
TASKING VX-toolset for ARM
User Guide

MA163-800 (v5.1) June 19, 2015

Copyright © 2015 Altium BV.

All rights reserved.You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of Altium BV. Unauthorized duplication of this work may also be prohibited by local statute.
Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, TASKING,
and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other
registered or unregistered trademarks referenced herein are the property of their respective owners and no trademark
rights to the same are claimed.

Table of Contents
1. C Language .. 1

1.1. Data Types ... 1
1.2. Changing the Alignment: __unaligned, __packed__ and __align() 2
1.3. Placing an Object at an Absolute Address: __at() ... 3
1.4. Accessing Hardware from C .. 4
1.5. Shift JIS Kanji Support ... 5
1.6. Using Assembly in the C Source: __asm() .. 6
1.7. Attributes ... 12
1.8. Pragmas to Control the Compiler .. 15
1.9. Predefined Preprocessor Macros .. 21
1.10. Switch Statement ... 22
1.11. Functions ... 24

1.11.1. Calling Convention ... 24
1.11.2. Inlining Functions: inline .. 24
1.11.3. Interrupt Functions / Exception Handlers .. 26
1.11.4. Intrinsic Functions ... 28

2. C++ Language .. 37
2.1. C++ Language Extension Keywords .. 37
2.2. C++ Dialect Accepted ... 37

2.2.1. Standard Language Features Accepted ... 37
2.2.2. C++0x Language Features Accepted .. 40
2.2.3. Anachronisms Accepted ... 44
2.2.4. Extensions Accepted in Normal C++ Mode ... 45

2.3. GNU Extensions .. 47
2.4. Namespace Support .. 61
2.5. Template Instantiation ... 63

2.5.1. Automatic Instantiation ... 64
2.5.2. Instantiation Modes ... 65
2.5.3. Instantiation #pragma Directives ... 66
2.5.4. Implicit Inclusion ... 67
2.5.5. Exported Templates ... 68

2.6. Inlining Functions ... 71
2.7. Extern Inline Functions ... 72
2.8. Pragmas to Control the C++ Compiler .. 72
2.9. Predefined Macros ... 73
2.10. Precompiled Headers ... 77

2.10.1. Automatic Precompiled Header Processing ... 77
2.10.2. Manual Precompiled Header Processing .. 80
2.10.3. Other Ways to Control Precompiled Headers ... 80
2.10.4. Performance Issues ... 81

3. Assembly Language ... 83
3.1. Assembly Syntax ... 83
3.2. Assembler Significant Characters .. 84
3.3. Operands of an Assembly Instruction ... 85
3.4. Symbol Names .. 85

3.4.1. Predefined Preprocessor Symbols .. 86
3.5. Registers ... 87
3.6. Assembly Expressions .. 87

iii

3.6.1. Numeric Constants .. 88
3.6.2. Strings .. 88
3.6.3. Expression Operators .. 89

3.7. Working with Sections ... 90
3.8. Built-in Assembly Functions ... 91
3.9. Assembler Directives .. 96

3.9.1. Overview of Assembler Directives ... 97
3.9.2. Detailed Description of Assembler Directives .. 98

3.10. Macro Operations ... 138
3.10.1. Defining a Macro ... 138
3.10.2. Calling a Macro ... 138
3.10.3. Using Operators for Macro Arguments ... 139

3.11. Generic Instructions .. 142
3.11.1. ARM Generic Instructions .. 142
3.11.2. ARM and Thumb-2 32-bit Generic Instructions ... 143
3.11.3. Thumb 16-bit Generic Instructions ... 145

4. Using the C Compiler .. 147
4.1. Compilation Process ... 147
4.2. Calling the C Compiler .. 148
4.3. How the Compiler Searches Include Files ... 150
4.4. Compiling for Debugging ... 151
4.5. Compiler Optimizations ... 151

4.5.1. Generic Optimizations (frontend) .. 153
4.5.2. Core Specific Optimizations (backend) ... 155
4.5.3. Optimize for Code Size or Execution Speed .. 157

4.6. Static Code Analysis ... 160
4.6.1. C Code Checking: CERT C .. 161
4.6.2. C Code Checking: MISRA C .. 163

4.7. C Compiler Error Messages ... 165
5. Using the C++ Compiler ... 167

5.1. Calling the C++ Compiler ... 167
5.2. How the C++ Compiler Searches Include Files ... 169
5.3. C++ Compiler Error Messages .. 170

6. Using the Assembler ... 173
6.1. Assembly Process .. 173
6.2. Assembler Versions .. 174
6.3. Calling the Assembler ... 174
6.4. How the Assembler Searches Include Files ... 175
6.5. Generating a List File .. 176
6.6. Assembler Error Messages .. 177

7. Using the Linker ... 179
7.1. Linking Process ... 179

7.1.1. Phase 1: Linking .. 181
7.1.2. Phase 2: Locating .. 182

7.2. Calling the Linker ... 183
7.3. Linking with Libraries .. 184

7.3.1. How the Linker Searches Libraries .. 187
7.3.2. How the Linker Extracts Objects from Libraries .. 188

7.4. Incremental Linking .. 188
7.5. Importing Binary Files ... 189

iv

TASKING VX-toolset for ARM User Guide

7.6. Linker Optimizations ... 189
7.7. Controlling the Linker with a Script ... 191

7.7.1. Purpose of the Linker Script Language .. 191
7.7.2. Eclipse and LSL .. 191
7.7.3. Structure of a Linker Script File .. 193
7.7.4. The Architecture Definition .. 196
7.7.5. The Derivative Definition ... 198
7.7.6. The Processor Definition ... 199
7.7.7. The Memory Definition .. 199
7.7.8. The Section Layout Definition: Locating Sections .. 201

7.8. Linker Labels .. 203
7.9. Generating a Map File ... 204
7.10. Linker Error Messages .. 205

8. Run-time Environment ... 207
8.1. Startup Code .. 207
8.2. Reset Handler and Vector Table .. 209
8.3. CMSIS Support ... 213
8.4. Stack and Heap ... 214

9. Using the Utilities .. 217
9.1. Control Program .. 217
9.2. Make Utility mkarm ... 219

9.2.1. Calling the Make Utility ... 220
9.2.2. Writing a Makefile .. 221

9.3. Make Utility amk .. 230
9.3.1. Makefile Rules .. 230
9.3.2. Makefile Directives ... 232
9.3.3. Macro Definitions ... 232
9.3.4. Makefile Functions ... 234
9.3.5. Conditional Processing ... 235
9.3.6. Makefile Parsing .. 235
9.3.7. Makefile Command Processing .. 236
9.3.8. Calling the amk Make Utility ... 237

9.4. Archiver ... 238
9.4.1. Calling the Archiver .. 238
9.4.2. Archiver Examples ... 240

9.5. HLL Object Dumper .. 242
9.5.1. Invocation .. 242
9.5.2. HLL Dump Output Format ... 242

9.6. Expire Cache Utility .. 248
10. Using the Debugger .. 249

10.1. Reading the Eclipse Documentation ... 249
10.2. Creating a Customized Debug Configuration .. 249
10.3. Troubleshooting .. 255
10.4. TASKING Debug Perspective .. 255

10.4.1. Debug View .. 256
10.4.2. Breakpoints View ... 258
10.4.3. File System Simulation (FSS) View .. 259
10.4.4. Disassembly View .. 260
10.4.5. Expressions View ... 260
10.4.6. Memory View .. 261

v

TASKING VX-toolset for ARM User Guide

10.4.7. Compare Application View ... 262
10.4.8. Heap View .. 262
10.4.9. Logging View .. 263
10.4.10. RTOS View ... 263
10.4.11. Registers View ... 263
10.4.12. Trace View .. 265

10.5. Programming a Flash Device .. 265
11. Tool Options ... 269

11.1. Configuring the Command Line Environment ... 275
11.2. C Compiler Options .. 276
11.3. C++ Compiler Options ... 349
11.4. Assembler Options ... 475
11.5. Linker Options ... 517
11.6. Control Program Options ... 571
11.7. Make Utility Options .. 639
11.8. Parallel Make Utility Options ... 667
11.9. Archiver Options .. 681
11.10. HLL Object Dumper Options ... 696
11.11. Expire Cache Utility Options ... 717

12. Influencing the Build Time ... 727
12.1. MIL Linking ... 727
12.2. Optimization Options ... 727
12.3. Automatic Inlining ... 728
12.4. Code Compaction ... 728
12.5. Compiler Cache ... 728
12.6. Header Files .. 729
12.7. Parallel Build ... 729
12.8. Number of Sections .. 730

13. Profiling .. 731
13.1. What is Profiling? ... 731

13.1.1. Methods of Profiling ... 731
13.2. Profiling using Code Instrumentation (Dynamic Profiling) .. 732

13.2.1. Step 1: Build your Application for Profiling ... 734
13.2.2. Step 2: Execute the Application ... 735
13.2.3. Step 3: Displaying Profiling Results .. 737

13.3. Profiling at Compile Time (Static Profiling) ... 740
13.3.1. Step 1: Build your Application with Static Profiling 740
13.3.2. Step 2: Displaying Static Profiling Results ... 741

14. Libraries ... 743
14.1. Using the CMSIS DSP Library .. 745
14.2. Library Functions ... 745

14.2.1. assert.h ... 746
14.2.2. complex.h .. 746
14.2.3. cstart.h .. 747
14.2.4. ctype.h and wctype.h .. 747
14.2.5. dbg.h ... 748
14.2.6. errno.h ... 748
14.2.7. except.h ... 749
14.2.8. fcntl.h .. 750
14.2.9. fenv.h .. 750

vi

TASKING VX-toolset for ARM User Guide

14.2.10. float.h .. 751
14.2.11. inttypes.h and stdint.h ... 751
14.2.12. io.h .. 752
14.2.13. iso646.h ... 752
14.2.14. limits.h ... 753
14.2.15. locale.h .. 753
14.2.16. malloc.h ... 753
14.2.17. math.h and tgmath.h ... 754
14.2.18. setjmp.h ... 758
14.2.19. signal.h .. 758
14.2.20. stdarg.h .. 758
14.2.21. stdbool.h .. 759
14.2.22. stddef.h .. 759
14.2.23. stdint.h ... 759
14.2.24. stdio.h and wchar.h ... 760
14.2.25. stdlib.h and wchar.h .. 768
14.2.26. string.h and wchar.h ... 771
14.2.27. time.h and wchar.h ... 772
14.2.28. unistd.h .. 775
14.2.29. wchar.h .. 776
14.2.30. wctype.h ... 777

14.3. C Library Reentrancy .. 777
15. List File Formats ... 789

15.1. Assembler List File Format ... 789
15.2. Linker Map File Format .. 790

16. Object File Formats ... 799
16.1. ELF/DWARF Object Format .. 799
16.2. Intel Hex Record Format .. 799
16.3. Motorola S-Record Format ... 802

17. Linker Script Language (LSL) .. 805
17.1. Structure of a Linker Script File ... 805
17.2. Syntax of the Linker Script Language ... 807

17.2.1. Preprocessing ... 807
17.2.2. Lexical Syntax ... 808
17.2.3. Identifiers and Tags .. 808
17.2.4. Expressions .. 809
17.2.5. Built-in Functions ... 809
17.2.6. LSL Definitions in the Linker Script File ... 812
17.2.7. Memory and Bus Definitions .. 812
17.2.8. Architecture Definition ... 814
17.2.9. Derivative Definition ... 817
17.2.10. Processor Definition and Board Specification ... 818
17.2.11. Section Setup .. 818
17.2.12. Section Layout Definition ... 818

17.3. Expression Evaluation ... 823
17.4. Semantics of the Architecture Definition .. 824

17.4.1. Defining an Architecture .. 825
17.4.2. Defining Internal Buses ... 826
17.4.3. Defining Address Spaces .. 826
17.4.4. Mappings ... 830

vii

TASKING VX-toolset for ARM User Guide

17.5. Semantics of the Derivative Definition ... 833
17.5.1. Defining a Derivative .. 833
17.5.2. Instantiating Core Architectures .. 834
17.5.3. Defining Internal Memory and Buses ... 835

17.6. Semantics of the Board Specification ... 836
17.6.1. Defining a Processor .. 836
17.6.2. Instantiating Derivatives .. 837
17.6.3. Defining External Memory and Buses .. 837

17.7. Semantics of the Section Setup Definition ... 838
17.7.1. Setting up a Section ... 839

17.8. Semantics of the Section Layout Definition .. 840
17.8.1. Defining a Section Layout .. 841
17.8.2. Creating and Locating Groups of Sections .. 841
17.8.3. Creating or Modifying Special Sections .. 847
17.8.4. Creating Symbols .. 851
17.8.5. Conditional Group Statements .. 852

18. Debug Target Configuration Files ... 853
18.1. Custom Board Support .. 853
18.2. Description of DTC Elements and Attributes .. 854
18.3. Special Resource Identifiers ... 856

19. CPU Problem Bypasses and Checks .. 859
20. CERT C Secure Coding Standard .. 863

20.1. Preprocessor (PRE) .. 863
20.2. Declarations and Initialization (DCL) ... 864
20.3. Expressions (EXP) ... 865
20.4. Integers (INT) .. 866
20.5. Floating Point (FLP) .. 866
20.6. Arrays (ARR) ... 867
20.7. Characters and Strings (STR) ... 867
20.8. Memory Management (MEM) ... 867
20.9. Environment (ENV) ... 868
20.10. Signals (SIG) ... 868
20.11. Miscellaneous (MSC) .. 869

21. MISRA C Rules .. 871
21.1. MISRA C:1998 ... 871
21.2. MISRA C:2004 ... 875
21.3. MISRA C:2012 ... 883

viii

TASKING VX-toolset for ARM User Guide

Chapter 1. C Language
This chapter describes the target specific features of the C language, including language extensions that
are not standard in ISO-C. For example, pragmas are a way to control the compiler from within the C
source.

The TASKING VX-toolset for ARM® C compiler fully supports the ISO-C standard and adds extra
possibilities to program the special functions of the target.

In addition to the standard C language, the compiler supports the following:

• attribute to specify alignment and absolute addresses

• intrinsic (built-in) functions that result in target specific assembly instructions

• pragmas to control the compiler from within the C source

• predefined macros

• the possibility to use assembly instructions in the C source

• keywords for inlining functions and programming interrupt routines

• libraries

All non-standard keywords have two leading underscores (__).

In this chapter the target specific characteristics of the C language are described, including the above
mentioned extensions.

1.1. Data Types

The TASKING C compiler for the ARM supports the following data types.

LimitsAlignSizeC type

0 or 181_Bool

[-27, 27-1]88signed char

[0, 28-1]88unsigned char

[-215, 215-1]1616short

[0, 216-1]1616unsigned short

[-231, 231-1]3232int

[0, 232-1]3232unsigned int

[-231, 231-1]3232enum

[-231, 231-1]3232long

[0, 232-1]3232unsigned long

1

LimitsAlignSizeC type

[-263, 263-1]6464long long

[0, 264-1]6464unsigned long long

[–3.402E+38, –1.175E-38]
[+1.175E-38, +3.402E+38]

3232float (23-bit mantissa)

[-1.797E+308, -2.225E-308]
[+2.225E-308, +1.797E+308]

6464double
long double (52-bit mantissa)

[–3.402E+38i, –1.175E-38i]
[+1.175E-38i, +3.402E+38i]

3232_Imaginary float

[-1.797E+308i, -2.225E-308i]
[+2.225E-308i, +1.797E+308i]

6464_Imaginary double
_Imaginary long double

real part + imaginary part3264_Complex float

real part + imaginary part64128_Complex double
_Complex long double

[0, 232-1]3232pointer to data or function

1.2. Changing the Alignment: __unaligned, __packed__ and
__align()

Normally data, pointers and structure members are aligned according to the table in the previous section.

Suppress alignment

With the type qualifier __unaligned you can specify to suppress the alignment of objects or structure
members. This can be useful to create compact data structures. In this case the alignment will be one bit
for bit-fields or one byte for other objects or structure members.

At the left side of a pointer declaration you can use the type qualifier __unaligned to mark the pointer
value as potentially unaligned.This can be useful to access externally defined data. However the compiler
can generate less efficient instructions to dereference such a pointer, to avoid unaligned memory access.

You can always convert a normal pointer to an unaligned pointer. Conversions from an unaligned pointer
to an aligned pointer are also possible. However, the compiler will generate a warning in this situation,
with the exception of the following case: when the logical type of the destination pointer is char or void,
no warning will be generated.

Example:

struct
{
 char c;
 __unaligned int i; /* aligned at offset 1 ! */
} s;

__unaligned int * up = & s.i;

2

TASKING VX-toolset for ARM User Guide

Packed structures

To prevent alignment gaps in structures, you can use the attribute __packed__. When you use the
attribute __packed__ directly after the keyword struct, all structure members are marked __unaligned.
For example the following two declarations are the same:

struct __packed__
{
 char c;
 int * i;
} s1;

struct
{
 char __unaligned c;
 int * __unaligned i; /* __unaligned at right side of '*'
 to pack pointer member */
} s2;

The attribute __packed__ has the same effect as adding the type qualifier __unaligned to the
declaration to suppress the standard alignment.

You can also use __packed__ in a pointer declaration. In that case it affects the alignment of the pointer
itself, not the value of the pointer. The following two declarations are the same:

int * __unaligned p;
int * p __packed__;

Change alignment

With the attribute __align(n) you can overrule the default alignment of objects or structure members
to n bytes.

1.3. Placing an Object at an Absolute Address: __at()

With the attribute __at() you can specify an absolute address.

The compiler checks the address range, the alignment and if an object crosses a page boundary.

Examples

unsigned char Display[80*24] __at(0x2000);

The array Display is placed at address 0x2000. In the generated assembly, an absolute section is
created. On this position space is reserved for the variable Display.

int i __at(0x1000) = 1;

The variable i is placed at address 0x1000 and is initialized.

3

C Language

void f(void) __at(0xf0ff + 1) { }

The function f is placed at address 0xf100.

Restrictions

Take note of the following restrictions if you place a variable at an absolute address:

• The argument of the __at() attribute must be a constant address expression.

• You can place only global variables at absolute addresses. Parameters of functions, or automatic
variables within functions cannot be placed at absolute addresses.

• A variable that is declared extern, is not allocated by the compiler in the current module. Hence it is
not possible to use the keyword __at() on an external variable. Use __at() at the definition of the
variable.

• You cannot place structure members at an absolute address.

• Absolute variables cannot overlap each other. If you declare two absolute variables at the same address,
the assembler and/or linker issues an error. The compiler does not check this.

1.4. Accessing Hardware from C

It is easy to access Special Function Registers (SFRs) that relate to peripherals from C. The SFRs are
defined in a special include file (*.h) as symbol names for use with the compiler.

The TASKING VX-toolset for ARM supports the Cortex Micro-controller Software Interface Standard
(CMSIS).You can find details about this standard on www.onarm.com.

The product includes a full set of CMSIS files in the cmsis directory under the product installation directory.
This includes SFR files for the supported devices and for the various Cortex cores. The organization of
the CMSIS files in the product installation is as follows:

directory with Cortex-M0 header files and C filescmsis/CM0/CoreSupport

directory with Cortex-M0 device specific header files
and C files

cmsis/CM0/DeviceSupport/vendor/device

directory with Cortex-M3 header files and C filescmsis/CM3/CoreSupport

directory with Cortex-M3 device specific header files
and C files

cmsis/CM3/DeviceSupport/vendor/device

When you include CMSIS SFR file in your source you must set an include search path to the appropriate
CMSIS directory.

Example of including an SFR file:

#include "stm32f10x.h"

void main(void)
{

4

TASKING VX-toolset for ARM User Guide

http://www.onarm.com

 SCB->VTOR |= (1 << SCB_VTOR_TBLBASE_Pos);
}

Compiler invocation:

ccarm -c -CARMv7M -I"installation_dir\cmsis\CM3\DeviceSupport\ST\STM32F10x"
 -I"installation_dir\cmsis\CM3\CoreSupport" file.c

When you use Eclipse you can easily add the include search paths by using the option Project »
Properties for » C/C++ Build » Settings » C/C++ Compiler » Add CMSIS include paths.

1.5. Shift JIS Kanji Support

In order to allow for Japanese character support on non-Japanese systems (like PCs), you can use the
Shift JIS Kanji Code standard. This standard combines two successive ASCII characters to represent
one Kanji character. A valid Kanji combination is only possible within the following ranges:

• First (high) byte is in the range 0x81-0x9f or 0xe0-0xef.

• Second (low) byte is in the range 0x40-0x7e or 0x80-0xfc

Compiler option -Ak enables support for Shift JIS encoded Kanji multi-byte characters in strings and
(wide) character constants. Without this option, encodings with 0x5c as the second byte conflict with the
use of the backslash ('\') as an escape character. Shift JIS in comments is supported regardless of this
option.

Note that Shift JIS also includes Katakana and Hiragana.

