TASKING.

TASKING VX-toolset for ARM
User Guide

MA163-800 (v5.1) June 19, 2015

Copyright © 2015 Altium BV.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of Altium BV. Unauthorized duplication of this work may also be prohibited by local statute.
Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, TASKING,
and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other
registered or unregistered trademarks referenced herein are the property of their respective owners and no trademark
rights to the same are claimed.

Table of Contents

I O 1= T o > T TS 1
L1 DALA TYPES e 1
1.2. Changing the Alignment: __unaligned, __packed__and __align()ccooviiiiiiiiinnn. 2
1.3. Placing an Object at an Absolute ADdress: at()covvvriiiniriiiiee e 3
1.4. Accessing Hardware from €o.iuiniiiii i 4
1.5, Shift JIS Kanji SUPPOIT . ..eeititiit e e e e e 5
1.6. Using Assembly in the C SOUIrCe: _ aSM() .uvuerinininititi e e e aes 6
O N 1] o (= O 12
1.8. Pragmas to Control the ComPIiler ..ot e 15
1.9. Predefined PreproCeSSOr MACIOSvuiiiiiiiii et aeaaaas 21
1.20. SWILCH SEAIEMENT ...ttt 22
0 T 0 o 1o 0 P 24

1.11.1. Calling CONVENTIONuiuitititititet et et e e e e e e e et e e aaanan 24
1.12.2. Inlining FUNCHONS: INIINEoiiii e 24
1.11.3. Interrupt Functions / Exception Handlersccooiiiiiiiiciciiiiieeeas 26
1.11.4. INtriNSIC FUNCHONS ..ottt et ea e 28

B O - o 1= o = 37
2.1. C++ Language EXtension KEYWOIScuiuiiiiiiiiiiiiii e aaan 37
2.2, CH+ DialeCt ACCEPIEA ...vteiii it e 37

2.2.1. Standard Language Features ACCEPEdo.vviiiiiiiiiiiiiee e 37
2.2.2. C++0x Language Features ACCEPIEAcuiuiuirititie e e e e 40
2.2.3. ANachronisSmMs ACCEPIEA ... vvitit it e 44
2.2.4. Extensions Accepted in Normal C++ Modecciviiiiiiiii e 45
2.3, GNU EXEENSIONS ...ttt ettt et et ettt et et et ettt eneaees 47
2.4, NAMESPACE SUP PO ettt ettt ettt ettt ettt 61
2.5. Template INStANtIAtioNouiniiii e 63
2.5.1. Automatic INSTANLIALIONuitieiee e 64
2.5.2. InStantiation MOGESuiuieii e 65
2.5.3. Instantiation #pragma Dir€CIVESoviiiiiiiiii e 66
2.5.4. IMPHCIt INCIUSION .o\t aans 67
2.5.5. EXPOrted TeMPIAES ...oueniiiiiiiiie et 68
2.6. INlINING FUNCHIONSiii e e e e e a s 71
2.7. EXtern INlNe FUNCHONSuii e e 72
2.8. Pragmas to Control the C++ COMPIIErccvniniiii e 72
2.9. Predefined MACIOS ... e 73
2.10. Precompiled HEAUBISiiiiiii e e e e aas 77
2.10.1. Automatic Precompiled Header ProCessingccoevueriiiiiiiiiiiiiiiiinaana, 77
2.10.2. Manual Precompiled Header ProCessingcocvvviiiiiiiiiiiiiiiiieieieieeeeaeen 80
2.10.3. Other Ways to Control Precompiled Headerscccoooiiiiiiiiiiiiiiieeieen, 80
2.10.4. PerfOrManCe ISSUESuuiuiiit et 81

3. ASSEMDBIY LANQUAGE ... vttt e e e e e e e e e e e 83
3.1 ASSEMDBIY SYNAX .ttt 83
3.2. Assembler Significant Charactersccoiiiiiiiiii e 84
3.3. Operands of an Assembly INSTIUCHIONiiiii e 85
3.4, SYMBOI NAIMIES ...ttt e 85

3.4.1. Predefined Preprocessor SYmbOISccoiiiiiii e 86
3D RO OIS ..ttt e 87
3.6. ASSEMDIY EXPrESSIONS ...ttt 87

TASKING VX-toolset for ARM User Guide

3.6.1. NUMEIIC CONSLANESeutiiititt ettt et 88
3B, SHIINOS . enttt ettt e 88
3.6.3. EXPreSSioN OPEIALOIScuuuieitiiatiet ettt 89

3.7. WOrKiNG WIth SECHIONScutiit et 920
3.8. Built-in Assembly FUNCLONSooii e 91
3.9. ASSEMDIET DIFECHIVES . ..e ettt e 96
3.9.1. Overview of ASsembler DIFECHVESvuieieiii e 97
3.9.2. Detailed Description of Assembler DIreCtivesoooviiiiiiiiiiiiiiiiiiieeene 98

3.10. MACIO OPEIALIONSeteeeeten ettt et ettt et e ettt et et a e e eenas 138
3.10.1. DEfiNiNG @ MACKO ...cuviitee e 138
3.10.2. CAlliNG @ MBCTO ...vieeetee e e e e 138
3.10.3. Using Operators for Macro ArgUMENLScuveuiiieiiiiieiiieeeeeeeieeeeneenes 139

3.11. GENETIC INSIIUCTIONS ... ettt ettt ettt et ettt et e e enenas 142
3.11.1. ARM GeNEriC INSIUCIONSuvuitiiit et 142
3.11.2. ARM and Thumb-2 32-bit Generic INStructionscccoveveiiiiiiniiinenne. 143
3.11.3. Thumb 16-bit Generic INSIUCLIONSovuiiiiii e 145
4.USING the C COMPIIET ...oee et et 147
4. 1. COMPIlALION PIOCESS ...ttt et 147
4.2. Calling the C COMPIIET ...t et e 148
4.3. How the Compiler Searches Include Filescooiiiiiii e 150
4.4, Compiling fOr DEDUGGING ... eueriiieeie e 151
4.5. Compiler OPtMIZALIONSttt et e 151
4.5.1. Generic Optimizations (frontend)oooiiiiiii e 153
4.5.2. Core Specific Optimizations (backend)coeiiiiiiiii 155
4.5.3. Optimize for Code Size or EXecution Speedcoovviiiiiiiiniiiiicieeeeen, 157

4.6. STAtIC COUE ANAIYSIS ... ettt 160
4.6.1. C Code Checking: CERT € .. .uvuiriiiiiiiiie et 161
4.6.2. C Code Checking: MISRA C ...t 163

4.7. C CoMPIlEr ErrOr MESSAGES ... cuvniiiiii et ettt et eenes 165
5.USING the CH+ COMPIIET ..ottt e enes 167
5.1. Calling the CH+ COMPIIET ... 167
5.2. How the C++ Compiler Searches Include Filesooiiiiiiiiii e 169
5.3. C++ ComPpiler ErrOr MESSAQES ... vueuiiiitieit ettt et et 170
6. USING the ASSEMDIETot et 173
B.1. ASSEMDIY PrOCESS ...ttt et et 173
6.2. ASSEMDIET VEISIONS ... ettt 174
6.3. Calling the ASSEMDIET ... e 174
6.4. How the Assembler Searches Include Flescoviiiiiiiiii 175
6.5. Generating @ LISt File ... oo 176
6.6. ASSEMDIET EFTOr MESSAUES ... vueniteiit ittt 177
7. USING the LINKET ... ettt ettt e 179
7.1, LINKING PrOCESS ..ottt ettt et 179
7.0.1. Phase 1: LINKING ...oueneeieeee et et e 181
7.01.2. Phase 2: LOCALNG ...oteniniteteei ettt et 182

7.2. CalliNg the LINKETeeie e 183
7.3. LinKing WIth LIDraries ... 184
7.3.1. How the Linker Searches Librariescoooiiiiiiiiie e 187
7.3.2. How the Linker Extracts Objects from Librariescoooveiiiiiiiiiniinniennen. 188

7.4, Incremental LINKINGo.eie e e 188
7.5.1Mporting BiNary FilES ... 189

TASKING VX-toolset for ARM User Guide

7.6. LINKEr OPtMIZALIONSviitee e e e 189
7.7. Controlling the Linker With @ SCFPtouiii e 191
7.7.1. Purpose of the Linker Script LANQUAQEcovuviiiiiiiiieieenie e 191
T.7.2. EClPSE @NA LSL ...eiieiiie e 191
7.7.3. Structure of a Linker SCript Fileoouieiiiii e 193
7.7.4. The Architecture Definitiono 196
7.7.5. The Derivative Definitionooiiiii e 198
7.7.6. The Processor Definitiono 199
7.7.7.The Memory Definition ..o 199
7.7.8. The Section Layout Definition: Locating SeCtioNScccvvvvviiiiiieniniiinieennn. 201

7.8, LINKEr LADEIS ... e 203
7.9.Generating @aMap File ... 204
7.20. LINKEr ErTOr MESSAUES ...uutueitiiet ettt ettt et ettt 205
8. RUN-tIME ENVIFONIMENT ...ttt et ettt ettt et e e e e naenes 207
8.1, SEANUP COUB ...enittieit et 207
8.2. Reset Handler and VeCtor Table ..o 209
8.3, CMSIS SUPPOIT .ttt ettt 213
8.4, StACK AN HEAP ... vt 214
9. USING the ULIITIES ... ettt et reae s 217
9.1, CONLIOI PrOGIaM .. .eeii ettt ettt et et e e 217
9.2. Make ULty MKaImM ... e 219
9.2.1. Calling the Make ULIIILYcuiuiiiiii e 220
9.2.2. Writing a Makefile ... 221

9.3. Make ULIlItY 8IMK ..o e 230
9.3.1. MaAKEFIlE RUIES ..ot e 230
9.3.2. MAKETIIE DIFECHIVES ...ttt e 232
9.3.3. MACIO DEfINItIONSonee e 232
9.3.4. MaKefile FUNCHONSuieitii e e 234
9.3.5. ConditioNal PrOCESSING ... euviinieete e 235
9.3.6. MAKETIIE PAISING .. .uietiiiei e 235
9.3.7. Makefile Command ProCESSINGvuiuirieiiiiieie e 236
9.3.8. Calling the amk Make ULIlItYcovuiriiiii e 237

0.4, ATCRIVET o 238
9.4.1. Calling the ArChIVET ... 238
9.4.2. ArChiVer EXAMPIES ... 240

9.5, HLL ODbjJECE DUMIPET ...ttt e ettt et et e enaeaes 242
1SS T8 B [41V o Tox- L1 o] o H PP 242
9.5.2. HLL DUmp OUtPUt FOIMALooeeiiiii e 242

9.6. EXPire Cache ULIlILYouiiiriiie e e 248
10. USING the DEDUGOET ... ettt ettt et ettt enene e 249
10.1. Reading the Eclipse DOCUMENTALIONouieieiiiiie e 249
10.2. Creating a Customized Debug Configurationcooviiiiiiiiiiiieeee e 249
10.3. TroUBIESNOOTING .. . et e 255
10.4. TASKING DebUQ PEIrSPECLIVEuitiiiiii e 255
10.4.1. DEDBUQG VIBW ...eii it e 256
10.4.2. BreakpOoinNtS VIEBWcuieeie ittt et eeaes 258
10.4.3. File System Simulation (FSS) VIEWovuiriiiiiiiii e 259
10.4.4. DiSASSEMDIY VIBWoeiiiitii et 260
10.4.5. EXPrESSIONS VIEW ...vuiiiiiitei ettt e et 260
10.4.6. MEMOIY VIBW ...viiie ittt ettt ettt enees 261

TASKING VX-toolset for ARM User Guide

10.4.7. Compare APPlICAtION VIBWiuiiii e 262
10.4.8. HEBAP VIBW ettt ettt 262
10.4.9. LOGGING VIBW ...ttt et et et et et 263
10.4.20. RTOS VIBW .ttt ettt ettt et ettt ees 263
10.4.10. REQISIEIS VIBW ...ttt ettt et 263
L0.4.12. TrACE VIBW ..ottt ettt e ettt ettt e ees 265

10.5. Programming @ FIash DEVICEc.ouuiiiii e 265
5 [oTo 1 @ o1 i o] o I PPN 269
11.1. Configuring the Command Line ENVIroNMEeNtccooviiiiiiiiiniieneeieeeeee 275
11.2. C COMPIIEr OPLIONS ...ttt e 276
11.3. C++ COMPIIEr OPLIONS .. v.eniteet ettt ettt et 349
11.4. ASSEMDIET OPLIONS ...ttt et e 475
115, LINKEE OPLIONS ...ttt e ettt 517
11.6. Control Program OPLONSvuceiit ettt ettt 571
11.7. Make ULIlity OPHIONS ...ttt et et e 639
11.8. Parallel Make ULility OPLIONSc.eiieieet et 667
11.9. ArChIVET OPLIONS . ..vieet ettt e 681
11.10. HLL Object DUMPET OPLIONS . ..iutiiiiiienetee et ettt 696
11.11. Expire Cache ULility OPLONSeuitiiiitie e e 717
12. Influencing the BUild TIMeouii et 727
12,1 MIL LINKING ettt 727
12.2. OptiMIzZation OPLIONSenitit e 727
12.3. AULOMALIC INNNING ..ot e 728
12.4. COAE COMPACLION ...ttt et ettt et et ettt et et et ens 728
12.5. COMPIIEr CACNE ...t 728
12.6. HEAUET FlES ..ot et 729
12.7. Parallel BUIl ... e e 729
12.8. NUMDEr Of SECHONSt 730
L3 PO NG e e 731
13.1. What is Profiling?ooeeii e 731
13.1.1. Methods of Profilingcoovuiriiii e 731

13.2. Profiling using Code Instrumentation (Dynamic Profiling)ccccoeiviiiiiiiinnnnne. 732
13.2.1. Step 1: Build your Application for Profilingcoooviiiiiiii e 734
13.2.2. Step 2: Execute the AppliCationcviiiiiiii 735
13.2.3. Step 3: Displaying Profiling ReSUILScoooiiiiii e 737

13.3. Profiling at Compile Time (Static Profiling)ccoviiiiii e 740
13.3.1. Step 1: Build your Application with Static Profilingcocoiviiiiiiiinnnnn. 740
13.3.2. Step 2: Displaying Static Profiling ReSUltsc..cooiiiiiiiiiie, 741

I o = T =T PP 743
14.1. Using the CMSIS DSP LIDIArYccuveieieieiiii e 745
14.2. LIbrary FUNCHONS ...ttt 745
T4.2.0. @SSO Lt 746
14.2.2. COMPIEX.N Lo 746
L4.2.3. CStANT N Lo 747
14.2.4. ctype.h and WCLYPE.N ..oeie 747
L14.2.5. dDG.N Lo 748
T4.2.6. €ITNO.N Lo 748

L4, 2.7, EXCEPLN o 749
L4.2.8. FCNEL N L e 750
14,29, NV 750

Vi

TASKING VX-toolset for ARM User Guide

14.2.20. FOAEN oo 751
14.2.11. inttypes.h and Stdint.h ... 751
LA, 2. 02, 100 e 752
T14.2.03.0S0646.1 ..ot 752

TA.2. 04, TIMIES. N e e 753
T14.2.15. 10CAIE.N ..o 753
14.2.16. MAIIOC.H .o 753
14.2.17. math.h and tgmath.h ... 754
14,208, SEUMP.N e 758
14.2.19. SIgNALIN oo 758
14.2.20. SEHAIG.N ..o 758
14.2.21. StADOOLN .o 759
14.2.22. StAAEf.N oo 759
14.2.23. SEAINEN o 759
14.2.24. stdio.h @and WChar.n ... 760
14.2.25. stdlib.h and Wehar.h ... 768
14.2.26. string.h and Wehar.h ... 771
14.2.27. time.h and WChar.h ... 772
14.2.28. UNISEA.N .o 775
14.2.29. WCNAIN .o 776
14.2.30. WOYPE. N o 777

14.3. C LiDrary REENIIANCYcuuiuitiiii et et 777
15, LISt FIIE FOIMALS ... oeetiit ettt et e ettt et e eenae 789
15.1. Assembler List File FOrMALc.vuiuiii e 789
15.2. Linker Map File FOIMAL e 790
16. ODJECE File FOIMALSeniteit ettt ettt e e e enenas 799
16.1. ELF/DWARF ODJECT FOIMALottt 799
16.2. Intel HEX RECOIA FOIMAL ... vnieiiie e e 799
16.3. Motorola S-ReCOrd FOIMALvuiriiii e e 802
17. Linker SCript LANGUAGE (LSL) .. .uueitiei et et e 805
17.1. Structure of @ Linker SCript File ... 805
17.2. Syntax of the Linker SCript LANQUAGEovuirieieirieieiee e 807
17.2.0. PrePIrOCESSING . cveueteeietee et ettt et ettt 807
17.2.2. LEXICAI SYNEAX ..ttt et e 808
17.2.3. 1dentifiers @nd TAOS . ..vv vt 808
17.2.4, EXPIESSIONS ...ttt et ettt 809
17.2.5. BUIlt-IN FUNCLONS ...ceieie ettt 809
17.2.6. LSL Definitions in the Linker Script Filecccooiiiiiii e 812
17.2.7. Memory and Bus DefinitioNsc.vviiieiiiiiii e 812
17.2.8. Architecture Definitionccoveiriiii e 814
17.2.9. Derivative Definitionc.ouiiiniiii e 817
17.2.10. Processor Definition and Board Specificationcccovviiriiiiiiiniiinenannn. 818
17.2.10. SECHON SEIUPD .euiteiteet ettt et ettt e 818
17.2.12. Section Layout Definitioncouiiirieii e 818

17.3. EXPression EVAIUATIONvuieiitii e 823
17.4. Semantics of the Architecture Definitioncooiiiiiii 824
17.4.1. Defining an ArChiteCIUIEovuiriie i e 825
17.4.2. Defining INtErNal BUSESiuiiiiieie e 826
17.4.3. Defining AAAreSS SPACESuirierii it 826
L17.4.4. MAPPINGS vttt et ettt et et e 830

Vii

TASKING VX-toolset for ARM User Guide

17.5. Semantics of the Derivative Definitionooiiiii 833
17.5.1. Defining @ DErIVALIVEcueiii e 833

17.5.2. Instantiating Core ArchiteCIUIrESocovuirieiii e 834

17.5.3. Defining Internal Memory and BUSESccveiiiiiiiiiiiiiieece e 835

17.6. Semantics of the Board SpecifiCationcooiiiiiiiii 836
17.6.1. DefinNiNg @ PrOCESSONueiieiti et 836

17.6.2. Instantiating DEerVALIVEScuiiuiiiiii e 837

17.6.3. Defining External Memory and BUSESc.veiiiiiiiiiiiiiiieenceeeeeee 837

17.7. Semantics of the Section Setup Definitioncooiiiiiiii 838
17.7.1. SEttiNg UP @ SECHION ...uvutieitiee ettt 839

17.8. Semantics of the Section Layout Definitionccovviiiiiiii e 840
17.8.1. Defining @ SECHON LAYOULc.uieitieii e 841

17.8.2. Creating and Locating Groups Of SECHONSccvvviiiiiiiiiiieiieieeeen 841

17.8.3. Creating or Modifying Special SECHONSocvviiiiiiiiiei e 847

17.8.4. Creating SYMDOISoi 851

17.8.5. Conditional Group StateMENTSv.iriniiiiii e 852

18. Debug Target Configuration FileSouiiiiiii e 853
18.1. CUStOM BOArd SUPPOITttt e et 853

18.2. Description of DTC Elements and AtMDULESoveiiiiiiiiii e 854

18.3. Special Resource Identifierso 856

19. CPU Problem Bypasses and CheCKSouiiiiii e 859
20. CERT C Secure Coding StANCAITcuouieitiiteii et aaeaes 863
20.1. PreproCessor (PRE) ...t 863

20.2. Declarations and INitialization (DCL)vuirieieiiie e 864

20.3. EXPreSSioNS (EXP)vuiiiiiii et 865

20,4, INTEGETS (INT) 1etit ittt ettt ettt 866

20.5. Floating POINt (FLP)ceiiit et 866

20.6. AITAYS (ARR) ..ottt 867

20.7. Characters and Strings (STR)uuiuiiiii et 867

20.8. Memory Management (MEM)t 867

20.9. ENVIronmMENt (ENV) ..o e e 868
20.20. SIGNAIS (SIG) .. tuenitiit et e e 868
20.11. MISCEllaN@0US (MSC)uuinitiii et e 869

21 MISRA C RUIES ..ttt et et ettt 871
210 MISRA €008 ..ottt 871

21.2. MISRA C:2004 ...ttt et e 875

21.3. MISRA Ci2002 ..ottt 883

viii

Chapter 1. C Language

This chapter describes the target specific features of the C language, including language extensions that
are not standard in ISO-C. For example, pragmas are a way to control the compiler from within the C
source.

The TASKING VX-toolset for ARM® C compiler fully supports the ISO-C standard and adds extra
possibilities to program the special functions of the target.

In addition to the standard C language, the compiler supports the following:

« attribute to specify alignment and absolute addresses

« intrinsic (built-in) functions that result in target specific assembly instructions
» pragmas to control the compiler from within the C source

» predefined macros

* the possibility to use assembly instructions in the C source

» keywords for inlining functions and programming interrupt routines

* libraries

All non-standard keywords have two leading underscores (__).

In this chapter the target specific characteristics of the C language are described, including the above
mentioned extensions.

1.1. DataTypes

The TASKING C compiler for the ARM supports the following data types.

C type Size Align Limits
_Bool 1 8 Oor1l
signed char 8 8 [-27, 27-1]
unsigned char 8 8 [0, 28-1]
short 16 16 [-2°, 27°-1)
unsigned short 16 16 [0, 216-1]
int 32 32 [-2%%, 2%
unsigned int 32 32 [0, 232-1]
enum 32 32 [-2° 2%
long 32 32 [-2%, 2%
unsigned long 32 32 [0, 232-1]

TASKING VX-toolset for ARM User Guide

C type Size Align Limits

long long 64 64 [-263, 263-1]

unsigned long long 64 64 [0, 264-1]

float (23-bit mantissa) 32 32 [-3.402E+38, —1.175E-38]
[+1.175E-38, +3.402E+38]

double 64 64 [-1.797E+308, -2.225E-308]

long double (52-bit mantissa) [+2.225E-308, +1.797E+308]

_Imaginary float 32 32 [-3.402E+38i, —1.175E-38i]
[+1.175E-38i, +3.402E+38i]

_Imaginary double 64 64 [-1.797E+308i, -2.225E-308i]

_Imaginary long double [+2.225E-308i, +1.797E+308i]

_Complex float 64 32 real part + imaginary part

_Complex double 128 64 real part + imaginary part

_Complex long double

pointer to data or function 32 32 [0, 232-1]

1.2. Changing the Alignment: __unaligned, _packed _and
__align()

Normally data, pointers and structure members are aligned according to the table in the previous section.

Suppress alignment

With the type qualifier __unal i gned you can specify to suppress the alignment of objects or structure
members. This can be useful to create compact data structures. In this case the alignment will be one bit
for bit-fields or one byte for other objects or structure members.

At the left side of a pointer declaration you can use the type qualifier __unal i gned to mark the pointer
value as potentially unaligned. This can be useful to access externally defined data. However the compiler
can generate less efficient instructions to dereference such a pointer, to avoid unaligned memory access.

You can always convert a normal pointer to an unaligned pointer. Conversions from an unaligned pointer
to an aligned pointer are also possible. However, the compiler will generate a warning in this situation,
with the exception of the following case: when the logical type of the destination pointer is char orvoi d,
no warning will be generated.

Example:

struct

{
char c;
__unaligned int i; /* aligned at offset 1 ! */

}os;

__unaligned int * up = & s.1i;

C Language

Packed structures

To prevent alignment gaps in structures, you can use the attribute __packed__ . When you use the
attribute __packed___directly after the keyword st r uct , all structure members are marked __unal i gned.
For example the following two declarations are the same:

struct __packed__

{

char c;

int * i;
} sl
struct
{

char __unaligned c;

int * _unaligned i; /* __unaligned at right side of

to pack pointer menber */

} s2;

The attribute __packed__ has the same effect as adding the type qualifier __unal i gned to the
declaration to suppress the standard alignment.

You can also use __packed___in a pointer declaration. In that case it affects the alignment of the pointer
itself, not the value of the pointer. The following two declarations are the same:

int * _ unaligned p;
int * p __ packed__;

Change alignment

With the attribute __al i gn(n) you can overrule the default alignment of objects or structure members
to n bytes.

1.3. Placing an Object at an Absolute Address: _ at()

With the attribute __at () you can specify an absolute address.

The compiler checks the address range, the alignment and if an object crosses a page boundary.
Examples

unsi gned char Display[80*24] _ at(0x2000);

The array Di spl ay is placed at address 0x2000. In the generated assembly, an absolute section is
created. On this position space is reserved for the variable Di spl ay.

int i __at(0x1000) = 1;

The variable i is placed at address 0x1000 and is initialized.

TASKING VX-toolset for ARM User Guide

void f(void) __at(Oxfoff + 1) { }

The function f is placed at address 0xf100.

Restrictions

Take note of the following restrictions if you place a variable at an absolute address:
» The argument of the __at () attribute must be a constant address expression.

* You can place only global variables at absolute addresses. Parameters of functions, or automatic
variables within functions cannot be placed at absolute addresses.

» Avariable that is declared ext er n, is not allocated by the compiler in the current module. Hence it is
not possible to use the keyword __at () on an external variable. Use __at () at the definition of the
variable.

* You cannot place structure members at an absolute address.

» Absolute variables cannot overlap each other. If you declare two absolute variables at the same address,
the assembler and/or linker issues an error. The compiler does not check this.

1.4. Accessing Hardware from C

It is easy to access Special Function Registers (SFRs) that relate to peripherals from C. The SFRs are
defined in a special include file (*. h) as symbol nhames for use with the compiler.

The TASKING VX-toolset for ARM supports the Cortex Micro-controller Software Interface Standard
(CMSIS). You can find details about this standard on www.onarm.com.

The product includes a full set of CMSIS files in the cnsi s directory under the product installation directory.
This includes SFR files for the supported devices and for the various Cortex cores. The organization of
the CMSIS files in the product installation is as follows:

cnsi s/ CMD/ Cor eSupport directory with Cortex-MO0 header files and C files

cnsi s/ CMD/ Devi ceSupport/ vendor/ devi ce directory with Cortex-MO device specific header files
and C files

cnsi s/ CMB/ Cor eSuppor t directory with Cortex-M3 header files and C files

cnsi s/ CM3/ Devi ceSupport/ vendor/ devi ce directory with Cortex-M3 device specific header files
and C files

When you include CMSIS SFR file in your source you must set an include search path to the appropriate
CMSIS directory.

Example of including an SFR file:

#i ncl ude "stnB2f 10x. h"

voi d mai n(voi d)

{

4

http://www.onarm.com

C Language

SCB->VTOR | = (1 << SCB_VTOR TBLBASE_Pos);
}

Compiler invocation:

ccarm-c -CARW7M -1"install ation_dir\cnsi s\ CMB\ Devi ceSupport\ ST\ STM32F10x"
-1"installation_dir\cnsi s\ CMB\ CoreSupport” file.c

When you use Eclipse you can easily add the include search paths by using the option Project »
Properties for » C/C++ Build » Settings » C/C++ Compiler » Add CMSIS include paths.

1.5. Shift JIS Kanji Support

In order to allow for Japanese character support on non-Japanese systems (like PCs), you can use the
Shift JIS Kanji Code standard. This standard combines two successive ASCII characters to represent
one Kaniji character. A valid Kanji combination is only possible within the following ranges:

* First (high) byte is in the range 0x81-0x9f or Oxe0-0xef.
» Second (low) byte is in the range 0x40-0x7e or 0x80-0xfc

Compiler option -Ak enables support for Shift JIS encoded Kanji multi-byte characters in strings and
(wide) character constants. Without this option, encodings with 0x5c as the second byte conflict with the
use of the backslash (\ ') as an escape character. Shift JIS in comments is supported regardless of this
option.

Note that Shift JIS also includes Katakana and Hiragana.
Example:

/1 Exanpl e usage of Shift JIS Kanji
/1 Do not switch off option -Ak
// At the position of the italic text you can
/1 put your Shift JI'S Kanji code
int i; // put Shift JIS Kanji here
char cl;
char c2;
unsi gned int ui;
const char mes[]="put Shift JIS Kanji here";
const unsigned int ar[5]={"K ,"a",
SANRIADY
/1 5 Japanese array

n.,

voi d mai n(voi d)

{
i=(int)cl;
i++, /* put Shift JIS Kanji here\
conti nuous conment */
c2=nes[9];
ui =ar[0];
}

TASKING VX-toolset for ARM User Guide

1.6. Using Assembly in the C Source: __asm()

With the keyword __asmyou can use assembly instructions in the C source and pass C variables as
operands to the assembly code. Be aware that C modules that contain assembly are not portable and
harder to compile in other environments.

The compiler does not interpret assembly blocks but passes the assembly code to the assembly source
file; they are regarded as a black box. So, it is your responsibility to make sure that the assembly block
is syntactically correct. Possible errors can only be detected by the assembler.

You need to tell the compiler exactly what happens in the inline assembly code because it uses that for
code generation and optimization. The compiler needs to know exactly which registers are written and
which registers are only read. For example, if the inline assembly writes to a register from which the
compiler assumes that it is only read, the generated code after the inline assembly is based on the fact
that the register still contains the same value as before the inline assembly. If that is not the case the
results may be unexpected. Also, an inline assembly statement using multiple input parameters may be
assigned the same register if the compiler finds that the input parameters contain the same value. As
long as this register is only read this is not a problem.

General syntax of the __asm keyword

__asn("instruction_tenplate"”
[: output_paramli st
[: input_param]li st
[: register_reserve_list]]]);

instruction_template Assembly instructions that may contain parameters from the input
list or output list in the form: %parm_nr
Y%parm_nr Parameter number in the range 0 .. 9.
output_param_list [["=[&]constraint_char" (C_expression)],...]
input_param_list [["constraint_char" (C_expression)],...]
& Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.
constraint _char Constraint character: the type of register to be used for the
C_expression. See the table below.
C_expression Any C expression. For output parameters it must be an Ivalue, that
is, something that is legal to have on the left side of an assignment.
register_reserve_list [["register_name"],...]
register_name Name of the register you want to reserve. For example because this

register gets clobbered by the assembly code. The compiler will not
use this register for inputs or outputs. Note that reserving too many
registers can make register allocation impossible.

Specifying registers for C variables

With a constraint character you specify the register type for a parameter.

C Language

You can reserve the registers that are used in the assembly instructions, either in the parameter lists or
in the reserved register list (register_reserve_list). The compiler takes account of these lists, so no
unnecessary register saves and restores are placed around the inline assembly instructions.

Constraint Type Operand Remark
character
r general purpose register |rO .. r11, Ir Thumb mode r0 .. r7
number type of operand it is same as %number |Input constraint only. The number must
associated with refer to an output parameter. Indicates
that %enumber and number are the same
register.

If an input parameter is modified by the inline assembly then this input parameter must also be
added to the list of output parameters (see Example 6). If this is not the case, the resulting code
may behave differently than expected since the compiler assumes that an input parameter is not
being changed by the inline assembly.

Loops and conditional jumps

The compiler does not detect loops with multiple __asn{) statements or (conditional) jumps across
__asn() statements and will generate incorrect code for the registers involved.

If you want to create a loop with __asn{() , the whole loop must be contained in a single __asmn()
statement. The same counts for (conditional) jumps. As a rule of thumb, all references to a label in an
__asn() statement must be in that same statement. You can use numeric labels for these purposes.

Example 1: no input or output

A simple example without input or output parameters. You can use any instruction or label. When it is
required that a sequence of __asn{) statements generates a contiguous sequence of instructions, then
they can be best combined to a single __asn() statement. Compiler optimizations can insert instruction(s)
in between __asm() statements. Note that you can use standard C escape sequences. Use newline
characters \n’to continue on anew lineina__asn{) statement. For multi-line output, use tab characters
\t' to indent instructions.

__asn("nop\n"
"\'t nop");

Example 2: using output parameters

Assign the result of inline assembly to a variable. With the constraint r a general purpose register is
chosen for the parameter; the compiler decides which register it uses. The % in the instruction template
is replaced with the name of this register. The compiler generates code to assign the result to the output
variable.

int out;
void main(void)

{

TASKING VX-toolset for ARM User Guide

__asn("mov 9@, #Oxff"

"=r* (out));
}
Generated assembly code:
nov r 0, #0xf f
| dr ri,.L2
str ro,[r1, #0]
bx I'r
.Size main,$-min
.align 4
.L2:
. dw out

Example 3: using input parameters

Assign a variable to a register. A register is chosen for the parameter because of the constraint r ; the
compiler decides which register is best to use. The %® in the instruction template is replaced with the
name of this register. The compiler generates code to move the input variable to the input register. Because
there are no output parameters, the output parameter list is empty. Only the colon has to be present.

int in;
void initreg(void)

{
__asm("MV RO, %"

P (in))

}
Generated assembly code:
| dr ro,.L2
| dr ro,[rO0, #0]
MOV RO, r0
bx Ir
.size initreg,$-initreg
.align 4
.L2:
. dw in

Example 4: using input and output parameters

Add two C variables and assign the result to a third C variable. Registers are used for the input and output
parameters (constraint r , %9 for out , %4 for i n1, %2 for i n2 in the instruction template). The compiler
generates code to move the input expressions into the input registers and to assign the result to the output
variable.

int inl, in2, out;

voi d add32(void)

8

{
__asnm("add

nepn

wpn

}

C Language

%, %, %R
(out)
(inl),

-

T (in2))

Generated assembly code:

| dr

| dr

| dr

add rO,

| dr

str

bx

.Si ze

.align
.L2:

. dw

.section

. gl obal

.align
inl: .type

.size

. ds

. gl obal

.align
in2: .type

.size

. ds

. gl obal

.align
out: .type

.size

. ds

. endsec

r0,.L2
rl,[rO0, #0]
r0,[rO0, #4]
rl, r0

rl, . L2
r0,[r1, #8]

Ir

add32, $- add32
4

inl

. bss

inl

4

obj ect
inl, 4
4

in2

4

obj ect
in2, 4
4

out

4

obj ect
out, 4
4

Example 5: reserving registers

Sometimes an instruction knocks out certain specific registers. The most common example of this is a
function call, where the called function is allowed to do whatever it likes with some registers. If this is the

case, you can list

specific registers that get clobbered by an operation after the inputs.

Same as Example 4, but now register r 0 is a reserved register. You can do this by adding a reserved

register list (: "r

0"). As you can see in the generated assembly code, register r 0 is not used (the first

register used is r 1).

int inl, in2,

out ;

voi d add32(void)

TASKING VX-toolset for ARM User Guide

{
_asm "add %, %, "
© "=r" (out)
"r" (inl), "r" (in2)
"ro")
}
Generated assembly code:
| dr r2,.L2
| dr r2,[r1, #0]
| dr rl, [rl, #4]
add r1, r2, rl
| dr ro,.L2
str rl,[rO0, #8]
bx I'r
.size add32, $-add32
.align 4
.L2:
. dw inl

Example 6: use the same register for input and output

As input constraint you can use a number to refer to an output parameter. This tells the compiler that the
same register can be used for the input and output parameter. When the input and output parameter are
the same C expression, these will effectively be treated as if the input parameter is also used as output.
In that case it is allowed to write to this register. For example:

inline int foo(int parl, int par2, int * par3)
{
int retval ue;
__asn(
"add 92,9, 9%, 1sl #2\n\t"
"mov 9%, %2\ n\t"
"mov 99, 9%R"
"=&" (retvalue), "=r" (parl), "=r" (par2)
"1" (parl), "2" (par2), "r" (par3)

)
return retval ue;

}

int result,parm

voi d func(void)

{

result

}

= fo00(1000, 1000, &parnj;

10

C Language

In this example the "1" constraint for the input parameter par 1 refers to the output parameter par 1, and
similar for the "2" constraint and par 2. In the inline assembly %4 (par 1) and %2 (par 2) are written. This

is allowed because the compiler is aware of this.

This results in the following generated assembly code:

mov r 0, #1000
mov rl1,r0
Ildr r2,.L2
add r1,r0,r0,Isl #2
mov r2,rl
mov r3,rl
Idr r0,.L2+4
str r3,[r0, #0]
bx Ir

.L2:
.dw parm
.dw result

However, when the inline assembly would have been as given below, the compiler would have assumed
that %4 (par 1) and 92 (par 2) were read-only. Because of the i nl i ne keyword the compiler knows that
par 1 and par 2 both contain 1000. Therefore the compiler can optimize and assign the same register to

%4 and 92. This would have given an unexpected result.

__asm(
"add 92, %, %, sl #2\n\t"
"mov 98, R\ n\t"
"mov 99, "
"=&" (retval ue)
"r" (parl), "r" (par2), "r" (par3)

)

Generated assembly code:

ldr r0,.L2
mov r 1, #1000
add rl1,r1,r1,1sl #2 ; sane register,
mov rO0,rl
mov r2,rl
ldr rO0,.L2+4
str r2,[r0, #0] ;
bx Ir
.L2:
.dw parm
.dw result

but is expected read-only

cont ai ns unexpected result

11

TASKING VX-toolset for ARM User Guide

1.7. Attributes

You can use the keyword __attri but e__ to specify special attributes on declarations of variables,
functions, types, and fields.

Syntax:

attribute ((name,...))
or:

__hane__

The second syntax allows you to use attributes in header files without being concerned about a possible
macro of the same name.

alias("symbol")

Youcanuse __attribute_ ((alias("synbol"))) to specify that the function declaration appears
in the object file as an alias for another symbol. For example:

void _ f() { /* function body */; }
void f() __attribute_ ((weak, alias("__f")));

declares 'f ' to be a weak alias for'__f .

const

Youcanuse __attribute__ ((const)) to specify that a function has no side effects and will not
access global data. This can help the compiler to optimize code. See also attribute pur e.

The following kinds of functions should not be declared __const __:
« A function with pointer arguments which examines the data pointed to.

» A function that calls a non-const function.

export

Youcanuse __attribute_ ((export)) to specify that a variable/function has external linkage and
should not be removed. During MIL linking, the compiler treats external definitions at file scope as if they
were declared st at i c. As a result, unused variables/functions will be eliminated, and the alias checking
algorithm assumes that objects with static storage cannot be referenced from functions outside the current
module. During MIL linking not all uses of a variable/function can be known to the compiler. For example
when a variable is referenced in an assembly file or a (third-party) library. With the expor t attribute the
compiler will not perform optimizations that affect the unknown code.

int i __attribute__((export)); /* "i' has external |inkage */

12

C Language

flatten

Youcanuse __attribute__ ((flatten)) toforce inlining of all function calls in a function, including
nested function calls.

Unless inlining is impossible or disabled by __attri bute__((noinline)) for one of the calls, the
generated code for the function will not contain any function calls.

format(type,arg_string_index,arg_check_start)

Youcanuse __attribute__ ((format(type,arg_string_index,arg _check_start))) to
specify that functions take pri ntf, scanf,strfti ne or strf nmon style arguments and that calls to
these functions must be type-checked against the corresponding format string specification.

type determines how the format string is interpreted, and should be pri ntf, scanf,strftime or
strfron.

arg_string_index is a constant integral expression that specifies which argument in the declaration of the
user function is the format string argument.

arg_check_start is a constant integral expression that specifies the first argument to check against the
format string. If there are no arguments to check against the format string (that is, diagnostics should only
be performed on the format string syntax and semantics), arg_check_start should have a value of 0. For
strfti me-style formats, arg_check_start must be 0.

Example:
int foo(int i, const char * ny format, ...) _ attribute_((format(printf, 2, 3)));

The format string is the second argument of the function f oo and the arguments to check start with the
third argument.

leaf

Youcanuse __attribute__ ((leaf)) tospecify that a function is a leaf function. A leaf function is
an external function that does not call a function in the current compilation unit, directly or indirectly. The
attribute is intended for library functions to improve dataflow analysis. The attribute has no effect on
functions defined within the current compilation unit.

malloc

Youcanuse __attribute__((malloc)) toimprove optimization and error checking by telling the
compiler that:

» The return value of a call to such a function points to a memory location or can be a null pointer.

» Onreturn of such a call (before the return value is assigned to another variable in the caller), the memory
location mentioned above can be referenced only through the function return value; e.g., if the pointer
value is saved into another global variable in the call, the function is not qualified for the malloc attribute.

13

TASKING VX-toolset for ARM User Guide

» The lifetime of the memory location returned by such a function is defined as the period of program
execution between a) the point at which the call returns and b) the point at which the memory pointer
is passed to the corresponding deallocation function. Within the lifetime of the memory object, no other
calls to malloc routines should return the address of the same object or any address pointing into that
object.

noinline

Youcanuse __attribute__((noinline)) to preventa function from being considered for inlining.
Same as keyword __noi nl i ne or #pragnma noi nl i ne.

always_inline

With __attribute__((always_inline)) you force the compiler to inline the specified function,
regardless of the optimization strategy of the compiler itself. Same as keyword i nl i ne or #pr agna
i nline.

noreturn

Some standard C function, such as abort and exit cannot return. The C compiler knows this automatically.
Youcanuse __attribute__((noreturn)) to tell the compiler that a function never returns. For
example:

void fatal () __attribute__((noreturn));

void fatal (/* ... */)

{
/* Print error nessage */
exit(1);

}

The function f at al cannot return. The compiler can optimize without regard to what would happen if
f at al ever did return. This can produce slightly better code and it helps to avoid warnings of uninitialized
variables.

protect

Youcanuse__attribute_ ((protect)) toexclude avariable/function from the duplicate/unreferenced
section removal optimization in the linker. When you use this attribute, the compiler will add the "protect”
section attribute to the symbol's section. Example:

int i __attribute__ ((protect));

Note that the protect attribute will not prevent the compiler from removing an unused variable/function
(see the used symbol attribute).

This attribute is the same as #pr agna pr ot ect/ endpr ot ect .

14

C Language

pure

Youcanuse __attribute__ ((pure)) to specify that a function has no side effects, although it may
read global data. Such pure functions can be subject to common subexpression elimination and loop
optimization. See also attribute const .

section("section_name")

Youcanuse __attribute__((section("nane"))) to specify that a function must appear in the
object file in a particular section. For example:

extern void foobar(void) __attribute__((section("bar")));
puts the function f oobar in the section named bar .

See also #pragnma secti on.

used

Youcanuse __attribute__((used)) to prevent an unused symbol from being removed, by both the
compiler and the linker. Example:

static const char copyright[] __attribute_ ((used)) = "Copyright 2010 Al tium BV";

When there is no C code referring to the copyr i ght variable, the compiler will normally remove it. The
__attribute__((used)) symbol attribute prevents this. Because the linker should also not remove
this symbol, __attribute__ ((used)) implies__attribute__((protect)).

unused

Youcanuse __attribute__((unused)) to specify that a variable or function is possibly unused. The
compiler will not issue warning messages about unused variables or functions.

weak

Youcanuse __attribute__ ((weak)) to specify that the symbol resulting from the function declaration
or variable must appear in the object file as a weak symbol, rather than a global one. This is primarily
useful when you are writing library functions which can be overwritten in user code without causing
duplicate name errors.

See also #pragma weak.
1.8. Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options. Put pragmas in your C source where you want them to take effect. Unless stated

15

TASKING VX-toolset for ARM User Guide

otherwise, a pragma is in effect from the point where it is included to the end of the compilation unit or

until another pragma changes its status.

The syntax is:

#pragma [l abel :] pragma- spec pragma-argunents [on | off | default | restore]

or:

_Pragma("[I|abel :]pragna-spec pragma-argunments [on | off | default | restore]")

Some pragmas can accept the following special arguments:

on switch the flag on (same as without argument)
of f switch the flag off

def aul t set the pragma to the initial value

restore restore the previous value of the pragma

Label pragmas

Some pragmas support a label prefix of the form "label:" between #pr agnma and the pragma name. Such
a label prefix limits the effect of the pragma to the statement following a label with the specified name.
The r est or e argument on a pragma with a label prefix has a special meaning: it removes the most
recent definition of the pragma for that label.

You can see a label pragma as a kind of macro mechanism that inserts a pragma in front of the statement
after the label, and that adds a corresponding #pragnma ... rest ore after the statement.

Compared to regular pragmas, label pragmas offer the following advantages:

» The pragma text does not clutter the code, it can be defined anywhere before a function, or even in a
header file. So, the pragma setting and the source code are uncoupled. When you use different header
files, you can experiment with a different set of pragmas without altering the source code.

» The pragma has an implicit end: the end of the statement (can be a loop) or block. So, no need for
pragma restore / endoptimize etc.

Example:
#pragma | abl: optimze P
vol atile int v;

void f(void)

labl: for(i=1; i<10; i++)

16

C Language

{
/* the entire for loop is part of the pragma optim ze */
a +=i;

Supported pragmas

The compiler recognizes the following pragmas, other pragmas are ignored. Pragmas marked with (*)
support a label prefix.

alias symbol=defined_symbol

Define symbol as an alias for defined_symbol. It corresponds to a . ALI AS directive at assembly level.
The symbol should not be defined elsewhere, and defined_symbol should be defined with static storage
duration (not extern or automatic).

call {near | far | default | restore} (*)

By default, functions are called with 26-bit PC-relative calls. This near call is directly coded into the
instruction, resulting in higher execution speed and smaller code size. The destination address of a near
call must be located within +/-32 MB from the program counter.

The other call mode is a 32-bit indirect call. With far calls you can address the full range of memory. The
address is first loaded into a register after which the call is executed.

See C compiler option --call (-m).
compactmaxmatch {value | default | restore} (*)

With this pragma you can control the maximum size of a match.

See C compiler option --compact-max-size.

extension isuffix [on | off | default | restore] (*)

Enables a language extension to specify imaginary floating-point constants. With this extension, you can

float O0.5i

extern symbol

Normally, when you use the C keyword ext er n, the compiler generates an . EXTERN directive in the
generated assembly source. However, if the compiler does not find any references to the ext er n symbol
in the C module, it optimizes the assembly source by leaving the . EXTERN directive out.

With this pragma you can force an external reference (. EXTERN assembler directive), even when the
symbol is not used in the module.

17

TASKING VX-toolset for ARM User Guide

fp_negzero [on | off | default | restore] (*)

With this pragma you can control the +negzero flag of C compiler option --fp-model.
fp_rewrite [on | off | default | restore] (*)

With this pragma you can control the +rewrite flag of C compiler option --fp-model.
inline / noinline / smartinline

See Section 1.11.2, Inlining Functions: inline.

inline_max_incr / inline_max_size {value | default | restore} (*)

With these pragmas you can control the automatic function inlining optimization process of the compiler.
It has only effect when you have enabled the inlining optimization (--optimize=+inline (-Oi)).

See C compiler options --inline-max-incr and --inline-max-size.

macro / nomacro [on | off | default | restore] (*)

Turns macro expansion on or off. By default, macro expansion is enabled.
maxcalldepth {value | default | restore} (*)

With this pragma you can control the maximum call depth. Default is infinite (-1).

See C compiler option --max-call-depth.

message "message" ...

Print the message string(s) on standard output.

nomisrac [nr,...] [default | restore] (*)

Without arguments, this pragma disables MISRA C checking. Alternatively, you can specify a
comma-separated list of MISRA C rules to disable.

See C compiler option --misrac and Section 4.6.2, C Code Checking: MISRA C.
optimize [flags | default | restore] (*) / endoptimize

You can overrule the C compiler option --optimize for the code between the pragmas opt i ni ze and
endopt i m ze. The pragma works the same as C compiler option --optimize.

See Section 4.5, Compiler Optimizations.

18

C Language

profile [flags | default | restore] (*) / endprofile
Control the profile settings. The pragma works the same as C compiler option --profile. Note that this

pragma will only be checked at the start of a function. endpr of i | e switches back to the previous profiling
settings.

profiling [on | off | default | restore] (*)

If profiling is enabled on the command line (C compiler option --profile), you can disable part of your
source code for profiling with the pragmas profili ng of f and profili ng.

protect [on | off | default | restore] (*) / endprotect
With these pragmas you can protect sections against linker optimizations. This excludes a section from

unreferenced section removal and duplicate section removal by the linker. endpr ot ect restores the
default section protection.

runtime [flags | default | restore] (*)

With this pragma you can control the generation of additional code to check for a number of errors at
run-time. The pragma argument syntax is the same as for the arguments of the C compiler option --runtime.
You can use this pragma to control the run-time checks for individual statements. In addition, objects
declared when the "bounds" sub-option is disabled are not bounds checked. The "malloc" sub-option

cannot be controlled at statement level, as it only extracts an alternative malloc implementation from the
library.

section [name=]{suffix |-f|-m|-fm} [default | restore] (*) / endsection

Rename sections by adding a sulffix to all section names specified with name, or restore default section
naming. If you specify only a suffix (without a name), the suffix is added to all section names. See C
compiler option --rename-sections and assembler directive . SECTI ON for more information.

section_code_init [on | off | default | restore] (*) / section_no_code_init

Copy or do not copy code sections from ROM to RAM at application startup.

section_const_init [on | off | default | restore] (*) / section_no_const_init

Copy or do not copy read-only data sections from ROM to RAM at application startup.

silicon_bug [bug,...] [default | restore] (*)

Without arguments, all silicon bug workarounds are enabled. Alternatively, you can specify a
comma-separated list of silicon bug workarounds.

See C compiler option --silicon-bug and Chapter 19, CPU Problem Bypasses and Checks.

19

TASKING VX-toolset for ARM User Guide

source [on | off | default | restore] (*) / nosource
With these pragmas you can choose which C source lines must be listed as comments in assembly output.

See C compiler option --source.

stdinc [on | off | default | restore] (*)

This pragma changes the behavior of the #i ncl ude directive. When set, the C compiler options
--include-directory and --no-stdinc are ignored.

linear_switch / jump_switch / binary_switch / smart_switch / tbb_switch
/ tbh_switch / no_tbh_switch

With these pragmas you can overrule the compiler chosen switch method:

| i near _swi tch Force jump chain code. A jump chain is comparable with an if/else-if/else-if/else
construction.

jump_switch Force jump table code. A jump table is a table filled with jump instructions for each
possible switch value. The switch argument is used as an index to jump within this
table.

bi nary_sw tch Force binary lookup table code. A binary search table is a table filled with a value
to compare the switch argument with and a target address to jump to.

smart_sw tch Let the compiler decide the switch method used.

tbb_swi tch Force use of the t bb instruction. Uses a table of 8-bit jump offsets.
tbh_switch Force use of the t bh instruction. Uses a table of 8-bit jump offsets.
no_tbh _switch Sameassnart_swi tch, butdo notuse thet bh instruction.

See Section 1.10, Switch Statement.
tradeoff {level | default | restore} (*)
Specify tradeoff between speed (0) and size (4). See C compiler option --tradeoff

warning [number,...] [default | restore] (*)

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed.

weak symbol

Mark a symbol as "weak" (. WEAK assembler directive). The symbol must have external linkage, which
means a global or external object or function. A static symbol cannot be declared weak.

A weak external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference. When a weak external reference cannot be resolved, the null pointer is substituted.

20

C Language

A weak definition can be overruled by a normal global definition. The linker will not complain about the
duplicate definition, and ignore the weak definition.

1.9. Predefined Preprocessor Macros

The TASKING C compiler supports the predefined macros as defined in the table below. The macros are
useful to create conditional C code.

Macro Description

__ARM__ Expands to 1 for the ARM toolset, otherwise unrecognized as macro.

__BIG_ENDIAN__ Expands to 1 if big-endian mode is selected (option --endianness=big),
otherwise unrecognized as macro.

__BUILD__ Identifies the build number of the compiler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
compiler, _ BUILD__ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

_ CARM__ Expands to 1 for the ARM toolset, otherwise unrecognized as macro.

__CPU__ Expands to the ARM architecture name (option --cpu=arch). When no --cpu
is supplied, this symbol is not defined. For example, if --cpu=ARMV7M is
specified, the symbol __CPU__ expands to ARM/7M

__CPU_arch__ A symbol is defined depending on the option --cpu=arch. The arch is
converted to uppercase. For example, if --cpu=ARMvV7M is specified, the
symbol __CPU_ARMV7M__is defined. When no --cpu is supplied, this symbol
__CPU_ARWTM _ is the default.

__DATE___ Expands to the compilation date: “mmm dd yyyy".

_ DOUBLE_FP__ Expands to 1 if you used option --fp-model=-float, otherwise unrecognized
as macro.

__DSPC__ Indicates conformation to the DSP-C standard. It expands to 1.

__DSPC_VERSION__

Expands to the decimal constant 200001L.

__FILE__

Expands to the current source file name.

__FPU_fpu__ A symbol is defined depending on the option --fpu=fpu. The fpu is converted
to uppercase and the lowercase “v" and the "-' will be removed. For example,
if --fpu=VFPv3-sp is specified, the symbol __FPU_VFP3SP___ is defined.
When no --fpu is supplied, the symbol __ FPU_NONE__ is the default.

__FPU_VFP__ Expands to 1 if one the options --fpu=fpu is specified and fpu is not NONE.

__LINE__ Expands to the line number of the line where this macro is called.

_ LITTLE_ENDIAN__

Expands to 1 if little-endian mode is selected (option --endianness=little),
otherwise unrecognized as macro. This is the default.

__ MISRAC_VERSION__

Expands to the MISRA C version used 1998, 2004 or 2012 (option
--misrac-version). The default is 2004.

21

TASKING VX-toolset for ARM User Guide

Macro Description
_ PROF_ENABLE_ Expands to 1 if profiling is enabled, otherwise expands to 0.
__REVISION___ Expands to the revision number of the compiler. Digits are represented as

they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

__SINGLE_FP___ Expands to 1 if you used option --fp-model=+float (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.

__STDC__ Identifies the level of ANSI standard. The macro expands to 1 if you set
option --language (Control language extensions), otherwise expands to 0.

__STDC_HOSTED__ Always expands to 0, indicating the implementation is not a hosted
implementation.

__STDC_VERSION__ Identifies the 1ISO-C version number. Expands to 199901L for ISO C99 or
199409L for ISO C90.

__TASKING__ Identifies the compiler as a TASKING compiler. Expands to 1 if a TASKING
compiler is used.

_ _THUMB__ Expands to 1 if you used option --thumb, otherwise unrecognized as macro.

__TIME__ Expands to the compilation time: “hh:mm:ss”

_ VERSION__ Identifies the version number of the compiler. For example, if you use version

3.0r1 of the compiler, _ VERSION__ expands to 3000 (dot and revision
number are omitted, minor version number in 3 digits).

Example

#ifdef __CARM _
/* this part is only conmpiled for the ARM */

#endi f

1.10. Switch Statement

The TASKING C compiler supports three ways of code generation for a switch statement: a jump chain
(linear switch), a jump table or a binary search table.

A jump chain is comparable with an if/else-if/else-if/else construction. A jump table is a table filled with
jump instructions for each possible switch value. The switch argument is used as an index to jump within
this table. A binary search table is a table filled with a value to compare the switch argument with and a
target address to jump to.

#pragma smart _sw t ch is the default of the compiler. The compiler will automatically choose the most
efficient switch implementation based on code and data size and execution speed. With the C compiler
option --tradeoff you can tell the compiler to put more emphasis on speed than on memory size.

For a switch with a long type argument, only linear code is used.

For an int type argument, a jump table switch is only used when the table of cases is not too sparse.

22

C Language

Especially for large switch statements, the jump table approach executes faster than the binary search
table approach. Also the jump table has a predictable behavior in execution speed: independent of the
switch argument, every case is reached in the same execution time. However, when the case labels are
distributed far apart, the jump table becomes sparse, wasting code memory. The compiler will not use
the jump table method when the waste becomes excessive.

With a small number of cases, the jump chain method can be faster in execution and shorter in size.
For ARMV7M a switch using the t bh instruction gets priority over a normal switch table implementation.
How to overrule the default switch method

You can overrule the compiler chosen switch method by using a pragma:

#pragma |inear_switch force jump chain code

#pragma junp_swi tch force jump table code

#pragma bi nary_switch force binary search table code

#pragma smart_swi tch let the compiler decide the switch method used

#pragma tbb_sw tch force use of t bb instruction (uses a table of 8-bit jump offsets)
#pragnma tbh_swi tch force use of t bh instruction (uses a table of 16-bit jump offsets)

#pragma no_tbh_switch sameassmart_swi tch, but do not use t bh instruction

Using a pragma cannot overrule the restrictions as described earlier.

The switch pragmas must be placed before the swi t ch statement. Nested swi t ch statements use the
same switch method, unless the nested swi t ch is implemented in a separate function which is preceded
by a different switch pragma.

Example:
/* place pragma before function body */
#pragnma junp_swi tch

voi d test(unsigned char val)
{ I'* function containing the switch */
switch (val)

{
}

/* use junp table */

23

TASKING VX-toolset for ARM User Guide

1.11. Functions

1.11.1. Calling Convention

Parameter passing

A lot of execution time of an application is spent transferring parameters between functions. The fastest
parameter transport is via registers. Therefore, function parameters are first passed via registers. If no
more registers are available for a parameter, the compiler pushes parameters on the stack.

Registers available for parameter passing are r0, rl, r2 and r3.

Parameter type Registers used for parameters

_Bool, char, short, int, long, float, 32-bit |RO, R1, R2, R3
pointer, 32—bit struct

long long, double, 64—bit struct ROR1, R1R2, R2R3

The parameters are processed from left to right. The first not used and fitting register is used. Registers
are searched for in the order listed above. When a parameter is > 64 bit, or all registers are used, parameter
passing continues on the stack. The stack grows from higher towards lower addresses. The first parameter
is pushed at the lowest stack address. The alignment on the stack depends on the data type as listed in
Section 1.1, Data Types.

Examples:
void funcl(int a, char * b, char ¢); /* RORL R */
void func2(long long d, char e); /* RORL R2 */

voi d func4(double f, long long g, char h);
/* ROR1 R2R3 stack */

Function return values

The C compiler uses registers to store C function return values, depending on the function return types.

Return type Register

_Bool, char, short, int, long, float, 32—hit |RO
pointer, 32—bit struct

long long, double, 64-bit struct ROR1

Obijects larger than 64 bits are returned via the stack.

1.11.2. Inlining Functions: inline

With the C compiler option --optimize=+inline, the C compiler automatically inlines small functions in
order to reduce execution time (smart inlining). The compiler inserts the function body at the place the
function is called. The C compiler decides which functions will be inlined. You can overrule this behavior
with the two keywords i nl i ne (ISO-C) and __noi nl i ne.

24

C Language

With the i nl i ne keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs val;

}

If a function with the keyword i nl i ne is not called at all, the compiler does not generate code for it.

You must define inline functions in the same source module as in which you call the function, because
the compiler only inlines a function in the module that contains the function definition. When you need to
call the inline function from several source modules, you must include the definition of the inline function
in each module (for example using a header file).

With the __noi nl i ne keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)

{
unsigned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

Using pragmas: inline, noinline, smartinline

Instead of the i nl i ne qualifier, you can also use #pr agna i nl i ne and #pr agna noi nl i ne to inline
a function body:

#pragma inline
unsi gned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs val;

}

#pragma noinline
void main(void)
{ . .

int i;

i = abs(-1);
}

If a function has an i nl i ne/__noi nl i ne function qualifier, then this qualifier will overrule the current
pragma setting.

With the #pr agma noi nl i ne /#pragma smarti nl i ne you can temporarily disable the default behavior

that the C compiler automatically inlines small functions when you turn on the C compiler option
--optimize=+inline.

25

TASKING VX-toolset for ARM User Guide

With the C compiler options --inline-max-incr and --inline-max-size you have more control over the
automatic function inlining process of the compiler.

Combining inline with __asm to create intrinsic functions

With the keyword __asmit is possible to use assembly instructions in the body of an inline function.
Because the compiler inserts the (assembly) body at the place the function is called, you can create your
own intrinsic function. See Section 1.11.4.1, Writing Your Own Intrinsic Function.

1.11.3. Interrupt Functions / Exception Handlers

The TASKING C compiler supports a number of function qualifiers and keywords to program exception
handlers. An exception handler (or: interrupt function) is called when an exception occurs.

The ARM supports seven types of exceptions. The next table lists the types of exceptions and the processor
mode that is used to process that exception. When an exception occurs, execution is forced from a fixed
memory address corresponding to the type of exception. These fixed addresses are called the exception

vectors.

Exception type Mode Normal address |[High vector Function type qualifier
address

Reset Supervisor 0x00000000 OxFFFF0000

Undefined Undefined 0x00000004 OxFFFF0004 __interrupt_und

instructions

Supervisor call Supervisor 0x00000008 OxFFFF0008 __interrupt_svc

(software interrupt)

Prefetch abort Abort 0x0000000C OxFFFF0O00C __interrupt_iabt

Data abort Abort 0x00000010 OxFFFF0010 __interrupt_dabt

IRQ (interrupt) IRQ 0x00000018 OxFFFF0018 __interrupt_irq

FIQ (fast interrupt) |FIQ 0x0000001C OxFFFF001C __interrupt_fiq

ARMv6-M and ARMv7-M (M-profile architectures) have a different exception model. Read the
ARM Architecture Reference Manual for details.

1.11.3.1. Defining an Exception Handler: __interrupt Keywords

You can define six types of exception handlers with the function type qualifiers __i nt er rupt _und,
__interrupt_svc,__interrupt_iabt, interrupt_dabt,_ _interrupt_irqgand
__interrupt_fiqg.You can also use the general __i nt errupt () function qualifier.

Interrupt functions and other exception handlers cannot return anything and must have a void argument

type list:

void __interrupt_xxx
isr(void)

{

26

C Language

void __interrupt(n)
isr2(void)
{

Example

void __interrupt_irq serial _receive(void)

{
}

Vector symbols

When you use one or more of these __i nt er r upt _xxx function qualifiers, the compiler generates a
corresponding vector symbol to designate the start of an exception handler function. The linker uses this
symbol to automatically generate the exception vector.

Function type qualifier Vector symbol Vector symbol M-profile
__interrupt_und _vector_1 -

__interrupt_svc _vector_2 _vector_11
__interrupt_iabt _vector_3 -

__interrupt_dabt _vector_4 -

_interrupt_irq _vector_6 -

__interrupt_fiq _vector_7 -

__interrupt(n) _vector_n _vector_n

Note that the reset handler is designated by the symbol _START instead of _vect or _0 (_vect or _1 for
M-profile architectures).

You can prevent the compiler from generating the _vect or _n symbol by specifying the function qualifier
__novect or . This can be necessary if you have more than one interrupt handler for the same exception,
for example for different IRQ's or for different run-time phases of your application. Without the __novect or
function qualifier the compiler generates the _vect or _n symbol multiple times, which results in a link
error.

void __interrupt_irq __novector another_handl er(void)

{
}

/1 used __novector to prevent nultiple _vector_6 synbols

27

TASKING VX-toolset for ARM User Guide

Enable interrupts in exception handlers (not for M-profile architectures)

Normally interrupts are disabled when an exception handler is entered. With the function qualifier
__nesting_enabl ed you can force that the link register (LR) is saved and that interrupts are enabled.
For example:

void __interrupt_svc __nesting_enabled svc(int n)
{ if (n==2)
__svc(3);
}
, c

1.11.3.2. Interrupt Frame: __ frame()

With the function type qualifier __f rane() you can specify which registers and SFRs must be saved for
a particular interrupt function. Only the specified registers will be pushed and popped from the stack. If
you do not specify the function qualifier __f rame() , the C compiler determines which registers must be
pushed and popped. The syntax is:

void __interrupt_xxx

_ frame(reg[, reg]...) isr(void)
{
}

where, reg can be any register defined as an SFR. The compiler generates a warning if some registers
are missing which are normally required to be pushed and popped in an interrupt function prolog and
epilog to avoid run-time problems.

Example

_interrupt_irq _ frame(R4,R5, R6) void alarm(void)
{

1.11.4. Intrinsic Functions

Some specific assembly instructions have no equivalence in C. Intrinsic functions give the possibility to
use these instructions. Intrinsic functions are predefined functions that are recognized by the compiler.
The compiler generates the most efficient assembly code for these functions.

The compiler always inlines the corresponding assembly instructions in the assembly source (rather than

calling it as a function). This avoids parameter passing and register saving instructions which are normally
necessary during function calls.

28

C Language

Intrinsic functions produce very efficient assembly code. Though it is possible to inline assembly code by
hand, intrinsic functions use registers even more efficiently. At the same time your C source remains very
readable.

You can use intrinsic functions in C as if they were ordinary C (library) functions. All intrinsics begin with
a double underscore character (__).

The TASKING ARM C compiler recognizes the following intrinsic functions:

__alloc
void * volatile __alloc(__size_t size);

Allocate memory. Returns a pointer to space of si ze bytes on the stack of the calling function. Memory
allocated through this function is freed when the calling function returns. This function is used internally
for variable length arrays, it is not to be used by end users.

_ free
void volatile _ _free(void * p);

Deallocate the memory pointed to by p. p must point to memory earlier allocated by acallto __al | oc() .

__hop

void __nop(void);
Generate a NOP instruction.
__get_return_address

__codeptr volatile __get_return_address(void);

Used by the compiler for profiling when you compile with the option --profile. Returns the return address
of a function.

__remap_pc

void volatile __remap_pc(void);

Load the 'real' program address. This intrinsic is used in the startup code to assure that the reset handler
is immune for any ROM/RAM remapping.

__setsp

void volatile __setsp(__data void * stack);
Initialize the stack pointer with 'stack'.

__getspsr

unsigned int volatile __getspsr(void);

29

TASKING VX-toolset for ARM User Guide

Get the value of the SPSR status register. Returns the value of the status register SPSR.

__setspsr

unsigned int volatile __setspsr(int set, int clear);

Set or clear bits in the SPSR status register. Returns the new value of the SPSR status register.
Example:

#defi ne SR_F 0x00000040
#define SR | 0x00000080

i = __setspsr (0, SRF | SRI);

if (i &(SRF| SRI))

{
exit (6); /* Interrupt flags not correct */
}
if (__getspsr () & (SR F | SR1))
{
exit (7); /* Interrupt flags not correct */
}
__getcpsr

unsigned int volatile __getcpsr(void);

Get the value of the CPSR status register. Returns the value of the status register CPSR.

__setcpsr
unsigned int volatile __setcpsr(int set, int clear);

Set or clear bits in the CPSR status register. Returns the new value of the CPSR status register.

__getapsr
unsigned int volatile __getapsr(void);

Get the value of the APSR status register (ARMv6-M and ARMv7-M). Returns the value of the status
register APSR.

__setapsr

unsigned int volatile __setapsr(int set, int clear);

Set or clear bits in the APSR status register (ARMv6-M and ARMv7-M). Returns the new value of the
APSR status register.

30

C Language

__getipsr
unsigned int volatile __getipsr(void);

Get the value of the IPSR status register (ARMv6-M and ARMv7-M). Returns the value of the status
register IPSR.

__svC

void volatile __svc(int nunber);

Generate a supervisor call (software interrupt). Number must be a constant value.

CMSIS intrinsics

The TASKING VX-toolset for ARM supports the Cortex Micro-controller Software Interface Standard
(CMSIS). You can find details about this standard on www.onarm.com.

The required functions as defined in the CMSIS are supported by the compiler as intrinsic functions and

do not have any implementation in the CMSIS header files cor e_cn®. h and core_cn8B. h. The
implemented intrinsic functions are:

__enable_irq

void volatile __enable_irq(void);

Global Interrupt enable (using the instruction CPSI E i).
__disable_irq

void volatile __disable_irq(void);

Global Interrupt disable (using the instruction CPSI D i).

__set_ PRIMASK

void volatile __set_ PRI MASK(unsigned int value);
Assign value to Priority Mask Register (using the instruction MSR).
__get_PRIMASK

unsigned int _ _get PRI MASK(void);

Return Priority Mask Register (using the instruction MRS).
__enable_fault_irq

void volatile __enable_fault_irq(void);

Global Fault exception and Interrupt enable (using the instruction CPSI E f).

31

http://www.onarm.com

TASKING VX-toolset for ARM User Guide

__disable_fault_irq

void volatile __disable_fault_irqg(void);

Global Fault exception and Interrupt disable (using the instruction CPSI D f).
__set_ FAULTMASK

void volatile __set FAULTMASK(unsigned int value);
Assign value to Fault Mask Register (using the instruction MSR).
__get_ FAULTMASK

unsigned int _ get FAULTMASK(void);

Return Fault Mask Register (using the instruction MRS).

__set BASEPRI

void volatile __set BASEPRI (unsigned int value);
Set Base Priority (using the instruction VSR).

__get_BASEPRI

unsigned int _ get BASEPRI(void);

Return Base Priority (using the instruction MRS).

__set_ CONTROL

void volatile __set CONTROL(unsigned int value);
Set CONTROL register value (using the instruction MSR).
__get_CONTROL

unsigned int _ get CONTROL(void);

Return Control Register Value (using the instruction MRS).

__set PSP

void volatile __set_ PSP(unsigned int value);

Set Process Stack Pointer value (using the instruction MSR).
__get_PSP

unsigned int _ get PSP(void);

32

Return Process Stack Pointer (using the instruction MRS).

__set_MSP
void volatile __set_MSP(unsigned int value);

Set Main Stack Pointer (using the instruction MSR).

__get_MSP
unsigned int _ get MSP(void);
Return Main Stack Pointer (using the instruction MRS).

__WFI

void volatile __ WFI(void);

Wait for Interrupt.

__WFE

void volatile __ WFE(void);
Wait for Event.

__SEV

void volatile _ SEV(void);
Set Event.

__IsB

void volatile __ISB(void);

Instruction Synchronization Barrier.

__DSB

void volatile __DSB(void);
Data Synchronization Barrier.
__DMB

void volatile _ DVMB(void);

Data Memory Barrier.

C Language

33

TASKING VX-toolset for ARM User Guide

__REV

unsigned int _ REV(unsigned int value);

Reverse byte order in integer value.

__REV16

unsigned int _ REV16(unsigned short value);

Reverse byte order in unsigned short value.

_ REVSH

signed int _ REVSH(signed int value);

Reverse byte order in signed short value with sign extension to integer.
_ RBIT

unsigned int _ RBIT(unsigned int value);

Reverse bit order of value.

_ LDREXB

unsi gned vol atil e char __LDREXB(unsigned char * addr
Load exclusive byte.

__LDREXH

)

unsi gned vol atile short _ LDREXH(unsigned short * addr);

Load exclusive half-word.

_ LDREXW
unsigned int volatile __ LDREXW unsigned int * addr);

Load exclusive word.

__STREXB

unsigned int volatile _ STREXB(unsigned char val ue, unsigned char * addr);

Store exclusive byte.

__STREXH

unsigned int volatile _ STREXH(unsigned short val ue,

34

unsi gned short * addr);

C Language

Store exclusive half-word.

_ STREXW
unsigned int volatile __ STREXW unsigned int value, unsigned int * addr);

Store exclusive word.

__ CLREX
void volatile __ CLREX(void);

Remove the exclusive lock created by _ LDREXB, __ LDREXH, or __ LDREXW

1.11.4.1. Writing Your Own Intrinsic Function

Because you can use any assembly instruction with the __asn() keyword, you can use the __asn{()
keyword to create your own intrinsic functions. The essence of an intrinsic function is that it is inlined.

1. First write a function with assembly in the body using the keyword __asn{) . See Section 1.6, Using
Assembly in the C Source: __asm()

2. Next make sure that the function is inlined rather than being called. You can do this with the function
qualifier i nl i ne.This qualifier is discussed in more detail in Section 1.11.2, Inlining Functions: inline.

inline int __ny_pow int base, int power)

{
int result;
__asn("nov %, %d\ n"
"1:\n\t"
"subs %2, 9%2,#1\n\t"
"mul ne %9, %0, %d\ n\t"
"bne Ip\n\t", 9"
"=&r " (result)
"r"(base), "r"(power));
return result;
}
voi d nmai n(voi d)
{
int result;
/1 call to function __ny_pow
result = __ny_pow 3, 2);
}

Generated assembly code:

35

TASKING VX-toolset for ARM User Guide

nmai n: .type func
; __ny_pow code is inlined here
nov ro, #2
nov ri, #3

nmov r2,rl
subs r0,r0, #1
mulne r2,r2,r1

bne 1p

As you can see, the generated assembly code for the function __ny_powis inlined rather than called.
Numeric labels are used for the loop.

36

Chapter 2. C++ Language

The TASKING C++ compiler (cparm) offers a new approach to high-level language programming for your
ARM architecture. The C++ compiler accepts the C++ language as defined by the ISO/IEC 14882:2003
standard. It also accepts the language extensions of the C compiler (see Chapter 1, C Language).

This chapter describes the C++ language implementation and some specific features.

Note that the C++ language itself is not described in this document. For more information on the C++
language, see

» The C++ Programming Language (second edition) by Bjarne Straustrup (1991, Addison Wesley)

* ISO/IEC 14882:1998 C++ standard [ANSI] More information on the standards can be found at
http://lwww.ansi.org/

2.1. C++ Language Extension Keywords

The C++ compiler supports the same language extension keywords as the C compiler. When option
--strict is used, the extensions will be disabled.

pragmas

The C++ compiler supports the pragmas as explained in Section 2.8, Pragmas to Control the C++ Compiler.
Pragmas give directions to the code generator of the compiler.

2.2. C++ Dialect Accepted

The C++ compiler accepts the C++ language as defined by the ISO/IEC 14882:2003 standard.

Command line options are also available to enable and disable anachronisms and strict
standard-conformance checking.

2.2.1. Standard Language Features Accepted

The following features not in traditional C++ (the C++ language of "The Annotated C++ Reference Manual"
by Ellis and Stroustrup (ARM)) but in the standard are implemented:

» The dependent statement of an i f, whi | e, do- whi | e, or f or is considered to be a scope, and the
restriction on having such a dependent statement be a declaration is removed.

» The expression tested inani f, whi | e, do-whi | e, or f or, as the first operand of a "?" operator, or
as an operand of the "&&", ": ", or "! "operators may have a pointer-to-member type or a class type that
can be converted to a pointer-to-member type in addition to the scalar cases permitted by the ARM.

* Qualified names are allowed in elaborated type specifiers.

A global-scope qualifier is allowed in member references of the form x. : : A : Band p->:: A: : B.

37

http://www.ansi.org/

TASKING VX-toolset for ARM User Guide

» The precedence of the third operand of the "?" operator is changed.

« If control reaches the end of the mai n() routine, and nai n() has an integral return type, it is treated
asifareturn 0; statement were executed.

 Pointers to arrays with unknown bounds as parameter types are diagnosed as errors.

» A functional-notation cast of the form A() can be used even if Ais a class without a (nontrivial)
constructor. The temporary created gets the same default initialization to zero as a static object of the
class type.

» A cast can be used to select one out of a set of overloaded functions when taking the address of a
function.

» Template friend declarations and definitions are permitted in class definitions and class template
definitions.

» Type template parameters are permitted to have default arguments.

» Function templates may have nontype template parameters.

» Areference to const vol ati | e cannot be bound to an rvalue.

 Qualification conversions, such as conversion from T** to T const * const * are allowed.
 Digraphs are recognized.

» Operator keywords (e.g., not , and, bi t and, etc.) are recognized.

* Static data member declarations can be used to declare member constants.

» When option --wchar_t-keyword is set, wchar _t is recognized as a keyword and a distinct type.
* bool is recognized.

* RTTI (run-time type identification), including dynami c_cast andthet ypei d operator, is implemented.
» Declarations in tested conditions (ini f, swi t ch, f or, and whi | e statements) are supported.

» Array newand del et e are implemented.

* New-style casts (stati c_cast,rei nterpret_cast, and const _cast) are implemented.
 Definition of a nested class outside its enclosing class is allowed.

* nut abl e is accepted on non-static data member declarations.

» Namespaces are implemented, including usi ng declarations and directives. Access declarations are
broadened to match the corresponding usi ng declarations.

» Explicit instantiation of templates is implemented.

* The t ypenane keyword is recognized.

38

C++ Language

explicit is accepted to declare non-converting constructors.

The scope of a variable declared inthe f or -i ni t - st at enent of af or loop is the scope of the loop
(not the surrounding scope).

Member templates are implemented.
The new specialization syntax (using "t enpl at e <>") is implemented.
Cv-qualifiers are retained on rvalues (in particular, on function return values).

The distinction between trivial and nontrivial constructors has been implemented, as has the distinction
between PODs and non-PODs with trivial constructors.

The linkage specification is treated as part of the function type (affecting function overloading and
implicit conversions).

ext ern inline functions are supported, and the default linkage for i nl i ne functions is external.
A typedef name may be used in an explicit destructor call.

Placement delete is implemented.

An array allocated via a placement new can be deallocated via delete.

Covariant return types on overriding virtual functions are supported.

enumtypes are considered to be non-integral types.

Partial specialization of class templates is implemented.

Partial ordering of function templates is implemented.

Function declarations that match a function template are regarded as independent functions, not as
"guiding declarations" that are instances of the template.

It is possible to overload operators using functions that take enumtypes and no cl ass types.
Explicit specification of function template arguments is supported.

Unnamed template parameters are supported.

The new lookup rules for member references of the form x. A: : B and p- >A: : B are supported.
The notation : : tenpl at e (and - >t enpl at e, etc.) is supported.

In a reference of the form f () - >g() , with g a static member function, f () is evaluated. The ARM
specifies that the left operand is not evaluated in such cases.

enumtypes can contain values larger than can be contained in ani nt .

Default arguments of function templates and member functions of class templates are instantiated only
when the default argument is used in a call.

39

TASKING VX-toolset for ARM User Guide

* String literals and wide string literals have const type.
» Class name injection is implemented.
» Argument-dependent (Koenig) lookup of function names is implemented.

» Class and function names declared only in unqualified friend declarations are not visible except for
functions found by argument-dependent lookup.

» Avoi d expression can be specified on a return statement in a voi d function.

» Function-try-blocks, i.e., try-blocks that are the top-level statements of functions, constructors, or
destructors, are implemented.

» Universal character set escapes (e.g., \ uabcd) are implemented.

» On acall in which the expression to the left of the opening parenthesis has class type, overload resolution
looks for conversion functions that can convert the class object to pointer-to-function types, and each
such pointed-to "surrogate function" type is evaluated alongside any other candidate functions.

» Dependent name lookup in templates is implemented. Nondependent names are looked up only in the
context of the template definition. Dependent names are also looked up in the instantiation context, via
argument-dependent lookup.

» Value-initialization is implemented. This form of initialization is indicated by an initializer of "()" and
causes zeroing of certain POD-typed members, where the usual default-initialization would leave them
uninitialized.

» A partial specialization of a class member template cannot be added outside of the class definition.
 Qualification conversions may be performed as part of the template argument deduction process.

* The export keyword for templates is implemented.

2.2.2. C++0x Language Features Accepted

The following features added in the working paper for the next C++ standard (expected to be completed
in 2011) are enabled in C++0x mode (with option --c++0x). Several of these features are also enabled
in default (nonstrict) C++ mode.

* A "right shift token" (>>) can be treated as two closing angle brackets. For example:

tenpl ate<typenane T> struct S {};
S<S<int>>s; // OK No whitespace needed
/1l between closing angl e brackets.

» The static_assert construct is supported. For example:

tenpl at e<typenane T> struct S {
static_assert(sizeof (T) > 1, "Type T too small");

H

40

C++ Language

S<§[2] > s; Il K
S<char> s2; // Instantiation error due to failing static_assert.

The friend class syntax is extended to allow nonclass types as well as class types expressed through
a typedef or without an elaborated type name. For example:

typedef struct S ST,

class C {
friend S; /1l OK (requires S to be in scope).
friend ST; /1 OK (same as "friend S;").
friend int; /1 OK (no effect).

friend S const; // Error: cv-qualifiers cannot
/| appear directly.

b
Mixed string literal concatenations are accepted (a feature carried over from C99):

wchar _t *str = "a" L"b"; // OK, sane as L"ab".

Variadic macros and empty macro arguments are accepted, as in C99.

In function bodies, the reserved identifier __f unc__ refers to a predefined array containing a string
representing the function's name (a feature carried over from C99).

