backslash (\) (i.e. without trailing white space) then that line and
the next line will be concatenated, removing the backslash and newline.

2. The unquoted '#' character indicates start of comment and may be placed anywhere on a line. It will
be removed in this phase.

this conment line is continued\
on the next line
3. Trailing white space is removed.

4. When a line starts with white space and it is not followed by a directive or preprocessing directive, then
it is interpreted as a command for updating a target.

288

Using the Utilities
5. Otherwise, when a line contains the unquoted text '=', '+=' or ":=' operator, then it will be interpreted as
a macro definition.
6. Otherwise, all macros on the line are evaluated before considering the next steps.
7. When the resulting line contains an unquoted ":' the line is interpreted as a dependency rule.

8. When the first token on the line is "i ncl ude" or "-i ncl ude" (which by now must start on the first
column of the line), amk will execute the directive.

9. Otherwise, the line must be empty.

Macros in commands for updating a target are evaluated right before the actual execution takes place
(or would take place when you use the -n option).

8.2.7. Makefile Command Processing

A line with leading white space (tabs or spaces) without a (preprocessing) directive is considered as a
command for updating a target. When you use the option -j or -J, amk will execute the commands for
updating different targets in parallel. In that case standard input will not be available and standard output
and error output will be merged and displayed on standard output only after the commands have finished
for a target.

You can precede a command by one or more of the following characters:

@ Do not show the command. By default, commands are shown prior to their output.
- Continue upon error. This means that amk ignores a non-zero exit code of the command.
+ Execute the command, even when you use option -n (dry run).

Execute the command on the foreground with standard input, standard output and error
output available.

Built-in commands

Command Description

true This command does nothing. Arguments are ignored.

fal se This command does nothing, except failing with exit code 1. Arguments are
ignored.

echo arg... Display a line of text.

exit code Exit with defined code. Depending on the program arguments and/or the extra

rule options '-' this will cause amk to exit with the provided code. Please note
that 'exi t 0" has currently no result.

argfil e file arg... Create an argument file suitable for the --option-file (-f) option of all the other
tools. The first ar gf i | e argument is the name of the file to be created.
Subsequent arguments specify the contents. An existing argument file is not
modified unless necessary. So, the argument file itself can be used to create
a dependency to options of the command for updating a target.

289

TASKING SmartCode - TriCore User Guide

Command Description
r m[option]... file... Remove the specified file(s). The following options are available:
-r, --recursive Remove directories and their contents recursively.
-f, --force Force deletion. Ignore non-existent files, never prompt.
-i, --interactive Interactive. Prompt before every removal.
-v, --verbose Verbose mode. Explain what is being done.
-m file Read options from file..
-?, --help Show usage.

8.2.8. Calling the amk Make Utility

The invocation syntax of amk is:
ank [option]... [target]... [macro=def]...
For example:

ank test.elf

target You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

macro=def Macro definition. This definition remains fixed for the amk invocation. It overrides any
regular definitions for the specified macro within the makefiles and from the
environment. It is not inherited by subordinate amk's

option For a complete list and description of all amk make utility options, see Section 10.8,
Parallel Make Utility Options.

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

290

Using the Utilities

8.3. Make Utility mktc

This make utility is for backwards compatibility with older versions of the toolset. It is not recommended
for new projects. Use amk instead.

If you are working with large quantities of files, or if you need to build several targets, it is rather
time-consuming to call the individual tools to compile, assemble, link and locate all your files.

You save already a lot of typing if you use the control program and define an options file. You can even
create a batch file or script that invokes the control program for each target you want to create. But with
these methods all files are completely compiled, assembled and linked to obtain the target file, even if
you changed just one C source. This may demand a lot of (CPU) time on your host.

The make utility mktc is a tool to maintain, update, and reconstruct groups of programs. The make utility
looks which files are out-of-date and only recreates these files to obtain the updated target.

Make process
In order to build a target, the make utility needs the following input:
« the target it should build, specified as argument on the command line

« the rules to build the target, stored in a file usually called makefi | e

In addition, the make utility also reads the file mkt c. mk which contains predefined rules and
macros. See Section 8.3.2, Writing a Makefile.

The makef i | e contains the relationships among your files (called dependencies) and the commands
that are necessary to create each of the files (called rules). Typically, the absolute object file (. el f) is
updated when one of its dependencies has changed. The absolute file depends on . o files and libraries
that must be linked together. The . o files on their turn depend on . sr ¢ files that must be assembled and
finally, . sr c files depend on the C source files (. ¢) that must be compiled. In the nmakef i | e this looks
like:

test.src : test.c # dependency
ctc test.c #rule
test.o : test.src

astc test.src

test.elf : test.o
Itc test.o -o test.elf --map-file -lc -1fp -Irt

You can use any command that is valid on the command line as a rule in the makefi | e. So, rules are
not restricted to invocation of the toolset.

201

TASKING SmartCode - TriCore User Guide

Example

To build the target t est . el f, call mktc with one of the following lines:

nktc test.elf

nktc -fnymake. nak test.elf

By default the make utility reads the file makef i | e so you do not need to specify it on the command line.
If you want to use another name for the makefile, use the option -f.

If you do not specify a target, mktc uses the first target defined in the makefile. In this example it would
build t est . src instead of t est . el f.

Based on the sample invocation, the make utility now tries to build t est . el f based on the makefile and
performs the following steps:

1.

2.

From the makefile the make utility reads thatt est . el f dependsont est. o.

Ift est . o does not exist or is out-of-date, the make utility first tries to build this file and reads from the
makefile thatt est . 0 depends ontest. src.

. Iftest. src does exist, the make utility now creates t est . o by executing the rule for it: ast ¢

test.src.

. There are no other files necessary to create t est . el f so the make utility now can usetest. oto

createt est. el f by executingtherule:ltc test.o -o test.elf

The make utility has now builtt est . el f butit only used the assembler to update t est . 0 and the linker
tocreatetest. el f.

If you compare this to the control program:

cctc test.c

This invocation has the same effect but now all files are recompiled (assembled, linked and located).

8.3.1. Calling the Make Utility

You can only call the make utility from the command line. The invocation syntax is:

nktc [[option]... [target]... [macro=def]...]

For example:

nktc test.elf

target You can specify any target that is defined in the makefile. A target can also be one

of the intermediate files specified in the makefile.

292

Using the Utilities

macro=def Macro definition. This definition remains fixed for the mktc invocation. It overrides
any regular definitions for the specified macro within the makefiles and from the
environment. It is inherited by subordinate mktc's but act as an environment variable
for these. That is, depending on the -e setting, it may be overridden by a makefile
definition.

option For a complete list and description of all make utility options, see Section 10.7, Make
Utility Options.

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

8.3.2. Writing a Makefile

In addition to the standard makefile makef i | e, the make utility always reads the makefile nkt c. nk
before other inputs. This system makefile contains implicit rules and predefined macros that you can use
in the makefile makefi | e.

With the option -r (Do not read the nkt c. nk file) you can prevent the make utility from reading nkt c. nk.

The default name of the makefile is makef i | e in the current directory. If you want to use another makefile,
use the option -f.

The makefile can contain a mixture of:

- targets and dependencies

* rules

» macro definitions or functions

 conditional processing

* comment lines

* include lines

» export lines

To continue a line on the next line, terminate it with a backslash (\):

this comment line is continued\
on the next line

If a line must end with a backslash, add an empty macro:

this coment |line ends with a backsl ash \ $(EMPTY)
this is a new line

293

TASKING SmartCode - TriCore User Guide

8.3.2.1. Targets and Dependencies

The basis of the makefile is a set of targets, dependencies and rules. A target entry in the makefile has
the following format:

target ... : [dependency ...] [; rule]
[rule]

Target lines must always start at the beginning of a line, leading white spaces (tabs or spaces) are not
allowed. A target line consists of one or more targets, a semicolon and a set of files which are required
to build the target (dependencies). The target itself can be one or more filenames or symbolic names:

all: denp.elf final.elf

denp.elf final.elf: test.o demp.o final.o

You can now can specify the target you want to build to the make utility. The following three invocations
all have the same effect:

nkt c
nktc all
nktc denp.elf final.elf

If you do not specify a target, the first target in the makefile (in this example al |) is built. The target al |
depends on denp. el f and fi nal . el f so the second and third invocation have the same effect and
the files deno. el f and fi nal . el f are built.

You can normally use colons to denote drive letters. The following works as intended:
c:foo.o : a:foo.c

If a target is defined in more than one target line, the dependencies are added to form the target's complete
dependency list:

all: deno.elf # These two |ines are equivalent wth:
all: final.elf # all: deno.elf final.elf

Special targets

There are a number of special targets. Their names begin with a period.

Target Description

. DEFAULT If you call the make utility with a target that has no definition in the makefile, this
target is built.

. DONE When the make utility has finished building the specified targets, it continues with
the rules following this target.

. | GNORE Non-zero error codes returned from commands are ignored. Encountering this in a
makefile is the same as specifying the option -i on the command line.

ANT The rules following this target are executed before any other targets are built.

294

Using the Utilities

Target Description

. PRECI QUS Dependency files mentioned for this target are never removed. Normally, if a
command in a rule returns an error or when the target construction is interrupted,
the make utility removes that target file. You can use the option -p on the command
line to make all targets precious.

. SI LENT Commands are not echoed before executing them. Encountering this in a makefile
is the same as specifying the option -s on the command line.

. SUFFI XES This target specifies a list of file extensions. Instead of building a completely specified
target, you now can build a target that has a certain file extension. Implicit rules to
build files with a number of extensions are included in the system makefile nkt c. nk.

If you specify this target with dependencies, these are added to the existing
. SUFFI XES target in nkt c. k. If you specify this target without dependencies, the
existing list is cleared.

8.3.2.2. Makefile Rules

A line with leading white space (tabs or spaces) is considered as a rule and associated with the most
recently preceding dependency line. A rule is a line with commands that are executed to build the
associated target. A target-dependency line can be followed by one or more rules.

final.src : final.c # target and dependency
nove test.c final.c # rulel
ctc final.c # rul e2

You can precede a rule with one or more of the following characters:

@ does not echo the command line, except if -n is used.

- the make utility ignores the exit code of the command. Normally the make utility stops if a
non-zero exit code is returned. This is the same as specifying the option -i on the command
line or specifying the special . | GNORE target.

+ The make utility uses a shell or Windows command prompt (cnd. exe) to execute the
command. If the '+'is not followed by a shell line, but the command is an MS-DOS command
or if redirection is used (<, |, >), the shell line is passed to cnd. exe anyway.

You can force mktc to execute multiple command lines in one shell environment. This is accomplished
with the token combination ";\'. For example:

cd c:\Tasking\bin ;\
nktc -V

Note that the ';" must always directly be followed by the '\' token. Whitespace is not removed when it is at
the end of the previous command line or when it is in front of the next command line. The use of the ;'
as an operator for a command (like a semicolon ';' separated list with each item on one line) and the '\'
as a layout tool is not supported, unless they are separated with whitespace.

295

TASKING SmartCode - TriCore User Guide

Inline temporary files

The make utility can generate inline temporary files. If a line contains <<LABEL (no whitespaces!) then
all subsequent lines are placed in a temporary file until the line LABEL is encountered. Next, <<LABEL
is replaced by the name of the temporary file. For example:

ltc -0 $@-f <<ECF
$(separate "\n" $(match .o
$(separate "\n" $(match .a
$(LKFLAGS)

$1))
$1))
EOF

The three lines between <<EOF and EOF are written to a temporary file (for example nkce4cOa. t np),
and the rule is rewritten as: 1 tc -0 $@-f nkcedcOa. t np.

Suffix targets

Instead of specifying a specific target, you can also define a general target. A general target specifies the
rules to generate a file with extension . ex1 to a file with extension . ex2. For example:

. SUFFI XES: .C
.C.0
cctc -c $<

Read this as: to build a file with extension . o out of a file with extension . c, call the control program with
-c $<. $< is a predefined macro that is replaced with the name of the current dependency file. The special
target . SUFFI XES: is followed by a list of file extensions of the files that are required to build the target.

Implicit rules

Implicit rules are stored in the system makefile nkt c¢. mk and are intimately tied to the . SUFFI XES special
target. Each dependency that follows the . SUFFI XES target, defines an extension to a filename which
must be used to build another file. The implicit rules then define how to actually build one file from another.
These files share a common basename, but have different extensions.

If the specified target on the command line is not defined in the makefile or has not rules in the makefile,
the make utility looks if there is an implicit rule to build the target.

Example:

LIB = -lc -1fp -Irt # macro

prog.elf: prog.o sub.o
Itc prog.o sub.o $(LIB) -0 prog.elf

pr og. o: prog.c inc.h
ctc prog.c
astc prog.src

sub. o: sub.c inc.h

ctc sub. c
astc sub.src

296

Using the Utilities

This makefile says that pr og. el f depends on two files pr og. o and sub. o, and that they in turn depend
on their corresponding source files (pr og. ¢ and sub. c) along with the common file i nc. h.

The following makefile uses implicit rules (from kt c¢. nk) to perform the same job.