Example:

// Example usage of Shift JIS Kanji
// Do not switch off option -Ak
// At the position of the italic text you can
// put your Shift JIS Kanji code
int i; // put Shift JIS Kanji here
char c1;
char c2;
unsigned int ui;
const char mes[]="put Shift JIS Kanji here";
const unsigned int ar[5]={'K','a','n',
 'j','i'};
 // 5 Japanese array
void main(void)
{
 i=(int)c1;
 i++; /* put Shift JIS Kanji here\
 continuous comment */
 c2=mes[9];
 ui=ar[0];
}

5

C Language

1.6. Using Assembly in the C Source: __asm()

With the keyword __asm you can use assembly instructions in the C source and pass C variables as
operands to the assembly code. Be aware that C modules that contain assembly are not portable and
harder to compile in other environments.

The compiler does not interpret assembly blocks but passes the assembly code to the assembly source
file; they are regarded as a black box. So, it is your responsibility to make sure that the assembly block
is syntactically correct. Possible errors can only be detected by the assembler.

You need to tell the compiler exactly what happens in the inline assembly code because it uses that for
code generation and optimization. The compiler needs to know exactly which registers are written and
which registers are only read. For example, if the inline assembly writes to a register from which the
compiler assumes that it is only read, the generated code after the inline assembly is based on the fact
that the register still contains the same value as before the inline assembly. If that is not the case the
results may be unexpected. Also, an inline assembly statement using multiple input parameters may be
assigned the same register if the compiler finds that the input parameters contain the same value. As
long as this register is only read this is not a problem.

General syntax of the __asm keyword

__asm("instruction_template"
 [: output_param_list
 [: input_param_list
 [: register_reserve_list]]]);

Assembly instructions that may contain parameters from the input
list or output list in the form: %parm_nr

instruction_template

Parameter number in the range 0 .. 9.%parm_nr

[["=[&]constraint_char"(C_expression)],...]output_param_list

[["constraint_char"(C_expression)],...]input_param_list

Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.

&

Constraint character: the type of register to be used for the
C_expression. See the table below.

constraint _char

Any C expression. For output parameters it must be an lvalue, that
is, something that is legal to have on the left side of an assignment.

C_expression

[["register_name"],...]register_reserve_list

Name of the register you want to reserve. For example because this
register gets clobbered by the assembly code. The compiler will not
use this register for inputs or outputs. Note that reserving too many
registers can make register allocation impossible.

register_name

Specifying registers for C variables

With a constraint character you specify the register type for a parameter.

6

TASKING VX-toolset for ARM User Guide

You can reserve the registers that are used in the assembly instructions, either in the parameter lists or
in the reserved register list (register_reserve_list). The compiler takes account of these lists, so no
unnecessary register saves and restores are placed around the inline assembly instructions.

RemarkOperandTypeConstraint
character

Thumb mode r0 .. r7r0 .. r11, lrgeneral purpose registerr

Input constraint only. The number must
refer to an output parameter. Indicates
that %number and number are the same
register.

same as %numbertype of operand it is
associated with

number

If an input parameter is modified by the inline assembly then this input parameter must also be
added to the list of output parameters (see Example 6). If this is not the case, the resulting code
may behave differently than expected since the compiler assumes that an input parameter is not
being changed by the inline assembly.

Loops and conditional jumps

The compiler does not detect loops with multiple __asm() statements or (conditional) jumps across
__asm() statements and will generate incorrect code for the registers involved.

If you want to create a loop with __asm(), the whole loop must be contained in a single __asm()
statement. The same counts for (conditional) jumps. As a rule of thumb, all references to a label in an
__asm() statement must be in that same statement.You can use numeric labels for these purposes.

Example 1: no input or output

A simple example without input or output parameters.You can use any instruction or label. When it is
required that a sequence of __asm() statements generates a contiguous sequence of instructions, then
they can be best combined to a single __asm() statement. Compiler optimizations can insert instruction(s)
in between __asm() statements. Note that you can use standard C escape sequences. Use newline
characters ‘\n’ to continue on a new line in a __asm() statement. For multi-line output, use tab characters
'\t' to indent instructions.

__asm("nop\n"
 "\tnop");

Example 2: using output parameters

Assign the result of inline assembly to a variable. With the constraint r a general purpose register is
chosen for the parameter; the compiler decides which register it uses. The %0 in the instruction template
is replaced with the name of this register. The compiler generates code to assign the result to the output
variable.

int out;
void main(void)
{

7

C Language

 __asm("mov %0,#0xff"
 : "=r" (out));
}

Generated assembly code:

 mov r0,#0xff
 ldr r1,.L2
 str r0,[r1,#0]
 bx lr
 .size main,$-main
 .align 4
.L2:
 .dw out

Example 3: using input parameters

Assign a variable to a register. A register is chosen for the parameter because of the constraint r; the
compiler decides which register is best to use. The %0 in the instruction template is replaced with the
name of this register.The compiler generates code to move the input variable to the input register. Because
there are no output parameters, the output parameter list is empty. Only the colon has to be present.

int in;
void initreg(void)
{
 __asm("MOV R0,%0"
 :
 : "r" (in));
}

Generated assembly code:

 ldr r0,.L2
 ldr r0,[r0,#0]
 MOV R0,r0
 bx lr
 .size initreg,$-initreg
 .align 4
.L2:
 .dw in

Example 4: using input and output parameters

Add two C variables and assign the result to a third C variable. Registers are used for the input and output
parameters (constraint r, %0 for out, %1 for in1, %2 for in2 in the instruction template). The compiler
generates code to move the input expressions into the input registers and to assign the result to the output
variable.

int in1, in2, out;

void add32(void)

8

TASKING VX-toolset for ARM User Guide

{
 __asm("add %0, %1, %2"
 : "=r" (out)
 : "r" (in1), "r" (in2));
}

Generated assembly code:

 ldr r0,.L2
 ldr r1,[r0,#0]
 ldr r0,[r0,#4]
 add r0, r1, r0
 ldr r1,.L2
 str r0,[r1,#8]
 bx lr
 .size add32,$-add32
 .align 4
.L2:
 .dw in1

 .section .bss
 .global in1
 .align 4
in1: .type object
 .size in1,4
 .ds 4
 .global in2
 .align 4
in2: .type object
 .size in2,4
 .ds 4
 .global out
 .align 4
out: .type object
 .size out,4
 .ds 4
 .endsec

Example 5: reserving registers

Sometimes an instruction knocks out certain specific registers. The most common example of this is a
function call, where the called function is allowed to do whatever it likes with some registers. If this is the
case, you can list specific registers that get clobbered by an operation after the inputs.

Same as Example 4, but now register r0 is a reserved register.You can do this by adding a reserved
register list (: "r0"). As you can see in the generated assembly code, register r0 is not used (the first
register used is r1).

int in1, in2, out;

void add32(void)

9

C Language

{
 __asm("add %0, %1, %2"
 : "=r" (out)
 : "r" (in1), "r" (in2)

: "r0");
}

Generated assembly code:

 ldr r2,.L2
 ldr r2,[r1,#0]
 ldr r1,[r1,#4]
 add r1, r2, r1
 ldr r0,.L2
 str r1,[r0,#8]
 bx lr
 .size add32,$-add32
 .align 4
.L2:
 .dw in1

Example 6: use the same register for input and output

As input constraint you can use a number to refer to an output parameter. This tells the compiler that the
same register can be used for the input and output parameter. When the input and output parameter are
the same C expression, these will effectively be treated as if the input parameter is also used as output.
In that case it is allowed to write to this register. For example:

inline int foo(int par1, int par2, int * par3)
{
 int retvalue;

 __asm(
 "add %2,%1,%1,lsl #2\n\t"
 "mov %5,%2\n\t"
 "mov %0,%2"
 : "=&r" (retvalue), "=r" (par1), "=r" (par2)
 : "1" (par1), "2" (par2), "r" (par3)
);
 return retvalue;
}

int result,parm;

void func(void)
{
 result = foo(1000,1000,&parm);
}

10

TASKING VX-toolset for ARM User Guide

In this example the "1" constraint for the input parameter par1 refers to the output parameter par1, and
similar for the "2" constraint and par2. In the inline assembly %1 (par1) and %2 (par2) are written. This
is allowed because the compiler is aware of this.

This results in the following generated assembly code:

 mov r0,#1000
 mov r1,r0
 ldr r2,.L2

 add r1,r0,r0,lsl #2
 mov r2,r1
 mov r3,r1

 ldr r0,.L2+4
 str r3,[r0,#0]

 bx lr
.L2:
 .dw parm
 .dw result

However, when the inline assembly would have been as given below, the compiler would have assumed
that %1 (par1) and %2 (par2) were read-only. Because of the inline keyword the compiler knows that
par1 and par2 both contain 1000. Therefore the compiler can optimize and assign the same register to
%1 and %2. This would have given an unexpected result.

__asm(
 "add %2,%1,%1,lsl #2\n\t"
 "mov %3,%2\n\t"
 "mov %0,%2"
 : "=&r" (retvalue)
 : "r" (par1), "r" (par2), "r" (par3)
);

Generated assembly code:

 ldr r0,.L2
 mov r1,#1000

 add r1,r1,r1,lsl #2 ; same register, but is expected read-only
 mov r0,r1
 mov r2,r1

 ldr r0,.L2+4
 str r2,[r0,#0] ; contains unexpected result

 bx lr
.L2:
 .dw parm
 .dw result

11

C Language

1.7. Attributes

You can use the keyword __attribute__ to specify special attributes on declarations of variables,
functions, types, and fields.

Syntax:

__attribute__((name,...))

or:

__name__

The second syntax allows you to use attributes in header files without being concerned about a possible
macro of the same name.

alias("symbol")

You can use __attribute__((alias("symbol"))) to specify that the function declaration appears
in the object file as an alias for another symbol. For example:

void __f() { /* function body */; }
void f() __attribute__((weak, alias("__f")));

declares 'f' to be a weak alias for '__f'.

const

You can use __attribute__((const)) to specify that a function has no side effects and will not
access global data. This can help the compiler to optimize code. See also attribute pure.

The following kinds of functions should not be declared __const__:

• A function with pointer arguments which examines the data pointed to.

• A function that calls a non-const function.

export

You can use __attribute__((export)) to specify that a variable/function has external linkage and
should not be removed. During MIL linking, the compiler treats external definitions at file scope as if they
were declared static. As a result, unused variables/functions will be eliminated, and the alias checking
algorithm assumes that objects with static storage cannot be referenced from functions outside the current
module. During MIL linking not all uses of a variable/function can be known to the compiler. For example
when a variable is referenced in an assembly file or a (third-party) library. With the export attribute the
compiler will not perform optimizations that affect the unknown code.

int i __attribute__((export)); /* 'i' has external linkage */

12

TASKING VX-toolset for ARM User Guide

flatten

You can use __attribute__((flatten)) to force inlining of all function calls in a function, including
nested function calls.

Unless inlining is impossible or disabled by __attribute__((noinline)) for one of the calls, the
generated code for the function will not contain any function calls.

format(type,arg_string_index,arg_check_start)

You can use __attribute__((format(type,arg_string_index,arg_check_start))) to
specify that functions take printf, scanf, strftime or strfmon style arguments and that calls to
these functions must be type-checked against the corresponding format string specification.

type determines how the format string is interpreted, and should be printf, scanf, strftime or
strfmon.

arg_string_index is a constant integral expression that specifies which argument in the declaration of the
user function is the format string argument.

arg_check_start is a constant integral expression that specifies the first argument to check against the
format string. If there are no arguments to check against the format string (that is, diagnostics should only
be performed on the format string syntax and semantics), arg_check_start should have a value of 0. For
strftime-style formats, arg_check_start must be 0.

Example:

int foo(int i, const char * my_format, ...) __attribute__((format(printf, 2, 3)));

The format string is the second argument of the function foo and the arguments to check start with the
third argument.

leaf

You can use __attribute__((leaf)) to specify that a function is a leaf function. A leaf function is
an external function that does not call a function in the current compilation unit, directly or indirectly. The
attribute is intended for library functions to improve dataflow analysis. The attribute has no effect on
functions defined within the current compilation unit.

malloc

You can use __attribute__((malloc)) to improve optimization and error checking by telling the
compiler that:

• The return value of a call to such a function points to a memory location or can be a null pointer.

• On return of such a call (before the return value is assigned to another variable in the caller), the memory
location mentioned above can be referenced only through the function return value; e.g., if the pointer
value is saved into another global variable in the call, the function is not qualified for the malloc attribute.

13

C Language

• The lifetime of the memory location returned by such a function is defined as the period of program
execution between a) the point at which the call returns and b) the point at which the memory pointer
is passed to the corresponding deallocation function. Within the lifetime of the memory object, no other
calls to malloc routines should return the address of the same object or any address pointing into that
object.

noinline

You can use __attribute__((noinline)) to prevent a function from being considered for inlining.
Same as keyword __noinline or #pragma noinline.

always_inline

With __attribute__((always_inline)) you force the compiler to inline the specified function,
regardless of the optimization strategy of the compiler itself. Same as keyword inline or #pragma
inline.

noreturn

Some standard C function, such as abort and exit cannot return.The C compiler knows this automatically.
You can use __attribute__((noreturn)) to tell the compiler that a function never returns. For
example:

void fatal() __attribute__((noreturn));

void fatal(/* ... */)
{
 /* Print error message */
 exit(1);
}

The function fatal cannot return. The compiler can optimize without regard to what would happen if
fatal ever did return.This can produce slightly better code and it helps to avoid warnings of uninitialized
variables.

protect

You can use __attribute__((protect)) to exclude a variable/function from the duplicate/unreferenced
section removal optimization in the linker. When you use this attribute, the compiler will add the "protect"
section attribute to the symbol's section. Example:

int i __attribute__((protect));

Note that the protect attribute will not prevent the compiler from removing an unused variable/function
(see the used symbol attribute).

This attribute is the same as #pragma protect/endprotect.

14

TASKING VX-toolset for ARM User Guide

pure

You can use __attribute__((pure)) to specify that a function has no side effects, although it may
read global data. Such pure functions can be subject to common subexpression elimination and loop
optimization. See also attribute const.

section("section_name")

You can use __attribute__((section("name"))) to specify that a function must appear in the
object file in a particular section. For example:

extern void foobar(void) __attribute__((section("bar")));

puts the function foobar in the section named bar.

See also #pragma section.

used

You can use __attribute__((used)) to prevent an unused symbol from being removed, by both the
compiler and the linker. Example:

static const char copyright[] __attribute__((used)) = "Copyright 2010 Altium BV";

When there is no C code referring to the copyright variable, the compiler will normally remove it. The
__attribute__((used)) symbol attribute prevents this. Because the linker should also not remove
this symbol, __attribute__((used)) implies __attribute__((protect)).

unused

You can use __attribute__((unused)) to specify that a variable or function is possibly unused. The
compiler will not issue warning messages about unused variables or functions.

weak

You can use __attribute__((weak)) to specify that the symbol resulting from the function declaration
or variable must appear in the object file as a weak symbol, rather than a global one. This is primarily
useful when you are writing library functions which can be overwritten in user code without causing
duplicate name errors.

See also #pragma weak.

1.8. Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options. Put pragmas in your C source where you want them to take effect. Unless stated

15

C Language

otherwise, a pragma is in effect from the point where it is included to the end of the compilation unit or
until another pragma changes its status.

The syntax is:

#pragma [label:]pragma-spec pragma-arguments [on | off | default | restore]

or:

_Pragma("[label:]pragma-spec pragma-arguments [on | off | default | restore]")

Some pragmas can accept the following special arguments:

switch the flag on (same as without argument)on

switch the flag offoff

set the pragma to the initial valuedefault

restore the previous value of the pragmarestore

Label pragmas

Some pragmas support a label prefix of the form "label:" between #pragma and the pragma name. Such
a label prefix limits the effect of the pragma to the statement following a label with the specified name.
The restore argument on a pragma with a label prefix has a special meaning: it removes the most
recent definition of the pragma for that label.

You can see a label pragma as a kind of macro mechanism that inserts a pragma in front of the statement
after the label, and that adds a corresponding #pragma ... restore after the statement.

Compared to regular pragmas, label pragmas offer the following advantages:

• The pragma text does not clutter the code, it can be defined anywhere before a function, or even in a
header file. So, the pragma setting and the source code are uncoupled. When you use different header
files, you can experiment with a different set of pragmas without altering the source code.

• The pragma has an implicit end: the end of the statement (can be a loop) or block. So, no need for
pragma restore / endoptimize etc.

Example:

#pragma lab1:optimize P

volatile int v;

void f(void)
{
 int i, a;

 a = 42;

lab1: for(i=1; i<10; i++)

16

TASKING VX-toolset for ARM User Guide

 {
 /* the entire for loop is part of the pragma optimize */
 a += i;
 }
 v = a;
}

Supported pragmas

The compiler recognizes the following pragmas, other pragmas are ignored. Pragmas marked with (*)
support a label prefix.

alias symbol=defined_symbol

Define symbol as an alias for defined_symbol. It corresponds to a .ALIAS directive at assembly level.
The symbol should not be defined elsewhere, and defined_symbol should be defined with static storage
duration (not extern or automatic).

call {near | far | default | restore} (*)

By default, functions are called with 26-bit PC-relative calls. This near call is directly coded into the
instruction, resulting in higher execution speed and smaller code size. The destination address of a near
call must be located within +/-32 MB from the program counter.

The other call mode is a 32-bit indirect call. With far calls you can address the full range of memory. The
address is first loaded into a register after which the call is executed.

See C compiler option --call (-m).

compactmaxmatch {value | default | restore} (*)

With this pragma you can control the maximum size of a match.

See C compiler option --compact-max-size.

extension isuffix [on | off | default | restore] (*)

Enables a language extension to specify imaginary floating-point constants. With this extension, you can
use an "i" suffix on a floating-point constant, to make the type _Imaginary.

float 0.5i

extern symbol

Normally, when you use the C keyword extern, the compiler generates an .EXTERN directive in the
generated assembly source. However, if the compiler does not find any references to the extern symbol
in the C module, it optimizes the assembly source by leaving the .EXTERN directive out.

With this pragma you can force an external reference (.EXTERN assembler directive), even when the
symbol is not used in the module.

17

C Language

fp_negzero [on | off | default | restore] (*)

With this pragma you can control the +negzero flag of C compiler option --fp-model.

fp_rewrite [on | off | default | restore] (*)

With this pragma you can control the +rewrite flag of C compiler option --fp-model.

inline / noinline / smartinline

See Section 1.11.2, Inlining Functions: inline.

inline_max_incr / inline_max_size {value | default | restore} (*)

With these pragmas you can control the automatic function inlining optimization process of the compiler.
It has only effect when you have enabled the inlining optimization (--optimize=+inline (-Oi)).

See C compiler options --inline-max-incr and --inline-max-size.

macro / nomacro [on | off | default | restore] (*)

Turns macro expansion on or off. By default, macro expansion is enabled.

maxcalldepth {value | default | restore} (*)

With this pragma you can control the maximum call depth. Default is infinite (-1).

See C compiler option --max-call-depth.

message "message" ...

Print the message string(s) on standard output.

nomisrac [nr,...] [default | restore] (*)

Without arguments, this pragma disables MISRA C checking. Alternatively, you can specify a
comma-separated list of MISRA C rules to disable.

See C compiler option --misrac and Section 4.6.2, C Code Checking: MISRA C.

optimize [flags | default | restore] (*) / endoptimize

You can overrule the C compiler option --optimize for the code between the pragmas optimize and
endoptimize. The pragma works the same as C compiler option --optimize.

See Section 4.5, Compiler Optimizations.

18

TASKING VX-toolset for ARM User Guide

profile [flags | default | restore] (*) / endprofile

Control the profile settings. The pragma works the same as C compiler option --profile. Note that this
pragma will only be checked at the start of a function.endprofile switches back to the previous profiling
settings.

profiling [on | off | default | restore] (*)

If profiling is enabled on the command line (C compiler option --profile), you can disable part of your
source code for profiling with the pragmas profiling off and profiling.

protect [on | off | default | restore] (*) / endprotect

With these pragmas you can protect sections against linker optimizations. This excludes a section from
unreferenced section removal and duplicate section removal by the linker. endprotect restores the
default section protection.

runtime [flags | default | restore] (*)

With this pragma you can control the generation of additional code to check for a number of errors at
run-time.The pragma argument syntax is the same as for the arguments of the C compiler option --runtime.
You can use this pragma to control the run-time checks for individual statements. In addition, objects
declared when the "bounds" sub-option is disabled are not bounds checked. The "malloc" sub-option
cannot be controlled at statement level, as it only extracts an alternative malloc implementation from the
library.

section [name=]{suffix |-f|-m|-fm} [default | restore] (*) / endsection

Rename sections by adding a suffix to all section names specified with name, or restore default section
naming. If you specify only a suffix (without a name), the suffix is added to all section names. See C
compiler option --rename-sections and assembler directive .SECTION for more information.

section_code_init [on | off | default | restore] (*) / section_no_code_init

Copy or do not copy code sections from ROM to RAM at application startup.

section_const_init [on | off | default | restore] (*) / section_no_const_init

Copy or do not copy read-only data sections from ROM to RAM at application startup.

silicon_bug [bug,...] [default | restore] (*)

Without arguments, all silicon bug workarounds are enabled. Alternatively, you can specify a
comma-separated list of silicon bug workarounds.