A trailing comma in the definition of an enumeration type is silently accepted (a feature carried over
from C99):

enumE { e, };

If the command line option --long-long is specified, the type | ong | ong is accepted. Unsuffixed integer
literals that cannot be represented by type | ong, but could potentially be represented by type unsi gned
| ong, have type | ong | ong instead (this matches C99, but not the treatment of the | ong | ong
extension in C89 or default C++ mode).

An explicit instantiation directive may be prefixed with the ext er n keyword to suppress the instantiation
of the specified entity.

The keyword t ypenane followed by a qualified-id can appear outside a template declaration.

struct S { struct N {}; };
typename S:: N *p; // Silently accepted
/! in C++0x node

The keyword aut o can be used as a type specifier in the declaration of a variable or reference. In such
cases, the actual type is deduced from the associated initializer. This feature can be used for variable
declarations, for inclass declarations of static const members, and for new-expressions.

41

TASKING VX-toolset for ARM User Guide

auto x = 3.0; /] Same as "double x = 3.0;"
auto p = new auto(x); /1 Same as "double *p = new doubl e(x);"
struct S {

static auto const m=3; // Sane as "static int const m= 3;"

I

* Trailing return types are allowed in top-level function declarators. These must be paired with the aut o
type specifier.

auto f()->int*; // Same as: int *f();

» The keyword decl t ype is supported: It allows types to be described in terms of expressions. For
example:

tenpl at e<typenane T> struct S {
decl type(f(T())) *p; // A pointer to the return type of f.

H

» The constraints on the code points implied by universal character names (UCNs) are slightly different:
UCN: s for surrogate code points (0xD00O through OXDFFF) are never permitted, and UCN corresponding
to control characters or to characters in the basic source character set are permitted in string literals.

» Scoped enumeration types (defined with the keyword sequence enum cl ass) and explicit underlying
integer types for enumeration types are supported. For example:

enumclass Primary { red, green, blue };
enum cl ass Danger { green, yellow, red }; // No conflict on "red".
enum Code: unsigned char { yes, no, maybe };
void f() {

Primary p = Primary::red; // Enumaqualifier is required to access

/| scoped enunerator constants.

Code c = Code::maybe; // Enumqualifier is allowed (but not required)

} /1 for unscoped enuneration types.

» Lambdas are supported. For example:

tenpl ate<class F>int z(F f) { return f(0); }

int g() {
int v =7;
return z([v](int x)->int { return x+v; });

» The C99-style _Pr agma operator is supported.
» Rvalue references are supported. For example:
int f(int);
int &rr = f(3);

42

C++ Language

Functions can be "deleted". For example:

int f(int) = delete;

short f(short);

int x f(3); /1 Error: selected function is del eted.
inty f((short)3); [/ K

Special member functions can be explicitly "defaulted"” (i.e., given a default definition). For example:

struct S { S(S const& = default; };
struct T { T(T const&); };
T:.:T(T const& = default;

The operand of si zeof , t ypei d, or decl t ype can refer directly to a non-static data member of a
class without using a member access expression. For example:

struct S {
int i;
H
decltype(S::i) j = sizeof (S::i);

The keyword nul | pt r can be used as both a null pointer constant and a null pointer-to-member
constant. Variables and other expressions whose type is that of the nul | pt r keyword (conventionally
known by its standard typedef, st d: : nul | pt r _t) can also be used as null pointer(-to-member)
constants, although they are only constant expressions if they otherwise would be. For example:

#i ncl ude <cstddef> // To get std::nullptr_t
struct S { };

tenplate <int *> struct X { };
std::nullptr_t null();

void f() {
void *p = null ptr; /1 Initializes p to null pointer
int Ss:* np =nullptr; // Initializes np to null ptr-to-nmenber
p =null(); /1 Sets p to null pointer
X<nul I ptr> xnul | 0; /1 Instantiates X with null int * val ue
X<nul | ()> xnul|1; /1 Error: tenplate argument not a
/1 constant expression
}
Attributes delimited by double square brackets ([[...]]) are accepted in declarations. The standard

attributes al i gn, nor et ur n, not hrow, fi nal , and carri es_dependency are supported. For
example:
[[nothrow]] void f();

Alias and alias template declarations are supported. For example:

43

TASKING VX-toolset for ARM User Guide

using X = int;

X x; [/l equivalent to "int x"

tenpl ate <typename T> using Y = T*;
Y<int>yi; // equivalent to "int* yi"

2.2.3. Anachronisms Accepted

The following anachronisms are accepted when anachronisms are enabled (with --anachronisms):

over | oad is allowed in function declarations. It is accepted and ignored.

Definitions are not required for static data members that can be initialized using default initialization.
The anachronism does not apply to static data members of template classes; they must always be
defined.

The number of elements in an array may be specified in an array del et e operation. The value is
ignored.

A single oper at or ++() and oper at or - - () function can be used to overload both prefix and postfix
operations.

The base class hame may be omitted in a base class initializer if there is only one immediate base
class.

Assignment to t hi s in constructors and destructors is allowed. This is allowed only if anachronisms
are enabled and the "assignment to t hi s" configuration parameter is enabled.

A bound function pointer (a pointer to a member function for a given object) can be cast to a pointer to
a function.

A nested class name may be used as a non-nested class hame provided no other class of that name
has been declared. The anachronism is not applied to template classes.

A reference to a non-const type may be initialized from a value of a different type. A temporary is
created, it is initialized from the (converted) initial value, and the reference is set to the temporary.

A reference to a non-const class type may be initialized from an rvalue of the class type or a derived
class thereof. No (additional) temporary is used.

A function with old-style parameter declarations is allowed and may participate in function overloading
as though it were prototyped. Default argument promotion is not applied to parameter types of such
functions when the check for compatibility is done, so that the following declares the overloading of
two functions named f :

int f(int);
int f(x) char x; { return x; }

Note that in C this code is legal but has a different meaning: a tentative declaration of f is followed by
its definition.

44

C++ Language

* When option --nonconst-ref-anachronism is set, a reference to a non-const class can be bound to a
class rvalue of the same type or a derived type thereof.

struct A {
A(int);
A oper at or =(Ag&) ;
A operat or +(const A&);

b
mai n () {

b(l)

= A(1) + A(2); /] Alowed as anachroni sm
}

2.2.4. Extensions Accepted in Normal C++ Mode

The following extensions are accepted in all modes (except when strict ANSI/ISO violations are diagnosed
as errors or were explicitly noted):

« Afri end declaration for a class may omit the cl ass keyword:

class A {
friend B; // Should be "friend class B"

I

» Constants of scalar type may be defined within classes:

class A {
const int size = 10;
int a[size];

I

* In the declaration of a class member, a qualified name may be used:

struct A {
int A:f(); // Should be int f();

b
e Therestrict keyword is allowed.

» Aconst qualified object with file scope or namespace scope andthe __at () attribute will have external
linkage, unless explicitly declared st at i ¢c. Examples:

const int i = 5; /1 internal |inkage
const int j __at(0x1234) = 10; /1 external |inkage
static const int k __at(0x1236) = 15; // internal |inkage

Note that no warning is generated when 'j ' is not used.

45

TASKING VX-toolset for ARM User Guide

* Implicit type conversion between a pointer to an ext ern " C' function and a pointer to an ext er n
" C++" function is permitted. Here's an example:

extern "C" void f(); // f's type has extern "C' |inkage
void (*pf)() // pf points to an extern "C++" function
= &f; /1 error unless inmplicit conversion is
/1 allowed

This extension is allowed in environments where C and C++ functions share the same calling
conventions. It is enabled by default.

« A"?" operator whose second and third operands are string literals or wide string literals can be implicitly
converted to "char *"or"wchar _t *".(Recall that in C++ string literals are const . There is a
deprecated implicit conversion that allows conversion of a string literal to "char *", dropping the const .
That conversion, however, applies only to simple string literals. Allowing it for the result of a "?" operation
is an extension.)

char *p = x ? "abc" : "def";
» Default arguments may be specified for function parameters other than those of a top-level function

declaration (e.g., they are accepted on t ypedef declarations and on pointer-to-function and
pointer-to-member-function declarations).

» Non-static local variables of an enclosing function can be referenced in a non-evaluated expression
(e.g., asi zeof expression) inside a local class. A warning is issued.

« In default C++ mode, the friend class syntax is extended to allow nonclass types as well as class types
expressed through a typedef or without an elaborated type name. For example:

typedef struct S ST,

class C{
friend S /1 OK (requires S to be in scope).
friend ST; /1 K (sanme as "friend S;").
friend int; /1 OK (no effect).

friend S const; // Error: cv-qualifiers cannot
/1 appear directly.
}

* In default C++ mode, mixed string literal concatenations are accepted. (This is a feature carried over
from C99 and also available in GNU modes).

wchar t *str = "a" L"b"; // OK, sanme as L"ab".

* In default C++ mode, variadic macros are accepted. (This is a feature carried over from C99 and also
available in GNU modes.)
* In default C++ mode, empty macro arguments are accepted (a feature carried over from C99).

A trailing comma in the definition of an enumeration type is silently accepted (a feature carried over
from C99):

46

C++ Language

enumE { e, };

2.3. GNU Extensions

The C++ compiler can be configured to support the GNU C++ mode (command line option --g++). In this
mode, many extensions provided by the GNU C++ compiler are accepted. The following extensions are
provided in GNU C++ mode.

Attributes, introduced by the keyword __attri but e__, can be used on declarations of variables,
functions, types, and fields. The al i as, al i gned, al | oc_si ze, al ways_i nline,artificial,
conmon, const, const ruct or, depr ecat ed, destructor, error,external | y_vi sibl e,
flatten,format,format _arg,gnu_inline, hot,init_priority, nall oc, node,
no_check_nenory_usage, no_i nstrunent _functi on, noconmon, noi nl i ne, nonnul |,
nor et ur n, not hr ow, packed, pur e, secti on, senti nel , strong, unused, used, vol ati | e,
war n_unused_r esul t, war ni ng, weak, and weakr ef attributes are supported.

Extended designators are accepted
Compound literals are accepted.
Non-standard anonymous unions are accepted

The t ypeof operator is supported. This operator can take an expression or a type (like the si zeof
operator, but parentheses are always required) and expands to the type of the given entity. It can be
used wherever a typedef name is allowed

typeof (2*2.3) d; // Declares a "double"
typeof (int) i; /! Declares an "int"

This can be useful in macro and template definitions.

The __ext ensi on__ keyword is accepted preceding declarations and certain expressions. It has no
effect on the meaning of a program.

_extension__ __inline__ int f(int a) {
return a >0 ? a/2: f(__extension__ 1-a);

In all GNU C modes and in GNU C++ modes with gnu_version < 30400, the type modifiers signed,
unsigned, long and short can be used with t ypedef types if the specifier is valid with the underlying
type of the typedefin ANSI C. E.g.:

typedef int I;

unsigned | *pui; // OKin GNU C++ node;
/! same as "unsigned int *pui"

If the command line option --long-long is specified, the extensions for the | ong | ong and unsi gned
| ong | ong types are enabled.

47

TASKING VX-toolset for ARM User Guide

» Zero-length array types (specified by [0]) are supported. These are complete types of size zero.

» C99-style flexible array members are accepted. In addition, the last field of a class type have a class
type whose last field is a flexible array member. In GNU C++ mode, flexible array members are treated
exactly like zero-length arrays, and can therefore appear anywhere in the class type.

» The C99 _Pr agna operator is supported.

» The gcc built-in <st dar g. h> and <var ar gs. h> facilities (__builtin_va_list, __builtin_va_arg, ...) are
accepted.

» The si zeof operator is applicable to voi d and to function types and evaluates to the value one.

» Variables can be redeclared with different top-level cv-qualifiers (the new qualification is merged into
existing qualifiers). For example:

extern int volatile x;
int const x = 32; /1 x is now const volatile
» The "assembler name" of variables and routines can be specified. For example:

int counter __asm_("counter_v1") = 0;

» Register variables can be mapped on specific registers using the as mkeyword.
register int i asn("eax");
/1 Map "i" onto register eax.
» The keyword i nl i ne is ignored (with a warning) on variable declarations and on block-extern function
declarations.
» Excess aggregate initializers are ignored with a warning.
struct S{ int a, b; };
struct Sal ={ 1, 2, 3 };
/1 "3" ignored with a warning; no error

int a2[2] ={ 7, 8 91};
/1 "9" ignored with a warning; no error

» Expressions of types voi d*, voi d const*,void volatil e* andvoid const vol atil e* can
be dereferenced; the result is an Ivalue.

 The __restrict__ keyword is accepted. It is identical to the C99 rest ri ct keyword, except for its
spelling.

» Out-of-range floating-point values are accepted without a diagnostic. When IEEE floating-point is being
used, the "infinity" value is used.

» Extended variadic macros are supported.

48

C++ Language

Dollar signs ($) are allowed in identifiers.
Hexadecimal floating point constants are recognized.

The __asm__ keyword is recognized and equivalent to the asmtoken. Extended syntax is supported
to indicate how assembly operands map to C/C++ variables.

asm("fsinx %,%" : "=f"(x) : "f"(a));
/1 Map the output operand on "x",
/1 and the input operand on "a".

The \ e escape sequence is recognized and stands for the ASCII "ESC" character.

The address of a statement label can be taken by use of the prefix "&&" operator, e.g., void *a =
&&L . A transfer to the address of a label can be done by the "goto *" statement, e.g., got o *a.

Multi-line strings are supported, e.g.,

char *p = "abc

def";

ASCII "NULL" characters are accepted in source files.

A source file can end with a backslash ("\") character.

Case ranges (e.g., "case 'a' ... 'z":") are supported.

A number of macros are predefined in GNU mode. See Section 2.9, Predefined Macros.
A predefined macro can be undefined.

If a directory is specified as both a normal include directory and a system include directory, the normal
directory entry is ignored.

A large number of special functions of the form __bui I ti n_xyz (e.g., __builtin_all oca) are
predeclared.

Some expressions are considered to be constant-expressions even though they are not so considered
in standard C and C++. Examples include "((char *)&((struct S *)0)->c[0]) - (char
*)0"and"(int)"Hello" & 0"

The macro ___GNUC__is predefined to the major version number of the emulated GNU compiler.
Similarly, the macros __ GNUC_M NOR__ and __GNUC_PATCHLEVEL___ are predefined to the
corresponding minor version number and patch level. Finally, __VERSI ON__is predefined to a string
describing the compiler version.

The __t hr ead specifier can be used to indicate that a variable should be placed in thread-local storage
(requires gnu_version >= 30400).

An extern inline function that is referenced but not defined is permitted (with a warning).

49

TASKING VX-toolset for ARM User Guide

 Trigraphs are ignored (with a warning).

» Non-standard casts are allowed in null pointer constants, e.g., (i nt) (i nt *) 0 is considered a null
pointer constant in spite of the pointer cast in the middle.

» Statement expressions, e.g., ({int j; j = f(); j,;)} are accepted. Branches into a statement
expression are not allowed. In C++ mode, branches out are also not allowed. Variable-length arrays,
destructible entities, try, catch, local non-POD class definitions, and dynamically-initialized local static
variables are not allowed inside a statement expression.

 Labels can be declared to be local in statement expressions by introducing them with a __| abel __
declaration.

({ _label__ lab; int i =4; lab: i =2*i-1; if (!(i%7)) goto lab; i; })

» Not-evaluated parts of constant expressions can contain non-constant terms:

int i;
int a[1 || i]; // Accepted in g++ node

» Casts on an Ivalue that don't fall under the usual "Ivalue cast" interpretation (e.g., because they cast
to a type having a different size) are ignored, and the operand remains an Ivalue. A warning is issued.

int i;
(short)i = 0; // Accepted,cast is ignored; entire int is set

 Variable length arrays (VLAs) are supported. GNU C also allows VLA types for fields of local structures,
which can lead to run-time dependent sizes and offsets. The C++ compiler does not implement this,
but instead treats such arrays as having length zero (with a warning); this enables some popular
programming idioms involving fields with VLA types.

void f(int n) {
struct {
int a[n]; // Warning: n ignored and
/'l replaced by zero

s

» Complex type extensions are supported (these are the same as the C99 complex type features, with
the elimination of _| magi nary and the addition of __conpl ex, __real , __i mag, the use of "~" to
denote complex conjugation, and complex literals such as "1. 2i).

« If an explicit instantiation directive is preceded by the keyword ext er n, no (explicit or implicit)
instantiation is for the indicated specialization.

« If an explicit instantiation directive for a class is preceded by the keyword i nl i ne, the virtual function
table for the class (if any) will be emitted by the compilation.

50

C++ Language

An explicit instantiation directive that names a class may omit the cl ass keyword, and may refer to a
typedef.

An explicit instantiation or ext er n t enpl at e directive that names a class is accepted in an invalid
namespace.

std: :type_i nf o does not need to be introduced with a special pragma.

A special keyword __nul | expands to the same constant as the literal "0", but is expected to be used
as a null pointer constant.

When gnu_version < 30400, names from dependent base classes are ignored only if another name
would be found by the lookup.

const int n = 0O;
tenplate <class T> struct B {
static const int m= 1; static const int n = 2;
b
templ ate <class T> struct D : B<T> {
int f() { return m+ n; }
// B::m+ ::n in g++ node

H

A non-static data member from a dependent base class, which would usually be ignored as described
above, is found if the lookup would have otherwise found a nonstatic data member of an enclosing
class (when gnu_version is < 30400).

tenplate <class T> struct C{

struct A{ int i; };
struct B: public A{
void f() {
i =0; // g++ uses A::i not C :i
}
b
int i;

A new operation in a template is always treated as dependent (when gnu_version >= 30400).

tenplate <class T > struct A {
void f() {
void *p = 0;
new (&) int(0); // calls operator new
/'l decl ared bel ow
}
b

voi d* operator new(size_t, void* p);

When doing name lookup in a base class, the injected class name of a template class is ignored.

51

TASKING VX-toolset for ARM User Guide

nanespace N {
tenplate <class T> struct A {};

}
struct A {
int i;
}
struct B: N:A<int> {
B() { Ax; x.i =1; } [/l g++ uses ::A not N:A
}

* The injected class name is found in certain contexts in which the constructor should be found instead.

struct A {
ACint) {};

b

A A a(l);

* In a constructor definition, what should be treated as a template argument list of the constructor is
instead treated as the template argument list of the enclosing class.

tenplate <int ul> struct A{ };
tenplate <> struct A<1> {

tenplate<class T> A(T i, int j);
}

tenplate <> A<1>::A<1>(int i, int j) { }
/1 accepted in g++ node
» A difference in calling convention is ignored when redeclaring a typedef.

typedef void F();

extern "C' {
typedef void F(); // Accepted in GNU C++ node
/1 (error otherw se)

* The macro __GNUG__ is defined identically to __ GNUC___ (i.e., the major version number of the GNU
compiler version that is being emulated).

» The macro _GNU_SOURCE is defined as "1".

» Guiding declarations (a feature present in early drafts of the standard, but not in the final standard) are
disabled.

* Namespace st d is predeclared.

» No connection is made between declarations of identical names in different scopes even when these
names are declared extern "C'.E.g.,

52

C++ Language

extern "C' { void f(int); }
nanespace N {
extern "C' {
void f() {} // Warning (not error) in g++ node
}
}

int min() { f(1); }

This example is accepted by the C++ compiler, but it will emit two conflicting declarations for the function
f.

When a using-directive lookup encounters more than one ext ern " C' declaration (created when
more than one namespace declares an ext ern " C" function of a given name, as described above),
only the first declaration encountered is considered for the lookup.

extern "C'" int f(void);

extern "C' int g(void);

nanespace N {
extern "C' int f(void); // sane type
extern "C' void g(void); // different type

b

usi ng nanespace N,

int i =f(); // calls ::f

int j =g(); // calls ::f

The definition of a member of a class template that appears outside of the class definition may declare
a nontype template parameter with a type that is different than the type used in the definition of the
class template. A warning is issued (GNU version 30300 and below).

tenplate <int I> struct A{ void f(); };
tenplate <unsigned int 1> void A<I> :f(){}

The definition of a member of a nested class of a class template that appears outside of the class
definition may use an incorrect template argument list. A warning is issued.

tenplate <class T, class V> struct Quter {
struct Inner {
void f();
b
b
tenplate <class T, class V> void Quter<T, int>:lnner::f() { }
N shoul d be V

A class template may be redeclared with a nontype template parameter that has a type that is different
than the type used in the earlier declaration. A warning is issued.

tenplate <int I> class A
tenpl ate <unsigned int I> class A {};

53

TASKING VX-toolset for ARM User Guide

« Afri end declaration may refer to a member typedef.

class A {
class B {};
typedef B ny_b;
friend class mnmy_b;

H

» When a friend class is declared with an unqualified name, the lookup of that name is not restricted to
the nearest enclosing namespace scope.

struct S;
nanespace N {
class C {
friend struct S; // ::S in g++ node,
/1 N:Sin default node
b

» Afriend class declaration can refer to names made visible by using-directives.

nanespace N { struct A{ }; }
usi ng namespace N;
struct B {
void f() { Aa; }
friend struct A; // in g++ node N :A
}; // not a new declaration of ::A

 Friend injection is enabled if gnu_version is < 40100 and disabled otherwise.

class X {
friend void f(X*);
friend class Y;

int main() {
Y* y; [/ Y not declared without friend injection
f(0); [// f not declared without friend injection

* When friend names are not injected, they can still be used in qualified declarator names when
gnu_version < 40300.

nanespace N {
class A {
friend int f();

H
}

int NN:f() { return O; } // OK when gnu_version < 40300

54

C++ Language

An inherited type name can be used in a class definition and later redeclared as a typedef.

struct A { typedef int I; };
struct B : A {

typedef 1 J; /1 Refers to A :l
typedef double I; // Accepted in g++ node
}; /1 (introduces B::1)

In a catch clause, an entity may be declared with the same name as the handler parameter.

try { }
catch(int e) {

char e;
}

The diagnostic issued for an exception specification mismatch is reduced to a warning if the previous
declaration was found in a system header.

The exception specification for an explicit template specialization (for a function or member function)
does not have to match the exception specification of the corresponding primary template.

A template argument list may appear following a constructor name in constructor definition that appears
outside of the class definition:

tenplate <class T> struct A {
AQ)

b

templ ate <class T> A<T>::A<T>(){}

When gnu_version < 30400, an incomplete type can be used as the type of a nonstatic data member
of a class template.

cl ass B;

tenplate <class T> struct A {
B b;

}s

A constructor need not provide an initializer for every nonstatic const data member (but a warning is
still issued if such an initializer is missing).

struct S {
int const ic;
S() {} /1 Warning only in GNU C++ node
/1 (error otherw se).

I

Exception specifications are ignored on function definitions when support for exception handling is
disabled (normally, they are only ignored on function declarations that are not definitions).

55

TASKING VX-toolset for ARM User Guide

A friend declaration in a class template may refer to an undeclared template.

tenplate <class T> struct A {
friend void f<>(A<T>);

b
A friend class template declaration in which the template parameter list does not match the original
declaration is accepted if the class template name is specified as a qualified name.

nanespace N {
tenpl ate <typename T, typenanme U> struct A{ };

}
struct B {

tenpl ate<typenane T> friend struct N :A;
}

When gnu_version is < 30400, the semantic analysis of a friend function defined in a class template is
performed only if the function is actually used and is done at the end of the translation unit (instead of
at the point of first use).

A function template default argument may be redeclared. A warning is issued and the default from the
initial declaration is used.

tenpl ate<class T> void f(int i
tenpl ate<class T> void f(int i
int main() {

f<voi d>();
}

1);
2){}

A definition of a member function of a class template that appears outside of the class may specify a
default argument.

tenmplate <class T> struct A{ void f(T); };
tenplate <class T> void A<T>::f(T value = T()) { }
Function declarations (that are not definitions) can have duplicate parameter names.

void f(int i, int i); // Accepted in GNU C++ node

Default arguments are retained as part of deduced function types.
A namespace member may be redeclared outside of its namespace.
A template may be redeclared outside of its class or namespace.

nanespace N {
tenpl ate< typenane T > struct S {};

56

C++ Language

}
tenpl ate< typenane T > struct N :S;

The injected class name of a class template can be used as a template argument.

tenmpl ate <tenpl ate <class> class T> struct A {};
tenplate <class T> struct B {

A a;
b

A partial specialization may be declared after an instantiation has been done that would have used the
partial specialization if it had been declared earlier. A warning is issued.

tenplate <class T> class X {};
X<int*> xi;
tenplate <class T> class X<T*> {};

A static data member may be explicitly specialized after it has been used. A warning is issued.

tenplate <class T> struct A {
static int i;

I

int j = Aint>::i;

template <> int A<int>::i = 1;

The "." or "->" operator may be used in an integral constant expression if the result is an integral or
enumeration constant:

struct A{ enum{ el =1 }; };

int min () {
A a;
int x[a.el]; // Accepted in GNU C++ node
return O;

Strong using-directives are supported.

usi ng nanmespace debug __attribute__((strong));

Partial specializations that are unusable because of nondeductible template parameters are accepted
and ignored.

tenpl ate<class T> struct A {class C{ };};
tenpl ate<class T> struct B {enum {e = 1}; };
tenplate <class T> struct B<typename A<T>.:C {enum{e = 2}; };
int main(int argc, char **argv) {
printf("%l\n", B<int>::e);

57

TASKING VX-toolset for ARM User Guide

printf("%l\n", B<A<int>.:C>: :e);

» Anincorrect number of t enpl at e <> clauses is allowed on a full specialization (i.e., one with no
remaining template parameters). A warning is issued.

tenplate <class T> struct A {

templ ate <class U> struct B { };
b
template <> struct A<int> {

templ ate <class U> struct B { };
b

template <> tenplate <> struct A<int>::B<double> { };

» Anincorrect number of t enpl at e <> clauses is allowed on a friend class template declaration. A
warning is issued.

tenpl ate <typenane T> struct A {
tenmpl ate <typename U> class B {
tenmpl ate <typename V> friend cl ass B;
b
b

» Template parameters that are not used in the signature of a function template are not ignored for partial
ordering purposes (i.e., the resolution of core language issue 214 is not implemented) when gnu_version
is < 40100.

tenplate <class S, class T> void f(T t);
tenplate <class T> void f(T t);
int main() {
f<int>(3); // not anbi guous when gnu_version
/1 is < 40100

* Prototype instantiations of functions are deferred until the first actual instantiation of the function to
allow the compilation of programs that contain definitions of unusable function templates (gnu_version
30400 and above). The example below is accepted when prototype instantiations are deferred.

class A {};
tenplate <class T> struct B {
B () {}; // error: noinitializer for
/'l reference menber "B<T>::a"
A& a;
b

58

C++ Language

* When doing nonclass prototype instantiations (e.g., gnu_version 30400 and above), the severity of the
diagnostic issued if a const template static data member is defined without an initializer is reduced to
a warning.

tenplate <class T> struct A {
static const int i;
b

tenpl ate <class T> const int A<T>::i;

* When doing nonclass prototype instantiations (e.g., gnu_version 30400 and above), a template static
data member with an invalid aggregate initializer is accepted (the error is diagnosed if the static data
member is instantiated).

struct A {
A(doubl e val);

}s

tenplate <class T> struct B {
static const A I[1];

}s

tenplate <class T> const A B<T>::1[1]={
{1.,0.,0.,0.}

}s

» A storage class may appear in a declaration that also has a “direct” linkage specification. For example,
extern "C' static void f();

is treated as equivalent to

extern "C' { static void f(); }

» A storage class (st ati c or ext er n) is accepted on an explicit function template specialization.
» The storage class specifier ext er n is accepted on definitions of static data members.

» The lookup of a name that precedes a “: : " ignores enum types and nonclass typedefs (gnu_version
30400 and above).

nanespace N {
const int a = 42;
enum N { e };
int i =N:a; // refers to nanespace N in g++ node

}

nanespace M {
const int a = 42;
typedef int M
int i = M:a; // refers to nanmespace Min g++ node

59

TASKING VX-toolset for ARM User Guide

» A call of a dependent function template without the use of the t enpl at e keyword is accepted if a
normal lookup in the scope of the reference finds a function template or an overload set containing a
function template (even though that function template will not end up being the one that is actually
called).

tenpl ate <typenane T> struct A {
templ ate <typename U> void f(U);
b
tenpl ate <typenane T> struct B {
templ ate <typename U> void f(U);
void f(){}
A<T> a;
void g(Tt) {
a.f<T>(t); // accepted in g++ node - should be witten as:
/1 minpl.f tenplate <T>(t)

b

» The t enpl at e keyword may be omitted in a dependent member class template reference when the
template argument list matches the implied template argument list of the prototype instantiation. In the
example below, in the reference to A<T>: : B<. .. >the template parameter T has the same coordinates
(position and nesting depth) as the T of the prototype instantiation of A, so the template keyword can
be omitted.

tenpl ate <class T> struct A {
tenpl ate <class T2> struct B {};
h
tenplate <class T, class U> struct C {
A<T>::B<T> abl; // g++ accepts
A<T>::B<U> ab2; // g++ accepts
A<U>::B<T> ab3; // g++ gives error
typename A<U>::tenplate B<T> ab4; // correct syntax
h

« Partial ordering in non-call contexts does not include the return type in the partial ordering process.

tenplate <class T> T f(const T* p);

tenplate <class T> int f(T* p);

/| ambi guous specialization, but accepted in g++ node
tenmplate <> int f(const int*){return 0;}

» A pointer to function is considered to be compatible with a reference to function for partial ordering
purposes (gnu_version 40100 and above).

) 11 #1

)

tenplate <typenane T> void f(T** p, void (*)(
(&()): 11 #2

tenpl ate <typename T> void f(T* p, void
void x(){}
void g(int** p) {

~— ~—

60

C++ Language

f(p, x); // calls #1

« Astatic_cast inwhich the operand is a pointer to a base class that is neither const- nor
volatile-qualified and the target type is a pointer to a const- and/or volatile-qualified derived class drops
the qualification from the result type when gnu_version is 30400 or higher.

struct B { };
struct D0 B { };
D *f(B *p) {
return static_cast<const D *>(p); // accepted in g++ npde with
/'l gnu_version >= 30400

The following GNU extensions are not currently supported:

» The forward declaration of function parameters (so they can participate in variable-length array
parameters).

» GNU-style complex integral types (complex floating-point types are supported)
» Nested functions

 Local structs with variable-length array fields.

2.4. Namespace Support

Namespaces are enabled by default. You can use the command line option --no-namespaces to disable
the features.

When doing name lookup in a template instantiation, some names must be found in the context of the
template definition while others may also be found in the context of the template instantiation. The C++
compiler implements two different instantiation lookup algorithms: the one mandated by the standard
(referred to as "dependent name lookup"), and the one that existed before dependent name lookup was
implemented.

Dependent name lookup is done in strict mode (unless explicitly disabled by another command line option)
or when dependent name processing is enabled by either a configuration flag or command line option.

Dependent Name Processing

When doing dependent name lookup, the C++ compiler implements the instantiation name lookup rules
specified in the standard. This processing requires that non-class prototype instantiations be done. This
in turn requires that the code be written using the t ypenane and t enpl at e keywords as required by
the standard.

61

TASKING VX-toolset for ARM User Guide

Lookup Using the Referencing Context

When not using dependent name lookup, the C++ compiler uses a name lookup algorithm that
approximates the two-phase lookup rule of the standard, but does so in such a way that is more compatible
with existing code and existing compilers.

When a name is looked up as part of a template instantiation but is not found in the local context of the
instantiation, it is looked up in a synthesized instantiation context that includes both names from the
context of the template definition and names from the context of the instantiation. Here's an example:

namespace N {
int g(int);
int x = 0;
tenpl ate <class T> struct A {
TFf(Tt) { return g(t); }
Tf() { return x; }

3
}
namespace M {
int x = 99;
doubl e g(doubl e);
N : A<int> ai;
int i =ai.f(0); Il N:A<int>:f(int) calls
/1 N :g(int)
int i2 =ai.f(); Il N:A<int>:f() returns
Il 0 (= N:x)
N: : A<doubl e> ad;
double d = ad.f(0); // N :A<doubl e>::f(doubl e)
/1 calls M:g(double)
double d2 = ad.f(); // N :A<double>: :f() also
/1l returns 0 (= N :x)
}

The lookup of names in template instantiations does not conform to the rules in the standard in the
following respects:

 Although only names from the template definition context are considered for names that are not functions,
the lookup is not limited to those names visible at the point at which the template was defined.

» Functions from the context in which the template was referenced are considered for all function calls
in the template. Functions from the referencing context should only be visible for "dependent” function
calls.

Argument Dependent Lookup

When argument-dependent lookup is enabled (this is the default), functions made visible using
argument-dependent lookup overload with those made visible by normal lookup. The standard requires
that this overloading occurs even when the name found by normal lookup is a block ext er n declaration.
The C++ compiler does this overloading, but in default mode, argument-dependent lookup is suppressed
when the normal lookup finds a block ext er n.

62

C++ Language

This means a program can have different behavior, depending on whether it is compiled with or without
argument-dependent lookup --no-arg-dep-lookup, even if the program makes no use of namespaces.
For example:

struct A { };
A operator+(A, double);
void f() {
A al;
A operator+(A, int);
al + 1.0; // calls operator+(A, double)
/1l with arg-dependent | ookup enabl ed but
/1 otherwise calls operator+(A, int);

2.5. Template Instantiation

The C++ language includes the concept of templates. A template is a description of a class or function
that is a model for a family of related classes or functions.® For example, one can write a template for a
St ack class, and then use a stack of integers, a stack of floats, and a stack of some user-defined type.
In the source, these might be written St ack<i nt >, St ack<f | oat >, and St ack<X>. From a single
source description of the template for a stack, the compiler can create instantiations of the template for
each of the types required.

The instantiation of a class template is always done as soon as it is needed in a compilation. However,
the instantiations of template functions, member functions of template classes, and static data members
of template classes (hereafter referred to as template entities) are not necessarily done immediately, for
several reasons:

» One would like to end up with only one copy of each instantiated entity across all the object files that
make up a program. (This of course applies to entities with external linkage.)

* The language allows one to write a specialization of a template entity, i.e., a specific version to be used
in place of a version generated from the template for a specific data type. (One could, for example,
write a version of St ack<i nt >, or of just St ack<i nt >: : push, that replaces the template-generated
version; often, such a specialization provides a more efficient representation for a particular data type.)
Since the compiler cannot know, when compiling a reference to a template entity, if a specialization for
that entity will be provided in another compilation, it cannot do the instantiation automatically in any
source file that references it.

» C++templates can be exported (i.e., declared with the keyword expor t). Such templates can be used
in a translation unit that does not contain the definition of the template to instantiate. The instantiation
of such a template must be delayed until the template definition has been found.

» The language also dictates that template functions that are not referenced should not be compiled,
that, in fact, such functions might contain semantic errors that would prevent them from being compiled.
Therefore, a reference to a template class should not automatically instantiate all the member functions
of that class.

ISince templates are descriptions of entities (typically, classes) that are parameterizable according to the types they operate upon,
they are sometimes called parameterized types.

63

TASKING VX-toolset for ARM User Guide

(It should be noted that certain template entities are always instantiated when used, e.g., inline functions.)

From these requirements, one can see that if the compiler is responsible for doing all the instantiations
automatically, it can only do so on a program-wide basis. That is, the compiler cannot make decisions
about instantiation of template entities until it has seen all the source files that make up a complete
program.

This C++ compiler provides an instantiation mechanism that does automatic instantiation at link time. For
cases where you want more explicit control over instantiation, the C++ compiler also provides instantiation
modes and instantiation pragmas, which can be used to exert fine-grained control over the instantiation
process.

2.5.1. Automatic Instantiation

The goal of an automatic instantiation mode is to provide painless instantiation. You should be able to
compile source files to object code, then link them and run the resulting program, and never have to worry
about how the necessary instantiations get done.

In practice, this is hard for a compiler to do, and different compilers use different automatic instantiation
schemes with different strengths and weaknesses:

» AT&T/USL/Novell's cfront product saves information about each file it compiles in a special directory
called pt r eposi t ory. It instantiates nothing during normal compilations. At link time, it looks for
entities that are referenced but not defined, and whose mangled names indicate that they are template
entities. For each such entity, it consults the pt r eposi t or y information to find the file containing the
source for the entity, and it does a compilation of the source to generate an object file containing object
code for that entity. This object code for instantiated objects is then combined with the "normal” object
code in the link step.

If you are using cfront you must follow a particular coding convention: all templates must be declared
in . h files, and for each such file there must be a corresponding . cc file containing the associated
definitions. The compiler is never told about the . cc files explicitly; one does not, for example, compile
them in the normal way. The link step looks for them when and if it needs them, and does so by taking
the . h filename and replacing its suffix.?

This scheme has the disadvantage that it does a separate compilation for each instantiated function
(or, at best, one compilation for all the member functions of one class). Even though the function itself
is often quite small, it must be compiled along with the declarations for the types on which the instantiation
is based, and those declarations can easily run into many thousands of lines. For large systems, these
compilations can take a very long time. The link step tries to be smart about recompiling instantiations
only when necessary, but because it keeps no fine-grained dependency information, it is often forced
to "recompile the world" for a minor change in a . h file. In addition, cfront has no way of ensuring that
preprocessing symbols are set correctly when it does these instantiation compilations, if preprocessing
symbols are set other than on the command line.

» Borland's C++ compiler instantiates everything referenced in a compilation, then uses a special linker
to remove duplicate definitions of instantiated functions.

>The actual implementation allows for several different suffixes and provides a command line option to change the suffixes sought.

64

C++ Language

If you are using Borland's compiler you must make sure that every compilation sees all the source code
it needs to instantiate all the template entities referenced in that compilation. That is, one cannot refer
to a template entity in a source file if a definition for that entity is not included by that source file. In
practice, this means that either all the definition code is put directly in the . h files, or that each . h file
includes an associated . cc (actually, . cpp) file.

Our approach is a little different. It requires that, for each instantiation of a non-exported template, there
is some (normal, top-level, explicitly-compiled) source file that contains the definition of the template
entity, a reference that causes the instantiation, and the declarations of any types required for the
instantiation. This requirement can be met in various ways:

» The Borland convention: each . h file that declares a template entity also contains either the definition
of the entity or includes another file containing the definition.

 Implicit inclusion: when the compiler sees a template declaration in a . h file and discovers a need to
instantiate that entity, it is given permission to go off looking for an associated definition file having the
same base name and a different suffix, and it implicitly includes that file at the end of the compilation.
This method allows most programs written using the cfront convention to be compiled with our approach.
See Section 2.5.4, Implicit Inclusion.

» The ad hoc approach: you make sure that the files that define template entities also have the definitions
of all the available types, and add code or pragmas in those files to request instantiation of the entities
there.

Exported templates are also supported by our automatic instantiation method, but they require additional
mechanisms explained further on.

The automatic instantiation mode is enabled by default. It can be turned off by the command line option
--no-auto-instantiation. If automatic instantiation is turned off, the extra information about template
entities that could be instantiated in a file is not put into the object file.

2.5.2. Instantiation Modes

Normally, when a file is compiled, template entities are instantiated everywhere where they are used.
The overall instantiation mode can, however, be changed by a command line option:

--instantiate=used

Instantiate those template entities that were used in the compilation. This will include all static data
members for which there are template definitions. This is the default.

--instantiate=all

Instantiate all template entities declared or referenced in the compilation unit. For each fully instantiated
template class, all of its member functions and static data members will be instantiated whether or not
they were used. Non-member template functions will be instantiated even if the only reference was a
declaration.

3Isn't this always the case? No. Suppose that file A contains a definition of class X and a reference to St ack<X>: : push, and that
file B contains the definition for the member function push. There would be no file containing both the definition of push and the
definition of X.

65

TASKING VX-toolset for ARM User Guide

--instantiate=local

Similar to --instantiate=used except that the functions are given internal linkage. This is intended to
provide a very simple mechanism for those getting started with templates. The compiler will instantiate
the functions that are used in each compilation unit as local functions, and the program will link and run
correctly (barring problems due to multiple copies of local static variables.) However, one may end up
with many copies of the instantiated functions, so this is not suitable for production use. --instantiate=local
cannot be used in conjunction with automatic template instantiation. If automatic instantiation is enabled
by default, it will be disabled by the --instantiate=local option.

In the case where the ccarm command is given a single file to compile and link, e.g.,
ccarmtest.cc

the compiler knows that all instantiations will have to be done in the single source file. Therefore, it uses
the --instantiate=used mode and suppresses automatic instantiation.

2.5.3. Instantiation #pragma Directives

Instantiation pragmas can be used to control the instantiation of specific template entities or sets of
template entities. There are three instantiation pragmas:

» The instantiate pragma causes a specified entity to be instantiated.

» The do_not_instantiate pragma suppresses the instantiation of a specified entity. It is typically used
to suppress the instantiation of an entity for which a specific definition will be supplied.

* The can_instantiate pragma indicates that a specified entity can be instantiated in the current
compilation, but need not be; it is used in conjunction with automatic instantiation, to indicate potential
sites for instantiation if the template entity turns out to be required.

The argument to the instantiation pragma may be:

» atemplate class name A<i nt >

» atemplate class declaration cl ass A<i nt >

» a member function name A<i nt >: : f

 a static data member name A<i nt >: : i

* a static data declaration i nt A<i nt>::i

» a member function declaration voi d A<i nt>::f (int, char)

» atemplate function declaration char* f (i nt, float)

A pragma in which the argument is a template class name (e.g., A<i nt >orcl ass A<i nt >)is equivalent
to repeating the pragma for each member function and static data member declared in the class. When

instantiating an entire class a given member function or static data member may be excluded using the

do_not_instantiate pragma. For example,

66

C++ Language

#pragnma i nstantiate A<int>
#pragma do_not _instantiate A<int>::f

The template definition of a template entity must be present in the compilation for an instantiation to occur.
If an instantiation is explicitly requested by use of the instantiate pragma and no template definition is
available or a specific definition is provided, an error is issued.

tenplate <class T> void f1(T); // No body provided
tenplate <class T> void g1(T); // No body provided

void f1(int) {} // Specific definition
voi d mai n()
{ . .
int i;
doubl e d;
f1(i);
f1(d);
g1(i);
gl(d);
}

#pragma instantiate void f1(int) // error - specific
/1 definition

#pragma instantiate void gl(int) // error - no body
/1 provided

f 1(doubl e) and g1(doubl e) will not be instantiated (because no bodies were supplied) but no errors
will be produced during the compilation (if no bodies are supplied at link time, a linker error will be
produced).

A member function name (e.g., A<i nt >: : f) can only be used as a pragma argument if it refers to a
single user defined member function (i.e., not an overloaded function). Compiler-generated functions are
not considered, so a name may refer to a user defined constructor even if a compiler-generated copy
constructor of the same name exists. Overloaded member functions can be instantiated by providing the
complete member function declaration, as in

#pragnma i nstantiate char* A<int>::f(int, char?*)

The argument to an instantiation pragma may not be a compiler-generated function, an inline function,
or a pure virtual function.

2.5.4. Implicit Inclusion

When implicit inclusion is enabled, the C++ compiler is given permission to assume that if it needs a
definition to instantiate a template entity declared in a . h file it can implicitly include the corresponding

. cc file to get the source code for the definition. For example, if a template entity ABC: : f is declared in
file xyz. h, and an instantiation of ABC: : f is required in a compilation but no definition of ABC: : f appears
in the source code processed by the compilation, the compiler will look to see if a file xyz. cc exists, and
if so it will process it as if it were included at the end of the main source file.

67

TASKING VX-toolset for ARM User Guide

To find the template definition file for a given template entity the C++ compiler needs to know the path
name specified in the original include of the file in which the template was declared and whether the file
was included using the system include syntax (e.g., #i ncl ude <fi | e. h>).This information is not
available for preprocessed source containing #l i ne directives. Consequently, the C++ compiler will not
attempt implicit inclusion for source code containing #| i ne directives.

The file to be implicitly included is found by replacing the file suffix with each of the suffixes specified in
the instantiation file suffix list. The normal include search path mechanism is then used to look for the file
to be implicitly included.

By default, the list of definition-file suffixes tried is . ¢, . cc, . cpp, and . cxx.

Implicit inclusion works well alongside automatic instantiation, but the two are independent. They can be
enabled or disabled independently, and implicit inclusion is still useful when automatic instantiation is not
done.

The implicit inclusion mode can be turned on by the command line option --implicit-include. If this option
is turned on, you cannot use exported templates.

Implicit inclusions are only performed during the normal compilation of a file, (i.e., not when doing only
preprocessing). A common means of investigating certain kinds of problems is to produce a preprocessed
source file that can be inspected. When using implicit inclusion it is sometimes desirable for the
preprocessed source file to include any implicitly included files. This may be done using the command
line option --no-preprocessing-only. This causes the preprocessed output to be generated as part of a
normal compilation. When implicit inclusion is being used, the implicitly included files will appear as part
of the preprocessed output in the precise location at which they were included in the compilation.

2.5.5. Exported Templates

Exported templates are templates declared with the keyword expor t . Exporting a class template is
equivalent to exporting each of its static data members and each of its non-inline member functions. An
exported template is special because its definition does not need to be present in a translation unit that
uses that template. In other words, the definition of an exported (non-class) template does not need to
be explicitly or implicitly included in a translation unit that instantiates that template. For example, the
following is a valid C++ program consisting of two separate translation units:

/1 File 1:
#i ncl ude <stdio. h>
static void trace() { printf("File 1\n"); }

export tenplate<class T> T const& min(T const& T const&);

int main()
{
trace();
return mn(2, 3);
}
/Il File 2:

#i ncl ude <stdio. h>
static void trace() { printf("File 2\n"); }

68

C++ Language

export tenplate<class T> T const& mn(T const &, T const &b)
{

trace();

return a<b? a: b;

}

Note that these two files are separate translation units: one is not included in the other. That allows the
two functions t r ace() to coexist (with internal linkage).

Support for exported templates is enabled by default, but you can turn it off with command line option
--no-export.

You cannot use exported templates together with the command line option --implicit-include.

2.5.5.1. Finding the Exported Template Definition

The automatic instantiation of exported templates is somewhat similar (from a user's perspective) to that
of regular (included) templates. However, an instantiation of an exported template involves at least two
translation units: one which requires the instantiation, and one which contains the template definition.

When a file containing definitions of exported templates is compiled, a file with a . et suffix is created
and some extra information is included in the associated . ti file. The . et files are used later by the C++
compiler to find the translation unit that defines a given exported template.

When a file that potentially makes use of exported templates is compiled, the compiler must be told where
to look for . et files for exported templates used by a given translation unit. By default, the compiler looks
in the current directory. Other directories may be specified with the command line option
--template-directory. Strictly speaking, the . et files are only really needed when it comes time to generate
an instantiation. This means that code using exported templates can be compiled without having the
definitions of those templates available. Those definitions must be available when explicit instantiation is
done.

The . et files only inform the C++ compiler about the location of exported template definitions; they do
not actually contain those definitions. The sources containing the exported template definitions must
therefore be made available at the time of instantiation. In particular, the export facility is not a mechanism
for avoiding the publication of template definitions in source form.

2.5.5.2. Secondary Translation Units

An instantiation of an exported template can be triggered by an explicit instantiation directive, or by the
command line option --instantiate=used. In each case, the translation unit that contains the initial point
of instantiation will be processed as the primary translation unit. Based on information it finds in the . et
files, the C++ compiler will then load and parse the translation unit containing the definition of the template
to instantiate. This is a secondary translation unit. The simultaneous processing of the primary and
secondary translation units enables the C++ compiler to create instantiations of the exported templates
(which can include entities from both translation units). This process may reveal the need for additional
instantifltions of exported templates, which in turn can cause additional secondary translation units to be
loaded".

‘Asa consequence, using exported templates may require considerably more memory that similar uses of regular (included)
templates.

69

TASKING VX-toolset for ARM User Guide

When secondary translation units are processed, the declarations they contain are checked for consistency.
This process may report errors that would otherwise not be caught. Many these errors are so-called "ODR
violations" (ODR stands for "one-definition rule"). For example:

/Il File 1:
struct X {
int x;

}s

int main() {
return mn(2, 3);

}
/1 File 2:
struct X {
unsigned x; // Error: X :x declared differently
/'l inFile 1
s

export tenplate<class T> T const& min(T const &, T const &b)

{
}

If there are no errors, the instantiations are generated in the output associated with the primary translation
unit. This may also require that entities with internal linkage in secondary translation units be "externalized"
so they can be accessed from the instantiations in the primary translation unit.

return a<b? a: b;

2.5.5.3. Libraries with Exported Templates

Typically a (non-export) library consists of an i ncl ude directory and a | i b directory. The i ncl ude
directory contains the header files required by users of the library and the | i b directory contains the
object code libraries that client programs must use when linking programs.

With exported templates, users of the library must also have access to the source code of the exported
templates and the information contained in the associated . et files. This information should be placed

in a directory that is distributed along with the i ncl ude and | i b directories: This is the expor t directory.
It must be specified using the command line option --template-directory when compiling client programs.

The recommended procedure to build the export directory is as follows:
1. Foreach. et fileinthe original source directory, copy the associated source file to the export directory.

2. Concatenate all of the . et files into a single . et file (e.g., myl i b. et) in the export directory. The
individual . et files could be copied to the export directory, but having all of the . et information in one
file will make use of the library more efficient.

3. Create an export _i nf o file in the expor t directory. The export _i nf o file specifies the include
search paths to be used when recompiling files in the export directory. If no export _i nf o file is
provided, the include search path used when compiling the client program that uses the library will
also be used to recompile the library exported template files.

70

C++ Language

The export _i nf o file consists of a series of lines of the form
i ncl ude=x

or

sys_i ncl ude=x

where x is a path name to be placed on the include search path. The directories are searched in the order
in which they are encountered in the export _i nf o file. The file can also contain comments, which begin
with a "#", and blank lines. Spaces are ignored but tabs are not currently permitted. For example:

The include directories to be used for the xyz library

i nclude = /diskl/xyz/include
sys_include = /disk2/abc/include
i ncl ude=/di sk3/j kl /include

The include search path specified for a client program is ignored by the C++ compiler when it processes
the source in the export library, except when no export _i nf o file is provided. Command line macro
definitions specified for a client program are also ignored by the C++ compiler when processing a source
file from the export library; the command line macros specified when the corresponding . et file was
produced do apply. All other compilation options (other than the include search path and command line
macro definitions) used when recompiling the exported templates will be used to compile the client
program.

When a library is installed on a new system, it is likely that the expor t _i nf o file will need to be adapted
to reflect the location of the required headers on that system.

2.6. Inlining Functions

The C++ compiler supports a minimal form of function inlining. When the C++ compiler encounters a call
of a function declared i nl i ne it can replace the call with the body of the function with the parameters
replaced by the corresponding arguments. When a function call occurs as a statement, the statements
of the function body are inserted in place of the call. When the function call occurs within an expression,
the body of the function is rewritten as one large expression and that expression is inserted in the proper
place in the containing expression. It is not always possible to do this sort of inlining: there are certain
constructs (e.g. loops and inline assembly) that cannot be rendered in expression form. Even when inlining
is done at the statement level, there are certain constructs that are not practical to inline. Calls that cannot
be inlined are left in their original call form, and an out-of-line copy of the function is used. When enabled,
a remark is issued.

When the C++ compiler decides not to inline a function, the keyword i nl i ne is passed to the generated
C file. This allows for the C compiler to decide again whether to inline a function or not.

A function is disqualified for inlining immediately if any of the following are true:
« The function has local static variables.

» The function has local constants.

71

TASKING VX-toolset for ARM User Guide

The function has local types.

» The function has block scopes.

The function includes pragmas.

» The function has a variable argument list.

2.7. Extern Inline Functions

Depending on the way in which the C++ compiler is configured, out-of-line copies of extern i nli ne
functions are either implemented using static functions, or are instantiated using a mechanism like the
template instantiation mechanism. Note that out-of-line copies of inline functions are only required in
cases where the function cannot be inlined, or when the address of the function is taken (whether explicitly
by the user, by implicitly generated functions, or by compiler-generated data structures such as virtual
function tables or exception handling tables).

When static functions are used, local static variables of the functions are promoted to global variables
with specially encoded names, so that even though there may be multiple copies of the code, there is
only one copy of such global variables. This mechanism does not strictly conform to the standard because
the address of an extern inline function is not constant across translation units.

When the instantiation mechanism is used, the address of an extern inline function is constant across
translation units, but at the cost of requiring the use of one of the template instantiation mechanisms,
even for programs that don't use templates. Definitions of extern inline functions can be provided either
through use of the automatic instantiation mechanism or by use of the --instantiate=used or
--instantiate=all instantiation modes. There is no mechanism to manually control the definition of extern
inline function bodies.

2.8. Pragmas to Control the C++ Compiler

Pragmas are keywords in the C++ source that control the behavior of the compiler. Pragmas overrule
compiler options.

The syntax is:

#pragma pragnma- spec

The C++ compiler supports the following pragmas:

instantiate / do_not_instantiate / can_instantiate

These are template instantiation pragmas. They are described in detail in Section 2.5.3, Instantiation
#pragma Directives.

hdrstop / no_pch

These are precompiled header pragmas. They are described in detail in Section 2.10, Precompiled
Headers.

72

C++ Language

once

When placed at the beginning of a header file, indicates that the file is written in such a way that including
it several times has the same effect as including it once. Thus, if the C++ compiler sees #pr agma once
at the start of a header file, it will skip over it if the file is #included again.

A typical idiom is to place an #ifndef guard around the body of the file, with a #define of the guard variable
after the #ifndef:

#pragma once /1 optional
#i f ndef FILE_H
#define FILE H
body of the header file ...
#endi f

The #pragna once is marked as optional in this example, because the C++ compiler recognizes the
#ifndef idiom and does the optimization even in its absence. #pr agma once is accepted for compatibility
with other compilers and to allow the programmer to use other guard-code idioms.

2.9. Predefined Macros

The C++ compiler defines a number of preprocessing macros. Many of them are only defined under
certain circumstances. This section describes the macros that are provided and the circumstances under
which they are defined.

Macro Description

__ABI_COMPATIBILITY_VERSION Defines the ABI compatibility version being
used. This macro is set to 9999, which means
the latest version. This macro is used when
building the C++ library.

__ABI_CHANGES_FOR_RTTI This macro is set to TRUE, meaning that the
ABI changes for RTTI are implemented. This
macro is used when building the C++ library.

__ABI_CHANGES_FOR_ARRAY_NEW_AND_DELETE |This macro is set to TRUE, meaning that the
ABI changes for array new and delete are
implemented. This macro is used when
building the C++ library.

__ABI_CHANGES_FOR_PLACEMENT_DELETE This macro is set to TRUE, meaning that the
ABI changes for placement delete are
implemented. This macro is used when
building the C++ library.

__ARRAY_OPERATORS Defined when array new and del et e are
enabled. This is the default.
__BASE_FILE__ Similarto __FILE__ but indicates the primary

source file rather than the current one (i.e.,
when the current file is an included file).

73

TASKING VX-toolset for ARM User Guide

Macro Description

_ BIG_ENDIAN__ Expands to 1 if big-endian mode is selected
(option --endianness=big), otherwise
unrecognized as macro.

_BOOL Defined when bool is a keyword. This is the
default.

__BUILD__ Identifies the build number of the C++

compiler, composed of decimal digits for the
build number, three digits for the major branch
number and three digits for the minor branch
number. For example, if you use build 1.22.1
of the compiler, __ BUILD__ expands to
1022001. If there is no branch number, the
branch digits expand to zero. For example,
build 127 results in 127000000.

__CHAR_MIN/__CHAR_MAX

Usedinlimts. h to define the
minimum/maximum value of a plain char
respectively.

_ CPARM__

Identifies the C++ compiler. You can use this
symbol to flag parts of the source which must
be recognized by the cparm C++ compiler
only. It expands to 1.

__cplusplus

Always defined.

CPU__

Expands to a string with the CPU supplied with
the option --cpu. When no --cpu is supplied,
this symbol is not defined.

__DATE__

Defined to the date of the compilation in the
form "Mmm dd yyyy".

__DELTA_TYPE

Defines the type of the offset field in the virtual
function table. This macro is used when
building the C++ library.

__DOUBLE_FP__

Expands to 1 if you did not use option
--no-double (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.

__embedded_cplusplus

Defined as 1 in Embedded C++ mode.

__EXCEPTIONS Defined when exception handling is enabled
(--exceptions).

__FILE__ Expands to the current source file name.

__FUNCTION__ Defined to the name of the current function.
An error is issued if it is used outside of a
function.

_ func__ Same as __FUNCTION___ in GNU mode.

74

C++ Language

Macro

Description

__IMPLICIT_USING_STD

Defined when the standard header files should
implicitly do a using-directive on the st d
namespace (--using-std).

__JMP_BUF_ELEMENT_TYPE

Specifies the type of an element of the setjmp
buffer. This macro is used when building the
C++ library.

__JMP_BUF_NUM_ELEMENTS

Defines the number of elements in the setjmp
buffer. This macro is used when building the
C++ library.

__LINE__

Expands to the line number of the line where
this macro is called.

_ LITTLE_ENDIAN__

Expands to 1 if little-endian mode is selected
(option --endianness=little), otherwise
unrecognized as macro. This is the default.

_ NAMESPACES

Defined when namespaces are supported (this
is the default, you can disable support for
namespaces with --no-namespaces).

__NO_LONG_LONG

Defined when the | ong | ong type is not
supported. This is the default.

__NULL_EH_REGION_NUMBER

Defines the value used as the null region
number value in the exception handling tables.
This macro is used when building the C++
library.

_ PLACEMENT_DELETE

Defined when placement delete is enabled.

__PRETTY_FUNCTION__

Defined to the name of the current function.
This includes the return type and parameter
types of the function. An error is issued if it is
used outside of a function.

__PTRDIFF_MIN/__PTRDIFF_MAX

Used in st di nt. h to define the
minimum/maximum value ofapt rdi ff _t
type respectively.

__PTRDIFF_TYPE__

Defined to be the type of pt rdi ff _t.

__REGION_NUMBER_TYPE

Defines the type of a region number field in
the exception handling tables. This macro is
used when building the C++ library.

__REVISION__

Expands to the revision number of the C++
compiler. Digits are represented as they are;
characters (for prototypes, alphas, betas) are
represented by -1. Examples: v1.0rl -> 1,
v1.0rb ->-1

__RTTI

Defined when RTTI is enabled (--rtti).

__RUNTIME_USES_NAMESPACES

Defined when the run-time uses namespaces.

75

TASKING VX-toolset for ARM User Guide

Macro Description
__SIGNED_CHARS__ Defined when plain char is signed.
__SINGLE_FP__ Expands to 1 if you used option --no-double

(Treat ‘double’ as ‘float’), otherwise
unrecognized as macro.

__SIZE_MIN/ _SIZE_MAX

Used in st di nt . h to define the
minimum/maximum value of a si ze_t type
respectively.

__SIZE_TYPE__

Defined to be the type of si ze_t .

_ STDC__

Always defined, but the value may be
redefined.

__STDC_VERSION__

Identifies the ISO-C version number. Expands
to 199901L for ISO C99, but the value may be
redefined.

_STLP_NO_IOSTREAMS

Defined when option --io-streams is not used.
This disables I/O stream functions in the
STLport C++ library.

__TASKING__ Always defined for the TASKING C++
compiler.

__THUMB___ Expands to 1 if you used option --thumb,
otherwise unrecognized as macro.

__TIME__ Expands to the compilation time: “hh:mm:ss”

__TYPE_TRAITS_ENABLED

Defined when type traits pseudo-functions (to
ease the implementation of ISO/IEC TR
19768; e.g., __i s_uni on) are enabled. This
is the default in C++ mode.

__VAR_HANDLE_TYPE

Defines the type of the variable-handle field
in the exception handling tables. This macro
is used when building the C++ library.

__VERSION__

Identifies the version number of the C++
compiler. For example, if you use version 2.1r1
of the compiler, _ VERSION___ expands to
2001 (dot and revision number are omitted,
minor version number in 3 digits).

__VIRTUAL_FUNCTION_INDEX_TYPE

Defines the type of the virtual function index
field of the virtual function table. This macro
is used when building the C++ library.

_ VIRTUAL_FUNCTION_TYPE

Defines the type of the virtual function field of
the virtual function table. This macro is used
when building the C++ library.

__ WCHAR_MIN/_ WCHAR_MAX

Used in st di nt . h to define the
minimum/maximum value of awchar _t type
respectively.

76

C++ Language

Macro Description
_WCHAR_T Defined when wchar _t is a keyword.

2.10. Precompiled Headers

It is often desirable to avoid recompiling a set of header files, especially when they introduce many lines
of code and the primary source files that #i ncl ude them are relatively small. The C++ compiler provides
a mechanism for, in effect, taking a snapshot of the state of the compilation at a particular point and writing
it to a disk file before completing the compilation; then, when recompiling the same source file or compiling
another file with the same set of header files, it can recognize the "snapshot point", verify that the
corresponding precompiled header (PCH) file is reusable, and read it back in. Under the right
circumstances, this can produce a dramatic improvement in compilation time; the trade-off is that PCH
files can take a lot of disk space.

2.10.1. Automatic Precompiled Header Processing

When --pch appears on the command line, automatic precompiled header processing is enabled. This
means the C++ compiler will automatically look for a qualifying precompiled header file to read in and/or
will create one for use on a subsequent compilation.

The PCH file will contain a snapshot of all the code preceding the "header stop" point. The header stop
point is typically the first token in the primary source file that does not belong to a preprocessing directive,
but it can also be specified directly by #pragma hdrstop (see below) if that comes first. For example:

#i ncl ude "xxx. h"
#i ncl ude "yyy. h"
int i;

The header stop pointisi nt (the first non-preprocessor token) and the PCH file will contain a snapshot
reflecting the inclusion of xxx. h and yyy. h. If the first non-preprocessor token or the #pr agrma hdr st op
appears within a #i f block, the header stop point is the outermost enclosing #i f . To illustrate, heres a

more complicated example:

#i ncl ude "xxx.h"

#i fndef YYY_H

#define YYY_H 1

#i ncl ude "yyy. h"

#endi f

#if TEST

int i;

#endi f

Here, the first token that does not belong to a preprocessing directive is again i nt, but the header stop
point is the start of the #i f block containing it. The PCH file will reflect the inclusion of xxx. h and

conditionally the definition of YYY_Hand inclusion of yyy. h; it will not contain the state produced by #i f
TEST.

A PCH file will be produced only if the header stop point and the code preceding it (mainly, the header
files themselves) meet certain requirements:

77

TASKING VX-toolset for ARM User Guide

» The header stop point must appear at file scope -- it may not be within an unclosed scope established
by a header file. For example, a PCH file will not be created in this case:

[l xxx.h
class A {

/1l xxx.C
#i ncl ude "xxx.h"
int i; };

» The header stop point may not be inside a declaration started within a header file, nor (in C++) may it
be part of a declaration list of a linkage specification. For example, in the following case the header
stop point is int, but since it is not the start of a new declaration, no PCH file will be created:

/1 yyy.h
static

/1 yyy.C
#i ncl ude "yyy. h"

int i;

Similarly, the header stop point may not be inside a #i f block or a #def i ne started within a header
file.

» The processing preceding the header stop must not have produced any errors. (Note: warnings and
other diagnostics will not be reproduced when the PCH file is reused.)

* No references to predefined macros __DATE__ or __TlI ME__ may have appeared.
* No use of the #l i ne preprocessing directive may have appeared.
» #pragma no_pch (see below) must not have appeared.

» The code preceding the header stop point must have introduced a sufficient number of declarations to
justify the overhead associated with precompiled headers. The minimum number of declarations required
is 1.

When the host system does not support memory mapping, so that everything to be saved in the
precompiled header file is assigned to preallocated memory (MS-Windows), two additional restrictions

apply:

» The total memory needed at the header stop point cannot exceed the size of the block of preallocated
memory.

* No single program entity saved can exceed 16384, the preallocation unit.

When a precompiled header file is produced, it contains, in addition to the snapshot of the compiler state,
some information that can be checked to determine under what circumstances it can be reused. This
includes:

» The compiler version, including the date and time the compiler was built.

78

C++ Language

» The current directory (i.e., the directory in which the compilation is occurring).
* The command line options.

» The initial sequence of preprocessing directives from the primary source file, including #i ncl ude
directives.

» The date and time of the header files specified in #i ncl ude directives.

This information comprises the PCH prefix. The prefix information of a given source file can be compared
to the prefix information of a PCH file to determine whether the latter is applicable to the current compilation.

As an illustration, consider two source files:

/'l a.cc
#i ncl ude "xxx.h"
// Start of code
/'l b.cc
#i ncl ude "xxx.h"
// Start of code

When a. cc is compiled with --pch, a precompiled header file named a. pch is created. Then, when b. cc
is compiled (or when a. cc is recompiled), the prefix section of a. pch is read in for comparison with the
current source file. If the command line options are identical, if xxx. h has not been modified, and so
forth, then, instead of opening xxx. h and processing it line by line, the C++ compiler reads in the rest of
a. pch and thereby establishes the state for the rest of the compilation.

It may be that more than one PCH file is applicable to a given compilation. If so, the largest (i.e., the one
representing the most preprocessing directives from the primary source file) is used. For instance, consider
a primary source file that begins with

#i ncl ude "xxx.h"
#i ncl ude "yyy. h"
#include "zzz. h"

If there is one PCH file for xxx. h and a second for xxx. h and yyy. h, the latter will be selected (assuming
both are applicable to the current compilation). Moreover, after the PCH file for the first two headers is
read in and the third is compiled, a new PCH file for all three headers may be created.

When a precompiled header file is created, it takes the name of the primary source file, with the suffix
replaced by an implementation-specified suffix (pch by default). Unless --pch-dir is specified (see below),
it is created in the directory of the primary source file.

When a precompiled header file is created or used, a message such as
"test.cc": creating preconpiled header file "test.pch"
is issued. The user may suppress the message by using the command line option --no-pch-messages.

When the option --pch-verbose is used the C++ compiler will display a message for each precompiled
header file that is considered that cannot be used giving the reason that it cannot be used.

79

TASKING VX-toolset for ARM User Guide

In automatic mode (i.e., when --pch is used) the C++ compiler will deem a precompiled header file obsolete
and delete it under the following circumstances:

« if the precompiled header file is based on at least one out-of-date header file but is otherwise applicable
for the current compilation; or

« ifthe precompiled header file has the same base name as the source file being compiled (e.g., xxx. pch
and xxx. cc) but is not applicable for the current compilation (e.g., because of different command line
options).

This handles some common cases; other PCH file clean-up must be dealt with by other means (e.g., by
the user).

Support for precompiled header processing is not available when multiple source files are specified in a
single compilation: an error will be issued and the compilation aborted if the command line includes a
request for precompiled header processing and specifies more than one primary source file.

2.10.2. Manual Precompiled Header Processing

Command line option --create-pch=file-name specifies that a precompiled header file of the specified
name should be created.

Command line option --use-pch=file-name specifies that the indicated precompiled header file should
be used for this compilation; if it is invalid (i.e., if its prefix does not match the prefix for the current primary
source file), a warning will be issued and the PCH file will not be used.

When either of these options is used in conjunction with --pch-dir, the indicated file name (which may
be a path name) is tacked on to the directory name, unless the file name is an absolute path name.

The options --create-pch, --use-pch, and --pch may not be used together. If more than one of these
options is specified, only the last one will apply. Nevertheless, most of the description of automatic PCH
processing applies to one or the other of these modes -- header stop points are determined the same
way, PCH file applicability is determined the same way, and so forth.

2.10.3. Other Ways to Control Precompiled Headers

There are several ways in which the user can control and/or tune how precompiled headers are created
and used.

» #pragma hdrstop may be inserted in the primary source file at a point prior to the first token that does
not belong to a preprocessing directive. It enables you to specify where the set of header files subject
to precompilation ends. For example,

#i ncl ude "xxx.h"
#i ncl ude "yyy. h"
#pragma hdr st op
#i nclude "zzz. h"

Here, the precompiled header file will include processing state for xxx. h and yyy. h but not zzz. h.
(This is useful if the user decides that the information added by what follows the #pragma hdrstop
does not justify the creation of another PCH file.)

80

C++ Language

» #pragma no_pch may be used to suppress precompiled header processing for a given source file.

« Command line option --pch-dir=directory-name is used to specify the directory in which to search for
and/or create a PCH file.

Moreover, when the host system does not support memory mapping and preallocated memory is used
instead, then one of the command line options --pch, --create-pch, or --use-pch, if it appears at all, must
be the first option on the command line.

2.10.4. Performance Issues

The relative overhead incurred in writing out and reading back in a precompiled header file is quite small
for reasonably large header files.

In general, it does not cost much to write a precompiled header file out even if it does not end up being
used, and if it is used it almost always produces a significant speedup in compilation. The problem is that
the precompiled header files can be quite large (from a minimum of about 250K bytes to several megabytes
or more), and so one probably does not want many of them sitting around.

Thus, despite the faster recompilations, precompiled header processing is not likely to be justified for an
arbitrary set of files with nonuniform initial sequences of preprocessing directives. Rather, the greatest
benefit occurs when a number of source files can share the same PCH file. The more sharing, the less
disk space is consumed. With sharing, the disadvantage of large precompiled header files can be
minimized, without giving up the advantage of a significant speedup in compilation times.

Consequently, to take full advantage of header file precompilation, users should expect to reorder the
#i ncl ude sections of their source files and/or to group #i ncl ude directives within a commonly used
header file.

Below is an example of how this can be done. A common idiom is this:

#i nclude "comfile.h"
#pragma hdr st op
#i nclude ...

where comfi | e. h pulls in, directly and indirectly, a few dozen header files; the #pr agma hdr st op is
inserted to get better sharing with fewer PCH files. The PCH file produced for cormfi | e. h can be a bit
over a megabyte in size. Another idiom, used by the source files involved in declaration processing, is
this:

#i nclude "comfile.h"
#i ncl ude "decl _hdrs. h"
#pragma hdr st op

#i nclude ...

decl _hdr s. h pulls in another dozen header files, and a second, somewhat larger, PCH file is created.
In all, the source files of a particular program can share just a few precompiled header files. If disk space
were at a premium, you could decide to make commfi | e. h pull in all the header files used -- then, a
single PCH file could be used in building the program.

81

TASKING VX-toolset for ARM User Guide

Different environments and different projects will have different needs, but in general, users should be
aware that making the best use of the precompiled header support will require some experimentation
and probably some minor changes to source code.

82

Chapter 3. Assembly Language

This chapter describes the most important aspects of the TASKING assembly language for ARM and
contains a detailed description of all built-in assembly functions and assembler directives. For a complete
overview of the architecture you are using and a description of the assembly instruction set, refer to the
target's core reference manual (for example the ARM Architecture Reference Manual ARM DDI 0100l
[2005, ARM Limited]).

3.1. Assembly Syntax

An assembly program consists of statements. A statement may optionally be followed by a comment.
Any source statement can be extended to more lines by including the line continuation character (\) as
the last character on the line. The length of a source statement (first line and continuation lines) is only
limited by the amount of available memory.

Mnemonics, directives and other keywords are case insensitive. Labels, symbols, directive arguments,
and literal strings are case sensitive.

The syntax of an assembly statement is:

[label [:]] [instruction | directive | macro_call] [;conmment]

label A label is a special symbol which is assigned the value and type of the current
program location counter. A label can consist of letters, digits and underscore
characters (). The first character cannot be a digit. The label can also be a
number. A label which is prefixed by whitespace (spaces or tabs) has to be
followed by a colon (:). The size of an identifier is only limited by the amount of
available memory.

number is a number ranging from 1 to 255. This type of label is called a numeric
label or local label. To refer to a numeric label, you must put an n (next) or p
(previous) immediately after the label. This is required because the same label
number may be used repeatedly.

Examples:
LABl1: ; This label is followed by a colon and
; can be prefixed by whitespace
LAB1 ; This label has to start at the beginning
;o of aline
1: b 1p ; This is an endl ess | oop

; using nuneric |abels

83

TASKING VX-toolset for ARM User Guide

instruction

directive

macro_call

comment

An instruction consists of a mnemonic and zero, one or more operands. It must
not start in the first column.

All instructions of the ARM Unified Assembler Language (UAL) are supported.
With assembler option --old-syntax you can specify to use the pre-UAL syntax.
VFP instructions are only supported in the UAL syntax.

Operands are described in Section 3.3, Operands of an Assembly Instruction.
The instructions are described in the target's core Architecture Reference Manual.

The instruction can also be a so-called 'generic instruction'. Generic instructions
are pseudo instructions (no instructions from the instruction set). Depending on
the situation in which a generic instruction is used, the assembler replaces the
generic instruction with appropriate real assembly instruction(s). For a complete
list, see Section 3.11, Generic Instructions.

With directives you can control the assembler from within the assembly source.
Except for preprocessing directives, these must not start in the first column.
Directives are described in Section 3.9, Assembler Directives.

A call to a previously defined macro. It must not start in the first column. See
Section 3.10, Macro Operations.

Comment, preceded by a ; (semicolon).

You can use empty lines or lines with only comments.

3.2. Assembler Significant Characters

You can use all ASCII characters in the assembly source both in strings and in comments. Also the
extended characters from the 1ISO 8859-1 (Latin-1) set are allowed.

Some characters have a special meaning to the assembler. Special characters associated with expression
evaluation are described in Section 3.6.3, Expression Operators. Other special assembler characters

are:

Character [Description

; Start of a comment

\ Line continuation character or macro operator: argument concatenation
? Macro operator: return decimal value of a symbol

% Macro operator: return hex value of a symbol

N Macro operator: override local label

" Macro string delimiter or quoted string . DEFI NE expansion character
' String constants delimiter

@ Start of a built-in assembly function

$ Location counter substitution

Immediate addressing

84

Assembly Language

Character |Description

++ String concatenation operator

[1 Load and store addressing mode

3.3. Operands of an Assembly Instruction

In an instruction, the mnemonic is followed by zero, one or more operands. An operand has one of the
following types:

Operand Description

symbol A symbolic name as described in Section 3.4, Symbol Names. Symbols can also occur
in expressions.

register Any valid register as listed in Section 3.5, Registers.

expression Any valid expression as described in Section 3.6, Assembly Expressions.

address A combination of expression, register and symbol.

Addressing modes

The ARM assembly language has several addressing modes. These are described in detail in the target's
core Architecture Reference Manual.

3.4. Symbol Names

User-defined symbols
A user-defined symbol can consist of letters, digits and underscore characters (). The first character
cannot be a digit. The size of an identifier is only limited by the amount of available memory. The case

of these characters is significant. You can define a symbol by means of a label declaration or an equate
or set directive.

Predefined preprocessor symbols

These symbols start and end with two underscore characters, __symbol__, and you can use them in your
assembly source to create conditional assembly. See Section 3.4.1, Predefined Preprocessor Symbols.

Labels

Symbols used for memory locations are referred to as labels. It is allowed to use reserved symbols as
labels as long as the label is followed by a colon or starts at the first column.

85

TASKING VX-toolset for ARM User Guide

Reserved symbols

Symbol names and other identifiers beginning with a period (.) are reserved for the system (for example
for directives or section names). Instructions and registers are also reserved. The case of these built-in
symbols is insignificant.

Examples
Valid symbol names:

| oop_1
ENTRY
a_B c
_aBC

Invalid symbol names:

1 | oop ; starts with a nunber
. DEFI NE ; reserved directive nane

3.4.1. Predefined Preprocessor Symbols

The TASKING assembler knows the predefined symbols as defined in the table below. The symbols are
useful to create conditional assembly.

Symbol Description
__ASARM__ Expands to 1 for the ARM toolset, otherwise unrecognized as macro.
__BUILD__ Identifies the build number of the assembler, composed of decimal digits for

the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
assembler, _ BUILD___ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

_ REVISION__ Expands to the revision number of the assembler. Digits are represented
as they are; characters (for prototypes, alphas, betas) are represented by
-1. Examples: v1.0r1 -> 1, v1.0rb -> -1

__TASKING__ Identifies the assembler as a TASKING assembler. Expands to 1 if a
TASKING assembler is used.
__VERSION__ Identifies the version number of the assembler. For example, if you use

version 2.1r1 of the assembler, _ VERSION__ expands to 2001 (dot and
revision number are omitted, minor version number in 3 digits).

Example

i f @lefined(' __ASARM ')
; this part is only for the asarm assenbl er

.endif

86

Assembly Language

3.5. Registers

The following register names, either uppercase or lowercase, should not be used for user-defined symbol
names in an assembly language source file:

RO .. Ri15 (general purpose registers)
IP (alias for R12)
SP (alias for R13)
LR (alias for R14)
PC (alias for R15)

3.6. Assembly Expressions

An expression is a combination of symbols, constants, operators, and parentheses which represent a
value that is used as an operand of an assembler instruction (or directive).

Expressions can contain user-defined labels (and their associated integer or floating-point values), and
any combination of integers, floating-point numbers, or ASCII literal strings.

Expressions follow the conventional rules of algebra and boolean arithmetic.

Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker. Relocatable expressions can only
contain integral functions; floating-point functions and numbers are not supported by the ELF/DWARF
object format.

The assembler evaluates expressions with 64-bit precision in two's complement.
The syntax of an expression can be any of the following:

* numeric constant

* string

* symbol

» expression binary_operator expression

* unary_operator expression

» (expression)

« function call

All types of expressions are explained in separate sections.

87

TASKING VX-toolset for ARM User Guide

3.6.1. Numeric Constants

Numeric constants can be used in expressions. If there is no prefix, by default the assembler assumes

the number is a decimal number. Prefixes can be used in either lowercase or uppercase.

Base Description Example

Binary A 0Ob prefix followed by binary digits (0,1). Or use a b suffix. 0B1101
11001010b

Hexadecimal A 0x prefix followed by hexadecimal digits (0-9, A-F, a-f). Or use |Ox12FF

a h suffix. 0x45
0f al0h
Decimal integer Decimal digits (0-9). 12
1245
Decimal Decimal digits (0-9), includes a decimal point, or an 'E' or ‘e’ 6E10
floating-point followed by the exponent. .6
3.14
2.7e10

3.6.2. Strings

ASCII characters, enclosed in single (') or double (") quotes constitute an ASCII string. Strings between
double quotes allow symbol substitution by a . DEFI NE directive, whereas strings between single quotes
are always literal strings. Both types of strings can contain escape characters.

Strings constants in expressions are evaluated to a number (each character is replaced by its ASCII
value). Strings in expressions can have a size of up to 8 characters or less depending on the operand of
an instruction or directive; any subsequent characters in the string are ignored. In this case the assembler
issues a warning. An exception to this rule is when a string is used in a . DB assembler directive; in that
case all characters result in a constant value of the specified size. Null strings have a value of 0.

Examples
' ABCD 7 (0x44434241)
79 ; to enclose a quote double it
"Al"BC ; or to enclose a quote escape it
"AB' +1 ; (0x4341) string used in expression
v ; null string
. DW " abcdef" ; (0x64636261) 'ef' are ignored

; warning: string value truncated
"ab' ++' cd' ; you can concatenate

88

; two strings with the ' ++
: This results in 'abcd'

oper ator.

3.6.3. Expression Operators

Assembly Language

The next table shows the assembler operators. They are ordered according to their precedence. Operators
of the same precedence are evaluated left to right. Parenthetical expressions have the highest priority
(innermost first).

Valid operands include numeric constants, literal ASCII strings and symbols.

Most assembler operators can be used with both integer and floating-point values. If one operand has
an integer value and the other operand has a floating-point value, the integer is converted to a floating-point
value before the operator is applied. The result is a floating-point value.

Type Operator Name Description

O parenthesis Expressions enclosed by parenthesis are evaluated
first.

Unary + plus Returns the value of its operand.

- minus Returns the negative of its operand.

~ one's complement Integer only. Returns the one’s complement of its
operand. It cannot be used with a floating-point
operand.

! logical negate Returns 1 if the operands' value is O; otherwise 0.
For example, if buf is 0 then ! buf is 1. If buf has
a value of 1000 then ! buf is 0.

Arithmetic * multiplication Yields the product of its operands.

/ division Yields the quotient of the division of the first operand
by the second. For integer operands, the divide
operation produces a truncated integer result.

% modulo Integer only. This operator yields the remainder from
the division of the first operand by the second.

+ addition Yields the sum of its operands.

- subtraction Yields the difference of its operands.