LDFLAGS = -lc -Ifp -Irt # macro used by inplicit rules
prog.el f: prog.o sub.o # inmplicit rule used
prog.o: prog.c inc.h # inmplicit rule used
sub.o: sub.c inc.h # inmplicit rule used

8.3.2.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lowercase or uppercase characters, uppercase is an accepted convention.
The general form of a macro definition is:

MACRO = text
MACRO += and npre text

Spaces around the equal sign are not significant. With the += operator you can add a string to an existing
macro. An extra space is inserted before the added string automatically.

To use a macro, you must access its contents:

$(MACRO # you can read this as
${ MACRC} # the contents of macro MACRO

If the macro name is a single character, the parentheses are optional. Note that the expansion is done
recursively, so the body of a macro may contain other macros. These macros are expanded when the
macro is actually used, not at the point of definition:

FOOD = $(EAT) and $(DRI NK)
EAT = neat and/or vegetables
DRI NK = wat er

export FOOD

The macro FOOD is expanded as neat and/ or veget abl es and wat er atthe momentitis used in
the export line, and the environment variable FOOD is set accordingly.

Predefined macros

Macro Description

MAKE Holds the value mktc. Any line which uses MAKE, temporarily overrides the option -n
(Show commands without executing), just for the duration of the one line. This way
you can test nested calls to MAKE with the option -n.

MAKEFLAGS Holds the set of options provided to mktc (except for the options -f and -d). If this
macro is exported to set the environment variable MAKEFLAGS, the set of options is
processed before any command line options. You can pass this macro explicitly to
nested mktc's, but it is also available to these invocations as an environment variable.

297

TASKING SmartCode - TriCore User Guide

Macro Description

PRODDI R Holds the name of the directory where mktc is installed. You can use this macro to
refer to files belonging to the product, for example a library source file.

DOPRI NT = $(PRODDI R)/ i b/src/_doprint.c
When mktc is installed in the directory c: / Taski ng/ bi n this line expands to:

DOPRI NT = c:/ Tasking/lib/src/_doprint.c

SHELLCMD Holds the default list of commands which are local to the SHELL. If a rule is an
invocation of one of these commands, a SHELL is automatically spawned to handle
it.

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent
a single "$".

Dynamically maintained macros

There are several dynamically maintained macros that are useful as abbreviations within rules. It is best
not to define them explicitly.

Macro Description

$* The basename of the current target.

$< The name of the current dependency file.

$@ The name of the current target.

$? The names of dependents which are younger than the target.
$! The names of all dependents.

The $< and $* macros are normally used for implicit rules. They may be unreliable when used within
explicit target command lines. All macros may be suffixed with F to specify the Filename components
(e.g. ${*F}, ${ @}). Likewise, the macros $*, $< and $@ may be suffixed by D to specify the Directory
component.

The result of the $* macro is always without double quotes ("), regardless of the original target having
double quotes (") around it or not.

The result of using the suffix F (Filename component) or D (Directory component) is also always without
double quotes ("), regardless of the original contents having double quotes () around it or not.

8.3.2.4. Makefile Functions
A function not only expands but also performs a certain operation. Functions syntactically look like macros

but have embedded spaces in the macro name, e.g. '$(match argl arg2 arg3)'. All functions are built-in
and currently these are: mat ch, separ at e, pr ot ect, exi st ,nexi st and addpr ef i x.

298

Using the Utilities

$(match suffix filename ...)

The mat ch function yields all arguments which match a certain suffix:
$(match .o prog.o sub.o nylib.a)

yields:

prog. o sub.o

$(separate separator argument ...)

The separ at e function concatenates its arguments using the first argument as the separator. If the first
argument is enclosed in double quotes then \n' is interpreted as a newline character, \t' is interpreted as
atab, "\ooo0'is interpreted as an octal value (where, 000 is one to three octal digits), and spaces are taken
literally. For example:

$(separate "\n" prog.o sub. o)

results in:

prog. o
sub. o

Function arguments may be macros or functions themselves. So,
$(separate "\n" $(match .o $!))

yields all object files the current target depends on, separated by a newline string.

$(protect argument)

The pr ot ect function adds one level of quoting. This function has one argument which can contain white
space. If the argument contains any white space, single quotes, double quotes, or backslashes, it is
enclosed in double quotes. In addition, any double quote or backslash is escaped with a backslash.

Example:

echo $(protect 1'Il show you the "protect” function)
yields:

echo "I'll show you the \"protect\" function"

$(exist file | directory argument)

The exi st function expands to its second argument if the first argument is an existing file or directory.
Example:

$(exist test.c cctc test.c)

When the file t est . c exists, it yields:

299

TASKING SmartCode - TriCore User Guide

cctc test.c

When the file t est . ¢ does not exist nothing is expanded.

$(nexist file|directory argument)

The nexi st function is the opposite of the exi st function. It expands to its second argument if the first
argument is not an existing file or directory.

Example:

$(nexist test.src cctc test.c)

$(addprefix prefix, argument ...)

The addpr ef i x function adds a prefix to its arguments. It is used in nkt c. nk for invocation of the control
program to pass arguments directly to a tool.

Example:

cctc $(addprefix -W, -gl -Q2) test.c
yields:

cctc -W-gl -W-Q2 test.c

8.3.2.5. Conditional Processing

Lines containing i f def , i f ndef, el se or endi f are used for conditional processing of the makefile.
They are used in the following way:

i fdef macro-nane

if-lines
el se

el se-1ines
endi f

The if-lines and else-lines may contain any number of lines or text of any kind, even otheri f def , i f ndef,
el se and endi f lines, or no lines at all. The el se line may be omitted, along with the else-lines following
it.

First the macro-name after the i f def command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an el se line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the i f ndef line instead of i f def , the macro is tested for not being defined. These
conditional lines can be nested up to 6 levels deep.

You can also add tests based on strings. With i f eq the result is true if the two strings match, with i f neq
the result is true if the two strings do not match. They are used in the following way:

300

Using the Utilities

i feq(stringl, string2)

if-lines
el se

el se-1ines
endi f

8.3.2.6. Comment, Include and Export Lines

Comment lines

Anything after a "#" is considered as a comment, and is ignored. If the "#" is inside a quoted string, it is
not treated as a comment. Completely blank lines are ignored.

test.src : test.c # this is conmment and is
cctc test.c # ignored by the make utility

Include lines

An include line is used to include the text of another makefile (like including a . h file in a C source).
Macros in the name of the included file are expanded before the file is included. You can include several
files. Include files may be nested.

i ncl ude nakefil e2 nakefile3

Export lines

An export line is used to export a macro definition to the environment of any command executed by the
make utility.

GREETING = Hel | 0
export GREETI NG

This example creates the environment variable GREETI NG with the value Hel | 0. The macro is exported
at the moment the export line is read so the macro definition has to precede the export line.

301

TASKING SmartCode - TriCore User Guide

8.4. Eclipse Console Utility

eclipsec is the console executable variant of Eclipse. Unlike the other utilities it is part of Eclipse and
therefore it is present in the ecl i pse sub-directory of the product (installation-path\ ct c\ ecl i pse)
instead of in the bi n directory. You can use it to start Eclipse from a Windows Command Prompt. This
section describes how to use this utility to perform the following actions:

* Build a project from the command line without starting the Eclipse IDE.

» Generate makefiles from the command line without starting the Eclipse IDE.
The general invocation syntax of eclipsec is:
installation-dir\ctc\eclipse\eclipsec [option]...

Note that in this manual we only describe the options that are of interest to perform the desired actions.

8.4.1. Headless Build

The Eclipse workbench (IDE) is referred to as 'head'. Headless build essentially means running builds
from the command line without starting the Eclipse IDE.

To perform a headless build
Use the following invocation syntax in a Windows Command Prompt:

installation-dir\ctc\eclipse\eclipsec -nosplash -data workspace-|ocation
-application comtaski ng. managedbui | der. headl essbui | d
-build {project | all}

Explanation of the options used:

-nosplash Do not generate the Eclipse splash screen on startup.

-data workspace-location The location of your workspace. If you used the default settings
when installing the product, the workspace location is
C: \ User s\ name\ wor kspace_snart code_version (Windows
7 or higher).

-application com t aski ng. managedbui | der . headl essbui | d is the
application to use for a headless build.

-build {project | all} Perform a headless build. When you specify a project name,
Eclipse builds the active configuration of the specified project.
With all, Eclipse builds all active configurations of all projects in
the specified workspace.

For example, to build the active configuration of mypr oj ect , enter:

ecli psec -nosplash -data "C:\Users\nanme\wor kspace_smart code_vx. yrz"
-appl i cation comtaski ng. managedbui | der. headl essbui | d
-build myproj ect

302

Using the Utilities

Output similar to the following appears on the console:

**** Build of configuration Debug for project myproject ****

"C:\\ Program Fi | es\\ TASKI NG \ Smart Code vx.yrz\\ctc\\bin\\ank" -j1 all -a
Conpiling cstart.c

Conpi | i ng myproject.c

Conpi ling sync_on_halt.c

Li nking to nyproject.elf

Ti me consuned: 4438 s
**** End of build ****

8.4.2. Generating Makefiles from the Command Line

You can use eclipsec to generate makefiles for one or more of your projects, without starting the Eclipse
IDE. This can be useful for testing and batch processing.

To generate makefiles on the command line
Use the following invocation syntax in a Windows Command Prompt:

installation-dir\ctc\eclipse\eclipsec -nosplash -data workspace-location
-application comtaski ng. ranagedbui | der. headl essbui | d
-generateMakefile {project[/configuration] | all}

Explanation of the options used:

-nosplash Do not generate the Eclipse splash screen on startup.

-data workspace-location The location of your workspace. If you used the default settings
when installing the product, the workspace location is
C: \ User s\ name\ wor kspace_snart code_version (Windows

7 or higher).
-application com t aski ng. managedbui | der . headl essbui | d is the
application to use for generating makefiles on the command line.
-generateMakefile Generate makefile(s). When you specify a project name, Eclipse
{project[/configuration] | all | .*/.*} generates makefiles for all configurations of the specified project.

When you also specify a configuration, Eclipse generates
makefiles for the specified configuration of the project. With all,
Eclipse generates makefiles for all active configurations of all
projects in the specified workspace. With .*/.* Eclipse generates
makefiles for all configurations of all projects in the specified
workspace.

For example, to generate makefiles for all configurations of nypr oj ect , enter:

ecl i psec -nosplash -data "C:\ Users\nanme\wor kspace_smartcode_vx. yrz"
-application comtaski ng. managedbui | der. headl essbui | d
-gener at eMakefil e myproj ect

303

TASKING SmartCode - TriCore User Guide

Output similar to the following appears on the console:

**** Build Makefile of configuration Debug for project nyproject ****

**** Build Makefile of configuration Release for project myproject ****

The Debug and Rel ease directory of nypr oj ect now contain updated makefiles.

304

Using the Utilities

8.5. Archiver

The archiver artc is a program to build and maintain your own library files. A library file is a file with
extension . a and contains one or more object files (. 0) that may be used by the linker.

The archiver has five main functions:

Deleting an object module from the library

Moving an object module to another position in the library file

» Replacing an object module in the library or add a new object module
» Showing a table of contents of the library file

» Extracting an object module from the library

The archiver takes the following files for input and output:

relocatable object library
.a

relocatable object file N

[s]
linker

The linker optionally includes object modules from a library if that module resolves an external symbol
definition in one of the modules that are read before.

archiver

relocatable object library
.a

8.5.1. Calling the Archiver

You can create a library in Eclipse, which calls the archiver or you can call the archiver on the command
line.

To create a library in Eclipse

Instead of creating a TriCore absolute ELF file, you can choose to create a library. You do this when you
create a new project with the New C/C++ Project wizard.

1. From the File menu, select New » TASKING TriCore C/C++ Project.
The New C/C++ Project wizard appears.
2. Enter a project name.
3. Inthe Project type box, select TASKING TriCore Library and click Next >.

4. Follow the rest of the wizard and click Finish.

305

TASKING SmartCode - TriCore User Guide

5. Add the files to your project.

6. Build the project as usual. For example, select Project » Build Project (),

Eclipse builds the library. Instead of calling the linker, Eclipse now calls the archiver.

Command line invocation

You can call the archiver from the command line. The invocation syntax is:

artc key_option [sub_option...] library [object file]

key_option With a key option you specify the main task which the archiver should perform. You

must always specify a key option.

sub_option Sub-options specify into more detail how the archiver should perform the task that is
specified with the key option. It is not obligatory to specify sub-options.

library The name of the library file on which the archiver performs the specified action. You
must always specify a library name, except for the options -? and -V. When the library
is not in the current directory, specify the complete path (either absolute or relative) to
the library.

object_file The name of an object file. You must always specify an object file name when you
add, extract, replace or remove an object file from the library.