See C compiler option --silicon-bug and Chapter 19, CPU Problem Bypasses and Checks.

19

C Language

source [on | off | default | restore] (*) / nosource

With these pragmas you can choose which C source lines must be listed as comments in assembly output.

See C compiler option --source.

stdinc [on | off | default | restore] (*)

This pragma changes the behavior of the #include directive. When set, the C compiler options
--include-directory and --no-stdinc are ignored.

linear_switch / jump_switch / binary_switch / smart_switch / tbb_switch
/ tbh_switch / no_tbh_switch

With these pragmas you can overrule the compiler chosen switch method:

Force jump chain code. A jump chain is comparable with an if/else-if/else-if/else
construction.

linear_switch

Force jump table code. A jump table is a table filled with jump instructions for each
possible switch value. The switch argument is used as an index to jump within this
table.

jump_switch

Force binary lookup table code. A binary search table is a table filled with a value
to compare the switch argument with and a target address to jump to.

binary_switch

Let the compiler decide the switch method used.smart_switch

Force use of the tbb instruction. Uses a table of 8-bit jump offsets.tbb_switch

Force use of the tbh instruction. Uses a table of 8-bit jump offsets.tbh_switch

Same as smart_switch, but do not use the tbh instruction.no_tbh_switch

See Section 1.10, Switch Statement.

tradeoff {level | default | restore} (*)

Specify tradeoff between speed (0) and size (4). See C compiler option --tradeoff

warning [number,...] [default | restore] (*)

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed.

weak symbol

Mark a symbol as "weak" (.WEAK assembler directive). The symbol must have external linkage, which
means a global or external object or function. A static symbol cannot be declared weak.

A weak external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference.When a weak external reference cannot be resolved, the null pointer is substituted.

20

TASKING VX-toolset for ARM User Guide

A weak definition can be overruled by a normal global definition. The linker will not complain about the
duplicate definition, and ignore the weak definition.

1.9. Predefined Preprocessor Macros

The TASKING C compiler supports the predefined macros as defined in the table below. The macros are
useful to create conditional C code.

DescriptionMacro

Expands to 1 for the ARM toolset, otherwise unrecognized as macro.__ARM__

Expands to 1 if big-endian mode is selected (option --endianness=big),
otherwise unrecognized as macro.

__BIG_ENDIAN__

Identifies the build number of the compiler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
compiler, __BUILD__ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

__BUILD__

Expands to 1 for the ARM toolset, otherwise unrecognized as macro.__CARM__

Expands to the ARM architecture name (option --cpu=arch).When no --cpu
is supplied, this symbol is not defined. For example, if --cpu=ARMv7M is
specified, the symbol __CPU__ expands to ARMv7M.

__CPU__

A symbol is defined depending on the option --cpu=arch. The arch is
converted to uppercase. For example, if --cpu=ARMv7M is specified, the
symbol __CPU_ARMV7M__ is defined.When no --cpu is supplied, this symbol
__CPU_ARMV7M__ is the default.

__CPU_arch__

Expands to the compilation date: “mmm dd yyyy”.__DATE__

Expands to 1 if you used option --fp-model=-float, otherwise unrecognized
as macro.

__DOUBLE_FP__

Indicates conformation to the DSP-C standard. It expands to 1.__DSPC__

Expands to the decimal constant 200001L.__DSPC_VERSION__

Expands to the current source file name.__FILE__

A symbol is defined depending on the option --fpu=fpu.The fpu is converted
to uppercase and the lowercase “v" and the '-' will be removed. For example,
if --fpu=VFPv3-sp is specified, the symbol __FPU_VFP3SP__ is defined.
When no --fpu is supplied, the symbol __FPU_NONE__ is the default.

__FPU_fpu__

Expands to 1 if one the options --fpu=fpu is specified and fpu is not NONE.__FPU_VFP__

Expands to the line number of the line where this macro is called.__LINE__

Expands to 1 if little-endian mode is selected (option --endianness=little),
otherwise unrecognized as macro. This is the default.

__LITTLE_ENDIAN__

Expands to the MISRA C version used 1998, 2004 or 2012 (option
--misrac-version). The default is 2004.

__MISRAC_VERSION__

21

C Language

DescriptionMacro

Expands to 1 if profiling is enabled, otherwise expands to 0.__PROF_ENABLE__

Expands to the revision number of the compiler. Digits are represented as
they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

__REVISION__

Expands to 1 if you used option --fp-model=+float (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.

__SINGLE_FP__

Identifies the level of ANSI standard. The macro expands to 1 if you set
option --language (Control language extensions), otherwise expands to 0.

__STDC__

Always expands to 0, indicating the implementation is not a hosted
implementation.

__STDC_HOSTED__

Identifies the ISO-C version number. Expands to 199901L for ISO C99 or
199409L for ISO C90.

__STDC_VERSION__

Identifies the compiler as a TASKING compiler. Expands to 1 if a TASKING
compiler is used.

__TASKING__

Expands to 1 if you used option --thumb, otherwise unrecognized as macro.__THUMB__

Expands to the compilation time: “hh:mm:ss”__TIME__

Identifies the version number of the compiler. For example, if you use version
3.0r1 of the compiler, __VERSION__ expands to 3000 (dot and revision
number are omitted, minor version number in 3 digits).

__VERSION__

Example

#ifdef __CARM__
/* this part is only compiled for the ARM */
...
#endif

1.10. Switch Statement

The TASKING C compiler supports three ways of code generation for a switch statement: a jump chain
(linear switch), a jump table or a binary search table.

A jump chain is comparable with an if/else-if/else-if/else construction. A jump table is a table filled with
jump instructions for each possible switch value. The switch argument is used as an index to jump within
this table. A binary search table is a table filled with a value to compare the switch argument with and a
target address to jump to.

#pragma smart_switch is the default of the compiler.The compiler will automatically choose the most
efficient switch implementation based on code and data size and execution speed. With the C compiler
option --tradeoff you can tell the compiler to put more emphasis on speed than on memory size.

For a switch with a long type argument, only linear code is used.

For an int type argument, a jump table switch is only used when the table of cases is not too sparse.

22

TASKING VX-toolset for ARM User Guide

Especially for large switch statements, the jump table approach executes faster than the binary search
table approach. Also the jump table has a predictable behavior in execution speed: independent of the
switch argument, every case is reached in the same execution time. However, when the case labels are
distributed far apart, the jump table becomes sparse, wasting code memory. The compiler will not use
the jump table method when the waste becomes excessive.

With a small number of cases, the jump chain method can be faster in execution and shorter in size.

For ARMv7M a switch using the tbh instruction gets priority over a normal switch table implementation.

How to overrule the default switch method

You can overrule the compiler chosen switch method by using a pragma:

force jump chain code#pragma linear_switch

force jump table code#pragma jump_switch

force binary search table code#pragma binary_switch

let the compiler decide the switch method used#pragma smart_switch

force use of tbb instruction (uses a table of 8-bit jump offsets)#pragma tbb_switch

force use of tbh instruction (uses a table of 16-bit jump offsets)#pragma tbh_switch

same as smart_switch, but do not use tbh instruction#pragma no_tbh_switch

Using a pragma cannot overrule the restrictions as described earlier.

The switch pragmas must be placed before the switch statement. Nested switch statements use the
same switch method, unless the nested switch is implemented in a separate function which is preceded
by a different switch pragma.

Example:

/* place pragma before function body */

#pragma jump_switch

void test(unsigned char val)
{ /* function containing the switch */
 switch (val)
 {
 /* use jump table */
 }
}

23

C Language

1.11. Functions

1.11.1. Calling Convention

Parameter passing

A lot of execution time of an application is spent transferring parameters between functions. The fastest
parameter transport is via registers. Therefore, function parameters are first passed via registers. If no
more registers are available for a parameter, the compiler pushes parameters on the stack.

Registers available for parameter passing are r0, r1, r2 and r3.

Registers used for parametersParameter type

R0, R1, R2, R3_Bool, char, short, int, long, float, 32–bit
pointer, 32–bit struct

R0R1, R1R2, R2R3long long, double, 64–bit struct

The parameters are processed from left to right. The first not used and fitting register is used. Registers
are searched for in the order listed above.When a parameter is > 64 bit, or all registers are used, parameter
passing continues on the stack.The stack grows from higher towards lower addresses.The first parameter
is pushed at the lowest stack address. The alignment on the stack depends on the data type as listed in
Section 1.1, Data Types.

Examples:

void func1(int a, char * b, char c); /* R0 R1 R2 */
void func2(long long d, char e); /* R0R1 R2 */
void func4(double f, long long g, char h);
 /* R0R1 R2R3 stack */

Function return values

The C compiler uses registers to store C function return values, depending on the function return types.

RegisterReturn type

R0_Bool, char, short, int, long, float, 32–bit
pointer, 32–bit struct

R0R1long long, double, 64–bit struct

Objects larger than 64 bits are returned via the stack.

1.11.2. Inlining Functions: inline

With the C compiler option --optimize=+inline, the C compiler automatically inlines small functions in
order to reduce execution time (smart inlining). The compiler inserts the function body at the place the
function is called. The C compiler decides which functions will be inlined.You can overrule this behavior
with the two keywords inline (ISO-C) and __noinline.

24

TASKING VX-toolset for ARM User Guide

With the inline keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)
{
 unsigned int abs_val = val;
 if (val < 0) abs_val = -val;
 return abs_val;
}

If a function with the keyword inline is not called at all, the compiler does not generate code for it.

You must define inline functions in the same source module as in which you call the function, because
the compiler only inlines a function in the module that contains the function definition. When you need to
call the inline function from several source modules, you must include the definition of the inline function
in each module (for example using a header file).

With the __noinline keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)
{
 unsigned int abs_val = val;
 if (val < 0) abs_val = -val;
 return abs_val;
}

Using pragmas: inline, noinline, smartinline

Instead of the inline qualifier, you can also use #pragma inline and #pragma noinline to inline
a function body:

#pragma inline
unsigned int abs(int val)
{
 unsigned int abs_val = val;
 if (val < 0) abs_val = -val;
 return abs_val;
}
#pragma noinline
void main(void)
{
 int i;
 i = abs(-1);
}

If a function has an inline/__noinline function qualifier, then this qualifier will overrule the current
pragma setting.

With the #pragma noinline / #pragma smartinline you can temporarily disable the default behavior
that the C compiler automatically inlines small functions when you turn on the C compiler option
--optimize=+inline.

25

C Language

With the C compiler options --inline-max-incr and --inline-max-size you have more control over the
automatic function inlining process of the compiler.

Combining inline with __asm to create intrinsic functions

With the keyword __asm it is possible to use assembly instructions in the body of an inline function.
Because the compiler inserts the (assembly) body at the place the function is called, you can create your
own intrinsic function. See Section 1.11.4.1, Writing Your Own Intrinsic Function.

1.11.3. Interrupt Functions / Exception Handlers

The TASKING C compiler supports a number of function qualifiers and keywords to program exception
handlers. An exception handler (or: interrupt function) is called when an exception occurs.

The ARM supports seven types of exceptions.The next table lists the types of exceptions and the processor
mode that is used to process that exception. When an exception occurs, execution is forced from a fixed
memory address corresponding to the type of exception. These fixed addresses are called the exception
vectors.

Function type qualifierHigh vector
address

Normal addressModeException type

0xFFFF00000x00000000SupervisorReset

__interrupt_und0xFFFF00040x00000004UndefinedUndefined
instructions

__interrupt_svc0xFFFF00080x00000008SupervisorSupervisor call
(software interrupt)

__interrupt_iabt0xFFFF000C0x0000000CAbortPrefetch abort

__interrupt_dabt0xFFFF00100x00000010AbortData abort

__interrupt_irq0xFFFF00180x00000018IRQIRQ (interrupt)

__interrupt_fiq0xFFFF001C0x0000001CFIQFIQ (fast interrupt)

ARMv6-M and ARMv7-M (M-profile architectures) have a different exception model. Read the
ARM Architecture Reference Manual for details.

1.11.3.1. Defining an Exception Handler: __interrupt Keywords

You can define six types of exception handlers with the function type qualifiers __interrupt_und,
__interrupt_svc, __interrupt_iabt, __interrupt_dabt, __interrupt_irq and
__interrupt_fiq.You can also use the general __interrupt() function qualifier.

Interrupt functions and other exception handlers cannot return anything and must have a void argument
type list:

void __interrupt_xxx
isr(void)
{

26

TASKING VX-toolset for ARM User Guide

...
}

void __interrupt(n)
isr2(void)
{
...
}

Example

void __interrupt_irq serial_receive(void)
{
 ...
}

Vector symbols

When you use one or more of these __interrupt_xxx function qualifiers, the compiler generates a
corresponding vector symbol to designate the start of an exception handler function. The linker uses this
symbol to automatically generate the exception vector.

Vector symbol M-profileVector symbolFunction type qualifier

-_vector_1__interrupt_und

_vector_11_vector_2__interrupt_svc

-_vector_3__interrupt_iabt

-_vector_4__interrupt_dabt

-_vector_6__interrupt_irq

-_vector_7__interrupt_fiq

_vector_n_vector_n__interrupt(n)

Note that the reset handler is designated by the symbol _START instead of _vector_0 (_vector_1 for
M-profile architectures).

You can prevent the compiler from generating the _vector_n symbol by specifying the function qualifier
__novector.This can be necessary if you have more than one interrupt handler for the same exception,
for example for different IRQ's or for different run-time phases of your application.Without the __novector
function qualifier the compiler generates the _vector_n symbol multiple times, which results in a link
error.

void __interrupt_irq __novector another_handler(void)
{
 ... // used __novector to prevent multiple _vector_6 symbols
}

27

C Language

Enable interrupts in exception handlers (not for M-profile architectures)

Normally interrupts are disabled when an exception handler is entered. With the function qualifier
__nesting_enabled you can force that the link register (LR) is saved and that interrupts are enabled.
For example:

void __interrupt_svc __nesting_enabled svc(int n)
{
 if (n == 2)
 {
 __svc(3);
 }
 ...
}

1.11.3.2. Interrupt Frame: __frame()

With the function type qualifier __frame() you can specify which registers and SFRs must be saved for
a particular interrupt function. Only the specified registers will be pushed and popped from the stack. If
you do not specify the function qualifier __frame(), the C compiler determines which registers must be
pushed and popped. The syntax is:

void __interrupt_xxx
 __frame(reg[, reg]...) isr(void)
{
...
}

where, reg can be any register defined as an SFR. The compiler generates a warning if some registers
are missing which are normally required to be pushed and popped in an interrupt function prolog and
epilog to avoid run-time problems.

Example

__interrupt_irq __frame(R4,R5,R6) void alarm(void)
{
...
}

1.11.4. Intrinsic Functions

Some specific assembly instructions have no equivalence in C. Intrinsic functions give the possibility to
use these instructions. Intrinsic functions are predefined functions that are recognized by the compiler.
The compiler generates the most efficient assembly code for these functions.

The compiler always inlines the corresponding assembly instructions in the assembly source (rather than
calling it as a function).This avoids parameter passing and register saving instructions which are normally
necessary during function calls.

28

TASKING VX-toolset for ARM User Guide

Intrinsic functions produce very efficient assembly code. Though it is possible to inline assembly code by
hand, intrinsic functions use registers even more efficiently. At the same time your C source remains very
readable.

You can use intrinsic functions in C as if they were ordinary C (library) functions. All intrinsics begin with
a double underscore character (__).

The TASKING ARM C compiler recognizes the following intrinsic functions:

__alloc

void * volatile __alloc(__size_t size);

Allocate memory. Returns a pointer to space of size bytes on the stack of the calling function. Memory
allocated through this function is freed when the calling function returns. This function is used internally
for variable length arrays, it is not to be used by end users.

__free

void volatile __free(void * p);

Deallocate the memory pointed to by p.p must point to memory earlier allocated by a call to __alloc().

__nop

void __nop(void);

Generate a NOP instruction.

__get_return_address

__codeptr volatile __get_return_address(void);

Used by the compiler for profiling when you compile with the option --profile. Returns the return address
of a function.

__remap_pc

void volatile __remap_pc(void);

Load the 'real' program address. This intrinsic is used in the startup code to assure that the reset handler
is immune for any ROM/RAM remapping.

__setsp

void volatile __setsp(__data void * stack);

Initialize the stack pointer with 'stack'.

__getspsr

unsigned int volatile __getspsr(void);

29

C Language

Get the value of the SPSR status register. Returns the value of the status register SPSR.

__setspsr

unsigned int volatile __setspsr(int set, int clear);

Set or clear bits in the SPSR status register. Returns the new value of the SPSR status register.

Example:

#define SR_F 0x00000040
#define SR_I 0x00000080

i = __setspsr (0, SR_F | SR_I);

 if (i & (SR_F | SR_I))
 {
 exit (6); /* Interrupt flags not correct */
 }

 if (__getspsr () & (SR_F | SR_I))
 {
 exit (7); /* Interrupt flags not correct */
 }

__getcpsr

unsigned int volatile __getcpsr(void);

Get the value of the CPSR status register. Returns the value of the status register CPSR.

__setcpsr

unsigned int volatile __setcpsr(int set, int clear);

Set or clear bits in the CPSR status register. Returns the new value of the CPSR status register.

__getapsr

unsigned int volatile __getapsr(void);

Get the value of the APSR status register (ARMv6-M and ARMv7-M). Returns the value of the status
register APSR.

__setapsr

unsigned int volatile __setapsr(int set, int clear);

Set or clear bits in the APSR status register (ARMv6-M and ARMv7-M). Returns the new value of the
APSR status register.

30

TASKING VX-toolset for ARM User Guide

__getipsr

unsigned int volatile __getipsr(void);

Get the value of the IPSR status register (ARMv6-M and ARMv7-M). Returns the value of the status
register IPSR.

__svc

void volatile __svc(int number);

Generate a supervisor call (software interrupt). Number must be a constant value.

CMSIS intrinsics

The TASKING VX-toolset for ARM supports the Cortex Micro-controller Software Interface Standard
(CMSIS).You can find details about this standard on www.onarm.com.

The required functions as defined in the CMSIS are supported by the compiler as intrinsic functions and
do not have any implementation in the CMSIS header files core_cm0.h and core_cm3.h. The
implemented intrinsic functions are:

__enable_irq

void volatile __enable_irq(void);

Global Interrupt enable (using the instruction CPSIE i).

__disable_irq

void volatile __disable_irq(void);

Global Interrupt disable (using the instruction CPSID i).

__set_PRIMASK

void volatile __set_PRIMASK(unsigned int value);

Assign value to Priority Mask Register (using the instruction MSR).

__get_PRIMASK

unsigned int __get_PRIMASK(void);

Return Priority Mask Register (using the instruction MRS).

__enable_fault_irq

void volatile __enable_fault_irq(void);

Global Fault exception and Interrupt enable (using the instruction CPSIE f).

31

C Language

http://www.onarm.com

__disable_fault_irq

void volatile __disable_fault_irq(void);

Global Fault exception and Interrupt disable (using the instruction CPSID f).

__set_FAULTMASK

void volatile __set_FAULTMASK(unsigned int value);

Assign value to Fault Mask Register (using the instruction MSR).

__get_FAULTMASK

unsigned int __get_FAULTMASK(void);

Return Fault Mask Register (using the instruction MRS).

__set_BASEPRI

void volatile __set_BASEPRI(unsigned int value);

Set Base Priority (using the instruction MSR).

__get_BASEPRI

unsigned int __get_BASEPRI(void);

Return Base Priority (using the instruction MRS).

__set_CONTROL

void volatile __set_CONTROL(unsigned int value);

Set CONTROL register value (using the instruction MSR).

__get_CONTROL

unsigned int __get_CONTROL(void);

Return Control Register Value (using the instruction MRS).

__set_PSP

void volatile __set_PSP(unsigned int value);

Set Process Stack Pointer value (using the instruction MSR).

__get_PSP

unsigned int __get_PSP(void);

32

TASKING VX-toolset for ARM User Guide

Return Process Stack Pointer (using the instruction MRS).

__set_MSP

void volatile __set_MSP(unsigned int value);

Set Main Stack Pointer (using the instruction MSR).

__get_MSP

unsigned int __get_MSP(void);

Return Main Stack Pointer (using the instruction MRS).

__WFI

void volatile __WFI(void);

Wait for Interrupt.

__WFE

void volatile __WFE(void);

Wait for Event.

__SEV

void volatile __SEV(void);

Set Event.

__ISB

void volatile __ISB(void);

Instruction Synchronization Barrier.

__DSB

void volatile __DSB(void);

Data Synchronization Barrier.

__DMB

void volatile __DMB(void);

Data Memory Barrier.