Shift << shift left Integer only. Causes the left operand to be shifted
to the left (and zero-filled) by the number of bits
specified by the right operand.

>> shift right Integer only. Causes the left operand to be shifted

to the right by the number of bits specified by the
right operand. The sign bit will be extended.

89

TASKING VX-toolset for ARM User Guide

Type Operator Name Description
Relational < less than Returns an integer 1 if the indicated condition is
-— less than or equal TRUE or an integer 0 if the indicated condition is
FALSE.
> greater than
- greater than or equal For example, if D has a value of 3 qnd E ha; avalue
of 5, then the result of the expression D<Eis 1, and
== equal the result of the expression D>E is 0.
I= not equal o)))
Use tests for equality involving floating-point values
with caution, since rounding errors could cause
unexpected results.
Bitwise & AND Integer only. Yields the bitwise AND function of its
operand.
[OR Integer only. Yields the bitwise OR function of its
operand.
A exclusive OR Integer only. Yields the bitwise exclusive OR function
of its operands.
Logical && logical AND Returns an integer 1 if both operands are non-zero;
otherwise, it returns an integer 0.
[logical OR Returns an integer 1 if either of the operands is
non-zero; otherwise, it returns an integer 1

The relational operators and logical operators are intended primarily for use with the conditional assembly
. i f directive, but can be used in any expression.

3.7.Working with Sections

Sections are absolute or relocatable blocks of contiguous memory that can contain code or data. Some
sections contain code or data that your program declared and uses directly, while other sections are
created by the compiler or linker and contain debug information or code or data to initialize your application.
These sections can be named in such a way that different modules can implement different parts of these
sections. These sections are located in memory by the linker (using the linker script language, LSL) so
that concerns about memory placement are postponed until after the assembly process.

All instructions and directives which generate data or code must be within an active section. The assembler
emits a warning if code or data starts without a section definition. The compiler automatically generates
sections. If you program in assembly you have to define sections yourself.

For more information about locating sections see Section 7.7.8, The Section Layout Definition: Locating
Sections.

Section definition

Sections are defined with the . SECTI ON. ENDSEC directive and have a name. The names have a special
meaning to the locating process and have to start with a predefined name, optionally extended by a dot

90

Assembly Language

"."and a user defined name. Optionally, you can specify the at () attribute to locate a section at a specific
address.

. SECTI ON nane[, at (addr ess)]
; instructions etc.
. ENDSEC

See the description of the . SECTI ON directive for more information.
Examples
. SECTION . dat a ; Declare a .data section
. ENDSEC

. SECTI ON . data. abs, at(0x0) ; Declare a .data.abs section at

; an absol ute address

. ENDSEC

3.8. Built-in Assembly Functions

The TASKING assembler has several built-in functions to support data conversion, string comparison,
and math computations. You can use functions as terms in any expression.

Syntax of an assembly function
@ unction_nanme([argunent[,argunment]...])
Functions start with the '@' character and have zero or more arguments, and are always followed by

opening and closing parentheses. White space (a blank or tab) is not allowed between the function name
and the opening parenthesis and between the (comma-separated) arguments.

The names of assembly functions are case insensitive.

Overview of assembly functions

Function Description

@ALUPCREL (expr,group[,check]) PC-relative ADD/SUB with operand split

@\RGE ' symbol' | expr) Test whether macro argument is present

@3l GENDI AN() Test if assembler generates code for big-endian mode
@CNT() Return number of macro arguments

@CPU(" architecture') Test if current CPU matches architecture

@EFI NED(' symbol' | symbol) Test whether symbol exists

@.-SB(expr) Least significant byte of the expression

@.SH(expr) Least significant half word of the absolute expression

91

TASKING VX-toolset for ARM User Guide

Function Description

@ SW expr) Least significant word of the expression

@/BB(expr) Most significant byte of the expression

@VBH(expr) Most significant half word of the absolute expression

@/BW expr) Most significant word of the expression

@PRE_UAL() Test if the assembler runs in pre-UAL syntax mode or in UAL
syntax mode by default (option --old-syntax)

@5TRCAT(strl, str2) Concatenate strl and str2

@TRCMP(strl, str2) Compare strl with str2

@TRLEN(string) Return length of string

@TRPOS(strl, str2[, start]) Return position of str2 in strl

@ TRSUB(str, exprl, expr2) Return substring

@rHUVB() Test if the assembiler runs in Thumb mode or in ARM mode by
default (option --thumb)

Detailed Description of Built-in Assembly Functions

@ALUPCREL (expression,groupl[,check])

This function is used internally by the assembler with the generic instructions ADR, ADRL and ADRLL.
This function returns the PC-relative address of the expression for use in these generic instructions. group
is 0 for ADR,1 for ADRL or 2 for ADRLL.

With check you can specify to check for overflow (1 means true, 0 means false). If check is omitted, the
default is 1.

Example:

; The instruction "ADRAL R1, | abel" expands to
ADRAL R1, PC, GALUPCREL(| abel, 0, 1)

@ARG('symbol’ | expression)
Returns integer 1 if the macro argument represented by symbol or expression is present, 0 otherwise.

You can specify the argument with a symbol name (the hame of a macro argument enclosed in single
guotes) or with expression (the ordinal number of the argument in the macro formal argument list). If you
use this function when macro expansion is not active, the assembler issues a warning.

Example:

I F @G\RGE' TWDDLE') ;is argunment tw ddl e present?
I F @GARE(1) ;is first argunent present?

92

Assembly Language

@BIGENDIAN()

Returns 1 if the assembler generates code for big-endian mode, returns 0 if the assembler generates
code for little-endian mode (this is the default).

@CNT()

Returns the number of macro arguments of the current macro expansion as an integer. If you use this
function when macro expansion is not active, the assembler issues a warning.

Example:

ARGCOUNT . SET @NT() ; reserve argunent count

@CPU(‘architecture’)

Returns 1 if architecture corresponds to the architecture that was specified with the option
--cpu=architecture; 0 otherwise. See also assembler option --cpu (Select architecture).

Example:

I F @PY(' ARM7EM) ; true if you specified option --cpu=ARM/7EM
;. code for the ARWT7EM

.ELIF @PU(' ARMW6M) ; true if you specified option --cpu=ARM/6M
;. code for the ARW6-M

. ELSE
; code for other architectures

. ENDI F

@DEFINED('symbol' | symbol)

Returns 1 if symbol has been defined, O otherwise. If symbol is quoted, it is looked up as a . DEFI NE
symbol; if it is not quoted, it is looked up as an ordinary symbol, macro or label.

Example:
.| F @EFI NED(' ANGLE') :is synbol ANGLE defi ned?
. | F @EFI NED(ANGLE) ; does | abel ANGLE exist?

@LSB(expression)

Returns the least significant byte of the result of the expression. The result of the expression is calculated
as 16 bits.

Example:
.DB @.SB(0x1234) ;. stores 0x34
.DB @BB(0x1234) ;. stores 0x12

93

TASKING VX-toolset for ARM User Guide

@LSH(expression)

Returns the least significant half word (bits 0..15) of the result of the absolute expression. The result of
the expression is calculated as a word (32 bits).

@LSW(expression)

Returns the least significant word (bits 0..31) of the result of the expression. The result of the expression
is calculated as a double-word (64 bits).

Example:
.DW @QSW 0x12345678) ; stores 0x5678
.DW @/BW 0x123456) ; stores 0x0012

@MSB (expression)

Returns the most significant byte of the result of the expression. The result of the expression is calculated
as 16 hits.

@MSH(expression)
Returns the most significant half word (bits 16..31) of the result of the absolute expression. The result of

the expression is calculated as a word (32 bits). @/SH(expr essi on) is equivalent to
((expression>>16) & Oxffff).

@MSW(expression)

Returns the most significant word of the result of the expression. The result of the expression is calculated
as a double-word (64 bits).

@PRE_UAL()

Returns 1 if the assembler runs in pre-UAL syntax mode by default, or O if the assembler runs in UAL
syntax mode (default). This function reflects the setting of the assembler option --old-syntax.

Example:
.1 F @RE_UAL() ; true if you specified option --old-syntax
; old code
. ELSE
. ; new code, UAL syntax
. ENDI F

@STRCAT(string1,string2)

Concatenates stringl and string2 and returns them as a single string. You must enclose stringl and
string2 either with single quotes or with double quotes.

Example:

94

Assembly Language

.DEFINE I D "@TRCAT(' TAS' ,"KING)" ; ID = "'TASKI NG

@STRCMP(string1,string2)

Compares string1 with string2 by comparing the characters in the string. The function returns the difference
between the characters at the first position where they disagree, or zero when the strings are equal:

<0 if string1 < string2
0 if stringl == string2
>0 if stringl > string2
Example:

.IF (@TRCWP(STR 'MAIN))==0 ; does STR equal 'MAIN ?

@STRLEN(string)

Returns the length of string as an integer.
Example:

SLEN . SET @TRLEN(' string') . SLEN = 6

@STRPOS(string1,string?2[,start])

Returns the position of string2 in string1 as an integer. If string2 does not occur in stringl, the last string
position + 1 is returned.

With start you can specify the starting position of the search. If you do not specify start, the search is
started from the beginning of string1.

Example:
ID.set @TRPOS(' TASKING ,"ASK') ; ID=1
ID.set @TRPOS(' TASKING ,'BUG) ; ID=7

@STRSUB(string,expressionl,expression?2)

Returns the substring from string as a string. expressionl is the starting position within string, and
expression?2 is the length of the desired string. The assembler issues an error if either expressionl or
expression2 exceeds the length of string. Note that the first position in a string is position 0.

Example:

.DEFINE ID "@TRSUB(' TASKING ,3,4)" ;ID = "KING

95

TASKING VX-toolset for ARM User Guide

@THUMB()

Returns 1 if the assembler runs in Thumb mode by default or O if the assembler runs in ARM mode
(default). This function reflects the setting of the assembler option --thumb. So, it does not depend on
the . CODE16, . CODE32, . ARMor . THUVB directive.

If you are in a . CODE32 part and you specified --thumb, @'HUMB() still returns 1.

3.9. Assembler Directives

An assembler directive is simply a message to the assembler. Assembler directives are not translated
into machine instructions. There are three main groups of assembler directives.

Assembler directives that tell the assembler how to go about translating instructions into machine code.
This is the most typical form of assembly directives. Typically they tell the assembler where to put a
program in memory, what space to allocate for variables, and allow you to initialize memory with data.
When the assembly source is assembled, a location counter in the assembler keeps track of where
the code and data is to go in memory.

The following directives fall under this group:

» Assembly control directives

« Symbol definition and section directives

« Data definition / Storage allocation directives
» High Level Language (HLL) directives

Directives that are interpreted by the macro preprocessor. These directives tell the macro preprocessor
how to manipulate your assembly code before it is actually being assembled. You can use these
directives to write macros and to write conditional source code. Parts of the code that do not match the
condition, will not be assembled at all. Unlike other directives, preprocessor directives can start in the
first column.

Some directives act as assembler options and most of them indeed do have an equivalent assembler
(command line) option. The advantage of using a directive is that with such a directive you can overrule
the assembler option for a particular part of the code. Directives of this kind are called controls. A typical
example is to tell the assembler with an option to generate a list file while with the directives . NOLI ST
and . LI ST you overrule this option for a part of the code that you do not want to appear in the list file.
Directives of this kind sometimes are called controls.

Each assembler directive has its own syntax. Some assembler directives can be preceded with a label.
If you do not precede an assembler directive with a label, you must use white space instead (spaces or
tabs). You can use assembler directives in the assembly code as pseudo instructions. The assembler
recognizes both uppercase and lowercase for directives.

96

Assembly Language

3.9.1. Overview of Assembler Directives

The following tables provide an overview of all assembler directives. For a detailed description of these
directives, refer to Section 3.9.2, Detailed Description of Assembler Directives.

Overview of assembly control directives

Directive Description

. END Indicates the end of an assembly module
. I NCLUDE Include file

. MESSAGE Programmer generated message
Overview of symbol definition and section directives
Directive Description

. ALI AS Create an alias for a symbol

. EQU Set permanent value to a symbol

. EXTERN Import global section symbol

. GLOBAL Declare global section symbol

. SECTI QN, . ENDSEC Start a new section

. SET Set temporary value to a symbol

. Sl ZE Set size of symbol in the ELF symbol table
. SOURCE Specify name of original C source file

. TYPE Set symbol type in the ELF symbol table
. VIEAK Mark a symbol as 'weak’

Overview of data definition / storage allocation directives

Directive Description

. ALI GN Align location counter

. BS, . BSB, . BSH, . BSW |Define block storage (initialized)

. BSD

. DB Define byte

. DH Define half word (16 bits)

. DW Define word (32 bits)

. DD Define double-word (64 bits)

. DOUBLE Define a 64-bit floating-point constant
. DS, . DSB, . DSH, . DSW |Define storage

. DSD

. FLOAT Define a 32-bit floating-point constant

97

TASKING VX-toolset for ARM User Guide

Directive Description

. OFFSET Move location counter forwards

Overview of macro preprocessor directives

Directive Description

. DEFI NE Define substitution string

. BREAK Break out of current macro expansion

. REPEAT, . ENDREP Repeat sequence of source lines

. FOR, . ENDFOR Repeat sequence of source lines n times
.IF,.ELIF,.ELSE Conditional assembly directive

. ENDI F End of conditional assembly directive

. MACRO, . ENDM Define macro

. UNDEF Undefine . DEFI NE symbol or macro

Overview of listing control directives

Directive Description

. LI ST, . NOLI ST Print / do not print source lines to list file

. PAGE Set top of page/size of page

. TITLE Set program title in header of assembly list file

Overview of HLL directives

Directive Description
. CALLS Pass call tree information and/or stack usage information
. M SRAC Pass MISRA C information

Overview of ARM specific directives

Directive Description

. CCDE16, . CODE32 Treat instructions as Thumb or ARM instructions using pre-UAL syntax
. THUMB, . ARM Treat instructions as Thumb or ARM instructions using UAL syntax

. LTORG Assemble current literal pool immediately

3.9.2. Detailed Description of Assembler Directives

98

Assembly Language

ALIAS

Syntax

al i as-name . ALI AS synbol - nane
Description

With the . ALI AS directive you can create an alias of a symbol. The C compiler generates this directive
when you use the #pragma al i as.

Example

exit .ALIAS _Exit

Related information

Pragmaal i as

99

TASKING VX-toolset for ARM User Guide

ALIGN

Syntax

. ALI GN expression

Description

With the . ALI GNdirective you instruct the assembler to align the location counter. By default the assembler
aligns on one byte.

When the assembler encounters the . ALI GN directive, it advances the location counter to an address
that is aligned as specified by expression and places the next instruction or directive on that address.
The alignment is in minimal addressable units (MAUs). The assembler fills the ‘gap’ with NOP instructions
for code sections or with zeros for data sections. If the location counter is already aligned on the specified
alignment, it remains unchanged. The location of absolute sections will not be changed.

The expression must be a power of two: 2, 4, 8, 16, ... If you specify another value, the assembler changes
the alignment to the next higher power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value occurring in that section.
A label is not allowed before this directive.
Example

. SECTI ON . text

.ALIGN 4 ; the assenbler aligns
instruction ; this instruction at 4 MAUs and

; fills the "gap' with NOP instructions.
. ENDSEC
. SECTION .text
.ALIGN 3 ; WRONG not a power of two, the
instruction ; assenbler aligns this instruction at

; 4 MAUs and issues a warning.
. ENDSEC

100

Assembly Language

.BREAK

Syntax

. BREAK

Description

The . BREAK directive causes immediate termination of a macro expansion, a . FOR loop expansion or a
. REPEAT loop expansion. In case of nested loops or macros, the . BREAK directive returns to the previous
level of expansion.

The . BREAK directive is, for example, useful in combination with the . | F directive to terminate expansion
when error conditions are detected.

The assembler does not allow a label with this directive.

Example

. FOR MYVAR I N 10 TO 20

; assenbly source lines
I F MYVAR > 15
. BREAK

. ENDI F
. ENDFOR

101

TASKING VX-toolset for ARM User Guide

.BS, .BSB, .BSH, .BSW, .BSD

Syntax

[label] .BS count[, val ue]

[l abel] .BSB count[, val ue]
[l abel] .BSH count[, val ue]
[l abel] .BSW count[, val ue]
[l abel] .BSD count[, val ue]

Description

With the . BS directive the assembler reserves a block of memory. The reserved block of memory is
initialized to the value of value, or zero if omitted.

With count you specify the number of minimum addressable units (MAUs) you want to reserve, and how
much the location counter will advance. The expression must be an integer greater than zero and cannot
contain any forward references to address labels (labels that have not yet been defined).

With value you can specify a value to initialize the block with. Only the least significant MAU of value is
used. If you omit value, the default is zero.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

You cannot initialize of a block of memory in sections with prefix . bss. In those sections, the
assembler issues a warning and only reserves space, just as with . DS.

The . BSB, . BSH, . BSWand . BSDdirectives are variants of the . BS directive. The difference is the number
of bits that are reserved for the count argument:

Directive Reserved bits
. BSB 8

. BSH 16

. BSW 32

. BSD 64

Example

The . BSB directive is for example useful to define and initialize an array that is only partially filled:

.section .data

.DB 84,101, 115,116 ; initialize 4 bytes
. BSB 96, OxFF ; reserve another 96 bytes, initialized with OXFF
. endsec

102

Assembly Language

Related Information
. DB (Define Memory)

. DS (Define Storage)

103

TASKING VX-toolset for ARM User Guide

.CALLS

Syntax
.CALLS "caller’,’ callee’
or

. CALLS "caller’,’’, stack_usage[,...]

Description

The first syntax creates a call graph reference between caller and callee. The linker needs this information
to build a call graph. caller and callee are names of functions.

The second syntax specifies stack information. When callee is an empty name, this means we define the
stack usage of the function itself. The value specified is the stack usage in bytes at the time of the call
including the return address. A function can use multiple stacks.

This information is used by the linker to compute the used stack within the application. The information
is found in the generated linker map file within the Memory Usage.

This directive is generated by the C compiler. Use the . CALLS directive in hand-coded assembly when
the assembly code calls a C function. If you manually add . CALLS directives, make sure they connect
to the compiler generated . CALLS directives: the name of the caller must also be named as a callee in
another directive.

A label is not allowed before this directive.

Example
. CALLS 'nmain', ' nfunc'

Indicates that the function mai n calls the function nf unc.
. CALLS 'main','"',8

The function mai n uses 8 bytes on the stack.

104

Assembly Language

.CODE16, .CODE32, .THUMB, .ARM

Syntax

. CODE16
. CODE32
. THUMB
. ARM

Description

With the . CODE16 directive you instruct the assembler to interpret subsequent instructions as 16-bit
Thumb instructions using the pre-UAL syntax until it encounters another mode directive or till it reaches
the end of the active section. This directive causes an implicit alignment of two bytes.

The . THUMB directive is the same as the . CODE16 directive except that the UAL syntax is expected.

With the . CODES32 directive you instruct the assembler to interpret subsequent instructions as 32-bit ARM
instructions using the pre-UAL syntax until it encounters another mode directive or till it reaches the end
of the active section. This directive causes an implicit alignment of four bytes. The assembler issues an
error message if . CODE32 is used in combination with option --cpu=ARMvV7M.

The . ARMdirective is the same as the . CODE32 directive except that the UAL syntax is expected.

These directives are useful when you have files that contain both ARM and Thumb instructions. The
directive must appear before the instruction change and between a . SECTI ON. ENDSEC. The default
instruction set at the start of a section depends on the use of assembler option --thumb.

Example

.section .text
. code32

;following instructions are ARMinstructions
. endsec

Related Information

Assembler option --thumb (Treat input as Thumb instructions)

105

TASKING VX-toolset for ARM User Guide

.DB, .DH, .DW, .DD

Syntax

[label] .DB argunent[,argunent]. ..
[label] .DH argunent[,argunent]. ..
[l abel] .DWargunent[,argunent]. ..
[l abel] .DD argunent[,argunent]. ..

Description

With these directive you can define memory. With each directive the assembler allocates and initializes
one or more bytes of memory for each argument.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

An argument can be a single- or multiple-character string constant, an expression or empty. Multiple
arguments must be separated by commas with no intervening spaces. Empty arguments are stored as
0 (zero).

The following table shows the number of bits initialized.

Directive Bits
. DB 8

. DH 16

. DW 32

. DD 64

The value of the arguments must be in range with the size of the directive; floating-point numbers are not
allowed. If the evaluated argument is too large to be represented in a half word / word / double-word, the
assembler issues a warning and truncates the value.

String constants

Single-character strings are stored in a byte whose lower seven bits represent the ASCII value of the
character, for example:

.DB 'R ;= 0x52

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like \n’ are permitted.

.DB "AB',,'C ; = 0x41420043 (second argunent is enpty)
Example

When a string is supplied as argument of a directive that initializes multiple bytes, each character in the
string is stored in consecutive bytes whose lower seven bits represent the ASCII value of the character.
For example:

106

Assembly Language

HTBL: .DH "'ABC ,,'D ; results in 0x424100004400 , the 'C is truncated
WIBL: .DW' ABC ; results in 0x43424100

Related Information
. BS (Block Storage)

. DS (Define Storage)

107

TASKING VX-toolset for ARM User Guide

.DEFINE

Syntax

. DEFI NE synbol string

Description

With the . DEFI NE directive you define a substitution string that you can use on all following source lines.
The assembler searches all succeeding lines for an occurrence of symbol, and replaces it with string. If
the symbol occurs in a double quoted string it is also replaced. Strings between single quotes are not
expanded.

This directive is useful for providing better documentation in the source program. A symbol can consist
of letters, digits and underscore characters (_), and the first character cannot be a digit.

Macros represent a special case. . DEFI NE directive translations will be applied to the macro definition
as it is encountered. When the macro is expanded, any active . DEFI NE directive translations will again
be applied.

The assembler issues a warning if you redefine an existing symbol.

A label is not allowed before this directive.

Example

Suppose you defined the symbol LEN with the substitution string "32":
. DEFI NE LEN " 32"

Then you can use the symbol LEN for example as follows:

. DS LEN
. MESSACE "The length is: LEN'

The assembler preprocessor replaces LEN with "32" and assembles the following lines:

. DS 32
. MESSACGE "The length is: 32"

Related Information
. UNDEF (Undefine a .DEFINE symbol)

. MACRO, . ENDM(Define a macro)

108

.DS, .DSB, .DSH, .DSW, .DSD

Syntax

[l abel] .DS expression
[l abel] .DSB expression
[l abel] .DSH expression
[l abel] .DSW expression
[l abel] .DSD expression
Description

Assembly Language

With the . DS directive the assembler reserves a block in memory. The reserved block of memory is not
initialized to any value.

With the expression you specify the number of MAUs (Minimal Addressable Units) that you want to
reserve, and how much the location counter will advance. The expression must evaluate to an integer
greater than zero and cannot contain any forward references (symbols that have not yet been defined).

If you specify the optional label, it gets the value of the location counter at the start of the directive

processing.

The . DSB, . DSH, . DSWand . DSDdirectives are variants of the . DS directive. The difference is the number

of bits that are reserved per expression argument:

Directive Reserved bits

. DSB 8

. DSH 16

. DSW 32

. DSD 64

Example
.section .bss

RES: .DS 5+3 ; allocate 8 bytes
. endsec

Related Information
. BS (Block Storage)

. DB (Define Memory)

109

TASKING VX-toolset for ARM User Guide

.END

Syntax

. END

Description

With the optional . END directive you tell the assembler that the end of the module is reached. If the
assembler finds assembly source lines beyond the . END directive, it ignores those lines and issues a
warning.

You cannot use the . END directive in a macro expansion.
The assembler does not allow a label with this directive.
Example

.section .text
; source lines
. endsec
. END ; End of assenbly nodul e

110

Assembly Language

.EQU

Syntax

synbol . EQU expression

Description

With the . EQU directive you assign the value of expression to symbol permanently. The expression can
be relative or absolute. Once defined, you cannot redefine the symbol. With the . GLOBAL directive you
can declare the symbol global.

Example

To assign the value 0x400 permanently to the symbol MYSYMBOL:

MYSYMBOL . EQU 0x4000

You cannot redefine the symbol MYSYMBOL after this.

Related Information

. SET (Set temporary value to a symbol)

111

TASKING VX-toolset for ARM User Guide

.EXTERN
Syntax

. EXTERN synbol [, synbol]. ..
Description

With the . EXTERNdirective you define an external symbol. It means that the specified symbol is referenced
in the current module, but is not defined within the current module. This symbol must either have been
defined outside of any module or declared as globally accessible within another module with the . GLOBAL
directive.

If you do not use the . EXTERN directive and the symbol is not defined within the current module, the
assembler issues a warning and inserts the . EXTERN directive.

A label is not allowed with this directive.

Example

. EXTERN AA, CC, DD ;defined el sewhere

Related Information

. GLOBAL (Declare global section symbol)

112

Assembly Language

.FLOAT, .DOUBLE

Syntax
[l abel]. FLOAT expression[, expression]...

[l abel] . DOUBLE expression[, expression]...

Description

With the . FLOAT or . DOUBLE directive the assembler allocates and initializes a floating-point number
(32 hits) or a double (64 bits) in memory for each argument.

An expression can be:
« afloating-point expression
* NULL (indicated by two adjacent commas: ,,)

You can represent a constant as a signed whole number with fraction or with the 'e’ format as used in the
C language. For example, 12. 457 and +0. 27E- 13 are legal floating-point constants.

If the evaluated argument is too large to be represented in a single word / double-word, the assembler
issues an error and truncates the value.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

FLT: . FLOAT 12. 457, +0. 27E- 13
DBL: .DOUBLE 12.457,+0.27E-13

Related Information

. DS (Define Storage)

113

TASKING VX-toolset for ARM User Guide

.FOR, .ENDFOR

Syntax

[label] .FOR var IN expression[,expression]...
| ENDFOR

or:

[label] .FOR var IN start TO end [STEP st ep]
. ENDFOR
Description

With the . FOR/ . ENDFOR directive you can repeat a block of assembly source lines with an iterator. As
shown by the syntax, you can use the . FOR/ . ENDFOR in two ways.

1. In the first method, the block of source statements is repeated as many times as the number of
arguments following | N. If you use the symbol var in the assembly lines between . FORand . ENDFOR,
for each repetition the symbol var is substituted by a subsequent expression from the argument list. If
the argument is a null, then the block is repeated with each occurrence of the symbol var removed. If
an argument includes an embedded blank or other assembler-significant character, it must be enclosed
with single quotes.

2. In the second method, the block of source statements is repeated using the symbol var as a counter.
The counter passes all integer values from start to end with a step. If you do not specify step, the
counter is increased by one for every repetition.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

In the following example the block of source statements is repeated 4 times (there are four arguments).
With the . DB directive you allocate and initialize a byte of memory for each repetition of the loop (a word
for the . DWdirective). Effectively, the preprocessor duplicates the . DB and . DWdirectives four times in
the assembly source.

.FOR VARL IN 1,2+3, 4,12
. DB VARL
. DW (VARL* VAR1)

. ENDFOR

In the following example the loop is repeated 16 times. With the . DWdirective you allocate and initialize
four bytes of memory for each repetition of the loop. Effectively, the preprocessor duplicates the . DW
directive 16 times in the assembled file, and substitutes VAR2 with the subsequent numbers.

_FOR VAR2 IN 1 to 0x10
. DW (VARL* VAR1)
. ENDFOR

114

Assembly Language

Related Information

. REPEAT, . ENDREP (Repeat sequence of source lines)

115

TASKING VX-toolset for ARM User Guide

.GLOBAL
Syntax

. GLOBAL synbol [, synbol]. ..
Description

All symbols or labels defined in the current section or module are local to the module by default. You can
change this default behavior with assembler option --symbol-scope=global.

With the . GLOBAL directive you declare one of more symbols as global. It means that the specified
symbols are defined within the current section or module, and that those definitions should be accessible
by all modules.

To access a symbol, defined with . GLOBAL, from another module, use the . EXTERN directive.

Only program labels and symbols defined with . EQU can be made global.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.
The assembler does not allow a label with this directive.

Example

LOOPA .EQU 1 ; definition of synbol LOOPA
.GLOBAL LOCPA ; LOOPA will be globally
; accessi bl e by other nodul es
Related Information

. EXTERN (Import global section symbol)

116

Assembly Language

IF, .ELIF, .ELSE, .ENDIF

Syntax

.1 F expression

[.ELIF expression] ; the .ELIF directive is optional
[. ELSE] ; the .ELSE directive is optional
. ENDI F

Description

With the . | F/. ENDI F directives you can create a part of conditional assembly code. The assembler
assembles only the code that matches a specified condition.

The expression must evaluate to an absolute integer and cannot contain forward references. If expression
evaluates to zero, the IF-condition is considered FALSE, any non-zero result of expression is considered
as TRUE.

If the optional . ELSE and/or . ELI F directives are not present, then the source statements following the
. | Fdirective and up to the next . ENDI F directive will be included as part of the source file being assembled
only if the expression had a non-zero result.

If the expression has a value of zero, the source file will be assembled as if those statements between
the . | F and the . ENDI F directives were never encountered.

If the . ELSE directive is present and expression has a nonzero result, then the statements between the
. | Fand . ELSE directives will be assembled, and the statement between the . ELSE and . ENDI F directives
will be skipped. Alternatively, if expression has a value of zero, then the statements between the . | F and
. ELSE directives will be skipped, and the statements between the . ELSE and . ENDI F directives will be
assembled.

You can nest . | F directives to any level. The . ELSE and . ELI F directive always refer to the nearest
previous . | F directive.

A label is not allowed with this directive.
Example

Suppose you have an assemble source file with specific code for a test version, for a demo version and
for the final version. Within the assembly source you define this code conditionally as follows:

I F TEST
. ; code for the test version
. ELI F DEMO

. ; code for the denp version
. ELSE

117

TASKING VX-toolset for ARM User Guide

; code for the final version
. ENDI F

Before assembling the file you can set the values of the symbols TEST and DEMOin the assembly source
before the . | F directive is reached. For example, to assemble the demo version:

TEST .SET 0O
DEMO . SET 1

Related Information

Assembler option --define (Define preprocessor macro)

118

Assembly Language

.INCLUDE

Syntax

. I NCLUDE "fil ename" | <fil enane>

Description

With the . | NCLUDE directive you include another file at the exact location where the . | NCLUDE occurs.
This happens before the resulting file is assembled. The . | NCLUDE directive works similarly to the

#i ncl ude statement in C. The source from the include file is assembled as if it followed the point of the
. | NCLUDE directive. When the end of the included file is reached, assembly of the original file continues.

The string specifies the filename of the file to be included. The filename must be compatible with the
operating system (forward/backward slashes) and can contain a directory specification. If you omit a
filename extension, the assembler assumes the extension . asm

If an absolute pathname is specified, the assembler searches for that file. If a relative path is specified
or just a filename, the order in which the assembler searches for include files is:

1. The current directory if you use the "filename" construction.
The current directory is not searched if you use the <filename> syntax.
2. The path that is specified with the assembler option --include-directory.
3. The path that is specified in the environment variable ASARM NC when the product was installed.
4. The default i ncl ude directory in the installation directory.
The assembler does not allow a label with this directive.

The state of the assembler is not changed when an include file is processed. The lines of the include file
are inserted just as if they belong to the file where it is included.

Example
Suppose that your assembly source file t est . sr ¢ contains the following line:
. I NCLUDE "c:\ nyi ncl udes\ nyi nc. i nc"
The assembler issues an error if it cannot find the file at the specified location.
. I NCLUDE "nyi nc.inc"
The assembler searches the file myi nc. i nc according to the rules described above.
Related Information

Assembler option --include-directory (Add directory to include file search path)

119

TASKING VX-toolset for ARM User Guide

.LIST, .NOLIST
Syntax
. NOLI ST

; assenbly source lines
.LIST

Description

If you generate a list file with the assembler option --list-file, you can use the directives . LI ST and
. NOLI ST to specify which source lines the assembler must write to the list file. Without the assembler
option --list-file these directives have no effect. The directives take effect starting at the next line.

The assembler prints all source lines to the list file, until it encounters a . NOLI ST directive. The assembler
does not print the . NOLI ST directive and subsequent source lines. When the assembler encounters the
. LI ST directive, it resumes printing to the list file.

It is possible to nest the . LI ST/. NOLI ST directives.

Example
Suppose you assemble the following assembly code with the assembler option --list-file:

. SECTI ON . t ext
.. ; source line 1
. NOLI ST

.. ; source line 2
.LIST

.. ; source line 3
. ENDSEC

The assembler generates a list file with the following lines:

. SECTI ON . t ext

; source line 1
.. ; source line 3
. ENDSEC

Related Information

Assembler option --list-file (Generate list file)

120

Assembly Language

.LTORG

Syntax

. LTORG
Description
With this directive you force the assembler to generate a literal pool (data pocket) at the current location.
All literals from the LDR= pseudo-instructions (except those which could be translated to MOV or MVN
instructions) between the previous literal pool and the current location will be assembled in a new literal

pool using . DWdirectives.

By default, the assembler generates a literal pool at the end of a code section, i.e. the . ENDSEC directive
at the end of a code section causes an implicit . LTORG directive. However, the default literal pool may
be out-of-reach of one or more LDR= pseudo-instructions in the section. In that case the assembler issues
an error message and you should insert . LTORG directives at proper locations in the section.

Example

.section .text

LDR r1, =0x12345678

;. code
.ltorg ; literal pool contains the literal &0x12345678
.endsec ; default literal pool is empty

Related Information
LDR= ARM generic instruction

LDR= Thumb generic instruction

121

TASKING VX-toolset for ARM User Guide

.MACRO, .ENDM

Syntax

macr o_nanme . MACRO [argunent [, argument]...]
rracr o_definition_statenents
. ENDM

Description

With the . MACROdirective you define a macro. Macros provide a shorthand method for handling a repeated
pattern of code or group of instructions. You can define the pattern as a macro, and then call the macro
at the points in the program where the pattern would repeat.

The definition of a macro consists of three parts:

» Header, which assigns a name to the macro and defines the arguments (. MACRO directive).
» Body, which contains the code or instructions to be inserted when the macro is called.

» Terminator, which indicates the end of the macro definition (. ENDMdirective).

The arguments are symbolic names that the macro processor replaces with the literal arguments when
the macro is expanded (called). Each formal argument must follow the same rules as symbol names: the
name can consist of letters, digits and underscore characters (_). The first character cannot be a digit.
Argument names cannot start with a percent sign (%).

Macro definitions can be nested but the nested macro will not be defined until the primary macro is
expanded.

You can use the following operators in macro definition statements:

Operator [Name Description

\ Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

? Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

A Macro local label override Prevents name mangling on labels in macros.

Example
The macro definition:

macro_a .MACRO argl, arg2 : header
.db argl ; body

122

.dw (argl*arg2)
. ENDM

The macro call:

.section far
macro_a 2,3
. endsec

The macro expands as follows:

.db 2
dw (2*3)

Related Information
Section 3.10, Macro Operations

. DEFI NE (Define a substitution string)

;term nator

Assembly Language

123

TASKING VX-toolset for ARM User Guide

.MESSAGE

Syntax

. MESSAGE type [{str]|exp}[,{str|exp}]...]

Description

With the . MESSAGE directive you tell the assembiler to print a message to st der r during the assembling
process.

With type you can specify the following types of messages:

I Information message. Error and warning counts are not affected and the assembler continues
the assembling process.

\W Warning message. Increments the warning count and the assembler continues the assembling
process.

Error message. Increments the error count and the assembler continues the assembling process.

F Fatal error message. The assembler immediately aborts the assembling process and generates
no object file or list file.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated message. If you use expressions,
the assembler outputs the result. The assembler outputs a space between each argument.

The error and warning counts will not be affected. The . MESSAGE directive is for example useful in
combination with conditional assembly to indicate which part is assembled. The assembling process
proceeds normally after the message has been printed.

This directive has no effect on the exit code of the assembler.

A label is not allowed with this directive.

Example

. MESSACGE | ' Generating tables'

ID.EQU 4
.MESSAGE E ' The value of IDis',ID

. DEFI NE LONG " SHORT"
.MESSACE | 'This is a LONG string'
.MESSACE | "This is a LONG string"

Within single quotes, the defined symbol LONGis not expanded. Within double quotes the symbol LONG
is expanded so the actual message is printed as:

This is a LONG string
This is a SHORT string

124

Assembly Language

.MISRAC

Syntax

. M SRAC string

Description

The C compiler can generate the . M SRAC directive to pass the compiler's MISRA C settings to the object
file. The linker performs checks on these settings and can generate a report. It is not recommended to
use this directive in hand-coded assembly.

Example

.M SRAC ' M SRA- C: 2004, 64, e2, Ob, e, el1, 27, 6, ef 83, el, ef , 66, cb75, af 1, ef f, e7,
e7f, 8d, 63, 87ff7, 6ff3, 4

Related Information
Section 4.6.2, C Code Checking: MISRA C

C compiler option --misrac

125

TASKING VX-toolset for ARM User Guide

.OFFSET

Syntax

. OFFSET expressi on

Description

With the . OFFSET directive you tell the assembler to give the location counter a new offset relative to the
start of the section.

When the assembler encounters the . OFFSET directive, it moves the location counter forwards to the
specified address, relative to the start of the section, and places the next instruction on that address. If
you specify an address equal to or lower than the current position of the location counter, the assembler
issues an error.

A label is not allowed with this directive.

Example

. SECTI ON . t ext
nop
nop
nop
. OFFSET 0x20 ; the assenbl er places
nop ; this instruction at address 0x20
; relative to the start of the section.
. ENDSEC

. SECTI ON .t ext

nop

nop

nop

. OFFSET 0x02 ; WRONG the current position of the
nop ; location counter is 0xO0C.

. ENDSEC

Related Information

. SECTI ON (Start a new section)

126

Assembly Language

.PAGE
Syntax
. PAGE [pagewi dt h[, pagel engt h[, bl ankl eft[, bl ankt op[, bl ankbtn]]]]
Default
. PAGE 132,72,0,0,0
Description

If you generate a list file with the assembler option --list-file, you can use the directive . PAGE to format
the generated list file.

The arguments may be any positive absolute integer expression, and must be separated by commas.

pagewidth Number of columns per line. The default is 132, the minimum is 40.

pagelength Total number of lines per page. The default is 72, the minimum is 10.
As a special case, a page length of 0 turns off page breaks.

blankleft Number of blank columns at the left of the page. The default is 0, the
minimum is 0, and the maximum must maintain the relationship: blankleft
< pagewidth.

blanktop Number of blank lines at the top of the page. The default is 0, the

minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

blankbtm Number of blank lines at the bottom of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

If you use the . PAGE directive without arguments, it causes a 'formfeed': the next source line is printed
on the next page in the list file. The . PAGE directive itself is not printed.

You can omit an argument by using two adjacent commas. If the remaining arguments after an argument
are all empty, you can omit them.

Example
. PAGE ; fornfeed, the next source line is printed
; on the next page in the list file.
. PAGE 96 ; set page width to 96. Note that you can

; omt the last four argunents.
.PAGE ,,,3,3 ; use 3 line top/bottom nmargins.

Related Information

. TI TLE (Set program title in header of assembler list file)

127

TASKING VX-toolset for ARM User Guide

Assembler option --list-file

128

Assembly Language

.REPEAT, .ENDREP

Syntax

[l abel] . REPEAT expression
. ENDREP

Description

With the . REPEAT/. ENDREP directive you can repeat a sequence of assembly source lines. With expression
you specify the number of times the loop is repeated. If the expression evaluates to a number less than
or equal to O, the sequence of lines will not be included in the assembler output. The expression result
must be an absolute integer and cannot contain any forward references (symbols that have not already
been defined). The . REPEAT directive may be nested to any level.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

In this example the loop is repeated 3 times. Effectively, the preprocessor repeats the source lines (. DB
10) three times, then the assembler assembles the result:

. REPEAT 3
.DB 10 ; assenbly source |ines
. ENDFOR

Related Information

. FOR, . ENDFOR (Repeat sequence of source lines n times)

129

TASKING VX-toolset for ARM User Guide

.SECTION, .ENDSEC

Syntax

. SECTI ON nane[, at (address)]

. ENDSEC

Description

With the . SECTI ON directive you define a new section. Each time you use the . SECTI ON directive, a
new section is created. It is possible to create multiple sections with exactly the same name.

If you define a section, you must always specify the section name. The names have a special meaning
to the locating process and have to start with a predefined name, optionally extended by a dot'.' and a
user defined name. The predefined section name also determines the type of the section (code, data or
debug). Optionally, you can specify the at () attribute to locate a section at a specific address.

You can use the following predefined section names:

Section name [Description Section type
text Code sections code

.data Initialized data data

.bss Uninitialized data (cleared) data

.rodata ROM data (constants) data

.debug Debug sections debug

Sections of a specified type are located by the linker in a memory space. The space names are defined
in a so-called 'linker script file' (files with the extension . | sl) delivered with the product in the directory
installation-dir\include.lsl.

Example

. SECTI ON . dat a

. ENDSEC

. SECTI ON . dat a. abs, at (0x0)

. ENDSEC

Related Information

. OFFSET (Move location counter forwards)

130

Decl are a .data section

Decl are a .data.abs section at
an absol ute address

Assembly Language

SET

Syntax

synbol .SET expression
. SET synbol expression

Description

With the . SET directive you assign the value of expression to symbol temporarily. If a symbol was defined
with the . SET directive, you can redefine that symbol in another part of the assembly source, using the
. SET directive again. Symbols that you define with the . SET directive are always local: you cannot define
the symbol global with the . GLOBAL directive.

The . SET directive is useful in establishing temporary or reusable counters within macros. expression
must be absolute and cannot include a symbol that is not yet defined (no forward references are allowed).

Example

COUNT .SET O ; Initialize count. Later on you can
; assign other values to the synbol

Related Information

. EQU (Set permanent value to a symbol)

131

TASKING VX-toolset for ARM User Guide

SIZE

Syntax
.Sl ZE synbol , expression
Description
With the . SI ZE directive you set the size of the specified symbol to the value represented by expression.

The . SI ZE directive may occur anywhere in the source file unless the specified symbol is a function. In
this case, the . Sl ZE directive must occur after the function has been defined.

Example
.section . text
. gl obal main
.arm
.align 4
; Function main
mai n: .type func

. SI ZE mai n, $- mai n
. endsec

Related Information

. TYPE (Set symbol type)

132

Assembly Language

.SOURCE
Syntax
. SOURCE string

Description

With the . SOURCE directive you specify the name of the original C source module. This directive is
generated by the C compiler. You do not need this directive in hand-written assembly.

Example

. SOURCE "nai n. c"

133

TASKING VX-toolset for ARM User Guide

.TITLE
Syntax

.TITLE ["string"]
Default

.TITLE ""
Description

If you generate a list file with the assembler option --list-file, you can use the . TI TLE directive to specify
the program title which is printed at the top of each page in the assembler list file.

If you use the . TI TLE directive without the argument, the title becomes empty. This is also the default.
The specified title is valid until the assembler encounters a new . Tl TLE directive.

The . Tl TLE directive itself will not be printed in the source listing.
If the page width is too small for the title to fit in the header, it will be truncated.
Example
.TITLE "This is the title"
Related Information
. PAGE (Format the assembler list file)

Assembler option --list-file

134

Assembly Language

.TYPE
Syntax
synbol .TYPE typeid

Description

With the . TYPE directive you set a symbol's type to the specified value in the ELF symbol table. Valid
symbol types are:

FUNC The symbol is associated with a function or other executable code.
OBJECT The symbol is associated with an object such as a variable, an array, or a structure.
FILE The symbol name represents the filename of the compilation unit.

Labels in code sections have the default type FUNC. Labels in data sections have the default type OBJECT.
Example
Afunc: .type func

Related Information

. Sl ZE (Set symbol size)

135

TASKING VX-toolset for ARM User Guide

.UNDEF

Syntax

. UNDEF synbol

Description

With the . UNDEF directive you can undefine a substitution string that was previously defined with the
. DEFI NE directive. The substitution string associated with symbol is released, and symbol will no longer
represent a valid . DEFI NE substitution or macro.

The assembler issues a warning if you redefine an existing symbol.
The assembler does not allow a label with this directive.
Example

The following example undefines the LEN substitution string that was previously defined with the . DEFI NE
directive:

. UNDEF LEN
Related Information
. DEFI NE (Define a substitution string)

. MACRO, . ENDM (Define a macro)

136

Assembly Language

WEAK
Syntax

. EEAK synbol [, synbol J. ..
Description

With the . VEAK directive you mark one or more symbols as 'weak'. The symbol can be defined in the
same module with the . GLOBAL directive or the . EXTERN directive. If the symbol does not already exist,
it will be created.

A 'weak' external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference.

You can overrule a weak definition with a . GLOBAL definition in another module. The linker will not
complain about the duplicate definition, and ignore the weak definition.

Only program labels and symbols defined with . EQU can be made weak.

Example

LOOPA . EQU 1 ; definition of synbol LOOPA
.GLOBAL LOOPA ; LOOPA will be globally
; accessi bl e by other nodul es
. VEAK LOGPA ; mark synbol LOOPA as weak

Related Information
. EXTERN (Import global section symbol)

. GLOBAL (Declare global section symbol)

137

TASKING VX-toolset for ARM User Guide

3.10. Macro Operations

Macros provide a shorthand method for inserting a repeated pattern of code or group of instructions. You
can define the pattern as a macro, and then call the macro at the points in the program where the pattern
would repeat.

Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly.

When a macro is called, the assembler executes the macro and replaces the call by the resulting in-line
source statements. 'In-line' means that all replacements act as if they are on the same line as the macro
call. The generated statements may contain substitutable arguments. The statements produced by a
macro can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions as any
other statements.

Macros can be nested. The assembler processes nested macros when the outer macro is expanded.

3.10.1. Defining a Macro
The first step in using a macro is to define it.
The definition of a macro consists of three parts:
» Header, which assigns a name to the macro and defines the arguments (. MACROdirective).
» Body, which contains the code or instructions to be inserted when the macro is called.
» Terminator, which indicates the end of the macro definition (. ENDMdirective).
A macro definition takes the following form:
nmacro_nanme . MACRO [argunent[, argunent]...]
lm-a;:ro_defi nition_statenents
- ENDM
For more information on the definition see the description of the . MACRO directive.

3.10.2. Calling a Macro

To invoke a macro, construct a source statement with the following format:

[l abel] macro_name [argunent[,argunment]...] [; comment]

where,

label An optional label that corresponds to the value of the location counter
at the start of the macro expansion.

macro_name The name of the macro. This may not start in the first column.

138

Assembly Language

argument One or more optional, substitutable arguments. Multiple arguments

must be separated by commas.

comment An optional comment.

The following applies to macro arguments:

Each argument must correspond one-to-one with the formal arguments of the macro definition. If the
macro call does not contain the same number of arguments as the macro definition, the assembler
issues a warning.

If an argument has an embedded comma or space, you must surround the argument by single quotes
0-

You can declare a macro call argument as null in three ways:

enter delimiting commas in succession with no intervening spaces

macronane ARGL, , ARG3 ; the second argunent is a null argunent

terminate the argument list with a comma, the arguments that normally would follow, are now
considered null

macr onane ARGL, ; the second and all follow ng argunents are null

declare the argument as a null string

No character is substituted in the generated statements that reference a null argument.

3.10.3. Using Operators for Macro Arguments

The assembler recognizes certain text operators within macro definitions which allow text substitution of
arguments during macro expansion. You can use these operators for text concatenation, numeric
conversion, and string handling.

Operator |[Name Description

\

Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

n Macro local label override Prevents name mangling on labels in macros.

139

TASKING VX-toolset for ARM User Guide

Example: Argument Concatenation Operator -\
Consider the following macro definition:

MAC_A . MACRO reg, val
sub r\reg, r\reg, #val
. ENDM

The macro is called as follows:

MAC A 2,1

The macro expands as follows:
sub r2,r2,#1

The macro preprocessor substitutes the character '2' for the argument r eg, and the character '1' for the
argument val . The concatenation operator (\) indicates to the macro preprocessor that the substitution
characters for the arguments are to be concatenated with the characters 'r'.

Without the '\' operator the macro would expand as:
sub rreg, rreg, #1

which results in an assembler error (invalid operand).

Example: Decimal Value Operator - ?

Instead of substituting the formal arguments with the actual macro call arguments, you can also use the
value of the macro call arguments.

Consider the following source code that calls the macro MAC_A after the argument AVAL has been set to
1.

AVAL . SET 1
MAC_A 2, AVAL

If you want to replace the argument val with the value of AVAL rather than with the literal string ' AVAL' ,
you can use the ? operator and modify the macro as follows:

MAC_A . MACRO r eg, val
sub r\reg, r\reg, #?val
. ENDM

Example: Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator (?) except that it returns the
hexadecimal value of a symbol.

140

Assembly Language

Consider the following macro definition:

GEN_LAB . MACRO LAB, VAL, STMI
LAB\ %/AL STMT
. ENDM

The macro is called after NUMhas been set to 10:

NUM . SET 10
GEN_LAB HEX, NUM NCP

The macro expands as follows:
HEXA NOP

The %/AL argument is replaced by the character 'A’ which represents the hexadecimal value 10 of the
argument VAL.

Example: Argument String Operator - "

To generate a literal string, enclosed by single quotes ('), you must use the argument string operator (*)
in the macro definition.

Consider the following macro definition:

STR_MAC . MACRO STRI NG
. DB " STRI NG’
. ENDM

The macro is called as follows:
STR_MAC ABCD

The macro expands as follows:
. DB ' ABCD

Within double quotes . DEFI NE directive definitions can be expanded. Take care when using constructions
with single quotes and double quotes to avoid inappropriate expansions. Since . DEFI NE expansion
occurs before macro substitution, any . DEFI NE symbols are replaced first within a macro argument string:

. DEFI NE LONG 'short'

STR_MAC . MACRO STRI NG
.MESSAGE | 'This is a LONG STRI NG
.MESSAGE | "This is a LONG STRI NG'
. ENDM

If the macro is called as follows:

STR_MAC sentence

141

TASKING VX-toolset for ARM User Guide

it expands as:

.MESSAGE | 'This is a LONG STRI NG
.MESSAGE | 'This is a short sentence'

Macro Local Label Override Operator -~

If you use labels in macros, the assembler normally generates another unique name for the labels (such
as LOCAL__M_L000001).

The macro ~-operator prevents name mangling on macro local labels.
Consider the following macro definition:

INNT . MACRO addr
LOCAL: |dr r 0, ~addr
. ENDM

The macro is called as follows:

LOCAL:
INI T LOCAL

The macro expands as:
LOCAL__M L0O00001: |dr rO, LOCAL

If you would not have used the * operator, the macro preprocessor would choose another name for LOCAL
because the label already exists. The macro would expand like:

LOCAL__M L000001: Idr rO, LOCAL__M LO00001

3.11. Generic Instructions

The assembler supports so-called 'generic instructions'. Generic instructions are pseudo instructions (no
instructions from the instruction set). Depending on the situation in which a generic instruction is used,
the assembler replaces the generic instruction with appropriate real assembly instruction(s).

3.11.1. ARM Generic Instructions

The ARM assembler recognizes the following generic instructions in ARM mode:

ADR, ADRL, ADRLL ARM generics

Load a PC-relative address into a register. The address is specified as a target label. The assembler
generates one (ADR), two (ADRL) or three (ADRLL) generic DPR instruction (called ADR) and one, two
or three PC-relative relocation types for the target label. The linker evaluates the relocation types (calculate
the PC-relative offset) and generates one, two or three add or sub instructions each with an 8-bitimmediate
operand plus a 4-bit rotation. If the offset cannot be encoded the linker generates an error message.

142

Assembly Language

Instruction Replacement
ADRcond Rd,label |ADRcond Rd, PC, @ALUPCREL(label,0,1)

ADRLcond Rd,label [ADRcond Rd, PC, @ALUPCREL(label,0,0)
ADRcond Rd, Rd, @ALUPCREL (label,1,1)

ADRLLcond Rd,label{ADRcond Rd, PC, @ALUPCREL(label,0,0)
ADRcond Rd, Rd, @ALUPCREL(label,1,0)
ADRcond Rd, Rd, @ALUPCREL(label,2,1)

3.11.2. ARM and Thumb-2 32-bit Generic Instructions

LDR= ARM and Thumb-2 generic

Load an address or a 32-bit constant value into a register. If the constant or its bitwise negation can be
encoded, then the assembler will generate a MOV or a MVN instruction. Otherwise the assembler places
the constant or the address in a literal pool and generates a PC-relative LDR instruction that loads the
value from the literal pool.

Instruction Replacement Remarks
LDRcond MOVcond Rd, #expr If expr can be encoded
Rd,=expr MVNcond Rd,#@LSW(~(expr)) If ~expr can be encoded
LDRcond Rd, |t pool If expr is external or PC-relative, or cannot
;; code be encoded
| t pool :
. DW expr

The PC-relative offset from the LDR instruction to the value in the literal pool must be positive and less
than 4 kB. By default the assembler will place a literal pool at the end of each code section. If the default
literal pool is out-of-range you will have to ensure that there is another literal pool within range by means
of the . LTORG directive.

VLDR= ARM and Thumb-2 generic

Load a 32-bit or 64-bit floating-point constant value into a register. The assembler places the constant in
a literal pool and generates a PC-relative VLDR instruction that loads the value from the literal pool.

Instruction Replacement
VLDRcond Sd,=expr VLDRcond Sd, | t pool
;; code
| t pool :
. FLOAT expr
VLDRcond Dd,=expr VLDRcond Dd, |t pool
;; code
It pool :
. DOUBLE expr

143

TASKING VX-toolset for ARM User Guide

MOV32 ARM and Thumb-2 generic

Load an address or a 32-bit constant value into a register.

Instruction
MOV32cond Rd,=expr

Replacement Remarks

MOVWcond Rd, #@LSH(expr)
MOVTcond Rd, #@MSH(expr)

MOVWcond Rd, #expr
MOVTcond Rd, #expr

If expr is internal and absolute

If expr is external or relocatable

ARM and Thumb-2 generic DPR inversions for immediate operands

For data processing instructions (DPR) which operate on an immediate operand, the operand value must
be encoded as an 8-bit value plus a 4-bit even rotation value. If a value does not fit in such an encoding,
it could be possible that the negated value (-value) or the bitwise negated value (~value) does fit in such
an encoding. In that case the assembler will replcace the DPR instruction by its inverse DPR instruction

operating on the negated value.

Instruction

Replacement (if #imm or #~imm can be encoded)

ADDcond Rd,Rn,#imm32

SUBcond Rd,Rn,#- (imm32)

ADDcondS Rd,Rn,#imm32

SUBcondS Rd,Rn,#- (imm32)

ADDWcond Rd,Rn,#imm12

SUBWocond Rd,Rn,#- (imm12)

SUBcond Rd,Rn,#imm32

ADDcond Rd,Rn,#- (imm32)

SUBcondS Rd,Rn,#imm32

ADDcondS Rd,Rn,#- (imm32)

SUBWcond Rd,Rn,#imm12

ADDWcond Rd,Rn #- (imm12)

ADCcond Rd,Rn,#imm32

SBCcond Rd,Rn #- (imm32)

ADCcondS Rd,Rn,#imm32

SBCcondS Rd,Rn,#- (imm32)

SBCcond Rd,Rn,#imm32

ADCcond Rd,Rn,#- (imm32)

SBCcondS Rd,Rn,#imm32

ADCcondS Rd,Rn,#- (imm32)

ANDcond Rd,Rn,#imm32

BICcond Rd,Rn#@LSW(~(imm32))

ANDcondS Rd,Rn,#imm32

BICcondS Rd,Rn,#@LSW(~(imm32))

BICcond Rd,Rn,#imm32

ANDcond Rd,Rn,#@LSW/(~(imm32))

BICcondS Rd,Rn,#imm32

ANDcondS Rd,Rn,#@LSW(~(imm32))

CMNcond Rn,#imm32

CMPcond Rn,#- (imm)

CMPcond Rn,#imm32

CMNcond Rn,#- (imm)

MOVcond Rd,#imm32

MVNcond Rd,#@LSW(~(imm32))

MOVcondS Rd,#imm32

MVNcondS Rd,#@LSW(~(imm32))

MVNcond Rd,#imm32

MOVcond Rd,#@LSW(~(imm32))

MVNcondS Rd,#imm32

MOVcondS Rd,#@LSW(~(imm32))

144

Assembly Language

Note that the built-in function @LSW/() must be used on the bitwise negated immediate value because
all values are interpreted by the assembler as 64-bit signed values. The @LSW() function returns the
lowest 32 bits.

3.11.3. Thumb 16-bit Generic Instructions

The ARM assembler recognizes the following generic instructions in Thumb mode:

ADR Thumb 16-bit generic

Load a PC-relative address into a low register. The address is specified as a target label. The PC-relative
offset must be less than 1 kB. The target label must be defined locally, must be word-aligned and must
be in the same code section as the instruction. The assembler will not emit a relocation type for the target
label. If the offset is out-of-range or the target label is external or in another section, then the assembler
generates an error message.

LDR=Thumb 16-bit generic

Load an address or a 32-bit constant value into a low register. If the constant is in the range [0,255] the
assembler will generate a MOV instruction. Otherwise the assembler places the constant or the address
in a literal pool and generates a PC-relative LDR instruction that loads the value from the literal pool.

Instruction |Replacement Remarks
LDR Rd,=expr|MOV Rd, #expr If expr is in range
LDR Rd, | t pool If expr is external or PC-relative, or not in
;; code range
It pool :
. DW expr

The PC-relative offset from the LDR instruction to the value in the literal pool must be positive and less
than 1 kB. By default the assembler will place a literal pool at the end of each code section. If the default
literal pool is out-of-range you will have to ensure that there is another literal pool within range by means
of the . LTORG directive.

Bcond inversion Thumb 16-bit generic

The PC-relative conditional branch instruction has a range of (-256,+255) bytes. The unconditional version
has a range of (-2048,+2047) bytes. If the conditional branch target is out-of-range, the assembler will
rewrite the conditional branch instruction with an inversed conditional branch and an unconditional branch.

Instruction |[Replacement Remarks

Bcond label Bi nv_cond ~1

B | abel

If target label out-of-range

~1:

145

TASKING VX-toolset for ARM User Guide

ADD, SUB inversions Thumb 16-bit generic

For the following six instructions the assembler accepts negative values for the immediate operand. If a
negative value is specified, the assembler inverts the instruction from ADD to SUB or vice versa. For
example: ADD R1,#-4 will be rewritten as SUB R1,#4.

Instruction Replacement

ADD Rd,Rn#imm|SUB Rd,Rn,#- (imm)
ADD Rd,#imm SUB Rd,#- (imm)
ADD SP#imm SUB SP#- (imm)
SUB Rd,Rn,#mm |ADD Rd,Rn,#- (imm)
SUB Rd,#imm ADD Rd,#- (imm)
SUB SP#imm ADD SP#- (imm)

146

Chapter 4. Using the C Compiler

This chapter describes the compilation process and explains how to call the C compiler.

The TASKING VX-toolset for ARM under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire embedded project, from C source till the final
ELF/DWARF object file which serves as input for the debugger.

Although in Eclipse you cannot run the C compiler separately from the other tools, this section discusses
the options that you can specify for the C compiler.

On the command line it is possible to call the C compiler separately from the other tools. However, it is
recommended to use the control program for command line invocations of the toolset (see Section 9.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line.

The C compiler takes the following files for input and output:

Csource file
.C
1 .
compiler
Ccompiler intermediate file
|] - .mil
assembly file

. 8IC

This chapter first describes the compilation process which consists of a frontend and a backend part.
Next it is described how to call the C compiler and how to use its options. An extensive list of all options
and their descriptions is included in Section 11.2, C Compiler Options. Finally, a few important basic tasks
are described, such as including the C startup code and performing various optimizations.

4.1. Compilation Process

During the compilation of a C program, the C compiler runs through a number of phases that are divided
into two parts: frontend and backend.

The backend part is not called for each C statement, but starts after a complete C module or set of modules
has been processed by the frontend (in memory). This allows better optimization.

The C compiler requires only one pass over the input file which results in relative fast compilation.
Frontend phases

1. The preprocessor phase:

The preprocessor includes files and substitutes macros by C source. It uses only string manipulations
on the C source. The syntax for the preprocessor is independent of the C syntax but is also described
in the ISO/IEC 9899:1999(E) standard.

147

TASKING VX-toolset for ARM User Guide

. The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

. The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs a syntactic and semantic
analysis of the program, and generates an intermediate representation of the program. This code is
called MIL (Medium level Intermediate Language).

. The frontend optimization phase:

Target processor independent optimizations are performed by transforming the intermediate code.

Backend phases

1.

Instruction selector phase:

This phase reads the MIL input and translates it into Low level Intermediate Language (LIL). The LIL
objects correspond to a processor instruction, with an opcode, operands and information used within
the C compiler.

. Peephole optimizer/instruction scheduler/software pipelining phase:

This phase replaces instruction sequences by equivalent but faster and/or shorter sequences, rearranges
instructions and deletes unnecessary instructions.

. Register allocator phase:

This phase chooses a physical register to use for each virtual register.

. The backend optimization phase:

Performs target processor independent and dependent optimizations which operate on the Low level
Intermediate Language.

. The code generation/formatter phase:

This phase reads through the LIL operations to generate assembly language output.

4.2. Calling the C Compiler

The TASKING VX-toolset for ARM under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire project. After you have built your project, the
output files are available in a subdirectory of your project directory, depending on the active configuration
you have set in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

148

Using the C Compiler

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (“2). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behaviour tab of the C/C++ Build page of the Project » Properties for dialog.

See also Chapter 12, Influencing the Build Time.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file. This is a regular
include file which enables you to use virtual registers that are located in memory.

1.

3.

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

From the Processor selection list, select a processor.

To access the C/C++ compiler options

1.

From the Project menu, select Properties for
The Properties dialog appears.
In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

149

TASKING VX-toolset for ARM User Guide

3. On the Tool Settings tab, select C/C++ Compiler.
4. Select the sub-entries and set the options in the various pages.
Note that the C/C++ compiler options are used to create an object file from a C or C++ file. The

options you enter in the Assembler page are not only used for hand-coded assembly files, but
also for intermediate assembly files.

You can find a detailed description of all C compiler options in Section 11.2, C Compiler Options.

Invocation syntax on the command line (Windows Command Prompt):

carm|[[option]... [file]...]...

4.3. How the Compiler Searches Include Files

When you use include files (with the #i ncl ude statement), you can specify their location in several ways.
The compiler searches the specified locations in the following order:

1. If the #i ncl ude statement contains an absolute pathname, the compiler looks for this file. If no path
or a relative path is specified, the compiler looks in the same directory as the source file. This is only
possible for include files that are enclosed in ™.

This first step is not done for include files enclosed in <>.

2. When the compiler did not find the include file, it looks in the directories that are specified in the C/C++
Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-1)). If the option Add CMSIS include
paths is enabled, this path is search first.

3. When the compiler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable CARM NC.

4. When the compiler still did not find the include file, it finally tries the default include directory relative
to the installation directory (unless you specified option --no-stdinc).

Example
Suppose that the C source file t est . ¢ contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the compiler as follows:

carm -1Ilnyinclude test.c

150

Using the C Compiler

First the compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current directory.
If it was not found, the compiler searches in the environment variable CARM NC and then in the default
i ncl ude directory.

The compiler now looks for the file nyi nc. h, in the directory where t est . c is located. If the file is not
there the compiler searches in the directory nyi ncl ude. If it was still not found, the compiler searches
in the environment variable CARM NC and then in the default i ncl ude directory.

4.4. Compiling for Debugging

Compiling your files is the first step to get your application ready to run on a target. However, during
development of your application you first may want to debug your application.

To create an object file that can be used for debugging, you must instruct the compiler to include symbolic
debug information in the source file.

To include symbolic debug information
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Debugging.

4. Select Default in the Generate symbolic debug information box.

Debug and optimizations

Due to different compiler optimizations, it might be possible that certain debug information is optimized
away. Therefore, if you encounter strange behavior during debugging it might be necessary to reduce

the optimization level, so that the source code is still suitable for debugging. For more information on
optimization see Section 4.5, Compiler Optimizations.

Invocation syntax on the command line (Windows Command Prompt)
The invocation syntax on the command line is:

carm-g file.c

4.5. Compiler Optimizations

The compiler has a number of optimizations which you can enable or disable.

1. From the Project menu, select Properties for

151

TASKING VX-toolset for ARM User Guide

The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Optimization.
4. Select an optimization level in the Optimization level box.

or:

In the Optimization level box select Custom optimization and enable the optimizations you want
on the Custom optimization page.

Optimization levels

The TASKING C compiler offers four optimization levels and a custom level, at each level a specific set
of optimizations is enabled.

» Level 0 - No optimization: No optimizations are performed. The compiler tries to achieve a 1-to-1
resemblance between source code and produced code. Expressions are evaluated in the order written
in the source code, associative and commutative properties are not used.

* Level 1 - Optimize: Enables optimizations that do not affect the debug-ability of the source code. Use
this level when you encounter problems during debugging your source code with optimization level 2.

* Level 2 - Optimize more (default): Enables more optimizations to reduce the memory footprint and/or
execution time. This is the default optimization level.

» Level 3 - Optimize most: This is the highest optimization level. Use this level when your
program/hardware has become too slow to meet your real-time requirements.

» Custom optimization: you can enable/disable specific optimizations on the Custom optimization page.
Optimization pragmas
If you specify a certain optimization, all code in the module is subject to that optimization. Within the C

source file you can overrule the C compiler options for optimizations with #pr agma opti m ze fl ag
and #pragnma endopti m ze. Nesting is allowed:

#pragma optim ze e /* Enabl e expression
sinplification */
C source ...
#pragma optim ze c /* Enabl e common expression
elim nation. Expression
C source ... sinplification still enabled */

#pragma endoptim ze /* Di sabl e cormon expressi on
elimnation */

152

Using the C Compiler
#pragnma endoptimze /* Disable expression
sinplification */
The compiler optimizes the code between the pragma pair as specified.

You can enable or disable the optimizations described in the following subsection. The command line
option for each optimization is given in brackets.

4.5.1. Generic Optimizations (frontend)

Common subexpression elimination (CSE) (option -Oc/-OC)
The compiler detects repeated use of the same (sub-)expression. Such a "common" expression is replaced

by a variable that is initialized with the value of the expression to avoid recomputation. This method is
called common subexpression elimination (CSE).

Expression simplification (option -Oe/-OE)

Multiplication by 0 or 1 and additions or subtractions of 0 are removed. Such useless expressions may
be introduced by macros or by the compiler itself (for example, array subscripting).

Constant propagation (option -Op/-OP)
A variable with a known value is replaced by that value.
Automatic function inlining (option -Oi/-Ol)

Small functions that are not too often called, are inlined. This reduces execution time at the cost of code
size.

Control flow simplification (option -Of/-OF)

A number of techniques to simplify the flow of the program by removing unnecessary code and reducing
the number of jumps. For example:

» Switch optimization: A number of optimizations of a switch statement are performed, such as removing
redundant case labels or even removing an entire switch.

» Jump chaining: A (conditional) jump to a label which is immediately followed by an unconditional jump
may be replaced by a jump to the destination label of the second jump. This optimization speeds up
execution.

» Conditional jump reversal: A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the code size and the execution
time.

» Dead code elimination: Code that is never reached, is removed. The compiler generates a warning
messages because this may indicate a coding error.

153

TASKING VX-toolset for ARM User Guide

Subscript strength reduction (option -Os/-OS)

An array or pointer subscripted with a loop iterator variable (or a simple linear function of the iterator
variable), is replaced by the dereference of a pointer that is updated whenever the iterator is updated.

Loop transformations (option -Ol/-OL)

Transform a loop with the entry point at the bottom, to a loop with the entry point at the top. This enables
constant propagation in the initial loop test and code motion of loop invariant code by the CSE optimization.

Forward store (option -Oo0/-00)

A temporary variable is used to cache multiple assignments (stores) to the same non-automatic variable.

MIL linking (Control program option --mil-link)

The frontend phase performs its optimizations on the MIL code. When all C modules and/or MIL modules
of an application are given to the C compiler in a single invocation, the C compiler will link MIL code of
the modules to a complete application automatically. Next, the frontend will run its optimizations again
with application scope. After this, the MIL code is passed on to the backend, which will generate a single
. sr ¢ file for the whole application. Linking with the run-time library, floating-point library and C library is
still necessary. Linking with the C library is required because this library contains some hand-coded
assembly functions, that are not linked in at MIL level.

In the ISO C99 standard a "translation unit" is a preprocessed source file together with all the headers
and source files included via the preprocessing directive #i ncl ude. After MIL linking the compiler will
treat the linked sources files as a single translation unit, allowing global optimizations to be performed,
that otherwise would be limited to a single module.

Cfile1 Cfile2 [Cfile &
'!—_,-F'"—'_'_'_ '!—_,-F'"—'_'_'_

=== _*._._ _..*._ *._._._.
il C compiler (FE) i C compiler (FE)
]

! MIL file 1 MIL file 2

linker

154

Using the C Compiler

MIL splitting (option --mil-split)

When you specify that the C compiler has to use MIL splitting, the C compiler will first link the application
at MIL level as described above. However, after rerunning the optimizations the MIL code is not passed
on to the backend. Instead the frontend writes a . ns file for each input file or library. A . ns file has the
same formatasa. m | file.Only. ns files that really change are updated. The advantage of this approach
is that it is possible to use the make utility to translate only those parts of the application to a . sr ¢ file
that really have changed. MIL splitting is therefore a more efficient build process than MIL linking. The
penalty for this is that the code compaction optimization in the backend does not have application scope.
As with MIL linking, it is still required to link with the normal libraries to build an ELF file.

MIL file 1 MIL libs

:g_

MIL split
file 1

MIL split
file 2

MIL split
file A

MIL split
files

C compiler (BE

asm
source 1

asm
source 2

asm
sources

assembler
I object I ohject
files lihs

To read more about how MIL linking influences the build process of your application, see Section 12.1,
MIL Linking.

assembler assembler assembler

i

4.5.2. Core Specific Optimizations (backend)

Coalescer (option -Oa/-OA)

The coalescer seeks for possibilities to reduce the number of moves (MOV instruction) by smart use of
registers. This optimizes both speed and code size.

Interprocedural register optimization (option -Ob/-OB)

Register allocation is improved by taking note of register usage in functions called by a given function.

155

TASKING VX-toolset for ARM User Guide

Peephole optimizations (option -Oy/-QY)

The generated assembly code is improved by replacing instruction sequences by equivalent but faster
and/or shorter sequences, or by deleting unnecessary instructions.

Instruction Scheduler (option -Ok/-OK)

The instruction scheduler is a backend optimization that acts upon the generated instructions. When two
instructions need the same machine resource - like a bus, register or functional unit - at the same time,

they suffer a structural hazard, which stalls the pipeline. This optimization tries to rearrange instructions
to avoid structural hazards, for example by inserting another non-related instruction.

First the instruction stream is partitioned into basic blocks. A new basic block starts at a label, or right
after a jump instruction. Unschedulable instructions and, when -Av is enabled, instructions that access
volatile objects, each get their own basic block. Next, the scheduler searches the instructions within a
basic block, looking for places where the pipeline stalls. After identifying these places it tries to rebuild
the basic block using the existing instructions, while avoiding the pipeline stalls. In this process data
dependencies between instructions are honoured.

Note that the function inlining optimization happens in the frontend of the compiler. The instruction
scheduler has no knowledge about the origin of the instructions.

Unroll small loops (option -Ou/-OU)
To reduce the number of branches, short loops are eliminated by replacing them with a number of copies.
Software pipelining (option -Ow/-OW)

A number of techniques to optimize loops. For example, within a loop the most efficient order of instructions
is chosen by the pipeline scheduler and it is examined what instructions can be executed parallel.

Code compaction (reverse inlining) (option -Or/-OR)

Compaction is the opposite of inlining functions: chunks of code that occur more than once, are transformed
into a function. This reduces code size at the cost of execution speed. The size of the chunks of code to
be inlined depends on the setting of the C compiler option --tradeoff (-t). See the subsection Code
Compaction in Section 4.5.3, Optimize for Code Size or Execution Speed.

Generic assembly optimizations (option -Og/-OG)

A set of target independent optimizations that increase speed and decrease code size.

Cluster global variables (option -O+cluster/-O-cluster)

Global variables are accessed by first loading their address into a register and then accessing them via
this register. Each address will result in an entry in the constant pool. By clustering global variables it is

possible to access multiple variables using the same base register, which means we can lower the amount

of entries in the constant pool. It also means that potentially we need less base registers. Clustering
ensures that the linker locates the global variables together.

156

Using the C Compiler

4.5.3. Optimize for Code Size or Execution Speed

You can tell the compiler to focus on execution speed or code size during optimizations. You can do this
by specifying a size/speed trade-off level from O (speed) to 4 (size). This trade-off does not turn optimization
phases on or off. Instead, its level is a weight factor that is used in the different optimization phases to
influence the heuristics. The higher the level, the more the compiler focusses on code size optimization.
To choose a trade-off value read the description below about which optimizations are affected and the
impact of the different trade-off values.

Note that the trade-off settings are directions and there is no guarantee that these are followed. The
compiler may decide to generate different code if it assessed that this would improve the result.

Optimization hint: Optimizing for size has a speed penalty and vice versa. The advice is to
optimize for size by default and only optimize those areas for speed that are critical for the
application with respect to speed. Using the tradeoff options -t0, -t1 and -t2 globally for the
application is not recommended.

To specify the size/speed trade-off optimization level:
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Optimization.
4. Select a trade-off level in the Trade-off between speed and size box.
See also C compiler option --tradeoff (-t)
Instruction Selection
Trade-off levels 0, 1 and 2: the compiler selects the instructions with the smallest number of cycles.

Trade-off levels 3 and 4: the compiler selects the instructions with the smallest number of bytes.
Switch Jump Chain versus Jump Table
Instruction selection for the swi t ch statements follows different trade-off rules. A switch statement can

result in a jump chain or a jump table. The compiler makes the decision between those by measuring
and weighing bytes and cycles. This weigh is controlled with the trade-off values:

Trade-off value Time Size
0 100% 0%

1 75% 25%
2 50% 50%

157

TASKING VX-toolset for ARM User Guide

Trade-off value Time Size
3 25% 75%
4 0% 100%

Loop Optimization

For a top-loop, the loop is entered at the top of the loop. A bottom-loop is entered at the bottom. Every
loop has a test and a jump at the bottom of the loop, otherwise it is not possible to create a loop. Some
top-loops also have a conditional jump before the loop. This is only necessary when the number of loop
iterations is unknown. The number of iterations might be zero, in this case the conditional jump jumps

over the loop.

Bottom loops always have an unconditional jump to the loop test at the bottom of the loop.

Trade-off value Try to rewrite top-loops to [Optimize loops for
bottom-loops size/speed
0 no speed
1 yes speed
2 yes speed
3 yes size
4 yes size
Example:
int a;
voidi(int I, int m)
{
int i;
for (i =m i <|I; i++)
{
a++;
}
return;
}
Coded as a bottom loop (compiled with --tradeoff=4) is:
| dr r2,.L4
b . L2 ;; unconditional junp to |oop test at
. L3:
| dr r3,[r2, #0]
add ril,ri, #1
add r3,r3, #1
str r3,[r2, #0]
.L2: ;; loop entry point

158

bottom

Using the C Compiler

cnp ri, r0
bl t . L3

Coded as a top loop (compiled with --tradeoff=0) is:

cnmp ri,r0 ;; test for at least one loop iteration
| dr r2,.L4 ;; can be om tted when nunber of iterations is known
| dr r3,[r2, #0]
bge . L2
sub ro,ro,rl
. L3: ;; loop entry point

subs r0,r0, #1
add ro, ro, #1
bgt . L3

.L2:
str r3,[r2, #0]

Automatic Function Inlining

You can enable automatic function inlining with the option --optimize=+inline (-Oi) or by using #pr agna
optim ze +inline.This option is also part of the -O3 predefined option set.

When automatic inlining is enabled, you can use the options --inline-max-incr and --inline-max-size (or
their corresponding pragmas i nl i ne_max_i ncr / inline_max_si ze) to control automatic inlining.
By default their values are set to -1. This means that the compiler will select a value depending upon the
selected trade-off level. The defaults are:

Trade-off value inline-max-incr inline-max-size
0 100 50

1 50 25

2 20 20

3 10 10

4 0 0

For example with trade-off value 1, the compiler inlines all functions that are smaller or equal to 25 internal
compiler units. After that the compiler tries to inline even more functions as long as the function will not
grow more than 50%.

When these options/pragmas are set to a value >= 0, the specified value is used instead of the values
from the table above.

Static functions that are called only once, are always inlined, independent of the values chosen for
inline-max-incr and inline-max-size.

Code Compaction

Trade-off levels 0 and 1: code compaction is disabled.

Trade-off level 2: only code compaction of matches outside loops.

159

TASKING VX-toolset for ARM User Guide
Trade-off level 3: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 10.

Trade-off level 4: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 100.

For loops where the iteration count is unknown an iteration count of 10 is assumed.
For the execution frequency the compiler also accounts nested loops.

See C compiler option --compact-max-size

Cluster global variables

Clustering of global variables is only done for trade-off level 4.

4.6. Static Code Analysis

Static code analysis (SCA) is a relatively new feature in compilers. Various approaches and algorithms
exist to perform SCA, each having specific pros and cons.

SCA Implementation Design Philosophy
SCA is implemented in the TASKING compiler based on the following design criteria:

* An SCA phase does not take up an excessive amount of execution time. Therefore, the SCA can be
performed during a normal edit-compile-debug cycle.

» SCA is implemented in the compiler front-end. Therefore, no new makefiles or work procedures have
to be developed to perform SCA.

» The number of emitted false positives is kept to a minimum. A false positive is a message that indicates
that a correct code fragment contains a violation of a rule/recommendation. A number of warnings is
issued in two variants, one variant when it is guaranteed that the rule is violated when the code is
executed, and the other variant when the rules is potentially violated, as indicated by a preceding
warning message.

For example see the following code fragment:

extern int some_condition(int);
voi d f(void)
{
char buf[10];
int i;
for (i =0; i <= 10; i++)
{

if (some_condition(i))

buf[i] = 0; /* subscript may be out of bounds */

160

Using the C Compiler

}

As you can see in this example, if i =10 the array buf [] might be accessed beyond its upper boundary,
depending on the result of sone_condi ti on(i).If the compiler cannot determine the result of this
function at run-time, the compiler issues the warning "subscript is possibly out of bounds" preceding
the CERT warning "ARR35: do not allow loops to iterate beyond the end of an array". If the compiler
can determine the result, or if the i f statement is omitted, the compiler can guarantee that the "subscript
is out of bounds".

» The SCA implementation has real practical value in embedded system development. There are no real
objective criteria to measure this claim. Therefore, the TASKING compilers support well known standards
for safety critical software development such as the MISRA guidelines for creating software for safety
critical automotive systems and secure "CERT C Secure Coding Standard" released by CERT. CERT
is founded by the US government and studies internet and networked systems security vulnerabilities,
and develops information to improve security.

Effect of optimization level on SCA results
The SCA implementation in the TASKING compilers has the following limitations:

» Some violations of rules will only be detected when a particular optimization is enabled, because they
rely on the analysis done for that optimization, or on the transformations performed by that optimization.
In particular, the constant propagation and the CSE/PRE optimizations are required for some checks.
It is preferred that you enable these optimizations. These optimizations are enabled with the default
setting of the optimization level (-O2).

» Some checks require cross-module inspections and violations will only be detected when multiple
source files are compiled and linked together by the compiler in a single invocation.

4.6.1. C Code Checking: CERT C

The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities. The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

For details about the standard, see the CERT C Secure Coding Standard web site. For general information
about CERT secure coding, see www.cert.org/secure-coding.

Versions of the CERT C standard

Version 1.0 of the CERT C Secure Coding Standard is available as a book by Robert C. Seacord
[Addison-Wesley]. Whereas the web site is a wiki and reflects the latest information, the book serves as
a fixed point of reference for the development of compliant applications and source code analysis tools.

The rules and recommendations supported by the TASKING compiler reflect the version of the CERT
web site as of June 1 2009.