Options of the archiver utility

The following archiver options are available:

Description Option Sub-option
Main functions (key options)

Replace or add an object module -r -a-b-c-n-u-v
Extract an object module from the library -X -0 -v
Delete object module from library -d -v

Move object module to another position -m -a-b-v
Print a table of contents of the library -t -s0-s1
Print object module to standard output -p

Sub-options

Append or move new modules after existing module name -a name

Append or move new modules before existing module name -b name

Suppress the message that is displayed when a new library is -C

created

Create a new library from scratch -n

Preserve last-modified date from the library -0

Print symbols in library modules -s{0|1}

306

Using the Utilities

Description Option Sub-option
Replace only newer modules -u
Verbose -v

Miscellaneous

Display options -?
Display description of one or more diagnostic messages --diag
Display version header -V
Read options from file -f file
Suppress warnings above level n -wn

For a complete list and description of all archiver options, see Section 10.9, Archiver Options.
8.5.2. Archiver Examples

Create a new library

If you add modules to a library that does not yet exist, the library is created. To create a new library with
the name nyl i b. a and add the object modules cstart. o and cal c. o toit:

artc -r nylib.a cstart.o calc.o

Add a new module to an existing library

If you add a new module to an existing library, the module is added at the end of the module. (If the
module already exists in the library, it is replaced.)

artc -r nylib.a nod3.0

Print a list of object modules in the library
To inspect the contents of the library:

artc -t nylib.a

The library has the following contents:

cstart.o

calc.o
nod3. o

Move an object module to another position
To move nod3. o to the beginning of the library, position it just before cstart . o:

artc -nb cstart.o nylib.a nod3.o

307

TASKING SmartCode - TriCore User Guide

Delete an object module from the library

To delete the object module cst ar t . o from the library nyl i b. a:
artc -d nylib.a cstart.o

Extract all modules from the library

Extract all modules from the library nmyl i b. a:

artc -x nylib.a

308

Using the Utilities

8.6. HLL Object Dumper

The high level language (HLL) dumper hidumptc is a program to dump information about an absolute
object file (. el f). Key features are a disassembler with HLL source intermixing and HLL symbol display
and a HLL symbol listing of static and global symbols.

8.6.1. Invocation

Command line invocation

You can call the HLL dumper from the command line. The invocation syntax is:
hl dumptc [option]... file...

The input file must be an ELF file with or without DWARF debug info (. el f).

The HLL dumper can process multiple input files. Files and options can be intermixed on the command
line. Options apply to all supplied files. If multiple files are supplied, the disassembly of each file is preceded
by a header to indicate which file is dumped. For example:

========== fj|le.elf ==========

For a complete list and description of all options, see Section 10.10, HLL Object Dumper Options. With
hl dunpt ¢ - - hel p you will see the options on st dout .

8.6.2. HLL Dump Output Format

The HLL dumper produces output in text format by default, but you can also specify the XML output format
with option --output-type=xml. The XML output is mainly for use in the Eclipse editor. Alternatively, you
can use option --adx-format to produce output in the ADX address list format. For more information about
this format, see ADX Specification - Address List Format for A2L Address Calculation - Compiler vendors,
Version 1.10, 2015-04-27.

The output is printed on st dout , unless you specify an output file with --output=filename.
The parts of the output are dumped in the following order:

1. Module list

2. Section list

3. Call graph using the DWARF debug info

4. Section dump (disassembly)

5. HLL symbol table

6. Assembly level symbol table

7. Note sections

8. Debug control flow section

309

TASKING SmartCode - TriCore User Guide

With the option --dump-format=flag you can control which parts are shown. By default, all parts are
shown, except for parts 3 and 8.

Example

Suppose we have a simple "Hello World" program in a file called hel | 0. c. We call the control program
as follows:

cctc -g -t --control-flowinfo hello.c

Option -g tells to include DWARF debug information. Option -t tells to keep the intermediate files. Option
--control-flow-info adds control flow information to the output file. This command results (among other
files) in the file hel | 0. el f (the absolute object file).

We can dump information about the ELF file with the following command:

hl dumptc -F3 hello.elf

Option -F3 enables all parts. A possible output could be (just a fraction of the actual output is shown):

---------- Module list ----------

Narme Full path
hello.c hello.c

---------- Section list ----------

Address Si ze Al'ign Type Narme

80000766 20 2 text .text.hello.min
80000008 6 1 rondata .zrodata.hello..1.str
d0000000 4 4 bss .zdata. hello.world
800007a0 11 1 rondata .rodata. hello..2.str

---------- Call graph using the DWARF debug info ----------

+-- 0x80000766 nmin
L-- 0x8000077a printf
L-- 0x8000034e _doprint
L-- 0x8000051c _io_putc

: L-- 0x80000746 fputc
: L-- 0x80000428 _fl sbuf
: L-- 0x80000502 _host_write
i : L-- 0x800002b2 _dbg_trap_tc

310

. sdecl
. sect

0x800003

|
+-- 0x80

|
+-- 0x80

+- -

0x800005

Using the Utilities

0x80000220 _dbg_cacheaw

0x80000220 _dbg_cacheaw

0x80000220 _dbg_cacheaw

0x80000220 _dbg_cacheaw

0x8000000e _dbg_trap
be _fflush
000502 _host_write *

0004e6 _host _I| seek

0x800002b2 _dbg _trap_tc *

02 _host_wite *

+-- 0x8000051c _io_putc *

Section dunp

.byte 77, 6f, 72, 6c, 64, 00

80000766
80000768
8000076¢
8000076e
80000772
80000776

. sdecl
. sect

20
85
f4
91
do
1d

08
df 00 08
af
00 00 48
44 60 e0
00 02 00

mai n

. sdecl
. sect
sub. a
ld. a
st.a
novh. a
| ea

J

'.zrodata. hello..1.str', DATA AT 0x80000008
'.zrodata.hello..1l.str’'

'.text.hello.min',
'.text.hello. min'
sp, #0x8
al5,world
[sp],al5
a4, #0x8000
a4, [a4] 0x7a0

printf

'.rodata. hello..2. str', DATA AT 0x800007a0
'.rodata. hello..2. str'

. byte 48, 65, 6¢, 6¢, 6f, 20, 25, 73, 21, Oa, 00

. sdecl
. sect

wor | d:

. space 4

Addr ess
80000766

HLL synbo

tabl e

Size HLL Type

20 void

'.zdata. hell o.worl d' , DATA AT 0xd0000000
'.zdata. hello.world

wor | d.

CODE AT 0x80000766

Hello %s!..

311

TASKING SmartCode - TriCore User Guide

8000077a 38 int printf(const char * restrict format,
a0000000 4 void _START()

d0000000 4 char * world [hello.c]

d0000004 20 struct _dbg_request [dbhg.c]

d0000018 80 static char stdin_buf[80] [_iob.c]

d0000068 80 static char stdout _buf[80] [_iob.c]

d00000b8 200 struct _iobuf _iob[10] [_iob.c]

---------- Assenbly | evel synmbol table ----------

Address Si ze Type Nane

00000000

00000000 [.zdata. hel | 0. worl d]
00000000 hel l o.src

80000766 20 code main

8000077a code __main_function_end
8000077a 38 code printf

a0000000 4 code _START

do000000 4 data world

---------- .note sections ----------
Section .note, section 62:

00000000 type: TASKI NG COWPI LER NAME
0000000c nane: TASKI NG

00000014 desc: ctc

---------- Debug control flow section ----------
start offset : O
start address: 0x80000766

code size . 20
#entries 00
Module list

This part lists all modules (C/C++ files) found in the object file(s). It lists the filename and the complete

path name at the time the module was built.

Section list

This part lists all sections found in the object file(s).

Address The start address of the section. Hexadecimal, 8 digits, 32-bit.

Size The size (length) of the section in bytes. Decimal, filled up with spaces.

Align The alignment of the section in number of bytes. Decimal, filled up with spaces.
Type The section type.

Name The name of the section. Sections within square brackets [] will be copied during

initialization from ROM to the corresponding section name in RAM.

With option --sections=name[,name]... you can specify a list of sections that should be dumped.

312

Using the Utilities

Call graph

The linker can generate a call graph in the linker map file. However, if you only have an ELF file and you
need to test it, you can use the option --dump-format=+callgraph.You can then step through the call
graph to identify the flow for debugging purposes. Some notes about the call graph:

The call graph starts with the default entry point of the application.
Recursive calls are marked with 'R'.

Inline functions are marked with 'I'.

Indirect function calls are marked with ' INDIRECT_".

A function is analyzed only once. When a function is called again, it is not analyzed again and this is
marked with "*'.

By default the DWARF debug information is used to generate the call graph. When no DWARF
information is available the ELF information is used. Inline functions can only be detected and dumped
when DWARF information is available.

With option --call-graph-elf-mode you can force the call graph to use ELF symbols even when DWARF
information is available. This can be useful when you want to dump information from an assembly
function.

With option --call-graph-root=function you can specify the address or function name where to start
the call graph (default: mai n()).

When you dump the call graph for an AURIX application, by default only the shared functions are
analyzed. When the call graph for the local RAM (CPUOQ,1,2...) are to be dumped then it is required to
specify the option --copy-table too. The dumper uses the copy table information to dump local code.

Section dump

This part contains the disassembly. It consists of the following columns:

address column Contains the address of the instruction or directive that is shown in the disassembly.

If the section is relocatable the section start address is assumed to be 0. The
address is represented in hexadecimal and has a fixed width. The address is
padded with zeros. No Ox prefix is displayed. For example, on a 32-bit architecture,
the address 0x32 is displayed as 00000032.

encoding column Shows the hexadecimal encoding of the instruction (code sections) or it shows the

hexadecimal representation of data (data sections). The encoding column has a
maximum width of eight digits, i.e. it can represent a 32-bit hexadecimal value.
The encoding is padded to the size of the data or instruction. For example, a 16-bit
instruction only shows four hexadecimal digits. The encoding is aligned left and
padded with spaces to fill the eight digits.

label column Displays the label depending on the option --symbols=[hlljasm|none]. The default

is asm, meaning that the low level (ELF) symbols are used. With hll, HLL (DWARF)
symbols are used. With none, no symbols will be included in the disassembly.

313

TASKING SmartCode - TriCore User Guide

disassembly column For code sections the instructions are disassembled. Operands are replaced with
labels, depending on the option --symbols=[hlllasm|none].

The contents of data sections are represented by directives. A new directive will
be generated for each symbol. ELF labels in the section are used to determine
the start of a directive. Sections within square brackets [] will be copied during
initialization from ROM to the corresponding section name in RAM. ROM sections
are represented with. byt e, . hal f, . wor d kind of directives, depending on the
size of the data. RAM sections are represented with . space directives, with a size
operand depending on the data size. This can be either the size specified in the
ELF symbol, or the size up to the next label.

With option --hex, no directives will be generated for ROM data sections and no disassembly dump will
be done for code sections. Instead a hex dump is done with the following format:

AAAAAAAA HO HL H2 H3 H4 H5 H6 H7 H8 H9 HA HB HC HD HE HF RRRRRRRRRRRRRRRR
where,

A = Address (8 digits, 32-bit)

Hx = Hex contents, one byte (16 bytes max)

R = ASCII representation (16 characters max)

For example:

section 7 (.rodata. hello..2.str):
800007a0 48 65 6¢c 6¢c 6f 20 25 73 21 Oa 00 Hello %! ..

With option --hex, RAM sections will be represented with only a start address and a size indicator:

AAAAAAAA Space: 48 bytes
With option --disassembly-intermix you can intermix the disassembly with HLL source code.
HLL symbol table

This part contains a symbol listing based on the HLL (DWARF) symbols found in the object file(s). The
symbols are sorted on address.

Address The start address of the symbol. Hexadecimal, 8 digits, 32-bit.
Size The size of the symbol from the DWARF info in bytes.

HLL Type The HLL symbol type.

Name The name of the HLL symbol.

HLL arrays are indicated by adding the size in square brackets to the symbol name. For example:

doo00018 80 static char stdin_buf[80] [_iob.c]

314

Using the Utilities

With option --expand-symbols=+basic-types HLL struct and union symbols are listed including all fields.
Array members are expanded in one array member per line regardless of the HLL type. For example:

do000018 80 static char stdi n_buf[80] [_iob.c]
do000018 1 char
d0000019 1 char
doo0001a 1 char
d0000067 1 char

HLL struct and union symbols are listed by default without fields. For example:
d0o000004 20 struct _dbg_request [dbg.c]

With option --expand-symbols all struct, union and array fields are included as well. For the fields the
types and names are indented with two spaces. For example:

d0o000004 20 struct _dbg_request [dbg.c]
do000004 4 i nt _errno

d0o000008 1 enum nr

d000000c 12 uni on u

d000000c 4 struct exit

d000000c 4 i nt st at us
d000000c 8 struct open

d000000c 4 const char * pat hnane
do000010 2 unsi gned short int flags

Functions are displayed with the full function prototype. Size is the size of the function. HLL Type is the
return type of the function. For example:

8000077a 38 int printf(const char * restrict format,

The local and static symbols get an identification between square brackets. The filename is printed and
if a function scope is known the function name is printed between the square brackets as well. If multiple
files with the same name exist, the unique part of the path is added. For example:

80004100 4 int count [file.c, somefunc()]
80004104 4 int count [x\a.c]
80004108 4 int count [y\a.c, foo()]

Global symbols do not get information in square brackets.

Assembly level symbol table

This part contains a symbol listing based on the assembly level (ELF) symbols found in the object file(s).
The symbols are sorted on address.

Address The start address of the symbol. Hexadecimal, 8 digits, 32-bit.
Size The size of the symbol from the ELF info in bytes. If this field is empty, the size is
zero.

315

TASKING SmartCode - TriCore User Guide

Type

Name

Code or Data, depending on the section the symbol belongs to. If this field is empty,
the symbol does not belong to a section.

The name of the ELF symbol. Symbol names within square brackets [] are the
names of sections that will be copied during initialization from ROM to the
corresponding section name in RAM.