33

C Language

__REV

unsigned int __REV(unsigned int value);

Reverse byte order in integer value.

__REV16

unsigned int __REV16(unsigned short value);

Reverse byte order in unsigned short value.

__REVSH

signed int __REVSH(signed int value);

Reverse byte order in signed short value with sign extension to integer.

__RBIT

unsigned int __RBIT(unsigned int value);

Reverse bit order of value.

__LDREXB

unsigned volatile char __LDREXB(unsigned char * addr);

Load exclusive byte.

__LDREXH

unsigned volatile short __LDREXH(unsigned short * addr);

Load exclusive half-word.

__LDREXW

unsigned int volatile __LDREXW(unsigned int * addr);

Load exclusive word.

__STREXB

unsigned int volatile __STREXB(unsigned char value, unsigned char * addr);

Store exclusive byte.

__STREXH

unsigned int volatile __STREXH(unsigned short value, unsigned short * addr);

34

TASKING VX-toolset for ARM User Guide

Store exclusive half-word.

__STREXW

unsigned int volatile __STREXW(unsigned int value, unsigned int * addr);

Store exclusive word.

__CLREX

void volatile __CLREX(void);

Remove the exclusive lock created by __LDREXB, __LDREXH, or __LDREXW.

1.11.4.1. Writing Your Own Intrinsic Function

Because you can use any assembly instruction with the __asm() keyword, you can use the __asm()
keyword to create your own intrinsic functions. The essence of an intrinsic function is that it is inlined.

1. First write a function with assembly in the body using the keyword __asm(). See Section 1.6, Using
Assembly in the C Source: __asm()

2. Next make sure that the function is inlined rather than being called.You can do this with the function
qualifier inline.This qualifier is discussed in more detail in Section 1.11.2, Inlining Functions: inline.

inline int __my_pow(int base, int power)
{
 int result;

__asm("mov %0,%1\n"
 "1:\n\t"
 "subs %2,%2,#1\n\t"
 "mulne %0,%0,%1\n\t"
 "bne 1p\n\t", %2"
 : "=&r"(result)
 : "r"(base), "r"(power));

 return result;
}

void main(void)
{
 int result;

 // call to function __my_pow
 result = __my_pow(3,2);
}

Generated assembly code:

35

C Language

main: .type func
 ; __my_pow code is inlined here
 mov r0,#2
 mov r1,#3

 mov r2,r1
1:
 subs r0,r0,#1
 mulne r2,r2,r1
 bne 1p

As you can see, the generated assembly code for the function __my_pow is inlined rather than called.
Numeric labels are used for the loop.

36

TASKING VX-toolset for ARM User Guide

Chapter 2. C++ Language
The TASKING C++ compiler (cparm) offers a new approach to high-level language programming for your
ARM architecture. The C++ compiler accepts the C++ language as defined by the ISO/IEC 14882:2003
standard. It also accepts the language extensions of the C compiler (see Chapter 1, C Language).

This chapter describes the C++ language implementation and some specific features.

Note that the C++ language itself is not described in this document. For more information on the C++
language, see

• The C++ Programming Language (second edition) by Bjarne Straustrup (1991, Addison Wesley)

• ISO/IEC 14882:1998 C++ standard [ANSI] More information on the standards can be found at
http://www.ansi.org/

2.1. C++ Language Extension Keywords

The C++ compiler supports the same language extension keywords as the C compiler. When option
--strict is used, the extensions will be disabled.

pragmas

The C++ compiler supports the pragmas as explained in Section 2.8, Pragmas to Control the C++ Compiler.
Pragmas give directions to the code generator of the compiler.

2.2. C++ Dialect Accepted

The C++ compiler accepts the C++ language as defined by the ISO/IEC 14882:2003 standard.

Command line options are also available to enable and disable anachronisms and strict
standard-conformance checking.

2.2.1. Standard Language Features Accepted

The following features not in traditional C++ (the C++ language of "The Annotated C++ Reference Manual"
by Ellis and Stroustrup (ARM)) but in the standard are implemented:

• The dependent statement of an if, while, do-while, or for is considered to be a scope, and the
restriction on having such a dependent statement be a declaration is removed.

• The expression tested in an if, while, do-while, or for, as the first operand of a "?" operator, or
as an operand of the "&&", ":", or "!"operators may have a pointer-to-member type or a class type that
can be converted to a pointer-to-member type in addition to the scalar cases permitted by the ARM.

• Qualified names are allowed in elaborated type specifiers.

• A global-scope qualifier is allowed in member references of the form x.::A::B and p->::A::B.

37

http://www.ansi.org/

• The precedence of the third operand of the "?" operator is changed.

• If control reaches the end of the main() routine, and main() has an integral return type, it is treated
as if a return 0; statement were executed.

• Pointers to arrays with unknown bounds as parameter types are diagnosed as errors.

• A functional-notation cast of the form A() can be used even if A is a class without a (nontrivial)
constructor. The temporary created gets the same default initialization to zero as a static object of the
class type.

• A cast can be used to select one out of a set of overloaded functions when taking the address of a
function.

• Template friend declarations and definitions are permitted in class definitions and class template
definitions.

• Type template parameters are permitted to have default arguments.

• Function templates may have nontype template parameters.

• A reference to const volatile cannot be bound to an rvalue.

• Qualification conversions, such as conversion from T** to T const * const * are allowed.

• Digraphs are recognized.

• Operator keywords (e.g., not, and, bitand, etc.) are recognized.

• Static data member declarations can be used to declare member constants.

• When option --wchar_t-keyword is set, wchar_t is recognized as a keyword and a distinct type.

• bool is recognized.

• RTTI (run-time type identification), including dynamic_cast and the typeid operator, is implemented.

• Declarations in tested conditions (in if, switch, for, and while statements) are supported.

• Array new and delete are implemented.

• New-style casts (static_cast, reinterpret_cast, and const_cast) are implemented.

• Definition of a nested class outside its enclosing class is allowed.

• mutable is accepted on non-static data member declarations.

• Namespaces are implemented, including using declarations and directives. Access declarations are
broadened to match the corresponding using declarations.

• Explicit instantiation of templates is implemented.

• The typename keyword is recognized.

38

TASKING VX-toolset for ARM User Guide

• explicit is accepted to declare non-converting constructors.

• The scope of a variable declared in the for-init-statement of a for loop is the scope of the loop
(not the surrounding scope).

• Member templates are implemented.

• The new specialization syntax (using "template <>") is implemented.

• Cv-qualifiers are retained on rvalues (in particular, on function return values).

• The distinction between trivial and nontrivial constructors has been implemented, as has the distinction
between PODs and non-PODs with trivial constructors.

• The linkage specification is treated as part of the function type (affecting function overloading and
implicit conversions).

• extern inline functions are supported, and the default linkage for inline functions is external.

• A typedef name may be used in an explicit destructor call.

• Placement delete is implemented.

• An array allocated via a placement new can be deallocated via delete.

• Covariant return types on overriding virtual functions are supported.

• enum types are considered to be non-integral types.

• Partial specialization of class templates is implemented.

• Partial ordering of function templates is implemented.

• Function declarations that match a function template are regarded as independent functions, not as
"guiding declarations" that are instances of the template.

• It is possible to overload operators using functions that take enum types and no class types.

• Explicit specification of function template arguments is supported.

• Unnamed template parameters are supported.

• The new lookup rules for member references of the form x.A::B and p->A::B are supported.

• The notation :: template (and ->template, etc.) is supported.

• In a reference of the form f()->g(), with g a static member function, f() is evaluated. The ARM
specifies that the left operand is not evaluated in such cases.

• enum types can contain values larger than can be contained in an int.

• Default arguments of function templates and member functions of class templates are instantiated only
when the default argument is used in a call.

39

C++ Language

• String literals and wide string literals have const type.

• Class name injection is implemented.

• Argument-dependent (Koenig) lookup of function names is implemented.

• Class and function names declared only in unqualified friend declarations are not visible except for
functions found by argument-dependent lookup.

• A void expression can be specified on a return statement in a void function.

• Function-try-blocks, i.e., try-blocks that are the top-level statements of functions, constructors, or
destructors, are implemented.

• Universal character set escapes (e.g., \uabcd) are implemented.

• On a call in which the expression to the left of the opening parenthesis has class type, overload resolution
looks for conversion functions that can convert the class object to pointer-to-function types, and each
such pointed-to "surrogate function" type is evaluated alongside any other candidate functions.

• Dependent name lookup in templates is implemented. Nondependent names are looked up only in the
context of the template definition. Dependent names are also looked up in the instantiation context, via
argument-dependent lookup.

• Value-initialization is implemented. This form of initialization is indicated by an initializer of "()" and
causes zeroing of certain POD-typed members, where the usual default-initialization would leave them
uninitialized.

• A partial specialization of a class member template cannot be added outside of the class definition.

• Qualification conversions may be performed as part of the template argument deduction process.

• The export keyword for templates is implemented.

2.2.2. C++0x Language Features Accepted

The following features added in the working paper for the next C++ standard (expected to be completed
in 2011) are enabled in C++0x mode (with option --c++0x). Several of these features are also enabled
in default (nonstrict) C++ mode.

• A "right shift token" (>>) can be treated as two closing angle brackets. For example:

template<typename T> struct S {};
S<S<int>> s; // OK. No whitespace needed
 // between closing angle brackets.

• The static_assert construct is supported. For example:

template<typename T> struct S {
 static_assert(sizeof(T) > 1, "Type T too small");
};

40

TASKING VX-toolset for ARM User Guide

S<S[2]> s; // OK.
S<char> s2; // Instantiation error due to failing static_assert.

• The friend class syntax is extended to allow nonclass types as well as class types expressed through
a typedef or without an elaborated type name. For example:

typedef struct S ST;
class C {
 friend S; // OK (requires S to be in scope).
 friend ST; // OK (same as "friend S;").
 friend int; // OK (no effect).
 friend S const; // Error: cv-qualifiers cannot
 // appear directly.
};

• Mixed string literal concatenations are accepted (a feature carried over from C99):

wchar_t *str = "a" L"b"; // OK, same as L"ab".

• Variadic macros and empty macro arguments are accepted, as in C99.

• In function bodies, the reserved identifier __func__ refers to a predefined array containing a string
representing the function's name (a feature carried over from C99).

• A trailing comma in the definition of an enumeration type is silently accepted (a feature carried over
from C99):

enum E { e, };

• If the command line option --long-long is specified, the type long long is accepted. Unsuffixed integer
literals that cannot be represented by type long, but could potentially be represented by type unsigned
long, have type long long instead (this matches C99, but not the treatment of the long long
extension in C89 or default C++ mode).

• An explicit instantiation directive may be prefixed with the extern keyword to suppress the instantiation
of the specified entity.

• The keyword typename followed by a qualified-id can appear outside a template declaration.

struct S { struct N {}; };
typename S::N *p; // Silently accepted
 // in C++0x mode

• The keyword auto can be used as a type specifier in the declaration of a variable or reference. In such
cases, the actual type is deduced from the associated initializer. This feature can be used for variable
declarations, for inclass declarations of static const members, and for new-expressions.

41

C++ Language

auto x = 3.0; // Same as "double x = 3.0;"
auto p = new auto(x); // Same as "double *p = new double(x);"
struct S {
 static auto const m = 3; // Same as "static int const m = 3;"
};

• Trailing return types are allowed in top-level function declarators. These must be paired with the auto
type specifier.

auto f()->int*; // Same as: int *f();

• The keyword decltype is supported: It allows types to be described in terms of expressions. For
example:

template<typename T> struct S {
 decltype(f(T())) *p; // A pointer to the return type of f.
};

• The constraints on the code points implied by universal character names (UCNs) are slightly different:
UCNs for surrogate code points (0xD000 through 0xDFFF) are never permitted, and UCN corresponding
to control characters or to characters in the basic source character set are permitted in string literals.

• Scoped enumeration types (defined with the keyword sequence enum class) and explicit underlying
integer types for enumeration types are supported. For example:

enum class Primary { red, green, blue };
enum class Danger { green, yellow, red }; // No conflict on "red".
enum Code: unsigned char { yes, no, maybe };
void f() {
 Primary p = Primary::red; // Enum-qualifier is required to access
 // scoped enumerator constants.
 Code c = Code::maybe; // Enum qualifier is allowed (but not required)
} // for unscoped enumeration types.

• Lambdas are supported. For example:

template<class F> int z(F f) { return f(0); }
int g() {
 int v = 7;
 return z([v](int x)->int { return x+v; });
}

• The C99-style _Pragma operator is supported.

• Rvalue references are supported. For example:

int f(int);
int &&rr = f(3);

42

TASKING VX-toolset for ARM User Guide

• Functions can be "deleted". For example:

int f(int) = delete;
short f(short);
int x = f(3); // Error: selected function is deleted.
int y = f((short)3); // OK.

• Special member functions can be explicitly "defaulted" (i.e., given a default definition). For example:

struct S { S(S const&) = default; };
struct T { T(T const&); };
T::T(T const&) = default;

• The operand of sizeof, typeid, or decltype can refer directly to a non-static data member of a
class without using a member access expression. For example:

struct S {
 int i;
};
decltype(S::i) j = sizeof(S::i);

• The keyword nullptr can be used as both a null pointer constant and a null pointer-to-member
constant. Variables and other expressions whose type is that of the nullptr keyword (conventionally
known by its standard typedef, std::nullptr_t) can also be used as null pointer(-to-member)
constants, although they are only constant expressions if they otherwise would be. For example:

#include <cstddef> // To get std::nullptr_t
struct S { };
template <int *> struct X { };
std::nullptr_t null();
void f() {
 void *p = nullptr; // Initializes p to null pointer
 int S::* mp = nullptr; // Initializes mp to null ptr-to-member
 p = null(); // Sets p to null pointer
 X<nullptr> xnull0; // Instantiates X with null int * value
 X<null()> xnull1; // Error: template argument not a
 // constant expression
}

• Attributes delimited by double square brackets ([[...]]) are accepted in declarations.The standard
attributes align, noreturn, nothrow, final, and carries_dependency are supported. For
example:

[[nothrow]] void f();

• Alias and alias template declarations are supported. For example:

43

C++ Language

using X = int;
X x; // equivalent to "int x"
template <typename T> using Y = T*;
Y<int> yi; // equivalent to "int* yi"

2.2.3. Anachronisms Accepted

The following anachronisms are accepted when anachronisms are enabled (with --anachronisms):

• overload is allowed in function declarations. It is accepted and ignored.

• Definitions are not required for static data members that can be initialized using default initialization.
The anachronism does not apply to static data members of template classes; they must always be
defined.

• The number of elements in an array may be specified in an array delete operation. The value is
ignored.

• A single operator++() and operator--() function can be used to overload both prefix and postfix
operations.

• The base class name may be omitted in a base class initializer if there is only one immediate base
class.

• Assignment to this in constructors and destructors is allowed. This is allowed only if anachronisms
are enabled and the "assignment to this" configuration parameter is enabled.

• A bound function pointer (a pointer to a member function for a given object) can be cast to a pointer to
a function.

• A nested class name may be used as a non-nested class name provided no other class of that name
has been declared. The anachronism is not applied to template classes.

• A reference to a non-const type may be initialized from a value of a different type. A temporary is
created, it is initialized from the (converted) initial value, and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an rvalue of the class type or a derived
class thereof. No (additional) temporary is used.

• A function with old-style parameter declarations is allowed and may participate in function overloading
as though it were prototyped. Default argument promotion is not applied to parameter types of such
functions when the check for compatibility is done, so that the following declares the overloading of
two functions named f:

int f(int);
int f(x) char x; { return x; }

Note that in C this code is legal but has a different meaning: a tentative declaration of f is followed by
its definition.

44

TASKING VX-toolset for ARM User Guide

• When option --nonconst-ref-anachronism is set, a reference to a non-const class can be bound to a
class rvalue of the same type or a derived type thereof.

struct A {
 A(int);
 A operator=(A&);
 A operator+(const A&);
};
main () {
 A b(1);
 b = A(1) + A(2); // Allowed as anachronism
}

2.2.4. Extensions Accepted in Normal C++ Mode

The following extensions are accepted in all modes (except when strict ANSI/ISO violations are diagnosed
as errors or were explicitly noted):

• A friend declaration for a class may omit the class keyword:

class A {
 friend B; // Should be "friend class B"
};

• Constants of scalar type may be defined within classes:

class A {
 const int size = 10;
 int a[size];
};

• In the declaration of a class member, a qualified name may be used:

struct A {
 int A::f(); // Should be int f();
};

• The restrict keyword is allowed.

• A const qualified object with file scope or namespace scope and the __at() attribute will have external
linkage, unless explicitly declared static. Examples:

const int i = 5; // internal linkage
const int j __at(0x1234) = 10; // external linkage
static const int k __at(0x1236) = 15; // internal linkage

Note that no warning is generated when 'j' is not used.

45

C++ Language

• Implicit type conversion between a pointer to an extern "C" function and a pointer to an extern
"C++" function is permitted. Here's an example:

extern "C" void f(); // f's type has extern "C" linkage
void (*pf)() // pf points to an extern "C++" function
 = &f; // error unless implicit conversion is
 // allowed

This extension is allowed in environments where C and C++ functions share the same calling
conventions. It is enabled by default.

• A "?" operator whose second and third operands are string literals or wide string literals can be implicitly
converted to "char *" or "wchar_t *". (Recall that in C++ string literals are const. There is a
deprecated implicit conversion that allows conversion of a string literal to "char *", dropping the const.
That conversion, however, applies only to simple string literals. Allowing it for the result of a "?" operation
is an extension.)

char *p = x ? "abc" : "def";

• Default arguments may be specified for function parameters other than those of a top-level function
declaration (e.g., they are accepted on typedef declarations and on pointer-to-function and
pointer-to-member-function declarations).

• Non-static local variables of an enclosing function can be referenced in a non-evaluated expression
(e.g., a sizeof expression) inside a local class. A warning is issued.

• In default C++ mode, the friend class syntax is extended to allow nonclass types as well as class types
expressed through a typedef or without an elaborated type name. For example:

typedef struct S ST;
class C {
 friend S; // OK (requires S to be in scope).
 friend ST; // OK (same as "friend S;").
 friend int; // OK (no effect).
 friend S const; // Error: cv-qualifiers cannot
 // appear directly.
};

• In default C++ mode, mixed string literal concatenations are accepted. (This is a feature carried over
from C99 and also available in GNU modes).

wchar_t *str = "a" L"b"; // OK, same as L"ab".

• In default C++ mode, variadic macros are accepted. (This is a feature carried over from C99 and also
available in GNU modes.)

• In default C++ mode, empty macro arguments are accepted (a feature carried over from C99).

• A trailing comma in the definition of an enumeration type is silently accepted (a feature carried over
from C99):

46

TASKING VX-toolset for ARM User Guide

enum E { e, };

2.3. GNU Extensions

The C++ compiler can be configured to support the GNU C++ mode (command line option --g++). In this
mode, many extensions provided by the GNU C++ compiler are accepted. The following extensions are
provided in GNU C++ mode.

• Attributes, introduced by the keyword __attribute__, can be used on declarations of variables,
functions, types, and fields. The alias, aligned, alloc_size, always_inline, artificial,
common, const, constructor, deprecated, destructor, error, externally_visible,
flatten, format, format_arg, gnu_inline, hot, init_priority, malloc, mode,
no_check_memory_usage, no_instrument_function, nocommon, noinline, nonnull,
noreturn, nothrow, packed, pure, section, sentinel, strong, unused, used, volatile,
warn_unused_result, warning, weak, and weakref attributes are supported.

• Extended designators are accepted

• Compound literals are accepted.

• Non-standard anonymous unions are accepted

• The typeof operator is supported. This operator can take an expression or a type (like the sizeof
operator, but parentheses are always required) and expands to the type of the given entity. It can be
used wherever a typedef name is allowed

typeof(2*2.3) d; // Declares a "double"
typeof(int) i; // Declares an "int"

This can be useful in macro and template definitions.

• The __extension__ keyword is accepted preceding declarations and certain expressions. It has no
effect on the meaning of a program.

__extension__ __inline__ int f(int a) {
 return a > 0 ? a/2 : f(__extension__ 1-a);
}

• In all GNU C modes and in GNU C++ modes with gnu_version < 30400, the type modifiers signed,
unsigned, long and short can be used with typedef types if the specifier is valid with the underlying
type of the typedef in ANSI C. E.g.:

typedef int I;
unsigned I *pui; // OK in GNU C++ mode;
 // same as "unsigned int *pui"

• If the command line option --long-long is specified, the extensions for the long long and unsigned
long long types are enabled.

47

C++ Language

• Zero-length array types (specified by [0]) are supported. These are complete types of size zero.

• C99-style flexible array members are accepted. In addition, the last field of a class type have a class
type whose last field is a flexible array member. In GNU C++ mode, flexible array members are treated
exactly like zero-length arrays, and can therefore appear anywhere in the class type.

• The C99 _Pragma operator is supported.