161

https://www.securecoding.cert.org/confluence/display/c/CERT+C+Coding+Standard
http://www.cert.org/secure-coding

TASKING VX-toolset for ARM User Guide
The following rules/recommendations implemented by the TASKING compiler, are not part of the book:
PRE11-C, FLP35-C, FLP36-C, MSC32-C

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 20, CERT C Secure Coding Standard.

Priority and Levels of CERT C

Each CERT C rule and recommendation has an assigned priority. Three values are assigned for each
rule on a scale of 1 to 3 for

 severity - how serious are the consequences of the rule being ignored
1. low (denial-of-service attack, abnormal termination)
2. medium (data integrity violation, unintentional information disclosure)
3. high (run arbitrary code)

* likelihood - how likely is it that a flaw introduced by ignoring the rule could lead to an exploitable
vulnerability

1. unlikely
2. probable
3. likely
» remediation cost - how expensive is it to comply with the rule
1. high (manual detection and correction)
2. medium (automatic detection and manual correction)
3. low (automatic detection and correction)

The three values are then multiplied together for each rule. This product provides a measure that can be
used in prioritizing the application of the rules. These products range from 1 to 27. Rules and
recommendations with a priority in the range of 1-4 are level 3 rules (low severity, unlikely, expensive to
repair flaws), 6-9 are level 2 (medium severity, probable, medium cost to repair flaws), and 12-27 are
level 1 (high severity, likely, inexpensive to repair flaws).

The TASKING compiler checks most of the level 1 and some of the level 2 CERT C recommendations/rules.

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 20, CERT C Secure Coding Standard.

To apply CERT C code checking to your application
1. From the Project menu, select Properties for

The Properties dialog appears.

162

http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html
http://doc.tasking.com/cert/msc32.html

Using the C Compiler

2. Inthe left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » CERT C Secure Coding.
4. Make a selection from the CERT C secure code checking list.

5. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

On the command line you can use the option --cert.
carm--cert={all | name [-nane],...]

With --diag=cert you can see a list of the available checks, or you can use a three-letter mnemonic to
list only the checks in a particular category. For example, --diag=pre lists all supported checks in the
preprocessor category.

4.6.2. C Code Checking: MISRA C

The C programming language is a standard for high level language programming in embedded systems,
yet it is considered somewhat unsuitable for programming safety-related applications. Through enhanced
code checking and strict enforcement of best practice programming rules, TASKING MISRA C code
checking helps you to produce more robust code.

MISRA C specifies a subset of the C programming language which is intended to be suitable for embedded
automotive systems. It consists of a set of rules, defined in MISRA-C:2004, Guidelines for the Use of the
C Language in Critical Systems (Motor Industry Research Association (MIRA), 2004).

The compiler also supports MISRA C:1998, the first version of MISRA C and MISRA C: 2012, the latest
version of MISRA C. You can select the version with the following C compiler option:

--m srac-versi on=1998
--m srac-versi on=2004
--m srac-version=2012

In your C source files you can check against the MISRA C version used. For example:

#if M SRAC VERSION__ == 1998
#elif _ M SRAC_VERSION__ == 2004
#elif _ M SRAC_VERSION__ == 2012
#endi f

For a complete overview of all MISRA C rules, see Chapter 21, MISRA C Rules.

163

TASKING VX-toolset for ARM User Guide

Implementation issues

The MISRA C implementation in the compiler supports nearly all rules. Only a few rules are not supported
because they address documentation, run-time behavior, or other issues that cannot be checked by static
source code inspection, or because they require an application-wide overview.

During compilation of the code, violations of the enabled MISRA C rules are indicated with error messages
and the build process is halted.

MISRA C rules are divided in mandatory rules, required rules and advisory rules. If rules are violated,
errors are generated causing the compiler to stop. With the following options warnings, instead of errors,
are generated:

--m srac- mandat or y- war ni ngs

--m srac-required-warni ngs
--m srac-advi sory-war ni ngs

Note that not all MISRA C violations will be reported when other errors are detected in the input
source. For instance, when there is a syntax error, all semantic checks will be skipped, including
some of the MISRA C checks. Also note that some checks cannot be performed when the
optimizations are switched off.

Quality Assurance report

To ensure compliance to the MISRA C rules throughout the entire project, the TASKING linker can
generate a MISRA C Quality Assurance report. This report lists the various modules in the project with
the respective MISRA C settings at the time of compilation. You can use this in your company's quality
assurance system to provide proof that company rules for best practice programming have been applied
in the particular project.

To apply MISRA C code checking to your application
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » MISRA C.
4. Select the MISRA C version (1998, 2004 or 2012).

5. Inthe MISRA C checking box select a MISRA C configuration. Select a predefined configuration
for conformance with the required rules in the MISRA C guidelines.

6. (Optional) In the Custom 1998, Custom 2004 or Custom 2012 entry, specify the individual rules.

On the command line you can use the option --misrac.

164

Using the C Compiler

carm--msrac={all | nunber [-nunber],...]

4.7. C Compiler Error Messages

The C compiler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the compiler immediately aborts compilation.

E (Errors)

Errors are reported, but the compiler continues compilation. No output files are produced unless you have
set the C compiler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the compiler for a situation which may not be correct. You can control warnings
in the C/C++ Build » Settings » Tool Settings » C/C++ Compiler » Diagnostics page of the Project
» Properties for menu (C compiler option --no-warnings).

I (Information)

Information messages are always preceded by an error message. Information messages give extra
information about the error.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

S9##: internal consistency check failed - please report

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.

165

TASKING VX-toolset for ARM User Guide

A dialog box appears with additional information.

On the command line you can use the C compiler option --diag to see an explanation of a diagnostic
message:

carm--diag=[format:]{all | nunber,...]

166

Chapter 5. Using the C++ Compiler

This chapter describes the compilation process and explains how to call the C++ compiler. You should
be familiar with the C++ language and with the ISO C language.

The C++ compiler can be seen as a preprocessor or front end which accepts C++ source files or sources
using C++ language features. The output generated by the C++ compiler (cparm) is intermediate C,
which can be translated with the C compiler (carm).

The C++ compiler is part of a complete toolset, the TASKING VX-toolset for ARM. For details about the
C compiler see Chapter 4, Using the C Compiler.

The C++ compiler takes the following files for input and output:

CHsource file
.CC
1

CH+ campiler

I
intermediate Cfile
Jic

Although in Eclipse you cannot run the C++ compiler separately from the other tools, this section discusses
the options that you can specify for the C++ compiler.

On the command line it is possible to call the C++ compiler separately from the other tools. However, it
is recommended to use the control program for command line invocations of the toolset (see Section 9.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line. Eclipse also uses the control program to call the C++ compiler. Files with the extensions . cc, . cpp
or . cxx are seen as C++ source files and passed to the C++ compiler.

The C++ compiler accepts the C++ language of the ISO/IEC 14882:2003 C++ standard, with some minor
exceptions documented in Chapter 2, C++ Language. It also accepts embedded C++ language extensions.

The C++ compiler does no optimization. Its goal is to produce quickly a complete and clean parsed form
of the source program, and to diagnose errors. It does complete error checking, produces clear error
messages (including the position of the error within the source line), and avoids cascading of errors. It
also tries to avoid seeming overly finicky to a knowledgeable C or C++ programmer.

5.1. Calling the C++ Compiler
Under Eclipse you cannot run the C++ compiler separately. However, you can set options specific for the
C++ compiler. After you have built your project, the output files are available in a subdirectory of your

project directory, depending on the active configuration you have set in the C/C++ Build » Settings page
of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

167

TASKING VX-toolset for ARM User Guide

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (“). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behaviour tab of the C/C++ Build page of the Project » Properties for dialog.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file. This is a regular
include file which enables you to use virtual registers that are located in memory.

1.

3.

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

From the Processor selection list, select a processor.

To access the C/C++ compiler options

1.

3.

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

On the Tool Settings tab, select C/C++ Compiler.

168

Using the C++ Compiler

4. Select the sub-entries and set the options in the various pages.

Note that C++ compiler options are only enabled if you have added a C++ file to your project, a
file with the extension . cc, . cpp or . cxX.

Note that the options you enter in the Assembler page are also used for intermediate assembly
files.

You can find a detailed description of all C++ compiler options in Section 11.3, C++ Compiler Options.

Invocation syntax on the command line (Windows Command Prompt):

cparm|[[option]... [file]...]...

5.2. How the C++ Compiler Searches Include Files

When you use include files (with the #i ncl ude statement), you can specify their location in several ways.
The C++ compiler searches the specified locations in the following order:

1. If the #i ncl ude statement contains an absolute pathname, the C++ compiler looks for this file. If no
path or a relative path is specified, the C++ compiler looks in the same directory as the source file.
This is only possible for include files that are enclosed in .

This first step is not done for include files enclosed in <>.

2. When the C++ compiler did not find the include file, it looks in the directories that are specified in the
C/C++ Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the
Project Properties dialog (equivalent to the --include-directory (-I) command line option).

3. When the C++ compiler did not find the include file (because it is not in the specified include directory
or because no directory is specified), it looks in the path(s) specified in the environment variable
CPARM NC.

4. When the C++ compiler still did not find the include file, it finally tries the default i ncl ude. cpp and
i ncl ude directory relative to the installation directory.

5. If the include file is still not found, the directories specified in the --sys-include option are searched.

If the include directory is specified as -, e.g., -I-, the option indicates the point in the list of - or
--include-directory options at which the search for file names enclosed in <. . . > should begin. That is,
the search for <. . . > names should only consider directories named in -l or --include-directory options
following the -1-, and the directories of items 3 and 4 above. -I- also removes the directory containing the
current input file (item 1 above) from the search path for file names enclosed in". .. ".

An include directory specified with the --sys-include option is considered a "system" include directory.
Warnings are suppressed when processing files found in system include directories.

169

TASKING VX-toolset for ARM User Guide

If the filename has no suffix it will be searched for by appending each of a set of include file suffixes.
When searching in a given directory all of the suffixes are tried in that directory before moving on to the
next search directory. The default set of suffixes is, no extension and . st dh. The default can be overridden
using the --incl-suffixes command line option. A null file suffix cannot be used unless it is present in the
suffix list (that is, the C++ compiler will always attempt to add a suffix from the suffix list when the filename
has no suffix).

Example

Suppose that the C++ source file t est . cc contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the C++ compiler as follows:
cparm -1 nyinclude test.cc

First the C++ compiler looks for the file st di 0. h in the directory myi ncl ude relative to the current
directory. If it was not found, the C++ compiler searches in the environment variable CPARM NC and then
in the default i ncl ude directory.

The C++ compiler now looks for the file myi nc. h, in the directory where t est . cc is located. If the file
is not there the C++ compiler searches in the directory nyi ncl ude. If it was still not found, the C++

compiler searches in the environment variable CPARM NC and then in the defaulti ncl ude. cpp and
i ncl ude directories.

5.3. C++ Compiler Error Messages

The C++ compiler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)
Catastrophic errors, also called 'fatal errors', indicate problems of such severity that the compilation cannot

continue. For example: command-line errors, internal errors, and missing include files. If multiple source
files are being compiled, any source files after the current one will not be compiled.

E (Errors)

Errors indicate violations of the syntax or semantic rules of the C++ language. Compilation continues,
but object code is not generated.

W (Warnings)
Warnings indicate something valid but questionable. Compilation continues and object code is generated
(if no errors are detected). You can control warnings in the C/C++ Build » Settings » Tool Settings »

C/C++ Compiler » Diagnostics page of the Project » Properties for menu (C++ compiler option
--no-warnings).

170

Using the C++ Compiler

R (Remarks)

Remarks indicate something that is valid and probably intended, but which a careful programmer may
want to check. These diagnostics are not issued by default. Compilation continues and object code is
generated (if no errors are detected). To enable remarks, enable the option Issue remarks on C++ code
in the C/C++ Build » Settings » Tool Settings » C/C++ Compiler » Diagnostics page of the Project
» Properties for menu (C++ compiler option --remarks).

S (Internal errors)

Internal compiler errors are caused by failed internal consistency checks and should never occur. However,
if such a 'SYSTEM' error appears, please report the occurrence to Altium. Please include a small C++
program causing the error.

Message format

By default, diagnostics are written in a form like the following:

cparm E0020: ["test.cc" 3] identifier "nanme" is undefined

With the command line option --error-file=file you can redirect messages to a file instead of st derr .

Note that the message identifies the file and line involved. Long messages are wrapped to additional lines
when necessary.

With the option C/C++ Build » Settings » Tool Settings » Global Options » Treat warnings as errors
(option --warnings-as-errors) you can change the severity of warning messages to errors.

With the command line option --diag you can see a list of all messages.
For some messages, a list of entities is useful; they are listed following the initial error message:

cparm E0308: ["test.cc" 4] nore than one instance of overl oaded
function "f" matches the argunent |ist:
function "f(int)"
function "f(float)"
argunment types are: (double)

In some cases, some additional context information is provided; specifically, such context information is
useful when the C++ compiler issues a diagnostic while doing a template instantiation or while generating
a constructor, destructor, or assignment operator function. For example:

cparm E0265: ["test.cc" 7] "A:A()" is inaccessible
detected during inplicit generation of "B::B()" at line 7

Without the context information, it is very hard to figure out what the error refers to.

Termination Messages

The C++ compiler writes sign-off messages to st der r (the Problems view in Eclipse) if errors are detected.
For example, one of the following forms of message

171

TASKING VX-toolset for ARM User Guide

n errors detected in the conpilation of "file".
1 catastrophic error detected in the conpilation of "file".

n errors and 1 catastrophic error detected in the conpilation of "file".

is written to indicate the detection of errors in the compilation. No message is written if no errors were
detected. The following message

Error limt reached.

is written when the count of errors reaches the error limit (see the option --error-limit); compilation is
then terminated. The message

Conpi | ation term nated.

is written at the end of a compilation that was prematurely terminated because of a catastrophic error.
The message

Conpi | ati on aborted

is written at the end of a compilation that was prematurely terminated because of an internal error. Such
an error indicates an internal problem in the compiler. If such an internal error appears, please report the
occurrence to Altium. Please include a small C++ program causing the error.

172

Chapter 6. Using the Assembler

This chapter describes the assembly process and explains how to call the assembler.

The assembler converts hand-written or compiler-generated assembly language programs into machine
language, resulting in object files in the ELF/DWARF object format.

The assembler takes the following files for input and output:

assembly file
.SIC

assembly file . asm ﬁ |
thand codedd ——s listfille . 1st
assethbler

[~ —— M EBITOr messages ers

I
relocatahle objectfile

.ob]
The following information is described:

* The assembly process.

» How to call the assembler and how to use its options. An extensive list of all options and their descriptions
is included in Section 11.4, Assembler Options.

» How to generate a list file.

» Types of assembler messages.

6.1. Assembly Process

The assembler generates relocatable output files with the extension . obj . These files serve as input for
the linker.

Phases of the assembly process

 Parsing of the source file: preprocessing of assembler directives and checking of the syntax of
instructions

» Generation of the relocatable object file and optionally a list file

The assembler integrates file inclusion and macro facilities. See Section 3.10, Macro Operations for more
information.

173

TASKING VX-toolset for ARM User Guide

6.2. Assembler Versions

The TASKING VX-toolset for ARM consists of a set of three assemblers. Depending on the architecture
and the selection of the Thumb or mixed ARM/Thumb instruction set Eclipse and the control program
select the correct assembler, which results in faster build times.

asarm supports both ARM and Thumb/Thumb-2 instruction set (full assembler)

asarma [supports ARM instruction set only

asarmt supports Thumb/Thumb-2 instruction set only

All command line options are the same for all three assemblers.

Also see control program option --thumb.

6.3. Calling the Assembler

The TASKING VX-toolset for ARM under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire project. After you have built your project, the
output files are available in a subdirectory of your project directory, depending on the active configuration
you have set in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

* Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (%), This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically

174

Using the Assembler

menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behaviour tab of the C/C++ Build page of the Project » Properties for dialog.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file. This is a regular
include file which enables you to use virtual registers that are located in memory.

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

3. From the Processor selection list, select a processor.

To access the assembler options

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler.

4. Select the sub-entries and set the options in the various pages.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

You can find a detailed description of all assembler options in Section 11.4, Assembler Options.

Invocation syntax on the command line (Windows Command Prompt):
asarm|[[option]... [file]...]...

The input file must be an assembly source file (. asmor . sr c).
6.4. How the Assembler Searches Include Files

When you use include files (with the . | NCLUDE directive), you can specify their location in several ways.
The assembler searches the specified locations in the following order:

175

TASKING VX-toolset for ARM User Guide
1. If the . | NCLUDE directive contains an absolute path name, the assembler looks for this file. If no path
or a relative path is specified, the assembler looks in the same directory as the source file.

2. When the assembler did not find the include file, it looks in the directories that are specified in the
Assembler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-I)).

3. When the assembler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable ASARM NC.

4. When the assembler still did not find the include file, it finally tries the default include directory relative
to the installation directory.

Example

Suppose that the assembly source file t est . asmcontains the following lines:
. I NCLUDE ' nyi nc.inc'

You can call the assembler as follows:

asarm -1 nyi nclude test.asm

First the assembler looks for the file myi nc. asm in the directory where t est . asmis located. If the file
is not there the assembler searches in the directory nyi ncl ude. If it was still not found, the assembler
searches in the environment variable ASARM NC and then in the default i ncl ude directory.

6.5. Generating a List File

The list file is an additional output file that contains information about the generated code. You can
customize the amount and form of information.

If the assembler generates errors or warnings, these are reported in the list file just below the source line
that caused the error or warning.

To generate allist file

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler » List File.

4. Enable the option Generate list file.

5. (Optional) Enable the options to include that information in the list file.

176

Using the Assembler

Example on the command line (Windows Command Prompt)
The following command generates the list filet est . | st :
asarm-| test.asm

See Section 15.1, Assembler List File Format, for an explanation of the format of the list file.

6.6. Assembler Error Messages

The assembler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the assembler immediately aborts the assembly process.

E (Errors)

Errors are reported, but the assembler continues assembling. No output files are produced unless you
have set the assembler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the assembler for a situation which may not be correct. You can control
warnings in the C/C++ Build » Settings » Tool Settings » Assembler » Diagnostics page of the Project
» Properties for menu (assembler option --no-warnings).

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the assembler option --diag to see an explanation of a diagnostic
message:

asarm --diag=[format:]{all | number,...]

177

TASKING VX-toolset for ARM User Guide

178

Chapter 7. Using the Linker

This chapter describes the linking process, how to call the linker and how to control the linker with a script
file.

The TASKING linker is a combined linker/locator. The linker phase combines relocatable object files

(. obj files, generated by the assembler), and libraries into a single relocatable linker object file (. out).
The locator phase assigns absolute addresses to the linker object file and creates an absolute object file
which you can load into a target processor. From this point the term linker is used for the combined
linker/locator.

The linker can simultaneously link and locate all programs for all cores available on a target board. The

target board may be of arbitrary complexity. A simple target board may contain one standard processor

with some external memory that executes one task. A complex target board may contain multiple standard
processors and DSPs combined with configurable IP-cores loaded in an FPGA. Each core may execute
a different program, and external memory may be shared by multiple cores.

The linker takes the following files for input and output:
relocatable objectfiles . ohj

relocatahle linker ohjectfile . out —‘ ’— relocatable object library . 1ih
linkerscriptfile .11 — ink == linkermap file . map
inker
----- - errormessages | elk
relocatable linker objectfile . out J I—" memary definition
file .mdf
| 1 '
Intel Hex ELFDWARF Iotorola S-record
ahsolute ohjectfile absolute obhject file absolute obhject file
Chesx .abs . &5re

This chapter first describes the linking process. Then it describes how to call the linker and how to use
its options. An extensive list of all options and their descriptions is included in Section 11.5, Linker Options.

To control the link process, you can write a script for the linker. This chapter shortly describes the purpose
and basic principles of the Linker Script Language (LSL) on the basis of an example. A complete description
of the LSL is included in Linker Script Language.

7.1. Linking Process

The linker combines and transforms relocatable object files (. obj) into a single absolute object file. This
process consists of two phases: the linking phase and the locating phase.

In the first phase the linker combines the supplied relocatable object files and libraries into a single
relocatable object file. In the second phase, the linker assigns absolute addresses to the object file so it
can actually be loaded into a target.

179

TASKING VX-toolset for ARM User Guide

Terms used in the linking process

Term

Definition

Absolute object file

Address
Address space

Architecture

Copy table

Core
Derivative

Library

Logical address

LSL file
MAU

Object code
Physical address
Processor

Relocatable object
file

Relocation

180

Object code in which addresses have fixed absolute values, ready to load into a
target.

A specification of a location in an address space.

The set of possible addresses. A core can support multiple spaces, for example in
a Harvard architecture the addresses that identify the location of an instruction
refer to code space, whereas addresses that identify the location of a data object
refer to a data space.

A description of the characteristics of a core that are of interest for the linker. This
encompasses the address space(s) and the internal bus structure. Given this
information the linker can convert logical addresses into physical addresses.

A section created by the linker. This section contains data that specifies how the
startup code initializes the data sections. For each section the copy table contains
the following fields:

« action: defines whether a section is copied or zeroed
» destination: defines the section's address in RAM
* source: defines the sections address in ROM

« length: defines the size of the section in MAUs of the destination space

An instance of an architecture.

The design of a processor. A description of one or more cores including internal
memory and any number of buses.

Collection of relocatable object files. Usually each object file in a library contains
one symbol definition (for example, a function).

An address as encoded in an instruction word, an address generated by a core
(CPU).

The set of linker script files that are passed to the linker.

Minimum Addressable Unit. For a given processor the number of bits between an
address and the next address. This is not necessarily a byte or a word.

The binary machine language representation of the C source.
An address generated by the memory system.

An instance of a derivative. Usually implemented as a (custom) chip, but can also
be implemented in an FPGA, in which case the derivative can be designed by the
developer.

Object code in which addresses are represented by symbols and thus relocatable.

The process of assigning absolute addresses.

Using the Linker

Term Definition

Relocation Information about how the linker must modify the machine code instructions when

information it relocates addresses.

Section A group of instructions and/or data objects that occupy a contiguous range of
addresses.

Section attributes Attributes that define how the section should be linked or located.

Target The hardware board on which an application is executing. A board contains at least
one processor. However, a complex target may contain multiple processors and
external memory and may be shared between processors.

Unresolved A reference to a symbol for which the linker did not find a definition yet.

reference

7.1.1. Phase 1: Linking

The linker takes one or more relocatable object files and/or libraries as input. A relocatable object file, as
generated by the assembler, contains the following information:

» Header information: Overall information about the file, such as the code size, name of the source file
it was assembled from, and creation date.

» Object code: Binary code and data, divided into various named sections. Sections are contiguous
chunks of code that have to be placed in specific parts of the memory. The program addresses start
at zero for each section in the object file.

» Symbols: Some symbols are exported - defined within the file for use in other files. Other symbols are
imported - used in the file but not defined (external symbols). Generally these symbols are names of
routines or names of data objects.

» Relocation information: A list of places with symbolic references that the linker has to replace with
actual addresses. When in the code an external symbol (a symbol defined in another file or in a library)
is referenced, the assembler does not know the symbol's size and address. Instead, the assembler
generates a call to a preliminary relocatable address (usually 0000), while stating the symbol name.

» Debug information: Other information about the object code that is used by a debugger. The assembler
optionally generates this information and can consist of line numbers, C source code, local symbols
and descriptions of data structures.

The linker resolves the external references between the supplied relocatable object files and/or libraries
and combines the files into a single relocatable linker object file.

The linker starts its task by scanning all specified relocatable object files and libraries. If the linker
encounters an unresolved symbol, it remembers its name and continues scanning. The symbol may be
defined elsewhere in the same file, or in one of the other files or libraries that you specified to the linker.
If the symbol is defined in a library, the linker extracts the object file with the symbol definition from the
library. This way the linker collects all definitions and references of all of the symbols.

Next, the linker combines sections with the same section name and attributes into single sections. The
linker also substitutes (external) symbol references by (relocatable) numerical addresses where possible.

181

TASKING VX-toolset for ARM User Guide

At the end of the linking phase, the linker either writes the results to a file (a single relocatable object file)
or keeps the results in memory for further processing during the locating phase.

The resulting file of the linking phase is a single relocatable object file (. out). If this file contains unresolved
references, you can link this file with other relocatable object files (. obj) or libraries (. | i b) to resolve
the remaining unresolved references.

With the linker command line option --link-only, you can tell the linker to only perform this linking phase
and skip the locating phase. The linker complains if any unresolved references are left.

7.1.2. Phase 2: Locating

In the locating phase, the linker assigns absolute addresses to the object code, placing each section in
a specific part of the target memory. The linker also replaces references to symbols by the actual address
of those symbols. The resulting file is an absolute object file which you can actually load into a target
memory. Optionally, when the resulting file should be loaded into a ROM device the linker creates a
so-called copy table section which is used by the startup code to initialize the data sections.

Code modification

When the linker assigns absolute addresses to the object code, it needs to modify this code according
to certain rules or relocation expressions to reflect the new addresses. These relocation expressions are
stored in the relocatable object file. Consider the following snippet of x86 code that moves the contents
of variable a to variable b via the eax register:

Al 3412 0000 nov a, %eax (a defined at 0x1234, byte reversed)
A3 0000 0000 rmov %ax, b (b is inported so the instruction refers to
0x0000 since its |location is unknown)

Now assume that the linker links this code so that the section in which a is located is relocated by 0x10000
bytes, and b turns out to be at 0x9A12. The linker modifies the code to be:

Al 3412 0100 nov a, %eax (0x10000 added to the address)
A3 129A 0000 nov %ax, b (0x9A12 patched in for b)

These adjustments affect instructions, but keep in mind that any pointers in the data part of a relocatable
object file have to be modified as well.

Output formats

The linker can produce its output in different file formats. The default ELF/DWARF format (. abs) contains
an image of the executable code and data, and can contain additional debug information. The Intel-Hex
format (. hex) and Motorola S-record format (. sr €) only contain an image of the executable code and
data. You can specify a format with the options --output (-0) and --chip-output (-c).

Controlling the linker

Via a so-called linker script file you can gain complete control over the linker. The script language is called
the Linker Script Language (LSL). Using LSL you can define:

» The memory installed in the embedded target system:

182

Using the Linker

To assign locations to code and data sections, the linker must know what memory devices are actually
installed in the embedded target system. For each physical memory device the linker must know its
start-address, its size, and whether the memory is read-write accessible (RAM) or read-only accessible
(ROM).

» How and where code and data should be placed in the physical memory:

Embedded systems can have complex memory systems. If for example on-chip and off-chip memory
devices are available, the code and data located in internal memory is typically accessed faster and
with dissipating less power. To improve the performance of an application, specific code and data
sections should be located in on-chip memory. By writing your own LSL file, you gain full control over
the locating process.

» The underlying hardware architecture of the target processor.

To perform its task the linker must have a model of the underlying hardware architecture of the processor
you are using. For example the linker must know how to translate an address used within the object
file (a logical address) into an offset in a particular memory device (a physical address). In most linkers
this model is hard coded in the executable and can not be modified. For the TASKING linker this
hardware model is described in the linker script file. This solution is chosen to support configurable
cores that are used in system-on-chip designs.

When you want to write your own linker script file, you can use the standard linker script files with
architecture descriptions delivered with the product.

See also Section 7.7, Controlling the Linker with a Script.

7.2. Calling the Linker

In Eclipse you can set options specific for the linker. After you have built your project, the output files are
available in a subdirectory of your project directory, depending on the active configuration you have set
in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

* Build Individual Project (&T),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (“). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...

2. Enable the option Start a build immediately and click OK.

183

TASKING VX-toolset for ARM User Guide
 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended, but to enable this feature select Project » Build Automatically
and ensure there is a check mark beside the Build Automatically menu item. In order for this option
to work, you must also enable option Build on resource save (Auto build) on the Behaviour tab of
the C/C++ Build page of the Project » Properties for dialog.

To access the linker options
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker.
4. Select the sub-entries and set the options in the various pages.

You can find a detailed description of all linker options in Section 11.5, Linker Options.

Invocation syntax on the command line (Windows Command Prompt):
lkarm[[option]... [file]... ...

When you are linking multiple files, either relocatable object files (. obj) or libraries (. | i b), itis important
to specify the files in the right order. This is explained in Section 7.3, Linking with Libraries.

Example:
| karm -darm | sl test.obj

This links and locates the file t est . obj and generates the file t est . abs.

7.3. Linking with Libraries

There are two kinds of libraries: system libraries and user libraries.

System library
System libraries are stored in the directories:

<ARM installation path>\lib\v6MIle (little-endian variant)
<ARM installation path>\1ib\v6M be (bi g-endi an vari ant)
<ARM installation path>\lib\v7i[EM M R \I e

<ARM installation path>\1ib\v7/[EM M R]\ be

<ARM installation path>\Iib\v7R be32 (big-endian 32 variant)

184

Using the Linker

An overview of the system libraries is given in the following table:

Libraries

Description

carm[s].lib
cthumbs].lib

C libraries for ARM and Thumb instructions respectively
Optional letter:

s = single precision floating-point (compiler option --no-double)

fparm.lib Floating-point libraries for ARM and Thumb
fpthumb.lib

rtarm.lib Run-time library for ARM and Thumb
rtthumb.lib

pbarm.lib / pbthumb.lib
pcarm.lib / pcthumb.lib
pctarm.lib / pctthumb.lib
pdarm.lib / pdthumb.lib
ptarm.lib / ptthumb.lib

Profiling libraries for ARM and Thumb
pb = block/function counter

pc = call graph
pct = call graph and timing
pd = dummy

pt = function timing

dspthumbls].lib

CMSIS DSP libraries
Optional letter:
s = single precision floating-point

cparm[s][x].lib
cpthumb(s][x].lib

C++ libraries for ARM and Thumb
Optional letter:

s = single precision floating-point
X = exception handling

stlarmx.lib
stithumbx.lib

STLport C++ libraries (exception handling variants only)
Optional letter:
s = single precision floating-point

To link the default C (system) libraries

1. From the Project menu, select Properties for

The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Enable the option Link default libraries.

When you want to link system libraries from the command line, you must specify this with the option

--library (-). For example, to specify the system library car m | i b, type:

| karm --1i brary=carm test. obj

185

TASKING VX-toolset for ARM User Guide

To use the CMSIS DSP library in your Eclipse project

Part of the CMSIS standard is a DSP library. The CMSIS DSP library is included in the TASKING product's
crsi s folder. The library is also available as a pre-built library file in the | i b folders for véM, v7M and
V7EM. The libraries are dspt hunb. | i b (double precision floating point) and dspt hunbs. | i b (single
precision floating point). MIL libraries are present also: dspt hunb. na and dspt hunbs. nma.

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Include Paths .
4. Enable the option Add CMSIS include paths.
5. On the Tool Settings tab, select Linker » Libraries.
6. Enable the option Link CMSIS DSP library.

This passes the option --dsp-library of the control program (ccarm) for compilation of C/C++ files
and for linking. With this option the control program sets the compiler macro ARM_MATH_CMO,
ARM_MATH_CM3 or ARM_MATH_CM4, depending on the selected processor. These macros are
required for the CMSIS arm_math.h header file to operate correctly. With --dsp-library the control
program also selects the appropriate library.

User library

You can create your own libraries. Section 9.4, Archiver describes how you can use the archiver to create
your own library with object modules.

To link user libraries

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Add your libraries to the Libraries box.

When you want to link user libraries from the command line, you must specify their flenames on the
command line:

karm start.obj nylib.lib

186

Using the Linker

If the library resides in a sub-directory, specify that directory with the library name:
| karmstart.obj nmylibs\nylib.lib

If you do not specify a directory, the linker searches the library in the current directory only.

Library order

The order in which libraries appear on the command line is important. By default the linker processes
object files and libraries in the order in which they appear at the command line. Therefore, when you use
a weak symbol construction, like pri nt f, in an object file or your own library, you must position this
object/library before the C library.

With the option --first-library-first you can tell the linker to scan the libraries from left to right, and extract
symbols from the first library where the linker finds it. This can be useful when you want to use newer
versions of a library routine:

| karm--first-library-first a.lib test.obj b.lib

If the file t est . obj calls a function which is both presentina. | i b and b. | i b, normally the function in
b. |i b would be extracted. With this option the linker first tries to extract the symbol from the first library
a.lib.

Note that routines in b. | i b that call other routines that are present in both a. | i b and b. | i b are now
also resolved from a. | i b.

7.3.1. How the Linker Searches Libraries

System libraries

You can specify the location of system libraries in several ways. The linker searches the specified locations
in the following order:

1. The linker first looks in the Library search path that are specified in the Linker » Libraries page in
the C/C++ Build » Settings » Tool Settings tab of the Project Properties dialog (equivalent to the -L
command line option). If you specify the -L option without a pathname, the linker stops searching after
this step.

2. When the linker did not find the library (because it is not in the specified library directory or because
no directory is specified), it looks in the path(s) specified in the environment variable LI BARM

3. When the linker did not find the library, it tries the default | i b directory relative to the installation
directory (or a processor specific sub-directory).

User library

If you use your own library, the linker searches the library in the current directory only.

187

TASKING VX-toolset for ARM User Guide

7.3.2. How the Linker Extracts Objects from Libraries

A library built with the TASKING archiver ararm always contains an index part at the beginning of the
library. The linker scans this index while searching for unresolved externals. However, to keep the index
as small as possible, only the defined symbols of the library members are recorded in this area.

When the linker finds a symbol that matches an unresolved external, the corresponding object file is
extracted from the library and is processed. After processing the object file, the remaining library index
is searched. If after a complete search of the library unresolved externals are introduced, the library index
will be scanned again. After all files and libraries are processed, and there are still unresolved externals
and you did not specify the linker option --no-rescan, all libraries are rescanned again. This way you do
not have to worry about the library order on the command line and the order of the object files in the
libraries. However, this rescanning does not work for ‘weak symbols'. If you use a weak symbol construction,
like pri nt f, in an object file or your own library, you must position this object/library before the C library.

The option --verbose (-v) shows how libraries have been searched and which objects have been extracted.

Resolving symbols

If you are linking from libraries, only the objects that contain symbols to which you refer, are extracted
from the library. This implies that if you invoke the linker like:

[karmnylib.lib

nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through myl i b. | i b.

It is possible to force a symbol as external (unresolved symbol) with the option --extern (-e):
| karm --extern=main nylib.lib

In this case the linker searches for the symbol rmrai n in the library and (if found) extracts the object that
contains nai n.

If this module contains new unresolved symbols, the linker looks again in nyl i b. | i b. This process
repeats until no new unresolved symbols are found.

7.4. Incremental Linking

With the TASKING linker it is possible to link incrementally. Incremental linking means that you link some,
but not all . obj modules to a relocatable object file . out . In this case the linker does not perform the
locating phase. With the second invocation, you specify both new . obj files as the . out file you had
created with the first invocation.

Incremental linking is only possible on the command line.

| karm-darmlsl --incremental testl.obj -otest.out
| karm -darm | sl test2.o0bj test.out

188

Using the Linker

This links the filet est 1. obj and generates the file t est . out . This file is used again and linked together
witht est 2. obj to create thefilet est . abs (the default name if no output filename is given in the default
ELF/DWARF format).

With incremental linking it is normal to have unresolved references in the output file until all . obj files
are linked and the final . out or . abs file has been reached. The option --incremental (-r) for incremental
linking also suppresses warnings and errors because of unresolved symbols.

7.5. Importing Binary Files

With the TASKING linker it is possible to add a binary file to your absolute output file. In an embedded
application you usually do not have a file system where you can get your data from. With the linker option
--import-object you can add raw data to your application. This makes it possible for example to display
images on a device or play audio. The linker puts the raw data from the binary file in a section. The section
is aligned on a 4-byte boundary. The section name is derived from the filename, in which dots are replaced
by an underscore. So, when importing a file called nmy. np3, a section with the name my_np3 is created.
In your application you can refer to the created section by using linker labels.

For example:

#i ncl ude <stdi o. h>
extern char _lc_ub_ny_np3; /* linker |abels */
extern char _lc_ue_ny_np3;
char* mp3 = & | c_ub_ny_np3;
voi d mai n(voi d)
{
int size = &lc_ue_nmy_m3 - & Ilc_ub_ny_np3;
int i;
for (i=0;i<size;i++)
put char (nmp3[i]);

If you want to use the export functionality of Eclipse, the binary file has to be part of your project.

7.6. Linker Optimizations

During the linking and locating phase, the linker looks for opportunities to optimize the object code. Both
code size and execution speed can be optimized.

To enable or disable optimizations
1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.

189

TASKING VX-toolset for ARM User Guide

In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Optimization.
4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Delete unreferenced sections (option -Oc/-OC)

This optimization removes unused sections from the resulting object file.

First fit decreasing (option -OI/-OL)

When the physical memory is fragmented or when address spaces are nested it may be possible that a
given application cannot be located although the size of the available physical memory is larger than the
sum of the section sizes. Enable the first-fit-decreasing optimization when this occurs and re-link your
application.

The linker's default behavior is to place sections in the order that is specified in the LSL file (that is, working
from low to high memory addresses or vice versa). This also applies to sections within an unrestricted
group. If a memory range is partially filled and a section must be located that is larger than the remainder
of this range, then the section and all subsequent sections are placed in a next memory range. As a result
of this gaps occur at the end of a memory range.

When the first-fit-decreasing optimization is enabled the linker will first place the largest sections in the

smallest memory ranges that can contain the section. Small sections are located last and can likely fit in
the remaining gaps.

Compress copy table (option -Ot/-OT)

The startup code initializes the application's data areas. The information about which memory addresses
should be zeroed and which memory ranges should be copied from ROM to RAM is stored in the copy
table.

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

Delete duplicate code (option -Ox/-OX)

Delete duplicate constant data (option -Oy/-QY)

These two optimizations remove code and constant data that is defined more than once, from the resulting
object file.

Compress ROM sections of copy table items (option -Oz/-OZ)

Reduces the size of the application's ROM image by compressing the ROM image of initialized data
sections. At application startup time the ROM image is decompressed and copied to RAM.

190

Using the Linker

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

7.7. Controlling the Linker with a Script

With the options on the command line you can control the linker's behavior to a certain degree. From
Eclipse itis also possible to determine where your sections will be located, how much memory is available,
which sorts of memory are available, and so on. Eclipse passes these locating directions to the linker via
a script file. If you want even more control over the locating process you can supply your own script.

The language for the script is called the Linker Script Language, or shortly LSL. You can specify the script
file to the linker, which reads it and locates your application exactly as defined in the script. If you do not
specify your own script file, the linker always reads a standard script file which is supplied with the toolset.

7.7.1. Purpose of the Linker Script Language
The Linker Script Language (LSL) serves three purposes:

1. It provides the linker with a definition of the target's core architecture. This definition is supplied with
the toolset.

2. It provides the linker with a specification of the memory attached to the target processor.

3. It provides the linker with information on how your application should be located in memory. This gives
you, for example, the possibility to create overlaying sections.

The linker accepts multiple LSL files. You can use the specifications of the core architectures that Altium
has supplied in the i ncl ude. | sl directory. Do not change these files.

If you use a different memory layout than described in the LSL file supplied for the target core, you must
specify this in a separate LSL file and pass both the LSL file that describes the core architecture and your
LSL file that contains the memory specification to the linker. Next you may want to specify how sections
should be located and overlaid. You can do this in the same file or in another LSL file.

LSL has its own syntax. In addition, you can use the standard C preprocessor keywords, such as #i ncl ude
and #def i ne, because the linker sends the script file first to the C preprocessor before it starts interpreting
the script.

The complete LSL syntax is described in Chapter 17, Linker Script Language (LSL).

7.7.2. Eclipse and LSL

In Eclipse you can specify the size of the stack and heap; the physical memory attached to the processor;
identify that particular address ranges are reserved; and specify which sections are located where in
memory. Eclipse translates your input into an LSL file that is stored in the project directory under the
name project_name. | sl and passes this file to the linker. If you want to learn more about LSL you can
inspect the generated file project_name. | sl .

191

TASKING VX-toolset for ARM User Guide

To add a generated Linker Script File to your project
1. From the File menu, select File » New » TASKING ARM C/C++ Project.
The New C/C++ Project wizard appears.

2. Fillin the project settings in each dialog and click Next > until the following dialog appears.

{2} New C/C++ Project = ==
ARM Project Settings —

@ Select a processor to continue

Processor selection
» [Select by Architecture Expand Al
» [] Select by Core
> [Atmel Expand Selected

> [] Freescale

» [] Infineon
. [F] NXP

» [] Silicon Labs

. [] Spansion

> [] STMicroelectronics
» [[] Texas Instruments

Actions
[] Add startup file(s) to the project
[¥] Add linker script file to the project

v

3. Enable the option Add linker script file to the project and click Finish.
Eclipse creates your project and the file "project_name. | sl " in the project directory.

If you do not add the linker script file here, you can always add it later with File » New » Linker Script
File (LSL)

To change the Linker Script File in Eclipse
There are two ways of changing the LSL file in Eclipse.
* You can change the LSL file directly in an editor.

1. Double-click on the file project_name. | sl .

The project LSL file opens in the editor area.

192

Using the Linker

il myproject.lsl i =8
// TASKING VX-toolset for ARM P
// Project linker script file

#if defined(__PROC_STM32F285RB_)
#define _ MEMORY

#include "stm32f2xx.ls1”

memory STM32F2xx_Flash (tag="ocn-chip")

{
mau = 3;
type = rom;
size = 128k;

map (dest=bus:ARM:local bus, dest offset-0x02000000, size=128k);

}

memory STM32F2xx_SRAM (tag="on-chip")

1
mau = 8;
type = ram;
size = B4k;
map (dest=bus:ARM:local_bus, dest_offset=0x20000000, size=64k);
h
@ #elsel]

4 [}

2. You can edit the LSL file directly in the project_name. | sl editor.
A * appears in front of the name of the LSL file to indicate that the file has changes.

3. Click [=] or select File » Save to save the changes.

» You can also make changes to the property pages Memory and Stack/Heap.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Memory or Stack/Heap.
In the right pane the corresponding property page appears.
3. Make changes to memory and/or stack/heap and click OK.

The project LSL file is updated automatically according to the changes you make in the pages.

You can quickly navigate through the LSL file by using the Outline view (Window » Show View » Outline).
7.7.3. Structure of a Linker Script File
A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each

193

TASKING VX-toolset for ARM User Guide

space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the vector table.

This specification is normally written by Altium. Altium supplies LSL files in the i ncl ude. | s| directory.

The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

The linker uses the architecture name in the LSL file to identify the target. For example, the default library
search path can be different for each core architecture.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

The processor definition

The processor definition describes an instance of a derivative. A processor definition is only needed in a
multi-processor embedded system. It allows you to define multiple processors of the same type.

If for a derivative 'A' no processor is defined in the LSL file, the linker automatically creates a processor
named 'A' of derivative 'A'. This is why for single-processor applications it is enough to specify the derivative
in the LSL file.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems. The board specification describes all characteristics of your target board's system buses, memory
devices, 1/0 sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

» convert a logical address to an offset within a memory device
* locate sections in physical memory

* maintain an overall view of the used and free physical memory within the whole system while locating

194

Using the Linker

The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given address, to place sections in a
given order, and to overlay code and/or data sections.

Example: Skeleton of a Linker Script File

A linker script file that defines a derivative "X" based on the ARM architecture, its external memory and
how sections are located in memory, may have the following skeleton:

architecture ARM

{
/1 Specification of the ARM core architecture.
/1 Witten by Altium
}
derivative X // derivative nane is arbitrary
{
/1 Specification of the derivative.
/1 Witten by Altium
core ARM /1 always specify the core
{
architecture = ARM
}
bus | ocal _bus /1 local bus
{
/1 maps to bus "local _bus" in "ARM core
}
/'l internal menory
}
processor spe /] processor nane is arbitrary
{
derivative = X
/1 You can omt this part, except if you use a
/1l multi-core system
}
nmenory ext_nane
{
/1 external menory definition
}
section_| ayout spe: ARM | i near /1 section |ayout
{

/'l section placenent statements

195

TASKING VX-toolset for ARM User Guide

/] sections are located in address space 'linear'
/1l of core ' ARM of processor 'spe'

}
Overview of LSL files delivered by Altium

Altium supplies the following LSL files in the directory i ncl ude. | sl .

LSL file Description

arm arch. | sl Defines the base architecture (ARM) for all cores.

arm | sl It includes the file ar m_ar ch. | s| and contains a default specification of the
external memory attached to the target processor.

defaul t. | sl Default LSL file. This file includes the file ar m | sl or devi ce. | sl if
__ DEVI CE_LSL_FI LE is defined.

devi ce. | sl This file includes a processor specific LSL file based on the selected processor.

See control program option --cpu.

processor. | sl Processor specific LSL file with a specification of the external memory attached
to the target processor. It includes the file ar m ar ch. | sl .

tenpl ate. | sl This file is used by Eclipse as a template for the project LSL file. It includes
the file devi ce. | sl .

When you select to add a linker script file when you create a project in Eclipse, Eclipse makes a copy of
the file t enpl at e. | s| and names it “project_name. | sl ". On the command line, the linker uses the file
def aul t. | sl , unless you specify another file with the linker option --Isl-file (-d).

7.7.4.The Architecture Definition

Although you will probably not need to write an architecture definition (unless you are building your own
processor core) it helps to understand the Linker Script Language and how the definitions are interrelated.

Within an architecture definition the characteristics of a target processor core that are important for the
linking process are defined. These include:

» space definitions: the logical address spaces and their properties
* bus definitions: the I/O buses of the core architecture

* mappings: the address translations between logical address spaces, the connections between logical
address spaces and buses and the address translations between buses

Address spaces

A logical address space is a memory range for which the core has a separate way to encode an address
into instructions. Most microcontrollers and DSPs support multiple address spaces. For example, separate
spaces for code and data. Normally, the size of an address space is 2N, with N the number of bits used
to encode the addresses.

196

Using the Linker

The relation of an address space with another address space can be one of the following:
* one space is a subset of the other. These are often used for "small" absolute or relative addressing.

« the addresses in the two address spaces represent different locations so they do not overlap. This
means the core must have separate sets of address lines for the address spaces. For example, in
Harvard architectures we can identify at least a code and a data memory space.

Address spaces (even nested) can have different minimal addressable units (MAU), alignment restrictions,
and page sizes. All address spaces have a number that identifies the logical space (id). The following
table lists the different address spaces for the architecture ARMas defined in ar m_ar ch. | sl .

Space |ld [MAU |Description

linear |1 |8 Linear address space.

The ARM architecture in LSL notation

The best way to write the architecture definition, is to start with a drawing. The following figure shows a
part of the ARM architecture:

space linear ks local_bus
0 —
i =1 man =
mad = & width = 32
4G — — .

The figure shows one address space called | i near . The address space has attributes like a number
that identifies the logical space (id), a MAU and an alignment. In LSL notation the definition of this address
space looks as follows:

space |inear

{

id = 1;

mau = 8;

map (size=4G dest=bus: | ocal _bus);
}

The keyword map corresponds with the arrows in the drawing. You can map:
» address space => address space (not shown in the drawing)

» address space => bus

* memory => bus (not shown in the drawing)

* bus => bus (not shown in the drawing)

Next the internal buses, named | ocal _bus must be defined in LSL:

197

TASKING VX-toolset for ARM User Guide

bus | ocal _bus

{

mau

= 8;
width =

32; // there are 32 data |lines on the bus

}

This completes the LSL code in the architecture definition. Note that all code above goes into the
architecture definition, thus between:

architecture ARM
{

}

/1 Al code above goes here.

7.7.5.The Derivative Definition

Although you will probably not need to write a derivative definition (unless you are using multiple cores
that both access the same memory device) it helps to understand the Linker Script Language and how
the definitions are interrelated.

A derivative is the design of a processor, as implemented on a chip (or FPGA). It comprises one or more
cores and on-chip memory. The derivative definition includes:

» core definition: an instance of a core architecture
* bus definition: the 1/0 buses of the core architecture

* memory definitions: internal (or on-chip) memory

Core

Each derivative must have at least one core and each core must have a specification of its core architecture.
This core architecture must be defined somewhere in the LSL file(s).

core ARM
{

}

architecture = ARM

Bus

Each derivative can contain a bus definition for connecting external memory. In this example, the bus
| ocal _bus maps to the bus | ocal _bus defined in the architecture definition of core ARM

bus | ocal _bus

{

mau = 8;

width = 32;

map (dest=bus: ARM | ocal _bus, dest_offset=0, size=4G);
}

198

Using the Linker

Memory

Memory is usually described in a separate memory definition, but you can specify on-chip memory for a
derivative. For example:

menory internal _code_rom

{
mau = 8;
type = rom
size = 2k;
map(dest=bus: ARM | ocal _bus, size = 2k, dest_offset = 0x00100000);
/'l src_offset is zero by default
}

This completes the LSL code in the derivative definition. Note that all code above goes into the derivative
definition, thus between:

derivative X // name of derivative

/1 Al code above goes here

}

7.7.6.The Processor Definition

The processor definition is only needed when you write an LSL file for a multi-processor embedded
system. The processor definition explicitly instantiates a derivative, allowing multiple processors of the
same type.

processor nane

{
}

If no processor definition is available that instantiates a derivative, a processor is created with the same
name as the derivative.

derivative = derivative_nang;

7.7.7.The Memory Definition

Once the core architecture is defined in LSL, you may want to extend the processor with external (or
off-chip) memory. You need to specify the location and size of the physical external memory devices in
the target system.

The principle is the same as defining the core's architecture but now you need to fill the memory definition:

menory name

{
}

/1l menory definitions

199

TASKING VX-toolset for ARM User Guide

FrErnORy sitnrotn

- 512k
FrErnaRy sitnrarm

-—— 0
e _Tmeu=z [0

FREFMarY Hiy_Hiradn

Suppose your embedded system has 512kB of external ROM, named si nt om 512kB of external RAM,
named si ntr amand 32kB of external NVRAM, named ny_nvr am(see figure above.) All memories are
connected to the bus | ocal _bus. In LSL this looks like follows:

nmenory sinrom

{

mau = 8§;

type = rom

size = 512k;

map (size = 512k, dest_offset=0, dest=bus: X |ocal _bus);
}
nmenory sinram
{

mau = 8;

type = ram

size = 512k;

map (size = 512k, dest_offset=512k, dest=bus: X:|ocal _bus);
}
Menory ny_nvram
{

mau = 8;

size = 32k;

type = ram

map (size = 32k, dest_offset=1M dest=bus: X:|ocal _bus);
}

If you use a different memory layout than described in the LSL file supplied for the target core, you can
specify this in Eclipse or you can specify this in a separate LSL file and pass both the LSL file that describes
the core architecture and your LSL file that contains the memory specification to the linker.

To add memory using Eclipse

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Memory.
In the right pane the Memory page appears.

3. Open the Memory tab and click on the Add... button.

200

Using the Linker

The Add new memory dialog appears.
4. Enter the memory name (for example my_nvr am, type (for example nvr am and size.
5. Click on the Add... button.

The Add new mapping dialog appears.

6. You have to specify at least one mapping. Enter the mapping name (optional), address, size and
destination and click OK.

The new mapping is added to the list of mappings.
7. Click OK.

The new memory is added to the list of memories (user memory).
8. Click OK to close the Properties dialog.

The updated settings are stored in the project LSL file.

If you make changes to the on-chip memory as defined in the architecture LSL file, the memory is copied
to your project LSL file and the line #def i ne __MEMORY is added. If you remove all the on-chip memory
from your project LSL file, also make sure you remove this define.

7.7.8.The Section Layout Definition: Locating Sections

Once you have defined the internal core architecture and optional memory, you can actually define where
your application must be located in the physical memory.

During compilation, the compiler divides the application into sections. Sections have a name, an indication
(section type) in which address space it should be located and attributes like writable or read-only.

In the section layout definition you can exactly define how input sections are placed in address spaces,
relative to each other, and what their absolute run-time and load-time addresses will be.

Example: section propagation through the toolset

To illustrate section placement, the following example of a C program (bat . c) is used. The program
saves the number of times it has been executed in battery back-upped memory, and prints the number.

#def i ne BATTERY_BACKUP_TAG O0xa5f0
#i ncl ude <stdio. h>

int uninitialized_data;

int initialized_data = 1;
#pragma section "non_vol atile"
int battery_backup_tag;

int battery_backup_i nvok;
#pragma endsection

void nmain (void)

201

TASKING VX-toolset for ARM User Guide

{
if (battery_backup_tag != BATTERY_BACKUP_TAG)
{
/1 battery back-upped nenory area contains invalid data
/1 initialize the nenory
battery_backup_tag = BATTERY_BACKUP_TAG,
battery_backup_i nvok = 0;
}
printf("This application has been invoked % tines\n",
battery_backup_i nvok++);
}

The compiler assigns names and attributes to sections. With the #pr agma sect i on and #pr agna
endsect i on the compiler's default section naming convention is overruled and a section with the name
non_vol ati | e appended is defined. In this section the battery back-upped data is stored.

As aresult of the #pragnma secti on "non_vol atil e", the data objects between the pragma pair
are placed in a section with the name ”. bss. non_vol ati | e". Note that". bss" sections are cleared at
startup. However, battery back-upped sections should not be cleared and therefore we will change this
section attribute using the LSL.

Section placement

The number of invocations of the example program should be saved in non-volatile (battery back-upped)
memory. This is the memory my_nvr amfrom the example in Section 7.7.7, The Memory Definition.

To control the locating of sections, you need to write one or more section definitions in the LSL file. At
least one for each address space where you want to change the default behavior of the linker. In our
example, we need to locate sections in the address space | i near:

section_|layout ::linear

{
}

To locate sections, you must create a group in which you select sections from your program. For the
battery back-up example, we need to define one group, which contains the section . bss. non_vol ati | e.
All other sections are located using the defaults specified in the architecture definition. Section

. bss. non_vol ati | e should be placed in non-volatile ram. To achieve this, the run address refers to
our non-volatile memory called nmy__nvr am Furthermore, the section should not be cleared and therefore
the attribute s (scratch) is assigned to the group:

/1 Section placenment statements

group (ordered, run_addr = memmy_nvram attributes = rws)

{
}

This completes the LSL file for the sample architecture and sample program. You can now invoke the
linker with this file and the sample program to obtain an application that works for this architecture.

select ".bss.non_volatile";

202

Using the Linker

For a complete description of the Linker Script Language, refer to Chapter 17, Linker Script Language
(LSL).

7.8. Linker Labels

The linker creates labels that you can use to refer to from within the application software. Some of these
labels are real labels at the beginning or the end of a section. Other labels have a second function, these
labels are used to address generated data in the locating phase. The data is only generated if the label
is used.

Linker labels are labels starting with _| c_. The linker assigns addresses to the following labels when
they are referenced:

Label Description

_lc_ub_nanme Begin of section name. Also used to mark the begin of the stack or heap or
copy table.

_lc_b_nane

_lc_ue_nane End of section name. Also used to mark the end of the stack or heap.

_lc_e_nane

_lc_cb_nane Start address of an overlay section in ROM.

_lc_ce_nane End address of an overlay section in ROM.

_lc_gb_nane Begin of group name. This label appears in the output file even if no reference
to the label exists in the input file.

_lc_ge_nane End of group name. This label appears in the output file even if no reference
to the label exists in the input file.

The linker only allocates space for the stack and/or heap when a reference to either of the section labels
exists in one of the input object files.

If you want to use linker labels in your C source for sections that have a dot (.) in the name, you
have to replace all dots by underscores.

Example: refer to a label with section name with dots from C

Suppose a section has the name . t ext . When you want to refer to the begin of this section you have to
replace all dots in the section name by underscores:

#i ncl ude <stdio. h>
extern void * _lc_ub__text;

voi d mai n(voi d)

{

printf("The function main is located at 9%\n",
& lc_ub__text);

203

TASKING VX-toolset for ARM User Guide

Example: refer to the stack

Suppose in an LSL file a stack section is defined with the name "st ack” (with the keyword st ack). You
can refer to the begin and end of the stack from your C source as follows:

#i ncl ude <stdio. h>

extern char _lc_ub_stack[];
extern char _lc_ue_stack[];
void main()

{
printf("Size of stack is %\n",
_lc_ub_stack - _Ic_ue_stack);
/* stack grows fromhigh to | ow */
}

From assembly you can refer to the end of the stack with:

.extern _lc_ue_stack ; end of user stack

7.9. Generating a Map File

The map file is an additional output file that contains information about the location of sections and symbols.
You can customize the type of information that should be included in the map file.

To generate a map file
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Map File.
4. Enable the option Generate XML map file format (.mapxml) for map file viewer.
5. (Optional) Enable the option Generate map file (.map).
6. (Optional) Enable the options to include that information in the map file.
Example on the command line (Windows Command Prompt)
The following command generates the map file t est . map:
I karm --map-file test. obj
With this command the map file t est . nap is created.

See Section 15.2, Linker Map File Format, for an explanation of the format of the map file.

204

Using the Linker

7.10. Linker Error Messages

The linker reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the linker immediately aborts the link/locate process.

E (Errors)

Errors are reported, but the linker continues linking and locating. No output files are produced unless you
have set the linker option --keep-output-files.

W (Warnings)

Warning messages do not result into an erroneous output file. They are meant to draw your attention to
assumptions of the linker for a situation which may not be correct. You can control warnings in the C/C++
Build » Settings » Tool Settings » Linker » Diagnostics page of the Project » Properties for menu
(linker option --no-warnings).

I (Information)

Verbose information messages do not indicate an error but tell something about a process or the state
of the linker. To see verbose information, use the linker option --verbose.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

S6##. nmessage

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the linker option --diag to see an explanation of a diagnostic message:

205

TASKING VX-toolset for ARM User Guide

| karm --diag=[format:]{all | nunber,...]

206

Chapter 8. Run-time Environment

This chapter describes the startup code used by the TASKING VX-toolset for ARM C Compiler, the vector
table, the stack layout and the heap.

8.1. Startup Code

You need the run-time startup code to build an executable application. The default startup code consists
of the following components:

« Initialization code. This code is executed when the program is initiated and before the function mai n()
is called.

 Exit code. This controls the close down of the application after the program's main function terminates.

The startup code is part of the C library, and the source is present in the file cst art . asm(ARM and
Thumb), or cst art . ¢ (Thumb2 specific) in the directory | i b\ sr c. This code is generic code. It uses
linker generated symbols which you can give target specific or application specific values. These symbols
are defined in the linker script file (i ncl ude. I sl \'arm ar ch. | sl) and you can specify their values in
Eclipse or on the command line with linker option --define. If the default run-time startup code does not
match your configuration, you need to make a copy of the startup file, modify it and add it to your project.
A typical example for doing this is when nai n() has arguments, typically argc/argv. In this case cstart
needs to be recompiled with the macro __USE_ARGC_ARGV set. When necessary you can use the macro
__ARGCV_BUFSI ZE to define the size of the buffer used to pass arguments to mai n() .

The entry point of the startup code (reset handler) is label _START. This global label should not be
removed, since the linker uses it in the linker script file. It is also used as the default start address of the
application.

Initialization code
The following initialization actions are executed before the application starts:

» Load the 'real' program address. This assures that the reset handler is immune for any ROM/RAM
re-mapping.

« Initialize the stack pointers for each processor mode. The stack pointers are loaded in memory by the
stack address located at a linker generate symbol (for example _| ¢_ub_st ack). These symbols are
defined in the linker script file. See Section 8.4, Stack and Heap, for detailed information on the stack.

 Call a user function which initializes hardware. The startup code calls the function __i ni t _har dwar e.
This function has an empty implementation in the C library, which you should change if certain hardware
initializations, such as ROM/RAM re-mapping or MMU configuration, are required before calling the
main application.

» Copy initialized sections from ROM to RAM, using a linker generated table (also known as the 'copy
table") and clear uninitialized data sections in RAM.

207

TASKING VX-toolset for ARM User Guide

« Initialize or copy the vector table. The startup code calls the function __i nit _vect or _t abl e. This
function has a default implementation in the C library, which copies the vector table from ROM to RAM
if necessary. You should only change it in very specific situations. For example, in case position
dependent vectors are used (B instructions instead of LDR PC) and the vector table must be generated
in RAM (or copied from ROM to RAM with patched offsets in the B instructions).

» (cstart.asmonly) Switch to the user-defined application mode as defined through the symbol
_APPLI CATI ON_MODE_ in the LSL file. This symbol is used to set the value of the CPSR status register
before calling the function mai n.

* (cstart.asmonly) Switch to Thumb code if you specified command line option --thumb.

« Initialize profiling if profiling is enabled. For an extensive description of profiling refer to Chapter 13,
Profiling.

* Initialize the ar gc and ar gv arguments.

* Call the entry point of your application with a call to function mai n() .

Exit code

When the C application 'returns', which is not likely to happen in an embedded environment, the program
ends with a call to the library function exi t ().

Macro preprocessor symbols

A number of macro preprocessor symbols are used in the startup code. These are enabled when you
use a particular option or you can enable or disable them using the assembler option --define with the
following syntax:

- -defi ne=synbol [=val ue]

In the startup file (cst art. asmand cst art. c) the following macro preprocessor symbols are used:

Define Description

_ PROF_ENABLE___ If defined, initialize profiling.

__POSIX__ If defined, call posi x_nmai n instead of mai n.

__USE_ARGC_ARGV If defined, pass arguments to mai n:i nt main(int argc, char
*argv[]).

__ARGCV_BUFSIZE Define buffer size for ar gv. (default: 256 bytes)

The following table shows the linker labels and other labels used in the startup code.

Define Description

START Start label, mentioned in LSL file (ar m arch. | sl)
_Next Real program address. (*)

main Start label user C program.

208

Run-time Environment

Define Description

exit Start label of exi t () function.
_lc_ub_stack User/system mode stack pointer.
_lc_ub_stack_und Undefined mode stack pointer. (*)
_lc_ub_stack_svc Supervisor mode stack pointer. (*)
_lc_ub_stack_abt Abort mode stack pointer. (*)
_lc_ub_stack_irq IRQ mode stack pointer. (*)
_lc_ub_stack_fiq FIQ mode stack pointer. (*)

_lc_ub_table ROM to RAM copy table.
_APPLICATION_MODE_ |Contains the processor mode, and the IRQ/FIQ interrupts mode.”
__init_hardware Start label of hardware initialization routine.
__init_vector_table Start label of vector table initialization.

(*) The labels marked with a * are available in cst art . asmonly.

8.2. Reset Handler and Vector Table

Reset handler

As explained in the previous section the entry point of the startup code (reset handler) is label _START.
The reset handler can have a fixed ROM address (run address). If the reset handler is called from the

vector table, you do not need the specify a fixed address. In this case the linker determines the address
and patches the vector table. There are however situations were you have to specify a fixed ROM address:

 If _START is the entry point upon reset. Typically you would set the ROM address to the address which
is mapped at address 0x00000000. Your initialization code remaps this address during startup. Note
that the reset handler in the run-time library is immune to this remapping because the first instruction
in the startup code sets the program counter to the actual ROM address.

» When the reset handler is called from the vector table with a branch instruction (B _START) and the
linker has located the reset handler at an address that is out-of-range of the branch instruction. When
you specify a fixed ROM address you can make sure that the reset handler can be called from the
vector table. Note however that you can prevent out-of-range branches by using a position independent
vector table, which loads the handler addresses into the program counter by means of a PC-relative
load from a literal pool.

Reset handler on fixed ROM address (all architectures)

To force the reset handler on a fixed ROM address, you need to define the symbol __ START. This symbol
is used in the linker script file ar m_ar ch. | sl . By default, __ START is not defined.

209

TASKING VX-toolset for ARM User Guide

To define a symbol for the linker script file

1. From the Project menu, select Properties for

The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. Select Linker » Script File.

The Defined symbols box shows the symbols that are currently defined.

4. To define a new symbol, click on the Add button in the Defined symbols box.

5. Type the symbol definition (for example, __START=0x0).

The following table contains an overview of the defines you can set. The defines are used in

armarch.|sl.

Define

Description

__START

Reset handler ROM address

__PROCESSOR_MODE

Main application execution mode. Default value is Ox1F (SYS
mode).

__IRQ_BIT If 0, IRQ interrupts are enabled. The default value is 0x80 (IRQ
disabled).
__FIQ_BIT If 0, FIQ interrupts are enabled. The default value is 0x40 (FIQ

disabled).

__NO_AUTO_VECTORS

If defined, the vector table will not be generated.

__NO_DEFAULT_AUTO_VECTORS

If defined, the vector table will not be generated.

__NR_OF_VECTORS

Number of vectors (default 16).

__PIC_VECTORS

If defined, position independent vectors are used.

__FIQ_HANDLER_INLINE

If defined, the FIQ handler is located directly at the FIQ vector
(position dependent vector table only).

__VECTOR_TABLE_ROM_ADDR

Address of the vector table in ROM (default 0x00000000).

__VECTOR_TABLE_RAM_SPACE

If defined, space must be reserved for a copy of the vector table
in RAM.

__VECTOR_TABLE_RAM_ADDR

Address of the copy of the vector table in RAM (default
0x00000000).

__VECTOR_TABLE_RAM_COPY

If defined, the linker provides copy address symbols so that the
startup code can copy the vector table from ROM to RAM.

210

Run-time Environment

Main application execution mode (all architectures except M-profile)

With the symbol __ PROCESSOR_MODE you can define the execution mode in which the processor should
run when your application's main program is called. Based on this setting, together with the interrupt
status (FIQ interrupts enabled/disabled, IRQ interrupts enabled/disabled), the linker will generate a symbol
(_APPLI CATI ON_MODE) which value is used in the startup code in the run-time library to set the value
of the CPSR status register before calling your main function. Available values:

Value Description

0x10 USR mode

0x11 FIQ mode

0x12 IRQ mode

0x13 SVC mode

0x17 ABT mode

0x1B UND mode

Ox1F SYS mode (default)

Interrupt Status (all architectures except M-profile)

Itis common use to start with interrupts disabled (__| RQ Bl T=0x80 and __FI Q Bl T=0x40) and enable
interrupt during run-time after installing all exception handlers and initializing all peripherals. To enable
interrupts during run-time, use the __set cpsr () intrinsic:

__setcpsr (0x00, 0x80); /* Enable IRQinterrupts */
__setcpsr (0x00, 0x40); /* Enable FIQinterrupts */

If you want to start with interrupts enabled, set the define the symbols __| RQ Bl T=0 and/or __FI Q _BI T=0.

Vector table

By default the linker can generate a vector table, unless you define the symbol __ NO_AUTO_VECTORS
or __NO DEFAULT_AUTO VECTORS.

The linker will look for specific symbols designating the start of a handler function. These symbols are
generated by the compiler when one of the following function qualifiers is used:

Function type qualifier |Vector symbol
__interrupt_und _vector_1
__interrupt_svc _vector_2 (¥)
__interrupt_iabt _vector_3
__interrupt_dabt _vector_4
__interrupt_irq _vector_6
__interrupt_fiq _vector_7
__interrupt(n) _vector_n

211

TASKING VX-toolset for ARM User Guide

(*) For M-profile architecture the __i nt errupt _sw qualifier is mapped to _vect or _11. Function
qualifier __interrupt _sw isequalto__interrupt_svc.

Note that the reset handler is designated by the symbol _START instead of _vect or _0. The fifth vector,
with symbol _vect or _5 is reserved. You should use the same vector symbols in hand-coded assembly
handlers. You may first want to generate an idle handler in C with the compiler and than use the result
as a starting point for your assembly implementation. If the linker does not find the symbol for a handler,
it will generate a loop for the corresponding vector, i.e. a jump to itself.

Note that if you have more than one handler for the same exception, for example for different IRQ's or
for different run-time phases of your application, and you are using the __i nt er r upt _type function
qualifier of the compiler, you will need to specify the __novect or attribute in order to prevent the compiler
from generating the _vect or _nr symbol multiple times, as this would lead to a link error.

Vector table size (M-profile architectures)

The vector table size for M-profile architectures is calculated as 4 times the number of vectors. The default
number of vectors is 16, but you can specify another value by defining the symbol __NR_OF VECTCRS.

Vector table versions (all architectures except M-profile)
You can select between two versions of the vector table: position dependent or position independent.

The position dependent table contains branch instructions to the handlers. The handlers must be located
in-range of the branch instructions. The size of the table is 32 bytes. This is the default.

The position independent table contains PC-relative load instructions of the PC. The handler addresses
are in a literal pool (data pocket) following the vector table. There are no range restrictions. The size of
the table and pool together is 64 bytes.

A position independent table is recommended if the table is copied from ROM to RAM at run-time or if
the ROM table is re-mapped to address 0x00000000 after startup.

To select a position independent vector table, define the symbol __PI C_VECTORS.

FIQ handler at FIQ vector (all architectures except M-profile)

If you selected a position dependent vector table (this is the default), it is possible to locate the FIQ handler
directly at the FIQ vector, since the FIQ vector is the last vector in the table. To do this, define the symbol
__FI Q_HANDLER_I NLI NE. Doing so saves a branch instruction when servicing a fast interrupt. The
generated vector table or the space reserved for the table will be 28 bytes instead of 32.

This option is not available for a position independent vector table. Note that you need to use the __at ()
attribute to specify the actual position of the FIQ handler.

Vector table ROM address (all architectures)
The ROM address of the vector table is usually address 0x00000000. You have to specify an address if

the vector table will be copied from ROM to RAM (address 0x00000000 is mapped to RAM) or if the
hardware uses high vectors at address OxFFFF000O. If you forced the reset handler on address

212

Run-time Environment
0x00000000 then you also have to specify a vector table ROM address to prevent overlapping address
ranges.

By default, the symbol __ VECTOR_TABLE ROM ADDR s defined as 0x00000000.
Reserve RAM space for copy of vector table (all architectures except
M-profile)

You can ask the linker to reserve space in RAM memory for a copy of the vector table at run-time at a
certain address in memory. Typically this would be the address which will be the mapping of address
0x00000000 after ROM/RAM re-mapping. If you reserve space for a copy you can also let the startup
code copy the table automatically from ROM to RAM, but only if position independent vectors are used.

By default, the symbol __ VECTOR_TABLE_RAM SPACE is not defined.

Vector table RAM address (all architectures except M-profile)

With the define __ VECTOR_TABLE_RAM ADDR you can set the address in RAM of the copy of the vector
table (default 0x00000000).

Copy of vector table in RAM (all architectures except M-profile)

If you define the symbol __ VECTOR_TABLE_RAM COPY, the linker will provide copy address symbols
that will be used by the startup code to copy the vector table from ROM to RAM.

Refer to the run-time library implementation of the __i ni t _vect or _t abl e routine in
lib\src\initvectortabl e.asmorinitvectortabl e t hunb. asmfor more information.

8.3. CMSIS Support

The interrupt vector table, required for CMSIS, is defined in device specific LSL files. These LSL files are
available in the i ncl ude. | sl directory of the product installation directory. Device LSL files are similarly
named as the CMSIS header files. For example when you use st n82f 10x. h the LSL file st n82f 10x. | sl
is available. The device LSL files include the file ar m_ar ch. | sl .You can control the allocated amount
of flash and SRAM by using defines for the linker. The names of these defines vary per device.

The following table contains an overview of the defines you can set.

Vector table defines

Define Description

__NO_DEFAULT_AUTO_VECTORS |If defined, the default vector table will not be generated.
__CMSIS_VECTORS If defined, the CMSIS vector table will be generated.
__NR_OF_VECTORS Number of vectors.

__COPY_VECTOR_TABLE If defined, the vector table is copied from ROM to RAM at startup.
_ VECTOR_TABLE_ROM_ADDR Address of the vector table in ROM.

213

TASKING VX-toolset for ARM User Guide

Define

Description

__VECTOR_TABLE_RAM_SPACE

If defined, space must be reserved for a copy of the vector table
in RAM.

__VECTOR_TABLE_RAM_ADDR

Address of the copy of the vector table in RAM.

__VECTOR_TABLE_RAM_COPY

If defined, the linker provides copy address symbols so that the
startup code can copy the vector table from ROM to RAM.

Memory defines

Define Description

__ROM_SIZE Size of ROM memory to be allocated.

_ RAM_SIZE Size of RAM memory to be allocated.

_ FLASH_SIZE Size of the flash memory to be allocated.
__SRAM_SIZE Size of the SRAM memory to be allocated.

__CPU_SRAM_SIZE |Size of the SRAM memory to be allocated.

is not defined.

__AHB_SRAMO_SIZE |Size of the AHH SRAM bank Omemory. The memory is not allocated if this macro

__AHB_SRAM1_SIZE |Size of the AHH SRAM bank 1 memory. The memory is not allocated if this
macro is not defined.

An example of the invocation of the linker (using the control program):

ccarm - CARM/7M "instal l ati on_dir\include.|sl\stnm32f10x.1sl"

-W-D__FLASH S| ZE=128k

-W-D__SRAM SI ZE=20k fil e. obj

When you create a new project in Eclipse the LSL template file will be copied to the project. Eclipse will
pass device specific macro definitions to the linker, depending on the device selected in the Project »
Properties for » C/C++ Build » Processor properties page. This way the project LSL file will include
the appropriate device LSL file and memories are mapped as required for the selected device.

8.4. Stack and Heap

The stack is used for local automatic variables and function parameters. The following diagram shows

the structure of a stack frame.

214

high memary
incanming
parameters
stack R
groves doven saved o entry
registers
local variakles
autyaing
parameters
love memary -
durifg execution

Run-time Environment

All ARM architectures, except for M-profile architectures, have separate stack pointers for each processor
mode. M-profile architectures have one stack pointer. These stack pointers should be initialized at run-time.
This is taken care of by the startup code in the run-time library, by means of linker-generated symbols
defined in the LSL file. See Section 8.1, Startup Code, for a list of these symbols.

You can define the values of these symbols in Eclipse as follows.

1. From the Project menu, select Properties for

The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Stack/Heap.

In the right pane the Stack/Heap property page appears.

tj Properties for myproject

type filter text
» Resource
Builders
4 C/C++ Build

Build Variables
Discovery Options
Envirenment
Logging

Memory
Processor
Settings
Stack/Heap

3.

C/C++ General
Project References
» Run/Debug Settings

= -5l
Stack/Heap [T Mg
Configuration: |Debug [Active | ~ | [Manage Configuratiors...
e

Type Name Size Address

H heap heap 2k

[A stack stack 4k

(@) Settings are stored in the project Isl file: myproject.lsl

Restore Defaults Apply

Make your changes and click OK.

215

TASKING VX-toolset for ARM User Guide

The project LSL file is updated automatically according to the changes you make.

You can specify the size and location of the stacks.

The stack size is defined in the linker script file (ar m_ar ch. | sl indirectoryi ncl ude. | sl) with macros:

Define Description

__STACK Size of user stack.

__STACK_ABT Abort mode stack size. (*)

__STACK_FIQ FIQ mode stack size. (*)

__STACK_IRQ IRQ mode stack size. (¥)

__STACK_SVC Supervisor mode stack size. (*)

_ STACK_UND Undefined mode stack size. (*)

__ STACK_FIXED Defined if you do not expand the user stack if space is left.
__STACKADDR User stack start address.

(*) The defines marked with a * are not used for M-profile architectures.

Heap allocation

The heap is only needed when you use one or more of the dynamic memory management library functions:
mal | oc(),cal loc(),free() andreal | oc().The heap is a reserved area in memory. Only if you
use one of the memory allocation functions listed above, the linker automatically allocates a heap, as
specified in the linker script file with the keyword heap.

A special section called heap is used for the allocation of the heap area. The size of the heap is defined
in the linker script file (ar m_ar ch. | sl indirectoryi ncl ude. | sl) with the macro __ HEAP, which results
in a section called heap. The linker defined labels _| ¢c_ub_heap and _| c_ue_heap (begin and end of
heap) are used by the library function sbr k() , which is called by mal | oc() when memory is needed

from the heap.

The following heap macros are used in arm ar ch. | sl :

Define Description

__HEAP Size of heap.

_ HEAP_FIXED Defined if you do not expand the heap if space is left.
_ _HEAPADDR Heap start address.

216

Chapter 9. Using the Utilities

The TASKING VX-toolset for ARM comes with a number of utilities:

ccarm A control program. The control program invokes all tools in the toolset and lets you quickly
generate an absolute object file from C and/or assembly source input files. Eclipse uses
the control program to call the compiler, assembler and linker.

mkarm A utility program to maintain, update, and reconstruct groups of programs. The make utility
looks whether files are out of date, rebuilds them and determines which other files as a
consequence also need to be rebuilt.

amk The make utility which is used in Eclipse. It supports parallelism which utilizes the multiple
cores found on modern host hardware.

ararm An archiver. With this utility you create and maintain library files with relocatable object
modules (. obj) generated by the assembler.

hldumparm A high level language (HLL) object dumper. With this utility you can dump information about
an absolute object file (. abs) . Key features are a disassembler with HLL source intermixing
and HLL symbol display and a HLL symbol listing of static and global symbols.

expirearm A utility to limit the size of the cache by removing all files older than a few days or by
removing older files until the total size of the cache is smaller than a specified size.

9.1. Control Program

The control program is a tool that invokes all tools in the toolset for you. It provides a quick and easy way
to generate the final absolute object file out of your C/C++ sources without the need to invoke the compiler,
assembler and linker manually.

Eclipse uses the control program to call the C++ compiler, C compiler, assembler and linker, but you can
call the control program from the command line. The invocation syntax is:

ccarm|[[option]... [file]...]...

Recognized input files

» Fileswitha. cc, . cxx or. cpp suffix are interpreted as C++ source programs and are passed to the
C++ compiler.

» Files with a . ¢ suffix are interpreted as C source programs and are passed to the compiler.

» Files with a . asmsuffix are interpreted as hand-written assembly source files which have to be passed
to the assembler.

» Files with a . sr ¢ suffix are interpreted as compiled assembly source files. They are directly passed to
the assembler.

» Fileswith a . | i b suffix are interpreted as library files and are passed to the linker.

» Files with a . obj suffix are interpreted as object files and are passed to the linker.

217

TASKING VX-toolset for ARM User Guide
» Files with a . out suffix are interpreted as linked object files and are passed to the locating phase of
the linker. The linker accepts only one . out file in the invocation.

» Fileswith a . | sl suffix are interpreted as linker script files and are passed to the linker.
Options

The control program accepts several command line options. If you specify an unknown option to the
control program, the control program looks if it is an option for a specific tool. If so, it passes the option
directly to the tool. However, it is recommended to use the control program options --pass-* (-Wcp, -Wc,
-Wa, -WI) to pass arguments directly to tools.

For a complete list and description of all control program options, see Section 11.6, Control Program
Options.

Example with verbose output
ccarm --verbose test.c

The control program calls all tools in the toolset and generates the absolute object file t est . abs. With
option --verbose (-v) you can see how the control program calls the tools:

+ "path\carm -0 cc3248a.src test.c

+ "path\asarn -0 cc3248b. obj cc3248a. src

+ "path\l karm' ¢cc3248b.obj -0 test.abs --map-file
-lcarm-Ilfparm-Ilrtarnt

The control program produces unique filenames for intermediate steps in the compilation process (such

as cc3248a. src and cc3248b. obj in the example above) which are removed afterwards, unless you
specify command line option --keep-temporary-files (-t).

Example with argument passing to a tool
ccarm --pass-conpiler=-Cc test.c

The option -Oc is directly passed to the compiler.

218

Using the Utilities

9.2. Make Utility mkarm

If you are working with large quantities of files, or if you need to build several targets, it is rather
time-consuming to call the individual tools to compile, assemble, link and locate all your files.

You save already a lot of typing if you use the control program and define an options file. You can even
create a batch file or script that invokes the control program for each target you want to create. But with
these methods all files are completely compiled, assembled and linked to obtain the target file, even if
you changed just one C source. This may demand a lot of (CPU) time on your host.

The make utility mkarm is a tool to maintain, update, and reconstruct groups of programs. The make
utility looks which files are out-of-date and only recreates these files to obtain the updated target.

Make process

In order to build a target, the make utility needs the following input:

« the target it should build, specified as argument on the command line
* the rules to build the target, stored in a file usually called makefil e

In addition, the make utility also reads the file mkar m mk which contains predefined rules and
macros. See Section 9.2.2, Writing a Makefile.