Debug control flow section

When control flow information is present in the ELF file (control program option --control-flow-info), this
part shows information about the basic blocks and their relation.

start offset
start address
code size
#entries

dest. offset

316

The start seek offset in bytes from the beginning of the section.
The start address of the basic block.
The code size of the basic block.

The number of successor basic blocks. This value can be 0 if there are no
successors.

The destination offset in bytes to the first, second, ... successor from the beginning
of the section.

Using the Utilities

8.7. ELF Patch Utility

With the utility elfpatch you can change one or more section names, modify data references or rename
ELF symbols within a relocatable ELF object file (. 0), relocatable linker object file (. out) or library (. a).
This utility can be useful when you have objects and/or libraries from a third party that have to be adopted
to the local configuration of an application. The input of elfpatch is an ELF patch command file, a data
reference modification file and/or an ELF symbol renaming command file and one library or object file.

The invocation syntax is:

el fpatch --conmand-fil e=commuand-file [option]... ELF-file

or:

el fpatch --data-reference-nodification-file=file [option]... ELF-file
or:

el fpatch --synbol -renanming-file=file [option]... ELF-file

For a complete list and description of all options, see Section 10.11, ELF Patch Utility Options. With
el f patch --hel p you will see the options on st dout . With el f pat ch - - hel p=s you will see the
syntax of the command file, the data reference modification file and the symbol renaming file.

8.7.1. ELF Patch Command File

An ELF patch command file contains one or more commands to rename a section. With r enane_sect i on
commands you can rename sections based on section name(s). Wildcards are allowed. With
rename_secti on_by_synbol commands you can rename a section in which a specified symbol is
defined. No wildcards are allowed. To write comments in an ELF patch command file, you can use the
C++style'/ /"

To rename a section based on section name, use the following syntax:
rename_section("section_fronf, "section_to")

where, secti on_fromand secti on_t o are strings between double-quotes. Allowed characters are:

dot

underscore
.9 digits [0..9]
lowercase characters

> ® O |
N

..Z uppercase characters

*

asterisk, wildcard character, matches one or more characters
Can be used more than once, but the number and order of wildcards must match in both
section_from and section_to.

To rename a section based on symbol name, use the following syntax:

317

TASKING SmartCode - TriCore User Guide

rename_section_by_synbol ("synbol _name", "new_section_nane")

where, synbol _nane and new_sect i on_nanmne are strings between double-quotes. The section(s)
where synmbol _nane occurs in will be renamed to new_sect i on_nane. Allowed characters are the
same as above, except that wildcards (*) are not allowed.

Examples

/!l This is coment

rename_section(".text.one", ".text.two")
/] renanes section .text.one into .text.two

rename_section(".text.*", ".text.two.*")
/'l renanes e.g. section .text.xyz into .text.two. xyz

rename_section("*.sonething", "*.any")
/'l renanes e.g. section .data.sonething into .data.any

rename_section(".text.*.xyz", ".text.*")
/'l renanes e.g. section .text.foo.xyz into .text.foo

rename_section_by _synbol ("main", ".text.progstart")
/1 renanes e.g. section .text.foo.nmuin where synbol nmin
/1 resides into .text.progstart

Restrictions
The following restrictions apply when you use the ELF patch utility to rename sections:

* Renaming static data sections will not work when you use the r ename_sect i on_by_synbol ()
command.

The reason for this is that the variable's name is not in the ELF symbol list (as defined by ELF). To
rename a static data section you must use the r enane_sect i on() command. The term 'global’ is
used across files. A static variable is only ‘global’ in the sense of the file it is defined in and only for the
functions following its definition.

8.7.2. Data Reference Modification File

Modification of references to global variables or functions inside C functions

In an ELF patch data reference modification (DRM) file you can specify a replacement for any access to
a specified global variable or function. This feature can be useful to ensure data consistency by replacing
access to original variables or functions by their copy. Use the following syntax:

function : original _var_or_func = new_var_or_func;
or

* . original _var_or_func = new_var_or_func;

318

Using the Utilities

where, f uncti on is the name of the function where the original variable or function appears in.
ori gi nal _var _or _func is the name of the variable or function in your source. new_var _or _func
is the name of the variable or function to be used in the ELF file.

With the wildcard character * instead of the function name, you specify a replacement with global scope.
The replacement applies to all functions where ori gi nal _var _or _f unc appears in.

Text after '#' is considered comments. Empty lines are allowed.

By default the contents of this file is placed in a section called . Var Ed_I nf o, unless you specify option
--vared-info-section=no-section.

Example C source:

int oldvariable = 12;
int newariable = 13;
int func()

return ol dvari abl e;

int ol dfunction()
return 12;
int newfunction()
return 13;
int f()

return ol df unction();

}
Example commands in DRM file:

This is conmment

func : oldvariable = newari abl e;
replace access to oldvariable by access to newari abl e

f : oldfunction = newfunction;
replace access to oldfunction in function f by access to newf unction

Modification of data references inside C structures

In an ELF patch data reference modification (DRM) file you can also specify a replacement for data
references inside C structures. The data references are pointer initializers referencing global variables
or functions (function pointers). The global variables or functions can have any type. The C structures
can be defined as const . Use the following syntax:

319

TASKING SmartCode - TriCore User Guide

gl obal _struct _variabl e_name : origi nal _nmenber = new_nenber;
or:
* . original _nmenber = new_nenber;

where, gl obal _struct _vari abl e_nane is the name of the global structure where the original pointer
initializer appears in.or i gi nal _nmenber is the name of the pointer initializer in your source. new_nenber
is the name of the pointer initializer to be used in the ELF file.

With the wildcard character * instead of the global structure name, you specify a replacement with global
scope. The replacement applies to all global structures where ori gi nal _nenber appears in.

All references are symbol references. Text after '#' is considered comments. Empty lines are allowed.
Example C source (struct. c):

char First = 1;
char Second = 2;

int ol dfuncti on(voi d)

{
return 12;
}
int newfunction(void)
{
return 13;
}
typedef struct _X
{
char *p;
short s;
i nt (*q) (void);
P X

X exame{ &First, 1, &ol df uncti on};
Example DRM file (st ruct - pat ch. dr m):

This is conment

exam: First = Second;
exam : ol dfuncti on = newfuncti on;

Compile the C file to create an ELF object file:
cctc -c struct.c

This results in the object file st r uct . o.

320

Using the Utilities

Apply the patch:
el fpatch -dstruct-patch.drmstruct.o

Each occurrence of Fi r st in the structure examwill be replaced with Second, and the same for
ol df unct i on with newf unct i on. This implicitly means that all occurrences in complex structures (a
struct inastruct) will be replaced.

Restrictions with data reference modification
The following restrictions apply when you use the ELF patch utility with data reference modification:

* When you want to replace a __f ar variable with, for example, a __near variable, this is not a problem.
The generated code works on any variable, with any (lower) memory qualification.

In general: A variable defined with a memory scope A can be replaced by a variable defined with a
smaller memory scope B.

For example,int _ far X; canbereplacedbyint __near Y; without problem.

* When you want to replace a __near variable with a __f ar variable, this might work. The generated
code only supports variables that are in range.

For example, abs24 should only be replaced by abs24, abs18 or less. It may happen that abs32 will
be linked and then this variable/data is in range of the instructions. If the abs32 variable is out of range
for the instruction, the linker issues an error.

» You cannot replace absolute variables (variables defined with __at ()).

The reason for this is that there is no relocation record for the variable, its address is used directly by
the C compiler.

8.7.3. ELF Symbol Renaming Command File

An ELF symbol renaming command file (SRF) contains one or more commands to rename an ELF symbol.
To rename an ELF symbol, use the following syntax:

ol d_synbol _nane=new_synbol _nane

where, ol d_synbol _nane is the name of an existing ELF symbol in the ELF file that you want to rename
with new_synbol _name. Wildcards (*) are not allowed. Text after '#' is considered comments. Empty
lines are allowed.

Example C source (synbol . c):

volatile int i = 12;

int ol dfunction()

{
}

return i;

321

TASKING SmartCode - TriCore User Guide

int main()

{

}
Example SRF file (synbol - pat ch. srf):

return ol dfunction();

This is conment

ol df uncti on=r enanedsynbol 1
. text.synbol . ol df uncti on=r enamedsynbol 2

Compile the C file to create an ELF object file:
cctc -c synbol.c

This results in the object file synbol . o.

Apply the patch:

el fpatch -dsynbol - patch. srf synbol .o

ELF symbol ol df unct i on will be replaced with r enanedsynbol 1, and ELF symbol
.text.synbol . ol df uncti on will be replaced with r enanedsynbol 2.

322

Using the Utilities

8.8. ELF Strip Utility

With the utility elfstrip you can strip debug sections and group sections and remove note sections from
an absolute ELF file (. el f) or a relocatable ELF object file (. 0). This utility can be useful when you first
created an ELF file with debug information and afterwards you want to reduce the object size and remove
sensitive information from the ELF file.

The invocation syntax is:
elfstrip [option]... ELF-file

Unless specified individually, both options --strip-debug and--strip-notes are enabled by default. When
you do not specify an output filename with option --output-file, the output file will be named after the
input file with the extension . new appended.

For a complete list and description of all options, see Section 10.12, ELF Strip Utility Options. With
el fstrip --hel pyou will see the options on st dout .

8.8.1. Stripping Debug Sections

With option --strip-debug you can strip the debug sections from an ELF file. The following information
will be removed:

» debug sections (all sections starting with . debug_ and . r el a. debug_)
» symbols belonging to the debug sections
 groups that contain less than two sections

The information is stripped from the input ELF file and written to the output ELF file.

Example

To strip the debug information from the absolute ELF file mypr oj ect . el f, enter:
elfstrip --strip-debug nyproject.elf

This creates the file mypr oj ect . el f. new.

You can use the hidumptc utility to inspect the differences.

8.8.2. Removing Note Sections

With option --strip-notes you can remove the note sections (. not e) from an ELF file. Note sections
contain information about the individual tool names, versions and invocations.

The information is removed from the input ELF file and written to the output ELF file.

323

TASKING SmartCode - TriCore User Guide

Example

To remove note sections from the absolute ELF file mypr oj ect . el f and write the information to the
absolute ELF file no_not es. el f, enter:

el fstrip --strip-notes nyproject.elf --output-file=no_notes.elf
This creates the file no_notes. el f.

You can inspect the differences by invoking the hidumptc utility on the ELF files:

hl dunp -FOn nyproject.elf

This will display all note sections in the original ELF file.

hl dunp -FOn no_notes. el f

This will display:

---------- .note sections ----------
No .note sections present

324

Using the Utilities

8.9. Expire Cache Utility

With the utility expiretc you can limit the size of the cache (C compiler option --cache) by removing all
files older than a few days or by removing older files until the total size of the cache is smaller than a
specified size. See also Section 11.6, Compiler Cache.

The invocation syntax is:
expiretc [option]... cache-directory
The compiler cache is present in the directory ct ccache under the specified cache-directory.

For a complete list and description of all options, see Section 10.13, Expire Cache Utility Options. With
expi retc --hel p you will see the options on st dout .

Examples

To remove all files older than seven days, enter:

expiretc --days=7 "installation-dir\nproject\.cache"

To reduce the compiler cache size to 4 MB, enter:

expiretc --negabytes=4 "installation-dir\nproject\.cache"
Older files are removed until the total size of the cache is smaller than 4 MB.
To clear the compiler cache, enter:

expiretc --megabytes=0 "installation-dir\nproject\.cache"

325

TASKING SmartCode - TriCore User Guide

8.10. Proftool Utility

The utility proftool is used internally by the TASKING Profiler perspective of Eclipse to display profiling
information.

The invocation syntax is:

proftool [option]... file

326

Chapter 9. Using the Debugger

This chapter describes the debugger and how you can run and debug a C or C++ application. This chapter
only describes the TASKING specific parts.

9.1. Reading the Eclipse Documentation

Before you start with this chapter, it is recommended to read the Eclipse documentation first. It provides
general information about the debugging process. This chapter guides you through a number of examples
using the TASKING debugger with simulation as target.

You can find the Eclipse documentation as follows:
1. Start Eclipse.
2. From the Help menu, select Help Contents.
The help screen overlays the Eclipse Workbench.
3. Inthe left pane, select C/C++ Development User Guide.
4. Open the Getting Started entry and select Debugging projects.

This Eclipse tutorial provides an overview of the debugging process. Be aware that the Eclipse
example does not use the TASKING tools and TASKING debugger.

9.2. Creating a Customized Debug Configuration

Before you can debug a project, you need a Debug launch configuration. Such a configuration, identified
by a name, contains all information about the debug project: which debugger is used, which project is
used, which binary debug file is used, which perspective is used, ... and so forth.

If you want to debug on a target board, you have to create a custom debug configuration for your target
board, otherwise you have to create a debug launch configuration for the TASKING simulator.

To debug a project, you need at least one opened and active project in your workbench. In this
chapter, it is assumed that the mypr oj ect is opened and active in your workbench.

Create or customize your debug configuration
To create or change a debug configuration follow the steps below.
1. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.

2. Select TASKING C/C++ Debugger and click the New launch configuration button (L7

327

TASKING SmartCode - TriCore User Guide

) to add a new configuration.