• The gcc built-in <stdarg.h> and <varargs.h> facilities (__builtin_va_list, __builtin_va_arg, ...) are
accepted.

• The sizeof operator is applicable to void and to function types and evaluates to the value one.

• Variables can be redeclared with different top-level cv-qualifiers (the new qualification is merged into
existing qualifiers). For example:

extern int volatile x;
int const x = 32; // x is now const volatile

• The "assembler name" of variables and routines can be specified. For example:

int counter __asm__("counter_v1") = 0;

• Register variables can be mapped on specific registers using the asm keyword.

register int i asm("eax");
 // Map "i" onto register eax.

• The keyword inline is ignored (with a warning) on variable declarations and on block-extern function
declarations.

• Excess aggregate initializers are ignored with a warning.

struct S { int a, b; };
struct S a1 = { 1, 2, 3 };
 // "3" ignored with a warning; no error
int a2[2] = { 7, 8, 9 };
 // "9" ignored with a warning; no error

• Expressions of types void*, void const*, void volatile* and void const volatile* can
be dereferenced; the result is an lvalue.

• The __restrict__ keyword is accepted. It is identical to the C99 restrict keyword, except for its
spelling.

• Out-of-range floating-point values are accepted without a diagnostic.When IEEE floating-point is being
used, the "infinity" value is used.

• Extended variadic macros are supported.

48

TASKING VX-toolset for ARM User Guide

• Dollar signs ($) are allowed in identifiers.

• Hexadecimal floating point constants are recognized.

• The __asm__ keyword is recognized and equivalent to the asm token. Extended syntax is supported
to indicate how assembly operands map to C/C++ variables.

asm("fsinx %1,%0" : "=f"(x) : "f"(a));
 // Map the output operand on "x",
 // and the input operand on "a".

• The \e escape sequence is recognized and stands for the ASCII "ESC" character.

• The address of a statement label can be taken by use of the prefix "&&" operator, e.g., void *a =
&&L. A transfer to the address of a label can be done by the "goto *" statement, e.g., goto *a.

• Multi-line strings are supported, e.g.,

char *p = "abc
def";

• ASCII "NULL" characters are accepted in source files.

• A source file can end with a backslash ("\") character.

• Case ranges (e.g., "case 'a' ... 'z':") are supported.

• A number of macros are predefined in GNU mode. See Section 2.9, Predefined Macros.

• A predefined macro can be undefined.

• If a directory is specified as both a normal include directory and a system include directory, the normal
directory entry is ignored.

• A large number of special functions of the form __builtin_xyz (e.g., __builtin_alloca) are
predeclared.

• Some expressions are considered to be constant-expressions even though they are not so considered
in standard C and C++. Examples include "((char *)&((struct S *)0)->c[0]) - (char
*)0" and "(int)"Hello" & 0".

• The macro __GNUC__ is predefined to the major version number of the emulated GNU compiler.
Similarly, the macros __GNUC_MINOR__ and __GNUC_PATCHLEVEL__ are predefined to the
corresponding minor version number and patch level. Finally, __VERSION__ is predefined to a string
describing the compiler version.

• The __thread specifier can be used to indicate that a variable should be placed in thread-local storage
(requires gnu_version >= 30400).

• An extern inline function that is referenced but not defined is permitted (with a warning).

49

C++ Language

• Trigraphs are ignored (with a warning).

• Non-standard casts are allowed in null pointer constants, e.g., (int)(int *)0 is considered a null
pointer constant in spite of the pointer cast in the middle.

• Statement expressions, e.g., ({int j; j = f(); j;)} are accepted. Branches into a statement
expression are not allowed. In C++ mode, branches out are also not allowed. Variable-length arrays,
destructible entities, try, catch, local non-POD class definitions, and dynamically-initialized local static
variables are not allowed inside a statement expression.

• Labels can be declared to be local in statement expressions by introducing them with a __label__
declaration.

({ __label__ lab; int i = 4; lab: i = 2*i-1; if (!(i%17)) goto lab; i; })

• Not-evaluated parts of constant expressions can contain non-constant terms:

int i;
int a[1 || i]; // Accepted in g++ mode

• Casts on an lvalue that don't fall under the usual "lvalue cast" interpretation (e.g., because they cast
to a type having a different size) are ignored, and the operand remains an lvalue. A warning is issued.

int i;
(short)i = 0; // Accepted,cast is ignored; entire int is set

• Variable length arrays (VLAs) are supported. GNU C also allows VLA types for fields of local structures,
which can lead to run-time dependent sizes and offsets. The C++ compiler does not implement this,
but instead treats such arrays as having length zero (with a warning); this enables some popular
programming idioms involving fields with VLA types.

void f(int n) {
 struct {
 int a[n]; // Warning: n ignored and
 // replaced by zero
 };
}

• Complex type extensions are supported (these are the same as the C99 complex type features, with
the elimination of _Imaginary and the addition of __complex, __real, __imag, the use of "~" to
denote complex conjugation, and complex literals such as "1.2i").

• If an explicit instantiation directive is preceded by the keyword extern, no (explicit or implicit)
instantiation is for the indicated specialization.

• If an explicit instantiation directive for a class is preceded by the keyword inline, the virtual function
table for the class (if any) will be emitted by the compilation.

50

TASKING VX-toolset for ARM User Guide

• An explicit instantiation directive that names a class may omit the class keyword, and may refer to a
typedef.

• An explicit instantiation or extern template directive that names a class is accepted in an invalid
namespace.

• std::type_info does not need to be introduced with a special pragma.

• A special keyword __null expands to the same constant as the literal "0", but is expected to be used
as a null pointer constant.

• When gnu_version < 30400, names from dependent base classes are ignored only if another name
would be found by the lookup.

const int n = 0;
template <class T> struct B {
 static const int m = 1; static const int n = 2;
};
template <class T> struct D : B<T> {
 int f() { return m + n; }
 // B::m + ::n in g++ mode
};

• A non-static data member from a dependent base class, which would usually be ignored as described
above, is found if the lookup would have otherwise found a nonstatic data member of an enclosing
class (when gnu_version is < 30400).

template <class T> struct C {
 struct A { int i; };
 struct B: public A {
 void f() {
 i = 0; // g++ uses A::i not C::i
 }
 };
 int i;
};

• A new operation in a template is always treated as dependent (when gnu_version >= 30400).

template <class T > struct A {
 void f() {
 void *p = 0;
 new (&p) int(0); // calls operator new
 // declared below
 }
};
void* operator new(size_t, void* p);

• When doing name lookup in a base class, the injected class name of a template class is ignored.

51

C++ Language

namespace N {
 template <class T> struct A {};
}
struct A {
 int i;
};
struct B : N::A<int> {
 B() { A x; x.i = 1; } // g++ uses ::A, not N::A
};

• The injected class name is found in certain contexts in which the constructor should be found instead.

struct A {
 A(int) {};
};
A::A a(1);

• In a constructor definition, what should be treated as a template argument list of the constructor is
instead treated as the template argument list of the enclosing class.

template <int u1> struct A { };
template <> struct A<1> {
 template<class T> A(T i, int j);
};

template <> A<1>::A<1>(int i, int j) { }
 // accepted in g++ mode

• A difference in calling convention is ignored when redeclaring a typedef.

typedef void F();

extern "C" {
 typedef void F(); // Accepted in GNU C++ mode
 // (error otherwise)
}

• The macro __GNUG__ is defined identically to __GNUC__ (i.e., the major version number of the GNU
compiler version that is being emulated).

• The macro _GNU_SOURCE is defined as "1".

• Guiding declarations (a feature present in early drafts of the standard, but not in the final standard) are
disabled.

• Namespace std is predeclared.

• No connection is made between declarations of identical names in different scopes even when these
names are declared extern "C". E.g.,

52

TASKING VX-toolset for ARM User Guide

extern "C" { void f(int); }
namespace N {
 extern "C" {
 void f() {} // Warning (not error) in g++ mode
 }
}
int main() { f(1); }

This example is accepted by the C++ compiler, but it will emit two conflicting declarations for the function
f.

• When a using-directive lookup encounters more than one extern "C" declaration (created when
more than one namespace declares an extern "C" function of a given name, as described above),
only the first declaration encountered is considered for the lookup.

extern "C" int f(void);
extern "C" int g(void);
namespace N {
 extern "C" int f(void); // same type
 extern "C" void g(void); // different type
};
using namespace N;
int i = f(); // calls ::f
int j = g(); // calls ::f

• The definition of a member of a class template that appears outside of the class definition may declare
a nontype template parameter with a type that is different than the type used in the definition of the
class template. A warning is issued (GNU version 30300 and below).

template <int I> struct A { void f(); };
template <unsigned int I> void A<I>::f(){}

• The definition of a member of a nested class of a class template that appears outside of the class
definition may use an incorrect template argument list. A warning is issued.

template <class T, class V> struct Outer {
 struct Inner {
 void f();
 };
};
template <class T, class V> void Outer<T, int>::Inner::f() { }
 ^ should be V

• A class template may be redeclared with a nontype template parameter that has a type that is different
than the type used in the earlier declaration. A warning is issued.

template <int I> class A;
template <unsigned int I> class A {};

53

C++ Language

• A friend declaration may refer to a member typedef.

class A {
 class B {};
 typedef B my_b;
 friend class my_b;
};

• When a friend class is declared with an unqualified name, the lookup of that name is not restricted to
the nearest enclosing namespace scope.

struct S;
namespace N {
 class C {
 friend struct S; // ::S in g++ mode,
 // N::S in default mode
 };
}

• A friend class declaration can refer to names made visible by using-directives.

namespace N { struct A { }; }
using namespace N;
struct B {
 void f() { A a; }
 friend struct A; // in g++ mode N::A,
}; // not a new declaration of ::A

• Friend injection is enabled if gnu_version is < 40100 and disabled otherwise.

class X {
 friend void f(X*);
 friend class Y;
};
int main() {
 Y* y; // Y not declared without friend injection
 f(0); // f not declared without friend injection
}

• When friend names are not injected, they can still be used in qualified declarator names when
gnu_version < 40300.

namespace N {
 class A {
 friend int f();
 };
}
int N::f() { return 0; } // OK when gnu_version < 40300

54

TASKING VX-toolset for ARM User Guide

• An inherited type name can be used in a class definition and later redeclared as a typedef.

struct A { typedef int I; };
struct B : A {
 typedef I J; // Refers to A::I
 typedef double I; // Accepted in g++ mode
}; // (introduces B::I)

• In a catch clause, an entity may be declared with the same name as the handler parameter.

try { }
catch(int e) {
 char e;
}

• The diagnostic issued for an exception specification mismatch is reduced to a warning if the previous
declaration was found in a system header.

• The exception specification for an explicit template specialization (for a function or member function)
does not have to match the exception specification of the corresponding primary template.

• A template argument list may appear following a constructor name in constructor definition that appears
outside of the class definition:

template <class T> struct A {
 A();
};
template <class T> A<T>::A<T>(){}

• When gnu_version < 30400, an incomplete type can be used as the type of a nonstatic data member
of a class template.

class B;
template <class T> struct A {
 B b;
};

• A constructor need not provide an initializer for every nonstatic const data member (but a warning is
still issued if such an initializer is missing).

struct S {
 int const ic;
 S() {} // Warning only in GNU C++ mode
 // (error otherwise).
};

• Exception specifications are ignored on function definitions when support for exception handling is
disabled (normally, they are only ignored on function declarations that are not definitions).

55

C++ Language

• A friend declaration in a class template may refer to an undeclared template.

template <class T> struct A {
 friend void f<>(A<T>);
};

• A friend class template declaration in which the template parameter list does not match the original
declaration is accepted if the class template name is specified as a qualified name.

namespace N {
 template <typename T, typename U> struct A { };
}
struct B {
 template<typename T> friend struct N::A;
};

• When gnu_version is < 30400, the semantic analysis of a friend function defined in a class template is
performed only if the function is actually used and is done at the end of the translation unit (instead of
at the point of first use).

• A function template default argument may be redeclared. A warning is issued and the default from the
initial declaration is used.

template<class T> void f(int i = 1);
template<class T> void f(int i = 2){}
int main() {
 f<void>();
}

• A definition of a member function of a class template that appears outside of the class may specify a
default argument.

template <class T> struct A { void f(T); };
template <class T> void A<T>::f(T value = T()) { }

• Function declarations (that are not definitions) can have duplicate parameter names.

void f(int i, int i); // Accepted in GNU C++ mode

• Default arguments are retained as part of deduced function types.

• A namespace member may be redeclared outside of its namespace.

• A template may be redeclared outside of its class or namespace.

namespace N {
 template< typename T > struct S {};

56

TASKING VX-toolset for ARM User Guide

}
template< typename T > struct N::S;

• The injected class name of a class template can be used as a template argument.

template <template <class> class T> struct A {};
template <class T> struct B {
 A a;
};

• A partial specialization may be declared after an instantiation has been done that would have used the
partial specialization if it had been declared earlier. A warning is issued.

template <class T> class X {};
X<int*> xi;
template <class T> class X<T*> {};

• A static data member may be explicitly specialized after it has been used. A warning is issued.

template <class T> struct A {
 static int i;
};
int j = A<int>::i;
template <> int A<int>::i = 1;

• The "." or "->" operator may be used in an integral constant expression if the result is an integral or
enumeration constant:

struct A { enum { e1 = 1 }; };
int main () {
 A a;
 int x[a.e1]; // Accepted in GNU C++ mode
 return 0;
}

• Strong using-directives are supported.

using namespace debug __attribute__((strong));

• Partial specializations that are unusable because of nondeductible template parameters are accepted
and ignored.

template<class T> struct A {class C { };};
template<class T> struct B {enum {e = 1}; };
template <class T> struct B<typename A<T>::C> {enum {e = 2}; };
int main(int argc, char **argv) {
 printf("%d\n", B<int>::e);

57

C++ Language

 printf("%d\n", B<A<int>::C>::e);
}

• An incorrect number of template <> clauses is allowed on a full specialization (i.e., one with no
remaining template parameters). A warning is issued.

template <class T> struct A {
 template <class U> struct B { };
};
template <> struct A<int> {
 template <class U> struct B { };
};
template <> template <> struct A<int>::B<double> { };

• An incorrect number of template <> clauses is allowed on a friend class template declaration. A
warning is issued.

template <typename T> struct A {
 template <typename U> class B {
 template <typename V> friend class B;
 };
};

• Template parameters that are not used in the signature of a function template are not ignored for partial
ordering purposes (i.e., the resolution of core language issue 214 is not implemented) when gnu_version
is < 40100.

template <class S, class T> void f(T t);
template <class T> void f(T t);
int main() {
 f<int>(3); // not ambiguous when gnu_version
 // is < 40100
}

• Prototype instantiations of functions are deferred until the first actual instantiation of the function to
allow the compilation of programs that contain definitions of unusable function templates (gnu_version
30400 and above). The example below is accepted when prototype instantiations are deferred.

class A {};
template <class T> struct B {
 B () {}; // error: no initializer for
 // reference member "B<T>::a"
 A& a;
};

58

TASKING VX-toolset for ARM User Guide

• When doing nonclass prototype instantiations (e.g., gnu_version 30400 and above), the severity of the
diagnostic issued if a const template static data member is defined without an initializer is reduced to
a warning.

template <class T> struct A {
 static const int i;
};
template <class T> const int A<T>::i;

• When doing nonclass prototype instantiations (e.g., gnu_version 30400 and above), a template static
data member with an invalid aggregate initializer is accepted (the error is diagnosed if the static data
member is instantiated).

struct A {
 A(double val);
};
template <class T> struct B {
 static const A I[1];
};
template <class T> const A B<T>::I[1]= {
 {1.,0.,0.,0.}
};

• A storage class may appear in a declaration that also has a “direct” linkage specification. For example,

extern "C" static void f();

is treated as equivalent to

extern "C" { static void f(); }

• A storage class (static or extern) is accepted on an explicit function template specialization.

• The storage class specifier extern is accepted on definitions of static data members.

• The lookup of a name that precedes a “::” ignores enum types and nonclass typedefs (gnu_version
30400 and above).

namespace N {
 const int a = 42;
 enum N { e };
 int i = N::a; // refers to namespace N in g++ mode
}

namespace M {
 const int a = 42;
 typedef int M;
 int i = M::a; // refers to namespace M in g++ mode
}

59

C++ Language

• A call of a dependent function template without the use of the template keyword is accepted if a
normal lookup in the scope of the reference finds a function template or an overload set containing a
function template (even though that function template will not end up being the one that is actually
called).

template <typename T> struct A {
 template <typename U> void f(U);
};
template <typename T> struct B {
 template <typename U> void f(U);
 void f(){}
 A<T> a;
 void g(T t) {
 a.f<T>(t); // accepted in g++ mode - should be written as:
 // m_impl.f template <T>(t)
 }
};

• The template keyword may be omitted in a dependent member class template reference when the
template argument list matches the implied template argument list of the prototype instantiation. In the
example below, in the reference to A<T>::B<...> the template parameter T has the same coordinates
(position and nesting depth) as the T of the prototype instantiation of A, so the template keyword can
be omitted.

template <class T> struct A {
 template <class T2> struct B {};
};
template <class T, class U> struct C {
 A<T>::B<T> ab1; // g++ accepts
 A<T>::B<U> ab2; // g++ accepts
 A<U>::B<T> ab3; // g++ gives error
 typename A<U>::template B<T> ab4; // correct syntax
};

• Partial ordering in non-call contexts does not include the return type in the partial ordering process.

template <class T> T f(const T* p);
template <class T> int f(T* p);
// ambiguous specialization, but accepted in g++ mode
template <> int f(const int*){return 0;}

• A pointer to function is considered to be compatible with a reference to function for partial ordering
purposes (gnu_version 40100 and above).

template <typename T> void f(T** p, void (*)()); // #1
template <typename T> void f(T* p, void (&)()); // #2
void x(){}
void g(int** p) {

60

TASKING VX-toolset for ARM User Guide

 f(p, x); // calls #1
}

• A static_cast in which the operand is a pointer to a base class that is neither const- nor
volatile-qualified and the target type is a pointer to a const- and/or volatile-qualified derived class drops
the qualification from the result type when gnu_version is 30400 or higher.

struct B { };
struct D: B { };
D *f(B *p) {
 return static_cast<const D *>(p); // accepted in g++ mode with
 // gnu_version >= 30400
}

The following GNU extensions are not currently supported:

• The forward declaration of function parameters (so they can participate in variable-length array
parameters).

• GNU-style complex integral types (complex floating-point types are supported)

• Nested functions

• Local structs with variable-length array fields.

2.4. Namespace Support

Namespaces are enabled by default.You can use the command line option --no-namespaces to disable
the features.

When doing name lookup in a template instantiation, some names must be found in the context of the
template definition while others may also be found in the context of the template instantiation. The C++
compiler implements two different instantiation lookup algorithms: the one mandated by the standard
(referred to as "dependent name lookup"), and the one that existed before dependent name lookup was
implemented.

Dependent name lookup is done in strict mode (unless explicitly disabled by another command line option)
or when dependent name processing is enabled by either a configuration flag or command line option.

Dependent Name Processing

When doing dependent name lookup, the C++ compiler implements the instantiation name lookup rules
specified in the standard. This processing requires that non-class prototype instantiations be done. This
in turn requires that the code be written using the typename and template keywords as required by
the standard.

61

C++ Language

Lookup Using the Referencing Context

When not using dependent name lookup, the C++ compiler uses a name lookup algorithm that
approximates the two-phase lookup rule of the standard, but does so in such a way that is more compatible
with existing code and existing compilers.

When a name is looked up as part of a template instantiation but is not found in the local context of the
instantiation, it is looked up in a synthesized instantiation context that includes both names from the
context of the template definition and names from the context of the instantiation. Here's an example:

namespace N {
 int g(int);
 int x = 0;
 template <class T> struct A {
 T f(T t) { return g(t); }
 T f() { return x; }
 };
}

namespace M {
 int x = 99;
 double g(double);
 N::A<int> ai;
 int i = ai.f(0); // N::A<int>::f(int) calls
 // N::g(int)
 int i2 = ai.f(); // N::A<int>::f() returns
 // 0 (= N::x)
 N::A<double> ad;
 double d = ad.f(0); // N::A<double>::f(double)
 // calls M::g(double)
 double d2 = ad.f(); // N::A<double>::f() also
 // returns 0 (= N::x)
}

The lookup of names in template instantiations does not conform to the rules in the standard in the
following respects:

• Although only names from the template definition context are considered for names that are not functions,
the lookup is not limited to those names visible at the point at which the template was defined.

• Functions from the context in which the template was referenced are considered for all function calls
in the template. Functions from the referencing context should only be visible for "dependent" function
calls.

Argument Dependent Lookup

When argument-dependent lookup is enabled (this is the default), functions made visible using
argument-dependent lookup overload with those made visible by normal lookup. The standard requires
that this overloading occurs even when the name found by normal lookup is a block extern declaration.
The C++ compiler does this overloading, but in default mode, argument-dependent lookup is suppressed
when the normal lookup finds a block extern.