The makef i | e contains the relationships among your files (called dependencies) and the commands
that are necessary to create each of the files (called rules). Typically, the absolute object file (. abs) is
updated when one of its dependencies has changed. The absolute file depends on . obj files and libraries
that must be linked together. The . obj files on their turn depend on . sr c files that must be assembled
and finally, . sr c files depend on the C source files (. ¢) that must be compiled. In the nakef i | e this
looks like:

test.src : test.c # dependency
carmtest.c # rule

test.obj : test.src
asarmtest.src

test.abs : test.obj
lkarmtest.obj -o test.abs --map-file -lcarm-Ifparm-Ilrtarm

You can use any command that is valid on the command line as a rule in the makefi | e. So, rules are
not restricted to invocation of the toolset.

Example

To build the target t est . abs, call mkarm with one of the following lines:

219

TASKING VX-toolset for ARM User Guide

nkarm t est. abs

nkar m - f mymake. mak test. abs

By default the make utility reads the file makef i | e so you do not need to specify it on the command line.
If you want to use another name for the makefile, use the option -f.

If you do not specify a target, mkarm uses the first target defined in the makefile. In this example it would
build t est . src instead of t est . abs.

Based on the sample invocation, the make utility now tries to build t est . abs based on the makefile and
performs the following steps:

1. From the makefile the make utility reads that t est . abs depends ont est. obj .

2. Ift est. obj does not exist or is out-of-date, the make utility first tries to build this file and reads from
the makefile thatt est . obj dependsontest. src.

3. Ift est. src does exist, the make utility now creates t est . obj by executing the rule for it: asar m
test.src.

4. There are no other files necessary to create t est . abs so the make utility now can use t est . obj to
create t est . abs by executing the rule: | karm test. obj -o test.abs ...

The make utility has now built t est . abs but it only used the assembler to update t est . obj and the
linker to create t est . abs.

If you compare this to the control program:
ccarmtest.c

This invocation has the same effect but now all files are recompiled (assembled, linked and located).

9.2.1. Calling the Make Utility

You can only call the make utility from the command line. The invocation syntax is:
nmkarm [[option]... [target]... [macro=def]...]
For example:

nkarm t est . abs

target You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

macro=def Macro definition. This definition remains fixed for the mkarm invocation. It overrides
any regular definitions for the specified macro within the makefiles and from the
environment. It is inherited by subordinate mkarm's but act as an environment variable
for these. That is, depending on the -e setting, it may be overridden by a makefile
definition.

220

Using the Utilities

option For a complete list and description of all make utility options, see Section 11.7, Make
Utility Options.

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

9.2.2. Writing a Makefile

In addition to the standard makefile makef i | e, the make utility always reads the makefile mkar m nk
before other inputs. This system makefile contains implicit rules and predefined macros that you can use
in the makefile makefil e.

With the option -r (Do not read the mkar m rrk file) you can prevent the make utility from reading nmkar m k.

The default name of the makefile is makef i | e in the current directory. If you want to use another makefile,
use the option -f.

The makefile can contain a mixture of:

« targets and dependencies

* rules

« macro definitions or functions

* conditional processing

e comment lines

* include lines

» export lines

To continue a line on the next line, terminate it with a backslash (\):

this cooment |ine is continued\
on the next line

If a line must end with a backslash, add an empty macro:

this coment line ends with a backsl ash \ $(EMPTY)
this is a newline

9.2.2.1. Targets and Dependencies

The basis of the makefile is a set of targets, dependencies and rules. A target entry in the makefile has
the following format:

221

TASKING VX-toolset for ARM User Guide

target ... : [dependency ...] [; rule]
[rule]

Target lines must always start at the beginning of a line, leading white spaces (tabs or spaces) are not
allowed. A target line consists of one or more targets, a semicolon and a set of files which are required
to build the target (dependencies). The target itself can be one or more filenames or symbolic names:

all: deno. abs final.abs

deno. abs final . abs: test.obj deno.obj final.obj

You can now can specify the target you want to build to the make utility. The following three invocations
all have the same effect:

nkar m
nkarm al |
nkar m deno. abs final . abs

If you do not specify a target, the first target in the makefile (in this example al |) is built. The target al |
depends on denp. abs and fi nal . abs so the second and third invocation have the same effect and
the files denp. abs and f i nal . abs are built.

You can normally use colons to denote drive letters. The following works as intended:
c:foo.obj : a:foo.c

If a target is defined in more than one target line, the dependencies are added to form the target's complete
dependency list:

all: deno. abs # These two |ines are equivalent wth:
all: final.abs # all: denp.abs final.abs

Special targets

There are a number of special targets. Their names begin with a period.

Target Description

. DEFAULT If you call the make utility with a target that has no definition in the makefile, this
target is built.

. DONE When the make utility has finished building the specified targets, it continues with
the rules following this target.

. | GNORE Non-zero error codes returned from commands are ignored. Encountering this in a
makefile is the same as specifying the option -i on the command line.

OANT The rules following this target are executed before any other targets are built.

. PRECI QUS Dependency files mentioned for this target are never removed. Normally, if a

command in a rule returns an error or when the target construction is interrupted,
the make utility removes that target file. You can use the option -p on the command
line to make all targets precious.

222

Using the Utilities

Target Description

. SI LENT Commands are not echoed before executing them. Encountering this in a makefile
is the same as specifying the option -s on the command line.

. SUFFI XES This target specifies a list of file extensions. Instead of building a completely specified
target, you now can build a target that has a certain file extension. Implicit rules to
build files with a number of extensions are included in the system makefile mkar m k.

If you specify this target with dependencies, these are added to the existing
. SUFFI XES target in mkar m nk. If you specify this target without dependencies,
the existing list is cleared.

9.2.2.2. Makefile Rules

A line with leading white space (tabs or spaces) is considered as a rule and associated with the most
recently preceding dependency line. A rule is a line with commands that are executed to build the
associated target. A target-dependency line can be followed by one or more rules.

final.src : final.c # target and dependency
nove test.c final.c # rulel
carmfinal.c # rul e2

You can precede a rule with one or more of the following characters:

@ does not echo the command line, except if -n is used.

- the make utility ignores the exit code of the command. Normally the make utility stops if a
non-zero exit code is returned. This is the same as specifying the option -i on the command
line or specifying the special . | GNORE target.

+ The make utility uses a shell or Windows command prompt (cnd. exe) to execute the
command. If the '+' is not followed by a shell line, but the command is an MS-DOS command
or if redirection is used (<, |, >), the shell line is passed to cnd. exe anyway.

You can force mkarm to execute multiple command lines in one shell environment. This is accomplished
with the token combination ;\'. For example:

cd c:\Tasking\bin ;\
nkarm -V

Note that the ;' must always directly be followed by the '\' token. Whitespace is not removed when it is at
the end of the previous command line or when it is in front of the next command line. The use of the '}’
as an operator for a command (like a semicolon ';' separated list with each item on one line) and the '\'
as a layout tool is not supported, unless they are separated with whitespace.

Inline temporary files

The make utility can generate inline temporary files. If a line contains <<LABEL (no whitespaces!) then
all subsequent lines are placed in a temporary file until the line LABEL is encountered. Next, <<LABEL
is replaced by the name of the temporary file. For example:

223

TASKING VX-toolset for ARM User Guide

[karm-o0 $@-f <<ECF
$(separate "\n" $(match .obj $!))
$(separate "\n" $(match .lib $!))
$(LKFLAGS)

ECF

The three lines between <<EOF and EOF are written to a temporary file (for example nkce4cOa. t np),
and the rule is rewritten as: | karm -0 $@-f nkce4cOa. t np.

Suffix targets

Instead of specifying a specific target, you can also define a general target. A general target specifies the
rules to generate a file with extension . ex1 to a file with extension . ex2. For example:

. SUFFI XES: .C
. C. obj
ccarm-c $<

Read this as: to build a file with extension . obj out of a file with extension . c, call the control program
with -c $<. $< is a predefined macro that is replaced with the name of the current dependency file. The
special target . SUFFI XES: is followed by a list of file extensions of the files that are required to build the
target.

Implicit rules

Implicit rules are stored in the system makefile mkar m nk and are intimately tied to the . SUFFI XES
special target. Each dependency that follows the . SUFFI XES target, defines an extension to a filename
which must be used to build another file. The implicit rules then define how to actually build one file from
another. These files share a common basename, but have different extensions.

If the specified target on the command line is not defined in the makefile or has not rules in the makefile,
the make utility looks if there is an implicit rule to build the target.

Example:

LIB = -lcarm-lfparm-Ilrtarm # macro

prog. abs: prog. obj sub. obj
| kar m prog. obj sub.obj $(LIB) -o prog. abs

prog.obj: prog.c inc.h

carm prog.c
asarm prog. src

sub. obj : sub.c inc.h
carm sub.c
asarm sub. src

This makefile says that pr og. abs depends on two files pr og. obj and sub. obj , and that they in turn
depend on their corresponding source files (pr og. ¢ and sub. ¢) along with the common file i nc. h.

The following makefile uses implicit rules (from mkar m nk) to perform the same job.

224

Using the Utilities

LDFLAGS = -lcarm-Ifparm-lrtarm # macro used by inplicit rules
prog. abs: prog.obj sub. obj # inplicit rule used
prog.obj: prog.c inc.h # inplicit rule used
sub.obj: sub.c inc.h # inplicit rule used

9.2.2.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lowercase or uppercase characters, uppercase is an accepted convention.
The general form of a macro definition is:

MACRO = t ext
MACRO += and nore text

Spaces around the equal sign are not significant. With the += operator you can add a string to an existing
macro. An extra space is inserted before the added string automatically.

To use a macro, you must access its contents:

$(MACRO) # you can read this as
${ MACRO} # the contents of macro MACRO

If the macro name is a single character, the parentheses are optional. Note that the expansion is done
recursively, so the body of a macro may contain other macros. These macros are expanded when the
macro is actually used, not at the point of definition:

FOOD = $(EAT) and $(DRI NK)
EAT = neat and/or vegetabl es
DRI NK = wat er

export FOOD

The macro FOODis expanded as neat and/ or veget abl es and wat er atthe momentitis used in
the export line, and the environment variable FOOD is set accordingly.

Predefined macros

Macro Description

MAKE Holds the value mkarm. Any line which uses MAKE, temporarily overrides the option
-n (Show commands without executing), just for the duration of the one line. This way
you can test nested calls to MAKE with the option -n.

MAKEFLAGS Holds the set of options provided to mkarm (except for the options -f and -d). If this
macro is exported to set the environment variable MAKEFLAGS, the set of options is
processed before any command line options. You can pass this macro explicitly to
nested mkarm's, but it is also available to these invocations as an environment variable.

225

TASKING VX-toolset for ARM User Guide

Macro Description

PRODDI R Holds the name of the directory where mkarm is installed. You can use this macro to
refer to files belonging to the product, for example a library source file.

DOPRI NT = $(PRODDI R)/ i b/src/_doprint.c
When mkarm is installed in the directory c: / Taski ng/ bi n this line expands to:

DOPRI NT = c:/ Tasking/lib/src/_doprint.c

SHELLCMD Holds the default list of commands which are local to the SHELL. If a rule is an
invocation of one of these commands, a SHELL is automatically spawned to handle
it.

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent
a single "$".

Dynamically maintained macros

There are several dynamically maintained macros that are useful as abbreviations within rules. It is best
not to define them explicitly.

Macro Description

$* The basename of the current target.

$< The name of the current dependency file.

$@ The name of the current target.

$? The names of dependents which are younger than the target.
$! The names of all dependents.

The $< and $* macros are normally used for implicit rules. They may be unreliable when used within
explicit target command lines. All macros may be suffixed with F to specify the Filename components
(e.g. ${*F}, ${ @}). Likewise, the macros $*, $< and $@ may be suffixed by D to specify the Directory
component.

The result of the $* macro is always without double quotes ("), regardless of the original target having
double quotes (") around it or not.

The result of using the suffix F (Filename component) or D (Directory component) is also always without
double quotes ("), regardless of the original contents having double quotes () around it or not.

9.2.2.4. Makefile Functions

A function not only expands but also performs a certain operation. Functions syntactically look like macros
but have embedded spaces in the macro name, e.g. '$(match argl arg2 arg3)'. All functions are built-in
and currently these are: mat ch, separ at e, pr ot ect, exi st ,nexi st and addpr ef i x.

$(match suffix filename ...)

The mat ch function yields all arguments which match a certain suffix:

226

Using the Utilities

$(match .obj prog.obj sub.obj nylib.lib)
yields:

prog. obj sub. obj

$(separate separator argument ...)

The separ at e function concatenates its arguments using the first argument as the separator. If the first
argument is enclosed in double quotes then \n' is interpreted as a newline character, \t' is interpreted as
atab, "\ooo'is interpreted as an octal value (where, 000 is one to three octal digits), and spaces are taken
literally. For example:

$(separate "\ n" prog.obj sub. obj)
results in:

pr og. obj
sub. obj

Function arguments may be macros or functions themselves. So,

$(separate "\n" $(match .obj $!))

yields all object files the current target depends on, separated by a newline string.
$(protect argument)

The pr ot ect function adds one level of quoting. This function has one argument which can contain white
space. If the argument contains any white space, single quotes, double quotes, or backslashes, it is
enclosed in double quotes. In addition, any double quote or backslash is escaped with a backslash.

Example:

echo $(protect 1'Il show you the "protect" function)
yields:

echo "I'lIl show you the \"protect\" function”

$(exist file | directory argument)

The exi st function expands to its second argument if the first argument is an existing file or directory.
Example:

$(exist test.c ccarmtest.c)

When the file t est . c exists, it yields:

ccarmtest.c

When the file t est . ¢ does not exist nothing is expanded.

227

TASKING VX-toolset for ARM User Guide

$(nexist file|directory argument)

The nexi st function is the opposite of the exi st function. It expands to its second argument if the first
argument is not an existing file or directory.

Example:

$(nexi st test.src ccarmtest.c)

$(addprefix prefix, argument ...)

The addpr ef i x function adds a prefix to its arguments. It is used in nkar m nk for invocation of the
control program to pass arguments directly to a tool.

Example:

ccarm $(addprefix -W, -gl -Q2) test.c
yields:

ccarm-W-gl -W-Q2 test.c

9.2.2.5. Conditional Processing

Lines containing i f def , i f ndef, el se or endi f are used for conditional processing of the makefile.
They are used in the following way:

i fdef macro-nane

if-lines
el se

el se-1ines
endi f

The if-lines and else-lines may contain any number of lines or text of any kind, even otheri f def ,i f ndef ,
el se and endi f lines, or no lines at all. The el se line may be omitted, along with the else-lines following
it.

First the macro-name after the i f def command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an el se line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the i f ndef line instead of i f def , the macro is tested for not being defined. These
conditional lines can be nested up to 6 levels deep.

You can also add tests based on strings. With i f eq the result is true if the two strings match, with i f neq
the result is true if the two strings do not match. They are used in the following way:

i feq(stringl, string2)

if-lines
el se

228

Using the Utilities

el se-1ines
endi f

9.2.2.6. Comment, Include and Export Lines

Comment lines

Anything after a "#" is considered as a comment, and is ignored. If the "#" is inside a quoted string, it is
not treated as a comment. Completely blank lines are ignored.

test.src : test.c # this is conmment and is
ccarmtest.c # ignored by the nake utility

Include lines

An include line is used to include the text of another makefile (like including a . h file in a C source).
Macros in the name of the included file are expanded before the file is included. You can include several
files. Include files may be nested.

i ncl ude nakefil e2 nakefile3

Export lines

An export line is used to export a macro definition to the environment of any command executed by the
make utility.

GREETING = Hel | 0
export GREETI NG

This example creates the environment variable GREETI NG with the value Hel | 0. The macro is exported
at the moment the export line is read so the macro definition has to precede the export line.

229

TASKING VX-toolset for ARM User Guide

9.3. Make Utility amk

amk is the make utility Eclipse uses to maintain, update, and reconstruct groups of programs. But you
can also use it on the command line. Its features are a little different from mkarm. The main difference
compared to mkarm and other make utilities, is that amk features parallelism which utilizes the multiple
cores found on modern host hardware, hardening for path names with embedded white space and it has
an (internal) interface to provide progress information for updating a progress bar. It does not use an
external command shell (/ bi n/ sh, cd. exe) but executes commands directly.

The primary purpose of any make utility is to speed up the edit-build-test cycle. To avoid having to build
everything from scratch even when only one source file changes, it is necessary to describe dependencies
between source files and output files and the commands needed for updating the output files. This is
done in a so called "makefile”.

9.3.1. Makefile Rules

A makefile dependency rule is a single line of the form:
[target ...] : [prerequisite ...]

where target and prerequisite are path names to files. Example:
test.obj : test.c

This states that target t est . obj depends on prerequisite t est . c. So, whenever the latter is modified
the first must be updated. Dependencies accumulate: prerequisites and targets can be mentioned in
multiple dependency rules (circular dependencies are not allowed however). The command(s) for updating
a target when any of its prerequisites have been modified must be specified with leading white space
after any of the dependency rule(s) for the target in question. Example:

t est. obj
ccarmtest.c # | eadi ng white space

Command rules may contain dependencies too. Combining the above for example yields:

test.obj : test.c
ccarmtest.c

White space around the colon is not required. When a path name contains special characters such as
"', '#' (start of comment), '=' (macro assignment) or any white space, then the path name must be enclosed
in single or double quotes. Quoted strings can contain anything except the quote character itself and a
newline. Two strings without white space in between are interpreted as one, so it is possible to embed
single and double quotes themselves by switching the quote character.

When a target does not exist, its modification time is assumed to be very old. So, amk will try to make it.
When a prerequisite does not exist possibly after having tried to make it, it is assumed to be very new.
So, the update commands for the current target will be executed in that case. amk will only try to make
targets which are specified on the command line. The default target is the first target in the makefile which
does not start with a dot.

230

Using the Utilities

Static pattern rules

Static pattern rules are rules which specify multiple targets and construct the prerequisite names for each
target based on the target name.

[target ...] : target-pattern : [prerequisite-patterns ...]

The target specifies the targets the rules applies to. The target-pattern and prerequisite-patterns specify
how to compute the prerequisites of each target. Each target is matched against the target-pattern to
extract a part of the target name, called the stem. This stem is substituted into each of the
prerequisite-patterns to make the prerequisite names (one from each prerequisite-pattern).

Each pattern normally contains the character '%' just once. When the target-pattern matches a target,
the '%' can match any part of the target name; this part is called the stem. The rest of the pattern must
match exactly. For example, the target f 00. obj matches the pattern '% obj ', with 'f 0o' as the stem.

The targets f 00. ¢ and f 00. abs do not match that pattern.

The prerequisite names for each target are made by substituting the stem for the '%' in each prerequisite
pattern.

Example:

objects = test.obj filter. obj
all: $(objects)

$(objects): %obj: %c
ccarm-c $< -0 $@
echo the stemis $*

Here '$<' is the automatic variable that holds the name of the prerequisite, '$@is the automatic variable
that holds the name of the target and '$*' is the stem that matches the pattern. Internally this translates
to the following two rules:

test.obj: test.c
ccarm-c test.c -0 test.obj
echo the stemis test

filter.obj: filter.c
ccarm-c filter.c -o filter. obj
echo the stemis filter

Each target specified must match the target pattern; a warning is issued for each target that does not.

231

TASKING VX-toolset for ARM User Guide

Special targets

There are a number of special targets. Their names begin with a period.

Target Description

. DEFAULT If you call the make utility with a target that has no definition in the makefile, this
target is built.

. DONE When the make utility has finished building the specified targets, it continues with
the rules following this target.

JANT The rules following this target are executed before any other targets are built.

. PHONY The prerequisites of this target are considered to be phony targets. A phony target

is a target that is not really the name of a file. The rules following a phony target are
executed unconditionally, regardless of whether a file with that name exists or what
its last-modification time is.

For example:
. PHONY: cl ean
cl ean:
rm *. obj

With ank cl ean, the command is executed regardless of whether there is a file
named cl ean.

9.3.2. Makefile Directives

Directives inside makefiles are executed while reading the makefile. When a line starts with the word

"i ncl ude" or "-i ncl ude" then the remaining arguments on that line are considered filenames whose
contents are to be inserted at the current line. "- i ncl ude" will silently skip files which are not present.
You can include several files. Include files may be nested.

Example:
i ncl ude nakefil e2 nakefile3

White spaces (tabs or spaces) in front of the directive are allowed.

9.3.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lowercase or uppercase characters, uppercase is an accepted convention.
When a line does not start with white space and contains the assignment operator '=', ":=' or '+=' then the
line is interpreted as a macro definition. White space around the assignment operator and white space
at the end of the line is discarded. Single character macro evaluation happens by prefixing the name with
'$". To evaluate macros with names longer than one character put the name between parentheses '()' or
curly braces '{}'. Macro names may contain anything, even white space or other macro evaluations.
Example:

232

Using the Utilities

DI NNER = $(FOOD) and $(BEVERAGE)
FOOD = pi zza

BEVERAGE = sparkling water

FOOD += with cheese

With the += operator you can add a string to an existing macro. An extra space is inserted before the
added string automatically.

Macros are evaluated recursively. Whenever $(DI NNER) or ${ DI NNER} is mentioned after the above,

it will be replaced by the text "pi zza wi th cheese and sparkling wat er". The left hand side in

a macro definition is evaluated before the definition takes place. Right hand side evaluation depends on
the assignment operator:

= Evaluate the macro at the moment it is used.

1= Evaluate the replacement text before defining the macro.

Subsequent '+=' assignments will inherit the evaluation behavior from the previous assignment. If there
is none, then '+='is the same as '=". The default value for any macro is taken from the environment. Macro
definitions inside the makefile overrule environment variables. Macro definitions on the amk command
line will be evaluated first and overrule definitions inside the makefile.

Predefined macros

Macro Description

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent
a single "$".

@ The name of the current target. When a rule has multiple targets, then it is the name

of the target that caused the rule commands to be run.

* The basename (or stem) of the current target. The stem is either provided via a static
pattern rule or is calculated by removing all characters found after and including the
last dot in the current target name. If the target name is 't est . ¢' then the stem is

't est ' (if the target was not created via a static pattern rule).

< The name of the first prerequisite.

MAKE The amk path name (quoted if necessary). Optionally followed by the options -n and
-S.

CRIG N The name of the directory where amk is installed (quoted if necessary).

SUBDI R The argument of option -G. If you have nested makes with -G options, the paths are

combined. This macro is defined in the environment (i.e. default macro value).

The @, * and < macros may be suffixed by 'D' to specify the directory component or by 'F' to specify the
filename component. $(@) evaluates to the directory name holding the file$(@) . $(@) / $(@) is
equivalent to $@ Note that on MS-Windows most programs accept forward slashes, even for UNC path
names.

The result of the predefined macros @, * and < and 'D' and 'F' variants is not quoted, so it may be necessary
to put quotes around it.

233

TASKING VX-toolset for ARM User Guide

Note that stem calculation can cause unexpected values. For example:

$@ $*

/hone/ . wi ne/test / hone/

/ hone/ test/. project [hone/ test/
/.. /file /.

Macro string substitution
When the macro name in an evaluation is followed by a colon and equal sign as in
$(MACRO stringl=string2)

then amk will replace stringl at the end of every word in $(MACRO) by string2 during evaluation. When
$(MACRO) contains quoted path names, the quote character must be mentioned in both the original string
and the replacement stringl. For example:

$(MACRQ . obj "=.d")

9.3.4. Makefile Functions

A function not only expands but also performs a certain operation. The following functions are available:

$(filter pattern ...,item ...)

The filter function filters a list of items using a pattern. It returns items that do match any of the pattern
words, removing any items that do not match. The patterns are written using '%,

${filter %c %h, test.c test.h test.obj readnme.txt .project output.c}
results in:

test.c test.h output.c

$(filter-out pattern ...,item ...)

The fil ter-out function returns all items that do not match any of the pattern words, removing the
items that do match one or more. This is the exact opposite of the fi | t er function.

${filter-out %c %h, test.c test.h test.obj readnme.txt .project output.c}
results in:

test.obj readme.txt .project

1Intemally, amk tokenizes the evaluated text, but performs substitution on the original input text to preserve compatibility here with
existing make implementations and POSIX.

234

Using the Utilities

$(foreach var-name, item ..., action)

The f or each function runs through a list of items and performs the same action for each item. The
var-name is the name of the macro which gets dynamically filled with an item while iterating through the
item list. In the action you can refer to this macro. For example:

${foreach T, test filter output, ${T}.c ${T}.h}
results in:

test.c test.h filter.c filter.h output.c output.h

9.3.5. Conditional Processing

Lines containing i f def , i f ndef, el se or endi f are used for conditional processing of the makefile.
They are used in the following way:

i fdef macro-nane

if-lines
el se

el se-1ines
endi f

The if-lines and else-lines may contain any number of lines or text of any kind, even otheri f def ,i f ndef,
el se and endi f lines, or no lines at all. The el se line may be omitted, along with the else-lines following
it. White spaces (tabs or spaces) in front of preprocessing directives are allowed.

First the macro-name after the i f def command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an el se line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the i f ndef line instead of i f def , the macro is tested for not being defined. These
conditional lines can be nested to any level.

You can also add tests based on strings. With i f eq the result is true if the two strings match, with i f neq
the result is true if the two strings do not match. They are used in the following way:

i feq(stringl, string2)

if-lines
el se

el se-1ines
endi f

9.3.6. Makefile Parsing

amk reads and interprets a makefile in the following order:

1. When the last character on a line is a backslash (\) (i.e. without trailing white space) then that line and
the next line will be concatenated, removing the backslash and newline.

235

TA

9.

SKING VX-toolset for ARM User Guide

. The unquoted '#' character indicates start of comment and may be placed anywhere on a line. It will

be removed in this phase.

this cooment line is continued\
on the next line

. Trailing white space is removed.

. When a line starts with white space and it is not followed by a directive or preprocessing directive, then

it is interpreted as a command for updating a target.

. Otherwise, when a line contains the unquoted text '=", '+="' or ":=" operator, then it will be interpreted as

a macro definition.

. Otherwise, all macros on the line are evaluated before considering the next steps.
. When the resulting line contains an unquoted "' the line is interpreted as a dependency rule.

. When the first token on the line is "i ncl ude" or "- i ncl ude" (which by now must start on the first

column of the line), amk will execute the directive.

Otherwise, the line must be empty.

Macros in commands for updating a target are evaluated right before the actual execution takes place
(or would take place when you use the -n option).

9.

Al

3.7. Makefile Command Processing

ine with leading white space (tabs or spaces) without a (preprocessing) directive is considered as a

command for updating a target. When you use the option -j or -J, amk will execute the commands for
updating different targets in parallel. In that case standard input will not be available and standard output
and error output will be merged and displayed on standard output only after the commands have finished

for

atarget.

You can precede a command by one or more of the following characters:

@

+

Do not show the command. By default, commands are shown prior to their output.
Continue upon error. This means that amk ignores a non-zero exit code of the command.
Execute the command, even when you use option -n (dry run).

Execute the command on the foreground with standard input, standard output and error
output available.

Built-in commands

Command Description

true This command does nothing. Arguments are ignored.

fal se This command does nothing, except failing with exit code 1. Arguments are
ignored.

236

Using the Utilities

Command Description
echo arg... Display a line of text.
exit code Exit with defined code. Depending on the program arguments and/or the extra

rule options '-' this will cause amk to exit with the provided code. Please note
that 'exi t 0" has currently no result.

argfil e file arg...

Create an argument file suitable for the --option-file (-f) option of all the other
tools. The first ar gf i | e argument is the name of the file to be created.
Subsequent arguments specify the contents. An existing argument file is not
modified unless necessary. So, the argument file itself can be used to create
a dependency to options of the command for updating a target.

r mfoption]... file...

Remove the specified file(s). The following options are available:

-r, --recursive Remove directories and their contents recursively.

-f, --force Force deletion. Ignore non-existent files, never prompt.
-i, --interactive Interactive. Prompt before every removal.

-v, --verbose Verbose mode. Explain what is being done.

-m file Read options from file..

-?, --help Show usage.

9.3.8. Calling the amk Make Utility

The invocation syntax of amk is:

ank [option]...

For example:

ank test.abs

target

macro=def

option

Exit status

[target]... [rmacro=def]...

You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

Macro definition. This definition remains fixed for the amk invocation. It overrides any
regular definitions for the specified macro within the makefiles and from the
environment. It is not inherited by subordinate amk's

For a complete list and description of all amk make utility options, see Section 11.8,
Parallel Make Utility Options.

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an

exit status of 0.

237

TASKING VX-toolset for ARM User Guide

9.4. Archiver

The archiver ararm is a program to build and maintain your own library files. A library file is a file with
extension . | i b and contains one or more object files (. obj) that may be used by the linker.

The archiver has five main functions:

» Deleting an object module from the library

» Moving an object module to another position in the library file

» Replacing an object module in the library or add a new object module
» Showing a table of contents of the library file

» Extracting an object module from the library

The archiver takes the following files for input and output:

assemhbler

T
l—— relocatable ohjectfile
—= .Dhj

|

archiver

relocatable object library
] linker

The linker optionally includes object modules from a library if that module resolves an external symbol
definition in one of the modules that are read before.

9.4.1. Calling the Archiver

You can create a library in Eclipse, which calls the archiver or you can call the archiver on the command
line.

To create alibrary in Eclipse

Instead of creating an ARM absolute ELF file, you can choose to create a library. You do this when you
create a new project with the New C/C++ Project wizard.

1. From the File menu, select New » TASKING ARM C/C++ Project.
The New C/C++ Project wizard appears.
2. Enter a project name.
3. Inthe Project type box, select TASKING ARM Library and clickNext >.
4. Follow the rest of the wizard and click Finish.

5. Add the files to your project.

238

Using the Utilities

6. Build the project as usual. For example, select Project » Build Project (1),

Eclipse builds the library. Instead of calling the linker, Eclipse now calls the archiver.

Command line invocation
You can call the archiver from the command line. The invocation syntax is:
ararm key_option [sub_option...] library [object_file]

key_option With a key option you specify the main task which the archiver should perform. You
must always specify a key option.

sub_option Sub-options specify into more detail how the archiver should perform the task that is
specified with the key option. It is not obligatory to specify sub-options.

library The name of the library file on which the archiver performs the specified action. You
must always specify a library name, except for the options -? and -V. When the library
is not in the current directory, specify the complete path (either absolute or relative) to
the library.

object_file The name of an object file. You must always specify an object file name when you
add, extract, replace or remove an object file from the library.

Options of the archiver utility

The following archiver options are available:

Description Option Sub-option
Main functions (key options)

Replace or add an object module -r -a-b-c-u-v
Extract an object module from the library -X -v

Delete object module from library -d -v

Move object module to another position -m -a-b-v
Print a table of contents of the library -t -s0-sl
Print object module to standard output -p

Sub-options

Append or move new modules after existing module name -a name

Append or move new modules before existing module name -b name

Create library without notification if library does not exis -C

Preserve last-modified date from the library -0

Print symbols in library modules -s{0|1}

Replace only newer modules -u

Verbose -v

Miscellaneous

239

TASKING VX-toolset for ARM User Guide

Description Option Sub-option
Display options -?

Display version header -V

Read options from file -f file

Suppress warnings above level n -wn

For a complete list and description of all archiver options, see Section 11.9, Archiver Options.
9.4.2. Archiver Examples

Create a new library

If you add modules to a library that does not yet exist, the library is created. To create a new library with
the name nyl i b. | i b and add the object modules cst art. obj and cal c. obj toit:

ararm-r nylib.lib cstart.obj calc.obj

Add a new module to an existing library

If you add a new module to an existing library, the module is added at the end of the module. (If the
module already exists in the library, it is replaced.)

ararm-r nylib.lib nod3. obj

Print a list of object modules in the library
To inspect the contents of the library:

ararm-t nylib.lib

The library has the following contents:

cstart. obj

cal c. obj
nod3. obj

Move an object module to another position
To move nod3. obj to the beginning of the library, position it just before cst art . obj :

ararm-mnmb cstart.obj mylib.lib nbd3. obj

Delete an object module from the library
To delete the object module cst art . obj from the library nyl i b. |i b:

ararm-d nylib.lib cstart. obj

240

Using the Utilities

Extract all modules from the library
Extract all modules from the library nyl i b. | i b:

ararm-x nmylib.lib

241

TASKING VX-toolset for ARM User Guide

9.5. HLL Object Dumper

The high level language (HLL) dumper hidumparm is a program to dump information about an absolute
object file (. abs) . Key features are a disassembler with HLL source intermixing and HLL symbol display
and a HLL symbol listing of static and global symbols.

9.5.1. Invocation

Command line invocation

You can call the HLL dumper from the command line. The invocation syntax is:
hl dumparm [option]... file...

The input file must be an ELF file with or without DWARF debug info (. abs).

The HLL dumper can process multiple input files. Files and options can be intermixed on the command
line. Options apply to all supplied files. If multiple files are supplied, the disassembly of each file is preceded
by a header to indicate which file is dumped. For example:

========== f|| e. abs ==========

For a complete list and description of all options, see Section 11.10, HLL Object Dumper Options. With
hl dunpar m - - hel p you will see the options on st dout .

9.5.2. HLL Dump Output Format

The HLL dumper produces output in text format by default, but you can also specify the XML output format
with --output-type=xml. The XML output is mainly for use in the Eclipse editor. The output is printed on
st dout , unless you specify an output file with --output=filename.

The parts of the output are dumped in the following order:
1. Module list

2. Section list

3. Section dump (disassembly)

4, HLL symbol table

5. Assembly level symbol table

6. Note sections

With the option --dump-format=flag you can control which parts are shown. By default, all parts are
shown.

242

Using the Utilities

Example

Suppose we have a simple "Hello World" program in a file called hel | 0. c. We call the control program
as follows:

ccarm-g -t hello.c

Option -g tells to include DWARF debug information. Option -t tells to keep the intermediate files. This
command results (among other files) in the file hel | 0. abs (the absolute output file).

We can dump information about the absolute object file with the following command:
hl dunpar m hel | 0. abs

---------- Module list ----------

Narme Ful | path
hello.c hello.c

---------- Section list ----------

Address Size Al'ign Type Narme

00000690 24 4 text . text
000006b4 6 4 rondata .rodata
00040180 4 4 bss .data
000006a8 11 4 rondata .rodata

---------- Section dunp ----------

.section .data, '[.data]', at(0x000000e8)
.db b8, 06, 00, 00

. endsec
.section .text, at(0x00000690)

00000690 08 00 9f e5 main | dr ro, [rl5, #+0x8]
00000694 00 10 90 e5 | dr rl, [r0, #+0xO0]
00000698 04 00 9f e5 | dr ro, [rl5, #+0x4]
0000069c 74 ff ff ea b printf
000006a0 80 01 .dh 0180
000006a2 04 00 .dh 0004
000006a4 a8 06 .dh 06a8
000006a6 00 00 .dh 0000

. endsec

.section .data, '.rodata', at(0x000006a8)

.db 48, 65, 6¢, 6¢, 6f, 20, 25, 73, 21, 0a, 00 ; Hello %s!..
. endsec

.section .data, '.rodata', at(0x000006b4)

.db 77,6f, 72, 6¢c, 64, 00 ; worl d.

. endsec

243

TASKING VX-toolset for ARM User Guide

---------- HLL synbol table ----------

Addr ess Size HLL Type Nane

00000390 88 void Reset _Handl er ()

00000408 104 void _init()

00000474 64 int printf(const char * restrict format,
00000690 16 void mai n()

00040000 24 struct _dbg_request [dbg.c]

00040018 80 static char stdin_buf[80] [_iob.c]

00040068 80 static char stdout _buf[80] [_iob.c]

000400b8 200 struct _iobuf _iob[10] [_iob.c]

00040180 4 char * world [hello.c]

---------- assenbly | evel synbol table ----------

Address Si ze Type Nane

00000000

00000000 [.data.libc]
00000000 [.data]
00000000 _vector_O
00000000 hello.c
00000390 120 code Reset _Handl er
00000474 72 code printf
00000690 24 code main
00040180 4 data world

---------- .note sections ----------
No .note sections present

Module list

This part lists all modules (C/C++ files) found in the object file(s). It lists the filename and the complete
path name at the time the module was built.

Section list

This part lists all sections found in the object file(s).

Address The start address of the section. Hexadecimal, 8 digits, 32-bit.

Size The size (length) of the section in bytes. Decimal, filled up with spaces.

Align The alignment of the section in number of bytes. Decimal, filled up with spaces.
Type The section type.

Name The name of the section.

With option --sections=name[,name]... you can specify a list of sections that should be dumped.

244

Using the Utilities

Section dump

This part contains the disassembly. It consists of the following columns:

address column Contains the address of the instruction or directive that is shown in the disassembly.
If the section is relocatable the section start address is assumed to be 0. The
address is represented in hexadecimal and has a fixed width. The address is
padded with zeros. No Ox prefix is displayed. For example, on a 32-bit architecture,
the address 0x32 is displayed as 00000032.

encoding column Shows the hexadecimal encoding of the instruction (code sections) or it shows the
hexadecimal representation of data (data sections). The encoding column has a
maximum width of eight digits, i.e. it can represent a 32-bit hexadecimal value.
The encoding is padded to the size of the data or instruction. For example, a 16-bit
instruction only shows four hexadecimal digits. The encoding is aligned left and
padded with spaces to fill the eight digits.

label column Displays the label depending on the option --symbols=[hlljasm|none]. The default
is asm, meaning that the low level (ELF) symbols are used. With hll, HLL (DWARF)
symbols are used. With none, no symbols will be included in the disassembly.

disassembly column For code sections the instructions are disassembled. Operands are replaced with
labels, depending on the option --symbols=[hlljasm|none].

The contents of data sections are represented by directives. A new directive will
be generated for each symbol. ELF labels in the section are used to determine
the start of a directive. ROM sections are represented with . db, . dh, . dw, . dd
kind of directives, depending on the size of the data. RAM sections are represented
with . ds directives, with a size operand depending on the data size. This can be
either the size specified in the ELF symbol, or the size up to the next label.

With option --hex, no directives will be generated for ROM data sections and no disassembly dump will
be done for code sections. Instead a hex dump is done with the following format:

AAAAAAAA HO HI H2 H3 H4 H5 H6 H7 H8 H9 HA HB HC HD HE HF RRRRRRRRRRRRRRRR
where,

A = Address (8 digits, 32-bit)

Hx = Hex contents, one byte (16 bytes max)

R = ASCII representation (16 characters max)

For example:

section 7 (.rodata):
000006a8 48 65 6¢ 6¢C 6f 20 25 73 21 0Oa 00 Hello %! ..

With option --hex, RAM sections will be represented with only a start address and a size indicator:
AAAAAAAA Space: 48 bytes

With option --disassembly-intermix you can intermix the disassembly with HLL source code.

245

TASKING VX-toolset for ARM User Guide

HLL symbol table

This part contains a symbol listing based on the HLL (DWARF) symbols found in the object file(s). The
symbols are sorted on address.

Address The start address of the symbol. Hexadecimal, 8 digits, 32-bit.
Size The size of the symbol from the DWARF info in bytes.

HLL Type The HLL symbol type.

Name The name of the HLL symbol.

HLL arrays are indicated by adding the size in square brackets to the symbol name. For example:
00040018 80 static char stdin_buf[80] [_iob.c]

With option --expand-symbols=+basic-types HLL struct and union symbols are listed including all fields.
Array members are expanded in one array member per line regardless of the HLL type. For example:

00040018 80 static char stdin_buf[80] [_iob.c]
00040018 1 char
00040019 1 char
0004001a 1 char
00040067 1 char

HLL struct and union symbols are listed by default without fields. For example:
00040000 24 struct _dbg_request [dbg.c]

With option --expand-symbols all struct, union and array fields are included as well. For the fields the
types and names are indented with two spaces. For example:

00040000 24 struct _dbg_request [dbg.c]
00040000 4 i nt _errno

00040004 4 enum nr

00040008 16 uni on u

00040008 4 struct exit

00040008 4 i nt st atus
00040008 8 struct open

00040008 4 const char * pat hname
0004000c 2 unsi gned short int fl ags

Functions are displayed with the full function prototype. Size is the size of the function. HLL Type is the
return type of the function. For example:

00000474 64 int printf(const char * restrict format,

The local and static symbols get an identification between square brackets. The filename is printed and
if a function scope is known the function name is printed between the square brackets as well. If multiple
files with the same name exist, the unique part of the path is added. For example:

246

Using the Utilities

00040100 4 int count [file.c, somefunc()]
00040104 4 int count [x\a.c]
00040108 4 int count [y\a.c, foo()]

Global symbols do not get information in square brackets.
Assembly level symbol table

This part contains a symbol listing based on the assembly level (ELF) symbols found in the object file(s).
The symbols are sorted on address.

Address The start address of the symbol. Hexadecimal, 8 digits, 32-bit.

Size The size of the symbol from the ELF info in bytes. If this field is empty, the size is
zero.

Type Code or Data, depending on the section the symbol belongs to. If this field is empty,
the symbol does not belong to a section.

Name The name of the ELF symbol.

247

TASKING VX-toolset for ARM User Guide

9.6. Expire Cache Utility

With the utility expirearm you can limit the size of the cache (C compiler option --cache) by removing all
files older than a few days or by removing older files until the total size of the cache is smaller than a
specified size. See also Section 12.5, Compiler Cache.

The invocation syntax is:
expirearm[option]... cache-directory
The compiler cache is present in the directory car ntache under the specified cache-directory.

For a complete list and description of all options, see Section 11.11, Expire Cache Utility Options. With
expi rearm - - hel p you will see the options on st dout .

Examples

To remove all files older than seven days, enter:

expi rearm --days=7 "installation-dir\nproject\.cache"

To reduce the compiler cache size to 4 MB, enter:

expi rearm - -nmegabytes=4 "installation-dir\nproject\.cache"
Older files are removed until the total size of the cache is smaller than 4 MB.
To clear the compiler cache, enter:

expi rearm - - megabyt es=0 "install ation-dir\nproject\.cache"

248

Chapter 10. Using the Debugger

This chapter describes the debugger and how you can run and debug a C or C++ application. This chapter
only describes the TASKING specific parts.

10.1. Reading the Eclipse Documentation

Before you start with this chapter, it is recommended to read the Eclipse documentation first. It provides
general information about the debugging process. This chapter guides you through a number of examples
using the TASKING debugger with simulation as target.

You can find the Eclipse documentation as follows:
1. Start Eclipse.
2. From the Help menu, select Help Contents.
The help screen overlays the Eclipse Workbench.
3. Inthe left pane, select C/C++ Development User Guide.
4. Open the Getting Started entry and select Debugging projects.

This Eclipse tutorial provides an overview of the debugging process. Be aware that the Eclipse
example does not use the TASKING tools and TASKING debugger.

10.2. Creating a Customized Debug Configuration

Before you can debug a project, you need a Debug launch configuration. Such a configuration, identified
by a name, contains all information about the debug project: which debugger is used, which project is
used, which binary debug file is used, which perspective is used, ... and so forth.

If you want to debug on a target board, you have to create a custom debug configuration for your target

board, otherwise you have to create a debug launch configuration for the TASKING simulator.

To debug a project, you need at least one opened and active project in your workbench. In this
chapter, it is assumed that the mypr oj ect is opened and active in your workbench.

Create or customize your debug configuration
To create or change a debug configuration follow the steps below.
1. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.

2. Select TASKING C/C++ Debugger and click the New launch configuration button (L7

249

TASKING VX-toolset for ARM User Guide

) to add a new configuration.
Or: In the left pane, select the configuration you want to change, for example, TASKING C/C++
Debugger » myproject.

3. Inthe Name field enter the name of the configuration. By default, this is the name of the project, but
you can give your configuration any name you want to distinguish it from the project name. For
example enter mypr oj ect . si mul at or to identify the simulator debug configuration.

4. Onthe Target tab, select the ARM Simulator or any of the target boards.

The dialog shows several tabs.

Target tab

On the Target tab you can select on which target the application should be debugged. An application
can run on an external evaluation board, or on a simulator using your own PC. On this tab you can also
select the connection settings (J-Link, RS-232, TCP/IP). The information in this tab is based on the Debug
Target Configuration (DTC) files as explained in Chapter 18, Debug Target Configuration Files.

{2} Debug Configurations (===
Create, manage, and run configurations =
TASKING C/C++ Debugger J
eI Name: myproject
type filter tet Target _i- Initialization| [Project| &) Arguments| % Source| =] Miscellaneous
4 ¥ TASKING C/C++ Debugger Target settings.
53 t
e Show all targets @) Show targets for ARMVT-M
Target: ARM Simulator
Configuration:
Cennectien settings
Connection: | Simulator -
S Field Value
Filter matched 2 of 2 items =
@ Debug Close

Initialization tab

On the Initialization tab enable one or more of the following options:

250

Using the Debugger

{23 Debug Configurations =5

Create, manage, and run configurations F <
TASKING C/C++ Debugger J
TBX| B3

Name: myproject

type filter text i= Initialization ", [5] Project| 9: Arguments| % Source | E] Miscellaneous

a ¥ TASKING C/C++ Debugger

F
 myproject | Verify download of program

Program flash when downloading
] Reset target
7] Goto main
V| Break on exit
Reduce target state polling
5

Flash seitings

Filter matched 2 of 2 items.

@] Debug Close

Initial download of program

If enabled, the target application is downloaded onto the target. If disabled, only the debug information
in the file is loaded, which may be useful when the application has already been downloaded (or flashed)
earlier. If downloading fails, the debugger will shut down.

Verify download of program

If enabled, the debugger verifies whether the code and data has been downloaded successfully. This
takes some extra time but may be useful if the connection to the target is unreliable.

Program flash when downloading

If enabled, also flash devices are programmed (if necessary). Flash programming will not work when
you use a simulator.

Reset target
If enabled, the target is immediately reset after downloading has completed.
Goto main

If enabled, only the C startup code is processed when the debugger is launched. The application stops
executing when it reaches the first C instruction in the function mai n() . Usually you enable this option
in combination with the option Reset Target.

Break on exit
If enabled, the target halts automatically when the exi t () function is called.

Reduce target state polling

251

TASKING VX-toolset for ARM User Guide
If you have set a breakpoint, the debugger checks the status of the target every number of seconds to
find out if the breakpoint is hit. In this field you can change the polling frequency.
* Monitor file (Flash settings)
Filename of the monitor, usually an Intel Hex or S-Record file.
» Sector buffer size (Flash settings)
Specifies the buffer size for buffering a flash sector.
» Workspace address (Flash settings)

The address of the workspace of the flash programming monitor.

Project tab

On the Project tab, you can set the properties for the debug configuration such as a name for the project
and the application binary file which are used when you choose this configuration.

(2} Debug Cenfigurations ==
Create, manage, and run configurations K <
TASKING C/C++ Debugger J
SEX| B3~ Name: myproject
type filter texdt Target | i= Initialization | [5] Project (9= Arguments | & Source| =] Miscellaneous
Y JCor
4 5 TASKING C/Cos Debugger | | oo
5 myproject
myproject Browse...
C/C++ application:
§{build_confighmyproject.abs Search Project.. Browse..
Filter matched 2 of 2 items

* In the Project field, you can choose the project for which you want to make a debug configuration.
Because the project nypr oj ect is the active project, this project is filled in automatically. Click the
Browse... button to select a different project. Only the opened projects in your workbench are listed.

* Inthe C/C++ Application field, you can choose the binary file to debug. The file nypr oj ect . abs is
automatically selected from the active project.

Arguments tab
If your application's mai n() function takes arguments, you can pass them in this tab. Arguments are

conventionally passed in the ar gv[] array. Because this array is allocated in target memory, make sure
you have allocated sufficient memory space for it.

252

(.} Debug Configurations

YR X|E 3

type filter text

2 {5 TASKING C/C
&5 myproject

Filter matched 2 of 2 items.

®@

Target | := Initialization | || Project [£9: Arguments . %/ Source|] Miscellaneous
++ Debugger

Create, manage, and run configurations
TASKING C/C++ Debugger

Name: myproject

C/C++ program arguments
argl arg2
arg3 argd

Working directory
Use default working directory
S{workspace loc:myproject}
Workspace.. | | File System... Variables...
Apply Revert

Source tab

for debug data.

(.} Debug Configurations

TASKING C/C++ Debugger

YR X|E 3
type filter text

2 {5 TASKING C/C++ Debugger
&5 myproject

Create, manage, and run configurations

=

Name: myproject

Target | := Initialization | [] Project | 9: Arguments [Source
Source Lookup Path:

13 Default

] Miscellaneous

Add...

Edit..
Up

Down

Restore Default

[Se:

arch for duplicate source files on the path

Filter matched 2 of 2 items.

Revert
@

Apply

» Usually, the default source code location is correct.

Miscellaneous

On the Miscellaneou

tab

s tab you can specify several file locations.

Using the Debugger

On the Source tab, you can add additional source code locations in which the debugger should search

253

TASKING VX-toolset for ARM User Guide

(23 Debug Cenfigurations =5
Create, manage, and run configurations F <
TASKING C/C++ Debugger J
- EIEE Name: myproject
type filter ted Target | i= Initialization | [5] Project |¢9= Arguments [Source |] Miscellaneous.
4 s TASNG C/Cre Debugger ||| pepugger location: C:/Program Files/TASKING/carm vyrz/bin Browse
5 myproject
FSS root directory: S{project_lochS{build_config) Browse..
ORTIfile: Browse...
KSM module: Default Browse..
GDI log file: Browse...
Debug instrument log file (if applicable}
Browse..
Cache target access
Launch in background
Use linker/locator memory map file (mdf) for memory map
Filter matched 2 of 2 items
@ Debug Close

» Debugger location

The location of the debugger itself. This should not be changed.
* FSSroot directory

The initial directory used by file system simulation (FSS) calls. See the description of the FSS view.
* ORTI file and KSM module

If you wish to use the debugger's special facilities for kernel-aware debugging, specify the name of a
Kernel Debug Interface (KDI) compatible KSM module (shared library) in the appropriate edit box. The
toolset comes with a KSM suitable for OSEK kernels. If you wish to use this, browse for the file
osek_radm dl | inthe bi n directory of the toolset. See also the description of the RTOS view.

» GDI log file and Debug instrument log file

You can use the options GDI log file and Debug instrument log file (if applicable) to control the generation
of internal log files. These are primarily intended for use by or at the request of Altium support personnel.

« Cache target access

Except when using a simulator, the debugger's performance is generally strongly dependent on the
throughput and latency of the connection to the target. Depending on the situation, enabling this option
may result in a noticeable improvement, as the debugger will then avoid re-reading registers and
memory while the target remains halted. However, be aware that this may cause the debugger to show
the wrong data if tasks with a higher priority or external sources can influence the halted target's state.

e Launch in background

254

Using the Debugger

When this option is disabled you will see a progress bar when the debugger starts. If you do not want
to see the progress bar and want that the debugger launches in the background you can enable this
option.

* Use linker/locator memory map file (mdf) for memory map

You can use this option to find errors in your application that cause access to non-existent memory or
cause an attempt to write to read-only memory. When building your project, the linker/locator creates
a memory description file (. mdf) file which describes the memory regions of the target you selected
in your project properties. The debugger uses this file to initialize the debugging target.

This option is only useful in combination with a simulator as debug target. The debugger may fail to
start if you use this option in combination with other debugging targets than a simulator.

10.3. Troubleshooting

If the debugger does not launch properly, this is likely due to mistakes in the settings of the execution
environment or to an improper connection between the host computer and the execution environment.
Always read the notes for your particular execution environment.

Some common problems you may check for, are:

Problem Solution

Wrong device name in the launch |Make sure the specified device name is correct.
configuration

Invalid baud rate Specify baud rate that matches the baud rate the execution
environment is configured to expect.

No power to the execution Make sure the execution environment or attached probe is powered.
environment.

Wrong type of RS—232 cable. Make sure you are using the correct type of RS-232 cable.

Cable connected to the wrong port |Some target machines and hosts have several ports. Make sure
on the execution environment or host. |you connect the cable to the correct port.

Conflict between communication A device driver or background application may use the same
ports. communications port on the host system as the debugger. Disable
any service that uses the same port-number or choose a different
port-number if possible.

Port already in use by another user. | The port may already be in use by another user on some UNIX
hosts, or being allocated by a login process. Some target machines
and hosts have several ports. Make sure you connect the cable to
the correct port.

10.4. TASKING Debug Perspective

After you have launched the debugger, you are either asked if the TASKING Debug perspective should
be opened or it is opened automatically. The Debug perspective consists of several views.

255

TASKING VX-toolset for ARM User Guide

To open views in the Debug perspective:

1. Make sure the Debug perspective is opened

2. From the Window menu, select Show View »

3. Select a view from the menu or choose Other... for more views.

By default, the Debug perspective is opened with the following views:

tj TASKING Debug - myproject/mypreject.c - ARM Eclipse IDE vx.yrz

5 -

I 2 B
w | 04 & Ok =

%5 Debug 2 iv ¥ = O |[69= Variables 52
a ¥ myproject [TASKING C/C++ Debugger] -
4 & ARM Simulator - ARMyT-M (11/22/13 4:55 PN
4 4P Thread [L:1:ARM] (Suspended: Breakpaint| =
21 main() myproject.c:3 0x00000780
20 Reset_Handler() 0:00000856
19 Reset_Handler() 0:00000856
18 Reset_Handler() 0:00000856 i
17 Reset_Handler() 0x00000856
16 Reset_Handler() 0:00000856 o
4 1 * 4

EX-J A3

€] myproject.c i3
#include <stdio.h»
int main(void)
int ij
for (i=1; i<=3; i++)
printf("%d\n",i);
¥
printf("Hella world, ");
printf("this is \n");
printf("a small ¥dst\n",i-3);
printf("debugging example.\n" };

+

& Console 52

Debug [myproject]

Starting Debugger...

TASKING WX-toolset for ARM: debugger, Build 222
Copyright 2006-2013 Altium BV

] Tasks

Launching configuratien: myproject
4 n

e

“&,E|‘§E'f‘j'=ﬁ|

Writable

File Edit Source Refactor Mavigate Search Project Debug Window Help

Eraiv @

PERTRE TRT R
| - Bl e

9 Breakpoints = O | Registers 2
T IEEN P
alug Name Value
<Error. <no storage assigne... | g 00
R1 0x0
R2 0x0
mn vl s 040
“ || R4 0x0
- RS 0x0
= 0| (@) Disassembly 52 . 5% Outline
-
Address: (00000780
int main(void)
0x00000780 10 bS push i{r4,1r}
for (i=1; i<=3; i++)
= 0x00000782 01 24 mov r4, #0x1
princE| "sd\n",i };
0x00000782 Oa 48 1dr r0, [pc,
princf("sd\n",i }:
0x00000786 21 46 mov rl, r4
0x00000788 00 £0 1c f8 bl
. for (i=1; i<=3; i++)
0 Memory 32 3 ot |=8)
Monitors .
»
Smart Insert 3:1

=0 o =
= [TASEG be)

[F] TASKING C/...
£ =0

Usage

m] »

e =0

#o0x28]

printf (000007c4)

*~ =0

3 =)

10.4.1. Debug View

The Debug view shows the target information in a tree hierarchy shown below with a sample of the

possible icons:

Icon Session item Description

o3 Launch instance |Launch configuration name and launch type
Debugger instance | Debugger name and state

P @ g8 |Thread instance |Thread number and state

256

Using the Debugger

Icon

Session item

Description

m

Stack frame

Stack frame number, function, file name, and file line number

instance

Stack display

During debugging (running) the actual stack is displayed as it increases or decreases during program
execution. By default, all views present information that is related to the current stack item (variables,
memory, source code etc.). To obtain the information from other stack items, click on the item you want.

The Debug view displays stack frames as child elements. It displays the reason for the suspension beside
the thread, (such as end of stepping range, breakpoint hit, and signal received). When a program exits,
the exit code is displayed.

The Debug view contains numerous functions for controlling the individual stepping of your programs and
controlling the debug session. You can perform actions such as terminating the session and stopping the
program. All functions are available from the right-click menu, though commonly used functions are also
available from the toolbar.

Controlling debug sessions

Icon Action Description
% Remove all Removes all terminated launches.
i Reset target Resets the target system and restarts the application.
system
<& Restart Restarts the application. The target system is not reset.
b Resume R_esumes the application after it was suspended (manually, breakpoint,
signal).
oo Suspend Suspends the application (pause). Use the Resume button to continue.
) Right-click menu. Restarts the selected debug session when it was
Q, Relaunch terminated. If the debug session is still running, a new debug session is
launched.
4 Reload current Reloads the current application without restarting the debug session. The
: application application does restart of course.
. Ends the selected debug session and/or process. Use Relaunch to restart
L] Terminate . . ;
this debug session, or start another debug session.
[& | Terminate all Right-click menu. As terminate. Ends all debug sessions.
@, | Terminate and Right-click menu. Ends the debug session and removes it from the Debug
*Iremove view.
@ | Terminate and Right-click menu. Ends the debug session and relaunches it. This is the
*|Relaunch same as choosing Terminate and then Relaunch.
ot Disconnect Detaches the debugger from the selected process (useful for debugging
attached processes).

257

TASKING VX-toolset for ARM User Guide

Stepping through the application

Icon Action Description
= Step into Steps to the next source line or instruction.
_ Steps over a called function. The function is executed and the application
Ly Step over . .
suspends at the next instruction after the call.
Executes the current function. The application suspends at the next
- Step return . ; X
instruction after the return of the function.
i Instruction Toggle. If enabled, the stepping functions are performed on instruction level
stepping instead of on C source line level.
I Interrupt aware | Toggle. If enabled, the stepping functions do not step into an interrupt when
stepping it occurs.

Miscellaneous

Icon Action Description
Right-click menu. Copies the stack as text to the windows clipboard. You
Copy Stack)) . .
can paste the copied selection as text in, for example, a text editor.
5 Edit project... Right-click menu. O‘pens.the debug configuration dialog to let you edit the
current debug configuration.
B Edit Source Right-click menu. Opens the Edit Source Lookup Path window to let you
Lookup... edit the search path for locating source files.

10.4.2. Breakpoints View

You can add, disable and remove breakpoints by clicking in the marker bar (left margin) of the Editor
view. This is explained in the Getting Started manual.

Description

The Breakpoints view shows a list of breakpoints that are currently set. The button bar in the Breakpoints
view gives access to several common functions. The right-most button — opens the Breakpoints menu.

Types of breakpoints

To access the breakpoints dialog, add a breakpoint as follows:

1. Click the Add TASKING Breakpoint button (&).

The Breakpoints dialog appears.

Each tab lets you set a breakpoint of a special type. You can set the following types of breakpoints:

» File breakpoint

258

Using the Debugger

The target halts when it reaches the specified line of the specified source file. Note that it is possible
that a source line corresponds to multiple addresses, for example when a header file has been included
into two different source files or when inlining has occurred. If so, the breakpoint will be associated with
all those addresses.

¢ Function

The target halts when it reaches the first line of the specified function. If no source file has been specified
and there are multiple functions with the given name, the target halts on all of those. Note that function
breakpoints generally will not work on inlined instances of a function.

* Address

The target halts when it reaches the specified instruction address.
e Stack

The target halts when it reaches the specified stack level.
+ Data

The target halts when the given variable or memory location (specified in terms of an absolute address)
is read or written to, as specified.

¢ Instruction
The target halts when the given number of instructions has been executed.
* Cycle
The target halts when the given number of clock cycles has elapsed.
o Timer
The target halts when the given amount of time elapsed.
In addition to the type of the breakpoint, you can specify the condition that must be met to halt the program.

In the Condition field, type a condition. The condition is an expression which evaluates to 'true' (non-zero)
or 'false' (zero). The program only halts on the breakpoint if the condition evaluates to 'true'.

In the Ignore count field, you can specify the number of times the breakpoint is ignored before the program
halts. For example, if you want the program to halt only in the fifth iteration of a while-loop, type '4": the
first four iterations are ignored.

10.4.3. File System Simulation (FSS) View

Description

The File System Simulation (FSS) view is automatically opened when the target requests FSS input or
generates FSS output. The virtual terminal that the FSS view represents, follows the VT100 standard. If
you right-click in the view area of the FSS view, a menu is presented which gives access to some
self-explanatory functions.

259

TASKING VX-toolset for ARM User Guide

VT100 characteristics

The queens example demonstrates some of the VT100 features. (You can find the queens example in
the<ARM i nst al | ati on pat h>\ exanpl es directory from where you can import it into your workspace.)
Per debugging session, you can have more than one FSS view, each of which is associated with a positive
integer. By default, the view "FSS #1" is associated with the standard streams st di n, st dout , st derr
and st daux. Other views can be accessed by opening a file named "terminal window <number>", as
shown in the example below.

FILE * f3 = fopen("term nal w ndow 3", "rw');
fprintf(f3, "Hello, wi ndow 3.\n");
fcl ose(f3);

You can set the initial working directory of the target application in the Debug configuration dialog (see
also Section 10.2, Creating a Customized Debug Configuration):

1. On the Debugger tab, select the Miscellaneous sub-tab.
2. In the FSS root directory field, specify the FSS root directory.

The FSS implementation is designed to work without user intervention. Nevertheless, there are some
aspects that you need to be aware of.

First, the interaction between the C library code (in the files dbg*. ¢ and dbg*. h; see Section 14.2.5,
dbg.h) and the debugger takes place via a breakpoint, which incidentally is not shown in the Breakpoints
view. Depending on the situation this may be a hardware breakpoint, which may be in short supply.

Secondly, proper operation requires certain code in the C library to have debug information. This debug
information should normally be present but might get lost when this information is stripped later in the
development process.

10.4.4. Disassembly View

The Disassembly view shows target memory disassembled into instructions and / or data. If possible, the
associated C / C++ source code is shown as well. The Address field shows the address of the current
selected line of code.

To view the contents of a specific memory location, type the address in the Address field. If the address
is invalid, the field turns red.

10.4.5. Expressions View

The Expressions view allows you to evaluate and watch regular C expressions.
To add an expression:

Click OK to add the expression.

1. Right-click in the Expressions View and select Add Watch Expression.

The Add Watch Expression dialog appears.

260

Using the Debugger

2. Enter an expression you want to watch during debugging, for example, the variable name "i"

If you have added one or more expressions to watch, the right-click menu provides options to Remove
and Edit or Enable and Disable added expressions.

» You can access target registers directly using #NAME. For example "ar r [#R0 << 3] " or "#TI MER3
= mt+". If a register is memory-mapped, you can also take its address, for example, "&#ADC| N'.

» Expressions may contain target function calls like for example "gl + i nvert (&g2)". Be aware that
this will not work if the compiler has optimized the code in such a way that the original function code
does not actually exist anymore. This may be the case, for example, as a result of inlining. Also, be
aware that the function and its callees use the same stack(s) as your application, which may cause
problems if there is too little stack space. Finally, any breakpoints present affect the invoked code in
the normal way.

10.4.6. Memory View

Use the Memory view to inspect and change process memory. The Memory view supports the same
addressing as the C and C++ languages. You can address memory using expressions such as:

* 0x0847d3c

« (&y)+1024

s *ptr

Monitors

To monitor process memory, you need to add a monitor:

1. Inthe Debug view, select a debug session. Selecting a thread or stack frame automatically selects
the associated session.

2. Click the Add Memory Monitor button in the Memory Monitors pane.
The Monitor Memory dialog appears.
3. Type the address or expression that specifies the memory section you want to monitor and click OK.

The monitor appears in the monitor list and the Memory Renderings pane displays the contents of
memory locations beginning at the specified address.

To remove a monitor:
1. Inthe Monitors pane, right-click on a monitor.

2. From the popup menu, select Remove Memory Monitor.

261

TASKING VX-toolset for ARM User Guide

Renderings

You can inspect the memory in so-called renderings. A rendering specifies how the output is displayed:
hexadecimal, ASCII, signed integer, unsigned integer or traditional. You can add or remove renderings
per monitor. Though you cannot change a rendering, you can add or remove them:

1. Click the New Renderings... tab in the Memory Renderings pane.
The Add Memory Rendering dialog appears.

2. Select the rendering you want (Hex Integer, Hex, ASCII, Signed Integer, Unsigned Integer or
Traditional) and click Add Rendering(s).

To remove a rendering:
1. Right-click on a memory address in the rendering.

2. From the popup menu, select Remove Rendering.

Changing memory contents

In a rendering you can change the memory contents. Simply type a new value.

Warning: Changing process memory can cause a program to crash.

The right-click popup menu gives some more options for changing the memory contents or to change the
layout of the memory representation.

10.4.7. Compare Application View

You can use the Compare Application view to check if the downloaded application matches the application
in memory. Differences may occur, for example, if you changed memory addresses in the Memory view.

» To check for differences, click the Compare button.

10.4.8. Heap View

With the Heap view you can inspect the status of the heap memory. This can be illustrated with the
following example:

string = (char *) malloc(100);
strcpy (string, "abcdefgh");
free (string);

If you step through these lines during debugging, the Heap view shows the situation after each line has
been executed. Before any of these lines has been executed, there is no memory allocated and the Heap
view is empty.

« After the first line the Heap view shows that memory is occupied, the description tells where the block
starts, how large it is (100 MAUs) and what its content is (Ox0, 0xO0, ...).

262

Using the Debugger
» After the second line, "abcdef gh" has been copied to the allocated block of memory. The description
field of the Heap view again shows the actual contents of the memory block (0x61, 0x62,...).

» The third line frees the memory. The Heap view is empty again because after this line no memory is
allocated anymore.

10.4.9. Logging View

Use the Logging view to control the generation of internal log files. This view is intended mainly for use
by or at the request of Altium support personnel.

10.4.10. RTOS View

The debugger has special support for debugging real-time operating systems (RTOSs). This support is
implemented in an RTOS-specific shared library called a kernel support module (KSM) or RTOS-aware
debugging module (RADM). Specifically, the TASKING VX-toolset for ARM ships with a KSM supporting
the OSEK standard. You have to create your own OSEK Run Time Interface (ORTI) and specify this file
on the Miscellaneous tab while configuring a customized debug configuration (see also Section 10.2,
Creating a Customized Debug Configuration):

1. From the Debug menu, select Debug Configurations...
The Debug Configurations dialog appears.

2. Inthe left pane, select the configuration you want to change, for example, TASKING C/C++ Debugger
» myproject.

Or: click the New launch configuration button (L) to add a new configuration.
3. Open the Miscellaneous tab
4. Inthe ORTI file field, specify the name of your own ORTI file.

5. If you want to use the supplied KSM suitable for OSEK kernels, in the KSM module field browse for
the file osek_radm dI | in the bi n directory of the toolset.

The debugger supports ORTI specifications v2.0 and v2.1.

10.4.11. Registers View

In the Registers view you can examine the value of registers while stepping through your application. The
registers are organized in a number of register groups, which together contain all known registers. You
can select a group to see which registers it contains. This view has a number of features:

» While you step through the application, the registers involved in the step turn yellow. If you scroll in the
view or switch groups, some registers may appear on a lighter yellow background, indicating that the
debugger does not know whether the registers have changed because the debugger did not read the
registers before the step began.

263

TASKING VX-toolset for ARM User Guide

i} Registers &7 v — O
Group: | Core -

MName WValue Usage

R3 00 -
R4 0l

R5 00

RB 00 L
RT 00]
RE 00

R9 00

R10 00

R11 00

R12 00

R13 0:2000fff8 -

» You can change each register's value.

» For some registers the menu entry Symbolic Representation is available in their right-click popup
menu. This opens a new view which shows the internal fields of the register. (Alternatively, you can
double-click on a register). For example, the XPSR register from the Core group may be shown as
follows:

i XPSR &3 =B
Value: 0:x21000000 | Write
Bit# Description Value
0-8 ISR NUMBER: Exception number 0x0
9-23 - [

24 T: Thumb state bit [l
25-26 - [
27 (Q: Sticky saturation flag 00
28 V: Overflow condition code flag 0xD
29 C: Zere condition cede flag Ol
30 Z: Zero condition code flag 00
El M: Megative condition code flag 0xD

In this view you can set the individual values in the register, either by selecting a value from a drop-down
box or by simply entering a value depending on the chosen field. To update the register with the new
values, click the Write button.

» You can search for a specific register: right-click on a register and from the popup menu select Find
Register.... Enter a group or register name filter, click the register you want to see and click OK. The
register of your interest will be shown in the view.

264

Using the Debugger

10.4.12. Trace View

If tracing is enabled, the Trace view shows the code was most recently executed. For example, while you
step through the application, the Trace view shows the executed code of each step. To enable tracing:

* Right-click in the Trace view and select Trace.
A check mark appears when tracing is enabled.

The view has three tabs, Source, Instruction and Raw, each of which represents the trace in a different
way. However, not all target environments will support all three of these. The view is updated automatically
each time the target halts.

When you use the simulator, this works as is. Otherwise, tracing only works when the processor has a
Trace Port Interface Unit (TPIU) and this is supported.

When tracing is enabled note the following:

» |f the condition associated with a conditional instruction was false, the instruction will still be shown in
the trace, with no distinct visual indication. This applies to conditional branches, but also to instructions
inside an IT block, for example.

« If the target halted due to a software breakpoint, then technically a BKPT instruction was executed and
hence traced. However, for convenience this will not actually be shown in the Trace view.

 For bandwidth and performance reasons, the trace shown may be shorter than what would be expected
considering the amount of data the debug probe can provide.

» The Raw tab shows the trace in its compressed form, i.e. compliant with the Embedded Trace Macrocell
(ETM) signal protocol as defined by ARM Ltd. Usually, you will not need this information, but it may be
useful if you suspect problems with the target communication or the decompression.

10.5. Programming a Flash Device

With the TASKING debugger you can download an application file to flash memory. Before you download
the file, you must specify the type of flash devices you use in your system and the address range(s) used
by these devices.

To program a flash device the debugger needs to download a flash programming monitor to the target
to execute the flash programming algorithm (target-target communication). This method uses temporary
target memory to store the flash programming monitor and you have to specify a temporary data workspace
for interaction between the debugger and the flash programming monitor.

Two types of flash devices can exist: on-chip flash devices and external flash devices.

Setup an on-chip flash device

When you specify a target configuration board using the New C/C++ wizard, as explained in the Getting
Started manual, any on-chip flash devices are setup automatically.

265

TASKING VX-toolset for ARM User Guide

Setup an external flash device

1.

3.

266

From the Project menu, select Properties for

The Properties for project dialog appears.

In the left pane, expand Run/Debug Settings and select Flash Programming.

The Flash Programming pane appears.

ﬁj Properties for myproject

(= o]

type filter text Flash Programming
> Resocurce
Builders
4 C/C++ Build Configuration: |Debug [Active]

+ | [Manage Configurations...

Build Variables
Discovery Options

Environment On-chip flash devices
Logging Device Size Address Width Chips 1D Unused ien
Memery STMB2F2X0G(128K 128k 08000000 8 1 00 0
Processar
Settings
Stack/Heap

. C/C++ General

Project References

4 Run/Debug Settings External flash devices

Flash Programming Device Size Address Width Chips 1D Unused

Edit...

Remove

Remaove All

Restore Defaults Apply

Click Add... to specify an external flash device.

The Select a New Flash Device dialog appears.

Using the Debugger

{:J Select a Mew Flash Device @

Flash device

Select a flash device

Device type: Sector map:

- 0K it Sector Size Start address
> Infineon

- Micron

- Macronix

> Intel

> Alliance Semiconductor
- Fujitsu

m

> Hynix

> Actel

> Luminary Micro

- Spansion

- NEC

> Atmel

> OMN Semiconductor
- AMD

> NXP

> AMIC

. Frnermu Micrn

Base address:

Chip width: ~

MNumber of chips:

Mumber of unused address lines:

@
s

OK Cancel

4. Inthe Device type box, expand the name of the manufacturer of the device and select a device.
The Sector map displays the memory layout of the flash device(s). Each sector has a size and

5. Inthe Base address field enter the start address of the memory range that will be covered by the
flash device. Any following addresses separated by commas are considered mirror addresses. This
allows the flash device to be programmed through its mirror address before switching the flash to its
base address.

6. Inthe Chip width field select the width of the flash device.

7. Inthe Number of chips field, enter the number of flash devices that are located in parallel. For
example, if you have two 8-bit devices in parallel attached to a 16-bit data bus, enter 2.

8. Fillinthe Number of unused address lines field, if necessary.
The flash memory is added to the linker script file automatically with the tag "f | ash=flash-id".
To program a flash device

1. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.

267

TASKING VX-toolset for ARM User Guide

268

In the left pane, select the configuration you want to change, for example, TASKING C/C++ Debugger
» myproject.board.

On the Debugger tab, select the Initialization tab
Enable the option Program flash when downloading.
The Flash settings group box becomes active.

In the Monitor file field, specify the filename of the flash programming monitor, usually an Intel Hex
or S-Record file.

In the Sector buffer size field, specify the buffer size for buffering a flash sector.

Specify the data Workspace address used by the flash programming monitor. This address may
not conflict with the addresses of the flash devices.

Click Debug to program the flash device and start debugging.

Chapter 11. Tool Options

This chapter provides a detailed description of the options for the compiler, assembler, linker, control
program, make utility and the archiver.

Tool options in Eclipse (Menu entry)

For each tool option that you can set from within Eclipse, a Menu entry description is available. In Eclipse
you can customize the tools and tool options in the following dialog:

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. Open the Tool Settings tab.
You can set all tool options here.

Unless stated otherwise, all Menu entry descriptions expect that you have this Tool Settings tab
open.

The following tables give an overview of all tool options on the Tool Settings tab in Eclipse with hyperlinks
to the corresponding command line options (if available).

Global Options

Eclipse option Description or option

Use global 'product directory' preference Directory where the TASKING toolset is
installed

Treat warnings as errors Control program option --warnings-as-errors

Keep temporary files Control program option
--keep-temporary-files (-t)

Verbose mode of control program Control program option --verbose (-v)

Endianness Control program option --endianness

C/C++ Compiler

Eclipse option |Description or option
Preprocessing

Include CMSIS device register definition header file ‘C compiler option --include-file

269

TASKING VX-toolset for ARM User Guide

Eclipse option

Description or option

Store preprocessor output in <file>.pre

Control program option --preprocess (-E) /
--no-preprocessing-only

Keep comments in preprocessor output

Control program option
--preprocess=+comments

Keep #line info in preprocessor output

Control program option
--preprocess=-noline

Defined symbols

C compiler option --define

Pre-include files

C compiler option --include-file

Include Paths

Add CMSIS include paths

C compiler option --include-directory

Include paths

C compiler option --include-directory

Precompiled C++ Headers

Automatically use/create precompiled header file

C++ compiler option --pch

Create precompiled header file

C++ compiler option --create-pch

Use precompiled header file

C++ compiler option --use-pch

Precompiled header file directory

C++ compiler option --pch-dir

Language

Comply to C standard

C compiler option --iso

Allow GNU C extensions

C compiler option --language=+gcc

Allow // comments in ISO C90 mode

C compiler option --language=+comments

Check assignment of string literal to non-'const' string
pointer

C compiler option --language=-strings

Treat 'char' variables as unsigned

C compiler option --uchar

Treat 'double’ as ‘float’

C compiler option --no-double

Allow optimization across volatile access

C compiler option --language=-volatile

Allow Shift JIS Kanji in strings

C compiler option --language=+kanji

Comply to embedded C++ subset

C++ compiler option --embedded-c++

Support for C++ I/O streams

C++ compiler option --io-streams

Support for C++ exception handling

C++ compiler option --exceptions

Support for C++ RTTI (run-time type information)

C++ compiler option --rtti

Allow the 'wchar_t' keyword (C++)

C++ compiler option --wchar_t-keyword

Allow non-ANSI/ISO C++ features

C++ compiler option --strict

C++ anachronisms

C++ compiler option --anachronisms

Allow GNU C++ extensions

C++ compiler option --g++

Code Generation

Use Thumb instruction set

C compiler option --thumb

270

Tool Options

Eclipse option

Description or option

Compile for ARM/Thumb interworking

C compiler option --interwork

Use FPU

C compiler option --fpu

Alignment for composite types

C compiler option --align-composites

Select call mode

C compiler option --call

Optimization

Optimization level

C compiler option --optimize

Trade-off between speed and size

C compiler option --tradeoff

Maximum size for code compaction

C compiler option --compact-max-size

Maximum call depth for code compaction

C compiler option --max-call-depth

Always inline function calls

C compiler option --inline

Maximum size increment when inlining (in %)

C compiler option --inline-max-incr

Maximum size for functions to always inline

C compiler option --inline-max-size

Build for application wide optimizations (MIL linking)

Control program option --mil-link / --mil-split

Application wide optimization mode

Control program option --mil-link / --mil-split

Custom Optimization

C compiler option --optimize

Compilation Speed

C compiler option --cache

Debugging

Generate symbolic debug information

C compiler option --debug-info

Static profiling

C compiler option --profile=+static

Generate profiling information for block counters

C compiler option --profile=+block

Generate profiling information to build a call graph

C compiler option --profile=+callgraph

Generate profiling information for function counters

C compiler option --profile=+function

Generate profiling information for function timers

C compiler option --profile=+time

Exclude time spent in interrupt functions

C compiler option --profile=+time,+interrupt

Generate code for bounds checking

C compiler option --runtime=+bounds

Generate code to detect unhandled case in a switch

C compiler option --runtime=+case

Generate code for malloc consistency checks

C compiler option --runtime=+malloc

Generate code for stack overflow checks (allowed for USR
and SYS mode only)

C compiler option --runtime=+stack

Generate code for division by zero checks

C compiler option --runtime=+zero

MISRA C

MISRA C checking

C compiler option --misrac

MISRA C version

C compiler option --misrac-version

Warnings instead of errors for mandatory rules

C compiler option
--misrac-mandatory-warnings

271

TASKING VX-toolset for ARM User Guide

Eclipse option

Description or option

Warnings instead of errors for required rules

C compiler option
--misrac-required-warnings

Warnings instead of errors for advisory rules

C compiler option
--misrac-advisory-warnings

Custom 1998 / Custom 2004 / Custom 2012

C compiler option --misrac

CERT C Secure Coding

CERT C secure code checking

C compiler option --cert

Warnings instead of errors

C compiler option
--warnings-as-errors=700-715

Custom CERT C

C compiler option --cert

Diagnostics

Suppress C compiler warnings

C compiler option --no-warnings=num

Suppress all warnings

C compiler option --no-warnings

Suppress C++ compiler “used before set” warnings

C++ compiler option
--no-use-before-set-warnings

Issue remarks on C++ code

C++ compiler option --remarks

Perform global type checking on C code

C compiler option --global-type-checking

Miscellaneous

Merge C source code with generated assembly

C compiler option --source

Force definition of virtual function tables (C++)

C++ compiler option --force-vtbl

Suppress definition of virtual function tables (C++)

C++ compiler option --suppress-vtbl

Implicit inclusion of source files for finding templates

C++ compiler option --implicit-include

Minimal inlining of function calls (C++)

C++ compiler option --no-inlining

Instantiation mode of external template entities

C++ compiler option --instantiate

Generated options

C compiler options, Control program options

Additional options

C compiler options, C++ compiler options,
Control program options

Assembler

Eclipse option

Description or option

Preprocessing

Use TASKING preprocessor

Assembler option --preprocessor-type

Defined symbols

Assembler option --define

Pre-include files

Assembler option --include-file

Include Paths

Include paths

Assembler option --include-directory

272

Tool Options

Eclipse option

Description or option

Symbols

Generate symbolic debug

Assembler option --debug-info

Case insensitive identifiers

Assembler option --case-insensitive

Emit local EQU symbols

Assembler option --emit-locals=+equ

Emit mapping symbols ($a,$t,$d)

Assembler option --emit-locals=+mappings

Emit local non-EQU symbols

Assembler option --emit-locals=+symbols

Set default symbol scope to global

Assembler option --symbol-scope

List File
Generate list file Control program option --list-files
List ... Assembler option --list-format

List section summary

Assembler option --section-info=+list

Diagnostics

Suppress warnings

Assembler option --no-warnings=num

Suppress all warnings

Assembler option --no-warnings

Display section summary

Assembler option --section-info=+console

Maximum number of emitted errors

Assembler option --error-limit

Miscellaneous

Use full assembler for mixed ARM and Thumb instructions

Control program option --mixed-arm-thumb

Assemble Thumb instructions by default

Control program option --thumb

Allow 2-operand form for 3-operand instructions

Assembler option --relaxed

UAL syntax mode

Assembler option --old-syntax

Allow instruction inversions

Assembler option --inversions

Allow Shift JIS Kanji in strings

Assembler option --kanji

Additional options

Assembler options

Linker

Eclipse option

Description or option

Output Format

Generate Intel Hex format file

Linker option --output=file:IHEX

Generate S-records file

Linker option --output=file: SREC

Create file for each memory chip

Linker option --chip-output

Size of addresses (in bytes) for Intel Hex records

Linker option --output=file:IHEX:size

Size of addresses (in bytes) for Motorola S records

Linker option --output=file: SREC:size

Emit start address record

Linker option --hex-format=s

Libraries

273

TASKING VX-toolset for ARM User Guide

Eclipse option

Description or option

Link default libraries

Control program option --no-default-libraries

Link CMSIS DSP library

Control program option --dsp-library

Rescan libraries to solve unresolved externals

Linker option --no-rescan

Libraries

The libraries are added as files on the
command line.