Or: In the left pane, select the configuration you want to change, for example, TASKING C/C++
Debugger » myproject.

3. Inthe Name field enter the name of the configuration. By default, this is the name of the project, but
you can give your configuration any name you want to distinguish it from the project name. For
example enter mypr oj ect . si mul at or to identify the simulator debug configuration.

4. Onthe Target tab, select the TriCore 1.8 Instruction Set Simulator or any of the target boards.

The dialog shows several tabs.
Target tab

On the Target tab you can select on which target the application should be debugged. An application
can run on an external evaluation board, or on a simulator using your own PC. On this tab you can also
select the connection settings. The information in this tab is based on the Debug Target Configuration
(DTC) files as explained in Chapter 18, Debug Target Configuration Files.

Debug Configurations o x
Create, manage, and run configurations ,
TASKING C/C+ Debugger E
= 2 X[B T~ | Name: [myproject |
type filter text Target .= Initialization | [£] Project | 69+ Arguments| & Source| [] Miscellaneous
v %5 TASKING C/C++ Debugger ||| Target settings
ct
% myproje (O Show all targets @) Show targets for TCASx
Target: TriCore 1.8 Instruction Set Simulator
Configuration:
Conned tion settings
Connection: | TSIM1 Simulator v
B Field Value Edit.
Revert Appl
Filter matched 2 of 5 items
@ Debug Close

Initialization tab

On the Initialization tab enable one or more of the following options:

328

Using the Debugger

Debug Configurations [m} X
Create, manage, and run configurations g .
TASKING C/Co+ Debugger J
B @ B X[B T~ || Name [myproject]
type filter text Target | §= Initialization ., [F] Project | &9+ Arguments| t, Source [Miscellaneous
~ % TASKING C/Ce+ Debugger Initial download of program
*5 myproject

[Verify download of program
Reset target

Gote main

Break on exit

O Reduce target state polling

[nitialize target board
Flash seftings

Use default flash settings (recommended

Browse...

Restore Defaults

Revert Appl
Filter matched 2 of 5 items

@

« Initial download of program

If enabled, the target application is downloaded onto the target. If disabled, only the debug information
in the file is loaded, which may be useful when the application has already been downloaded (or flashed)
earlier. If downloading fails, the debugger will shut down.

» Verify download of program

If enabled, the debugger verifies whether the code and data has been downloaded successfully. This
takes some extra time but may be useful if the connection to the target is unreliable.

* Reset target

If enabled, the target is immediately reset after downloading has completed. Registers that have the
i nit resource setinthe . dt c file, are reset to their default value. Execution stops at the reset vector
_START() . What kind of target reset takes place depends on the target and the debug instrument.

The type of reset depends on the setting of the gdi 2ntd. reset. cl ass_vect or resource in the
. dt c file. 1 is Power-On Reset (with PORST pin), 2 is System Reset, 4 is Application Reset.

» Goto main
If enabled, only the C startup code is processed when the debugger is launched. The application stops
executing when it reaches the first C instruction in the function mai n() . Usually you enable this option
in combination with the option Reset Target.

* Break on exit

If enabled, the target halts automatically when the exi t () function is called.

* Reduce target state polling

329

TASKING SmartCode - TriCore User Guide

If you have set a breakpoint, the debugger checks the status of the target every number of seconds to
find out if the breakpoint is hit. In this field you can change the polling frequency.

Initialize Target Board

Some target boards contain a power supply chip which needs to be initialized every time after power-on,
before hardware debugging is started. If enabled, the target board is initialized automatically before
the start of a debug session. If disabled and the watchdog on the target board has not been disabled
already, you need to initialize the target board manually via the Devices view. See Section 9.5.13,
Devices View.

Initialization tab: Flash settings

Use default flash settings (recommended)

By default, the flash settings are derived from the . dt c file for the chosen target processor. So, when
you change processors the flash settings change automatically. If you do not want that, you can specify
your own flash settings. You can click Restore Defaults to restore the default flash settings.

Monitor file

Filename of the monitor, usually an Intel Hex or S-Record file.
Sector buffer size

Specifies the buffer size for buffering a flash sector.
Workspace address

The address of the workspace of the flash programming monitor.

Project tab

On the Project tab, you can set the properties for the debug configuration such as a name for the project
and the application binary file(s) which are used when you choose this configuration.

330

Debug Configurations

TASKING C/C++ Debugger

Create, manage, and run configurations

5 2 X[B T - | Name [myprajeat
type filter text Target | = Initialization | 5] Project . 69+ Arguments| 1, Source [0 Miscellaneous
v 5 TASKING C/Co+ Debugger || o o o
*5 myproject
myproject Browse...
Binary files
File Offset Add...
S{build_confighmyproject.elf
Edit.
Remove
up
Down
The start address will be taken from the first file that defines one
Revert Appl
Filter matched 2 of 5 items
@

Using the Debugger

* In the Project field, you can choose the project for which you want to make a debug configuration.
Because the project mypr oj ect is the active project, this project is filled in automatically. Click the
Browse... button to select a different project. Only the opened projects in your workbench are listed.

* Inthe Binary files group box, you can choose one or more binary files to debug. The file

nmypr oj ect . el f is automatically selected from the active project.

The order of the binary files matters. Use the Up and Down buttons to change the order. If there are
multiple files, the application start address is taken from the first file that defines one. An ELF file always

defines one, whereas Hex files may not.

Note that conflicts between symbols could arise, for example when you download two ELF files that
both contain the function mai n() . When you download multiple files, we recommend that the first
binary file is an ELF file that contains the startup code and nai n() and that the other files are auxiliary

Hex files.
To add a binary file
1. Click Add... to add a binary file.

The Add Binary File dialog appears.

331

TASKING SmartCode - TriCore User Guide

Add Binary File X

(1) Specify a binary file and optionally an offset

File:

| S{build_confighmyproject.elf Search... | | Browse...

Offset:

Affects only code and data, not debug information

2. Specify the binary file, use the Search... button to select one from the active project, or use the
Browse... button to search the file system.

3. Optionally, specify an address offset. The value will be added to all target addresses in the binary
file.

Note that the address offset will be applied only to code, data and the start address, not to debug
information. Specifying a non-zero offset is not recommended for an ELF/DWARF file. If the offset
causes an address to underflow or overflow an error occurs.

Arguments tab

If your application's mai n() function takes arguments, you can pass them in this tab. Arguments are
conventionally passed in the ar gv[] array. Because this array is allocated in target memory, make sure
you have allocated sufficient memory space for it.

» Inthe C/C++ perspective select Project » Properties for to open the Properties dialog. Expand C/C++
Build » Startup Configuration. Enable the option Enable passing argc/argv to main() and specify
a Buffer size for argv.

332

Using the Debugger

Debug Configurations

Create, manage, and run configurations
TASKING C/Co+ Debugger

CEeRX| B Y-~ Name: | myproject J
type filter text Target [i= Initialization |] Project [69- Arguments .t Source| [F] Miscellancous|
v R TASKING C/Ces Debugger ||| cye oo oo e
*5 myproject
argl arg2
arg3 argd
Variables..
Working directory
Use default working directory
Stworkspace_loc:myproject}
Workspace. File System.. Variables.
Revert Appl
Filter matched 2 of 5 items i

@

Source tab

On the Source tab, you can add additional source code locations in which the debugger should search
for debug data.

Debug Configurations o x
Create, manage, and run configurations
TASKING C/C++ Debugger
CB®EXIE T~ | Nome [myprojet |
type filter text Target [i= Initialization |] Project - Arguments ./ Source . [[] Miscellaneous
« %5 TASKING C/C++ Debugger ||| Source Lookup Path
s > 1 Defautt Add...
Edit...
Remove
Up
Down
Restore Default
[search for duplicate source files on the path
Revert Appl
Filter matched 2 of 5 items == Ld
@

» Usually, the default source code location is correct.
Miscellaneous tab

On the Miscellaneous tab you can specify several file locations.

333

TASKING SmartCode - TriCore User Guide

Debug Configurations [m] X
Create, manage, and run configurations :
TASKING C/C++ Debugger J
8 S X[BV - | Name [myprojec J
type filter text Trget | i= Initialization | [5] Project |- Arguments | Source [Miscellaneous.
v s TASKING C/Ce+ Debugger ||| o g0 location: [c\Program Files\ TASKINGt SmartCode wx.yrz\eclipse\plugins| | Browse. .
%5 myproject
FSS root directory: | S{project_loc/\Sfbuild_config) || Browse..
ORT file: [|| Browse..
6D log file: [| Browse..
Debug instrument log file (if applicable):
[|| rowse..
[Cache target access
[JLaunch in background
[Use linker/locator memory map file .mdf) for memory map
Revert App
Filter matched 2 of 5 items = i
@

Debugger location
The location of the debugger itself. This should not be changed.
FSS root directory

The initial directory used by file system simulation (FSS) calls. See the description of the FSS view.

ORTI file and KSM module

If you wish to use the debugger's special facilities for kernel-aware debugging, specify the name of a
Kernel Debug Interface (KDI) compatible KSM module (shared library) in the appropriate edit box. The
product comes with a KSM suitable for RTOS kernels. If you wish to use this, browse for the file
orti_radmdl | (Windows)ororti _radm so (UNIX) inthe ct c\ bi n directory of the product. See
also the description of the RTOS view.

GDI log file and Debug instrument log file

You can use the options GDI log file and Debug instrument log file (if applicable) to control the generation
of internal log files. These are primarily intended for use by or at the request of TASKING support
personnel.

Cache target access

Except when using a simulator, the debugger's performance is generally strongly dependent on the
throughput and latency of the connection to the target. Depending on the situation, enabling this option
may result in a noticeable improvement, as the debugger will then avoid re-reading registers and
memory while the target remains halted. However, be aware that this may cause the debugger to show
the wrong data if tasks with a higher priority or external sources can influence the halted target's state.

Launch in background

334

Using the Debugger

When this option is disabled you will see a progress bar when the debugger starts. If you do not want
to see the progress bar and want that the debugger launches in the background you can enable this
option.

* Use linker/locator memory map file (mdf) for memory map

You can use this option to find errors in your application that cause access to non-existent memory or
cause an attempt to write to read-only memory. When building your project, the linker/locator creates
a memory description file (. mdf) file which describes the memory regions of the target you selected
in your project properties. The debugger uses this file to initialize the debugging target.

This option is only useful in combination with a simulator as debug target. The debugger may fail to
start if you use this option in combination with other debugging targets than a simulator.

9.3. Pipeline and Cache During Debugging

The pipeline and the cache(s) of the TriCore architecture are implemented in such a way that there is no
automatic coherency between the state as seen by the CPU itself and that seen by the debugger via
OCDS. For example, if the target halts on a breakpoint, a memory value read via OCDS may not represent
the "real" value as implied by the program logic if the value still has to be written back from the cache.

The TASKING debugger has a special "sync(hronize)-on-halt" facility to bring about this coherency. Every
time the target halts, the debugger will execute a routine _sync_on_hal t that flushes the pipeline and
the caches insofar as necessary. This routine is implemented in the filect ¢/ | i b/ src/ sync_on_hal t. c,
which (like cst ar t . ¢) will be added to a new TriCore project unless you disable the option Include
debugger synchronization utility in the New C/C++ Project wizard, which you may want to do if you
do not intend to use the TASKING debugger. For example, for third-party debuggers this synchronization
utility might not be necessary. In any case, by default the code will be linked in only in the Debug
configuration, not in the Release configuration (via the Exclude from build facility).

Note that the execution of these routines at each halt may have unwanted side effects on the performance
of the target application, particularly as a result of the cache flushing. The CCNT register, for instance,
is also updated after each (hidden) execution of the sync on halt routine. So, when you are single stepping,
the value of the CCNT register can increase rapidly. In certain cases, you may therefore want to switch
off this feature, but realize that this could have a severe impact on the debugging experience. In particular,
software breakpoints and File System Simulation may not work properly anymore.

9.4. Troubleshooting

If the debugger does not launch properly, this is likely due to mistakes in the settings of the execution
environment or to an improper connection between the host computer and the execution environment.
Always read the notes for your particular execution environment.

Some common problems you may check for, are:

Problem Solution

Wrong device name in the launch | Make sure the specified device name is correct.
configuration

335

TASKING SmartCode - TriCore User Guide

Problem Solution

Invalid baud rate Specify baud rate that matches the baud rate the execution
environment is configured to expect.

No power to the execution Make sure the execution environment or attached probe is powered.
environment.

Cable connected to the wrong port |Some target machines and hosts have several ports. Make sure
on the execution environment or host. |you connect the cable to the correct port.

Conflict between communication A device driver or background application may use the same
ports. communications port on the host system as the debugger. Disable
any service that uses the same port-number or choose a different
port-number if possible.

Port already in use by another user. | The port may already be in use by another user on some UNIX
hosts, or being allocated by a login process. Some target machines
and hosts have several ports. Make sure you connect the cable to
the correct port.

If the program state shown by the debugger appears to deviate from the true state, check that the option
Include debugger synchronization utility in the New C/C++ project wizard is enabled. See Section 9.3,
Pipeline and Cache During Debugging.

9.5. TASKING Debug Perspective

After you have launched the debugger, you are either asked if the TASKING Debug perspective should
be opened or it is opened automatically. The Debug perspective consists of several views.