62

TASKING VX-toolset for ARM User Guide

This means a program can have different behavior, depending on whether it is compiled with or without
argument-dependent lookup --no-arg-dep-lookup, even if the program makes no use of namespaces.
For example:

struct A { };
A operator+(A, double);
void f() {
 A a1;
 A operator+(A, int);
 a1 + 1.0; // calls operator+(A, double)
 // with arg-dependent lookup enabled but
 // otherwise calls operator+(A, int);
}

2.5.Template Instantiation

The C++ language includes the concept of templates. A template is a description of a class or function
that is a model for a family of related classes or functions.1 For example, one can write a template for a
Stack class, and then use a stack of integers, a stack of floats, and a stack of some user-defined type.
In the source, these might be written Stack<int>, Stack<float>, and Stack<X>. From a single
source description of the template for a stack, the compiler can create instantiations of the template for
each of the types required.

The instantiation of a class template is always done as soon as it is needed in a compilation. However,
the instantiations of template functions, member functions of template classes, and static data members
of template classes (hereafter referred to as template entities) are not necessarily done immediately, for
several reasons:

• One would like to end up with only one copy of each instantiated entity across all the object files that
make up a program. (This of course applies to entities with external linkage.)

• The language allows one to write a specialization of a template entity, i.e., a specific version to be used
in place of a version generated from the template for a specific data type. (One could, for example,
write a version of Stack<int>, or of just Stack<int>::push, that replaces the template-generated
version; often, such a specialization provides a more efficient representation for a particular data type.)
Since the compiler cannot know, when compiling a reference to a template entity, if a specialization for
that entity will be provided in another compilation, it cannot do the instantiation automatically in any
source file that references it.

• C++ templates can be exported (i.e., declared with the keyword export). Such templates can be used
in a translation unit that does not contain the definition of the template to instantiate. The instantiation
of such a template must be delayed until the template definition has been found.

• The language also dictates that template functions that are not referenced should not be compiled,
that, in fact, such functions might contain semantic errors that would prevent them from being compiled.
Therefore, a reference to a template class should not automatically instantiate all the member functions
of that class.

1Since templates are descriptions of entities (typically, classes) that are parameterizable according to the types they operate upon,
they are sometimes called parameterized types.

63

C++ Language

(It should be noted that certain template entities are always instantiated when used, e.g., inline functions.)

From these requirements, one can see that if the compiler is responsible for doing all the instantiations
automatically, it can only do so on a program-wide basis. That is, the compiler cannot make decisions
about instantiation of template entities until it has seen all the source files that make up a complete
program.

This C++ compiler provides an instantiation mechanism that does automatic instantiation at link time. For
cases where you want more explicit control over instantiation, the C++ compiler also provides instantiation
modes and instantiation pragmas, which can be used to exert fine-grained control over the instantiation
process.

2.5.1. Automatic Instantiation

The goal of an automatic instantiation mode is to provide painless instantiation.You should be able to
compile source files to object code, then link them and run the resulting program, and never have to worry
about how the necessary instantiations get done.

In practice, this is hard for a compiler to do, and different compilers use different automatic instantiation
schemes with different strengths and weaknesses:

• AT&T/USL/Novell's cfront product saves information about each file it compiles in a special directory
called ptrepository. It instantiates nothing during normal compilations. At link time, it looks for
entities that are referenced but not defined, and whose mangled names indicate that they are template
entities. For each such entity, it consults the ptrepository information to find the file containing the
source for the entity, and it does a compilation of the source to generate an object file containing object
code for that entity. This object code for instantiated objects is then combined with the "normal" object
code in the link step.

If you are using cfront you must follow a particular coding convention: all templates must be declared
in .h files, and for each such file there must be a corresponding .cc file containing the associated
definitions. The compiler is never told about the .cc files explicitly; one does not, for example, compile
them in the normal way. The link step looks for them when and if it needs them, and does so by taking
the .h filename and replacing its suffix.2

This scheme has the disadvantage that it does a separate compilation for each instantiated function
(or, at best, one compilation for all the member functions of one class). Even though the function itself
is often quite small, it must be compiled along with the declarations for the types on which the instantiation
is based, and those declarations can easily run into many thousands of lines. For large systems, these
compilations can take a very long time. The link step tries to be smart about recompiling instantiations
only when necessary, but because it keeps no fine-grained dependency information, it is often forced
to "recompile the world" for a minor change in a .h file. In addition, cfront has no way of ensuring that
preprocessing symbols are set correctly when it does these instantiation compilations, if preprocessing
symbols are set other than on the command line.

• Borland's C++ compiler instantiates everything referenced in a compilation, then uses a special linker
to remove duplicate definitions of instantiated functions.

2The actual implementation allows for several different suffixes and provides a command line option to change the suffixes sought.

64

TASKING VX-toolset for ARM User Guide

If you are using Borland's compiler you must make sure that every compilation sees all the source code
it needs to instantiate all the template entities referenced in that compilation. That is, one cannot refer
to a template entity in a source file if a definition for that entity is not included by that source file. In
practice, this means that either all the definition code is put directly in the .h files, or that each .h file
includes an associated .cc (actually, .cpp) file.

Our approach is a little different. It requires that, for each instantiation of a non-exported template, there
is some (normal, top-level, explicitly-compiled) source file that contains the definition of the template
entity, a reference that causes the instantiation, and the declarations of any types required for the
instantiation.3 This requirement can be met in various ways:

• The Borland convention: each .h file that declares a template entity also contains either the definition
of the entity or includes another file containing the definition.

• Implicit inclusion: when the compiler sees a template declaration in a .h file and discovers a need to
instantiate that entity, it is given permission to go off looking for an associated definition file having the
same base name and a different suffix, and it implicitly includes that file at the end of the compilation.
This method allows most programs written using the cfront convention to be compiled with our approach.
See Section 2.5.4, Implicit Inclusion.

• The ad hoc approach: you make sure that the files that define template entities also have the definitions
of all the available types, and add code or pragmas in those files to request instantiation of the entities
there.

Exported templates are also supported by our automatic instantiation method, but they require additional
mechanisms explained further on.

The automatic instantiation mode is enabled by default. It can be turned off by the command line option
--no-auto-instantiation. If automatic instantiation is turned off, the extra information about template
entities that could be instantiated in a file is not put into the object file.

2.5.2. Instantiation Modes

Normally, when a file is compiled, template entities are instantiated everywhere where they are used.
The overall instantiation mode can, however, be changed by a command line option:

--instantiate=used

Instantiate those template entities that were used in the compilation. This will include all static data
members for which there are template definitions. This is the default.

--instantiate=all

Instantiate all template entities declared or referenced in the compilation unit. For each fully instantiated
template class, all of its member functions and static data members will be instantiated whether or not
they were used. Non-member template functions will be instantiated even if the only reference was a
declaration.

3Isn't this always the case? No. Suppose that file A contains a definition of class X and a reference to Stack<X>::push, and that
file B contains the definition for the member function push. There would be no file containing both the definition of push and the
definition of X.

65

C++ Language

--instantiate=local

Similar to --instantiate=used except that the functions are given internal linkage. This is intended to
provide a very simple mechanism for those getting started with templates. The compiler will instantiate
the functions that are used in each compilation unit as local functions, and the program will link and run
correctly (barring problems due to multiple copies of local static variables.) However, one may end up
with many copies of the instantiated functions, so this is not suitable for production use. --instantiate=local
cannot be used in conjunction with automatic template instantiation. If automatic instantiation is enabled
by default, it will be disabled by the --instantiate=local option.

In the case where the ccarm command is given a single file to compile and link, e.g.,

ccarm test.cc

the compiler knows that all instantiations will have to be done in the single source file. Therefore, it uses
the --instantiate=used mode and suppresses automatic instantiation.

2.5.3. Instantiation #pragma Directives

Instantiation pragmas can be used to control the instantiation of specific template entities or sets of
template entities. There are three instantiation pragmas:

• The instantiate pragma causes a specified entity to be instantiated.

• The do_not_instantiate pragma suppresses the instantiation of a specified entity. It is typically used
to suppress the instantiation of an entity for which a specific definition will be supplied.

• The can_instantiate pragma indicates that a specified entity can be instantiated in the current
compilation, but need not be; it is used in conjunction with automatic instantiation, to indicate potential
sites for instantiation if the template entity turns out to be required.

The argument to the instantiation pragma may be:

• a template class name A<int>

• a template class declaration class A<int>

• a member function name A<int>::f

• a static data member name A<int>::i

• a static data declaration int A<int>::i

• a member function declaration void A<int>::f(int,char)

• a template function declaration char* f(int, float)

A pragma in which the argument is a template class name (e.g., A<int> or class A<int>) is equivalent
to repeating the pragma for each member function and static data member declared in the class. When
instantiating an entire class a given member function or static data member may be excluded using the
do_not_instantiate pragma. For example,

66

TASKING VX-toolset for ARM User Guide

#pragma instantiate A<int>
#pragma do_not_instantiate A<int>::f

The template definition of a template entity must be present in the compilation for an instantiation to occur.
If an instantiation is explicitly requested by use of the instantiate pragma and no template definition is
available or a specific definition is provided, an error is issued.

template <class T> void f1(T); // No body provided
template <class T> void g1(T); // No body provided

void f1(int) {} // Specific definition
void main()
{
 int i;
 double d;
 f1(i);
 f1(d);
 g1(i);
 g1(d);
}

#pragma instantiate void f1(int) // error - specific
 // definition
#pragma instantiate void g1(int) // error - no body
 // provided

f1(double) and g1(double) will not be instantiated (because no bodies were supplied) but no errors
will be produced during the compilation (if no bodies are supplied at link time, a linker error will be
produced).

A member function name (e.g., A<int>::f) can only be used as a pragma argument if it refers to a
single user defined member function (i.e., not an overloaded function). Compiler-generated functions are
not considered, so a name may refer to a user defined constructor even if a compiler-generated copy
constructor of the same name exists. Overloaded member functions can be instantiated by providing the
complete member function declaration, as in

#pragma instantiate char* A<int>::f(int, char*)

The argument to an instantiation pragma may not be a compiler-generated function, an inline function,
or a pure virtual function.

2.5.4. Implicit Inclusion

When implicit inclusion is enabled, the C++ compiler is given permission to assume that if it needs a
definition to instantiate a template entity declared in a .h file it can implicitly include the corresponding
.cc file to get the source code for the definition. For example, if a template entity ABC::f is declared in
file xyz.h, and an instantiation of ABC::f is required in a compilation but no definition of ABC::f appears
in the source code processed by the compilation, the compiler will look to see if a file xyz.cc exists, and
if so it will process it as if it were included at the end of the main source file.

67

C++ Language

To find the template definition file for a given template entity the C++ compiler needs to know the path
name specified in the original include of the file in which the template was declared and whether the file
was included using the system include syntax (e.g., #include <file.h>). This information is not
available for preprocessed source containing #line directives. Consequently, the C++ compiler will not
attempt implicit inclusion for source code containing #line directives.

The file to be implicitly included is found by replacing the file suffix with each of the suffixes specified in
the instantiation file suffix list. The normal include search path mechanism is then used to look for the file
to be implicitly included.

By default, the list of definition-file suffixes tried is .c, .cc, .cpp, and .cxx.

Implicit inclusion works well alongside automatic instantiation, but the two are independent. They can be
enabled or disabled independently, and implicit inclusion is still useful when automatic instantiation is not
done.

The implicit inclusion mode can be turned on by the command line option --implicit-include. If this option
is turned on, you cannot use exported templates.

Implicit inclusions are only performed during the normal compilation of a file, (i.e., not when doing only
preprocessing). A common means of investigating certain kinds of problems is to produce a preprocessed
source file that can be inspected. When using implicit inclusion it is sometimes desirable for the
preprocessed source file to include any implicitly included files. This may be done using the command
line option --no-preprocessing-only. This causes the preprocessed output to be generated as part of a
normal compilation. When implicit inclusion is being used, the implicitly included files will appear as part
of the preprocessed output in the precise location at which they were included in the compilation.

2.5.5. Exported Templates

Exported templates are templates declared with the keyword export. Exporting a class template is
equivalent to exporting each of its static data members and each of its non-inline member functions. An
exported template is special because its definition does not need to be present in a translation unit that
uses that template. In other words, the definition of an exported (non-class) template does not need to
be explicitly or implicitly included in a translation unit that instantiates that template. For example, the
following is a valid C++ program consisting of two separate translation units:

// File 1:
#include <stdio.h>
static void trace() { printf("File 1\n"); }

export template<class T> T const& min(T const&, T const&);
int main()
{
 trace();
 return min(2, 3);
}

// File 2:
#include <stdio.h>
static void trace() { printf("File 2\n"); }

68

TASKING VX-toolset for ARM User Guide

export template<class T> T const& min(T const &a, T const &b)
{
 trace();
 return a<b? a: b;
}

Note that these two files are separate translation units: one is not included in the other. That allows the
two functions trace() to coexist (with internal linkage).

Support for exported templates is enabled by default, but you can turn it off with command line option
--no-export.

You cannot use exported templates together with the command line option --implicit-include.

2.5.5.1. Finding the Exported Template Definition

The automatic instantiation of exported templates is somewhat similar (from a user's perspective) to that
of regular (included) templates. However, an instantiation of an exported template involves at least two
translation units: one which requires the instantiation, and one which contains the template definition.

When a file containing definitions of exported templates is compiled, a file with a .et suffix is created
and some extra information is included in the associated .ti file.The .et files are used later by the C++
compiler to find the translation unit that defines a given exported template.

When a file that potentially makes use of exported templates is compiled, the compiler must be told where
to look for .et files for exported templates used by a given translation unit. By default, the compiler looks
in the current directory. Other directories may be specified with the command line option
--template-directory. Strictly speaking, the .et files are only really needed when it comes time to generate
an instantiation. This means that code using exported templates can be compiled without having the
definitions of those templates available. Those definitions must be available when explicit instantiation is
done.

The .et files only inform the C++ compiler about the location of exported template definitions; they do
not actually contain those definitions. The sources containing the exported template definitions must
therefore be made available at the time of instantiation. In particular, the export facility is not a mechanism
for avoiding the publication of template definitions in source form.

2.5.5.2. Secondary Translation Units

An instantiation of an exported template can be triggered by an explicit instantiation directive, or by the
command line option --instantiate=used. In each case, the translation unit that contains the initial point
of instantiation will be processed as the primary translation unit. Based on information it finds in the .et
files, the C++ compiler will then load and parse the translation unit containing the definition of the template
to instantiate. This is a secondary translation unit. The simultaneous processing of the primary and
secondary translation units enables the C++ compiler to create instantiations of the exported templates
(which can include entities from both translation units). This process may reveal the need for additional
instantiations of exported templates, which in turn can cause additional secondary translation units to be
loaded4.

4As a consequence, using exported templates may require considerably more memory that similar uses of regular (included)
templates.

69

C++ Language

When secondary translation units are processed, the declarations they contain are checked for consistency.
This process may report errors that would otherwise not be caught. Many these errors are so-called "ODR
violations" (ODR stands for "one-definition rule"). For example:

// File 1:
struct X {
 int x;
};

int main() {
 return min(2, 3);
}

// File 2:
struct X {
 unsigned x; // Error: X::x declared differently
 // in File 1
};

export template<class T> T const& min(T const &a, T const &b)
{
 return a<b? a: b;
}

If there are no errors, the instantiations are generated in the output associated with the primary translation
unit.This may also require that entities with internal linkage in secondary translation units be "externalized"
so they can be accessed from the instantiations in the primary translation unit.

2.5.5.3. Libraries with Exported Templates

Typically a (non-export) library consists of an include directory and a lib directory. The include
directory contains the header files required by users of the library and the lib directory contains the
object code libraries that client programs must use when linking programs.

With exported templates, users of the library must also have access to the source code of the exported
templates and the information contained in the associated .et files. This information should be placed
in a directory that is distributed along with the include and lib directories:This is the export directory.
It must be specified using the command line option --template-directory when compiling client programs.

The recommended procedure to build the export directory is as follows:

1. For each .et file in the original source directory, copy the associated source file to the export directory.

2. Concatenate all of the .et files into a single .et file (e.g., mylib.et) in the export directory. The
individual .et files could be copied to the export directory, but having all of the .et information in one
file will make use of the library more efficient.

3. Create an export_info file in the export directory. The export_info file specifies the include
search paths to be used when recompiling files in the export directory. If no export_info file is
provided, the include search path used when compiling the client program that uses the library will
also be used to recompile the library exported template files.

70

TASKING VX-toolset for ARM User Guide

The export_info file consists of a series of lines of the form

include=x

or

sys_include=x

where x is a path name to be placed on the include search path.The directories are searched in the order
in which they are encountered in the export_info file.The file can also contain comments, which begin
with a "#", and blank lines. Spaces are ignored but tabs are not currently permitted. For example:

The include directories to be used for the xyz library

include = /disk1/xyz/include
sys_include = /disk2/abc/include
include=/disk3/jkl/include

The include search path specified for a client program is ignored by the C++ compiler when it processes
the source in the export library, except when no export_info file is provided. Command line macro
definitions specified for a client program are also ignored by the C++ compiler when processing a source
file from the export library; the command line macros specified when the corresponding .et file was
produced do apply. All other compilation options (other than the include search path and command line
macro definitions) used when recompiling the exported templates will be used to compile the client
program.

When a library is installed on a new system, it is likely that the export_info file will need to be adapted
to reflect the location of the required headers on that system.

2.6. Inlining Functions

The C++ compiler supports a minimal form of function inlining. When the C++ compiler encounters a call
of a function declared inline it can replace the call with the body of the function with the parameters
replaced by the corresponding arguments. When a function call occurs as a statement, the statements
of the function body are inserted in place of the call. When the function call occurs within an expression,
the body of the function is rewritten as one large expression and that expression is inserted in the proper
place in the containing expression. It is not always possible to do this sort of inlining: there are certain
constructs (e.g. loops and inline assembly) that cannot be rendered in expression form. Even when inlining
is done at the statement level, there are certain constructs that are not practical to inline. Calls that cannot
be inlined are left in their original call form, and an out-of-line copy of the function is used. When enabled,
a remark is issued.

When the C++ compiler decides not to inline a function, the keyword inline is passed to the generated
C file. This allows for the C compiler to decide again whether to inline a function or not.

A function is disqualified for inlining immediately if any of the following are true:

• The function has local static variables.

• The function has local constants.

71

C++ Language

• The function has local types.

• The function has block scopes.

• The function includes pragmas.

• The function has a variable argument list.

2.7. Extern Inline Functions

Depending on the way in which the C++ compiler is configured, out-of-line copies of extern inline
functions are either implemented using static functions, or are instantiated using a mechanism like the
template instantiation mechanism. Note that out-of-line copies of inline functions are only required in
cases where the function cannot be inlined, or when the address of the function is taken (whether explicitly
by the user, by implicitly generated functions, or by compiler-generated data structures such as virtual
function tables or exception handling tables).

When static functions are used, local static variables of the functions are promoted to global variables
with specially encoded names, so that even though there may be multiple copies of the code, there is
only one copy of such global variables.This mechanism does not strictly conform to the standard because
the address of an extern inline function is not constant across translation units.

When the instantiation mechanism is used, the address of an extern inline function is constant across
translation units, but at the cost of requiring the use of one of the template instantiation mechanisms,
even for programs that don't use templates. Definitions of extern inline functions can be provided either
through use of the automatic instantiation mechanism or by use of the --instantiate=used or
--instantiate=all instantiation modes. There is no mechanism to manually control the definition of extern
inline function bodies.

2.8. Pragmas to Control the C++ Compiler

Pragmas are keywords in the C++ source that control the behavior of the compiler. Pragmas overrule
compiler options.

The syntax is:

#pragma pragma-spec

The C++ compiler supports the following pragmas:

instantiate / do_not_instantiate / can_instantiate

These are template instantiation pragmas. They are described in detail in Section 2.5.3, Instantiation
#pragma Directives.

hdrstop / no_pch

These are precompiled header pragmas. They are described in detail in Section 2.10, Precompiled
Headers.

72

TASKING VX-toolset for ARM User Guide

once

When placed at the beginning of a header file, indicates that the file is written in such a way that including
it several times has the same effect as including it once. Thus, if the C++ compiler sees #pragma once
at the start of a header file, it will skip over it if the file is #included again.

A typical idiom is to place an #ifndef guard around the body of the file, with a #define of the guard variable
after the #ifndef:

#pragma once // optional
#ifndef FILE_H
#define FILE_H
... body of the header file ...
#endif

The #pragma once is marked as optional in this example, because the C++ compiler recognizes the
#ifndef idiom and does the optimization even in its absence.#pragma once is accepted for compatibility
with other compilers and to allow the programmer to use other guard-code idioms.

2.9. Predefined Macros

The C++ compiler defines a number of preprocessing macros. Many of them are only defined under
certain circumstances.This section describes the macros that are provided and the circumstances under
which they are defined.