Library search path

Linker option --library-directory

Data Objects

Data objects

Linker option --import-object

Script File

Defined symbols

Linker option --define

Linker script file (.Isl)

Linker option --Isl-file

Optimization

Delete unreferenced sections

Linker option --optimize=c

Use a 'first-fit decreasing' algorithm

Linker option --optimize=I

Compress copy table

Linker option --optimize=t

Delete duplicate code

Linker option --optimize=x

Delete duplicate data

Linker option --optimize=y

Compress ROM sections of copy table items

Linker option --optimize=z

Map File

Generate map file (.map)

Control program option --no-map-file

Generate XML map file format (.mapxml) for map file viewer

Linker option --map-file=file.mapxml: XML

Include ...

Linker option --map-file-format

Diagnostics

Suppress warnings

Linker option --no-warnings=num

Suppress all warnings

Linker option --no-warnings

Maximum number of emitted errors

Linker option --error-limit

Miscellaneous

Strip symbolic debug information

Linker option --strip-debug

Link case insensitive

Linker option --case-insensitive

Do not use standard copy table for initialization

Linker option
--user-provided-initialization-code

Show link phases during processing

Linker option --verbose

Generate long-branch veneers

Linker option --long-branch-veneers

Application is not romable

Linker option --non-romable

Additional options

Linker options

274

Tool Options

11.1. Configuring the Command Line Environment

If you want to use the tools on the command line (using a Windows command prompt), you can set
environment variables.

You can set the following environment variables:

Environment Description

variable

ASARMINC With this variable you specify one or more additional directories in which the
assembler looks for include files. See Section 6.4, How the Assembler Searches
Include Files.

CARMINC With this variable you specify one or more additional directories in which the C
compiler looks for include files. See Section 4.3, How the Compiler Searches
Include Files.

CPARMINC With this variable you specify one or more additional directories in which the C++
compiler looks for include files. See Section 5.2, How the C++ Compiler Searches
Include Files.

CCARMBIN When this variable is set, the control program prepends the directory specified by
this variable to the names of the tools invoked.

LIBCARM With this variable you specify one or more additional directories in which the linker
looks for libraries. See Section 7.3.1, How the Linker Searches Libraries.

PATH With this variable you specify the directory in which the executables reside. This
allows you to call the executables when you are not in the bi n directory. Usually
your system already uses the PATH variable for other purposes. To keep these
settings, you need to add (rather than replace) the path. Use a semicolon (;) to
separate path names.

TMPDIR With this variable you specify the location where programs can create temporary

files. Usually your system already uses this variable. In this case you do not need
to change it.

See the documentation of your operating system on how to set environment variables.

275

TASKING VX-toolset for ARM User Guide

11.2. C Compiler Options

This section lists all C compiler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the compiler via the control program. Therefore, it uses the syntax of
the control program to pass options and files to the C compiler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, you have to precede the option with -Wc to pass the
option via the control program directly to the C compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -n sends output to stdout instead of a file and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

carm-Qac test.c
carm --optinm ze=+coal esce, +cse test.c

When you do not specify an option, a default value may become active.

276

Tool Options

C compiler option: --align-composites

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Select the Alignment for composite types: Natural alignment or Optimal alignment.
Command line syntax

--align-conposites=alignnent

You can specify the following alignments:

n Natural alignment (default)
o] Optimal alignment
Description

With this option you can set the alignment for composite types (structs, unions and arrays).
Natural alignment (n) uses the natural alignment of the most-aligned member of the composite type.

Optimal alignment (0) sets the alignment to 8, 16, or 32 bits depending on the size of the composite type.

Example
Consider the following structure of three chars.

struct s

{
char a;
char b;
char c;

} s_var;

With natural alignment this results in a size of s_var of three bytes.

s_var .type object
.size s_var,3
.ds 3

With --align-composites=0, s_var is padded with one extra byte, so that the contents of the struct is
aligned at 4 bytes.

s_var .type object

.size s_var,4
. ds 4

277

TASKING VX-toolset for ARM User Guide

Related information

278

Tool Options

C compiler option: --cache

Menu entry
1. Select C/C++ Compiler » Optimization » Compilation Speed.
2. Enable the option Cache generated code to improve the compilation speed.

3. Inthe Directory for cached files field, enter the name for the location of the cache.

Command line syntax
--cache[=di rectory]
Default on command line: . (current directory)

Default in Eclipse: . cache directory under project directory

Description

This option enables a cache for output files in the specified directory. When the source code after
preprocessing and relevant compiler options and the compiler version are the same as in a previous
invocation, the previous result is copied to the output file. The cache only works when there is a single C
input file and a single output file (no --mil-split).

You can also enable the cache and specify the cache directory with the environment variable
CARMCACHE. This option takes precedence over the environment variable.

The cache directory may be shared, for instance by placing it on a network drive.

The compiler creates a directory car ncache in the directory specified with the option --cache or the
environment variable CARMCACHE. The directory is only created when it does not yet exist. The cache
files are stored in this directory.

Example

To improve the compilation speed and put cached files in directory . cache, enter:
carm --cache=. cache test.c

Related information

Section 12.5, Compiler Cache

Section 9.6, Expire Cache Utility

279

TASKING VX-toolset for ARM User Guide

C compiler option: --call (-m)
Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Set the option Select call mode to Use PC-relative calls (default) or to Use 32-bit indirect calls.

Command line syntax

--call ={far]| near}

- f] n}

Description

To address the memory of the ARM, you can use two different call modes:

far 32-bit indirect calls. Though you can address the full range of memory, the
address is first loaded into a register after which the call is executed.

near 26-bit PC-relative call. The PC-relative call is directly coded into the B instruction.
This way of calling results in higher execution speed. However, not the full range
of memory can be addressed with near calls.

If you compile your C source with near calls but the called address cannot be reached with a near
call, the linker will generate an error.

It is recommended to use the near addressing mode unless your application needs calls to addresses
that fall outside a 256 MB region.

Instead of using this option, it is recommended to use the linker option --long-branch-veneers. This
linker option only adds long branch veneers where necessary.

Example
Consider the following function g which calls function p:

extern int p(int a, int b, int c, int d)

{
}

return at+b+c+d + a*b*c*d;

externint iii;
void g(void)
{

}

iii=p(42, 43, 44, 45) ;

280

Tool Options

With --call=near, this results into

q: .type func
str Ir,[sp, #4]!
mv r 3, #45
mv r2, #44
mv ril, #43
mv ro, #42
bl p : PCrelative call
| dr rl,.L3
str ro,[r1, #0]
| dr pc, [sp], #4
.align 4

. L3:
. dw i
.size q,%-¢q
.calls 'q,'p
.calls '"p',"",8
.calls 'q',"',4
.extern iii

With --call=far, this results into

q: .type func

stnfd sp!,{r4,1r}

| dr r4,.L3 ; address |l oaded in register
mv r 3, #45
mv r2, #44
mv ril, #43
mv ro, #42
nov Ir, pc
bx r4 ; indirect call
| dr rl,.L3+4
str ro,[r1, #0]
| dnf d sp!,{r4, pc}
.align 4
. L3:
. dw p
. dw i
.size q,%-¢q
.calls ' _INDIRECT__','p" ; indirect calls
.calls '"q','__INDRECT_ '
.calls '"p',"",8
.calls 'q',"'',8

281

TASKING VX-toolset for ARM User Guide

.extern iii
.extern __|I NDIRECT__

Related information

Linker option --long-branch-veneers

282

Tool Options

C compiler option: --cert

Menu entry
1. Select C/C++ Compiler » CERT C Secure Coding.
2. Make a selection from the CERT C secure code checking list.

3. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

Command line syntax
--cert={all | nane[-nane],...}
Default format: all

Description

With this option you can enable one or more checks for CERT C Secure Coding Standard
recommendations/rules. When you omit the argument, all checks are enabled. name is the name of a
CERT recommendation/rule, consisting of three letters and two digits. Specify only the three-letter
mnemonic to select a whole category. For the list of names you can use, see Chapter 20, CERT C Secure
Coding Standard.

On the command line you can use --diag=cert to see a list of the available checks, or you can use a

three-letter mnemonic to list only the checks in a particular category. For example, --diag=pre lists all
supported preprocessor checks.

Example

To enable the check for CERT rule STR30-C, enter:
carm--cert=str30 test.c

Related information

Chapter 20, CERT C Secure Coding Standard

C compiler option --diag (Explanation of diagnostic messages)

283

TASKING VX-toolset for ARM User Guide

C compiler option: --check

Menu entry

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler reports any warnings and/or errors.
This option is available on the command line only.
Related information

Assembler option --check (Check syntax)

284

Tool Options

C compiler option: --code-endianness

Menu entry

Command line syntax
- -code- endi anness=endi anness

You can specify the following endianness:

big b Big endian
little | Little endian (default)
Description

This option tells the compiler what code endianness you want, little-endian (least significant byte of a
word at lowest byte code address) or big-endian (most significant byte of a word at lowest byte code
address). The code endianness used must be a valid one for the architecture you are compiling for. This
option is only available for ARMV7R.

Related information

C compiler option --endianness (Data endianness)

285

TASKING VX-toolset for ARM User Guide

C compiler option: --compact-max-size
Menu entry

1. Select C/C++ Compiler » Optimization.

2. Inthe Maximum size for code compaction field, enter the maximum size of a match.

Command line syntax

- - conpact - max- si ze=val ue
Default: 200

Description

This option is related to the compiler optimization --optimize=+compact (Code compaction or reverse
inlining). Code compaction is the opposite of inlining functions: large sequences of code that occur more
than once, are transformed into a function. This reduces code size (possibly at the cost of execution
speed).

However, in the process of finding sequences of matching instructions, compile time and compiler memory

usage increase quadratically with the number of instructions considered for code compaction. With this
option you tell the compiler to limit the number of matching instructions it considers for code compaction.

Example

To limit the maximum number of instructions in functions that the compiler generates during code
compaction:

carm --optinm ze=+conpact --conpact-nmax-si ze=100 test.c
Related information
C compiler option --optimize=+compact (Optimization: code compaction)

C compiler option --max-call-depth (Maximum call depth for code compaction)

286

Tool Options

C compiler option: --cpu (-C)
Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, make a selection by Architecture, Core or one of the
manufacturers.

Command line syntax
--cpu=architecture
-Carchitecture

You can specify the following architectures:

ARMv6M Compile for ARMv6-M architecture

ARMv7M Compile for ARMv7-M architecture

ARMV7EM Compile for ARMV7E-M architecture

ARMV7R Compile for ARMv7-R architecture
Description

With this option you specify the ARM architecture for which you create your application. The ARM target
supports more than one architecture and therefore you need to specify for which architecture the compiler
should compile. The architecture determines which instructions are valid and which are not.

You choose one of the following architectures: ARMv6-M, ARMv7-M, ARMvV7E-M or ARMvV7-R. The
compiler sets the Thumb instruction set implicitly (option --thumb).

The macro __CPU_ar ch__ is defined in the C source file. The arch is converted to uppercase.

When you call the compiler from the command line, make sure you specify the same core type to the
assembler to avoid conflicts!

Example

To compile the file t est . ¢ for the ARMV7E-M processor type, enter the following on the command line:
carm - - cpu=ARM/7EM t est . c

The compiler compiles for the chosen processor type.

Related information

Control program option --cpu (Select architecture)

Assembler option --cpu (Select architecture)

287

TASKING VX-toolset for ARM User Guide

C compiler option: --debug-info (-g)
Menu entry

1. Select C/C++ Compiler » Debugging.

2. Togenerate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax
- -debug-i nf o[=subopti on]
- g[subopti on]

You can set the following suboptions:

small 1/c Emit small set of debug information.
default 2/d Emit default symbolic debug information.
all 3/a Emit full symbolic debug information.

Default: - - debug- i nf o (same as - - debug- i nf o=def aul t)

Description

With this option you tell the compiler to add directives to the output file for including symbolic information.
This facilitates high level debugging but increases the size of the resulting assembler file (and thus the
size of the object file). For the final application, compile your C files without debug information.

The DWARF debug format allows for a flexible approach as to how much symbolic information is included,
as long as the structure is valid. Adding all possible DWARF data for a program is not practical. The
amount of DWARF information per compilation unit can be huge. And for large projects, with many object
modules the link time can grow unacceptably long. That is why the compiler has several debug information
levels. In general terms one can say, the higher the level the more DWARF information is produced.

The DWARF data in an object module is not only used for debugging. The toolset can also do "type
checking" of the whole application. In that case the linker will use the DWARF information of all object
modules to determine if every use of a symbol is done with the same type. In other words, if the application
is built with type checking enabled then the compiler will add DWARF information too.

Small set of debug information

With this suboption only DWARF call frame information and type information are generated. This enables
you to inspect parameters of nested functions. The type information improves debugging. You can perform
a stack trace, but stepping is not possible because debug information on function bodies is not generated.
You can use this suboption, for example, to compact libraries.

288

Tool Options

Default debug information

This provides all debug information you need to debug your application. It meets the debugging
requirements in most cases without resulting in oversized assembler/object files.

Full debug information

With this suboption extra debug information is generated about unused typedefs and DWARF "lookup
table sections". Under normal circumstances this extra debug information is not needed to debug the
program. Information about unused typedefs concerns all typedefs, even the ones that are not used for
any variable in the program. (Possibly, these unused typedefs are listed in the standard include files.)
With this suboption, the resulting assembler/object file will increase significantly.

In the following table you see in more detail what DWARF information is included for the debug option
levels.

Feature -g1 [-g2 |[-g3 [type check Remarks
basic info + + + + info such as symbol name and type
call frame + + + + this is information for a debugger to compute

a stack trace when a program has stopped
at a breakpoint

symbol lifetime + + this is information about where symbols live
(e.g. on stack at offset so and so, when the
program counter is in this range)

line number info + + + file name, line number, column number

"lookup tables" + DWARF sections ... this is an optimization
for the DWARF data, it is not essential

unused typedefs + in the C/C++ code of the program there can
be (many) typedefs that are not used for any
variable. Sometimes this can cause
enormous expansion of the DWARF data and
thus it is only included in -g3.

Related information

289

TASKING VX-toolset for ARM User Guide

C compiler option: --define (-D)
Menu entry
1. Select C/C++ Compiler » Preprocessing.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)
Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_nane[=macr o_defi ni ti on]
- Dmacr o_name[=nacr o_defini tion]
Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1".

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, you can use the option --define (-D) multiple times. If the command line exceeds
the limit of the operating system, you can define the macros in an option file which you then must specify
to the compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

Consider the following C program with conditional code to compile a demo program and a real program:

void main(void)

{
#i f DEMO

deno_func(); /* conpile for the denmo program */
#el se

real _func(); /* conpile for the real program*/
#endi f
}

290

Tool Options

You can now use a macro definition to set the DEMO flag:

carm --defi ne=DEMO test.c
carm --defi ne=DEMO=1 test.c

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

carm --define="MAX(A B)=((A) > (B) ? (A : (B))" test.c
Related information
C compiler option --undefine (Remove preprocessor macro)

C compiler option --option-file (Specify an option file)

201

TASKING VX-toolset for ARM User Guide

C compiler option: --dep-file

Menu entry

Eclipse uses this option in the background to create a file with extension . d (one for every input file).

Command line syntax
--dep-file[=file]
Description

With this option you tell the compiler to generate dependency lines that can be used in a Makefile. In
contrast to the option --preprocess=+make, the dependency information will be generated in addition to
the normal output file.

By default, the information is written to a file with extension . d (one for every input file). When you specify
a filename, all dependencies will be combined in the specified file.

Example
carm--dep-file=test.dep test.c

The compiler compiles the file t est . ¢, which results in the output file t est . sr ¢, and generates
dependency lines in the file t est . dep. For example:

test.obj : test.c

test.c :

test.obj : <install-dir>/carnilinclude/stdio.h
<install-dir>/carnlinclude/stdio.h :

test.obj : <install-dir>/carnifinclude/stdarg.h

<install-dir>/carnlinclude/stdarg.h :

Related information

C compiler option --preprocess=+make (Generate dependencies for make)

292

Tool Options

C compiler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.
Command line syntax
--diag=[format:]{all | nsg[-nBQg],...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The compiler does
not compile any files. You can specify the following formats: html, rtf or text (default). To create a file
with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given (except for the CERT checks). If
you want the description of one or more selected error messages, you can specify the error message
numbers, separated by commas, or you can specify a range.

With --diag=cert you can see a list of the available CERT checks, or you can use a three-letter mnemonic
to list only the checks in a particular category. For example, --diag=pre lists all supported preprocessor
checks.

Example
To display an explanation of message number 282, enter:
carm - - di ag=282

This results in the following message and explanation:

293

TASKING VX-toolset for ARM User Guide

E282: unterm nated conment

Make sure that every comment starting with /* has a matching */.
Nest ed coments are not possible.

To write an explanation of all errors and warnings in HTML format to file cer r or s. ht m , use redirection
and enter:

carm--diag=htm:all > cerrors.htn
Related information
Section 4.7, C Compiler Error Messages

C compiler option --cert (Enable individual CERT checks)

294

C compiler option: --endianness

Menu entry

1. Select Global Options.

2. Specify the Endianness:Little-endian mode or Big-endian mode.

Command line syntax
- - endi anness=endi anness

-B
- - bi g-endi an

You can specify the following endianness:

big b Big endian
little | Little endian (default)
Description

Tool Options

By default, the compiler generates code for a little-endian target (least significant byte of a word at lowest
byte address). With --endianness=big the compiler generates code for a big-endian target (most significant

byte of a word at lowest byte address). -B is an alias for option --endianness=big.

Related information

C compiler option --code-endianness (Code endianness)

295

TASKING VX-toolset for ARM User Guide

C compiler option: --error-file

Menu entry
Command line syntax
--error-file[=file]
Description

With this option the compiler redirects error messages to a file. If you do not specify a filename, the error
file will be named after the output file with extension . err.

Example
To write errors to error s. err instead of st derr, enter:

carm--error-file=errors.err test.c

Related information

296

Tool Options

C compiler option: --fp-model

Menu entry
1. Select C/C++ Compiler » Language.

2. Enable the option Treat '‘double’ as 'float'.
Command line syntax
- - f p- nodel =f | ags

You can set the following flags:

+/-float fIF treat 'double’ as ‘float’
+/-rewrite r'R allow expression rewriting
+/-negzero z/lZ ignore sign of -0.0

alias for --fp-model=FRZ
alias for --fp-model=Frz
alias for --fp-model=frz

Default: - - f p- nodel =Fr z

Description
With this option you select the floating-point execution model.

With --fp-model=+float you tell the compiler to treat variables and constants of type doubl e as f | oat .
Because the f | oat type takes less space, execution speed increases and code size decreases, both at
the cost of less precision. Make sure you specify the corresponding libraries to the linker.

With --fp-model=+rewrite you allow the compiler to rewrite expressions by reassociating. This might
result in rounding differences and possibly different exceptions. An example is to rewrite (a*c)+(b*c) as
(a+b)*c.

With --fp-model=+negzero you allow the compiler to ignore the sign of -0.0 values. An example is to
replace (a-a) by zero.

Related information

Pragmas f p_negzero andfp_rew it e in Section 1.8, Pragmas to Control the Compiler.

297

TASKING VX-toolset for ARM User Guide

C compiler option: --fpu

Menu entry

1. Select C/C++ Compiler » Code Generation.
2. Enable the option Use FPU.

Command line syntax

--fpu=fpu

You can specify the following arguments:

FPv4-sp alias for VFPv4-sp

VFPv2 alias for VFPv3

VFPv3 Compile for VFPv3 architecture

VFPv3-sp Compile for VFPv3-sp architecture

VFPv4-sp Compile for VFPv4-sp architecture

none Compile for software FPU library (default)
Description

With this option you define the kind of FPU support with which you create your application. The "sp" suffix
denotes single precision floating-point only.

The macro __FPU _f pu__ is defined in the C source file. The fpu is converted to uppercase and the
lowercase “v" and the "-' will be removed. Also when "none" is not used, the macro __FPU_VFP__is
defined in the C source file, otherwise the macro __FPU_NONE__ is defined.

Example
To compile the file t est . ¢ for the VFPv3-sp architecture, enter the following on the command line:
carm --fpu=VFPv3-sp test.c

This defines the symbols __FPU VFP__and __FPU_VFP3SP__.

Related information

298

Tool Options

C compiler option: --global-type-checking

Menu entry
1. Select C/C++ Compiler » Diagnostics.

2. Enable the option Perform global type checking on C code.

Command line syntax

--gl obal -t ype-checki ng

Description

The C compiler already performs type checking within each module. Use this option when you want the
linker to perform type checking between modules.

Related information

299

TASKING VX-toolset for ARM User Guide

C compiler option: --help (-?)
Menu entry
Command line syntax

--help[=item

-?

You can specify the following arguments:

intrinsics i Show the list of intrinsic functions

options o] Show extended option descriptions

pragmas p Show the list of supported pragmas

typedefs t Show the list of predefined typedefs
Description

Displays an overview of all command line options. With an argument you can specify which extended
information is shown.

Example

The following invocations all display a list of the available command line options:
carm-?

carm--help

carm

The following invocation displays a list of the available pragmas:

carm - - hel p=pr agnas

Related information

300

Tool Options

C compiler option: --include-directory (-I)

Menu entry
1. Select C/C++ Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.
3. Type or select a path.

4. Optionally enable the option Add CMSIS include paths.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...

-lpath, ...
Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the compiler searches for include files is:

1. The pathname in the C source file and the directory of the C source (only for #include files that are
enclosed in ")

2. The path or paths that are specified with this option. Multiple paths/options are handled by the C
compiler from left to right. From Eclipse, the CMSIS include paths, if enabled, are the first option, so
they are searched first.

3. The path that is specified in the environment variable CARM NC when the product was installed.

4. The default directory $(PRODDI R) \ i ncl ude (unless you specified option --no-stdinc).

Example
Suppose that the C source file t est . ¢ contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the compiler as follows:

carm --incl ude-directory=nyinclude test.c

301

TASKING VX-toolset for ARM User Guide

First the compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

The compiler now looks for the file nyi nc. h in the directory where t est . c is located. If the file is not
there the compiler searches in the directory nyi ncl ude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information
C compiler option --include-file (Include file at the start of a compilation)

C compiler option --no-stdinc (Skip standard include files directory)

302

Tool Options

C compiler option: --include-file (-H)
Menu entry
1. Select C/C++ Compiler » Preprocessing.
The Pre-include files box shows the files that are currently included before the compilation starts.
2. To define a new file, click on the Add button in the Pre-include files box.
3. Type the full path and file name or select a file.

4. (Optional) Enable the option Include CMSIS device register definition header file.
Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax
--include-file=file,...
-Hfile,...

Description

With this option you include one or more extra files at the beginning of each C source file, before other
includes. This is the same as specifying #i ncl ude "fil e" atthe beginning of each of your C sources.

Example
carm--include-file=stdio.h testl.c test2.c

The file st di 0. h is included at the beginning of botht est 1. c and t est 2. c.

Related information

C compiler option --include-directory (Add directory to include file search path)

303

TASKING VX-toolset for ARM User Guide

C compiler option: --inline
Menu entry

1. Select C/C++ Compiler » Optimization.

2. Enable the option Always inline function calls.
Command line syntax

--inline

Description

With this option you instruct the compiler to inline calls to functions without the __noi nl i ne function
qualifier whenever possible. This option has the same effect as a #pr agrma i nl i ne at the start of the
source file.

This option can be useful to increase the possibilities for code compaction (C compiler option
--optimize=+compact).

Example

To always inline function calls:

carm --optim ze=+conpact --inline test.c

Related information

C compiler option --optimize=+compact (Optimization: code compaction)

Section 1.11.2, Inlining Functions: inline

304

Tool Options

C compiler option: --inline-max-incr / --inline-max-size
Menu entry

1. Select C/C++ Compiler » Optimization.

2. Inthe Maximum size increment when inlining field, enter a value (default -1).

3. Inthe Maximum size for functions to always inline field, enter a value (default -1).

Command line syntax
--inline-max-incr=percentage (default: -1)
--inline-max-size=threshol d (default: -1)
Description

With these options you can control the automatic function inlining optimization process of the compiler.
These options only have effect when you have enabled the inlining optimization (option --optimize=+inline
or Optimize most).

Regardless of the optimization process, the compiler always inlines all functions that have the
function qualifier i nl i ne.

With the option --inline-max-size you can specify the maximum size of functions that the compiler inlines
as part of the optimization process. The compiler always inlines all functions that are smaller than the
specified threshold. The threshold is measured in compiler internal units and the compiler uses this
measure to decide which functions are small enough to inline. The default threshold is -1, which means
that the threshold depends on the option --tradeoff.

After the compiler has inlined all functions that have the function qualifier i nl i ne and all functions that
are smaller than the specified threshold, the compiler looks whether it can inline more functions without
increasing the code size too much. With the option --inline-max-incr you can specify how much the code
size is allowed to increase. The default value is -1, which means that the value depends on the option
--tradeoff.

Example
carm--optimze=+inline --inline-max-incr=40 --inline-nmax-size=15 test.c
The compiler first inlines all functions with the function qualifier i nl i ne and all functions that are smaller

than the specified threshold of 15. If the code size has still not increased with 40%, the compiler decides
which other functions it can inline.

Related information
C compiler option --optimize=+inline (Optimization: automatic function inlining)

Section 1.11.2, Inlining Functions: inline

305

TASKING VX-toolset for ARM User Guide

Section 4.5.3, Optimize for Code Size or Execution Speed

306

Tool Options

C compiler option: --interwork

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Enable the option Compile for ARM/Thumb interworking.
Command line syntax

--interwork

Description

With this option the compiler generates code which supports calls between functions with the ARM and
Thumb instruction set.

Use this option if your program consists of both ARM and Thumb functions.
By default this option is disabled, since it produces slightly larger code.
Related information

C compiler option --thumb (Use Thumb instruction set)

307

TASKING VX-toolset for ARM User Guide

C compiler option: --iso (-c)

Menu entry

1. Select C/C++ Compiler » Language.

2. From the Comply to C standard list, select ISO C99 or ISO C90.
Command line syntax

--is0={90| 99}

-¢{90] 99}

Default: - - i s0=99

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99
refers to the newer ISO/IEC 9899:1999 (E) standard. C99 is the default.

Example

To select the ISO C90 standard on the command line:
carm--iso0=90 test.c

Related information

C compiler option --language (Language extensions)

308

Tool Options

C compiler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the . sr ¢ file when errors occur during compilation.

Command line syntax
--keep-output-files
-k

Description

If an error occurs during compilation, the resulting . sr ¢ file may be incomplete or incorrect. With this
option you keep the generated output file (. sr ¢c) when an error occurs.

By default the compiler removes the generated output file (. sr c) when an error occurs. This is useful
when you use the make utility. If the erroneous files are not removed, the make utility may process corrupt
files on a subsequent invocation.

Use this option when you still want to inspect the generated assembly source. Even if it is incomplete or
incorrect.

Example
carm --keep-output-files test.c

When an error occurs during compilation, the generated output file t est . sr ¢ will not be removed.

Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

309

TASKING VX-toolset for ARM User Guide

C compiler option: --language (-A)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable or disable one or more of the following options:

* Allow GNU C extensions

» Allow // comments in ISO C90 mode

» Check assignment of string literal to non-'const’ string pointer

* Allow optimization across volatile access

Command line syntax
- -l anguage=[f | ags]
- Al fl ags]

You can set the following flags:

+/-gcc g/G
+/-kanji k/K
+/-comments p/P
+/-volatile viV
+/-strings xIX

Default: - AGKpVx

Default (without flags): - AGKPVX

Description

enable a number of gcc extensions
support for Shift JIS Kanji in strings
/I comments in ISO C90 mode

don't optimize across volatile access
relaxed const check for string literals

With this option you control the language extensions the compiler can accept. By default the ARM compiler
allows all language extensions, except for gcc extensions.

The option --language (-A) without flags disables all language extensions.

GNU C extensions

The --language=+gcc (-Ag) option enables the following gcc language extensions:

» The identifier __ FUNCTION__ expands to the current function name.

 Alternative syntax for variadic macros.

« Alternative syntax for designated initializers.

310

Tool Options

» Allow zero sized arrays.

 Allow empty struct/union.

 Allow unnamed struct/union fields.

» Allow empty initializer list.

 Allow initialization of static objects by compound literals.

* The middle operand of a ? : operator may be omitted.

» Allow a compound statement inside braces as expression.

« Allow arithmetic on void pointers and function pointers.

» Allow a range of values after a single case label.

» Additional preprocessor directive #war ni ng.

 Allow comma operator, conditional operator and cast as Ivalue.
» An inline function without "st at i ¢" or "ext er n" will be global.
e An"extern inline"function will not be compiled on its own.

« An__attribute__ directly following a struct/union definition relates to that tag instead of to the
objects in the declaration.

For a more complete description of these extensions, you can refer to the UNIX gcc info pages (info
gce).

Shift JIS Kanji support

With --language=+kaniji (-Ak) you tell the compiler to support Shift JIS encoded Kanji multi-byte characters
in strings, (wide) character constants and / / comments. Without this option, encodings with 0x5c¢ as the
second byte conflict with the use of the backslash as an escape character. Shift JISin/ *. . . */ comments
is supported regardless of this option. Note that Shift JIS also includes Katakana and Hiragana.

Comments in ISO C90 mode

With --language=+comments (-Ap) you tell the compiler to allow C++ style comments (//) in ISO C90
mode (option --is0=90). In ISO C99 mode this style of comments is always accepted.

Check assignment of string literal to non-const string pointer

With --language=+strings (-Ax) you disable warnings about discarded const qualifiers when a string
literal is assigned to a non-const pointer.

char *p;
void main(void) { p = "hello"; }

311

TASKING VX-toolset for ARM User Guide

Optimization across volatile access

With the --language=+volatile (-Av) option, the compiler will block optimizations when reading or writing
a volatile object, by executing all memory and (SFR) register accesses before the access of the volatile
object. The volatile access acts as a memory barrier. With this option you can prevent for example that
code below the volatile object is optimized away to somewhere above the volatile object.

Example:

extern unsigned int variable;
extern volatile unsigned int access;

voi d Test Func(unsigned int flag)

{
access = 0;
variable | = fl ag;
if(variable == 3)
{
vari able = 0;
}
variabl e | = 0x8000;
access = 1;
}
Result with --language=-volatile (default):
Test Func: .type func
str Ir,[sp, #4]!
| dr rl,.L3
| dr lr,.L3+4
| dr r2,[r1, #0] ;. <== Mbved across volatile access
mv r3, #0
orr ro,r2,r0
cnp ro, #3
str r3,[1r, #0] ;. <== Vol atil e access
bne . L2
mv ro,r3
.L2:
orr ro, r0, #32768
mv r2, #1
str r2,[1r, #0] ;. <== Vol atil e access
str ro,[r1, #0] ;. <== Mbved across volatile access
| dr pc, [sp], #4
. size Test Func, $- Test Func
.align 4
. L3:
. dw vari abl e
. dw access

Result with --language=+volatile:

312

Test Func:
str
| dr
| dr
| dr
nov
orr
cnp
str
str
bne
str
.L2:
| dr
orr
str
nov
str
| dr
. Size
.align
. L3:
. dw
. dw

.type func
Ir,[sp, #4]!
r3,.L3
r2,.L3+4
Ir,[r3, #0]
ri, #0
ro,lr,r0

ro, #3
ri,[r2, #0]
ro,[r3, #0]
.L2
ri,[r3, #0]

ro,[r3, #0]
ro, r0, #32768
ro,[r3, #0]
ro, #1
ro,[r2, #0]
pc, [sp], #4

Test Func, $- Test Func

4

vari abl e
access

Tool Options

<== Vol atil e access
<== Not npved

<== Not noved

<== Vol atil e access

Note that the volatile behavior of the compiler with option --language=-volatile or --language=+volatile

is ISO C compliant in both cases.

Example
carm - -1 anguage=-coments, +strings --iso=90 test.c
carm-APx -c90 test.c

The compiler compiles in ISO C90 mode, accepts assignments of a constant string to a non-constant
string pointer and does not allow C++ style comments.

Related information

C compiler option --iso (ISO C standard)

Section 1.5, Shift JIS Kanji Support

313

TASKING VX-toolset for ARM User Guide

C compiler option: --make-target

Menu entry

Command line syntax

- -make-t ar get =nane

Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file. The default target name is the basename of the input
file, with extension . obj .

Example
carm - - preprocess=+make --make-target=nytarget.obj test.c

The compiler generates dependency lines with the default target name nyt ar get . obj instead of
test.obj.

nytarget.obj : test.c
test.c :

Related information
C compiler option --preprocess=+make (Generate dependencies for make)

C compiler option --dep-file (Generate dependencies in a file)

314

Tool Options

C compiler option: --max-call-depth

Menu entry
1. Select C/C++ Compiler » Optimization.

2. Inthe Maximum call depth for code compaction field, enter a value.

Command line syntax
- - max- cal | - dept h=val ue

Default: -1

Description

This option is related to the compiler optimization --optimize=+compact (Code compaction or reverse
inlining). Code compaction is the opposite of inlining functions: large sequences of code that occur more
than once, are transformed into a function. This reduces code size (possibly at the cost of execution
speed).

During code compaction it is possible that the compiler generates nested calls. This may cause the
program to run out of its stack. To prevent stack overflow caused by too deeply nested function calls, you
can use this option to limit the call depth. This option can have the following values:

-1 Poses no limit to the call depth (default)

0 The compiler will not generate any function calls. (Effectively the same as if you turned of
code compaction with option --optimize=-compact)

>0 Code sequences are only reversed if this will not lead to code at a call depth larger than
specified with value. Function calls will be placed at a call depth no larger than value-1.
(Note that if you specified a value of 1, the option --optimize=+compact may remain
without effect when code sequences for reversing contain function calls.)

This option does not influence the call depth of user written functions.

If you use this option with various C modules, the call depth is valid for each individual module.
The call depth after linking may differ, depending on the nature of the modules.

Related information
C compiler option --optimize=+compact (Optimization: code compaction)

C compiler option --compact-max-size (Maximum size of a match for code compaction)

315

TASKING VX-toolset for ARM User Guide

C compiler option: --mil / --mil-split

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Enable the option Build for application wide optimizations (MIL linking).

3. Select Optimize less/Build faster or Optimize more/Build slower.

Command line syntax

il
—-mil-split[=file,...]

Description

With option --mil the C compiler skips the code generator phase and writes the optimized intermediate
representation (MIL) to a file with the suffix . mi | . The C compiler accepts . nmi | files as input files on the
command line.

Option --mil-split does the same as option --mil, but in addition, the C compiler splits the MIL representation
and writes it to separate files with suffix . ms. One file is written for each input file or MIL library specified
on the command line. The . s files are only updated on a change. The C compiler accepts . ns files as
input files on the command line.

With option --mil-split you can perform application-wide optimizations during the frontend phase by
specifying all modules at once, and still invoke the backend phase one module at a time to reduce the
total compilation time. Application wide code compaction is not possible in this case.

Optionally, you can specify another filename for the . ns file the C compiler generates. Without an
argument, the basename of the C source file is used to create the . s filename. Note that if you specify
a filename, you have to specify one filename for every input file.

Note that with both options some extra strict type checking is done that can cause building to fail in a way
that is unforeseen and difficult to understand. For example, when you use one of these options in
combination with option --uchar and you link the MIL library, you might get the following error:

carmE289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
carm 1802: ["installation-dir\include\string.h" 44/17]

previ ous decl aration of "strlen"
1 errors, O warnings

This is caused by the fact that the MIL library is built without --uchar. You can workaround this problem
by rebuilding the MIL libraries.

Build for application wide optimizations (MIL linking) and Optimize less/Build faster

This option is standard MIL linking and splitting. Note that you can control the optimizations to be performed
with the optimization settings.

316

Tool Options

Optimize more/Build slower
When you enable this option, the compiler's frontend does not split the MIL stream in separate modules,

but feeds it directly to the compiler's backend, allowing the code compaction to be performed application
wide.

Related information
Section 4.1, Compilation Process

Control program option --mil-link / --mil-split

317

TASKING VX-toolset for ARM User Guide

C compiler option: --misrac

Menu entry
1. Select C/C++ Compiler » MISRA C.
2. Make a selection from the MISRA C checking list.

3. Ifyou selected Custom, expand the Custom 1998, Custom 2004 or Custom 2012 entry and enable
one or more individual rules.

Command line syntax
--misrac={all | nr[-nr]},...
Description

With this option you specify to the compiler which MISRA C rules must be checked. With the option
--misrac=all the compiler checks for all supported MISRA C rules.

Example
carm--msrac=9-13 test.c

The compiler generates an error for each MISRA C rule 9, 10, 11, 12 or 13 violation in file t est . c.

Related information

Section 4.6.2, C Code Checking: MISRA C

C compiler option --misrac-mandatory-warnings
C compiler option --misrac-advisory-warnings
C compiler option --misrac-required-warnings

Linker option --misrac-report

318

Tool Options

C compiler option: --misrac-advisory-warnings / --misrac-required-warnings

/ --misrac-mandatory-warnings

Menu entry
1. Select C/C++ Compiler » MISRA C.
2. Make a selection from the MISRA C checking list.

3. Enable one or more of the options:
Warnings instead of errors for mandatory rules
Warnings instead of errors for required rules
Warnings instead of errors for advisory rules.

Command line syntax
--m srac-advi sory-war ni ngs

--m srac-required-warni ngs
--m srac- mandat or y- war ni ngs

Description

Normally, if an advisory rule, required rule or mandatory rule is violated, the compiler generates an error.
As a consequence, no output file is generated. With this option, the compiler generates a warning instead

of an error.

Related information
Section 4.6.2, C Code Checking: MISRA C
C compiler option --misrac

Linker option --misrac-report

319

TASKING VX-toolset for ARM User Guide

C compiler option: --misrac-version

Menu entry
1. Select C/C++ Compiler » MISRA C.

2. Select the MISRA C version: 1998, 2004 or 2012.

Command line syntax
--m srac-version={1998| 2004| 2012}

Default: 2004
Description
MISRA C rules exist in three versions: MISRA C:1998, MISRA C:2004 and MISRA C:2012. By default,

the C source is checked against the MISRA C:2004 rules. With this option you can select which version
to use.

Related information
Section 4.6.2, C Code Checking: MISRA C

C compiler option --misrac

320

Tool Options

C compiler option: --no-double (-F)
Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat '‘double’ as 'float'.

Command line syntax
--no-doubl e

-F

Description

With this option you tell the compiler to treat variables and constants of type doubl e as f | oat . Because
the f | oat type takes less space, execution speed increases and code size decreases, both at the cost
of less precision.

This option is an alias for C compiler option --fp-model=+float.

Example

carm --no-double test.c

The file t est . ¢ is compiled where variables and constants of type doubl e are treated as f | oat .
Related information

C compiler option --fp-model (floating-point model)

321

TASKING VX-toolset for ARM User Guide

C compiler option: --no-stdinc

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --no-stdinc to the Additional options field.
Command line syntax

--no-stdinc

Description

With this option you tell the compiler not to look in the defaulti ncl ude directory relative to the installation
directory, when searching for include files. This way the compiler only searches in the include file search
paths you specified.

Related information
C compiler option --include-directory (Add directory to include file search path)

Section 4.3, How the Compiler Searches Include Files

322

Tool Options

C compiler option: --no-warnings (-w)
Menu entry
1. Select C/C++ Compiler » Diagnostics.
The Suppress C compiler warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas or as a range, of the warnings you want to suppress (for
example 537, 538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.
Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- - no-war ni ngs[=nunber [- nunber],...]

-w nunber [- nunber], ...]

Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

« If you specify this option but without numbers, all warnings are suppressed.

* If you specify this option with a number or a range, only the specified warnings are suppressed. You
can specify the option --no-warnings=number multiple times.

Example

To suppress warnings 537 and 538, enter:

carmtest.c --no-warni ngs=537, 538

Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

Pragma war ni ng

323

TASKING VX-toolset for ARM User Guide

C compiler option: --optimize (-O)
Menu entry

1. Select C/C++ Compiler » Optimization.

2. Select an optimization level in the Optimization level box.

Command line syntax
--optin ze[=fl ags]
-Ofl ags

You can set the following flags:

+/-coalesce alA Coalescer: remove unnecessary moves
+/-ipro b/B Interprocedural register optimizations
+/-cse c/C Common subexpression elimination
+/-expression elE Expression simplification

+/-flow fIF Control flow simplification

+/-glo g/G Generic assembly code optimizations
+/-inline il Automatic function inlining

+/-sign i Sign extend elimination

+/-schedule k/IK Instruction scheduler

+/-loop I/L Loop transformations

+/-forward 0/O Forward store

+/-propagate p/P Constant propagation

+/-compact r'R Code compaction (reverse inlining)
+/-subscript s/S Subscript strength reduction
+/-unroll u/U Unroll small loops

+/-peephole ylIY Peephole optimizations

+/-cluster Cluster global variables

Use the following options for predefined sets of flags:

--optimize=0 -O0 No optimization
Alias for -OaBCEFGIJKLOPRSUY,-cluster

No optimizations are performed except for the coalescer (to allow better debug information). The compiler
tries to achieve an optimal resemblance between source code and produced code. Expressions are
evaluated in the same order as written in the source code, associative and commutative properties are
not used.

324

Tool Options

--optimize=1 -O1 Optimize
Alias for -OabcefglJKLOPRSUy,-cluster

Enables optimizations that do not affect the debug ability of the source code. Use this level when you
encounter problems during debugging your source code with optimization level 2.

--optimize=2 -02 Optimize more (default)
Alias for -OabcefglJkloprsUy,-cluster

Enables more optimizations to reduce code size and/or execution time. This is the default optimization
level.

--optimize=3 -O3 Optimize most
Alias for -OabcefgiJkloprsuy,+cluster

This is the highest optimization level. Use this level to decrease execution time to meet your real-time
requirements.

Default: - - opti mi ze=2
Description

With this option you can control the level of optimization. If you do not use this option, the default
optimization level is Optimize more (option --optimize=2 or --optimize).

When you use this option to specify a set of optimizations, you can overrule these settings in your C
source file with #pr agna optim ze fl ag/#pragma endoptim ze.

In addition to the option --optimize, you can specify the option --tradeoff (-t). With this option you specify
whether the used optimizations should optimize for more speed (regardless of code size) or for smaller
code size (regardless of speed).

Example
The following invocations are equivalent and result all in the default optimization set:

carmtest.c

carm--optimze=2 test.c
carm-Q2 test.c

carm--optimze test.c
carm-Otest.c

carm - Cabcef gl Jkl opsrUy test.c

carm --optim ze=+coal esce, +i pro, +cse, +expr essi on, +f | ow, +gl o,
-inline,-sign, +schedul e, +l oop, +f orwar d, +pr opagat e,
+conpact, +subscri pt, -unrol |, +peephol e, -cl uster test.c

325

TASKING VX-toolset for ARM User Guide

Related information
C compiler option --tradeoff (Trade off between speed and size)
Pragma opti m ze/ endopti m ze

Section 4.5, Compiler Optimizations

326

Tool Options

C compiler option: --option-file (-f)

Menu entry
1. Select C/C++ Compiler » Miscellaneous.
2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the C compiler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the compiler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file
* Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a double quote " enbedded'
'"This has a double quote " and a single quote '"' enbedded"
» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
li ne"

-> "This is a continuation |ine"

327

TASKING VX-toolset for ARM User Guide

* Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myopt i ons contains the following lines:

--debug-info
- - def i ne=DEMO=1
test.c

Specify the option file to the compiler:
carm --option-fil e=myoptions
This is equivalent to the following command line:

carm --debug-info --defi ne=DEMO=1 test.c

Related information

328

Tool Options

C compiler option: --output (-0)

Menu entry

Eclipse names the output file always after the C source file.
Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the compiler. Without this option
the basename of the C source file is used with extension . src.

Example
To create the file out put . src instead of t est . src, enter:

carm --out put =out put.src test.c

Related information

329

TASKING VX-toolset for ARM User Guide

C compiler option: --preprocess (-E)

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.
4. (Optional) Enable the option Keep #line info in preprocessor output.
Command line syntax

- - preprocess[=fl ags]

-E[fl ags]

You can set the following flags:

+/-comments c/C keep comments

+/-includes i/l generate a list of included source files
+/-list I/L generate a list of macro definitions
+/-make m/M generate dependencies for make
+/-noline p/P strip #line source position information

Default: - ECI LIMP

Description

With this option you tell the compiler to preprocess the C source. Under Eclipse the compiler sends the
preprocessed output to the file nane. pr e (where name is the name of the C source file to compile).
Eclipse also compiles the C source.

On the command line, the compiler sends the preprocessed file to stdout. To capture the information in
a file, specify an output file with the option --output.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+includes the compiler will generate a list of all included source files. The preprocessor
output is discarded.

With --preprocess=+list the compiler will generate a list of all macro definitions. The preprocessor output
is discarded.

With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The preprocessor output is discarded. The default target name is the basename of the input file, with the
extension . obj . With the option --make-target you can specify a target name which overrules the default
target name.

330

Tool Options

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #l i ne). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example
carm - - preprocess=+coments, +i ncl udes, -1ist, -nake,-noline test.c --output=test.pre

The compiler preprocesses the file t est . ¢ and sends the output to the file t est . pr e. Comments and
a list of all included source files are included but no list of macro definitions and no dependencies are
generated and the line source position information is not stripped from the output file.

Related information
C compiler option --dep-file (Generate dependencies in a file)

C compiler option --make-target (Specify target name for -Em output)

331

TASKING VX-toolset for ARM User Guide

C compiler option: --profile (-p)
Menu entry
1. Select C/C++ Compiler » Debugging.

2. Enable or disable Static profiling.

3. Enable or disable one or more of the following Generate profiling information options (dynamic
profiling):

» for block counters (not in combination with Call graph or Function timers)
* to build a call graph
 for function counters

« for function timers

Note that the more detailed information you request, the larger the overhead in terms of execution
time, code size and heap space needed. The option --debug does not affect profiling, execution
time or code size.

Command line syntax

--profile[=flag,...]

-p[fl ags]

Use the following option for a predefined set of flags:

--profile=g -pg Profiling with call graph and function timers.
Alias for: -pBcFSt

You can set the following flags:

+/-block b/B block counters
+/-callgraph c/C call graph

+/-function fIF function counters
+/-static s/S static profile generation
+/-time T function timers

Default (without flags): - pBCf ST

Description

Profiling is the process of collecting statistical data about a running application. With these data you can
analyze which functions are called, how often they are called and what their execution time is.

332

Tool Options
Several methods of profiling exist. One method is code instrumentation which adds code to your application
that takes care of the profiling process when the application is executed. Another method is static profiling.
For an extensive description of profiling refer to Chapter 13, Profiling.
You can obtain the following profiling data (see flags above):
Block counters (not in combination with Call graph or Function timers)

This will instrument the code to perform basic block counting. As the program runs, it counts the number
of executions of each branch in an if statement, each iteration of a for loop, and so on. Note that though
you can combine Block counters with Function counters, this has no effect because Function counters
is only a subset of Block counters.

Call graph (not in combination with Block counters)

This will instrument the code to reconstruct the run-time call graph. As the program runs it associates the
caller with the gathered profiling data.

Function counters
This will instrument the code to perform function call counting. This is a subset of the basic Block counters.
Function timers (not in combination with Block counters/Function counters)

This will instrument the code to measure the time spent in a function. This includes the time spent in all
sub functions (callees).

Static profiling

With this option you do not need to run the application to get profiling results. The compiler generates
profiling information at compile time, without adding extra code to your application.

If you use one or more profiling options that use code instrumentation, you must link the corresponding
libraries too! Refer to Section 7.3, Linking with Libraries, for an overview of the (profiling) libraries. In
Eclipse the correct libraries are linked automatically.

Example

To generate block count information for the module t est . ¢ during execution, compile as follows:
carm --profil e=+bl ock test.c

In this case you must link the library | i bpb. a.

Related information

Chapter 13, Profiling

333

TASKING VX-toolset for ARM User Guide

C compiler option: --rename-sections (-R)

Menu entry
1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --rename-sections to the Additional options field.

Command line syntax

--renane- sections=[nanme=] suf fi x
- R[nane=] suf fi x

Description

In case a module must be loaded at a fixed address, or a data section needs a special place in memory,
you can use this option to generate different section names. You can then use this unique section name
in the linker script file for locating. Because sections have reserved names, the compiler will not actually
change the section name, but will add a suffix to the name.

With the section name you select which sections are renamed. With suffix you specify the suffix part
which will be attached to the existing name. The suffix can contain the following suffix specifiers:

{ nodul e} expands to the module name

{nane} expands to the symbol name as generated in the assembly file, including compiler
generated prefixes and suffixes

{cname} expands to the symbol name as used in your C source. Compiler generated names
will be cleaned up and prefixed by a '$'".

If you do not specify a section name, all sections will receive the specified suffix.

Example

To change all sections named . dat a into . dat a. NEW enter:

carm --renane-sections=. data=NEWtest.c

To add the name of the current module as suffix to all data sections, resulting in . dat a. t est, enter:
carm --renane-sections=. data={nodul e} test.c

The following examples show the difference when using - - r enane- sect i ons={ nane} or
--renane- secti ons={cnane}.

Generated labels:

.section .text.tm.cocofun_1 ;; {nane}
.section .text.tm $cocofun . {cnane}
.section .rodata.hs..1l.str ;1 {nane}
.section .rodata.hs.$str . {cnane}

334

.section
.section

.rodata. hs..2.ini o {nane}

Tool Options

. rodat a. hs. $i ni ;7 {cnane}

Statics within a function:

.section
.section
.section
.section

Several modules with static functions of the same name:

.section
.section
.section
.section

.data. hs. _999001_ny_I| oca
.data. hs.nmy_l oca
.data. hs. _999002_ny_| oca
.data. hs.nmy_l oca

.text.hs1.f1 7 {nane}
.text.hs1.f1 ;; {cnane}
.text.hs2.f1.1 ;; {nane}
.text.hs2.f1 ;; {cname}

Related information

Assembler directive . SECTI ON

{nane}
{cnane}
{nane}
{cnane}

335

TASKING VX-toolset for ARM User Guide

C compiler option: --runtime (-r)
Menu entry
1. Select C/C++ Compiler » Debugging.
2. Enable or disable one or more of the following run-time error checking options:
» Generate code for bounds checking
» Generate code to detect unhandled case in a switch
» Generate code for malloc consistency checks
» Generate code for stack overflow checks (allowed for USR and SYS mode only)

» Generate code for division by zero checks

Command line syntax
--runtime[=flag,...]
-r[flags]

You can set the following flags:

+/-bounds b/B bounds checking

+/-case c/C report unhandled case in a switch
+/-malloc m/M malloc consistency checks
+/-stack s/S check for stack overflow

+/-zero zIZ check for divide by zero

Default (without flags): - r bcnSz

Description

This option controls a number of run-time checks to detect errors during program execution. Some of
these checks require additional code to be inserted in the generated code, and may therefore slow down
the program execution. The following checks are available:

Bounds checking

Every pointer update and dereference will be checked to detect out-of-bounds accesses, null pointers
and uninitialized automatic pointer variables. This check will increase the code size and slow down the
program considerably. In addition, some heap memory is allocated to store the bounds information. You
may enable bounds checking for individual modules or even parts of modules only (see #pr agna
runtinme).

336

Tool Options

Report unhandled case in a switch

Report an unhandled case value in a switch without a default part. This check will add one function call
to every switch without a default part, but it will have little impact on the execution speed.

Malloc consistency checks

This option enables the use of wrappers around the functions malloc/realloc/free that will check for common
dynamic memory allocation errors like:

* buffer overflow

» write to freed memory

« multiple calls to free
 passing invalid pointer to free

Enabling this check will extract some additional code from the library, but it will not enlarge your application
code. The dynamic memory usage will increase by a couple of bytes per allocation.

Stack overflow check

The compiler generates extra code within the function prolog that will check the available stack size before
allocating. This is only useful when the processor runs in USR or SYS mode.

Division by zero check
The compiler generates a call to specific run-time functions for additional division by zero checks. If this

situation occurs, an abort signal is issued. Without this check, a division by zero could lead to unpredictable
results.

Related information

Pragmarunti ne

337

TASKING VX-toolset for ARM User Guide

C compiler option: --silicon-bug
Menu entry
1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, select a processor.

The CPU problem bypasses and checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.

4. Click Select All or select one or more individual options.

Command line syntax

--silicon-bug[=bug,...]

Description

With this option you specify for which hardware problems the compiler should generate workarounds.
Please refer to Chapter 19, CPU Problem Bypasses and Checks for the numbers and descriptions. Silicon

bug numbers are specified as a comma separated list. When you use this option without arguments, all
silicon bug workarounds are enabled.

Example

To enable workarounds for problem 602117, enter:
carm --silicon-bug=602117 test.c
Related information

Chapter 19, CPU Problem Bypasses and Checks

Assembler option --silicon-bug

338

Tool Options

C compiler option: --source (-s)

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Merge C source code with generated assembly.
Command line syntax

--source

-s

Description

With this option you tell the compiler to merge C source code with generated assembly code in the output
file. The C source lines are included as comments.

Related information

Pragmas sour ce/ nosour ce

339

TASKING VX-toolset for ARM User Guide

C compiler option: --stdout (-n)

Menu entry

Command line syntax
- - stdout

-n

Description

With this option you tell the compiler to send the output to st dout (usually your screen). No files are
created. This option is for example useful to quickly inspect the output or to redirect the output to other
tools.

Related information

340

Tool Options

C compiler option: --thumb

Menu entry
1. Select C/C++ Compiler » Code Generation.

2. Enable the option Use Thumb instruction set.

Command line syntax

--thunb

Description

With this option you tell the compiler to generate Thumb or Thumb-2 instructions, depending on the
architecture.

When you specify the ARMv6-M, ARMv7-M or ARMV7E-M architecture (option --cpu), the compiler
automatically selects the Thumb-2 instruction set.

Related information
C compiler option --cpu (Select architecture)

C compiler option --interwork (Generate interworking code)

341

TASKING VX-toolset for ARM User Guide

C compiler option: --tradeoff (-t)

Menu entry
1. Select C/C++ Compiler » Optimization.

2. Select a trade-off level in the Trade-off between speed and size box.

Command line syntax
--tradeof f ={ 0] 1] 2| 3| 4}
-t{0] 1| 2| 3| 4}
Default: - - t r adeof f =4
Description

If the compiler uses certain optimizations (option --optimize), you can use this option to specify whether
the used optimizations should optimize for more speed (regardless of code size) or for smaller code size
(regardless of speed).

By default the compiler optimizes for code size (--tradeoff=4).

If you have not specified the option --optimize, the compiler uses the default Optimize more
optimization. In this case it is still useful to specify a trade-off level.

Example
To set the trade-off level for the used optimizations:
carm--tradeoff=2 --thunb test.c

The compiler uses the default Optimize more optimization level and optimizes for code size.

Related information
C compiler option --optimize (Specify optimization level)

Section 4.5.3, Optimize for Code Size or Execution Speed

342

Tool Options

C compiler option: --uchar (-u)
Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat 'char’ variables as unsigned.

Command line syntax
- - uchar

-u

Description

By default char is the same as specifying si gned char . With this option char is the same as unsi gned
char.

Note that this option can cause conflicts when you use it in combination with MIL linking. With MIL linking
some extra strict type checking is done that can cause building to fail in a way that is unforeseen and
difficult to understand. For example, when you use option --mil in combination with option --uchar and
you link the MIL library, you might get the following error:

carmE289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
carm1802: ["installation-dir\include\string.h" 44/17]

previ ous decl aration of "strlen"
1 errors, O warnings

This is caused by the fact that the MIL library is built without --uchar. You can workaround this problem
by rebuilding the MIL libraries.

Related information

Section 1.1, Data Types

343

TASKING VX-toolset for ARM User Guide

C compiler option: --unaligned-access

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --unaligned-access to the Additional options field.
Command line syntax

--unal i gned- access

Description

With this option you tell the compiler to generate more efficient instructions to access unaligned 16-bit or
larger data. Halfword or word load and store instructions are used instead of byte instructions.

This option is only useful for cores that have support for unaligned access.

Related information

344

Tool Options

C compiler option: --undefine (-U)
Menu entry
1. Select C/C++ Compiler » Preprocessing

The Defined symbols box shows the symbols that are currently defined.

2. Toremove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax
--undefi ne=nmacr o_nane

- Uracr o_nane

Description

With this option you can undefine an earlier defined macro as with #undef . This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

__FILE__ current source filename

__LINE__ current source line number (int type)
_TIME__ hh:mm:ss

__DATE__ Mmm dd yyyy

__STDC__ level of ANSI standard

Example

To undefine the predefined macro __ TASKI NG__:

carm --undefine=_ TASKING test.c

Related information
C compiler option --define (Define preprocessor macro)

Section 1.9, Predefined Preprocessor Macros

345

TASKING VX-toolset for ARM User Guide

C compiler option: --verbose (-v)

Menu entry

Command line syntax
--verbose

-V

Description

With this option you put the C compiler in verbose mode. The C compiler performs its tasks while it prints
the steps it performs to st dout .

Related information

346

Tool Options

C compiler option: --version (-V)

Menu entry

Command line syntax

--version
-V
Description

Display version information. The compiler ignores all other options or input files.

Related information

347

TASKING VX-toolset for ARM User Guide

C compiler option: --warnings-as-errors

Menu entry
1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber[-nunber],...]

Description

If the compiler encounters an error, it stops compiling. When you use this option without arguments, you
tell the compiler to treat all warnings not suppressed by option --no-warnings (or #pr agna war ni ng)
as errors. This means that the exit status of the compiler will be non-zero after one or more compiler
warnings. As a consequence, the compiler now also stops after encountering a warning.

You can limit this option to specific warnings by specifying a comma-separated list of warning numbers
or ranges. In this case, this option takes precedence over option --no-warnings (and #pr agma war ni ng).

Related information
C compiler option --no-warnings (Suppress some or all warnings)

Pragma war ni ng

348

Tool Options

11.3. C++ Compiler Options

This section lists all C++ compiler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the C++ compiler via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the C++ compiler. If there is no equivalent option in
Eclipse, you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, you have to precede the option with -Wcp to pass the
option via the control program directly to the C++ compiler.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

If an option requires an argument, the argument may be separated from the keyword by white space, or
the keyword may be immediately followed by =option. When the second form is used there may not be
any white space on either side of the equal sign.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

cparm -Ecp test.cc
cparm - - preprocess=+conmment s, +nol i ne test.cc

When you do not specify an option, a default value may become active.

The priority of the options is left-to-right: when two options conflict, the first (most left) one takes effect.
The -D and -U options are not considered conflicting options, so they are processed left-to-right for each
source file. You can overrule the default output file name with the --output-file option.

349

TASKING VX-toolset for ARM User Guide

C++ compiler option: --alternative-tokens

Menu entry
Command line syntax
--alternative-tokens

Description

Enable recognition of alternative tokens. This controls recognition of the digraph tokens in C++, and
controls recognition of the operator keywords (e.g., not , and, bi t and, etc.).

Example
To enable operator keywords (e.g., "not", "and") and digraphs, enter:

cparm--alternative-tokens test.cc

Related information

350

Tool Options

C++ compiler option: --anachronisms

Menu entry

1. Select C/C++ Compiler » Language.
2. Enable the option C++ anachronisms.
Command line syntax

--anachroni sns

Description

Enable C++ anachronisms. This option also enables --nonconst-ref-anachronism. But you can turn this
off individually with option --no-nonconst-ref-anachronism.

Related information
C++ compiler option --nonconst-ref-anachronism (Nonconst reference anachronism)

Section 2.2.3, Anachronisms Accepted

351

TASKING VX-toolset for ARM User Guide

C++ compiler option: --auto-type

Menu entry

Command line syntax

--auto-type

--no- aut o-type

Default: aut o is a storage class specifier.

Description

Enable or disable aut o as a type specifier where the actual type is deduced from an initializer that follows.

This feature is implicitly enabled in C++0x mode.

Related information
C++ compiler option --no-auto-storage (Do not allow aut o as storage specifier)

C++ compiler option --c++0x (C++0x language extensions)

352

Tool Options

C++ compiler option: --base-assign-op-is-default

Menu entry

Command line syntax
- -base- assi gn-op-i s-defaul t
Description

Enable the anachronism of accepting a copy assignment operator that has an input parameter that is a
reference to a base class as a default copy assignment operator for the derived class.

Related information

353

TASKING VX-toolset for ARM User Guide

C++ compiler option: --building-runtime

Menu entry

Command line syntax

--bui l di ng-runti ne

Description

Special option for building the C++ run-time library. Used to indicate that the C++ run-time library is being
compiled. This causes additional macros to be predefined that are used to pass configuration information

from the C++ compiler to the run-time.

Related information

354

Tool Options

C++ compiler option: --c++0x

Menu entry

Command line syntax

- - C++0x

Description

Enable the C++ extensions that are defined by the latest C++ working paper.

Related information

355

TASKING VX-toolset for ARM User Guide

C++ compiler option: --c++0x-sfinae

Menu entry

Command line syntax
- - c++0x- sfi nae

--no-c++0x-sfi nae

Description

Enable or disable template deduction in the style dictated by the C++0x standard (SFINAE rules of

document N2634), i.e., where general expressions are allowed in deduction contexts and they undergo
the full usual semantic checking. This type of deduction is necessary to get the full power of the decl t ype
feature in return types. “SFINAE” refers to the initials of the phrase “Substitution Failure Is Not An Error”,
which is the guiding principle for template deduction, and by extension a name for the process of deduction.

This feature is implicitly enabled in C++0x mode (option --c++0x), and is implicitly disabled in GNU modes.

Related information

C++ compiler option --c++0x (C++0x language extensions)

356

Tool Options

C++ compiler option: --c++0x-sfinae-ignore-access

Menu entry

Command line syntax
- - c++0x- sfi nae-i gnore-access
- - no- c++0x- sfi nae-i gnor e- access

Default: - - no- c++0x- sfi nae-i gnor e- access

Description

When C++0x SFINAE is enabled (option --c++0x-sfinae), option --c++0x-sfinae-ignore-access indicates
that access errors are not counted as errors that cause deduction failures. In document N2634 access

errors are ignored, but the standards committee changed its mind about that later. So, the default (option
--no-c++0x-sfinae-ignore-access) is that access errors cause a deduction failure.

Related information

C++ compiler option --c++0x-sfinae (C++0x SFINAE rules)

357

TASKING VX-toolset for ARM User Guide

C++ compiler option: --check

Menu entry

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The C++ compiler reports any warnings and/or errors.
This option is available on the command line only.
Related information

C compiler option --check (Check syntax)

Assembler option --check (Check syntax)

358

Tool Options

C++ compiler option: --check-concatenations

Menu entry

Command line syntax

--check-concat enati ons

Description

With this option the preprocessor will generate a diagnostic when a macro concatenation (such as a ##
b) does not result in a valid token.

Related information

359

TASKING VX-toolset for ARM User Guide

C++ compiler option: --compound-literals

Menu entry

Command line syntax

--conpound-literals

Description

Allow compound literals in expressions. A compound literal looks like a cast containing an initializer. Its
value is an object of the type specified in the cast, containing the elements specified in the initializer; it is
an lvalue.

For example:

static int i[] = (int []) {1, 2, 3};

Related information

360

Tool Options

C++ compiler option: --context-limit

Menu entry

Command line syntax
--context-limt=nunber

Default: - - context -1 i mt=10

Description

Set the context limit to number. The context limit is the maximum number of template instantiation context
entries to be displayed as part of a diagnostic message. If the number of context entries exceeds the
limit, the first and last N context entries are displayed, where N is half of the context limit. A value of zero
is used to indicate that there is no limit.

Example
To set the context limit to 5, enter:

cparm--context-limt=5 test.cc

Related information

361

TASKING VX-toolset for ARM User Guide

C++ compiler option: --cpu (-C)
Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, make a selection by Architecture, Core or one of the
manufacturers.

Command line syntax
--cpu=architecture
-Carchitecture

You can specify the following architectures:

ARMv6M Compile for ARMv6-M architecture

ARMvV7M Compile for ARMv7-M architecture

ARMV7EM Compile for ARMV7E-M architecture

ARMV7R Compile for ARMv7-R architecture
Description

With this option you specify the ARM architecture for which you create your application. The ARM target
supports more than one architecture and therefore you need to specify for which architecture the compiler
should compile. The architecture determines which instructions are valid and which are not.

The effect of this option is that the C++ compiler uses the appropriate instruction set. You choose one of
the following architectures: ARMv6-M, ARMv7-M, ARMV7E-M or ARMv7-R.

The macro __CPU___is set to the name of the architecture.

Example

To compile the file t est . cc for the ARMV7E-M architecture, enter the following on the command line:
cparm - - cpu=ARM/7EM t est . cc

Related information

C compiler option --cpu (Select architecture)

362

Tool Options

C++ compiler option: --create-pch

Menu entry
1. Select C/C++ Compiler » Precompiled C++ Headers.

2. Enter a filename in the Create precompiled header file field.
Command line syntax
--create-pch=fil enane

Description

If other conditions are satisfied, create a precompiled header file with the specified name. If --pch (automatic
PCH mode) or --use-pch appears on the command line following this option, its effect is erased.

Example

To create a precompiled header file with the name t est . pch, enter:
cparm --create-pch=test.pch test.cc

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --use-pch (Use precompiled header file)

Section 2.10, Precompiled Headers

363

TASKING VX-toolset for ARM User Guide

C++ compiler option: --default-nocommon-tentative-definitions

Menu entry

Command line syntax

--defaul t-nocommon-tentative-definitions

Description
In GNU C++ mode, this option prevents tentative definitions to be placed in common storage.

Related information

364

Tool Options

C++ compiler option: --defer-parse-function-templates

Menu entry

Command line syntax
--defer-parse-function-tenpl ates
--no-defer-parse-function-tenpl ates

Default: - - def er - par se-functi on-t enpl at es in GNU C++ mode.

Description

Enable or disable deferral of prototype instantiations until the first actual instantiation of a function. This
is used to permit the compilation of programs that contain definitions of unusable function templates.

It is enabled by default in GNU C++ mode.

Related information

365

TASKING VX-toolset for ARM User Guide

C++ compiler option: --define (-D)

Menu entry
1. Select C/C++ Compiler » Preprocessing.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)
Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax
- -defi ne=macro_name[(parm|ist)][=macro_definition]

-Dmacro_name(parmlist)][=macro_definition]

Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1".

Function-style macros can be defined by appending a macro parameter list to macro_name.
You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, you can use the option --define (-D) multiple times. If the command line exceeds
the limit of the operating system, you can define the macros in an option file which you then must specify
to the C++ compiler with the option --option-file (-f) file.

The definition can be tested by the preprocessor with #i f , #i f def and #i f ndef , for conditional
compilations.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

Consider the following program with conditional code to compile a demo program and a real program:

void main(void)

{
#i f DEMO

dermo_func(); /* conpile for the deno program */
#el se

real _func(); /* conpile for the real program*/

366

Tool Options

#endi f
}

You can now use a macro definition to set the DEMO flag:

cparm --defi ne=DEMO test. cc
cparm - -defi ne=DEMO=1 test.cc

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

cparm - -define="MAX(A B)=((A) > (B) ? (A : (B))" test.cc
Related information
C++ compiler option --undefine (Remove preprocessor macro)

C++ compiler option --option-file (Specify an option file)

367

TASKING VX-toolset for ARM User Guide

C++ compiler option: --dep-file

Menu entry

Command line syntax
--dep-file[=file]
Description

With this option you tell the C++ compiler to generate dependency lines that can be used in a Makefile.
In contrast to the option --preprocess=+make, the dependency information will be generated in addition
to the normal output file.

By default, the information is written to a file with extension . d (one for every input file). When you specify
a filename, all dependencies will be combined in the specified file.

Example
cparm--dep-file=test.dep test.cc

The C++ compiler compiles the file t est . cc, which results in the output file t est . i ¢, and generates
dependency lines in the file t est . dep.

Related information

C++ compiler option --preprocess=+make (Generate dependencies for make)

368

Tool Options

C++ compiler option: --diag
Menu entry

Command line syntax

--diag

Description

With this option the C++ compiler displays a list of all diagnostic messages on st dout (usually your
screen). The C++ compiler does not compile any files.

Related information

Section 5.3, C++ Compiler Error Messages

369

TASKING VX-toolset for ARM User Guide

C++ compiler option: --dollar

Menu entry

Command line syntax
--dol | ar

Default format: No dollar signs are allowed in identifiers.

Description

Accept dollar signs in identifiers. Names like A$VAR are allowed.

Related information

370

Tool Options

C++ compiler option: --embedded-c++

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Comply to embedded C++ subset.

Command line syntax

- - enbedded- c++

Description

The "Embedded C++" subset does not support templates, exceptions, namespaces, new-style casts,

RTTI, multiple inheritance, virtual base classes, and the nut abl e keyword. Select this option when you
want the C++ compiler to give an error when you use any of them in your C++ source.

Related information

371

TASKING VX-toolset for ARM User Guide

C++ compiler option: --endianness

Menu entry
1. Select Global Options.

2. Specify the Endianness:Little-endian mode or Big-endian mode.

Command line syntax
- -endi anness=endi anness

-B
- - bi g-endi an

You can specify the following endianness:

big b Big endian
little | Little endian (default)
Description

By default, the C++ compiler generates code for a little-endian target (least significant byte of a word at
lowest byte address). With --endianness=big the C++ compiler generates code for a big-endian target
(most significant byte of a word at lowest byte address). -B is an alias for option --endianness=big.

The macro __ Bl G_ENDI AN__ is defined when this option is specified, otherwise the macro
__LITTLE_ENDI AN__ is defined.

372

Tool Options

C++ compiler option: --error-file

Menu entry
Command line syntax
--error-file[=file]
Description

With this option the C++ compiler redirects error messages to a file. If you do not specify a filename, the
error file will be named after the output file with extension . ecp.

Example
To write errors to err or s. ecp instead of st derr, enter:

cparm--error-file=errors.ecp test.cc

Related information

373

TASKING VX-toolset for ARM User Guide

C++ compiler option: --error-limit (-e)
Menu entry

Command line syntax
--error-1imt=nunber

- enumber

Default: - -error-1imt=100

Description

Set the error limit to number. The C++ compiler will abandon compilation after this number of errors
(remarks and warnings are not counted). By default, the limit is 100.

Example
When you want compilation to stop when 10 errors occurred, enter:

cparm--error-limt=10 test.cc

Related information

374

Tool Options

C++ compiler option: --exceptions (-x)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable or disable the option Support for C++ exception handling.
Command line syntax

--exceptions
- X

--no- exceptions

Default: - - no- excepti ons

Default in C++0x mode: - - except i ons

Description

With this option you enable or disable support for exception handling in the C++ compiler.
The macro __EXCEPTI ONS is defined when exception handling support is enabled.

This feature is implicitly enabled in C++0x mode.

Related information

C++ compiler option --c++0x (C++0x language extensions)

375

TASKING VX-toolset for ARM User Guide

C++ compiler option: --exported-template-file

Menu entry

Command line syntax
--exported-tenplate-file=file
Description

This option specifies the name to be used for the exported template file used for processing of exported
templates.

This option is supplied for use by the control program that invokes the C++ compiler and is not intended
to be used by end-users.

Related information

376

Tool Options

C++ compiler option: --extended-variadic-macros

Menu entry

Command line syntax

--ext ended- vari adi c- nacr os

- - no- ext ended- vari adi c- nacr os
Description

Enable or disable support for macros with a variable number of arguments (implies --variadic-macros)
and allow the naming of the variable argument list.

Related information

C++ compiler option --variadic-macros (Allow variadic macros)

377

TASKING VX-toolset for ARM User Guide

C++ compiler option: --force-vtbl

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Force definition of virtual function tables (C++).
Command line syntax

--force-vtbl

Description

Force definition of virtual function tables in cases where the heuristic used by the C++ compiler to decide
on definition of virtual function tables provides no guidance.

Related information

C++ compiler option --suppress-vtbl (Suppress definition of virtual function tables)

378

Tool Options

C++ compiler option: --friend-injection
Menu entry

Command line syntax

--friend-injection

Default: f ri end names are not injected.

Description

Controls whether the name of a class or function that is declared only in f r i end declarations is visible

when using the normal lookup mechanisms. When f r i end names are injected, they are visible to such
lookups. When f r i end names are not injected (as required by the standard), function names are visible
only when using argument-dependent lookup, and class hames are never visible.

Related information

C++ compiler option --no-arg-dep-lookup (Disable argument dependent lookup)

379

TASKING VX-toolset for ARM User Guide

C++ compiler option: --g++

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Allow GNU C++ extensions.
Command line syntax

-- g+

Description

Enable GNU C++ compiler language extensions.
Related information

Section 2.3, GNU Extensions

380

Tool Options

C++ compiler option: --gnu-version

Menu entry

Command line syntax
--gnu-versi on=versi on

Default: 30300 (version 3.3.0)
Description
It depends on the GNU C++ compiler version if a particular GNU extension is supported or not. With this

option you set the GNU C++ compiler version that should be emulated in GNU C++ mode. Version x.y.z
of the GNU C++ compiler is represented by the value x*10000+y*100+z.

Example

To specify version 3.4.1 of the GNU C++ compiler, enter:
cparm --g++ --gnu-versi on=30401 test.cc
Related information

Section 2.3, GNU Extensions

381

TASKING VX-toolset for ARM User Guide

C++ compiler option: --guiding-decls

Menu entry

Command line syntax

--gui di ng-decl s

Description

Enable recognition of "guiding declarations” of template functions. A guiding declaration is a function
declaration that matches an instance of a function template but has no explicit definition (since its definition
derives from the function template). For example:

template <class T> void f(T) { ... }
void f(int);

When regarded as a guiding declaration, f (i nt) is an instance of the template; otherwise, it is an
independent function for which a definition must be supplied.

Related information

C++ compiler option --old-specializations (Old-style template specializations)

382

Tool Options

C++ compiler option: --help (-?)

Menu entry

Command line syntax
--help[=item

-2

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify an argument you can list extended
information such as a list of option descriptions.

Example

The following invocations all display a list of the available command line options:
cparm-?

cparm --hel p

cparm

The following invocation displays an extended list of the available options:

cparm - - hel p=options

Related information

383

TASKING VX-toolset for ARM User Guide

C++ compiler option: --ignore-std

Menu entry

Command line syntax

--ignore-std

Description

Enable a GNU C++ compatibility feature that makes the st d namespace a synonym for the global
namespace.

Related information

384

Tool Options

C++ compiler option: --implicit-extern-c-type-conversion

Menu entry

Command line syntax
--inmplicit-extern-c-type-conversion
Description

Enable the implicit type conversion between pointerstoext ern " C' and ext er n " C++" function types.

Related information

385

TASKING VX-toolset for ARM User Guide

C++ compiler option: --implicit-include

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Implicit inclusion of source files for finding templates.
Command line syntax

--implicit-include

Description

Enable implicit inclusion of source files as a method of finding definitions of template entities to be
instantiated.

Related information
C++ compiler option --instantiate (Instantiation mode)

Section 2.5, Template Instantiation

386

Tool Options

C++ compiler option: --incl-suffixes

Menu entry

Command line syntax
--incl-suffixes=suffixes

Default: no extension and . st dh.

Description
Specifies the list of suffixes to be used when searching for an include file whose name was specified

without a suffix. If a null suffix is to be allowed, it must be included in the suffix list. suffixes is a
colon-separated list of suffixes (e.g., ": : st dh").

Example

To allow only the suffixes . h and . st dh as include file extensions, enter:
cparm --incl-suffixes=h:stdh test.cc

Related information

C++ compiler option --include-file (Include file at the start of a compilation)

Section 5.2, How the C++ Compiler Searches Include Files

387

TASKING VX-toolset for ARM User Guide

C++ compiler option: --include-directory (-)

Menu entry
1. Select C/C++ Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.
Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...
-lpath, ...

Description

Add path to the list of directories searched for #i ncl ude files whose names do not have an absolute
pathname. You can specify multiple directories separated by commas.

Example

To add the directory / pr oj / i ncl ude to the include file search path, enter:

cparm --include-directory=/proj/include test.cc

Related information

C++ compiler option --include-file (Include file at the start of a compilation)

C++ compiler option --sys-include (Add directory to system include file search path)

Section 5.2, How the C++ Compiler Searches Include Files

388

Tool Options

C++ compiler option: --include-file (-H)
Menu entry
1. Select C/C++ Compiler » Preprocessing.
The Pre-include files box shows the files that are currently included before the compilation starts.
2. To define a new file, click on the Add button in the Pre-include files box.
3. Type the full path and file name or select a file.

4. (Optional) Enable the option Include CMSIS device register definition header file.
Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax
--include-file=file
-Hfile

Description

Include the source code of the indicated file at the beginning of the compilation. This is the same as
specifying #i ncl ude "fil e" atthe beginning of each of your C++ sources.

Allfiles included with --include-file are processed after any of the files included with --include-macros-file.

The filename is searched for in the directories on the include search list.

Example

cparm--include-file=extra.h testl.cc test2.cc

The file ext r a. h is included at the beginning of both t est 1. cc and t est 2. cc.
Related information

C++ compiler option --include-directory (Add directory to include file search path)

Section 5.2, How the C++ Compiler Searches Include Files

389

TASKING VX-toolset for ARM User Guide

C++ compiler option: --include-macros-file

Menu entry

Command line syntax

--include-macros-file=file

Description

Include the macros of the indicated file at the beginning of the compilation. Only the preprocessing
directives from the file are evaluated. All of the actual code is discarded. The effect of this option is that
any macro definitions from the specified file will be in effect when the primary source file is compiled. All
of the macro-only files are processed before any of the normal includes (--include-file). Within each
group, the files are processed in the order in which they were specified.

Related information
C++ compiler option --include-file (Include file at the start of a compilation)

Section 5.2, How the C++ Compiler Searches Include Files

390

Tool Options

C++ compiler option: --init-priority

Menu entry

Command line syntax
--init-priority=nunber
Default: 0

Description

Normally, the C++ compiler assigns no priority to the global initialization functions and the exact order is
determined by the linker. This option sets the default priority for global initialization functions. Default
value is "0". You can also set the default priority with the #pragnma init _priority.

Values from 1 to 100 are for internal use only and should not be used. Values 101 to 65535 are available
for user code. A lower number means a higher priority.

Example
cparm--init-priority=101 test.cc

Related information

391

TASKING VX-toolset for ARM User Guide

C++ compiler option: --instantiate (-t)

Menu entry

1.

2.

Select C/C++ Compiler » Miscellaneous.

Select an instantiation mode in the Instantiation mode of external template entities box.

Command line syntax

--instanti at e=node

-t node

You can specify the following modes:

used

all

local

Default: --instantiate=used

Description

Control instantiation of external template entities. External template entities are external (that is, non-inline
and non-static) template functions and template static data members. The instantiation mode determines
the template entities for which code should be generated based on the template definition. Normally,
when a file is compiled, template entities are instantiated wherever they are used (the linker will discard
duplicate definitions). The overall instantiation mode can, however, be changed with this option. You can
specify the following modes:

used

all

local

Instantiate those template entities that were used in the compilation. This will include
all static data members for which there are template definitions. This is the default.

Instantiate all template entities declared or referenced in the compilation unit. For
each fully instantiated template class, all of its member functions and static data
members will be instantiated whether or not they were used. Non-member template
functions will be instantiated even if the only reference was a declaration.