To open views in the Debug perspective:

1. Make sure the Debug perspective is opened

2. From the Window menu, select Show View »

3. Select a view from the menu or choose Other... for more views.

By default, the Debug perspective is opened with the following views:

336

Using the Debugger

workspace_smartcode_vx.yTz - myproject/ myproject.c - SmartCode Eclipse IDE vx.yrz - O X
File Edit Source Refactor Navigate Search Project Debug Window Help
il | B iBin |4 01 B 3D .0 | Bieids~i® g~ ~hE ey o Q g B3
45 Debug X = g = O ||t Variables X . % Breakpoin | &' Expressio = O || Registers X t E|| et 8 = 8
v 35 myproject [TASKING C/C++ Debugger] B9 B & 2 || Name Value Description ~
vgggc_:hrﬂf[:‘tsi;c]tgn Set :rr:;latur[taskmgdebugg Name Tpe Value 4 Ade Ade
v % Threa uspende : :
_ . P 9= i signed int Cannot read varia... M Asclin Asclin
= main() at myproject.c:3 (x@0048e5c 4 8oy Beu
= _start() at cstart.c:1,305 02004848 M4 Can Can
A% Cbs Chs ©
< >
< >
[€) myproject.c X = O || Disassembly X . 5% Outline = 0
#include <stdio.h> ~ Enter location here |l & BSE|rT e E
- int main(void) » DDOODOODEABABeSC: sub.a : ;p,#@x?l A
3 for (i=1; i<=3; i++)
int i 200000008084 8e5e: may d15,#exl
H s s elelelelellalat oo mov.a als,#ex2
for (i=1; i<=3; i++ i % i
or (i-1; 1 i) 8 printf("d\n",i);
printf("Ed\n",i); 2E0DDEER3eR43262: st.w [sp].dis
} 2300000080848e64 : lea ad,Bx388080884
printf("Hello world, "); 2000000030043268: ca}l‘ . prin?fl(axsamaeaa)
printf("this is \n"); &) ddm (i=1; ;<—3. itt)
Frime(s sro] Saserria sosmeusatrs | - S
intf("debusai len" ys e6e: cop als, Bx e
! printf("debugging example.\n”); 18 printf("Hello world, ");
] elelelelel ettt ool movh.a ad,#0x3005 v
& Console X & Tasks S bR M By = 00 Memoy x o EE w8 =0
Debug [myproject] Monitors ¢
Communication: TSIML Simulator ~
Debug Instrument Module: tsiml6p_e
Starting Debugger...
Launching configuration: myproject
Loading 'C:\Users\name\workspace_smartcode_wx.yrz\mypreject\Debug\mypt v
< b3

9.5.1. Debug View

The Debug view shows the target information in a tree hierarchy shown below with a sample of the

possible icons:

Icon Session item

Description

Launch instance

£

Launch configuration name and launch type

Debugger instance

Debugger name and state

o® @ g2 |Thread instance

Thread number and state

Stack frame
instance

m

Stack frame number, function, file name, and file line number

Stack display

During debugging (running) the actual stack is displayed as it increases or decreases during program
execution. By default, all views present information that is related to the current stack item (variables,
memory, source code etc.). To obtain the information from other stack items, click on the item you want.

337

TASKING SmartCode - TriCore User Guide

The Debug view displays stack frames as child elements. It displays the reason for the suspension beside
the thread, (such as end of stepping range, breakpoint hit, and signal received). When a program exits,

the exit code is displayed.

The Debug view contains numerous functions for controlling the individual stepping of your programs and
controlling the debug session. You can perform actions such as terminating the session and stopping the
program. All functions are available from the right-click menu, though commonly used functions are also
available from the main toolbar.

Controlling debug sessions

Icon Action Description

) Remove all Removes all terminated launches.
Resets the target system. Registers that have the i ni t resource set in the
. dt c file, are reset to their default value. Execution stops at the reset vector

Reset target _START() .
L svstem 9 What kind of target reset takes place depends on the target and the debug
Y instrument. The type of reset depends on the setting of the

gdi 2ntd. reset. cl ass_vect or resourceinthe. dt c file. 1 is Power-On
Reset (with PORST pin), 2 is System Reset, 4 is Application Reset.

. Restart Resets the target system and restarts the application. The application stops
o executing when it reaches the first C instruction in the function mai n() .
0B Resume Resumes the application after it was suspended (manually, breakpoint,

signal).
oo Suspend Suspends the application (pause). Use the Resume button to continue.

i Right-click menu. Restarts the selected debug session when it was
@, Relaunch terminated. If the debug session is still running, a new debug session is

launched.

4 Reload current Reloads the current application without restarting the debug session. The
. application application does restart of course.

- Terminate Ends the selected debug session and/or process. Use Relaunch to restart
this debug session, or start another debug session.
[| Terminate all Right-click menu. As terminate. Ends all debug sessions.
@, | Terminate and Right-click menu. Ends the debug session and removes it from the Debug
%lremove view.
@ | Terminate and Right-click menu. Ends the debug session and relaunches it. This is the
*|Relaunch same as choosing Terminate and then Relaunch.
v Disconnect Detaches the debugger from the selected process (useful for debugging

attached processes).

338

Using the Debugger

Stepping through the application

Icon Action Description
= Step into Steps to the next source line or instruction.
_ Steps over a called function. The function is executed and the application
i Step over . .
suspends at the next instruction after the call.
Executes the current function. The application suspends at the next
- Step return . ; X
instruction after the return of the function.
i Instruction Toggle. If enabled, the stepping functions are performed on instruction level
stepping instead of on C source line level.

Toggle. If an interrupt source continues generating interrupts while the
target is stopped (either manually or by hitting a breakpoint), a following
Interrupt aware |single step will always enter the Interrupt Service Routine (ISR). This can
stepping lead to some problems during single stepping. With interrupt aware stepping
enabled, interrupts are temporarily disabled after the target has stopped.
When execution resumes the interrupts are restored.

Miscellaneous

Icon Action Description

Right-click menu. Copies the stack as text to the windows clipboard. You
can paste the copied selection as text in, for example, a text editor.

Copy Stack

Right-click menu. Opens the debug configuration dialog to let you edit the

w Edit project... current debug configuration.
5 Edit Source Right-click menu. Opens the Edit Source Lookup Path window to let you
Lookup... edit the search path for locating source files.

9.5.2. Breakpoints View

You can add, disable and remove breakpoints by clicking in the marker bar (left margin) of the Editor
view. This is explained in the Getting Started manual.

Description

The Breakpoints view shows a list of breakpoints that are currently set. The button bar in the Breakpoints
view gives access to several common functions. The right-most button opens the Breakpoints menu.

Types of breakpoints
To access the breakpoints dialog, add a breakpoint as follows:

1. Click the Add TASKING Breakpoint button (6&).
The Breakpoints dialog appears.

Each tab lets you set a breakpoint of a specific type. You can set the following types of breakpoints:

339

TASKING SmartCode - TriCore User Guide

» File breakpoint

Breakpoints X

Select breakpoint type
(1) Create file breakpoint

File Function CodeAddress Data Data Address Stack Instruction Cycle Timer

File: |queen5.c ~ Browse...

Line:
Method
(O Hardware breakpoint
(D Software breakpoint
(®) Mo preference

Condition: | |
Ignore count: I:I

If a debug session is active, the File drop-down box is filled with all source files as present in the debug
information in the ELF file. This can include files not present in the Eclipse project (for example from
libraries). If a file could be matched to a file in the active Eclipse project it will show as an Eclipse project
relative filename.

The target halts when it reaches the specified line of the specified source file. Note that it is possible
that a source line corresponds to multiple addresses, for example when a header file has been included
into two different source files or when inlining has occurred. If so, the breakpoint will be associated with
all those addresses. It is also possible that on some files no line breakpoints can be set because the
debugger lacks line information.

340

Using the Debugger

* Function

Breakpoints X

Select breakpoint type
(1) Create function breakpoint

File Function Code Address Data Data Address Stack Instruction Cycle Timer

Function: | main ~
File: qUEENS.C ~
Method

(O Hardware breakpoint
(O Software breakpoint
(®) No preference

Condition: | |
Ignore count: I:I

The Function drop-down box is filled with all functions from the debug information and the symbol
table (if not already in the debug information). You can use the File drop-down box to filter the list of
functions. If you select <all> you will see the filenames (between parentheses) behind each entry in
the Function drop-down box. Functions marked with function_name [section] originate from the symbol
table. These functions are normally not associated with a filename and will therefore be included if
<unknown> is selected in the File drop-down box. Functions marked 'filename'::function_name are
static functions.

The target halts when it reaches the first line of the specified function. Note that function breakpoints
generally will not work on inlined instances of a function.

341

TASKING SmartCode - TriCore User Guide

» Code Address

Breakpoints X

Select breakpoint type
3 Mo address specified.

File Function CodeAddress Data Data Address Stack Instruction Cycle Timer

Address: |
Method
(O Hardware breakpoint
(D Software breakpoint
(®) Mo preference

Condition: |

Ignore count: I:I

(?3' oK Cancel

The target halts when it reaches the specified instruction address.

« Data

Breakpoints X

Select breakpoint type
(1) Create data breakpoint

File Function Code Address Data Data Address Stack Instruction Cycle Timer

Variable: | 'queens.c'ichess_board v
File: qUEENS.C ~
Type

(O) Break on read access
(C) Break on write access

(®) Break on read or write access

Condition: | |
Ignore count: I:I

The Variable drop-down box is filled with all variables from the debug information and the symbol table
(if not already in the debug information), but you can also enter text yourself. If a label is filled in, the
size will be 1 MAU. You can use the File drop-down box to filter the list of variables. If you select <all>
you will see the filenames (between parentheses) behind each entry in the Variables drop-down box.
Variables marked with variable_name [section] originate from the symbol table. These variables are
normally not associated with a filename and will therefore be included if <unknown> is selected in the
File drop-down box. Variables marked ‘filename'::variable_name are static.

342

The target halts when the given variable is read or written to, as specified.

Data Address

Breakpoints

Select breakpoint type
3 No address specified.

Data Address Stack Instruction Cycle Timer

File Function Code Address Data

Address: |

Length:

Type
(O Break on read access

(O) Break on write access

(®) Break on read or write access

Condition: |

Ignore count: I:I

@' OK Cancel

Using the Debugger

The target halts when the given memory range (specified in terms of an absolute Address and a Length

in MAUS) is read or written to, as specified.

Stack

Breakpoints

Select breakpoint type
3 No stack frame selected.
Instruction Cycle Timer

File Function Code Address Data Data Address 5tack

Level: ~

Method

(C) Hardware breakpoint
() Software breakpoint
(® Ne preference

Condition: |

Ignore count: l:l

@' OK Cancel

The target halts when it reaches the specified stack level.

343

TASKING SmartCode - TriCore User Guide

* Instruction

Breakpoints X

Select breakpoint type
3 Mo count specified.

File Function Code Address Data Data Address Stack Instruction Cycle Timer

Count: |

Condition: |
Ignore count: I:I

® oK Cancel

The target halts when the given number of instructions (Count) has been executed.

* Cycle

Breakpoints X

Select breakpoint type
3 Mo count specified.

File Function Code Address Data Data Address Stack Instruction Cycle Timer

Count: |

Condition: |
Ignore count: I:I

? QK Cancel

The target halts when the given number of clock cycles (Count) has elapsed.

344

Using the Debugger

o Timer
Breakpoints X
Select breakpoint type
3 Mo time specified.
File Function Code Address Data Data Address Stack Instruction Cycle Timer
Tlme:|
Condition: |
Ignore count: I:I
':?3' OK Cancel

The target halts when the given amount of Time elapsed. The value entered is interpreted by the debug
instrument.

In addition to the type of the breakpoint, you can specify the condition that must be met to halt the program.

In the Condition field, type a condition. The condition is an expression which evaluates to ‘true’ (non-zero)
or ‘false’ (zero). The program only halts on the breakpoint if the condition evaluates to 'true’.

Inthe Ignore count field, you can specify the number of times the breakpoint is ignored before the program
halts. For example, if you want the program to halt only in the fifth iteration of a while-loop, type '4": the
first four iterations are ignored.

9.5.3. File System Simulation (FSS) View

Description

The File System Simulation (FSS) view is automatically opened when the target requests FSS input or
generates FSS output. The virtual terminal that the FSS view represents, follows the VT100 standard. If
you right-click in the view area of the FSS view, a menu is presented which gives access to some
self-explanatory functions.

VT100 characteristics

The queens example demonstrates some of the VT100 features. (You can find the queens example in
the<instal | ati on pat h>\ ct c\ exanpl es directory from where you can import it into your workspace.)
Per debugging session, you can have more than one FSS view, each of which is associated with a positive
integer. By default, the view "FSS #1" is associated with the standard streams st di n, st dout , stderr
and st daux. Other views can be accessed by opening a file named "terminal window <number>", as
shown in the example below.

345

TASKING SmartCode - TriCore User Guide

FILE * f3 = fopen("term nal w ndow 3", "rw');
fprintf(f3, "Hello, wi ndow 3.\n");
fclose(f3);

You can set the initial working directory of the target application in the Debug configuration dialog (see
also Section 9.2, Creating a Customized Debug Configuration):

1. On the Debugger tab, select the Miscellaneous sub-tab.
2. Inthe FSS root directory field, specify the FSS root directory.