DescriptionMacro

Defines the ABI compatibility version being
used.This macro is set to 9999, which means
the latest version. This macro is used when
building the C++ library.

__ABI_COMPATIBILITY_VERSION

This macro is set to TRUE, meaning that the
ABI changes for RTTI are implemented. This
macro is used when building the C++ library.

__ABI_CHANGES_FOR_RTTI

This macro is set to TRUE, meaning that the
ABI changes for array new and delete are
implemented. This macro is used when
building the C++ library.

__ABI_CHANGES_FOR_ARRAY_NEW_AND_DELETE

This macro is set to TRUE, meaning that the
ABI changes for placement delete are
implemented. This macro is used when
building the C++ library.

__ABI_CHANGES_FOR_PLACEMENT_DELETE

Defined when array new and delete are
enabled. This is the default.

__ARRAY_OPERATORS

Similar to __FILE__ but indicates the primary
source file rather than the current one (i.e.,
when the current file is an included file).

__BASE_FILE__

73

C++ Language

DescriptionMacro

Expands to 1 if big-endian mode is selected
(option --endianness=big), otherwise
unrecognized as macro.

__BIG_ENDIAN__

Defined when bool is a keyword. This is the
default.

_BOOL

Identifies the build number of the C++
compiler, composed of decimal digits for the
build number, three digits for the major branch
number and three digits for the minor branch
number. For example, if you use build 1.22.1
of the compiler, __BUILD__ expands to
1022001. If there is no branch number, the
branch digits expand to zero. For example,
build 127 results in 127000000.

__BUILD__

Used in limits.h to define the
minimum/maximum value of a plain char
respectively.

__CHAR_MIN / __CHAR_MAX

Identifies the C++ compiler.You can use this
symbol to flag parts of the source which must
be recognized by the cparm C++ compiler
only. It expands to 1.

__CPARM__

Always defined.__cplusplus

Expands to a string with the CPU supplied with
the option --cpu. When no --cpu is supplied,
this symbol is not defined.

__CPU__

Defined to the date of the compilation in the
form "Mmm dd yyyy".

__DATE__

Defines the type of the offset field in the virtual
function table. This macro is used when
building the C++ library.

__DELTA_TYPE

Expands to 1 if you did not use option
--no-double (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.

__DOUBLE_FP__

Defined as 1 in Embedded C++ mode.__embedded_cplusplus

Defined when exception handling is enabled
(--exceptions).

__EXCEPTIONS

Expands to the current source file name.__FILE__

Defined to the name of the current function.
An error is issued if it is used outside of a
function.

__FUNCTION__

Same as __FUNCTION__ in GNU mode.__func__

74

TASKING VX-toolset for ARM User Guide

DescriptionMacro

Defined when the standard header files should
implicitly do a using-directive on the std
namespace (--using-std).

__IMPLICIT_USING_STD

Specifies the type of an element of the setjmp
buffer. This macro is used when building the
C++ library.

__JMP_BUF_ELEMENT_TYPE

Defines the number of elements in the setjmp
buffer. This macro is used when building the
C++ library.

__JMP_BUF_NUM_ELEMENTS

Expands to the line number of the line where
this macro is called.

__LINE__

Expands to 1 if little-endian mode is selected
(option --endianness=little), otherwise
unrecognized as macro. This is the default.

__LITTLE_ENDIAN__

Defined when namespaces are supported (this
is the default, you can disable support for
namespaces with --no-namespaces).

__NAMESPACES

Defined when the long long type is not
supported. This is the default.

__NO_LONG_LONG

Defines the value used as the null region
number value in the exception handling tables.
This macro is used when building the C++
library.

__NULL_EH_REGION_NUMBER

Defined when placement delete is enabled.__PLACEMENT_DELETE

Defined to the name of the current function.
This includes the return type and parameter
types of the function. An error is issued if it is
used outside of a function.

__PRETTY_FUNCTION__

Used in stdint.h to define the
minimum/maximum value of a ptrdiff_t
type respectively.

__PTRDIFF_MIN / __PTRDIFF_MAX

Defined to be the type of ptrdiff_t.__PTRDIFF_TYPE__

Defines the type of a region number field in
the exception handling tables. This macro is
used when building the C++ library.

__REGION_NUMBER_TYPE

Expands to the revision number of the C++
compiler. Digits are represented as they are;
characters (for prototypes, alphas, betas) are
represented by -1. Examples: v1.0r1 -> 1,
v1.0rb -> -1

__REVISION__

Defined when RTTI is enabled (--rtti).__RTTI

Defined when the run-time uses namespaces.__RUNTIME_USES_NAMESPACES

75

C++ Language

DescriptionMacro

Defined when plain char is signed.__SIGNED_CHARS__

Expands to 1 if you used option --no-double
(Treat ‘double’ as ‘float’), otherwise
unrecognized as macro.

__SINGLE_FP__

Used in stdint.h to define the
minimum/maximum value of a size_t type
respectively.

__SIZE_MIN / __SIZE_MAX

Defined to be the type of size_t.__SIZE_TYPE__

Always defined, but the value may be
redefined.

__STDC__

Identifies the ISO-C version number. Expands
to 199901L for ISO C99, but the value may be
redefined.

__STDC_VERSION__

Defined when option --io-streams is not used.
This disables I/O stream functions in the
STLport C++ library.

_STLP_NO_IOSTREAMS

Always defined for the TASKING C++
compiler.

__TASKING__

Expands to 1 if you used option --thumb,
otherwise unrecognized as macro.

__THUMB__

Expands to the compilation time: “hh:mm:ss”__TIME__

Defined when type traits pseudo-functions (to
ease the implementation of ISO/IEC TR
19768; e.g., __is_union) are enabled. This
is the default in C++ mode.

__TYPE_TRAITS_ENABLED

Defines the type of the variable-handle field
in the exception handling tables. This macro
is used when building the C++ library.

__VAR_HANDLE_TYPE

Identifies the version number of the C++
compiler. For example, if you use version 2.1r1
of the compiler, __VERSION__ expands to
2001 (dot and revision number are omitted,
minor version number in 3 digits).

__VERSION__

Defines the type of the virtual function index
field of the virtual function table. This macro
is used when building the C++ library.

__VIRTUAL_FUNCTION_INDEX_TYPE

Defines the type of the virtual function field of
the virtual function table. This macro is used
when building the C++ library.

__VIRTUAL_FUNCTION_TYPE

Used in stdint.h to define the
minimum/maximum value of a wchar_t type
respectively.

__WCHAR_MIN / __WCHAR_MAX

76

TASKING VX-toolset for ARM User Guide

DescriptionMacro

Defined when wchar_t is a keyword._WCHAR_T

2.10. Precompiled Headers

It is often desirable to avoid recompiling a set of header files, especially when they introduce many lines
of code and the primary source files that #include them are relatively small.The C++ compiler provides
a mechanism for, in effect, taking a snapshot of the state of the compilation at a particular point and writing
it to a disk file before completing the compilation; then, when recompiling the same source file or compiling
another file with the same set of header files, it can recognize the "snapshot point", verify that the
corresponding precompiled header (PCH) file is reusable, and read it back in. Under the right
circumstances, this can produce a dramatic improvement in compilation time; the trade-off is that PCH
files can take a lot of disk space.

2.10.1. Automatic Precompiled Header Processing

When --pch appears on the command line, automatic precompiled header processing is enabled. This
means the C++ compiler will automatically look for a qualifying precompiled header file to read in and/or
will create one for use on a subsequent compilation.

The PCH file will contain a snapshot of all the code preceding the "header stop" point. The header stop
point is typically the first token in the primary source file that does not belong to a preprocessing directive,
but it can also be specified directly by #pragma hdrstop (see below) if that comes first. For example:

#include "xxx.h"
#include "yyy.h"
int i;

The header stop point is int (the first non-preprocessor token) and the PCH file will contain a snapshot
reflecting the inclusion of xxx.h and yyy.h. If the first non-preprocessor token or the #pragma hdrstop
appears within a #if block, the header stop point is the outermost enclosing #if. To illustrate, heres a
more complicated example:

#include "xxx.h"
#ifndef YYY_H
#define YYY_H 1
#include "yyy.h"
#endif
#if TEST
int i;
#endif

Here, the first token that does not belong to a preprocessing directive is again int, but the header stop
point is the start of the #if block containing it. The PCH file will reflect the inclusion of xxx.h and
conditionally the definition of YYY_H and inclusion of yyy.h; it will not contain the state produced by #if
TEST.

A PCH file will be produced only if the header stop point and the code preceding it (mainly, the header
files themselves) meet certain requirements:

77

C++ Language

• The header stop point must appear at file scope -- it may not be within an unclosed scope established
by a header file. For example, a PCH file will not be created in this case:

// xxx.h
class A {

// xxx.C
#include "xxx.h"
int i; };

• The header stop point may not be inside a declaration started within a header file, nor (in C++) may it
be part of a declaration list of a linkage specification. For example, in the following case the header
stop point is int, but since it is not the start of a new declaration, no PCH file will be created:

// yyy.h
static

// yyy.C
#include "yyy.h"
int i;

• Similarly, the header stop point may not be inside a #if block or a #define started within a header
file.

• The processing preceding the header stop must not have produced any errors. (Note: warnings and
other diagnostics will not be reproduced when the PCH file is reused.)

• No references to predefined macros __DATE__ or __TIME__ may have appeared.

• No use of the #line preprocessing directive may have appeared.

• #pragma no_pch (see below) must not have appeared.

• The code preceding the header stop point must have introduced a sufficient number of declarations to
justify the overhead associated with precompiled headers.The minimum number of declarations required
is 1.

When the host system does not support memory mapping, so that everything to be saved in the
precompiled header file is assigned to preallocated memory (MS-Windows), two additional restrictions
apply:

• The total memory needed at the header stop point cannot exceed the size of the block of preallocated
memory.

• No single program entity saved can exceed 16384, the preallocation unit.

When a precompiled header file is produced, it contains, in addition to the snapshot of the compiler state,
some information that can be checked to determine under what circumstances it can be reused. This
includes:

• The compiler version, including the date and time the compiler was built.

78

TASKING VX-toolset for ARM User Guide

• The current directory (i.e., the directory in which the compilation is occurring).

• The command line options.

• The initial sequence of preprocessing directives from the primary source file, including #include
directives.

• The date and time of the header files specified in #include directives.

This information comprises the PCH prefix.The prefix information of a given source file can be compared
to the prefix information of a PCH file to determine whether the latter is applicable to the current compilation.

As an illustration, consider two source files:

// a.cc
#include "xxx.h"
 ... // Start of code
// b.cc
#include "xxx.h"
 ... // Start of code

When a.cc is compiled with --pch, a precompiled header file named a.pch is created.Then, when b.cc
is compiled (or when a.cc is recompiled), the prefix section of a.pch is read in for comparison with the
current source file. If the command line options are identical, if xxx.h has not been modified, and so
forth, then, instead of opening xxx.h and processing it line by line, the C++ compiler reads in the rest of
a.pch and thereby establishes the state for the rest of the compilation.

It may be that more than one PCH file is applicable to a given compilation. If so, the largest (i.e., the one
representing the most preprocessing directives from the primary source file) is used. For instance, consider
a primary source file that begins with

#include "xxx.h"
#include "yyy.h"
#include "zzz.h"

If there is one PCH file for xxx.h and a second for xxx.h and yyy.h, the latter will be selected (assuming
both are applicable to the current compilation). Moreover, after the PCH file for the first two headers is
read in and the third is compiled, a new PCH file for all three headers may be created.

When a precompiled header file is created, it takes the name of the primary source file, with the suffix
replaced by an implementation-specified suffix (pch by default). Unless --pch-dir is specified (see below),
it is created in the directory of the primary source file.

When a precompiled header file is created or used, a message such as

"test.cc": creating precompiled header file "test.pch"

is issued. The user may suppress the message by using the command line option --no-pch-messages.

When the option --pch-verbose is used the C++ compiler will display a message for each precompiled
header file that is considered that cannot be used giving the reason that it cannot be used.

79

C++ Language

In automatic mode (i.e., when --pch is used) the C++ compiler will deem a precompiled header file obsolete
and delete it under the following circumstances:

• if the precompiled header file is based on at least one out-of-date header file but is otherwise applicable
for the current compilation; or

• if the precompiled header file has the same base name as the source file being compiled (e.g., xxx.pch
and xxx.cc) but is not applicable for the current compilation (e.g., because of different command line
options).

This handles some common cases; other PCH file clean-up must be dealt with by other means (e.g., by
the user).

Support for precompiled header processing is not available when multiple source files are specified in a
single compilation: an error will be issued and the compilation aborted if the command line includes a
request for precompiled header processing and specifies more than one primary source file.

2.10.2. Manual Precompiled Header Processing

Command line option --create-pch=file-name specifies that a precompiled header file of the specified
name should be created.

Command line option --use-pch=file-name specifies that the indicated precompiled header file should
be used for this compilation; if it is invalid (i.e., if its prefix does not match the prefix for the current primary
source file), a warning will be issued and the PCH file will not be used.

When either of these options is used in conjunction with --pch-dir, the indicated file name (which may
be a path name) is tacked on to the directory name, unless the file name is an absolute path name.

The options --create-pch, --use-pch, and --pch may not be used together. If more than one of these
options is specified, only the last one will apply. Nevertheless, most of the description of automatic PCH
processing applies to one or the other of these modes -- header stop points are determined the same
way, PCH file applicability is determined the same way, and so forth.

2.10.3. Other Ways to Control Precompiled Headers

There are several ways in which the user can control and/or tune how precompiled headers are created
and used.

• #pragma hdrstop may be inserted in the primary source file at a point prior to the first token that does
not belong to a preprocessing directive. It enables you to specify where the set of header files subject
to precompilation ends. For example,

#include "xxx.h"
#include "yyy.h"
#pragma hdrstop
#include "zzz.h"

Here, the precompiled header file will include processing state for xxx.h and yyy.h but not zzz.h.
(This is useful if the user decides that the information added by what follows the #pragma hdrstop
does not justify the creation of another PCH file.)

80

TASKING VX-toolset for ARM User Guide

• #pragma no_pch may be used to suppress precompiled header processing for a given source file.

• Command line option --pch-dir=directory-name is used to specify the directory in which to search for
and/or create a PCH file.

Moreover, when the host system does not support memory mapping and preallocated memory is used
instead, then one of the command line options --pch, --create-pch, or --use-pch, if it appears at all, must
be the first option on the command line.

2.10.4. Performance Issues

The relative overhead incurred in writing out and reading back in a precompiled header file is quite small
for reasonably large header files.

In general, it does not cost much to write a precompiled header file out even if it does not end up being
used, and if it is used it almost always produces a significant speedup in compilation. The problem is that
the precompiled header files can be quite large (from a minimum of about 250K bytes to several megabytes
or more), and so one probably does not want many of them sitting around.

Thus, despite the faster recompilations, precompiled header processing is not likely to be justified for an
arbitrary set of files with nonuniform initial sequences of preprocessing directives. Rather, the greatest
benefit occurs when a number of source files can share the same PCH file. The more sharing, the less
disk space is consumed. With sharing, the disadvantage of large precompiled header files can be
minimized, without giving up the advantage of a significant speedup in compilation times.

Consequently, to take full advantage of header file precompilation, users should expect to reorder the
#include sections of their source files and/or to group #include directives within a commonly used
header file.

Below is an example of how this can be done. A common idiom is this:

#include "comnfile.h"
#pragma hdrstop
#include ...

where comnfile.h pulls in, directly and indirectly, a few dozen header files; the #pragma hdrstop is
inserted to get better sharing with fewer PCH files. The PCH file produced for comnfile.h can be a bit
over a megabyte in size. Another idiom, used by the source files involved in declaration processing, is
this:

#include "comnfile.h"
#include "decl_hdrs.h"
#pragma hdrstop
#include ...

decl_hdrs.h pulls in another dozen header files, and a second, somewhat larger, PCH file is created.
In all, the source files of a particular program can share just a few precompiled header files. If disk space
were at a premium, you could decide to make comnfile.h pull in all the header files used -- then, a
single PCH file could be used in building the program.

81

C++ Language

Different environments and different projects will have different needs, but in general, users should be
aware that making the best use of the precompiled header support will require some experimentation
and probably some minor changes to source code.

82

TASKING VX-toolset for ARM User Guide

Chapter 3. Assembly Language
This chapter describes the most important aspects of the TASKING assembly language for ARM and
contains a detailed description of all built-in assembly functions and assembler directives. For a complete
overview of the architecture you are using and a description of the assembly instruction set, refer to the
target's core reference manual (for example the ARM Architecture Reference Manual ARM DDI 0100I
[2005, ARM Limited]).

3.1. Assembly Syntax

An assembly program consists of statements. A statement may optionally be followed by a comment.
Any source statement can be extended to more lines by including the line continuation character (\) as
the last character on the line. The length of a source statement (first line and continuation lines) is only
limited by the amount of available memory.

Mnemonics, directives and other keywords are case insensitive. Labels, symbols, directive arguments,
and literal strings are case sensitive.

The syntax of an assembly statement is:

[label[:]] [instruction | directive | macro_call] [;comment]

A label is a special symbol which is assigned the value and type of the current
program location counter. A label can consist of letters, digits and underscore
characters (_). The first character cannot be a digit. The label can also be a
number. A label which is prefixed by whitespace (spaces or tabs) has to be
followed by a colon (:). The size of an identifier is only limited by the amount of
available memory.

number is a number ranging from 1 to 255.This type of label is called a numeric
label or local label. To refer to a numeric label, you must put an n (next) or p
(previous) immediately after the label. This is required because the same label
number may be used repeatedly.

Examples:

 LAB1: ; This label is followed by a colon and
 ; can be prefixed by whitespace
LAB1 ; This label has to start at the beginning
 ; of a line
1: b 1p ; This is an endless loop
 ; using numeric labels

label

83

An instruction consists of a mnemonic and zero, one or more operands. It must
not start in the first column.

All instructions of the ARM Unified Assembler Language (UAL) are supported.
With assembler option --old-syntax you can specify to use the pre-UAL syntax.
VFP instructions are only supported in the UAL syntax.

Operands are described in Section 3.3, Operands of an Assembly Instruction.
The instructions are described in the target's core Architecture Reference Manual.

The instruction can also be a so-called 'generic instruction'. Generic instructions
are pseudo instructions (no instructions from the instruction set). Depending on
the situation in which a generic instruction is used, the assembler replaces the
generic instruction with appropriate real assembly instruction(s). For a complete
list, see Section 3.11, Generic Instructions.

instruction

With directives you can control the assembler from within the assembly source.
Except for preprocessing directives, these must not start in the first column.
Directives are described in Section 3.9, Assembler Directives.

directive

A call to a previously defined macro. It must not start in the first column. See
Section 3.10, Macro Operations.

macro_call

Comment, preceded by a ; (semicolon).comment

You can use empty lines or lines with only comments.

3.2. Assembler Significant Characters

You can use all ASCII characters in the assembly source both in strings and in comments. Also the
extended characters from the ISO 8859-1 (Latin-1) set are allowed.

Some characters have a special meaning to the assembler. Special characters associated with expression
evaluation are described in Section 3.6.3, Expression Operators. Other special assembler characters
are:

DescriptionCharacter

Start of a comment;

Line continuation character or macro operator: argument concatenation\

Macro operator: return decimal value of a symbol?

Macro operator: return hex value of a symbol%

Macro operator: override local label^

Macro string delimiter or quoted string .DEFINE expansion character”

String constants delimiter'

Start of a built-in assembly function@

Location counter substitution$

Immediate addressing#

84

TASKING VX-toolset for ARM User Guide

DescriptionCharacter

String concatenation operator++

Load and store addressing mode[]

3.3. Operands of an Assembly Instruction

In an instruction, the mnemonic is followed by zero, one or more operands. An operand has one of the
following types:

DescriptionOperand

A symbolic name as described in Section 3.4, Symbol Names. Symbols can also occur
in expressions.

symbol

Any valid register as listed in Section 3.5, Registers.register

Any valid expression as described in Section 3.6, Assembly Expressions.expression

A combination of expression, register and symbol.address

Addressing modes

The ARM assembly language has several addressing modes.These are described in detail in the target's
core Architecture Reference Manual.

3.4. Symbol Names

User-defined symbols

A user-defined symbol can consist of letters, digits and underscore characters (_). The first character
cannot be a digit. The size of an identifier is only limited by the amount of available memory. The case
of these characters is significant.You can define a symbol by means of a label declaration or an equate
or set directive.

Predefined preprocessor symbols

These symbols start and end with two underscore characters, __symbol__, and you can use them in your
assembly source to create conditional assembly. See Section 3.4.1, Predefined Preprocessor Symbols.

Labels

Symbols used for memory locations are referred to as labels. It is allowed to use reserved symbols as
labels as long as the label is followed by a colon or starts at the first column.

85

Assembly Language

Reserved symbols

Symbol names and other identifiers beginning with a period (.) are reserved for the system (for example
for directives or section names). Instructions and registers are also reserved. The case of these built-in
symbols is insignificant.