Similar to --instantiate=used except that the functions are given internal linkage.
This is intended to provide a very simple mechanism for those getting started with
templates. The compiler will instantiate the functions that are used in each
compilation unit as local functions, and the program will link and run correctly (barring
problems due to multiple copies of local static variables). However, one may end
up with many copies of the instantiated functions, so this is not suitable for production
use.

You cannot use --instantiate=local in conjunction with automatic template instantiation.

392

Tool Options

Related information
C++ compiler option --no-auto-instantiation (Disable automatic C++ instantiation)

Section 2.5, Template Instantiation

393

TASKING VX-toolset for ARM User Guide

C++ compiler option: --io-streams

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ 1/O streams.
Command line syntax

--io-streans

Description

As /O streams require substantial resources they are disabled by default. Use this option to enable 1/0
streams support in the C++ library.

This option also enables exception handling.

Related information

394

C++ compiler option: --lambdas

Menu entry

Command line syntax
- -1 anbdas

- -no- | anbdas

Default: - - no- | anbdas

Default in C++0x mode: - - | anbdas

Description

Enable or disable support for C++0x lambdas.
This feature is implicitly enabled in C++0x mode.
Related information

C++ compiler option --c++0x (C++0x language extensions)

Tool Options

395

TASKING VX-toolset for ARM User Guide

C++ compiler option: --late-tiebreaker

Menu entry

Command line syntax
--late-tiebreaker

Default: early tiebreaker processing.

Description

Select the way that tie-breakers (e.g., cv-qualifier differences) apply in overload resolution. In "early"
tie-breaker processing, the tie-breakers are considered at the same time as other measures of the
goodness of the match of an argument value and the corresponding parameter type (this is the standard
approach).

In "late" tie-breaker processing, tie-breakers are ignored during the initial comparison, and considered

only if two functions are otherwise equally good on all arguments; the tie-breakers can then be used to
choose one function over another.

Related information

396

Tool Options

C++ compiler option: --list-file (-L)

Menu entry

Command line syntax

--list-file=file

-Lfile

Default: -1

Description

Generate raw listing information in the file. This information is likely to be used to generate a formatted
listing. The raw listing file contains raw source lines, information on transitions into and out of include
files, and diagnostics generated by the C++ compiler.

Each line of the listing file begins with a key character that identifies the type of line, as follows:

N
X

A normal line of source; the rest of the line is the text of the line.

The expanded form of a normal line of source; the rest of the line is the text of the line.
This line appears following the N line, and only if the line contains non-trivial modifications
(comments are considered trivial modifications; macro expansions, line splices, and
trigraphs are considered non-trivial modifications). Comments are replaced by a single
space in the expanded-form line.

A line of source skipped by an #i f or the like; the rest of the line is text. Note that the
#el se, #el i f, or #endi f that ends a skip is marked with an N.

An indication of a change in source position. The line has a format similar to the #
line-identifying directive output by the C preprocessor, that is to say

L line_nunber "file-name" [key]

where key is, 1 for entry into an include file, or 2 for exit from an include file, and omitted
otherwise.

The first line in the raw listing file is always an L line identifying the primary input file. L

lines are also output for #line directives (key is omitted). L lines indicate the source position
of the following source line in the raw listing file.

397

TASKING VX-toolset for ARM User Guide

Example

An indication of a diagnostic (R for remark, W for warning, E for error, and C for catastrophic
error). The line has the form:

S "file-name" |ine_nunber colum-nunber message-text

where Sis R, W, E, or C, as explained above. Errors at the end of file indicate the last line
of the primary source file and a column number of zero. Command line errors are
catastrophes with an empty file name (") and a line and column number of zero. Internal
errors are catastrophes with position information as usual, and message-text beginning
with (internal error). When a diagnostic displays a list (e.g., all the contending routines
when there is ambiguity on an overloaded call), the initial diagnostic line is followed by
one or more lines with the same overall format (code letter, file name, line number, column
number, and message text), but in which the code letter is the lowercase version of the
code letter in the initial line. The source position in such lines is the same as that in the
corresponding initial line.

To write raw listing information to the file t est . | st , enter:

cparm--list-file=test.lst test.cc

Related information

398

Tool Options

C++ compiler option: --long-lifetime-temps

Menu entry

Command line syntax
--long-lifetine-tenps
Description

Select the lifetime for temporaries: short means to end of full expression; long means to the earliest of
end of scope, end of switch clause, or the next label. Short is the default.

Related information

399

TASKING VX-toolset for ARM User Guide

C++ compiler option: --long-long

Menu entry

Command line syntax

--long-1ong

Description

Permit the use of | ong | ong in strict mode in dialects in which it is non-standard.

Related information

400

Tool Options

C++ compiler option: --make-target

Menu entry

Command line syntax

- -make-t ar get =nane

Description

With this option you can overrule the default target name in the make dependencies generated by the

options --preprocess=+make (-Em) and --dep-file. The default target name is the basename of the input
file, with extension . obj .

Example
cparm - - preprocess=+nake --nake-target=nytarget.obj test.cc

The compiler generates dependency lines with the default target name nyt ar get . obj instead of
test.obj.

Related information
C++ compiler option --preprocess=+make (Generate dependencies for make)

C++ compiler option --dep-file (Generate dependencies in a file)

401

TASKING VX-toolset for ARM User Guide

C++ compiler option: --multibyte-chars
Menu entry

Command line syntax

--nmul ti byte-chars

Default: multibyte character sequences are not allowed.
Description

Enable processing for multibyte character sequences in comments, string literals, and character constants.
Multibyte encodings are used for character sets like the Japanese SJIS.

Related information

402

Tool Options

C++ compiler option: --namespaces

Menu entry

Command line syntax
- - hanespaces
--NOo- hanespaces

Default: namespaces are supported.

Description

When you used option --embedded-c++ namespaces are disabled. With option --namespaces you can
enable support for namespaces in this case.

The macro __NAMESPACES is defined when namespace support is enabled.
Related information

C++ compiler option --embedded-c++ (Embedded C++ compliancy tests)
C++ compiler option --using-std (Implicit use of the std namespace)

Section 2.4, Namespace Support

403

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-arg-dep-lookup

Menu entry

Command line syntax

--no- ar g- dep- | ookup

Default: argument dependent lookup of unqualified function names is performed.
Description

With this option you disable argument dependent lookup of unqualified function names.

Related information

404

Tool Options

C++ compiler option: --no-array-new-and-delete

Menu entry

Command line syntax
--no-array-new and- del ete

Default: array new and delete are supported.
Description

Disable support for array new and delete.

The macro __ ARRAY_OPERATCRS is defined when array new and delete is enabled.

Related information

405

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-auto-instantiation

Menu entry

Command line syntax

--no-auto-instantiation

Default: the C++ compiler automatically instantiates templates.
Description

With this option automatic instantiation of templates is disabled.
Related information

C++ compiler option --instantiate (Set instantiation mode)

Section 2.5, Template Instantiation

406

Tool Options

C++ compiler option: --no-auto-storage

Menu entry

Command line syntax

- - no- aut o- st or age

Default: aut o is a storage class specifier.

Description

Disable the traditional meaning of aut o keyword as a storage class specifier.
Related information

C++ compiler option --auto-type (aut o can be used as type specifier)

407

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-bool

Menu entry

Command line syntax

- - no- bool

Default: bool is recognized as a keyword.
Description

Disable recognition of the bool keyword.

The macro _BOCL is defined when bool is recognized as a keyword.

Related information

408

Tool Options

C++ compiler option: --no-class-name-injection

Menu entry

Command line syntax

--no-cl ass-nane-injection

Default: the name of a class is injected into the scope of the class (as required by the standard).
Description

Do not inject the name of a class into the scope of the class (as was true in earlier versions of the C++
language).

Related information

409

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-const-string-literals

Menu entry

Command line syntax
--no-const-string-literals

Default: C++ string literals and wide string literals are const (as required by the standard).

Description

With this option C++ string literals and wide string literals are non-const (as was true in earlier versions
of the C++ language).

Related information

410

Tool Options

C++ compiler option: --no-dep-name
Menu entry

Command line syntax

- - no- dep- nane

Default: dependent name processing is enabled.
Description

Disable dependent name processing; i.e., the special lookup of names used in templates as required by
the C++ standard. This option implies the use of --no-parse-templates.

Related information

C++ compiler option --no-parse-templates (Disable parsing of nonclass templates)

411

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-distinct-template-signatures

Menu entry

Command line syntax

--no-distinct-tenpl at e-si gnatures

Description

Control whether the signatures for template functions can match those for non-template functions when
the functions appear in different compilation units. By default a normal function cannot be used to satisfy
the need for a template instance; e.g., a function "voi d f (i nt)" could not be used to satisfy the need
for an instantiation of a template "voi d f(T)"with T settoi nt.

--no-distinct-template-signatures provides the older language behavior, under which a non-template
function can match a template function. Also controls whether function templates may have template
parameters that are not used in the function signature of the function template.

Related information

412

Tool Options

C++ compiler option: --no-double (-F)

Menu entry
1. Select C/C++ Compiler » Language.

2. Enable the option Treat double as float.
Command line syntax

--no-doubl e

-F

Description

With this option you tell the C++ compiler to treat variables of the type doubl e as f | oat . Because the
float type takes less space, execution speed increases and code size decreases, both at the cost of less
precision.

Example
cparm --no-double test.cc

The file t est . cc is compiled where variables of the type double are treated as float.

Related information

413

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-enum-overloading

Menu entry

Command line syntax

--no-enum overl oadi ng

Description

Disable support for using operator functions to overload built-in operations on enum-typed operands.

Related information

414

Tool Options

C++ compiler option: --no-explicit

Menu entry

Command line syntax
--no-explicit
Default: the expl i ci t specifier is allowed.

Description

Disable support for the expl i ci t specifier on constructor declarations.

Related information

415

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-export

Menu entry

Command line syntax

- - no- export

Default: exported templates (declared with the keyword expor t) are allowed.
Description

Disable recognition of exported templates. This option requires that dependent name processing be done,
and cannot be used with implicit inclusion of template definitions.

Related information

Section 2.5.5, Exported Templates

416

Tool Options

C++ compiler option: --no-extern-inline

Menu entry

Command line syntax
--no-extern-inline

Default: i nl i ne functions are allowed to have external linkage.

Description

Disable support for i nl i ne functions with external linkage in C++. When i nl i ne functions are allowed
to have external linkage (as required by the standard), then ext ern andi nl i ne are compatible specifiers
on a non-member function declaration; the default linkage when i nl i ne appears alone is external (that
is, i nl i ne means ext ern i nl i ne on non-member functions); and ani nl i ne member function takes
on the linkage of its class (which is usually external). However, when i nl i ne functions have only internal
linkage (using --no-extern-inline), then ext ern and i nl i ne are incompatible; the default linkage when
i nl i ne appears alone is internal (thatis, i nl i ne means st ati ¢ i nli ne on non-member functions);
and i nl i ne member functions have internal linkage no matter what the linkage of their class.

Related information

Section 2.7, Extern Inline Functions

417

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-for-init-diff-warning
Menu entry

Command line syntax

--no-for-init-diff-warning

Description

Disable a warning that is issued when programs compiled without the --old-for-init option would have
had different behavior under the old rules.

Related information

C++ compiler option --old-for-init (Use old for scoping rules)

418

Tool Options

C++ compiler option: --no-implicit-typename
Menu entry

Command line syntax

--no-inplicit-typenane

Default: implicit typename determination is enabled.
Description

Disable implicit determination, from context, whether a template parameter dependent name is a type or
nontype.

Related information

C++ compiler option --no-typename (Disable the typename keyword)

419

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-inlining

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Disable the option Minimal inlining of function calls (C++).
Command line syntax

--no-inlining

Description

Disable minimal inlining of function calls.

Related information

420

Tool Options

C++ compiler option: --nonconst-ref-anachronism

Menu entry

Command line syntax
--nonconst -r ef -anachroni sm
--no-nonconst -ref -anachroni sm

Default: - - no- nonconst - r ef - anachr oni sm

Description

Enable or disable the anachronism of allowing a reference to nonconst to bind to a class rvalue of the
right type. This anachronism is also enabled by the --anachronisms option.

Related information
C++ compiler option --anachronisms (Enable C++ anachronisms)

Section 2.2.3, Anachronisms Accepted

421

TASKING VX-toolset for ARM User Guide

C++ compiler option: --nonstd-default-arg-deduction

Menu entry

Command line syntax

--nonst d- def aul t - ar g- deduct i on

Description

Controls whether default arguments are retained as part of deduced function types. The C++ standard
requires that default arguments not be part of deduced function types. This option changes that behavior.

Related information

422

Tool Options

C++ compiler option: --nonstd-instantiation-lookup

Menu entry
Command line syntax

--nonstd-instantiation-lookup

Description

Controls whether the lookup of names during template instantiation should, instead of the normal lookup
rules, use rules that were part of the C++98 working paper for some time during the development of the
standard. In this mode, names are looked up in both the namespace of the template definition and in the

namespace in which a template entity was first referenced in a way that would require an instantiation.

Related information

423

TASKING VX-toolset for ARM User Guide

C++ compiler option: --nonstd-qualifier-deduction

Menu entry

Command line syntax

--nonstd-qualifier-deduction

Description

Controls whether non-standard template argument deduction should be performed in the qualifier portion
of a qualified name. With this feature enabled, a template argument for the template parameter T can be
deduced in contexts like A<T>: : Bor T: : B. The standard deduction mechanism treats these as
non-deduced contexts that use the values of template parameters that were either explicitly specified or
deduced elsewhere.

Related information

424

Tool Options

C++ compiler option: --nonstd-using-decl

Menu entry

Command line syntax
- -nonst d- usi ng- decl

Default: non-standard using declarations are not allowed.

Description

Allow a non-member using declaration that specifies an unqualified name.

Related information

425

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-parse-templates

Menu entry

Command line syntax

--no- parse-tenpl ates

Default: parsing of nonclass templates is enabled.
Description

Disable the parsing of nonclass templates in their generic form (i.e., even if they are not really instantiated).
It is done by default if dependent name processing is enabled.

Related information

C++ compiler option --no-dep-name (Disable dependent name processing)

426

Tool Options

C++ compiler option: --no-pch-messages

Menu entry

Command line syntax
--no- pch- nessages

Default: a message is displayed indicating that a precompiled header file was created or used in the
current compilation. For example,

"test.cc": creating preconpiled header file "test.pch"

Description

Disable the display of a message indicating that a precompiled header file was created or used in the
current compilation.

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --use-pch (Use precompiled header file)

C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

427

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-preprocessing-only

Menu entry

Eclipse always does a full compilation.

Command line syntax

- - no- preprocessi ng-only

Description

You can use this option in conjunction with the options that normally cause the C++ compiler to do
preprocessing only (e.g., --preprocess, etc.) to specify that a full compilation should be done (not just

preprocessing). When used with the implicit inclusion option, this makes it possible to generate a
preprocessed output file that includes any implicitly included files.

Example

cparm --preprocess --inplicit-include --no-preprocessing-only test.cc

Related information
C++ compiler option --preprocess (Preprocessing only)

C++ compiler option --implicit-include (Implicit source file inclusion)

428

Tool Options

C++ compiler option: --no-stdarg-builtin

Menu entry

Command line syntax

--no-stdarg-builtin

Description

Disable special treatment of the st dar g. h header. When enabled, the st dar g. h header is treated as
a built-in, and references to its macros ("va_st art " et al) are passed through as such in generated C

code.

Related information

429

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-stdinc / --no-stdstlinc

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --no-stdinc or --no-stdstlinc to the Additional options field.
Command line syntax

--no-stdinc

--no-stdstlinc

Description

With option --no-stdinc you tell the C++ compiler not to look in the default i ncl ude directory relative to
the installation directory, when searching for standard include files.

With option --no-stdstlinc you tell the C++ compiler not to look in the default i ncl ude. st directory
relative to the installation directory, when searching for standard STL include files.

This way the C++ compiler only searches in the include file search paths you specified.

Related information

Section 5.2, How the C++ Compiler Searches Include Files

430

Tool Options

C++ compiler option: --no-typename

Menu entry

Command line syntax

--no-typenane

Default: t ypenane is recognized as a keyword.
Description

Disable recognition of the t ypenane keyword.
Related information

C++ compiler option --no-implicit-typename (Disable implicit typename determination)

431

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-use-before-set-warnings (-j)

Menu entry

1. Select C/C++ Compiler » Diagnostics.

2. Enable the option Suppress C++ compiler "used before set" warnings.
Command line syntax

- - no- use- bef or e- set - war ni ngs

-]

Description

Suppress warnings on local automatic variables that are used before their values are set.
Related information

C++ compiler option --no-warnings (Suppress all warnings)

432

C++ compiler option: --no-warnings (-w)
Menu entry

1. Select C/C++ Compiler » Diagnostics.

2. Enable the option Suppress all warnings.
Command line syntax

- - no- war ni ngs

-w

Description

With this option you suppress all warning messages. Error messages are still issued.

Related information

C++ compiler option --warnings-as-errors (Treat warnings as errors)

Tool Options

433

TASKING VX-toolset for ARM User Guide

C++ compiler option: --nullptr

Menu entry

Command line syntax

--null ptr

--no-null ptr

Default: - - no- nul | ptr

Default in C++0x mode: - - nul | ptr

Description

Enable or disable support for the C++0x nul | pt r keyword.
This feature is implicitly enabled in C++0x mode.

Related information

C++ compiler option --c++0x (C++0x language extensions)

434

Tool Options

C++ compiler option: --old-for-init
Menu entry

Command line syntax

--old-for-init

Description

Control the scope of a declarationinaf or-i ni t - st at ement . The old (cfront-compatible) scoping rules

mean the declaration is in the scope to which the f or statement itself belongs; the default
(standard-conforming) rules in effect wrap the entire f or statement in its own implicitly generated scope.

Related information

C++ compiler option --no-for-init-diff-warning (Disable warning for old for-scoping)

435

TASKING VX-toolset for ARM User Guide

C++ compiler option: --old-line-commands

Menu entry

Command line syntax

--ol d-1ine-conmmands

Description

When generating source output, put out #line directives in the form # nnn instead of #line nnn.
Example

To do preprocessing only, without comments and with old style line control information, enter:
cparm --preprocess --old-1ine-comands test.cc

Related information

C++ compiler option --preprocess (Preprocessing only)

436

Tool Options

C++ compiler option: --old-specializations

Menu entry

Command line syntax

--ol d-speci al i zati ons

Description

Enable acceptance of old-style template specializations (that is, specializations that do not use the
t enpl at e<> syntax).

Related information

437

TASKING VX-toolset for ARM User Guide

C++ compiler option: --option-file (-f)

Menu entry

Command line syntax
--option-file=file
-f file

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the C++ compiler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

» Multiple arguments on one line in the option file are allowed.

» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a double quote " enbedded
"This has a double quote " and a single quote '"' enbedded"
» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
li ne"

-> "This is a continuation |ine"

* Itis possible to nest command line files up to 25 levels.

438

Tool Options

Example

Suppose the file myopt i ons contains the following lines:
- - enbedded- c++

- - def i ne=DEMO=1

test.cc

Specify the option file to the C++ compiler:

cparm --option-fil e=nyoptions

This is equivalent to the following command line:

cparm - - enbedded- c++ --defi ne=DEMO=1 test.cc

Related information

439

TASKING VX-toolset for ARM User Guide

C++ compiler option: --output (-0)

Menu entry

Eclipse names the output file always after the C++ source file.

Command line syntax
--output-file=file
-o file

Default: module name with . i ¢ suffix.

Description

With this option you can specify another filename for the output file of the C++ compiler. Without this
option the basename of the C++ source file is used with extension . i c.

You can also use this option in combination with the option --preprocess (-E) to redirect the preprocessing
output to a file.

Example

To create the file out put . i ¢ instead of t est . i ¢, enter:
cparm - -out put =out put.ic test.cc

To use the file ny. pr e as the preprocessing output file, enter:
cparm - -preprocess --output=ny.pre test.cc
Related information

C++ compiler option --preprocess (Preprocessing)

440

Tool Options

C++ compiler option: --pch

Menu entry
1. Select C/C++ Compiler » Precompiled C++ Headers.

2. Enable the option Automatically use/create precompiled header file.
Command line syntax

--pch

Description

Automatically use and/or create a precompiled header file. If --use-pch or --create-pch (manual PCH
mode) appears on the command line following this option, its effect is erased.

Related information
C++ compiler option --use-pch (Use precompiled header file)
C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

441

TASKING VX-toolset for ARM User Guide

C++ compiler option: --pch-dir
Menu entry

1. Select C/C++ Compiler » Precompiled C++ Headers.

2. Enter a path in the Precompiled header file directory.
Command line syntax

--pch-dir=directory-nanme

Description

Specify the directory in which to search for and/or create a precompiled header file. This option may be
used with automatic PCH mode (--pch) or manual PCH mode (--create-pch or --use-pch).

Example
To use the directory c: \ usr\'i ncl ude\ pch to automatically create precompiled header files, enter:

cparm --pch-dir=c:\usr\include\pch --pch test.cc

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --use-pch (Use precompiled header file)

C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

442

Tool Options

C++ compiler option: --pch-verbose

Menu entry
Command line syntax
--pch-verbose

Description

In automatic PCH mode, for each precompiled header file that cannot be used for the current compilation,
a message is displayed giving the reason that the file cannot be used.

Example

cparm--pch --pch-verbose test.cc

Related information
C++ compiler option --pch (Automatic PCH mode)

Section 2.10, Precompiled Headers

443

TASKING VX-toolset for ARM User Guide

C++ compiler option: --pending-instantiations

Menu entry

Command line syntax
--pendi ng-instantiati ons=n
where n is the maximum number of instantiations of a single template.

Default: 64
Description
Specifies the maximum number of instantiations of a given template that may be in process of being

instantiated at a given time. This is used to detect runaway recursive instantiations. If n is zero, there is
no limit.

Example

To specify a maximum of 32 pending instantiations, enter:
cparm --pendi ng-instanti ati ons=32 test.cc
Related information

Section 2.5, Template Instantiation

444

Tool Options

C++ compiler option: --preprocess (-E)

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.
4. (Optional) Enable the option Keep #line info in preprocessor output.
Command line syntax

- - preprocess[=fl ags]

-E[fl ags]

You can set the following flags:

+/-comments c/C keep comments

+/-includes il generate a list of included source files
+/-make m/M generate dependencies for make
+/-noline p/P strip #line source position information

Default: - ECI MP

Description

With this option you tell the C++ compiler to preprocess the C++ source. Under Eclipse the C++ compiler
sends the preprocessed output to the file name. pr e (where name is the name of the C++ source file to
compile). Eclipse also compiles the C++ source.

On the command line, the C++ compiler sends the preprocessed file to st dout . To capture the information
in a file, specify an output file with the option --output.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C++ source
file in the preprocessed output.

With --preprocess=+includes the C++ compiler will generate a list of all included source files. The
preprocessor output is discarded.

With --preprocess=+make the C++ compiler will generate dependency lines that can be used in a
Makefile. The preprocessor output is discarded. The default target name is the basename of the input
file, with the extension . obj . With the option --make-target you can specify a target name which overrules
the default target name.

When implicit inclusion of templates is enabled, the output may indicate false (but safe)
dependencies unless --no-preprocessing-only is also used.

445

TASKING VX-toolset for ARM User Guide

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #l i ne). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example
cparm - - preprocess=+coments, - make, -noline test.cc --output=test.pre

The C++ compiler preprocesses the file t est . cc and sends the output to the file t est . pr e. Comments
are included but no dependencies are generated and the line source position information is not stripped
from the output file.

Related information
C++ compiler option --no-preprocessing-only (Force full compilation)
C++ compiler option --dep-file (Generate dependencies in a file)

C++ compiler option --make-target (Specify target name for -Em output)

446

Tool Options

C++ compiler option: --remarks (-r)

Menu entry

1. Select C/C++ Compiler » Diagnostics.

2. Enable the option Issue remarks on C++ code.

Command line syntax

--renmarks

-r

Description

Issue remarks, which are diagnostic messages even milder than warnings.
Related information

Section 5.3, C++ Compiler Error Messages

447

TASKING VX-toolset for ARM User Guide

C++ compiler option: --remove-unneeded-entities

Menu entry

Command line syntax

--renove- unneeded-entities

Description

Enable an optimization to remove types, variables, routines, and related constructs that are not really
needed. Something may be referenced but unneeded if it is referenced only by something that is itself

unneeded; certain entities, such as global variables and routines defined in the translation unit, are always
considered to be needed.

Related information

448

Tool Options

C++ compiler option: --rtti

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ RTTI (run-time type information).
Command line syntax

--rtti

Default: RTTI (run-time type information) features are disabled.

Description

Enable support for RTTI (run-time type information) features: dynam c_cast , t ypei d.

The macro __RTTI is defined when RTTI support is enabled.

Related information

449

TASKING VX-toolset for ARM User Guide

C++ compiler option: --rvalue-ctor-is-not-copy-ctor

Menu entry

Command line syntax

--rval ue-ctor-is-not-copy-ctor

Description

Do not treat an rvalue (or "move") constructor as a copy constructor. In the default situation, where rvalue
constructors are treated as copy constructors, a user-declared rvalue constructor will inhibit the implicit

generation of a traditional copy constructor.

Related information

450

C++ compiler option: --rvalue-refs

Menu entry

Command line syntax

--rvalue-refs

--no-rval ue-refs

Default: - - no-rval ue-refs

Default in C++0x mode: - - r val ue-refs
Description

Enable or disable support for rvalue references.
This feature is implicitly enabled in C++0x mode.
Related information

C++ compiler option --c++0x (C++0x language extensions)

Tool Options

451

TASKING VX-toolset for ARM User Guide

C++ compiler option: --schar (-s)

Menu entry

1. Select C/C++ Compiler » Language.

2. Disable the option Treat "char" variables as unsigned.
Command line syntax

--schar

-s

Description

With this option char is the same as si gned char . This is the default.
When plain char is signed, the macro __SI GNED_CHARS__ is defined.
Related information

C++ compiler option --uchar (Plain char is unsigned)

Section 1.1, Data Types

452

Tool Options

C++ compiler option: --special-subscript-cost

Menu entry

Command line syntax

--speci al -subscri pt - cost

Description

Enable a special nonstandard weighting of the conversion to the integral operand of the [] operator in
overload resolution.

This is a compatibility feature that may be useful with some existing code. With this feature enabled, the
following code compiles without error:

struct A {
AQ);
operator int *();
int operator[](unsigned);

H
void main() {
A a;
a[0]; /1 Anmbi guous, but allowed with this option
/1 operator[] is chosen
}

Related information

453

TASKING VX-toolset for ARM User Guide

C++ compiler option: --strict (-A)

Menu entry

1. Select C/C++ Compiler » Language.

2. Disable the option Allow non-ANSI/ISO C++ features.
Command line syntax

--strict

-A

Default: non-ANSI/ISO C++ features are enabled.
Description

Enable strict ANSI/ISO mode, which provides diagnostic messages when non-standard features are used,
and disables features that conflict with ANSI/ISO C or C++. All ANSI/ISO violations are issued as errors.

Example

To enable strict ANSI mode, with error diagnostic messages, enter:
cparm--strict test.cc

Related information

C++ compiler option --strict-warnings (Strict ANSI/ISO mode with warnings)

454

Tool Options

C++ compiler option: --strict-warnings (-a)

Menu entry

Command line syntax

--strict-warnings

-a

Default: non-ANSI/ISO C++ features are enabled.

Description

This option is similar to the option --strict, but all violations are issued as warnings instead of errors.
Example

To enable strict ANSI mode, with warning diagnostic messages, enter:
cparm --strict-warnings test.cc

Related information

C++ compiler option --strict (Strict ANSI/ISO mode with errors)

455

TASKING VX-toolset for ARM User Guide

C++ compiler option: --suppress-vtbl

Menu entry
1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Suppress definition of virtual function tables (C++).

Command line syntax

- - suppress- vt bl

Description

Suppress definition of virtual function tables in cases where the heuristic used by the C++ compiler to
decide on definition of virtual function tables provides no guidance. The virtual function table for a class
is defined in a compilation if the compilation contains a definition of the first non-inline non-pure virtual
function of the class. For classes that contain no such function, the default behavior is to define the virtual
function table (but to define it as a local static entity). The --suppress-vtbl option suppresses the definition
of the virtual function tables for such classes, and the --force-vtbl option forces the definition of the virtual
function table for such classes. --force-vtbl differs from the default behavior in that it does not force the
definition to be local.

Related information

C++ compiler option --force-vtbl (Force definition of virtual function tables)

456

Tool Options

C++ compiler option: --sys-include
Menu entry

Command line syntax
--sys-include=directory, ...
Description

Change the algorithm for searching system include files whose names do not have an absolute pathname
to look in directory.

Example

To add the directory c: \ proj \'i ncl ude to the system include file search path, enter:
cparm --sys-include=c:\proj\include test.cc

Related information

C++ compiler option --include-directory (Add directory to include file search path)

Section 5.2, How the C++ Compiler Searches Include Files

457

TASKING VX-toolset for ARM User Guide

C++ compiler option: --template-directory

Menu entry

Command line syntax

--tenplate-directory=directory, ...

Description

Specifies a directory hame to be placed on the exported template search path. The directories are used

to find the definitions of exported templates (. et files) and are searched in the order in which they are
specified on the command line. The current directory is always the first entry on the search path.

Example

To add the directory export to the exported template search path, enter:
cparm--tenpl ate-directory=export test.cc

Related information

Section 2.5.5, Exported Templates

458

Tool Options

C++ compiler option: --template-typedefs-in-diagnostic

Menu entry

Command line syntax

--tenpl ate-typedefs-in-diagnostic

Default: typedefs declared in template classes are not replaced with their underlying type.
Description

Enable the replacement of typedefs declared in template classes with their underlying type. Diagnostic
messages are often more useful when such typedefs are replaced.

Related information

459

TASKING VX-toolset for ARM User Guide

C++ compiler option: --thumb

Menu entry

1. Select C/C++ Compiler » Code Generation.
2. Enable the option Use Thumb instruction set.
Command line syntax

--thunb

Description

Generate code in Thumb mode. The Thumb instruction set is a subset of the ARM instruction set which
is encoded using 16-bit instructions instead of 32-bit instructions.

The macro __ THUMB__ is defined when the Thumb mode is enabled.

Related information

460

Tool Options

C++ compiler option: --timing
Menu entry

Command line syntax

--timng

Default: no timing information is generated.
Description

Generate compilation timing information. This option causes the C++ compiler to display the amount of
CPU time and elapsed time used by each phase of the compilation and a total for the entire compilation.

Example
cparm--tinmng test.cc
processed 180 lines at 8102 lines/mn

Related information

461

TASKING VX-toolset for ARM User Guide

C++ compiler option: --trace-includes

Menu entry
Command line syntax
--trace-incl udes
Description

Output a list of the names of files #included to the error output file. The source file is compiled normally
(i.e. it is not just preprocessed) unless another option that causes preprocessing only is specified.

Example
cparm--trace-includes test.cc

iostreamh
string.h

Related information

C++ compiler option --preprocess (Preprocessing only)

462

Tool Options

C++ compiler option: --type-traits-helpers

Menu entry

Command line syntax
--type-traits-hel pers
--no-type-traits-hel pers

Default: in C++ mode type traits helpers are enabled by default. In GNU C++ mode, type traits helpers
are never enabled by default.

Description

Enable or disable type traits helpers (like __i s_uni onand __has_vi rt ual _dest ruct or). Type traits
helpers are meant to ease the implementation of ISO/IEC TR 19768.

The macro __TYPE_TRAI TS_ENABLED is defined when type traits pseudo-functions are enabled.

Related information

463

TASKING VX-toolset for ARM User Guide

C++ compiler option: --uchar (-u)

Menu entry
1. Select C/C++ Compiler » Language.

2. Enable the option Treat "char" variables as unsigned.
Command line syntax

- -uchar

-u

Description

By default char is the same as specifying si gned char . With this option char is the same as unsi gned
char.

Related information
C++ compiler option --schar (Plain char is signed)

Section 1.1, Data Types

464

Tool Options

C++ compiler option: --uliterals

Menu entry

Command line syntax
--uliterals

Default: U-literals are not recognized.

Description

Enable recognition of U-literals (string literals of the forms U'. . . " and u". . . ", and character literals of

theformsU ..." andu'...").

Related information

465

TASKING VX-toolset for ARM User Guide

C++ compiler option: --undefine (-U)

Menu entry
1. Select C/C++ Compiler » Preprocessing
The Defined symbols box shows the symbols that are currently defined.

2. Toremove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax
--undefi ne=nmacr o_nane

- Uracr o_nane

Description

Remove any initial definition of macro_name as in #undef . --undefine options are processed after all
--define options have been processed.

You cannot undefine a predefined macro as specified in Section 2.9, Predefined Macros, except for:

STDC

__cplusplus
__SIGNED_CHARS__
Example
To undefine the predefined macro __cpl uspl us:
cparm - -undefine=__cpl usplus test.cc
Related information
C++ compiler option --define (Define preprocessor macro)

Section 2.9, Predefined Macros

466

Tool Options

C++ compiler option: --use-pch

Menu entry
1. Select C/C++ Compiler » Precompiled C++ Headers.

2. Enter a filename in the Use precompiled header file field.
Command line syntax

--use-pch=fil enane

Description

Use a precompiled header file of the specified name as part of the current compilation. If --pch (automatic
PCH mode) or --create-pch appears on the command line following this option, its effect is erased.

Example

To use the precompiled header file with the name t est . pch, enter:
cparm --use-pch=test.pch test.cc

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

467

TASKING VX-toolset for ARM User Guide

C++ compiler option: --using-std

Menu entry

Command line syntax

--using-std

Default: implicit use of the st d namespace is disabled.
Description

Enable implicit use of the st d namespace when standard header files are included. Note that this does
not do the equivalent of putting a "usi ng nanmespace std; " in the program to allow old programs to
be compiled with new header files; it has a special and localized meaning related to the TASKING versions
of certain header files, and is unlikely to be of much use to end-users of the TASKING C++ compiler.

Related information
C++ compiler option --namespaces (Support for namespaces)

Section 2.4, Namespace Support

468

C++ compiler option: --variadic-macros

Menu entry

Command line syntax

--vari adi c- macr os

--no-vari adi c- macr os

Default: - - no- vari adi c- macr os

Default in C++0x mode: - - var i adi c- nacr os

Description

Allow or do not allow macros with a variable number of arguments.

This feature is implicitly enabled in C++0x mode.

Related information

C++ compiler option --extended-variadic-macros (Allow extended variadic macros)

C++ compiler option --c++0x (C++0x language extensions)

Tool Options

469

TASKING VX-toolset for ARM User Guide

C++ compiler option: --version (-V)

Menu entry

Command line syntax

--version
-V
Description

Display version information. The C++ compiler ignores all other options or input files.

470

Tool Options

C++ compiler option: --vla

Menu entry

Command line syntax
--vla
Description

Enable support for variable length arrays. This allows the declaration and use of arrays of automatic
storage duration with dimensions that are fixed at run-time.

471

TASKING VX-toolset for ARM User Guide

C++ compiler option: --warnings-as-errors

Menu entry
1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber, ...]

Description

If the C++ compiler encounters an error, it stops compiling. When you use this option without arguments,
you tell the C++ compiler to treat all warnings as errors. This means that the exit status of the C++ compiler
will be non-zero after one or more compiler warnings. As a consequence, the C++ compiler now also
stops after encountering a warning.

You can limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

C++ compiler option --no-warnings (Suppress all warnings)

472

C++ compiler option: --wchar_t-keyword

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Allow the 'wchar_t' keyword (C++).
Command line syntax

--wchar _t - keyword

Default: wehar _t is not recognized as a keyword.

Description

Enable recognition of wchar _t as a keyword.

The macro _WCHAR T is defined when wchar _t is recognized as a keyword.

Related information

Tool Options

473

TASKING VX-toolset for ARM User Guide

C++ compiler option: --xref-file (-X)

Menu entry

Command line syntax
--xref-file=file
-Xfile

Description

Generate cross-reference information in a file. For each reference to an identifier in the source program,
a line of the form

synmbol _id nane X file-nanme |ine-nunber col um-nnunber

is written, where X is

for definition;

for declaration (that is, a declaration that is not a definition);
for modification;

for address taken;

for used;

O C >» Z 2 0O

for changed (but actually meaning used and modified in a single operation, such as an
increment);

Py

for any other kind of reference, or
E for an error in which the kind of reference is indeterminate.

symbol-id is a unique decimal number for the symbol. The fields of the above line are separated by tab
characters.

Related information

474

Tool Options

11.4. Assembler Options

This section lists all assembler options. All options are the same for all three assemblers, asarm (mixed
ARM/Thumb), asarma (ARM only) and asarmt (Thumb only). In the examples we only use asarm.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the assembler via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the assembler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.
Because Eclipse uses the control program, Eclipse automatically precedes the option with -Wa to

pass the option via the control program directly to the assembler.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -V displays version header information and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

asarm-|l -LeMtest.src
asarm--list-file --list-format=+synbol,-nmacro test.src

When you do not specify an option, a default value may become active.

475

TASKING VX-toolset for ARM User Guide

Assembler option: --case-insensitive (-¢)

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.
Command line syntax

--case-insensitive

-C

Default: case sensitive

Description

With this option you tell the assembler not to distinguish between uppercase and lowercase characters.
By default the assembler considers uppercase and lowercase characters as different characters.

Assembly source files that are generated by the compiler must always be assembled case sensitive.
When you are writing your own assembly code, you may want to specify the case insensitive mode.

Example
When assembling case insensitive, the label Label Nane is the same label as | abel nane.

asarm --case-insensitive test.src

Related information

476

Tool Options

Assembler option: --check

Menu entry

Command line syntax
- -check
Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application.

The assembler reports any warnings and/or errors.
This option is available on the command line only.
Related information

C compiler option --check (Check syntax)

477

TASKING VX-toolset for ARM User Guide

Assembler option: --code-endianness

Menu entry

Command line syntax
- -code- endi anness=endi anness

You can specify the following endianness:

big b Big endian
little | Little endian (default)
Description

This option tells the assembler what code endianness you want, little-endian (least significant byte of a
word at lowest byte code address) or big-endian (most significant byte of a word at lowest byte code
address). The code endianness used must be a valid one for the architecture you are assembling for.
This option is only available for ARMV7R.

Related information

Assembler option --endianness (Data endianness)

478

Tool Options

Assembler option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. Fromthe Processor selection list, make a selection by Architecture, Core one of the manufacturers.
Command line syntax

--cpu=architecture

-Carchitecture

You can specify the following architectures:

ARMv6M Assemble for ARMv6-M architecture

ARMvV7M Assemble for ARMv7-M architecture

ARMvV7EM Assemble for ARMv7E-M architecture

ARMV7R Assemble for ARMv7-R architecture
Description

With this option you specify the ARM architecture for which you create your application. The architecture
determines which instructions are valid and which are not. The default architecture is ARMv7M and the
complete list of supported architectures is: ARMv6-M, ARMv7-M, ARMV7E-M or ARMv7-R.

Assembly code can check the value of the option by means of the built-in function @CPU() . Architecture
ARMv7-M only supports the Thumb-2 instruction set, i.e. it has no ARM execution state.

To avoid conflicts, make sure you specify the same architecture as you did for the compiler (Eclipse and
the control program do this automatically).

Related information
Assembly function @PU()
Control program option --cpu (Select architecture)

C compiler option --cpu (Select architecture)

479

TASKING VX-toolset for ARM User Guide

Assembler option: --debug-info (-g)

Menu entry
1. Select Assembler » Symbols.

2. Select an option from the Generate symbolic debug list.
Command line syntax

- -debug-i nf o[=f | ags]

-g[flags]

You can set the following flags:

+/-asm alA Assembly source line information

+/-hll h/H Pass high level language debug information (HLL)
+/-local I/L Assembler local symbols debug information
+/-smart sIS Smart debug information

Default: - - debug- i nf o=+hl |

Default (without flags): - - debug- i nf o=+smart

Description
With this option you tell the assembler which kind of debug information to emit in the object file.

You cannot specify --debug-info=+asm,+hll. Either the assembler generates assembly source line
information, or it passes HLL debug information.

When you specify --debug-info=+smart, the assembler selects which flags to use. If high level language
information is available in the source file, the assembler passes this information (same as
--debug-info=-asm,+hll,-local). If not, the assembler generates assembly source line information (same
as --debug-info=+asm,-hll,+local).

With --debug-info=AHLS the assembler does not generate any debug information.

Related information

480

Tool Options

Assembler option: --define (-D)

Menu entry
1. Select Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_name[=macr o_defi ni tion]
- Dmacr o_name[=nacr o_defini tion]
Description

With this option you can define a macro and specify it to the assembler preprocessor. If you only specify
a macro name (no macro definition), the macro expands as '1'".

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
assembler with the option --option-file (-f) file.

Defining macros with this option (instead of in the assembly source) is, for example, useful in combination
with conditional assembly as shown in the example below.

This option has the same effect as defining symbols via the . DEFI NE, . SET, and . EQU directives
(similar to #def i ne in the C language). With the . MACROdirective you can define more complex
macros.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

481

TASKING VX-toolset for ARM User Guide

Example

Consider the following assembly program with conditional code to assemble a demo program and a real
program:

.1 F DEMO ==

; instructions for deno application

. ELSE

; instructions for the real application
. ENDI F

You can now use a macro definition to set the DEMO flag:

asarm --defi ne=DEMO test. src
asarm --defi ne=DEMO=1 test.src

Note that both invocations have the same effect.

Related information

Assembler option --option-file (Specify an option file)

482

Tool Options

Assembler option: --dep-file

Menu entry

Command line syntax
--dep-file[=file]
Description

With this option you tell the assembler to generate dependency lines that can be used in a Makefile. The
dependency information will be generated in addition to the normal output file.

By default, the information is written to a file with extension . d. When you specify a filename, all
dependencies will be combined in the specified file.

Example
asarm --dep-file=test.dep test.src

The assembler assembles the file t est . sr ¢, which results in the output file t est . obj , and generates
dependency lines in the file t est . dep.

Related information

Assembler option --make-target (Specify target name for --dep-file output)

483

TASKING VX-toolset for ARM User Guide

Assembler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 244, enter:
asarm - - di ag=244

This results in the following message and explanation:
W244: additional input files will be ignored

The assenbl er supports only a single input file. Al other input files are ignored.

484

Tool Options

To write an explanation of all errors and warnings in HTML format to file aser r or s. ht m , use redirection
and enter:

asarm --diag=htm :all > aserrors.htni
Related information

Section 6.6, Assembler Error Messages

485

TASKING VX-toolset for ARM User Guide

Assembler option: --emit-locals

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable one or both of the following options:
* Emit local EQU symbols
» Emit mapping symbols ($a, $t, $d)

* Emit local non-EQU symbols

Command line syntax
--emt-locals[=flag,...]

You can set the following flags:

+/-equs e/E emit local EQU symbols
+/-mappings m/M emit mapping symbols ($a, $t, $d)
+/-symbols s/S emit local non-EQU symbols

Default: - - emi t - | ocal s=+mappi ngs, +synmbol s
Description

With the option --emit-locals=+equs the assembler also emits local EQU symbols to the object file.
Normally, only global symbols, mapping symbols and non-EQU local symbols are emitted. Having local
symbols in the object file can be useful for debugging.

Mapping symbols are local symbols inside code sections which mark the start of a range of ARM
instructions ($a), a range of Thumb instructions ($t), or a literal pool a.k.a. data pocket ($d). Also, data
sections start with a $d symbol. The mapping symbol names are made unique with a'.' character suffix
followed by a unique integer, for example: $a.1, $t.2 and $d.3. This option only takes effect if local labels
are emitted as well (default).

Related information

Assembler directive . EQU

486

Assembler option: --endianness

Menu entry

1. Select Global Options.

2. Specify the Endianness:Little-endian mode or Big-endian mode.

Command line syntax
- - endi anness=endi anness

-B
- - bi g-endi an

You can specify the following endianness:

big b Big endian
little | Little endian (default)
Description

Tool Options

By default, the assembler generates object files with instructions and data in little-endian format (least
significant byte of a word at lowest byte address). With --endianness=big the assembler generates object
files in big-endian format (most significant byte of a word at lowest byte address). -B is an alias for option

--endianness=big.

The endianness is reflected in the list file.

Assembly code can check the setting of this option by means of the built-in assembly function

@l GENDI AN() .

Related information
Assembly function @3l GENDI AN()

Assembler option --code-endianness (Code endianness)

487

TASKING VX-toolset for ARM User Guide

Assembler option: --error-file

Menu entry
Command line syntax
--error-file[=file]
Description

With this option the assembler redirects error messages to a file. If you do not specify a filename, the
error file will be named after the output file with extension . er s.

Example

To write errors to error s. er s instead of st der r, enter:
asarm--error-file=errors.ers test.src
Related information

Section 6.6, Assembler Error Messages

488

Assembler option: --error-limit

Menu entry

1. Select Assembler » Diagnostics.

2. Enter a value in the Maximum number of emitted errors field.

Command line syntax
--error-limnt=nunber

Default: 42

Description

Tool Options

With this option you tell the assembler to only emit the specified maximum number of errors. When 0
(null) is specified, the assembler emits all errors. Without this option the maximum number of errors is

42.

Related information

Section 6.6, Assembler Error Messages

489

TASKING VX-toolset for ARM User Guide

Assembler option: --help (-?)

Menu entry

Command line syntax
--help[=item

-2

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example
The following invocations all display a list of the available command line options:

asarm -?
asarm --hel p
asarm

To see a detailed description of the available options, enter:

asarm - - hel p=options

Related information

490

Tool Options

Assembler option: --include-directory (-)

Menu entry
1. Select Assembler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...
-lpath, ...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the assembler searches for include files is:

1. The pathname in the assembly file and the directory of the assembly source.

2. The path that is specified with this option.

3. The path that is specified in the environment variable ASARM NC when the product was installed.
4. The default directory $(PRODDI R) \ i ncl ude.

Example

Suppose that the assembly source file t est . sr ¢ contains the following lines:

. I NCLUDE ' nyi nc. i nc'

You can call the assembler as follows:

asarm --include-directory=c:\proj\include test.src

First the assembler looks for the file nyi nc. i nc in the directory where t est . sr c is located. If it does
not find the file, it looks in the directory c: \ pr oj \ i ncl ude (this option). If the file is still not found, the
assembler searches in the environment variable and then in the default include directory.

491

TASKING VX-toolset for ARM User Guide

Related information

Assembler option --include-file (Include file at the start of the input file)

492

Tool Options

Assembler option: --include-file (-H)

Menu entry
1. Select Assembler » Preprocessing.

The Pre-include files box shows the files that are currently included before the assembling starts.
2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.
Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax
--include-file=file,...
-Hile,...

Description

With this option (set at project level) you include one extra file at the beginning of the assembly source
file. The specified include file is included before all other includes. This is the same as specifying . | NCLUDE
"file' atthe beginning of your assembly source.

Example
asarm --include-file=nyinc.inc test.src

The file nyi nc. i nc is included at the beginning of t est . sr ¢ before it is assembled.

Related information

Assembler option --include-directory (Add directory to include file search path)

493

TASKING VX-toolset for ARM User Guide

Assembler option: --inversions

Menu entry

1. Select Assembler » Miscellaneous.

2. Enable the option Allow instruction inversions.
Command line syntax

--inversions

Description

With this option you tell the assembler to try to invert some data processing instructions with an immediate
operand. Inversions are available for MOV/MVN, CMP/CMN, AND/BIC, ADC/SBC, and ADD/SUB.

Example

With this option enabled, you can write
add rl1,r2,#-4

and the assembler will generate
sub rl,r2, #4

and instead of
nov r1, OXFFFFFFFF

the assembler will generate

m/n rl1,0

Related information

494

Tool Options

Assembler option: --kaniji

Menu entry

1. Select Assembler » Miscellaneous.

2. Enable the option Allow Shift JIS Kanji in strings.

Command line syntax

--kanj i

Description

With this option you tell the assembler to support Shift JIS encoded Kanji multi-byte characters in strings.
Without this option, encodings with Ox5c¢ as the second byte conflict with the use of the backslash as an
escape character. Shift JIS in comments is supported regardless of this option.

Note that Shift JIS also includes Katakana and Hiragana.

Related information

C compiler option --language=+kanji (Allow Shift JIS Kanji in strings)

495

TASKING VX-toolset for ARM User Guide

Assembler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the object file when errors occur during assembling.
Command line syntax

--keep-output-files

-k

Description

If an error occurs during assembling, the resulting object file (. obj) may be incomplete or incorrect. With
this option you keep the generated object file when an error occurs.

By default the assembler removes the generated object file when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated object. For example when you know that a
particular error does not result in a corrupt object file.

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

496

Tool Options

Assembler option: --list-file (-I)

Menu entry
1. Select Assembler » List File.
2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.

Command line syntax
--list-file[=file]

-1 [file]

Default: no list file is generated
Description

With this option you tell the assembler to generate a list file. A list file shows the generated object code
and the relative addresses. Note that the assembler generates a relocatable object file with relative
addresses.

With the optional file you can specify an alternative name for the list file. By default, the name of the list
file is the basename of the source file with the extension . | st .

Related information

Assembler option --list-format (Format list file)

497

TASKING VX-toolset for ARM User Guide

Assembler option: --list-format (-L)

Menu entry
1. Select Assembler » List File.
2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.

Command line syntax
--list-format=flag,...
-Lfl ags

You can set the following flags:

+/-section d/D List section directives (. SECTI ON)
+/-symbol e/E List symbol definition directives
+/-generic-expansion g/G List expansion of generic instructions
+/-generic il List generic instructions

+/-line I/L List C preprocessor #line directives
+/-macro m/M List macro definitions

+/-empty-line n/N List empty source lines and comment lines (hewline)
+/-conditional p/P List conditional assembly

+/-equate q/Q List equate and set directives (. EQU, . SET)
+/-relocations r/R List relocations characters ('r")

+/-hll s/S List HLL symbolic debug informations
+/-equate-values v/V List equate and set values

+/-wrap-lines w/W Wrap source lines

+/-macro-expansion x/X List macro expansions

+/-cycle-count y/Y List cycle counts

+/-define-expansion z[Z List define expansions

Use the following options for predefined sets of flags:

--list-format=0 -LO All options disabled
Alias for --list-format=DEGILMNPQRSVWXYZ
--list-format=1 -L1 All options enabled

Alias for --list-format=degilmnpqrsvwxyz

Default: - - 1 i st - f or mat =dEG | MhPgr sVwXyZ

498

Tool Options

Description
With this option you specify which information you want to include in the list file.

On the command line you must use this option in combination with the option --list-file (-1).

Related information
Assembler option --list-file (Generate list file)

Assembler option --section-info=+list (Display section information in list file)

499

TASKING VX-toolset for ARM User Guide

Assembler option: --make-target

Menu entry
Command line syntax
- -make-t ar get =nane
Description

With this option you can overrule the default target name in the make dependencies generated by the
option --dep-file. The default target name is the basename of the input file, with extension . obj .

Example
asarm--dep-file --make-target=../nytarget.obj test.src

The assembler generates dependency lines with the default target name . . / myt ar get . obj instead of
test.obj.

Related information

Assembler option --dep-file (Generate dependencies in a file)

500

Tool Options

Assembler option: --no-warnings (-w)

Menu entry
1. Select Assembler » Diagnostics.

The Suppress warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
201, 202). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.
Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- - no-war ni ngs[=nunber, .. .]
-w nunber, ...]
Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

« If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 201 and 202, enter:
asarmtest.src --no-warni ngs=201, 202
Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

501

TASKING VX-toolset for ARM User Guide

Assembler option: --old-syntax

Menu entry
1. Select Assembler » Miscellaneous.

2. Disable the option UAL syntax mode.

Command line syntax

--ol d- synt ax

Description

In UAL syntax mode the assembler will not accept instructions which use the pre-UAL syntax and will
select encodings based on the UAL syntax in case both syntaxes are the same.

With this option you can change this default behavior. The assembler will run in pre-UAL mode. The
built-in function @RE_UAL() will return true, so you can use:

.1 F @RE_UAL()

; <old code>
. ELSE

;. <new code>
. ENDI F

Related information

Assembly function @PRE_UAL()

502

Tool Options

Assembler option: --option-file (-f)

Menu entry
1. Select Assembler » Miscellaneous.
2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the assembler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the assembler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility. You can specify the option
--option-file multiple times.

Format of an option file
* Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a double quote " enbedded’
'"This has a double quote " and a single quote '"' enbedded"
* When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
l'i ne"

-> "This is a continuation |ine"

503

TASKING VX-toolset for ARM User Guide

* Itis possible to nest command line files up to 25 levels.

Example
Suppose the file myopt i ons contains the following lines:

- -debug=+asm -1 ocal
test.src

Specify the option file to the assembler:
asarm --option-fil e=nyoptions
This is equivalent to the following command line:

asarm - - debug=+asm -l ocal test.src

Related information

504

Tool Options

Assembler option: --output (-0)

Menu entry

Eclipse names the output file always after the input file.
Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the assembler. Without this option,
the basename of the assembly source file is used with extension . obj .

Example
To create the file r el obj . obj instead of asm obj , enter:

asarm --out put =rel obj . obj asmsrc

Related information

505

TASKING VX-toolset for ARM User Guide

Assembler option: --page-length

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-length to the Additional options field.

Command line syntax

- - page- | engt h=nunber

Default: 72

Description

If you generate a list file with the assembler option --list-file, this option sets the number of lines in a page

in the list file. The default is 72, the minimum is 10. As a special case, a page length of 0 turns off page
breaks.

Related information
Assembler option --list-file (Generate list file)

Assembler directive . PAGE

506

Tool Options

Assembler option: --page-width

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-width to the Additional options field.
Command line syntax

- - page-w dt h=nunber

Default: 132

Description

If you generate a list file with the assembler option --list-file, this option sets the number of columns per
line on a page in the list file. The default is 132, the minimum is 40.

Related information
Assembler option --list-file (Generate list file)

Assembler directive . PAGE

507

TASKING VX-toolset for ARM User Guide

Assembler option: --preprocess (-E)

Menu entry
Command line syntax
- - preprocess

-E

Description

With this option the assembler will only preprocess the assembly source file. The assembler sends the
preprocessed file to stdout.

Related information

508

Assembler option: --preprocessor-type (-m)

Menu entry

1. Select Assembler » Preprocessing.

2. Enable or disable the option Use TASKING preprocessor.

Command line syntax

- - preprocessor-type=type

-ntype

You can set the following preprocessor types:

none n No preprocessor
tasking t TASKING preprocessor

Default: - - pr epr ocessor - t ype=t aski ng

Description

Tool Options

With this option you select the preprocessor that the assembler will use. By default, the assembler uses

the TASKING preprocessor.

When the assembly source file does not contain any preprocessor symbols, you can specify to the

assembler not to use a preprocessor.

Related information

509

TASKING VX-toolset for ARM User Guide

Assembler option: --relaxed

Menu entry

1. Select Assembler » Miscellaneous.

2. Enable the option Allow 2-operand form for 3-operand instructions.
Command line syntax

--rel axed

Description

With this option you tell the assembler that a relaxed 2-operand syntax is allowed on 3-operand instructions.
If the first two register operands are equal, you can replace the two registers by one.

Example

With this option enabled, instead of
add rl1,rl, #4

you can write
add r1, #4

and instead of
add r1,r1,r2

you can write

add r1,r2

Related information

510

Tool Options

Assembler option: --section-info (-t)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable the option List section summary.
and/or

1. Select Assembler » Diagnostics.

2. Enable the option Display section summary.
Command line syntax
--section-info[=flag,...]

-t[flags]

You can set the following flags:

+/-console c/C Display section summary on console
+/-list I/L List section summary in list file

Default: - - sect i on-i nf o=CL

Default (without flags): - - sect i on-i nf o=cl

Description

With this option you tell the assembler to display section information. For each section its memory space,
size, total cycle counts and name is listed on stdout and/or in the list file.

The cycle count consists of two parts: the total accumulated count for the section and the total accumulated

count for all repeated instructions. In the case of nested loops it is possible that the total supersedes the
section total.

Example

To writes the section information to the list file and also display the section information on stdout, enter:
asarm--list-file --section-info asmsrc

Related information

Assembler option --list-file (Generate list file)

511

TASKING VX-toolset for ARM User Guide

Assembler option: --silicon-bug

Menu entry
1. Expand C/C++ Build and select Processor.
2. From the Processor selection list, select a processor.

The CPU problem bypasses and checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.

4. Click Select All or select one or more individual options.

Command line syntax

--silicon-bug[=bug,...]

Description

With this option you specify for which hardware problems the assembler should check. Please refer to
Chapter 19, CPU Problem Bypasses and Checks for the numbers and descriptions. Silicon bug nhumbers

are specified as a comma separated list. When this option is used without arguments, all silicon bugs are
checked.

Example

To check for problem 602117, enter:

asarm --silicon-bug=602117 test.src
Related information

Chapter 19, CPU Problem Bypasses and Checks

512

Tool Options

Assembler option: --symbol-scope (-i)

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable the option Set default symbol scope to global.
Command line syntax

- -synbol - scope=scope

-i scope

You can set the following scope:

global g Default symbol scope is global
local | Default symbol scope is local

Default: - - synbol - scope=I ocal

Description

With this option you tell the assembler how to treat symbols that you have not specified explicitly as global
or local. By default the assembler treats all symbols as local symbols unless you have defined them
explicitly as global.

Related information

Assembler directive . GLOBAL

513

TASKING VX-toolset for ARM User Guide

Assembler option: --thumb

Menu entry
1. Select Assembler » Miscellaneous.

2. Enable the option Assemble Thumb instructions by default.

Command line syntax

--thunb

Description

With this option you tell the assembler that the input file contains Thumb code. By default the assembler
assumes that the input file contains ARM code. Specifying --thumb with --cpu=ARMv7M or with the
Thumb only assembler (asarmt) is not required.

Note that the input may still contain mixed Thumb and ARM code because the . ARM . THUMB, . CODE16
and . CODE32 directives overrule the --thumb option. Assembly code can check the setting of the --thumb
option by means of the built-in assembly function @HUMB() . So, if you use @HUMB() in a . ARMpart
and you specified --thumb, @G'HUMB() still returns 1.

Related information
Assembly function @rHUMB()

Assembler directives . CODE16, . CODE32, . ARM . THUVB

514

Tool Options

Assembler option: --version (-V)

Menu entry

Command line syntax

--version

-V

Description

Display version information. The assembler ignores all other options or input files.

Related information

515

TASKING VX-toolset for ARM User Guide

Assembler option: --warnings-as-errors

Menu entry
1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber, ...]

Description
If the assembler encounters an error, it stops assembling. When you use this option without arguments,
you tell the assembler to treat all warnings as errors. This means that the exit status of the assembler will

be non-zero after one or more assembler warnings. As a consequence, the assembler now also stops
after encountering a warning.

You can limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Assembler option --no-warnings (Suppress some or all warnings)

516

Tool Options

11.5. Linker Options

This section lists all linker options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the linker via the control program. Therefore, it uses the syntax of the
control program to pass options and files to the linker. If there is no equivalent option in Eclipse, you can
specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, Eclipse automatically precedes the option with -WI to
pass the option via the control program directly to the linker.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option --keep-output-files keeps files after an error occurred. When you specify this option
in Eclipse, it will have no effect because Eclipse always removes the output file after an error had occurred.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

| karm -nfkl test.obj
| karm --map-file-format=+files, +link, +l ocate test. obj

When you do not specify an option, a default value may become active.

517

TASKING VX-toolset for ARM User Guide

Linker option: --case-insensitive

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Link case insensitive.
Command line syntax
--case-insensitive

Default: case sensitive

Description

With this option you tell the linker not to distinguish between uppercase and lowercase characters in
symbols. By default the linker considers uppercase and lowercase characters as different characters.

Assembly source files that are generated by the compiler must always be assembled and thus linked
case sensitive. When you have written your own assembly code and specified to assemble it case
insensitive, you must also link the . obj file case insensitive.

Related information

Assembler option --case-insensitive

518

Tool Options

Linker option: --chip-output (-c)

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file and/or Generate S-records file.
3. Enable the option Create file for each memory chip.

4. Optionally, specify the Size of addresses.

Eclipse always uses the project name as the basename for the output file.

Command line syntax

--chi p- out put =[basenane] : f or mat [: addr _si ze], ...
-c[basenane] : format [: addr _si ze], . ..

You can specify the following formats:

IHEX Intel Hex
SREC Motorola S-records

The addr_size specifies the size of the addresses in bytes (record length). For Intel Hex you can use the
values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records) or 4 bytes
(S3 records, default).

Description

With this option you specify the Intel Hex or Motorola S-record output format for loading into a
PROM-programmer. The linker generates a file for each ROM memory defined in the LSL file, where
sections are located:

nenory nmemane
{ type=rom }

The name of the file is the name of the Eclipse project or, on the command line, the name of the memory
device that was emitted with extension . hex or . sr e. Optionally, you can specify a basename which
prepends the generated file name.

The linker always outputs a debugging file in ELF/DWARF format and optionally an absolute
object file in Intel Hex-format and/or Motorola S-record format.

Example
To generate Intel Hex output files for each defined memory, enter the following on the command line:

| karm --chi p- out put =nyfil e: | HEX test 1. obj

519

TASKING VX-toolset for ARM User Guide

In this case, this generates the file nyf i | e_memname. hex.
Related information

Linker option --output (Output file)

520

Tool Options

Linker option: --code-endianness

Menu entry

Command line syntax
- -code- endi anness=endi anness

You can specify the following endianness:

big b Big endian
little | Little endian (default)
Description

This option tells the linker what code endianness you want, little-endian (least significant byte of a word
at lowest byte code address) or big-endian (most significant byte of a word at lowest byte code address).
The code endianness used must be a valid one for the architecture you are compiling for. This option is
only available for ARMV7R.

Related information

Linker option --endianness (Data endianness)

521

TASKING VX-toolset for ARM User Guide

Linker option: --cpu (-C)
Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, make a selection by Architecture, Core or one of the
manufacturers.

Command line syntax
--cpu=architecture
-Carchitecture

You can specify the following architectures:

ARMv6M Link for ARMv6-M architecture

ARMvV7M Link for ARMv7-M architecture

ARMV7EM Link for ARMV7E-M architecture

ARMV7R Link for ARMv7-R architecture
Description

With this option you specify the ARM architecture for which you create your application. The linker uses
the architecture to determine which libraries must be linked and what kind of veneers to generate. The
default architecture is ARMv7M and the complete list of supported architectures is: ARMv6-M, ARMv7-M,
ARMV7E-M or ARMV7-R.

Architecture ARMv7-M only supports the Thumb-2 instruction set.

Related information

C compiler option --cpu (Select architecture)

522

Tool Options

Linker option: --define (-D)
Menu entry
1. Select Linker » Script File.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)
Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax
- -defi ne=macr o_name[=macr o_defi ni tion]

- Dmacr o_name[=nacr o_defini tion]

Description

With this option you can define a macro and specify it to the linker LSL file preprocessor. If you only
specify a macro name (no macro definition), the macro expands as '1'".

You can specify as many macros as you like; just use the option --define (-D) multiple times. If the
command line exceeds the limit of the operating system, you can define the macros in an option file which
you then must specify to the linker with the option --option-file (-f) file.

The definition can be tested by the preprocessor with #i f , #i f def and #i f ndef , for conditional locating.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example
To define the stack size and start address which are used in the linker script file ar m | sl , enter:

| karmtest.obj -otest.abs --Isl-file=zarmlsl --define=__STACK=32k
--define=__START=0x00000000

Related information

Linker option --option-file (Specify an option file)

523

TASKING VX-toolset for ARM User Guide

Linker option: --dep-file

Menu entry

Eclipse uses this option in the background to create a file with extension . d (one for every input file).
Command line syntax

--dep-file[=file]

Description

With this option you tell the linker to generate dependency lines that can be used in a Makefile. The
dependency information will be generated in addition to the normal output file.

By default, the information is written to the file | kar m d. When you specify a filename, all dependencies
will be combined in the specified file.

Example
| karm --dep-fil e=test.dep test. obj

The linker links the file t est . obj , which results in the output file t est . abs, and generates dependency
lines in the file t est . dep.

Related information

Linker option --make-target (Target to use in dependencies file)

524

Tool Options

Linker option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

With this option the linker does not link/locate any files.
Example

To display an explanation of message number 106, enter:
| karm - - di ag=106

This results in the following message and explanation:
E106: unresol ved external: <nessage>

The linker could not resolve all external synbols.

525

TASKING VX-toolset for ARM User Guide

This is an error when the increnmental |inking option is disabled.
The <nessage> indicates the synbol that is unresol ved.

To write an explanation of all errors and warnings in HTML format to file | kerr or s. ht ml , use redirection
and enter:

| karm --diag=htm :all > |lkerrors.htm

Related information

Section 7.10, Linker Error Messages

526

Linker option: --endianness

Menu entry

1. Select Global Options.

2. Specify the Endianness:Little-endian mode or Big-endian mode.

Command line syntax
- - endi anness=endi anness

-B
- - bi g-endi an

You can specify the following endianness:

big b Big endian
little | Little endian (default)
Description

Tool Options

By default, the linker links objects in little-endian mode. With --endianness=big you tell the linker to link
the input files in big-endian mode. The endianness used must be valid for the architecture you are linking
for. Depending on the endianness used, the linker links different libraries. -B is an alias for option

--endianness=big.

Related information

Linker option --code-endianness (Code endianness)

527

TASKING VX-toolset for ARM User Guide

Linker option: --error-file

Menu entry
Command line syntax
--error-file[=file]
Description

With this option the linker redirects error messages to a file. If you do not specify a filename, the error file
is | karm el k.

Example

To write errors to err or s. el k instead of st der r, enter:
| karm--error-file=errors.elk test.obj
Related information

Section 7.10, Linker Error Messages

528

Tool Options

Linker option: --error-limit

Menu entry

1. Select Linker » Diagnostics.

2. Enter avalue in the Maximum number of emitted errors field.
Command line syntax

--error-1limt=nunber

Default: 42

Description

With this option you tell the linker to only emit the specified maximum number of errors. When 0 (null) is
specified, the linker emits all errors. Without this option the maximum number of errors is 42.

Related information

Section 7.10, Linker Error Messages

529

TASKING VX-toolset for ARM User Guide

Linker option: --extern (-e)

Menu entry

Command line syntax
--extern=synbol , ...

-esynbol , . ..

Description

With this option you force the linker to consider the given symbol as an undefined reference. The linker
tries to resolve this symbol, either the symbol is defined in an object file or the linker extracts the
corresponding symbol definition from a library.

This option is, for example, useful if the startup code is part of a library. Because your own application
does not refer to the startup code, you can force the startup code to be extracted by specifying the symbol
__START as an unresolved external.

Example
Consider the following invocation:
Il karmnylib.lib

Nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through myl i b. i b.

| karm --extern=_START nylib.lib

In this case the linker searches for the symbol _START in the library and (if found) extracts the object that
contains _START, the startup code. If this module contains new unresolved symbols, the linker looks
againinnyl i b. i b. This process repeats until no new unresolved symbols are found.

Related information

Section 7.3, Linking with Libraries

530

Tool Options

Linker option: --first-library-first

Menu entry

Command line syntax
--first-library-first
Description

When the linker processes a library it searches for symbols that are referenced by the objects and libraries
processed so far. If the library contains a definition for an unresolved reference the linker extracts the
object that contains the definition from the library.

By default the linker processes object files and libraries in the order in which they appear on the command
line. If you specify the option --first-library-first the linker always tries to take the symbol definition from
the library that appears first on the command line before scanning subsequent libraries.

This is for example useful when you are working with a newer version of a library that partially overlaps
the older version. Because they do not contain exactly the same functions, you have to link them both.
However, when a function is present in both libraries, you may want the linker to extract the most recent
function.

Example
Consider the following example:
| karm--first-library-first a.lib test.obj b.lib

If the file t est . obj calls a function which is both presentina. | i b and b. | i b, normally the function in
b. i b would be extracted. With this option the linker first tries to extract the symbol from the first library
a.lib.

Note that routines in b. | i b that call other routines that are presentin botha.libandb. li b
are now also resolved from a. | i b.

Related information

Linker option --no-rescan (Rescan libraries to solve unresolved externals)

531

TASKING VX-toolset for ARM User Guide

Linker option: --global-type-checking
Menu entry

Command line syntax

--gl obal -type-checki ng

Description

Use this option when you want the linker to check the types of variable and function references against
their definitions, using DWARF 2 or DWARF 3 debug information.

This check should give the same result as the C compiler when you use MIL linking.

Related information

C compiler option --global-type-checking (Global type checking)

532

Tool Options

Linker option: --help (-?)

Menu entry

Command line syntax
--help[=item

-2

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
| karm - ?

| karm --hel p

| kar m

To see a detailed description of the available options, enter:

| kar m - - hel p=opti ons

Related information

533

TASKING VX-toolset for ARM User Guide

Linker option: --hex-format

Menu entry
1. Select Linker » Output Format.
2. Enable the option Generate Intel Hex format file.
3. Enable or disable the option Emit start address record.
Command line syntax
--hex-format=flag, ...
You can set the following flag:
+/-start-address s/S Emit start address record
Default: - - hex- f or mat =s
Description
With this option you can specify to emit or omit the start address record from the hex file.
Related information

Linker option --output (Output file)

534

Linker option: --hex-record-size

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file.

3. Select Linker » Miscellaneous.

4. Add the option --hex-record-size to the Additional options field.
Command line syntax

--hex-record-si ze=si ze

Default: 32

Description

With this option you can set the size (width) of the Intel Hex data records.

Related information
Linker option --output (Output file)

Section 16.2, Intel Hex Record Format

Tool Options

535

TASKING VX-toolset for ARM User Guide

Linker option: --import-object
Menu entry
1. Select Linker » Data Objects.
The Data objects box shows the list of object files that are imported.
2. To add a data object, click on the Add button in the Data objects box.

3. Type or select a binary file (including its path).
Use the Edit and Delete button to change a filename or to remove a data object from the list.

Command line syntax

--inmport-object=file,...

Description

With this option the linker imports a binary file containing raw data and places it in a section. The section
name is derived from the filename, in which dots are replaced by an underscore. So, when importing a

file called ny. j pg, a section with the name nmy_j pg is created. In your application you can refer to the
created section by using linker labels.

Related information

Section 7.5, Importing Binary Files

536

Tool Options

Linker option: --include-directory (-1)

Menu entry

Command line syntax
--include-directory=path,...

-lpath, ...

Description

With this option you can specify the path where your LSL include files are located. A relative path will be
relative to the current directory.

The order in which the linker searches for LSL include files is:

1. The pathname in the LSL file and the directory where the LSL file is located (only for #include files that
are enclosed in ")

2. The path that is specified with this option.

3. The default directory $(PRODDI R) \'i ncl ude. | sl .

Example

Suppose that your linker script file nyl sl . | sl contains the following line:

#i ncl ude "nyinc.inc"

You can call the linker as follows:

| karm --include-directory=c:\proj\include --Isl-file=nylsl.lsl test.obj

First the linker looks for the file myi nc. i nc in the directory where nyl sl . | sl is located. If it does not
find the file, it looks in the directory c: \ pr oj \ i ncl ude (this option). Finally it looks in the directory
$(PRODDI R)\i ncl ude. | sl .

Related information

Linker option --Isl-file (Specify linker script file)

537

TASKING VX-toolset for ARM User Guide

Linker option: --incremental (-r)

Menu entry

Command line syntax
--incremnental

-r

Description

Normally the linker links and locates the specified object files. With this option you tell the linker only to
link the specified files. The linker creates a linker output file . out . You then can link this file again with
other object files until you have reached the final linker output file that is ready for locating.

In the last pass, you call the linker without this option with the final linker output file . out . The linker will
now locate the file.

Example
In this example, the filest est 1. obj , t est 2. obj and t est 3. obj are incrementally linked:
1.l karm--incremental testl.obj test2.obj --output=test.out
testl.obj and test2.obj are linked
2. lkarm--incremental test3.obj test.out
test3.obj and test.out are linked, taskl.out is created
3. I karm taskl. out

taskl.out is located

Related information

Section 7.4, Incremental Linking

538

Tool Options

Linker option: --keep-output-files (-k)

Menu entry

Eclipse always removes the output files when errors occurred.

Command line syntax
--keep-output-files
-k

Description

If an error occurs during linking, the resulting output file may be incomplete or incorrect. With this option
you keep the generated output files when an error occurs.

By default the linker removes the generated output file when an error occurs. This is useful when you use
the make utility. If the erroneous files are not removed, the make utility may process corrupt files on a
subsequent invocation.

Use this option when you still want to use the generated file. For example when you know that a particular
error does not result in a corrupt object file, or when you want to inspect the output file, or send it to Altium
support.

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

539

TASKING VX-toolset for ARM User Guide

Linker option: --library (-1)
Menu entry
1. Select Linker » Libraries.
The Libraries box shows the list of libraries that are linked with the project.
2. To add a library, click on the Add button in the Libraries box.
3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.

Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax

--library=nane

-l nane

Description

With this option you tell the linker to use system library name. | i b, where name is a string. The linker

first searches for system libraries in any directories specified with --library-directory, then in the directories
specified with the environment variables LI BARM unless you used the option --ignore-default-library-path.

Example
To search in the system library carm | i b (C library):
| karmtest.obj mylib.lib --library=carm

The linker links the file t est . obj and first looks in library myl i b. | i b (in the current directory only),
then in the system library car m | i b to resolve unresolved symbols.

Related information
Linker option --library-directory (Additional search path for system libraries)

Section 7.3, Linking with Libraries

540

Tool Options

Linker option: --library-directory (-L) / --ignore-default-library-path

Menu entry
1. SelectLinker » Libraries.
The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.
Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path,...
-Lpath, ...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-1), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is$(PRODDI R)\ | i b\ ar chi t ect ur e\ endi anness.

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variables LI BARM
So, the linker ignores steps 2 and 3 as listed below.

The priority order in which the linker searches for system libraries specified with the option --library (-1)
is:

1. The path that is specified with the option --library-directory.
2. The path that is specified in the environment variables LI BARM

3. The default directory $(PRODDI R)\ | i bar chi t ect ur e\ endi anness.

Example
Suppose you call the linker as follows:

lkarmtest.obj --library-directory=c:\nylibs --library=carm

541

TASKING VX-toolset for ARM User Guide

First the linker looks in the directory c: \ nmyl i bs for library car m | i b (this option). If it does not find the
requested libraries, it looks in the directory that is set with the environment variables LI BARM Then the
linker looks in the default directory $(PRODDI R)\ | i bar chi t ect ur e\ endi anness for libraries.

Related information

Linker option --library (Link system library)
Linker option --cpu (Select architecture)

Linker option --endianness (Specify endianness)

Section 7.3.1, How the Linker Searches Libraries

542

Tool Options

Linker option: --link-only
Menu entry

Command line syntax
--link-only

Description

With this option you suppress the locating phase. The linker stops after linking and informs you about
unresolved references.

Related information

Control program option --create=relocatable (-cl) (Stop after linking)

543

TASKING VX-toolset for ARM User Guide

Linker option: --long-branch-veneers

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Generate long-branch veneers.

Command line syntax

- -l ong- branch-veneers

Description

With this option you enable the linker to generate a long-branch veneer if the target of a B (ARM only,
not for Thumb), BL or BLX instruction is out-of-range. The locating process of the linker may become less

efficient if this option is switched on, even if no long-branch veneers are required after all. Therefore it is
better to first see if out-of-range branches are in the code (unlikely) before switching on this option.

Related information

544

Tool Options

Linker option: --Isl-check

Menu entry

Command line syntax

--1sl-check

Description

With this option the linker just checks the syntax of the LSL file(s) and exits. No linking or locating is
performed. Use the option --Isl-file to specify the name of the Linker Script File you want to test.

Related information
Linker option --Isl-file (Linker script file)
Linker option --Isl-dump (Dump LSL info)

Section 7.7, Controlling the Linker with a Script

545

TASKING VX-toolset for ARM User Guide

Linker option: --Isl-dump

Menu entry

Command line syntax
--1'sl -dunp[=fil €]
Description

With this option you tell the linker to dump the LSL part of the map file in a separate file, independent of
the option --map-file (generate map file). If you do not specify a filename, the file | kar m | df is used.

Related information

Linker option --map-file-format (Map file formatting)

546

Tool Options

Linker option: --Isl-file (-d)

Menu entry
An LSL file can be generated when you create your project in Eclipse:
1. From the File menu, select File » New » TASKING ARM C/C++ Project.
The New C/C++ Project wizard appears.
2. Fillin the project settings in each dialog and click Next > until the ARM Project Settings appear.
3. Enable the option Add linker script file to the project and click Finish.
Eclipse creates your project and the file project. | sl in the project directory.
The LSL file can be specified in the Properties dialog:
1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.Isl) field (default . . / ${ Pr oj Nane}. | sl).

Command line syntax
--Isl-file=file
-dfile

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

« the architecture definition describes the core's hardware architecture.
 the memory definition describes the physical memory available in the system.
* the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file to the linker. If you do not specify this option, the linker uses
a default script file (def aul t . | sl).You can specify the existing file target. | sl or the name of a manually
written linker script file. You can use this option multiple times. The linker processes the LSL files in the
order in which they appear on the command line.

Related information
Linker option --Isl-check (Check LSL file(s) and exit)

Section 7.7, Controlling the Linker with a Script

547

TASKING VX-toolset for ARM User Guide

Linker option: --make-target

Menu entry
Command line syntax
- -make-t ar get =nane
Description

With this option you can overrule the default target name in the make dependencies generated by the
option --dep-file. The default target name is the basename of the input file, with extension . abs.

Example
| karm - - make-t ar get =nyt ar get . abs t est. obj

The linker generates dependency lines with the default target name nyt ar get . abs instead of t est . abs.

Related information

Linker option --dep-file (Generate dependencies in a file)

548

Tool Options

Linker option: --map-file (-M)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.
3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax
--map-file[=file][:XM]
-Mfile]l[:XM]

Default (Eclipse): XML map file is generated

Default (linker): no map file is generated

Description

With this option you tell the linker to generate a linker map file. If you do not specify a filename and you
specified the option --output, the linker uses the same basename as the output file with the extension
. map. If you did not specify the option --output, the linker uses the file t ask1. map. Eclipse names the
. map file after the project.

In Eclipse the XML variant of the map file (extension . mapxnl) is used for graphical display in the map
file viewer.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (. obj) to the linked object file. A locate part shows the absolute position of each
section. External symbols are listed per space with their absolute address, both sorted on symbol and
sorted on address.

Related information
Linker option --map-file-format (Format map file)

Section 15.2, Linker Map File Format

549

TASKING VX-toolset for ARM User Guide

Linker option: --map-file-format (-m)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.
3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax
--map-file-format=flag, ...
-nfl ags

You can set the following flags:

+/-callgraph c/C Include call graph information

+/-removed d/D Include information on removed sections
+/-files fIF Include processed files information
+/-invocation i/l Include information on invocation and tools
+/-link k/K Include link result information

+/-locate IIL Include locate result information
+/-memory m/M Include memory usage information
+/-nonalloc n/N Include information of non-alloc sections
+/-overlay 0/0O Include overlay information

+/-statics g/Q Include module local symbols information
+/-crossref r'R Include cross references information

+/-Isl s/S Include processor and memory information
+/-rules u/U Include locate rules

Use the following options for predefined sets of flags:

--map-file-format=0 -mO0 Link information

Alias for -mcDfikLMNoQrSU
--map-file-format=1 -m1 Locate information

Alias for -mCDfiKIMNoQRSU
--map-file-format=2 -m2 Most information

Alias for -mcdfikimNoQrSu

Default: - - map-fi |l e- f or mat =2

550

Tool Options

Description
With this option you specify which information you want to include in the map file.

On the command line you must use this option in combination with the option --map-file (-M).

Related information
Linker option --map-file (Generate map file)

Section 15.2, Linker Map File Format

551

TASKING VX-toolset for ARM User Guide

Linker option: --misra-c-report

Menu entry

Command line syntax

--msra-c-report[=file]

Description

With this option you tell the linker to create a MISRA C Quality Assurance report. This report lists the
various modules in the project with the respective MISRA C settings at the time of compilation. If you do

not specify a filename, the file basename. ntr is used.