The FSS implementation is designed to work without user intervention. Nevertheless, there are some
aspects that you need to be aware of.

First, the interaction between the C library code (in the files dbg*. ¢ and dbg*. h; see Section 14.1.8,
dbg.h) and the debugger takes place via a breakpoint, which incidentally is not shown in the Breakpoints
view. Depending on the situation this may be a hardware breakpoint, which may be in short supply.

Secondly, proper operation requires certain code in the C library to have debug information. This debug
information should normally be present but might get lost when this information is stripped later in the
development process.

When you use MIL linking/splitting the C library is translated along with your application. Therefore you
need to build your application with debug information generation enabled when FSS support is needed.

9.5.4. Disassembly View

The Disassembly view shows target memory disassembled into instructions and / or data. If possible, the
associated C / C++ source code is shown as well if you click the Show Source button (F%).

The left part of the Disassembly view shows the addresses, opcodes and/or function offsets depending
on what you selected in the right-click menu.

The right part of the Disassembly view shows the disassembly instructions and/or the C/C++ source code
and symbols depending on what you selected in the right-click menu. Right-click in the right part and
select Preferences to open the Disassembly Preferences dialog.

If you are debugging a multi-core project, you can display each thread in its own Disassembly view. To
open a thread specific Disassembly view, select a stack frame in a thread in the Debug view and click

the Open New View button (C2) in the Disassembly view and then click the Pin to Debug Context button
(). The selected thread is mentioned in the view.

To view the contents of a specific memory location, type the address in the Enter location here field.
9.5.5. Expressions View
The Expressions view allows you to evaluate and watch regular C expressions.

To add an expression:

1. Right-click in the Expressions View and select Add Watch Expression.

346

Using the Debugger

The Add Watch Expression dialog appears.

2. Enter an expression you want to watch during debugging, for example, the variable name "i
3. Click OK to add the expression.

If you have added one or more expressions to watch, the right-click menu provides options to Remove
and Edit Watch Expression or Enable and Disable added expressions.

» You can access target registers directly using #NAME. For example "ar r [#R0 << 3] " or "#TI MER3
= mt+". If a register is memory-mapped, you can also take its address, for example, "&#ADC| N'.

» Expressions may contain target function calls like for example "gl + i nvert (&g2)". Be aware that
this will not work if the compiler has optimized the code in such a way that the original function code
does not actually exist anymore. This may be the case, for example, as a result of inlining. Also, be
aware that the function and its callees use the same stack(s) as your application, which may cause
problems if there is too little stack space. Finally, any breakpoints present affect the invoked code in
the normal way.

9.5.6. Memory View

Use the Memory view to inspect and change process memory. The Memory view supports the same
addressing as the C and C++ languages. You can address memory using expressions such as:

» 0x0847d3c

« (&y)+1024

s *ptr

Monitors

To monitor process memory, you need to add a monitor:

1. Inthe Debug view, select a debug session. Selecting a thread or stack frame automatically selects
the associated session.

2. Click the Add Memory Monitor button in the Memory Monitors pane.
The Monitor Memory dialog appears.
3. Type the address or expression that specifies the memory section you want to monitor and click OK.

The monitor appears in the monitor list and the Memory Renderings pane displays the contents of
memory locations beginning at the specified address.

To remove a monitor:
1. Inthe Monitors pane, right-click on a monitor.

2. From the popup menu, select Remove Memory Monitor.

347

TASKING SmartCode - TriCore User Guide

Renderings

You can inspect the memory in so-called renderings. A rendering specifies how the output is displayed:
hexadecimal, ASCII, signed integer, unsigned integer or traditional. You can add or remove renderings
per monitor. Though you cannot change a rendering, you can add or remove them:

1. Click the New Renderings... tab in the Memory Renderings pane.
The Add Memory Rendering dialog appears.

2. Selectthe rendering you want (Traditional, Floating Point,Hex Integer, Hex, ASCII, Signed Integer
or Unsigned Integer) and click Add Rendering(s).

To remove a rendering:
1. Right-click on a memory address in the rendering.

2. From the popup menu, select Remove Rendering.

Changing memory contents

In a rendering you can change the memory contents. Simply type a new value.

Warning: Changing process memory can cause a program to crash.

The right-click popup menu gives some more options for changing the memory contents or to change the
layout of the memory representation.

9.5.7. Compare Application View

You can use the Compare Application view to check if the downloaded application matches the application
in memory. Differences may occur, for example, if you changed memory addresses in the Memory view,
or your application overwrote parts of the memory.

» To check for differences, click the Compare button.

9.5.8. Heap View

With the Heap view you can inspect the status of the heap memory. This can be illustrated with the
following example:

string = (char *) malloc(100);
strcpy (string, "abcdefgh");
free (string);

If you step through these lines during debugging, the Heap view shows the situation after each line has
been executed. Before any of these lines has been executed, there is no memory allocated and the Heap
view is empty.

348

Using the Debugger
« After the first line the Heap view shows that memory is occupied, the description tells where the block
starts, how large it is (100 MAUs) and what its content is (0x0, 0x0, ...).

 After the second line, "abcdef gh" has been copied to the allocated block of memory. The description
field of the Heap view again shows the actual contents of the memory block (0x61, 0x62,...).

» The third line frees the memory. The Heap view is empty again because after this line no memory is
allocated anymore.

9.5.9. Logging View

Use the Logging view to control the generation of internal log files. This view is intended mainly for use
by or at the request of TASKING support personnel.

9.5.10. RTOS View

The debugger has special support for debugging real-time operating systems (RTOSs). This support is
implemented in an RTOS-specific shared library called a kernel support module (KSM) or RTOS-aware
debugging module (RADM). Specifically, the TASKING toolset for TriCore ships with a KSM supporting
the 1ISO 17356 standard. You have to create your own Run Time Interface (ORTI) and specify this file on
the Miscellaneous tab while configuring a customized debug configuration (see also Section 9.2, Creating
a Customized Debug Configuration):

1. From the Debug menu, select Debug Configurations...
The Debug Configurations dialog appears.

2. Inthe left pane, select the configuration you want to change, for example, TASKING C/C++ Debugger
» myproject.

Or: click the New launch configuration button (L) to add a new configuration.
3. Open the Miscellaneous tab.
4. Inthe ORTI file field, specify the name of your own ORTI file.

5. If you want to use the supplied KSM suitable for RTOS kernels, in the KSM module field browse for
the fileorti _radm dl | (Windows)ororti _radm so (UNIX) inthe ct c\ bi n directory of the
product.

The debugger supports ORTI specifications v2.0 and v2.1.

9.5.11. Registers View

In the Registers view you can examine the value of registers while stepping through your application. If
you are debugging a multi-core project, you can display each thread in its own Registers view.

The registers are organized in a number of register groups, which together contain all known registers.
You can expand a group to see which registers it contains. This view has a number of features:

» While you step through the application, the registers that are changed turn yellow. If you scroll in the
view or switch groups, some registers may appear on a lighter yellow background, indicating that the

349

TASKING SmartCode - TriCore User Guide

debugger does not know whether the registers have changed because the debugger did not read the
registers before the step began.

Registers view:

11f Registers X LEB it 8 = B
MName Value Description 2
w4 GPR GPR

1t DO Oxd

piar D1 03

oot D2 Oxd

pinn D3 0x0

iii D4 0x0

i D3 0x2

iiti DB O TFFFFFFF

it 07 0x0 v
Name : D8

Hex:@xd

Decimal:13

Octal: 15

Binary:1181

Default:@xd

Thread specific Registers view (Pin to Debug Context):

11f Registers X LEBR| e = B
TCA9%
MName Value Description &3
v M4 GPR GPR
it DO Oxed
i D1 0x3
i D2 Oxed
i D3 0x0
iii D4 0x0
i D3 0x2
iiti DB O TFFFFFFF y
1010 7 ne.n
Name : D8 ~
Hex:@xd
Decimal:13
Octal: 15
Binary:1181
Default:@xd v

350

Using the Debugger

» To open a thread specific Registers view, select a stack frame in a thread in the Debug view and click
the Open New View button (C2) in the Registers view and then click the Pin to Debug Context button
(Z). The selected thread is mentioned in the view.

» You can change each register's value.
* You can search for a specific register: right-click on a register and from the popup menu select Find....

Enter a group or register name filter, click the register you want to see and click OK. The register of
your interest will be shown in the view.

9.5.12. Trace View

If tracing is enabled, the Trace view shows the code was most recently executed. For example, while you
step through the application, the Trace view shows the executed code of each step. To enable tracing:

* Right-click in the Trace view and select Trace.
A check mark appears when tracing is enabled.
The view has three tabs, Source, Instruction and Raw, each of which represents the trace in a different

way. However, not all target environments will support all three of these. The view is updated automatically
each time the target halts.

9.5.13. Devices View

The Devices view shows which target boards are connected to your PC. The list of attached target boards
has no specific relation with your project.

Icon Action Description
e Initialize Target Right-click menu and toolbar. Initializes the selected target board.
e

Board

Right-click menu and toolbar. When you have connected or disconnected
o Refresh a board and in the Preferences dialog polling is disabled, you can manually
refresh the display of this view.

Menu Drop-down menu. Open the Preferences dialog.

Some target boards contain a power supply chip which needs to be initialized every time after power-on,
before hardware debugging is started. This initialization is necessary before starting a debug session,
otherwise communication is not possible. You can do this initialization manually or automatically. Any of
the listed target boards can be initialized, you need to take care that the target board is initialized when
needed. Initialization is never harmful.

Initialize target board manually

1. Connect the target board. If the board does not appear in the Devices view automatically, click the
Refresh button (t:?“).

The board is visible in the Devices view.

351

TASKING SmartCode - TriCore User Guide
2. Clickinthe Debug Target Configuration field and from the drop-down menu select the configuration
that matches your target board.

3. Right-click on the target board and select Initialize Target Board, or click the Initialize Target Board

button (%).

Initialize target board automatically
1. Open the Debug Configurations dialog (Debug » Debug Configurations).
2. Onthe Initialization tab, enable Initialize target board.

The target board will be initialized automatically before the debug session starts.

Polling of target boards

At startup of the debugger the Devices view shows the list of attached target boards. By default this list
is not refreshed. You can set a polling interval for automatic refreshing.

1. From the drop-down menu or right-click menu in the Devices view, select Preferences.

The Preferences (Filtered) dialog appears. This is a filtered version from the standard Preferences
dialog (Window » Preferences » TASKING » Devices).

2. Enable Poll connected target boards and fill in a Polling interval in seconds. The default is 10
seconds.

If polling is disabled, you have to refresh the Devices view manually after you connected or disconnected
a board.

9.6. Programming a Flash Device

With the TASKING debugger you can download an application file to flash memory. Before you download
the file, you must specify the type of flash devices you use in your system and the address range(s) used
by these devices.

To program a flash device the debugger needs to download a flash programming monitor to the target
to execute the flash programming algorithm (target-target communication). This method uses temporary
target memory to store the flash programming monitor and you have to specify a temporary data workspace
for interaction between the debugger and the flash programming monitor.

Two types of flash devices can exist: on-chip flash devices and external flash devices.
Setup an on-chip flash device
When you specified a target configuration board using the New C/C++ wizard or the Import Board

Configuration wizard, as explained in the Getting Started with TASKING SmartCode manual, any on-chip
flash devices are setup automatically.

352

Setup an external flash device

1.

3.

From the Project menu, select Properties for

The Properties for project dialog appears.

Using the Debugger

In the left pane, expand Run/Debug Settings and select Flash Programming.

The Flash Programming pane appears.

type filter text

Resource
Builders
C/C++ Build
C/C++ General
Project Natures
Project References

+ Run/Debug Settings

Flash Programming

Properties for myproject

Flash Programming

Configuration: |Debug [Active]

On-chip flash devices

| | Manage Configurations...

Device Size Address Width Chips D Unused Ve
External flash devices
Device Size Address Width Chips D Unused Add...
Edit...
Remove
Remove All
Restore Defaults Apply

Apply and Close Cancel

Click Add... to specify an external flash device.

The Select a New Flash Device dialog appears.

353

TASKING SmartCode - TriCore User Guide

Select a New Flash Device *

Flash device

Select a flash device

Device type: Sector map:

AMD Sector Size Start address
AMIC

Actel

Alliance Semicenductor
Atmel

Fujitsu

Hynixe

Intel

Macronix

Micron

MEC

OKl

55T
STMicroelectronics
Sharp

Spansion

Toshiba

Base address: | |

Chip width: b

Number of chips: | |

MNumber of unused address lines: | |

':‘B' OK Cancel

4. Inthe Device type box, expand the name of the manufacturer of the device and select a device.
The Sector map displays the memory layout of the flash device(s). Each sector has a size and

5. Inthe Base address field enter the start address of the memory range that will be covered by the
flash device. Any following addresses separated by commas are considered mirror addresses. This
allows the flash device to be programmed through its mirror address before switching the flash to its
base address.

6. Inthe Chip width field select the width of the flash device.

7. Inthe Number of chips field, enter the number of flash devices that are located in parallel. For
example, if you have two 8-bit devices in parallel attached to a 16-bit data bus, enter 2.

8. Fillin the Number of unused address lines field, if necessary.

The flash memory is added to the linker script file automatically with the tag "f | ash=flash-id".
To program a flash device

1. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.

354

Using the Debugger
In the left pane, select the configuration you want to change, for example, TASKING C/C++ Debugger
» myproject.board.
Open the Initialization tab
The Flash settings group box should be active.
Enable the option Use default flash settings (recommended)

By default, the flash settings are derived from the . dt c file for the chosen target processor. So, when
you change processors the flash settings change automatically. If you do not want that, you can
specify your own flash settings. In that case perform steps 5-7, otherwise skip to step 8. You can
click Restore Defaults to restore the default flash settings.

In the Monitor file field, specify the filename of the flash programming monitor, usually an Intel Hex
or S-Record file.

In the Sector buffer size field, specify the buffer size for buffering a flash sector.

Specify the data Workspace address used by the flash programming monitor. This address may
not conflict with the addresses of the flash devices.

Click Debug to program the flash device and start debugging.

355

TASKING SmartCode - TriCore User Guide

356

Chapter 10. Tool Options

This chapter provides a detailed description of the options for the C compiler, C++ compiler, assembler,

linker, control program, make utility, archiver, HLL object dumper, ELF patch utility, ELF strip utility and
the expire cache utility.

Tool options in Eclipse (Menu entry)

For each tool option that you can set from within Eclipse, a Menu entry description is available. In Eclipse
you can customize the tools and tool options in the following dialog:

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. Open the Tool Settings tab.
You can set all tool options here.

Unless stated otherwise, all Menu entry descriptions expect that you have this Tool Settings tab
open.

The following tables give an overview of all tool options on the Tool Settings tab in Eclipse with hyperlinks
to the corresponding command line options (if available).

Global Options

Eclipse option Description or option

Use global 'product directory' preference Directory where the TASKING toolset is
installed

Treat warnings as errors Control program option --warnings-as-errors

Keep temporary files Control program option
--keep-temporary-files (-t)

Verbose mode of control program Control program option --verbose (-v)

C/C++ Compiler

Eclipse option ‘Description or option
Preprocessing

Automatic inclusion of ".sfr" file ‘C compiler option --include-file

357

TASKING SmartCode - TriCore User Guide

Eclipse option

Description or option

Store preprocessor output in <file>.pre

Control program option --preprocess (-E) /
--no-preprocessing-only

Keep comments in preprocessor output

Control program option
--preprocess=+comments

Keep #line info in preprocessor output

Control program option
--preprocess=-noline

Defined symbols

C compiler option --define

Pre-include files

C compiler option --include-file

Include Paths

Include paths

C compiler option --include-directory

Precompiled C++ Headers

Automatically use/create precompiled header file

C++ compiler option --pch

Create precompiled header file

C++ compiler option --create-pch

Use precompiled header file

C++ compiler option --use-pch

Precompiled header file directory

C++ compiler option --pch-dir

Language

Comply to C++ standard

C++ compiler option --c++

Comply to C standard

C compiler option --iso

Allow GNU C extensions

C compiler option --language=+gcc

Allow // comments in ISO C90 mode

C compiler option --language=+comments

Check assignment of string literal to non-'const string
pointer

C compiler option --language=-strings

Treat 'char' variables as unsigned

C compiler option --uchar

Treat 'int' bit-fields as signed

C compiler option --signed-bitfields

Always use 32-hit integers for enumeration

C compiler option --integer-enumeration

Allow optimization across volatile access

C compiler option --language=-volatile

Allow Shift JIS Kanji in strings

C compiler option --language=+kanji

Comply to embedded C++ subset

C++ compiler option --embedded-c++

Support for C++ /O streams

C++ compiler option --io-streams

Support for C++ exception handling

C++ compiler option --exceptions

Support for C++ RTTI (run-time type information)

C++ compiler option --rtti

Allow the ‘wchar_t' keyword (C++)

C++ compiler option --no-wchar_t-keyword

Allow non-ANSI/ISO C++ features

C++ compiler option --strict

C++ anachronisms

C++ compiler option --anachronisms

Allow GNU C++ extensions

C++ compiler option --g++

Floating-Point

358

Tool Options

Eclipse option

Description or option

Floating-point model

Control program option --fp-model

Code Generation

Algorithm for switch statements

C compiler option --switch

Minimum alignment

C compiler option --align

Call functions indirectly

C compiler option --indirect

Call run-time functions indirectly

C compiler option --indirect-runtime

Multiple Virtual Machines present

C compiler option --virtualization

PIC/PID base register for RAM data objects
PIC/PID base register for ROM data objects

C compiler option --pic

Allocation

Clear uninitialized global and static variables

C compiler option --no-clear

Threshold for putting data in __near

C compiler option --default-near-size

Threshold for putting data in __a0

C compiler option --default-a0-size

Threshold for putting data in __al

C compiler option --default-al-size

Code core association

C compiler option --code-core-association

Data core association

C compiler option --data-core-association

Optimization

Optimization level

C compiler option --optimize

Trade-off between speed and size

C compiler option --tradeoff

Maximum size for code compaction

C compiler option --compact-max-size

Maximum call depth for code compaction

C compiler option --max-call-depth

Always inline function calls

C compiler option --inline

Maximum size increment when inlining (in %)

C compiler option --inline-max-incr

Maximum size for functions to always inline

C compiler option --inline-max-size

Build for application wide optimizations (MIL linking)

Control program option --mil-link / --mil-split

Application wide optimization mode

Control program option --mil-link / --mil-split

Custom Optimization

C compiler option --optimize

Compilation Speed

C compiler option --cache

Debugging

Generate symbolic debug information

C compiler option --debug-info

Generate control flow information

C compiler option --control-flow-info

Static profiling

C compiler option --profile=+static

Generate profiling information for block counters

C compiler option --profile=+block

Generate profiling information to build a call graph

C compiler option --profile=+callgraph

Generate profiling information for function counters

C compiler option --profile=+function

359

TASKING SmartCode - TriCore User Guide

Eclipse option

Description or option

Generate profiling information for function timers

C compiler option --profile=+time

Exclude time spent in interrupt functions

C compiler option --profile=+time,+interrupt

Generate code for bounds checking

C compiler option --runtime=+bounds

Generate code to detect unhandled case in a switch

C compiler option --runtime=+case

Generate code for malloc consistency checks

C compiler option --runtime=+malloc

Generate code for stack overflow checks

C compiler option --runtime=+stack

MISRA C

MISRA C checking

C compiler option --misrac

MISRA C version

C compiler option --misrac-version

Warnings instead of errors for mandatory rules

C compiler option
--misrac-mandatory-warnings

Warnings instead of errors for required rules

C compiler option
--misrac-required-warnings

Warnings instead of errors for advisory rules

C compiler option
--misrac-advisory-warnings

Custom 1998 / Custom 2004 / Custom 2012

C compiler option --misrac

CERT C Secure Coding

CERT C secure code checking

C compiler option --cert

Warnings instead of errors

C compiler option --warnings-as-errors

Custom CERT C

C compiler option --cert

Diagnostics

Suppress C++ compiler warnings

C++ compiler option --no-warnings=num

Suppress C compiler warnings

C compiler option --no-warnings=num

Suppress all warnings

C compiler option --no-warnings

Suppress C++ compiler “used before set” warnings

C++ compiler option
--no-use-before-set-warnings

Issue remarks on C++ code

C++ compiler option --remarks

Perform global type checking on C code

C compiler option --global-type-checking

Maximum number of emitted errors

C compiler option --error-limit

Miscellaneous

Merge C source code with generated assembly

C compiler option --source

Force definition of virtual function tables (C++)

C++ compiler option --force-vtbl

Suppress definition of virtual function tables (C++)

C++ compiler option --suppress-vtbl

Implicit inclusion of source files for finding templates

C++ compiler option --implicit-include

Minimal inlining of function calls (C++)

C++ compiler option --no-inlining

Instantiation mode of external template entities

C++ compiler option --instantiate

360

Tool Options

Eclipse option

Description or option

Comment in object file

C compiler option --object-comment

Additional options

C compiler options, C++ compiler options,
Control program options

Assembler

Eclipse option

Description or option

Preprocessing

Use TASKING preprocessor

Assembler option --preprocessor-type

Automatic inclusion of '.def' file

Assembler option --include-file

Defined symbols

Assembler option --define

Pre-include files

Assembler option --include-file

Include Paths

Include paths

Assembler option --include-directory

Symbols

Generate symbolic debug

Assembler option --debug-info

Case insensitive identifiers

Assembler option --case-insensitive

Emit local EQU symbols

Assembler option --emit-locals=+equ

Emit local non-EQU symbols

Assembler option --emit-locals=+symbols

Set default symbol scope to global

Assembler option --symbol-scope

Optimization

Optimize generic instructions

Assembler option --optimize=+generics

Optimize instruction size

Assembler option --optimize=+instr-size

List File
Generate list file Control program option --list-files
List ... Assembler option --list-format

List section summary

Assembler option --section-info=+list

Diagnostics

Suppress warnings

Assembler option --no-warnings=num

Suppress all warnings

Assembler option --no-warnings

Display section summary

Assembler option --section-info=+console

Maximum number of emitted errors

Assembler option --error-limit

Miscellaneous

Allow Shift JIS Kanji in strings

Assembler option --kanji

Additional options

Assembler options

361

TASKING SmartCode - TriCore User Guide

Linker

Eclipse option

Description or option

Patching

Patch object and library files supplied to the linker

ELF patch utility

ELF patch command file

ELF patch utility option --command-file

Symbol renaming file

ELF patch utility option
--symbol-renaming-file

Data reference modification file

ELF patch utility option
--data-reference-modification-file

Add info section to patched object file

ELF patch utility option --vared-info-section

Output Format

Generate Intel Hex format file

Linker option --output=file:IHEX

Generate S-records file

Linker option --output=file:SREC

Generate binary file

Linker option --chip-output=:BIN:0

Create file for each memory chip

Linker option --chip-output

Size of addresses (in bytes) for Intel Hex records

Linker option --output=file:IHEX:size

Size of addresses (in bytes) for Motorola S records

Linker option --output=file:SREC:size

Emit start address record

Linker option --hex-format=s

Hitex emulator (.htx) format (requires Hitex sptriced.exe)

Hitex sptriced.exe must be installed to
generate this output format.

Libraries

Link default libraries

Control program option --no-default-libraries

Rescan libraries to solve unresolved externals

Linker option --no-rescan

Libraries

The libraries are added as files on the
command line.

Library search path

Linker option --library-directory

Data Objects

Data objects

Linker option --import-object

Script File

Defined symbols

Linker option --define

Linker script file

Linker option --Isl-file

Optimization

Delete unreferenced sections

Linker option --optimize=c

Use a 'first-fit decreasing' algorithm

Linker option --optimize=I

Compress copy table

Linker option --optimize=t

Delete duplicate code

Linker option --optimize=x

362

Tool Options

Eclipse option Description or option

Delete duplicate data Linker option --optimize=y

Map File

Generate map file (.map) Control program option --no-map-file

Generate XML map file format (.mapxml) for map file viewer | Linker option --map-file=file.mapxml: XML

Include ... Linker option --map-file-format
Diagnostics

Suppress warnings Linker option --no-warnings=num
Suppress all warnings Linker option --no-warnings
Maximum number of emitted errors Linker option --error-limit

Miscellaneous

Strip symbolic debug information Linker option --strip-debug

Link case insensitive Linker option --case-insensitive

Do not use standard copy table for initialization Linker option
--user-provided-initialization-code

Show link phases during processing Linker option --verbose

Generate long-branch veneers Linker option --long-branch-veneers

Additional options Linker options

10.1. Configuring the Command Line Environment

If you want to use the tools on the command line, you can set environment variables.

You can set the following environment variables:

Environment Description

variable

ASTCINC With this variable you specify one or more additional directories in which the
assembler looks for include files. See Section 6.3, How the Assembler Searches
Include Files.

CTCCACHE With this variable you specify a cache directory in which the C compiler can store
intermediate results. See C compiler option: --cache.

CTCINC With this variable you specify one or more additional directories in which the C
compiler looks for include files. See Section 4.4, How the Compiler Searches
Include Files.

CPTCINC With this variable you specify one or more additional directories in which the C++
compiler looks for include files. See Section 5.2, How the C++ Compiler Searches
Include Files.

CCTCBIN When this variable is set, the control program prepends the directory specified by

this variable to the names of the tools invoked.

363

TASKING SmartCode - TriCore User Guide

Environment Description

variable

LIBTC1V1_8 With this variable you specify one or more additional directories in which the linker
looks for libraries. See Section 7.3.1, How the Linker Searches Libraries.

PATH With this variable you specify the directory in which the executables reside. This
allows you to call the executables when you are not in the bi n directory. Usually
your system already uses the PATH variable for other purposes. To keep these
settings, you need to add (rather than replace) the path. Use a semicolon (;) to
separate path names.

TMPDIR With this variable you specify the location where programs can create temporary

files. Usually your system already uses this variable. In this case you do not need
to change it.

See the documentation of your operating system on how to set environment variables.

364

Tool Options

10.2. C Compiler Options

This section lists all C compiler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the compiler via the control program. Therefore, it uses the syntax of
the control program to pass options and files to the C compiler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, you have to precede the option with -Wc to pass the
option via the control program directly to the C compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -n sends output to stdout instead of a file and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on