Related information

C compiler option --misrac (MISRA C checking)

552

Tool Options

Linker option: --munch

Menu entry

Command line syntax
--munch
Description

With this option you tell the linker to activate the muncher in the pre-locate phase.

The muncher phase is a special part of the linker that creates sections containing a list of pointers to the
initialization and termination routines. The list of pointers is consulted at run-time by startup code invoked
from mai n, and the routines on the list are invoked at the appropriate times.

Related information

553

TASKING VX-toolset for ARM User Guide

Linker option: --non-romable

Menu entry
1. Select Linker » Miscellaneous.

2. Enable the option Application is not romable.

Command line syntax

--non-romabl e

Description

With this option you tell the linker that the application must not be located in ROM. The linker will locate
all ROM sections, including a copy table if present, in RAM. When the application is started, the data
sections are re-initialized and the BSS sections are cleared as usual.

This option is, for example, useful when you want to test the application in RAM before you put the final
application in ROM. This saves you the time of flashing the application in ROM over and over again.

If you want to locate your application in RAM only, without using ROM/flash resources of the chip, for

example when you run the debugger in RAM only, also specify the options --no-rom-copy and
--user-provided-initialization-code.

Related information
Linker option --no-rom-copy (Do not generate ROM copy)

Linker option --user-provided-initialization-code (Own initialization code, no standard copy table)

554

Tool Options

Linker option: --no-rescan

Menu entry
1. SelectLinker » Libraries.

2. Disable the option Rescan libraries to solve unresolved externals.

Command line syntax

--Nno-rescan

Description

When the linker processes a library it searches for symbol definitions that are referenced by the objects
and libraries processed so far. If the library contains a definition for an unresolved reference the linker
extracts the object that contains the definition from the library. The linker processes object files and
libraries in the order in which they appear on the command line.

When all objects and libraries are processed the linker checks if there are unresolved symbols left. If so,
the default behavior of the linker is to rescan all libraries in the order given at the command line. The
linker stops rescanning the libraries when all symbols are resolved, or when the linker could not resolve
any symbol(s) during the rescan of all libraries. Notice that resolving one symbol may introduce new
unresolved symbols.

With this option, you tell the linker to scan the object files and libraries only once. When the linker has
not resolved all symbols after the first scan, it reports which symbols are still unresolved. This option is
useful if you are building your own libraries. The libraries are most efficiently organized if the linker needs
only one pass to resolve all symbols.

Related information

Linker option --first-library-first (Scan libraries in given order)

555

TASKING VX-toolset for ARM User Guide

Linker option: --no-rom-copy (-N)

Menu entry

Command line syntax

--no-rom copy

-N

Description

With this option the linker will not generate a ROM copy for data sections. A copy table is generated and
contains entries to clear BSS sections. However, no entries to copy data sections from ROM to RAM are

placed in the copy table.

The data sections are initialized when the application is downloaded. The data sections are not re-initialized
when the application is restarted.

Related information
Linker option --non-romable (Application is not romable)

Linker option --user-provided-initialization-code (Own initialization code, no standard copy table)

556

Tool Options

Linker option: --no-warnings (-w)
Menu entry
1. Select Linker » Diagnostics.
The Suppress warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
135, 136). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.
Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- - no-war ni ngs[=nunber, .. .]
-w nunber, ...]
Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

« If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 135 and 136, enter:

| kar m - - no-war ni ngs=135, 136 test. obj
Related information

Linker option --warnings-as-errors (Treat warnings as errors)

557

TASKING VX-toolset for ARM User Guide

Linker option: --optimize (-O)
Menu entry
1. Select Linker » Optimization.
2. Select one or more of the following options:
» Delete unreferenced sections
» Use a 'first-fit decreasing' algorithm
» Compress copy table
» Delete duplicate code
* Delete duplicate data

» Compress ROM sections of copy table items

Command line syntax
--optimze=flag,...
-Of I ags

You can set the following flags:

+/-delete-unreferenced-sections c/C Delete unreferenced sections from the output
file

+/-first-fit-decreasing IIL Use a "first-fit decreasing' algorithm to locate
unrestricted sections in memory

+/-copytable-compression t/T Emit smart restrictions to reduce copy table size

+/-delete-duplicate-code x/X Delete duplicate code sections from the output
file

+/-delete-duplicate-data y/Y Delete duplicate constant data from the output
file

+/-copytable-item-compression z/Z Try to compress ROM sections of copy table
items

Use the following options for predefined sets of flags:

--optimize=0 -O0 No optimization
Alias for -OCLTXYZ

--optimize=1 -O1 Default optimization
Alias for -OcLtxyZ

--optimize=2 -02 All optimizations

Alias for -OcltxyZ

558

Tool Options

Default: - - opti m ze=1
Description
With this option you can control the level of optimization.

Related information

For details about each optimization see Section 7.6, Linker Optimizations.

559

TASKING VX-toolset for ARM User Guide

Linker option: --option-file (-f)

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the linker options you have set in the other
pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the linker.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility. You can specify the option
--option-file multiple times.

Format of an option file
» Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a doubl e quote " enbedded
"This has a double quote " and a single quote '"' enbedded"
» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
i ne"

-> "This is a continuation |ine"

560

Tool Options

* Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myopt i ons contains the following lines:

--map-fil e=ny. map (generate a map file)

test. obj (input file)

--library-directory=c:\nylibs (addi tional search path for systemlibraries)
Specify the option file to the linker:

| karm --option-file=nyoptions

This is equivalent to the following command line:

| karm --map-file=ny. map test.obj --library-directory=c:\nylibs

Related information

561

TASKING VX-toolset for ARM User Guide

Linker option: --output (-0)
Menu entry
1. Select Linker » Output Format.
2. Enable one or more output formats.
For some output formats you can specify a number of suboptions.

Eclipse always uses the project name as the basename for the output file.

Command line syntax
--output=[filenane][:format[:addr_size][, space_nane]]...
-o[filenane][:format[:addr_size]]...

You can specify the following formats:

ELF ELF/DWARF

IHEX Intel Hex

SREC Motorola S-records
Description

By default, the linker generates an output file in ELF/DWARF format, with the name t ask1. abs.

With this option you can specify an alternative filename, and an alternative output format. The default
output format is the format of the first input file.

You can use the --output option multiple times. This is useful to generate multiple output formats. With
the first occurrence of the --output option you specify the basename (the filename without extension),
which is used for subsequent --output options with no filename specified. If you do not specify a filename,
or you do not specify the --output option at all, the linker uses the default basename t askn.

IHEX and SREC formats

If you specify the Intel Hex format or the Motorola S-records format, you can use the argument addr_size
to specify the size of addresses in bytes (record length). For Intel Hex you can use the values: 1, 2, and
4 (default). For Motorola S-records you can specify: 2 (S1 records), 3 (S2 records, default) or 4 bytes (S3
records). Note that if you make the addr_size too small, the linker might give a fatal object writer error
indicating an address overflow.

The name of the output file will be filename with the extension . hex or . sr e and contains the code and
data allocated in the default address space. If they exist, any other address spaces are also emitted
whereas their output files are named filename_spacename with the extension . hex or . sre.

Use option --chip-output (-c) to create Intel Hex or Motorola S-record output files for each chip defined
in the LSL file (suitable for loading into a PROM-programmer).

562

Tool Options

Example

To create the output file myf i | e. hex of the default address space, enter:
| karm test.obj --output=nyfile.hex:|HEX 4

Related information

Linker option --chip-output (Generate an output file for each chip)

Linker option --hex-format (Specify Hex file format settings)

563

TASKING VX-toolset for ARM User Guide

Linker option: --print-mangled-symbols (-P)

Menu entry

Command line syntax

--print-mangl ed- synbol s

-P

Description

C++ compilers generate unreadable symbol names. These symbols cannot easily be related to your C++
source file anymore. Therefore the linker will by default decode these symbols conform the I1A64 ABI

when printed to st dout . With this option you can override this default setting and print the mangled
names instead.

Related information

564

Tool Options

Linker option: --strip-debug (-S)

Menu entry
1. Select Linker » Miscellaneous.

2. Enable the option Strip symbolic debug information.

Command line syntax
--strip-debug

-S

Description

With this option you specify not to include symbolic debug information in the resulting output file.

Related information

565

TASKING VX-toolset for ARM User Guide

Linker option: --user-provided-initialization-code (-i)
Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Do not use standard copy table for initialization.

Command line syntax
--user-provided-initialization-code
-

Description

It is possible to use your own initialization code, for example, to save ROM space. With this option you
tell the linker not to generate a copy table for initialize/clear sections. Use linker labels in your source
code to access the positions of the sections when located.

If the linker detects references to the TASKING initialization code, an error is emitted: it is either the
TASKING initialization routine or your own, not both.

Note that the options --no-rom-copy and --non-romable, may vary independently. The
‘copytable-compression’ optimization (--optimize=t) is automatically disabled when you enable this option.

Related information
Linker option --no-rom-copy (Do not generate ROM copy)
Linker option --non-romable (Application is not romable)

Linker option --optimize (Specify optimization)

566

Tool Options

Linker option: --verbose (-v)

Menu entry
1. Select Linker » Miscellaneous.
2. Enable the option Show link phases during processing.

The verbose output is displayed in the Problems view and the Console view.

Command line syntax

--verbose

-V

Description

With this option you put the linker in verbose mode. The linker prints the link phases while it processes
the files. The linker prints one entry for each action it executes for a task. When you use this option twice
(- vv) you put the linker in extra verbose mode. In this mode the linker also prints the filenames and it
shows which objects are extracted from libraries and it shows verbose information that would normally

be hidden when you use the normal verbose mode or when you run without verbose. With this option you
can monitor the current status of the linker.

Related information

567

TASKING VX-toolset for ARM User Guide

Linker option: --version (-V)

Menu entry

Command line syntax

--version
-V
Description

Display version information. The linker ignores all other options or input files.

Related information

568

Tool Options

Linker option: --warnings-as-errors

Menu entry
1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber, ...]

Description

When the linker detects an error or warning, it tries to continue the link process and reports other errors
and warnings. When you use this option without arguments, you tell the linker to treat all warnings as
errors. This means that the exit status of the linker will be non-zero after the detection of one or more
linker warnings. As a consequence, the linker will not produce any output files.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Linker option --no-warnings (Suppress some or all warnings)

569

TASKING VX-toolset for ARM User Guide

Linker option: --whole-archive

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --whole-archive to the Additional options field.

Command line syntax

--whol e-archive=file

Description

This option tells the linker to directly load all object modules in a library, as if they were placed on the

command line. This is different from libraries specified as input files or with the -l option, which are only
used to resolve references in object files that were loaded earlier.

Example

Suppose the library myar chi ve. | i b contains the objects my1. obj , my2. obj and ny3. obj . Specifying
| kar m - - whol e- ar chi ve=nyarchive.lib

is the same as specifying

| karm ny1. obj ny3.o0bj ny3. obj

Related information

Linker option --library (Link system library)

570

Tool Options

11.6. Control Program Options

The control program ccarm facilitates the invocation of the various components of the ARM toolset from
a single command line.

Options in Eclipse versus options on the command line

Eclipse invokes the compiler, assembler and linker via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the tools. The control program processes command
line options either by itself, or, when the option is unknown to the control program, it looks whether it can
pass the option to one of the other tools. However, for directly passing an option to the C++ compiler, C
compiler, assembler or linker, it is recommended to use the control program options --pass-c++, --pass-c,
--pass-assembler, --pass-linker.

See the previous sections for details on the options of the tools.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

ccarm-W-Qac test.c
ccarm --pass-c=--opti m ze=+coal esce, +cse test.c

When you do not specify an option, a default value may become active.

571

TASKING VX-toolset for ARM User Guide

Control program option: --address-size

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file and/or Generate S-records file.
3. Specify the Size of addresses.

Eclipse always uses the project name as the basename for the output file.

Command line syntax

- - addr ess-si ze=addr _si ze

Description

If you specify IHEX or SREC with the control option --format, you can additionally specify the record
length to be emitted in the output files.

With this option you can specify the size of the addresses in bytes (record length). For Intel Hex you can
use the values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records)
or 4 bytes (S3 records, default).

If you do not specify addr_size, the default address size is generated.
Example

To create the SREC file t est . sr e with S1 records, type:

ccarm --fornmat =SREC - - address-si ze=2 test.c

Related information

Control program option --format (Set linker output format)

Control program option --output (Output file)

572

Tool Options

Control program option: --be32

Menu entry

Command line syntax
--be32

Description

This option is an alias for --endianness=big --code-endianness=big, big-endian code and data. This
option is only available for ARMV7R.

Related information
Control program option --endianness (Data endianness)

Control program option --code-endianness (Code endianness)

573

TASKING VX-toolset for ARM User Guide

Control program option: --check

Menu entry

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler/assembler reports any warnings and/or errors.

This option is available on the command line only.

Related information
C compiler option --check (Check syntax)

Assembler option --check (Check syntax)

574

Tool Options

Control program option: --code-endianness

Menu entry

Command line syntax
- -code- endi anness=endi anness

You can specify the following endianness:

big b Big endian
little | Little endian (default)
Description

This option tells the compiler what code endianness you want, little-endian (least significant byte of a
word at lowest byte code address) or big-endian (most significant byte of a word at lowest byte code
address). The code endianness used must be a valid one for the architecture you are compiling for. This
option is only available for ARMV7R.

Related information

Control program option --endianness (Data endianness)

575

TASKING VX-toolset for ARM User Guide

Control program option: --cpu (-C)
Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, make a selection by Architecture, Core or one of the
manufacturers.

Command line syntax
--cpu=architecture | processor
-Carchitecture | processor

You can specify the following architectures:

ARMv6M Compile/assemble for ARMv6-M architecture

ARMvV7M Compile/assemble for ARMv7-M architecture

ARMV7EM Compile/assemble for ARMv7E-M architecture

ARMV7R Compile/assemble for ARMv7-R architecture
Description

With this option you specify the ARM architecture for which you create your application. The architecture
determines which instructions are valid and which are not. The default architecture is ARMv7M and the
complete list of supported architectures is: ARMv6-M, ARMv7-M, ARMV7E-M or ARMv7-R. Instead of
the architecture name you can also specify the full processor name, like "STM32F205RB".

The standard list of supported processors is defined in the file pr ocessor s. xmi . This file defines for
each processor its full name (for example, STM32F205RB), its ID (for example, stm32f205rb), the
architecture name (for example, ARMv7M), the core settings (for example, cortexm3), the on-chip flash
settings, the list of silicon bugs for that processor. Each processor also defines options to supply to the
linker for preprocessing the LSL file for the applicable on-chip memory definitions (for example,
-D__FLASH_SIZE=128k).

The control program reads the file pr ocessor s. xm . The lookup sequence for names specified to this
option is as follows:

1. match any of the standard architecture names (as listed above, for example ARM/7M)

2. if none matched, match with the 'i d' attribute in pr ocessor s. xnl (case insensitive, for example
arnv7_m

3. if still none matched, match with the 'nane’ attribute in pr ocessor s. xnm (case insensitive, for example
STMB2F205RB)

4. if still none matched, the control program issues a fatal error.

576

Tool Options

If you specify a full processor name (or its ID), the control program passes the option -D__PROC _id __
to C compiler and the linker. id is the 'i d" attribute belonging to the processor found in pr ocessors. xm ,
in uppercase. The control program also passes the macros defined with the 'l i nker _macr os' property
of the processor found in the pr ocessor s. xm to the linker (for example,
-D__DEVICE_LSL_FILE=stm32f2xx.Isl).

Assembly code can check the value of the option by means of the built-in function @PU() . Architecture
ARMv7-M only supports the Thumb-2 instruction set, i.e. it has no ARM execution state.

Example

After

ccarm --cpu="STMB2F205RB" -v -t test.c
the control program will call the tools as follows:

carm - CARW7M -D__ PROC STM32F205RB__ -0 test.src test.c

asarm -CARM/7M -0 test.obj test.src

| karmtest.obj -o test.abs -CARM/7M -D__PROC STM32F205RB___
-D__DEVI CE_LSL_FI LE=st n82f 2xx. | sl -D__FLASH SI ZE=128k -D__SRAM Sl ZE=64k
--map-file -lcthunmb -1 fpthunb -Irtthunb

Related information

Control program option --cpu-list (Show list of processors)

C compiler option --cpu (Select architecture)

Assembler option --cpu (Select architecture)

Control program option --processors (Read additional processor definitions)
Control program option --tasking-sfr (Include CMSIS SFR file)

Assembly function @PU()

577

TASKING VX-toolset for ARM User Guide

Control program option: --cpu-list

Menu entry

Command line syntax
--cpu-list[=pattern]
Description

With this option the control program shows a list of supported processors as defined in the file
processors. xm . This can be useful when you want to select a processor name or id for the --cpu
option.

The pattern works similar to the UNIX grep utility. You can use it to limit the output list.
Example

To show a list of all processors, enter:

ccarm --cpu-1list

To show all processors that have stm32f107 in their name, enter:

ccarm --cpu-1|ist=stnmd2f 107

--- ~/carm etc/processors. xm ---
id nane CPU core
st m82f 107rb STM32F107RB ARMW/7M cortexnB
st n82f 107rc STM32F107RC ARM/7TM cortexnB
st m82f 107vb STM32F107VB ARMW/7M cortexnB
st n82f 107vc STM32F107VC ARW7M cortexnB

Related information

Control program option --cpu (Select processor)

578

Tool Options

Control program option: --create (-c)

Menu entry

Command line syntax
--creat e[=st age]
- c[st age]

You can specify the following stages:

intermediate-c C Stop after C++ files are compiled to intermediate C files (. i ¢)
relocatable | Stop after the files are linked to a linker object file (. out)

mil m Stop after C++ files or C files are compiled to MIL (. mi |)
object o] Stop after the files are assembled to objects (. obj)

assembly S Stop after C++ files or C files are compiled to assembly (. sr c)

Default (without flags): - - cr eat e=obj ect

Description

Normally the control program generates an absolute object file of the specified output format from the file
you supplied as input. With this option you tell the control program to stop after a certain number of phases.

Example

To generate the object file t est . obj :

ccarm--create test.c

The control program stops after the file is assembled. It does not link nor locate the generated output.
Related information

Linker option --link-only (Link only, no locating)

579

TASKING VX-toolset for ARM User Guide

Control program option: --debug-info (-g)

Menu entry
1. Select C/C++ Compiler » Debugging.

2. Togenerate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax
--debug-info

-9

Description

With this option you tell the control program to include debug information in the generated object file.

The control program passes the option --debug-info (-g) to the C compiler and calls the assembler with
--debug-info=tsmart (-g).

Related information

C compiler option --debug-info (Generate symbolic debug information)

Assembler option --debug-info (Generate symbolic debug information)

580

Tool Options

Control program option: --define (-D)

Menu entry

1. Select C/C++ Compiler » Preprocessing and/or Assembler » Preprocessing.
The Defined symbols box right-below shows the symbols that are currently defined.

2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)
Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax
- -defi ne=macr o_name[=macr o_defi ni tion]

- Dmacr o_name[=nacr o_defini tion]

Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1".

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

The control program passes the option --define (-D) to the compiler and the assembler.
Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

Consider the following C program with conditional code to compile a demo program and a real program:

void main(void)

{
#i f DEMO

dermo_func(); [* conpile for the demo program */
#el se

real _func(); [* conpile for the real program*/

581

TASKING VX-toolset for ARM User Guide

#endi f
}

You can now use a macro definition to set the DEMO flag:

ccarm --defi ne=DEMO test.c
ccarm --defi ne=DEMO=1 test.c

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

ccarm --define="MAX(A B)=((A) > (B) ? (A : (B))" test.c
Related information

Control program option --undefine (Remove preprocessor macro)

Control program option --option-file (Specify an option file)

582

Tool Options

Control program option: --dep-file

Menu entry

Command line syntax
--dep-file[=file]
Description

With this option you tell the compiler to generate dependency lines that can be used in a Makefile. In
contrast to the option --preprocess=+make, the dependency information will be generated in addition to
the normal output file.

By default, the information is written to a file with extension . d (one for every input file). When you specify
a filename, all dependencies will be combined in the specified file.

Example
ccarm--dep-file=test.dep -t test.c

The compiler compiles the file t est . ¢, which results in the output file t est . sr ¢, and generates
dependency lines in the file t est . dep.

Related information

Control program option --preprocess=+make (Generate dependencies for make)

583

TASKING VX-toolset for ARM User Guide

Control program option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.
Command line syntax
--diag=[format:]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 103, enter:
ccarm --di ag=103

This results in message 103 with explanation.

To write an explanation of all errors and warnings in HTML format to file ccer r or s. ht m , use redirection
and enter:

ccarm--diag=htm :all > ccerrors. htn

584

Tool Options

Related information

Section 4.7, C Compiler Error Messages

585

TASKING VX-toolset for ARM User Guide

Control program option: --dry-run (-n)
Menu entry

Command line syntax

--dry-run

-n

Description

With this option you put the control program in verbose mode. The control program prints the invocations
of the tools it would use to process the files without actually performing the steps.

Related information

Control program option --verbose (Verbose output)

586

Tool Options

Control program option: --dsp-library

Menu entry

1. Select C/C++ Compiler » Include Paths.

2. Enable the option Add CMSIS include paths.
3. Select Linker » Libraries.

4. Enable the option Link CMSIS DSP library.
Command line syntax

--dsp-library

Description

With this option the control program sets the C/C++ compiler macro ARM_MATH_CMD, ARM_MATH_CMVB
or ARM_MATH_CM4, depending on the selected processor. These macros are required for the CMSIS
ar m mat h. h header file to operate correctly. The control program also passes the appropriate CMSIS
DSP library to the linker. When MIL linking, the MIL library variant will be used.

Example

After

ccarm - - cpu=STM32F205RB --dsp-library --tasking-sfr -v -t test.c
the control program will call the tools as follows:

carm - CARW7M -D__PROC STM32F205RB__ - Hst nB2f 2xx. h -1 cnsi s/ I ncl ude,
cisi s/ Devi ce/ ST/ STM32F2xx/ | ncl ude - DARM MATH _CM3
-0 test.src test.c
asarnt -CARM/7M -0 test.obj test.src
l karmtest.obj -0 test.abs -CARW7M -D_PROC STM32F205RB__
-D__DEVI CE_LSL_FI LE=st n82f 2xx. | sl -D__FLASH Sl ZE=128k - D__SRAM SI ZE=64k
--map-file -lcthumb -1 fpthunb -Irtthunb -Idspthunb

Related information
Section 14.1, Using the CMSIS DSP Library

Control program option --tasking-sfr (Include CMSIS SFR file)

587

TASKING VX-toolset for ARM User Guide

Control program option: --endianness

Menu entry
1. Select Global Options.

2. Specify the Endianness:Little-endian mode or Big-endian mode.

Command line syntax
- -endi anness=endi anness

-B
- - bi g-endi an

--be32

You can specify the following endianness:

big b Big endian
little | Little endian (default)
Description

By default, the compiler generates code for a little-endian target (least significant byte of a word at lowest
byte address). With --endianness=big the compiler generates code for a big-endian target (most significant
byte of a word at lowest byte address). -B is an alias for option --endianness=big.

--be32 is an alias for --endianness=big --code-endianness=big

Related information
Control program option --be32 (Big-endian code and data)

Control program option --code-endianness (Code endianness)

588

Tool Options

Control program option: --error-file

Menu entry
Command line syntax
--error-file

Description

With this option the control program tells the compiler, assembler and linker to redirect error messages
to a file.

The error file will be named after the output file with extension . er r (for compiler) or . er s (for assembler).
For the linker, the error file is | kar m el k.

Example
To write errors to error files instead of stderr, enter:

ccarm--error-file -t test.c

Related information

Control Program option --warnings-as-errors (Treat warnings as errors)

589

TASKING VX-toolset for ARM User Guide

Control program option: --exceptions

Menu entry
1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ exception handling.

Command line syntax

--exceptions

Description

With this option you enable support for exception handling in the C++ compiler.

Related information

590

Tool Options

Control program option: --force-c

Menu entry

Command line syntax

--force-c

Description

With this option you tell the control program to treat all . cc files as C files instead of C++ files. This means
that the control program does not call the C++ compiler and forces the linker to link C libraries.

Related information

Control program option --force-c++ (Force C++ compilation and linking)

591

TASKING VX-toolset for ARM User Guide

Control program option: --force-c++

Menu entry

Eclipse always uses this option for a C++ project.

Command line syntax

--force-c++

Description

With this option you tell the control program to treat all . ¢ files as C++ files instead of C files. This means
that the control program calls the C++ compiler prior to the C compiler and forces the linker to link C++

libraries.

Related information

Control program option --force-c (Treat C++ files as C files)

592

Tool Options

Control program option: --force-munch

Menu entry

Eclipse always uses this option for a C++ project.

Command line syntax

--force-nunch

Description

With this option you force the control program to activate the muncher in the pre-locate phase.

Related information

593

TASKING VX-toolset for ARM User Guide

Control program option: --format

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file and/or Generate S-records file.
3. Optionally, specify the Size of addresses.

Eclipse always uses the project name as the basename for the output file.
Command line syntax
- - f or mat =f or mat

You can specify the following formats:

ELF ELF/DWARF

IHEX Intel Hex

SREC Motorola S-records
Description

With this option you specify the output format for the resulting (absolute) object file. The default output
format is ELF/DWARF, which can directly be used by the debugger.

If you choose IHEX or SREC, you can additionally specify the address size of the chosen format (option
--address-size).

Example

To generate a Motorola S-record output file:

ccarm--format =SREC testl.c test2.c --output=test.sre

Related information

Control program option --address-size (Set address size for linker IHEX/SREC files)
Control program option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

594

Tool Options

Control program option: --fp-model

Menu entry
1. Select C/C++ Compiler » Language.

2. Enable the option Treat '‘double’ as 'float'.
Command line syntax
- - f p- nodel =f | ags

You can set the following flags:

+/-float fIF treat 'double’ as ‘float’
+/-rewrite r'R allow expression rewriting
+/-negzero z/lZ ignore sign of -0.0

alias for --fp-model=FRZ
alias for --fp-model=Frz
alias for --fp-model=frz

Default: - - f p- nodel =Fr z

Description
With this option you select the floating-point execution model.

With --fp-model=+float you tell the compiler to treat variables and constants of type doubl e as f | oat .
Because the f | oat type takes less space, execution speed increases and code size decreases, both at
the cost of less precision. The control program automatically selects the correct libraries.

With --fp-model=+rewrite you allow the compiler to rewrite expressions by reassociating. This might
result in rounding differences and possibly different exceptions. An example is to rewrite (a*c)+(b*c) as
(a+b)*c.

With --fp-model=+negzero you allow the compiler to ignore the sign of -0.0 values. An example is to
replace (a-a) by zero.

Related information

Pragmas f p_negzero andfp_rew it e in Section 1.8, Pragmas to Control the Compiler.

595

TASKING VX-toolset for ARM User Guide

Control program option: --fpu

Menu entry
1. Select C/C++ Compiler » Code Generation.

2. Enable the option Use FPU.
Command line syntax
--fpu=fpu

You can specify the following arguments:

FPv4-sp alias for VFPv4-sp

VFPv2 alias for VFPv3

VFPv3 Compile for VFPv3 architecture

VFPv3-sp Compile for VFPv3-sp architecture

VFPv4-sp Compile for VFPv4-sp architecture

none Compile for software FPU library (default)
Description

With this option you define the kind of FPU support with which you create your application. The "sp" suffix
denotes single precision floating-point only.

Related information

596

Tool Options

Control program option: --global-type-checking

Menu entry

1. Select C/C++ Compiler » Diagnostics.

2. Enable the option Perform global type checking on C code.

Command line syntax

--gl obal -t ype-checki ng

Description

The C compiler already performs type checking within each module. Use this option when you want the

linker to perform type checking between modules. The control program passes this option to both the C
compiler and the linker.

Related information

597

TASKING VX-toolset for ARM User Guide

Control program option: --help (-?)

Menu entry

Command line syntax
--help[=item

-2

You can specify the following argument:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example
The following invocations all display a list of the available command line options:

ccarm-?
ccarm--help
ccarm

To see a detailed description of the available options, enter:

ccarm - - hel p=options

Related information

598

Tool Options

Control program option: --include-directory (-I)

Menu entry
1. Select C/C++ Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.
3. Type or select a path.

4. Optionally enable the option Add CMSIS include paths.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...

-lpath, ...
Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory.

The control program passes this option to the compiler and the assembler.

Example
Suppose that the C source file t est . ¢ contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the control program as follows:
ccarm --include-directory=nyinclude test.c

First the compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

The compiler now looks for the file myi nc. h in the directory where t est . ¢ is located. If the file is not
there the compiler searches in the directory nyi ncl ude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information

C compiler option --include-directory (Add directory to include file search path)

599

TASKING VX-toolset for ARM User Guide

C compiler option --include-file (Include file at the start of a compilation)

600

Tool Options

Control program option: --instantiate

Menu entry
1. Select C/C++ Compiler » Miscellaneous.

2. Select an instantiation mode in the Instantiation mode of external template entities box.

Command line syntax
--instantiat e=node

You can specify the following modes:

used
all
local

Default; --instantiate=used

Description

Control instantiation of external template entities. External template entities are external (that is, non-inline
and non-static) template functions and template static data members. The instantiation mode determines
the template entities for which code should be generated based on the template definition. Normally,
when a file is compiled, template entities are instantiated wherever they are used (the linker will discard
duplicate definitions). The overall instantiation mode can, however, be changed with this option. You can
specify the following modes:

used Instantiate those template entities that were used in the compilation. This will include
all static data members for which there are template definitions. This is the default.

all Instantiate all template entities declared or referenced in the compilation unit. For
each fully instantiated template class, all of its member functions and static data
members will be instantiated whether or not they were used. Non-member template
functions will be instantiated even if the only reference was a declaration.

local Similar to --instantiate=used except that the functions are given internal linkage.
This is intended to provide a very simple mechanism for those getting started with
templates. The compiler will instantiate the functions that are used in each
compilation unit as local functions, and the program will link and run correctly (barring
problems due to multiple copies of local static variables). However, one may end
up with many copies of the instantiated functions, so this is not suitable for production
use.

You cannot use --instantiate=local in conjunction with automatic template instantiation.

Related information

Control program option --no-auto-instantiation (Disable automatic C++ instantiation)

601

TASKING VX-toolset for ARM User Guide

Section 2.5, Template Instantiation

602

Control program option: --io-streams

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ 1/O streams.

Command line syntax

--io-streans

Description

Tool Options

As I/O streams require substantial resources they are disabled by default. Use this option to enable 1/0

streams support in the C++ library.

This option also enables exception handling.

Related information

603

TASKING VX-toolset for ARM User Guide

Control program option: --iso

Menu entry

1. Select C/C++ Compiler » Language.

2. From the Comply to C standard list, select ISO C99 or ISO C90.
Command line syntax

--is0={90| 99}

Default: - - i s0=99

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99
refers to the newer ISO/IEC 9899:1999 (E) standard. C99 is the default.

Independent of the chosen ISO standard, the control program always links libraries with C99 support.

Example

To select the ISO C90 standard on the command line:
ccarm--iso=90 test.c

Related information

C compiler option --iso (ISO C standard)

604

Tool Options

Control program option: --keep-output-files (-k)
Menu entry

Eclipse always removes generated output files when an error occurs.

Command line syntax
--keep-output-files
-k

Description

If an error occurs during the compilation, assembling or linking process, the resulting output file may be
incomplete or incorrect. With this option you keep the generated output files when an error occurs.

By default the control program removes generated output files when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated files. For example when you know that a particular
error does not result in a corrupt file, or when you want to inspect the output file, or send it to Altium
support.

The control program passes this option to the compiler, assembler and linker.
Example
ccarm --keep-output-files test.c

When an error occurs during compiling, assembling or linking, the erroneous generated output files will
not be removed.

Related information
C compiler option --keep-output-files
Assembler option --keep-output-files

Linker option --keep-output-files

605

TASKING VX-toolset for ARM User Guide

Control program option: --keep-temporary-files (-t)
Menu entry

1. Select Global Options.

2. Enable the option Keep temporary files.

Command line syntax

--keep-tenporary-files

-t

Description

By default, the control program removes intermediate files like the . sr c file (result of the compiler phase)
and the . obj file (result of the assembler phase).

With this option you tell the control program to keep temporary files it generates during the creation of
the absolute object file.

Example
ccarm --keep-tenporary-files test.c

The control program keeps all intermediate files it generates while creating the absolute object file
test. abs.

Related information

606

Tool Options

Control program option: --library (-I)

Menu entry
1. Select Linker » Libraries.
The Libraries box shows the list of libraries that are linked with the project.
2. To add a library, click on the Add button in the Libraries box.
3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.
Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax
--library=nane

-l nane

Description

With this option you tell the linker via the control program to use system library name. | i b, where name
is a string. The linker first searches for system libraries in any directories specified with --library-directory,
then in the directories specified with the environment variables LI BARM unless you used the option
--ignore-default-library-path.

Example
To search in the system library carm | i b (C library):
ccarmtest.obj nylib.lib --library=carm

The linker links the file t est . obj and first looks in library myl i b. | i b (in the current directory only),
then in the system library car m | i b to resolve unresolved symbols.

Related information
Control program option --no-default-libraries (Do not link default libraries)
Control program option --library-directory (Additional search path for system libraries)

Section 7.3, Linking with Libraries

607

TASKING VX-toolset for ARM User Guide

Control program option: --library-directory (-L) /
--ignore-default-library-path

Menu entry
1. Select Linker » Libraries.
The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path, ...
-Lpath, ...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-1), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is$(PRODDI R)\ | i b\ ar chi t ect ur e\ endi anness.

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variables LI BARM
So, the linker ignores steps 2 and 3 as listed below.

The priority order in which the linker searches for system libraries specified with the option --library ()
is:

1. The path that is specified with the option --library-directory.
2. The path that is specified in the environment variables LI BARM

3. The default directory $(PRODDI R)\ | i bar chi t ect ur e\ endi anness.

Example
Suppose you call the control program as follows:

ccarmtest.c --library-directory=c:\nylibs --library=carm

608

Tool Options

First the linker looks in the directory c: \ myl i bs for library car m | i b (this option). If it does not find the
requested libraries, it looks in the directory that is set with the environment variables LI BARM Then the
linker looks in the default directory $(PRODDI R)\ | i bar chi t ect ur e\ endi anness for libraries.

Related information
Control program option --library (Link system library)

Section 7.3.1, How the Linker Searches Libraries

609

TASKING VX-toolset for ARM User Guide

Control program option: --list-files

Menu entry

Command line syntax
--list-files[=file]
Default: no list files are generated
Description

With this option you tell the assembiler via the control program to generate a list file for each specified
input file. A list file shows the generated object code and the relative addresses. Note that the assembler
generates a relocatable object file with relative addresses.

With the optional file you can specify a name for the list file. This is only possible if you specify only one
input file to the control program. If you do not specify a file name, or you specify more than one input file,
the control program names the generated list file(s) after the specified input file(s) with extension . | st .

Note that object files and library files are not counted as input files.

Related information
Assembler option --list-file (Generate list file)

Assembler option --list-format (Format list file)

610

Tool Options

Control program option: --Isl-file (-d)
Menu entry
An LSL file can be generated when you create your project in Eclipse:
1. From the File menu, select File » New » TASKING ARM C/C++ Project.
The New C/C++ Project wizard appears.
2. Fillin the project settings in each dialog and click Next > until the ARM Project Settings appear.
3. Enable the option Add linker script file to the project and click Finish.
Eclipse creates your project and the file project. | sl in the project directory.
The LSL file can be specified in the Properties dialog:
1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.Isl) field (default . . / ${ Pr oj Nane}. | sl).

Command line syntax
--Isl-file=file,...

-dfile,...

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

« the architecture definition describes the core's hardware architecture.
 the memory definition describes the physical memory available in the system.
* the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file via the control program to the linker. If you do not specify
this option, the linker uses a default script file (def aul t . | sl).You can specify the existing file target. | sl
or the name of a manually written linker script file. You can use this option multiple times. The linker
processes the LSL files in the order in which they appear on the command line.

Related information

Section 7.7, Controlling the Linker with a Script

611

TASKING VX-toolset for ARM User Guide

Control program option: --make-target

Menu entry

Command line syntax
- -make-t ar get =nane
Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file. The default target name is the basename of the input
file, with extension . obj .

Example
ccarm --preprocess=+nake --nake-target=../nytarget.obj test.c

The compiler generates dependency lines with the default target name . . / myt ar get . obj instead of
test.obj.

Related information
Control program option --preprocess=+make (Generate dependencies for make)

Control program option --dep-file (Generate dependencies in a file)

612

Tool Options

Control program option: --mil-link / --mil-split

Menu entry
1. Select C/C++ Compiler » Optimization.
2. Enable the option Build for application wide optimizations (MIL linking).

3. Select Optimize less/Build faster or Optimize more/Build slower.

Command line syntax

—-mil-link
—-mil-split[=file,...]

Description

With option --mil-link the C compiler links the optimized intermediate representation (MIL) of all input
files and MIL libraries specified on the command line in the compiler. The result is one single module that
is optimized another time.

Option --mil-split does the same as option --mil-link, but in addition, the resulting MIL representation is
written to a file with the suffix . mi | and the C compiler also splits the MIL representation and writes it to
separate files with suffix . ns. One file is written for each input file or MIL library specified on the command
line. The . ns files are only updated on a change.

With option --mil-split you can perform application-wide optimizations during the frontend phase by
specifying all modules at once, and still invoke the backend phase one module at a time to reduce the
total compilation time. Application wide code compaction is not possible in this case.

Optionally, you can specify another filename for the . ns file the C compiler generates. Without an
argument, the basename of the C source file is used to create the . s filename. Note that if you specify
a filename, you have to specify one filename for every input file.

Note that with both options some extra strict type checking is done that can cause building to fail in a way
that is unforeseen and difficult to understand. For example, when you use one of these options in
combination with option --uchar you might get the following error:

carmE289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
carm1802: ["installation-dir\include\string.h" 44/17]

previ ous decl aration of "strlen"
1 errors, 0 warnings

This is caused by the fact that the MIL library is built without --uchar. You can workaround this problem
by rebuilding the MIL libraries.

Build for application wide optimizations (MIL linking) and Optimize less/Build faster

This option is standard MIL linking and splitting. Note that you can control the optimizations to be performed
with the optimization settings.

613

TASKING VX-toolset for ARM User Guide

Optimize more/Build slower
When you enable this option, the compiler's frontend does not split the MIL stream in separate modules,

but feeds it directly to the compiler's backend, allowing the code compaction to be performed application
wide.

Related information
Section 4.1, Compilation Process

C compiler option --mil / --mil-split

614

Tool Options

Control program option: --mixed-arm-thumb

Menu entry
1. Select C/C++ Compiler » Code Generation.

2. Enable the option Use full assembler for mixed ARM and Thumb instructions.

Command line syntax

--m xed-armt hunb

Description
With this option the control program calls the mixed ARM and Thumb assembler (asarm).

When you do not use this option, option --thumb determines which target assembler is chosen. Without
--thumb: the ARM instruction set only assembler (asarma). With --thumb: the Thumb instruction set only
assembler (asmarmt).

See the description of --thumb for more information.

Note that when you specify the ARMv6-M or ARMv7-M architecture profile with --cpu, this automatically
selects the Thumb-2 instruction set.

Related information

Control program option --thumb (use Thumb instruction set)

615

TASKING VX-toolset for ARM User Guide

Control program option: --no-auto-instantiation

Menu entry

Command line syntax

--no-auto-instantiation

Default: the C++ compiler automatically instantiates templates.
Description

With this option automatic instantiation of templates is disabled.
Related information

Control program option --instantiate (Set instantiation mode)

Section 2.5, Template Instantiation

616

Tool Options

Control program option: --no-default-libraries

Menu entry
1. SelectLinker » Libraries.

2. Disable the option Link default libraries.

Command line syntax

--no-default-libraries

Description

By default the control program specifies the standard C libraries (C99) and run-time library to the linker.
With this option you tell the control program not to specify the standard C libraries and run-time library to
the linker.

In this case you must specify the libraries you want to link to the linker with the option --library=library_name
or pass the libraries as files on the command line. The control program recognizes the option --library
(-I) as an option for the linker and passes it as such.

Example
ccarm--no-default-libraries test.c

The control program does not specify any libraries to the linker. In normal cases this would result in
unresolved externals.

To specify your own libraries (car m | i b) and avoid unresolved externals:

ccarm--no-default-libraries --library=carmtest.c

Related information
Control program option --library (Link system library)

Section 7.3.1, How the Linker Searches Libraries

617

TASKING VX-toolset for ARM User Guide

Control program option: --no-double (-F)

Menu entry
1. Select C/C++ Compiler » Language.

2. Enable the option Treat double as float.

Command line syntax
--no-doubl e

-F

Description

With this option you tell the compiler to treat variables of the type doubl e as f | oat . Because the float
type takes less space, execution speed increases and code size decreases, both at the cost of less
precision.

The control program also tells the linker to link the single-precision C library.
This option is an alias for Control program option --fp-model=+float.
Related information

Control program option --fp-model

618

Tool Options

Control program option: --no-map-file

Menu entry
1. Select Linker » Map File.

2. Disable the option Generate map file.

Command line syntax

--no-map-file

Description

By default the control program tells the linker to generate a linker map file.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (. obj) to the linked object file. A locate part shows the absolute position of each
section. External symbols are listed per space with their absolute address, both sorted on symbol and
sorted on address.

With this option you prevent the generation of a map file.

Related information

619

TASKING VX-toolset for ARM User Guide

Control program option: --no-warnings (-w)
Menu entry
1. Select C/C++ Compiler » Diagnostics.
The Suppress C compiler warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas or as a range, of the warnings you want to suppress (for
example 537, 538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.
Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

--no-war ni ngs[=nunber [- nunber], ...]
-w nunber [- nunber],...]

Description

With this option you can suppresses all warning messages for the various tools or specific control program
warning messages.

On the command line this option works as follows:
* If you do not specify this option, all warnings are reported.
« If you specify this option but without numbers, all warnings of all tools are suppressed.

* If you specify this option with a number or a range, only the specified control program warnings are
suppressed. You can specify the option --no-warnings=number multiple times.

Example

To suppress all warnings for all tools, enter:
ccarmtest.c --no-warnings
Related information

Control program option --warnings-as-errors (Treat warnings as errors)

620

Tool Options

Control program option: --option-file (-f)

Menu entry

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the control program.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

Multiple arguments on one line in the option file are allowed.
To include whitespace in an argument, surround the argument with single or double quotes.

If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"

"This has a double quote " enbedded'

'"This has a double quote " and a single quote '"' enbedded"

When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
li ne"

-> "This is a continuation |ine"

It is possible to nest command line files up to 25 levels.

Example

Suppose the file myopt i ons contains the following lines:

621

TASKING VX-toolset for ARM User Guide

--debug-info
- - def i ne=DEMO=1
test.c

Specify the option file to the control program:
ccarm--option-fil e=nyoptions
This is equivalent to the following command line:

ccarm —debug-info --defi ne=DEMO=1 test.c

Related information

622

Tool Options

Control program option: --output (-0)

Menu entry

Eclipse always uses the project name as the basename for the output file.

Command line syntax
--output=file

-o file

Description

By default, the control program generates a file with the same basename as the first specified input file.
With this option you specify another name for the resulting absolute object file.

The default output format is ELF/DWARF, but you can specify another output format with option --format.
Example

ccarmtest.c prog.c

The control program generates an ELF/DWARF object file (default) with the name t est . abs.

To generate the file resul t . abs:

ccarm--output=result.abs test.c prog.c

Related information

Control program option --format (Set linker output format)

Linker option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

623

TASKING VX-toolset for ARM User Guide

Control program option: --pass (-W)

Menu entry
1. Select C/C++ Compiler » Miscellaneous or Assembler » Miscellaneous or Linker » Miscellaneous.
2. Add an option to the Additional options field.

Be aware that the options in the option file are added to the options you have set in the other pages.
Only in extraordinary cases you may want to use them in combination. The assembler options are
preceded by -Wa and the linker options are preceded by -WI. For the C/C++ options you have to do
this manually.

Command line syntax

--pass-assembler=option -Waoption Pass option directly to the assembler

--pass-c=option -Wcoption Pass option directly to the C compiler

--pass-c++=option -Wcpoption Pass option directly to the C++ compiler

--pass-linker=option -Wloption Pass option directly to the linker
Description

With this option you tell the control program to call a tool with the specified option. The control program
does not use or interpret the option itself, but specifies it directly to the tool which it calls.

Example
To pass the option --verbose directly to the linker, enter:

ccarm --pass-|inker=--verbose test.c

Related information

624

Tool Options

Control program option: --preprocess (-E) / --no-preprocessing-only
Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.

4. (Optional) Enable the option Keep #line info in preprocessor output.

Command line syntax

- - preprocess[=fl ags]
-E[fl ags]

- - no- preprocessi ng-only

You can set the following flags:

+/-comments c/C keep comments

+/-includes il generate a list of included source files
+/-list I/L generate a list of macro definitions
+/-make m/M generate dependencies for make
+/-noline p/P strip #line source position information

Default; - ECI LMP

Description

With this option you tell the compiler to preprocess the C source. The C compiler sends the preprocessed
output to the file name. pr e (where name is the name of the C source file to compile). Eclipse also
compiles the C source.

On the command line, the control program stops after preprocessing. If you also want to compile the C
source you can specify the option --no-preprocessing-only. In this case the control program calls the
compiler twice, once with option --preprocess and once for a regular compilation.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+includes the compiler will generate a list of all included source files. The preprocessor
output is discarded.

With --preprocess=+list the compiler will generate a list of all macro definitions. The preprocessor output
is discarded.

625

TASKING VX-toolset for ARM User Guide

With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The information is written to a file with extension . d. The preprocessor output is discarded. The default
target name is the basename of the input file, with the extension . obj . With the option --make-target
you can specify a target name which overrules the default target name.

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines

starting with #l i ne). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example
ccarm - - preprocess=+comments, - make, - nol i ne --no-preprocessing-only test.c

The compiler preprocesses the file t est . ¢ and sends the output to the file t est . pr e. Comments are
included but no dependencies are generated and the line source position information is not stripped from
the output file. Next, the control program calls the compiler, assembler and linker to create the final object
fletest. abs

Related information
Control program option --dep-file (Generate dependencies in a file)

Control program option --make-target (Specify target name for -Em output)

626

Tool Options

Control program option: --processors

Menu entry

1. From the Window menu, select Preferences.
The Preferences dialog appears.

2. Select TASKING » ARM.

3. Click the Add button to add additional processor definition files.

Command line syntax

--processors=file

Description
With this option you can specify an additional XML file with processor definitions.

The standard list of supported processors is defined in the file pr ocessor s. xml . This file defines for
each processor its full name (for example, STM32F205RB), its ID (for example, stm32f205rb), the
architecture name (for example, ARMv7M), the core settings (for example, cortexm3), the on-chip flash
settings, the list of silicon bugs for that processor. Each processor also defines options to supply to the
linker for preprocessing the LSL file for the applicable on-chip memory definitions (for example,
-D__FLASH_SIZE=128k).

The control program reads the specified file after the file pr ocessor s. xmi in the product's et c directory.
Additional XML files can override processor definitions made in XML files that are read before.

Multiple --processors options are allowed.
Eclipse generates a --processors option in the makefiles for each specified XML file.
Example

Specify an additional processor definition file (suppose pr ocessor s- new. xni contains a new processor
ARMNEW:

ccarm - - processor s=processors-new. xm --cpu=ARMNEW t est. ¢

Related information

Control program option --cpu (Select architecture)

627

TASKING VX-toolset for ARM User Guide

Control program option: --profile (-p)

Menu entry
1. Select C/C++ Compiler » Debugging.
2. Enable or disable Static profiling.

3. Enable or disable one or more of the following Generate profiling information options (dynamic
profiling):

» for block counters (not in combination with Call graph or Function timers)
* to build a call graph
 for function counters

« for function timers

Note that the more detailed information you request, the larger the overhead in terms of execution
time, code size and heap space needed. The option --debug does not affect profiling, execution
time or code size.

Command line syntax

--profile[=flag,...]

-p[fl ags]

Use the following option for a predefined set of flags:

--profile=g -pg Profiling with call graph and function timers.
Alias for: -pBcFSt

You can set the following flags:

+/-block b/B block counters
+/-callgraph c/C call graph

+/-function fIF function counters
+/-static s/S static profile generation
+/-time T function timers

Default (without flags): - pBCf ST

Description

Profiling is the process of collecting statistical data about a running application. With these data you can
analyze which functions are called, how often they are called and what their execution time is.

628

Tool Options
Several methods of profiling exist. One method is code instrumentation which adds code to your application
that takes care of the profiling process when the application is executed. Another method is static profiling.
For an extensive description of profiling refer to Chapter 13, Profiling.
You can obtain the following profiling data (see flags above):
Block counters (not in combination with Call graph or Function timers)

This will instrument the code to perform basic block counting. As the program runs, it counts the number
of executions of each branch in an if statement, each iteration of a for loop, and so on. Note that though
you can combine Block counters with Function counters, this has no effect because Function counters
is only a subset of Block counters.

Call graph (not in combination with Block counters)

This will instrument the code to reconstruct the run-time call graph. As the program runs it associates the
caller with the gathered profiling data.

Function counters
This will instrument the code to perform function call counting. This is a subset of the basic Block counters.
Function timers (not in combination with Block counters/Function counters)

This will instrument the code to measure the time spent in a function. This includes the time spent in all
sub functions (callees).

Static profiling
With this option you do not need to run the application to get profiling results. The compiler generates

profiling information at compile time, without adding extra code to your application.

Note that the more detailed information you request, the larger the overhead in terms of execution
time, code size and heap space needed. The option Generate symbolic debug information
(--debug) does not affect profiling, execution time or code size.

The control program automatically specifies the corresponding profiling libraries to the linker.

Example

To generate block count information for the module t est . ¢ during execution, compile as follows:
ccarm--profile=tblock test.c

In this case the control program tells the linker to link the library pbarm i b.

Related information

Chapter 13, Profiling

629

TASKING VX-toolset for ARM User Guide

Control program option: --show-c++-warnings

Menu entry

Command line syntax

- - show c++-war ni ngs

Description

The C++ compiler may generate a compiled C++ file (. i ¢) that causes warnings during compilation or
assembling. With this option you tell the control program to show these warnings. By default C++ warnings
are suppressed.

Related information

630

Tool Options

Control program option: --silicon-bug

Menu entry
1. Expand C/C++ Build and select Processor.
2. From the Processor selection list, select a processor.

The CPU problem bypasses and checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.

4. Click Select All or select one or more individual options.
Command line syntax

--silicon-bug[=bug,...]

Description

With this option you specify for which hardware problems the compiler should generate workarounds.
Please refer to Chapter 19, CPU Problem Bypasses and Checks for the numbers and descriptions. Silicon
bug numbers are specified as a comma separated list. When you use this option without arguments, all
silicon bug workarounds are enabled.

The control program passes the option to both the compiler and the assembler.
Example

To enable workarounds for problem 602117, enter:
ccarm--silicon-bug=602117 test.c

Related information

Chapter 19, CPU Problem Bypasses and Checks

Compiler option --silicon-bug

Assembler option --silicon-bug

631

TASKING VX-toolset for ARM User Guide

Control program option: --tasking-sfr

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Enable the option Include CMSIS device register definition header file.
3. Select C/C++ Compiler » Include Paths.

4. Enable the option Add CMSIS include paths.

Command line syntax

--tasking-sfr

Description

With this option the compiler automatically includes the CMSIS SFR header file belonging to the target
processor you selected on the Processor page (C compiler option --cpu).

Example

After

ccarm - - cpu=STM32F205RB --tasking-sfr -v -t test.c
the control program will call the tools as follows:

carm - CARW7M -D__PROC STMB2F205RB__ - Hst nB2f 2xx. h -1cnsi s/ 1 ncl ude,
cnsi s/ Devi ce/ ST/ STM32F2xx/ I nclude -0 test.src test.c

asarm -CARM/7M -0 test.obj test.src

| karmtest.obj -0 test.abs -CARM/7M -D__PROC_STM32F205RB___
-D__DEVI CE_LSL_FI LE=st nB2f 2xx. sl -D__FLASH Sl ZE=128k - D__SRAM S| ZE=64k
--map-file -lcthunb -1 fpthunb -Irtthunb

Related information
Control program option --cpu (Select architecture)

Control program option --dsp-library (Link CMSIS DSP library)

632

Tool Options

Control program option: --thumb

Menu entry
1. Select C/C++ Compiler » Code Generation.

2. Enable the option Use Thumb instruction set.

Command line syntax

--thunb

Description

Generate code in Thumb mode or Thumb-2 mode, depending on the architecture. The Thumb instruction
set is a subset of the ARM instruction set which is encoded using 16-bit instructions instead of 32-bit
instructions. The Thumb-2 instruction set has 16-bit and 32-bit instructions.

Depending on this option and option --mixed-arm-thumb a target assembler is chosen. asarm is the full
assembler with both ARM and Thumb instructions. asarma is the ARM instruction set only assembler.
asarmt is the Thumb instruction set only assembler.

--thumb --mixed-arm-thumb Assembler
no no asarma

no yes asarm

yes no asarmt

yes yes asarm --thumb

Note that when you specify the ARMv6-M, ARMv7-M, or ARMV7E-M architecture with --cpu, this
automatically selects the Thumb-2 instruction set.

Related information

Control program option --mixed-arm-thumb (use mixed ARM and Thumb assembler)

633

TASKING VX-toolset for ARM User Guide

Control program option: --uchar (-u)

Menu entry
1. Select C/C++ Compiler » Language.

2. Enable the option Treat "char" variables as unsigned.

Command line syntax
- -uchar

-u

Description

By default char is the same as specifying si gned char . With this option char is the same as unsi gned
char . This option is passed to both the C++ compiler and the C compiler.

Note that this option can cause conflicts when you use it in combination with MIL linking. With MIL linking
some extra strict type checking is done that can cause building to fail in a way that is unforeseen and
difficult to understand. For example, when you use option --mil-link in combination with option --uchar
you might get the following error:

carmE289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
carm1802: ["installation-dir\include\string.h" 44/17]

previ ous decl aration of "strlen"
1 errors, O warnings

This is caused by the fact that the MIL library is built without --uchar. You can workaround this problem
by rebuilding the MIL libraries.

Related information

Section 1.1, Data Types

634

Tool Options

Control program option: --undefine (-U)

Menu entry
1. Select C/C++ Compiler » Preprocessing
The Defined symbols box shows the symbols that are currently defined.

2. Toremove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax
--undefi ne=nmacr o_nane

- Uracr o_nane

Description

With this option you can undefine an earlier defined macro as with #undef . This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

__FILE__ current source filename

__LINE__ current source line number (int type)
_TIME__ hh:mm:ss

__DATE__ Mmm dd yyyy

__STDC level of ANSI standard

The control program passes the option --undefine (-U) to the compiler.

Example

To undefine the predefined macro __TASKI NG__:

ccarm --undefine=__TASKING _ test.c

Related information

Control program option --define (Define preprocessor macro)

Section 1.9, Predefined Preprocessor Macros

635

TASKING VX-toolset for ARM User Guide

Control program option: --verbose (-v)

Menu entry

1. Select Global Options.

2. Enable the option Verbose mode of control program.
Command line syntax

--verbose

-v

Description

With this option you put the control program in verbose mode. The control program performs its tasks
while it prints the steps it performs to st dout .

Related information

Control program option --dry-run (Verbose output and suppress execution)

636

Tool Options

Control program option: --version (-V)

Menu entry

Command line syntax

--version
-V
Description

Display version information. The control program ignores all other options or input files.

Related information

637

TASKING VX-toolset for ARM User Guide

Control program option: --warnings-as-errors

Menu entry
1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber[-nunber],...]

Description

If one of the tools encounters an error, it stops processing the file(s). With this option you tell the tools to
treat warnings as errors or treat specific control program warning messages as errors:

* If you specify this option but without numbers, all warnings are treated as errors.

« If you specify this option with a number or a range, only the specified control program warnings are
treated as an error. You can specify the option --warnings-as-errors=number multiple times.

Use one of the --pass-tool options to pass this option directly to a tool when a specific warning for that
tool must be treated as an error. For example, use --pass-c=--warnings-as-errors=number to treat a
specific C compiler warning as an error.

Related information
Control program option --no-warnings (Suppress some or all warnings)

Control program option --pass (Pass option to tool)

638

Tool Options

11.7. Make Utility Options

You can use the make utility mkarm from the command line to build your project. Note that this make
utility is not the default make used by Eclipse. So, you have to create your own makefile.

The invocation syntax is:
nkarm [option...] [target...] [macro=def]

This section describes all options for the make utility. The make utility is a command line tool so there
are no equivalent options in Eclipse.

For detailed information about the make utility and using makefiles see Section 9.2, Make Utility mkarm.

639

TASKING VX-toolset for ARM User Guide

Defining Macros

Command line syntax

nmacr o_namne[=macr o_defini tion]

Description

With this argument you can define a macro and specify it to the make utility.

A macro definition remains in existence during the execution of the makefile, even when the makefile
recursively calls the make utility again. In the recursive call, the macro acts as an environment variable.
This means that it is overruled by definitions in the recursive call. Use the option -e to prevent this.

You can specify as many macros as you like. If the command line exceeds the limit of the operating
system, you can define the macros in an option file which you then must specify to the make utility with
the option -m) file.

Defining macros on the command line is, for example, useful in combination with conditional processing
as shown in the example below.

Example

Consider the following makefile with conditional rules to build a demo program and a real program:

i fdef DEMO # the value of DEMO is of no inportance
real .abs : denvo. obj nmain. obj
| karm denp. obj main.obj -darmlsl -lcarm-lfparm-Irtarm
el se
real.abs : real.obj main.obj
| karmreal .obj main.obj -darmlsl -lcarm-|lfparm-Irtarm
endi f

You can now use a macro definition to set the DEMO flag:
nkarm r eal . abs DEMO=1

In both cases the absolute object file r eal . abs is created but depending on the DEMO flag it is linked
with denp. obj orwith real . obj .

Related information
Make utility option -e (Environment variables override macro definitions)

Make utility option -m (Name of invocation file)

640

Tool Options

Make utility option: -?
Command line syntax

-2

Description

Displays an overview of all command line options.

Example
The following invocation displays a list of the available command line options:

nkarm - ?

Related information

641

TASKING VX-toolset for ARM User Guide

Make utility option: -a
Command line syntax

-a

Description

Normally the make utility rebuilds only those files that are out of date. With this option you tell the make
utility to rebuild all files, without checking whether they are out of date.

Example
nkarm - a

Rebuilds all your files, regardless of whether they are out of date or not.

Related information

642

Tool Options

Make utility option: -c
Command line syntax

-C

Description

Eclipse uses this option when you create sub-projects. In this case the make utility calls another instance
of the make utility for the sub-project. With the option -c, the make utility runs as a child process of the
current make.

The option -c overrules the option -err.
Example
nkarm -c

The make utility runs its commands as a child processes.

Related information

Make utility option -err (Redirect error message to file)

643

TASKING VX-toolset for ARM User Guide

Make utility option: -D / -DD

Command line syntax

-D
- DD

Description

With the option -D the make utility prints every line of the makefile to standard output as it is read by
mkarm.

With the option -DD not only the lines of the makefile are printed but also the lines of the mkar m nk file
(implicit rules).

Example
nkarm - D

Each line of the makefile that is read by the make utility is printed to standard output (usually your screen).

Related information

644

Tool Options

Make utility option: -d/ -dd

Command line syntax

-d
-dd

Description

With the option -d the make utility shows which files are out of date and thus need to be rebuild. The
option -dd gives more detail than the option -d.

Example
nkarm -d

Shows which files are out of date and rebuilds them.

Related information

645

TASKING VX-toolset for ARM User Guide

Make utility option: -e
Command line syntax

-e

Description

If you use macro definitions, they may overrule the settings of the environment variables. With the option
-e, the settings of the environment variables are used even if macros define otherwise.

Example
nkarm - e

The make utility uses the settings of the environment variables regardless of macro definitions.

Related information

646

Tool Options

Make utility option: -err

Command line syntax

-err file

Description

With this option the make utility redirects error messages and verbose messages to a specified file.
With the option -s the make utility only displays error messages.
Example

nkarm-err error.txt

The make utility writes messages to the file error . t xt .
Related information

Make utility option -s (Do not print commands before execution)

Make utility option -c (Run as child process)

647

TASKING VX-toolset for ARM User Guide

Make utility option: -f

Command line syntax

-f my_makefile
Description

By default the make utility uses the file makef i | e to build your files.

With this option you tell the make utility to use the specified file instead of the file makefi | e. Multiple -f
options act as if all the makefiles were concatenated in a left-to-right order.

If you use '-' instead of a makefile name it means that the information is read from st di n.

Example
nkarm -f nymake

The make utility uses the file mynake to build your files.

Related information

648

Tool Options

Make utility option: -G
Command line syntax

-G path

Description

Normally you must call the make utility from the directory where your makefile and other files are stored.

With the option -G you can call the make utility from within another directory. The path is the path to the
directory where your makefile and other files are stored and can be absolute or relative to your current
directory.

Example

Suppose your makefile and other files are stored in the directory . . \ myfi | es. You can call the make
utility, for example, as follows:

nkarm -G ..\nyfiles

Related information

649

TASKING VX-toolset for ARM User Guide

Make utility option: -i
Command line syntax

-1

Description

When an error occurs during the make process, the make utility exits with a certain exit code.

With the option -i, the make utility exits without an error code, even when errors occurred.

Example
nkarm - i

The make utility exits without an error code, even when an error occurs.

Related information

650

Tool Options

Make utility option: -K
Command line syntax

-K

Description

With this option the make utility keeps temporary files it creates during the make process. The make utility
stores temporary files in the directory that you have specified with the environment variable TMPDIR or
in the default 'temp' directory of your system when the TMPDIR environment variable is not specified.

Example
nkarm - K

The make utility preserves all temporary files.

Related information

651

TASKING VX-toolset for ARM User Guide

Make utility option: -k
Command line syntax

-k

Description

When during the make process the make utility encounters an error, it stops rebuilding your files.

With the option -k, the make utility only stops building the target that produced the error. All other targets
defined in the makefile are built.

Example
nmkarm -k

If the make utility encounters an error, it stops building the current target but proceeds with the other
targets that are defined in the makefile.

Related information

Make utility option -S (Undo the effect of -k)

652

Tool Options

Make utility option: -m

Command line syntax

-mfile

Description

Instead of typing all options on the command line, you can create an option file which contains all options
and flags you want to specify. With this option you specify the option file to the make utility.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option -m multiple times.

If you use '-' instead of a filename it means that the options are read from st di n.

Format of an option file
» Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"”

"This has a double quote " enbedded'

'This has a double quote " and a single quote '"' enbedded”
Note that adjacent strings are concatenated.

» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
i ne"

-> "This is a continuation |ine"

* Itis possible to nest command line files up to 25 levels.

Example
Suppose the file myopt i ons contains the following lines:
-k

-err errors.txt
test. abs

653

TASKING VX-toolset for ARM User Guide

Specify the option file to the make utility:
nkarm - m myopti ons
This is equivalent to the following command line:

nkarm -k -err errors.txt test.abs

Related information

654

Tool Options

Make utility option: -n
Command line syntax

-Nn

Description

With this option you tell the make utility to perform a dry run. The make utility shows what it would do but
does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if you call the make utility.

Example
nkarm -n

The make utility does not perform any tasks but displays what it would do if called without the option -n.

Related information

Make utility option -s (Do not print commands before execution)

655

TASKING VX-toolset for ARM User Guide

Make utility option: -p

Command line syntax

-p

Description

Normally, if a command in a target rule in a makefile returns an error or when the target construction is

interrupted, the make utility removes that target file. With this option you tell the make utility to make all
target files precious. This means that all dependency files are never removed.

Example

nkarm - p

The make utility never removes target dependency files.
Related information

Special target . PRECI QUS in Section 9.2.2.1, Targets and Dependencies

656

Tool Options

Make utility option: -q

Command line syntax

-q

Description

With this option the make utility does not perform any tasks but only returns an exit code. A zero status

indicates that all target files are up to date, a non-zero status indicates that some or all target files are
out of date.

Example
nmkarm -q

The make utility only returns an error code that indicates whether all target files are up to date or not. It
does not rebuild any files.

Related information

657

TASKING VX-toolset for ARM User Guide

Make utility option: -r
Command line syntax

-r

Description

When you call the make utility, it first reads the implicit rules from the file mkar m nk, then it reads the
makefile with the rules to build your files. (The file mkar m nkis located in the \ et c directory of the toolset.)

With this option you tell the make utility not to read nkar m nk and to rely fully on the make rules in the
makefile.

Example
nkarm -r

The make utility does not read the implicit make rules in mkar m nk.

Related information

658

Tool Options

Make utility option: -S

Command line syntax

-S

Description

With this option you cancel the effect of the option -k. This is only necessary in a recursive make where
the option -k might be inherited from the top-level make via MAKEFLAGS or if you set the option -k in

the environment variable MAKEFLAGS.

With this option you tell the make utility not to read nmkar m nk and to rely fully on the make rules in the
makefile.

Example
nkarm - S

The effect of the option -k is cancelled so the make utility stops with the make process after it encounters
an error.

The option -k in this example may have been set with the environment variable MAKEFLAGS or in a
recursive call to mkarm in the makefile.

Related information

Make utility option -k (On error, abandon the work for the current target only)

659

TASKING VX-toolset for ARM User Guide

Make utility option: -s
Command line syntax

-s

Description

With this option you tell the make utility to perform its tasks without printing the commands it executes.
Error messages are normally printed.

Example

nkarm -s

The make utility rebuilds your files but does not print the commands it executes during the make process.
Related information

Make utility option -n (Perform a dry run)

660

Tool Options

Make utility option: -t
Command line syntax

-t

Description

With this option you tell the make utility to touch the target files, bringing them up to date, rather than
performing the rules to rebuild them.

Example
nmkarm -t

The make utility updates out-of-date files by giving them a new date and time stamp. The files are not
actually rebuild.

Related information

661

TASKING VX-toolset for ARM User Guide

Make utility option: -time

Command line syntax

-time

Description

With this option you tell the make utility to display the current date and time on standard output.

Example
nkarm -ti me

The make utility displays the current date and time and updates out-of-date files.

Related information

662

Tool Options

Make utility option: -V
Command line syntax

-V

Description

Display version information. The make utility ignores all other options or input files.

Related information

663

TASKING VX-toolset for ARM User Guide

Make utility option: -W
Command line syntax
-Wtarget

Description

With this option the make utility considers the specified target file always as up to date and will not rebuild
it.

Example
nkarm - Wt est. abs

The make utility rebuilds out of date targets in the makefile except the file t est . abs which is considered
now as up to date.

Related information

664

Tool Options

Make utility option: -w
Command line syntax
-W

Description

With this option the make utility sends error messages and verbose messages to standard output. Without
this option, the make utility sends these messages to standard error.

This option is only useful on UNIX systems.

Example
nmkarm -w

The make utility sends messages to standard out instead of standard error.

Related information

665

TASKING VX-toolset for ARM User Guide

Make utility option: -x
Command line syntax

-X

Description

With this option the make utility shows extended error messages. Extended error messages give more
detailed information about the exit status of the make utility after errors.

Example
nmkar m - x

If errors occur, the make utility gives extended information.

Related information

666

Tool Options

11.8. Parallel Make Utility Options

When you build a project in Eclipse, Eclipse generates a makefile and uses the make utility amk to build
all your files. However, you can also use the make utility directly from the command line to build your
project.

The invocation syntax is:

ank [option...] [target...] [macro=def]

This section describes all options for the parallel make utility.

For detailed information about the parallel make utility and using makefiles see Section 9.3, Make Utility
amk.

667

TASKING VX-toolset for ARM User Guide

Parallel make utility option: --always-rebuild (-a)

Command line syntax
--always-rebuild

-a

Description

Normally the make utility rebuilds only those files that are out of date. With this option you tell the make
utility to rebuild all files, without checking whether they are out of date.

Example
ank -a
Rebuilds all your files, regardless of whether they are out of date or not.

Related information

668

Tool Options

Parallel make utility option: --change-dir (-G)

Command line syntax

--change-di r=path

-G path

Description

Normally you must call the make utility from the directory where your makefile and other files are stored.

With the option -G you can call the make utility from within another directory. The path is the path to the
directory where your makefile and other files are stored and can be absolute or relative to your current
directory.

The macro SUBDI Ris defined with the value of path.

Example

Suppose your makefile and other files are stored in the directory . . \ myfi | es.You can call the make
utility, for example, as follows:

ank -G ..\nyfiles

Related information

669

TASKING VX-toolset for ARM User Guide

Parallel make utility option: --diag
Command line syntax
--diag=[format:]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 169, enter:
ank --di ag=169

This results in the following message and explanation:

F169: target '%' returned exit code %l

An error occured while executing one of the conmands
of the target, and -k option is not specified.

To write an explanation of all errors and warnings in HTML format to file anker r or s. ht m , use redirection
and enter:

ank --diag=htm:all > ankerrors. htm

Related information

670

Tool Options

Parallel make utility option: --dry-run (-n)

Command line syntax
--dry-run

-n

Description

With this option you tell the make utility to perform a dry run. The make utility shows what it would do but
does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if you call the make utility.

Example

ank -n

The make utility does not perform any tasks but displays what it would do if called without the option -n.
Related information

Parallel make utility option -s (Do not print commands before execution)

671

TASKING VX-toolset for ARM User Guide

Parallel make utility option: --help (-? / -h)

Command line syntax
--help[=item

-h

-?

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example
The following invocations all display a list of the available command line options:

ank -?
ank --help

To see a detailed description of the available options, enter:

ank --hel p=options

Related information

672

Tool Options

Parallel make utility option: --jobs (-j) / --jobs-limit (-J)
Menu
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.
In the right pane the C/C++ Build page appears.
3. On the Behaviour tab, select Use parallel build.

4. You can specify the number of parallel jobs, or you can use an optimal number of jobs. In the last
case, amk will fork as many jobs in parallel as cores are available.

Command line syntax

- -j obs[=nunber]
-j [nunber]

--jobs-1imt[=nunber]
- J[nunber]

Description

When these options you can limit the number of parallel jobs. The default is 1. Zero means no limit. When
you omit the number, amk uses the number of cores detected.

Option -J is the same as -j, except that the number of parallel jobs is limited by the number of cores
detected.

Example
ank -j3
Limit the number of parallel jobs to 3.

Related information

673

TASKING VX-toolset for ARM User Guide

Parallel make utility option: --keep-going (-k)
Command line syntax

- - keep- goi ng

-k

Description

When during the make process the make utility encounters an error, it stops rebuilding your files.

With the option -k, the make utility only stops building the target that produced the error. All other targets
defined in the makefile are built.

Example
ank -k

If the make utility encounters an error, it stops building the current target but proceeds with the other
targets that are defined in the makefile.

Related information

674

Tool Options

Parallel make utility option: --list-targets (-I)

Command line syntax

--list-targets

-1

Description

With this option, the make utility lists all "primary" targets that are out of date.
Example

ank -1
list of targets

Related information

675

TASKING VX-toolset for ARM User Guide

Parallel make utility option: --makefile (-f)

Command line syntax
--makefil e=nmy_makefile

-f nmy_nakefile
Description

By default the make utility uses the file makef i | e to build your files.

With this option you tell the make utility to use the specified file instead of the file makef i | e. Multiple -f
options act as if all the makefiles were concatenated in a left-to-right order.

If you use '-' instead of a makefile name it means that the information is read from st di n.

Example
ank -f mynake
The make utility uses the file mynake to build your files.

Related information

676

Tool Options

Parallel make utility option: --no-warnings (-w)

Command line syntax

- - no-war ni ngs[=nunber, .. .]
-w nunber, .. .]
Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

* If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example
To suppress warnings 751 and 756, enter:

ank --no-warni ngs=751, 756

Related information

Parallel make utility option --warnings-as-errors (Treat warnings as errors)

677

TASKING VX-toolset for ARM User Guide

Parallel make utility option: --silent (-s)

Command line syntax
--silent

-s

Description

With this option you tell the make utility to perform its tasks without printing the commands it executes.
Error messages are normally printed.

Example

ank -s

The make utility rebuilds your files but does not print the commands it executes during the make process.
Related information

Parallel make utility option -n (Perform a dry run)

678

Tool Options

Parallel make utility option: --version (-V)

Command line syntax

--version
-V
Description

Display version information. The make utility ignores all other options or input files.

Related information

679

TASKING VX-toolset for ARM User Guide

Parallel make utility option: --warnings-as-errors

Command line syntax

- -war ni ngs- as-errors[=nunber, ...]

Description

If the make utility encounters an error, it stops. When you use this option without arguments, you tell the
make utility to treat all warnings as errors. This means that the exit status of the make utility will be non-zero
after one or more warnings. As a consequence, the make utility now also stops after encountering a
warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Parallel make utility option --no-warnings (Suppress some or all warnings)

680

Tool Options

11.9. Archiver Options

The archiver and library maintainer ararm is a tool to build library files and it offers the possibility to
replace, extract and remove modules from an existing library.

The invocation syntax is:
ararm key_option [sub_option...] library [object_file]

This section describes all options for the archiver. Some suboptions can only be used in combination with
certain key options. They are described together. Suboptions that can always be used are described
separately.

For detailed information about the archiver, see Section 9.4, Archiver.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option

names as long as it forms a unique name. You can mix short and long option names on the command
line.

Overview of the options of the archiver utility

The following archiver options are available:

Description ‘Option Sub-option
Main functions (key options)

Replace or add an object module -r -a-b-c-n-u-v
Extract an object module from the library -X -0 -V
Delete object module from library -d -v

Move object module to another position -m -a-b-v
Print a table of contents of the library -t -s0-s1
Print object module to standard output -p

Sub-options

Append or move new modules after existing module name -a name

Append or move new modules before existing module name -b name

Suppress the message that is displayed when a new library is -C

created.

Create a new library from scratch -n

Preserve last-modified date from the library -0

Print symbols in library modules -s{0|1}

Replace only newer modules -u

Verbose -v

681

TASKING VX-toolset for ARM User Guide

Description Option Sub-option
Miscellaneous

Display options -?

Display description of one or more diagnostic messages --diag

Display version header -V

Read options from file -f file

Suppress warnings above level n -wn

682

Tool Options

Archiver option: --diag
Command line syntax
--diag=[format:]{all | nsg[-nBQ],...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The archiver does
not perform any actions. You can specify the following formats: html, rtf or text (default). To create a file
with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

Example

To display an explanation of message number 102, enter:
ararm - -di ag=102

This results in the following message and explanation:

F102: cannot create "<file>"

The output file or a tenporary file could not be created. Check if you have
sufficient disk space and if you have wite permissions for the specified
file.

To write an explanation of all errors and warnings in HTML format to file ar er r or s. ht ml , use redirection
and enter:

ararm--diag=htm:all > arerrors. htni

Related information

683

TASKING VX-toolset for ARM User Guide

Archiver option: --delete (-d)

Command line syntax
--delete [--verbose]
-d [-v]

Description

Delete the specified object modules from a library. With the suboption --verbose (-v) the archiver shows
which files are removed.

--verbose -v Verbose: the archiver shows which files are removed.

Example

ararm--delete nylib.lib obj1.obj obj2.obj

The archiver deletes obj 1. obj and obj 2. obj from the library myl i b. 1i b.
ararm-d -v nylib.lib obj1.obj obj2.obj

The archiver deletes obj 1. obj and obj 2. obj from the library nmyl i b. | i b and displays which files are
removed.

Related information

684

Tool Options

Archiver option: --dump (-p)

Command line syntax

--dunp

-p

Description

Print the specified object module(s) in the library to standard output.

This option is only useful when you redirect or pipe the output to other files or tools that serve your own
purposes. Normally you do not need this option.

Example

ararm--dunp nylib.lib objl.obj > file.obj

The archiver prints the file obj 1. obj to standard output where it is redirected to the file f i | e. obj . The
effect of this example is very similar to extracting a file from the library but in this case the 'extracted' file

gets another name.

Related information

685

TASKING VX-toolset for ARM User Guide

Archiver option: --extract (-x)

Command line syntax

--extract [--npdtinme] [--verbose]
-x [-0] [-V]

Description

Extract an existing module from the library.

--modtime -0 Give the extracted object module the same date as the last-modified
date that was recorded in the library. Without this suboption it
receives the last-modified date of the moment it is extracted.

--verbose -V Verbose: the archiver shows which files are extracted.

Example

To extract the file obj 1. obj from the library myl i b. I'i b:
ararm--extract nylib.lib obj1. obj

If you do not specify an object module, all object modules are extracted:

ararm-x nylib.lib

Related information

686

Tool Options

Archiver option: --help (-?)

Command line syntax
--help[=item

-?

You can specify the following argument:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example
The following invocations all display a list of the available command line options:

ararm-?

ararm --hel p

ararm

To see a detailed description of the available options, enter:

ararm - - hel p=opti ons

Related information

687

TASKING VX-toolset for ARM User Guide

Archiver option: --move (-m)

Command line syntax

--nove [-a posnane] [-b posnhane]

-m[-a posnane] [-b posnane]

Description

Move the specified object modules to another position in the library.

The ordering of members in a library can make a difference in how programs are linked if a symbol is
defined in more than one member.

By default, the specified members are moved to the end of the archive. Use the suboptions -a or -b to
move them to a specified place instead.

--after=posname -a Move the specified object module(s) after the existing module
posname poshame.

--before=posname -b Move the specified object module(s) before the existing
posname module poshame.

Example

Suppose the library nmyl i b. | i b contains the following objects (see option --print):
obj 1. obj

obj 2. obj

obj 3. obj

To move obj 1. obj totheendof nyli b. i b:

ararm--nmove nylib.lib obj1. obj

To move obj 3. obj just before obj 2. obj :

ararm-m-b obj3.0bj mylib.lib obj2.obj

The library nyl i b. | i b after these two invocations now looks like:
obj 3. obj

obj 2. obj

obj 1. obj

Related information

Archiver option --print (-t) (Print library contents)

688

Tool Options

Archiver option: --option-file (-f)
Command line syntax
--option-file=file

-f file

Description

Instead of typing all options on the command line, you can create an option file which contains all options
and flags you want to specify. With this option you specify the option file to the archiver.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file (-f) multiple times.

If you use '-' instead of a filename it means that the options are read from st di n.

Format of an option file

» Multiple arguments on one line in the option file are allowed.

» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a double quote " enbedded’

"This has a doubl e quote and a single quote '"' enbedded"

* When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
l'i ne"

-> "This is a continuation |line"

* Itis possible to nest command line files up to 25 levels.

Example
Suppose the file myopt i ons contains the following lines:

-x nmylib.lib objl.obj
- w5

689

TASKING VX-toolset for ARM User Guide

Specify the option file to the archiver:

ararm --option-fil e=nyoptions

This is equivalent to the following command line:
ararm-x nylib.lib obj1.obj -w5

Related information

690

Tool Options

Archiver option: --print (-t)
Command line syntax

--print [--synbol s=0| 1]

-t [-s0]-s1]

Description

Print a table of contents of the library to standard output. With the suboption -s0 the archiver displays all
symbols per object file.

--symbols=0 -s0 Displays per object the name of the object itself and all symbols in
the object.
--symbols=1 -s1 Displays the symbols of all object files in the library in the form

library_name:object_name:symbol_name

Example

ararm--print nylib.lib

The archiver prints a list of all object modules in the library nyl i b. | i b:
ararm-t -sO nylib.lib

The archiver prints per object all symbols in the library. For example:
cstart. obj

synbol s:
_START

Related information

691

TASKING VX-toolset for ARM User Guide

Archiver option: --replace (-r)

Command line syntax

--replace [--after=posnane] [--before=posnane]
[--create] [--new] [--newer-only] [--verbose]

-r [-a posnane] [-b posnane][-c] [-n] [-u] [-V]
Description

You can use the option --replace (-r) for several purposes:

» Adding new objects to the library

» Replacing objects in the library with the same object of a newer date
» Creating a ne