Examples

Valid symbol names:

loop_1
ENTRY
a_B_c
_aBC

Invalid symbol names:

1_loop ; starts with a number
.DEFINE ; reserved directive name

3.4.1. Predefined Preprocessor Symbols

The TASKING assembler knows the predefined symbols as defined in the table below. The symbols are
useful to create conditional assembly.

DescriptionSymbol

Expands to 1 for the ARM toolset, otherwise unrecognized as macro.__ASARM__

Identifies the build number of the assembler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
assembler, __BUILD__ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

__BUILD__

Expands to the revision number of the assembler. Digits are represented
as they are; characters (for prototypes, alphas, betas) are represented by
-1. Examples: v1.0r1 -> 1, v1.0rb -> -1

__REVISION__

Identifies the assembler as a TASKING assembler. Expands to 1 if a
TASKING assembler is used.

__TASKING__

Identifies the version number of the assembler. For example, if you use
version 2.1r1 of the assembler, __VERSION__ expands to 2001 (dot and
revision number are omitted, minor version number in 3 digits).

__VERSION__

Example

.if @defined('__ASARM__')
 ; this part is only for the asarm assembler
...
.endif

86

TASKING VX-toolset for ARM User Guide

3.5. Registers

The following register names, either uppercase or lowercase, should not be used for user-defined symbol
names in an assembly language source file:

R0 .. R15 (general purpose registers)
IP (alias for R12)
SP (alias for R13)
LR (alias for R14)
PC (alias for R15)

3.6. Assembly Expressions

An expression is a combination of symbols, constants, operators, and parentheses which represent a
value that is used as an operand of an assembler instruction (or directive).

Expressions can contain user-defined labels (and their associated integer or floating-point values), and
any combination of integers, floating-point numbers, or ASCII literal strings.

Expressions follow the conventional rules of algebra and boolean arithmetic.

Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker. Relocatable expressions can only
contain integral functions; floating-point functions and numbers are not supported by the ELF/DWARF
object format.

The assembler evaluates expressions with 64-bit precision in two's complement.

The syntax of an expression can be any of the following:

• numeric constant

• string

• symbol

• expression binary_operator expression

• unary_operator expression

• (expression)

• function call

All types of expressions are explained in separate sections.

87

Assembly Language

3.6.1. Numeric Constants

Numeric constants can be used in expressions. If there is no prefix, by default the assembler assumes
the number is a decimal number. Prefixes can be used in either lowercase or uppercase.

ExampleDescriptionBase

0B1101
11001010b

A 0b prefix followed by binary digits (0,1). Or use a b suffix.Binary

0x12FF
0x45
0fa10h

A 0x prefix followed by hexadecimal digits (0-9, A-F, a-f). Or use
a h suffix.

Hexadecimal

12
1245

Decimal digits (0-9).Decimal integer

6E10
.6
3.14
2.7e10

Decimal digits (0-9), includes a decimal point, or an 'E' or 'e'
followed by the exponent.

Decimal
floating-point

3.6.2. Strings

ASCII characters, enclosed in single (') or double (”) quotes constitute an ASCII string. Strings between
double quotes allow symbol substitution by a .DEFINE directive, whereas strings between single quotes
are always literal strings. Both types of strings can contain escape characters.

Strings constants in expressions are evaluated to a number (each character is replaced by its ASCII
value). Strings in expressions can have a size of up to 8 characters or less depending on the operand of
an instruction or directive; any subsequent characters in the string are ignored. In this case the assembler
issues a warning. An exception to this rule is when a string is used in a .DB assembler directive; in that
case all characters result in a constant value of the specified size. Null strings have a value of 0.

Examples

'ABCD' ; (0x44434241)
'''79' ; to enclose a quote double it
"A\"BC" ; or to enclose a quote escape it
'AB'+1 ; (0x4341) string used in expression
'' ; null string
.DW 'abcdef' ; (0x64636261) 'ef' are ignored
 ; warning: string value truncated
'ab'++'cd' ; you can concatenate
 ; two strings with the '++' operator.
 ; This results in 'abcd'

88

TASKING VX-toolset for ARM User Guide

3.6.3. Expression Operators

The next table shows the assembler operators.They are ordered according to their precedence. Operators
of the same precedence are evaluated left to right. Parenthetical expressions have the highest priority
(innermost first).

Valid operands include numeric constants, literal ASCII strings and symbols.

Most assembler operators can be used with both integer and floating-point values. If one operand has
an integer value and the other operand has a floating-point value, the integer is converted to a floating-point
value before the operator is applied. The result is a floating-point value.

DescriptionNameOperatorType

Expressions enclosed by parenthesis are evaluated
first.

parenthesis()

Returns the value of its operand.plus+Unary

Returns the negative of its operand.minus-

Integer only. Returns the one’s complement of its
operand. It cannot be used with a floating-point
operand.

one's complement~

Returns 1 if the operands' value is 0; otherwise 0.
For example, if buf is 0 then !buf is 1. If buf has
a value of 1000 then !buf is 0.

logical negate!

Yields the product of its operands.multiplication*Arithmetic

Yields the quotient of the division of the first operand
by the second. For integer operands, the divide
operation produces a truncated integer result.

division/

Integer only.This operator yields the remainder from
the division of the first operand by the second.

modulo%

Yields the sum of its operands.addition+

Yields the difference of its operands.subtraction-

Integer only. Causes the left operand to be shifted
to the left (and zero-filled) by the number of bits
specified by the right operand.

shift left<<Shift

Integer only. Causes the left operand to be shifted
to the right by the number of bits specified by the
right operand. The sign bit will be extended.

shift right>>

89

Assembly Language

DescriptionNameOperatorType

Returns an integer 1 if the indicated condition is
TRUE or an integer 0 if the indicated condition is
FALSE.

For example, if D has a value of 3 and E has a value
of 5, then the result of the expression D<E is 1, and
the result of the expression D>E is 0.

Use tests for equality involving floating-point values
with caution, since rounding errors could cause
unexpected results.

less than<Relational

less than or equal<=

greater than>

greater than or equal>=

equal==

not equal!=

Integer only.Yields the bitwise AND function of its
operand.

AND&Bitwise

Integer only.Yields the bitwise OR function of its
operand.

OR|

Integer only.Yields the bitwise exclusive OR function
of its operands.

exclusive OR^

Returns an integer 1 if both operands are non-zero;
otherwise, it returns an integer 0.

logical AND&&Logical

Returns an integer 1 if either of the operands is
non-zero; otherwise, it returns an integer 1

logical OR||

The relational operators and logical operators are intended primarily for use with the conditional assembly
.if directive, but can be used in any expression.

3.7. Working with Sections

Sections are absolute or relocatable blocks of contiguous memory that can contain code or data. Some
sections contain code or data that your program declared and uses directly, while other sections are
created by the compiler or linker and contain debug information or code or data to initialize your application.
These sections can be named in such a way that different modules can implement different parts of these
sections. These sections are located in memory by the linker (using the linker script language, LSL) so
that concerns about memory placement are postponed until after the assembly process.

All instructions and directives which generate data or code must be within an active section.The assembler
emits a warning if code or data starts without a section definition. The compiler automatically generates
sections. If you program in assembly you have to define sections yourself.

For more information about locating sections see Section 7.7.8, The Section Layout Definition: Locating
Sections.

Section definition

Sections are defined with the .SECTION/.ENDSEC directive and have a name.The names have a special
meaning to the locating process and have to start with a predefined name, optionally extended by a dot

90

TASKING VX-toolset for ARM User Guide

'.' and a user defined name. Optionally, you can specify the at() attribute to locate a section at a specific
address.

 .SECTION name[,at(address)]
 ; instructions etc.
 .ENDSEC

See the description of the .SECTION directive for more information.

Examples

 .SECTION .data ; Declare a .data section
 ; ...
 .ENDSEC

 .SECTION .data.abs, at(0x0) ; Declare a .data.abs section at
 ; an absolute address
 ; ...
 .ENDSEC

3.8. Built-in Assembly Functions

The TASKING assembler has several built-in functions to support data conversion, string comparison,
and math computations.You can use functions as terms in any expression.

Syntax of an assembly function

@function_name([argument[,argument]...])

Functions start with the '@' character and have zero or more arguments, and are always followed by
opening and closing parentheses. White space (a blank or tab) is not allowed between the function name
and the opening parenthesis and between the (comma-separated) arguments.

The names of assembly functions are case insensitive.

Overview of assembly functions

DescriptionFunction

PC-relative ADD/SUB with operand split@ALUPCREL(expr,group[,check])

Test whether macro argument is present@ARG('symbol' | expr)

Test if assembler generates code for big-endian mode@BIGENDIAN()

Return number of macro arguments@CNT()

Test if current CPU matches architecture@CPU('architecture')

Test whether symbol exists@DEFINED('symbol' | symbol)

Least significant byte of the expression@LSB(expr)

Least significant half word of the absolute expression@LSH(expr)

91

Assembly Language

DescriptionFunction

Least significant word of the expression@LSW(expr)

Most significant byte of the expression@MSB(expr)

Most significant half word of the absolute expression@MSH(expr)

Most significant word of the expression@MSW(expr)

Test if the assembler runs in pre-UAL syntax mode or in UAL
syntax mode by default (option --old-syntax)

@PRE_UAL()

Concatenate str1 and str2@STRCAT(str1,str2)

Compare str1 with str2@STRCMP(str1,str2)

Return length of string@STRLEN(string)

Return position of str2 in str1@STRPOS(str1,str2[,start])

Return substring@STRSUB(str,expr1,expr2)

Test if the assembler runs in Thumb mode or in ARM mode by
default (option --thumb)

@THUMB()

Detailed Description of Built-in Assembly Functions

@ALUPCREL(expression,group[,check])

This function is used internally by the assembler with the generic instructions ADR, ADRL and ADRLL.
This function returns the PC-relative address of the expression for use in these generic instructions. group
is 0 for ADR,1 for ADRL or 2 for ADRLL.

With check you can specify to check for overflow (1 means true, 0 means false). If check is omitted, the
default is 1.

Example:

 ; The instruction "ADRAL R1,label" expands to
 ADRAL R1,PC,@ALUPCREL(label,0,1)

@ARG('symbol' | expression)

Returns integer 1 if the macro argument represented by symbol or expression is present, 0 otherwise.

You can specify the argument with a symbol name (the name of a macro argument enclosed in single
quotes) or with expression (the ordinal number of the argument in the macro formal argument list). If you
use this function when macro expansion is not active, the assembler issues a warning.

Example:

 .IF @ARG('TWIDDLE') ;is argument twiddle present?
 .IF @ARG(1) ;is first argument present?

92

TASKING VX-toolset for ARM User Guide

@BIGENDIAN()

Returns 1 if the assembler generates code for big-endian mode, returns 0 if the assembler generates
code for little-endian mode (this is the default).

@CNT()

Returns the number of macro arguments of the current macro expansion as an integer. If you use this
function when macro expansion is not active, the assembler issues a warning.

Example:

 ARGCOUNT .SET @CNT() ; reserve argument count

@CPU('architecture')

Returns 1 if architecture corresponds to the architecture that was specified with the option
--cpu=architecture; 0 otherwise. See also assembler option --cpu (Select architecture).

Example:

 .IF @CPU('ARMv7EM') ; true if you specified option --cpu=ARMv7EM
 ... ; code for the ARMv7EM
 .ELIF @CPU('ARMv6M') ; true if you specified option --cpu=ARMv6M
 ... ; code for the ARMv6-M
 .ELSE
 ... ; code for other architectures
 .ENDIF

@DEFINED('symbol' | symbol)

Returns 1 if symbol has been defined, 0 otherwise. If symbol is quoted, it is looked up as a .DEFINE
symbol; if it is not quoted, it is looked up as an ordinary symbol, macro or label.

Example:

 .IF @DEFINED('ANGLE') ;is symbol ANGLE defined?
 .IF @DEFINED(ANGLE) ;does label ANGLE exist?

@LSB(expression)

Returns the least significant byte of the result of the expression.The result of the expression is calculated
as 16 bits.

Example:

 .DB @LSB(0x1234) ; stores 0x34
 .DB @MSB(0x1234) ; stores 0x12

93

Assembly Language

@LSH(expression)

Returns the least significant half word (bits 0..15) of the result of the absolute expression. The result of
the expression is calculated as a word (32 bits).

@LSW(expression)

Returns the least significant word (bits 0..31) of the result of the expression. The result of the expression
is calculated as a double-word (64 bits).

Example:

 .DW @LSW(0x12345678) ; stores 0x5678
 .DW @MSW(0x123456) ; stores 0x0012

@MSB(expression)

Returns the most significant byte of the result of the expression.The result of the expression is calculated
as 16 bits.

@MSH(expression)

Returns the most significant half word (bits 16..31) of the result of the absolute expression. The result of
the expression is calculated as a word (32 bits). @MSH(expression) is equivalent to
((expression>>16) & 0xffff).

@MSW(expression)

Returns the most significant word of the result of the expression.The result of the expression is calculated
as a double-word (64 bits).

@PRE_UAL()

Returns 1 if the assembler runs in pre-UAL syntax mode by default, or 0 if the assembler runs in UAL
syntax mode (default). This function reflects the setting of the assembler option --old-syntax.

Example:

 .IF @PRE_UAL() ; true if you specified option --old-syntax
 ... ; old code
 .ELSE
 ... ; new code, UAL syntax
 .ENDIF

@STRCAT(string1,string2)

Concatenates string1 and string2 and returns them as a single string.You must enclose string1 and
string2 either with single quotes or with double quotes.

Example:

94

TASKING VX-toolset for ARM User Guide

 .DEFINE ID "@STRCAT('TAS','KING')" ; ID = 'TASKING'

@STRCMP(string1,string2)

Compares string1 with string2 by comparing the characters in the string.The function returns the difference
between the characters at the first position where they disagree, or zero when the strings are equal:

<0 if string1 < string2

0 if string1 == string2

>0 if string1 > string2

Example:

 .IF (@STRCMP(STR,'MAIN'))==0 ; does STR equal 'MAIN'?

@STRLEN(string)

Returns the length of string as an integer.

Example:

 SLEN .SET @STRLEN('string') ; SLEN = 6

@STRPOS(string1,string2[,start])

Returns the position of string2 in string1 as an integer. If string2 does not occur in string1, the last string
position + 1 is returned.

With start you can specify the starting position of the search. If you do not specify start, the search is
started from the beginning of string1.

Example:

 ID .set @STRPOS('TASKING','ASK') ; ID = 1
 ID .set @STRPOS('TASKING','BUG') ; ID = 7

@STRSUB(string,expression1,expression2)

Returns the substring from string as a string. expression1 is the starting position within string, and
expression2 is the length of the desired string. The assembler issues an error if either expression1 or
expression2 exceeds the length of string. Note that the first position in a string is position 0.

Example:

 .DEFINE ID "@STRSUB('TASKING',3,4)" ;ID = 'KING'

95

Assembly Language

@THUMB()

Returns 1 if the assembler runs in Thumb mode by default or 0 if the assembler runs in ARM mode
(default). This function reflects the setting of the assembler option --thumb. So, it does not depend on
the .CODE16, .CODE32, .ARM or .THUMB directive.

If you are in a .CODE32 part and you specified --thumb, @THUMB() still returns 1.

3.9. Assembler Directives

An assembler directive is simply a message to the assembler. Assembler directives are not translated
into machine instructions. There are three main groups of assembler directives.

• Assembler directives that tell the assembler how to go about translating instructions into machine code.
This is the most typical form of assembly directives. Typically they tell the assembler where to put a
program in memory, what space to allocate for variables, and allow you to initialize memory with data.
When the assembly source is assembled, a location counter in the assembler keeps track of where
the code and data is to go in memory.

The following directives fall under this group:

• Assembly control directives

• Symbol definition and section directives

• Data definition / Storage allocation directives

• High Level Language (HLL) directives

• Directives that are interpreted by the macro preprocessor.These directives tell the macro preprocessor
how to manipulate your assembly code before it is actually being assembled.You can use these
directives to write macros and to write conditional source code. Parts of the code that do not match the
condition, will not be assembled at all. Unlike other directives, preprocessor directives can start in the
first column.

• Some directives act as assembler options and most of them indeed do have an equivalent assembler
(command line) option.The advantage of using a directive is that with such a directive you can overrule
the assembler option for a particular part of the code. Directives of this kind are called controls. A typical
example is to tell the assembler with an option to generate a list file while with the directives .NOLIST
and .LIST you overrule this option for a part of the code that you do not want to appear in the list file.
Directives of this kind sometimes are called controls.

Each assembler directive has its own syntax. Some assembler directives can be preceded with a label.
If you do not precede an assembler directive with a label, you must use white space instead (spaces or
tabs).You can use assembler directives in the assembly code as pseudo instructions. The assembler
recognizes both uppercase and lowercase for directives.

96

TASKING VX-toolset for ARM User Guide

3.9.1. Overview of Assembler Directives

The following tables provide an overview of all assembler directives. For a detailed description of these
directives, refer to Section 3.9.2, Detailed Description of Assembler Directives.

Overview of assembly control directives

DescriptionDirective

Indicates the end of an assembly module.END

Include file.INCLUDE

Programmer generated message.MESSAGE

Overview of symbol definition and section directives

DescriptionDirective

Create an alias for a symbol.ALIAS

Set permanent value to a symbol.EQU

Import global section symbol.EXTERN

Declare global section symbol.GLOBAL

Start a new section.SECTION, .ENDSEC

Set temporary value to a symbol.SET

Set size of symbol in the ELF symbol table.SIZE

Specify name of original C source file.SOURCE

Set symbol type in the ELF symbol table.TYPE

Mark a symbol as 'weak'.WEAK

Overview of data definition / storage allocation directives

DescriptionDirective

Align location counter.ALIGN

Define block storage (initialized).BS, .BSB, .BSH, .BSW,
.BSD

Define byte.DB

Define half word (16 bits).DH

Define word (32 bits).DW

Define double-word (64 bits).DD

Define a 64-bit floating-point constant.DOUBLE

Define storage.DS, .DSB, .DSH, .DSW,
.DSD

Define a 32-bit floating-point constant.FLOAT

97

Assembly Language

DescriptionDirective

Move location counter forwards.OFFSET

Overview of macro preprocessor directives

DescriptionDirective

Define substitution string.DEFINE

Break out of current macro expansion.BREAK

Repeat sequence of source lines.REPEAT, .ENDREP

Repeat sequence of source lines n times.FOR, .ENDFOR

Conditional assembly directive.IF, .ELIF, .ELSE

End of conditional assembly directive.ENDIF

Define macro.MACRO, .ENDM

Undefine .DEFINE symbol or macro.UNDEF

Overview of listing control directives

DescriptionDirective

Print / do not print source lines to list file.LIST, .NOLIST

Set top of page/size of page.PAGE

Set program title in header of assembly list file.TITLE

Overview of HLL directives

DescriptionDirective

Pass call tree information and/or stack usage information.CALLS

Pass MISRA C information.MISRAC

Overview of ARM specific directives

DescriptionDirective

Treat instructions as Thumb or ARM instructions using pre-UAL syntax.CODE16, .CODE32

Treat instructions as Thumb or ARM instructions using UAL syntax.THUMB, .ARM

Assemble current literal pool immediately.LTORG

3.9.2. Detailed Description of Assembler Directives

98

TASKING VX-toolset for ARM User Guide

.ALIAS

Syntax

alias-name .ALIAS symbol-name

Description

With the .ALIAS directive you can create an alias of a symbol. The C compiler generates this directive
when you use the #pragma alias.

Example

exit .ALIAS _Exit

Related information

Pragma alias

99

Assembly Language

.ALIGN

Syntax

.ALIGN expression

Description

With the .ALIGN directive you instruct the assembler to align the location counter. By default the assembler
aligns on one byte.

When the assembler encounters the .ALIGN directive, it advances the location counter to an address
that is aligned as specified by expression and places the next instruction or directive on that address.
The alignment is in minimal addressable units (MAUs).The assembler fills the ‘gap’ with NOP instructions
for code sections or with zeros for data sections. If the location counter is already aligned on the specified
alignment, it remains unchanged. The location of absolute sections will not be changed.

The expression must be a power of two: 2, 4, 8, 16, ... If you specify another value, the assembler changes
the alignment to the next higher power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value occurring in that section.

A label is not allowed before this directive.

Example

 .SECTION .text
 .ALIGN 4 ; the assembler aligns
instruction ; this instruction at 4 MAUs and

 ; fills the 'gap' with NOP instructions.
 .ENDSEC

 .SECTION .text
 .ALIGN 3 ; WRONG: not a power of two, the
instruction ; assembler aligns this instruction at

 ; 4 MAUs and issues a warning.
 .ENDSEC

100

TASKING VX-toolset for ARM User Guide

.BREAK

Syntax

.BREAK

Description

The .BREAK directive causes immediate termination of a macro expansion, a .FOR loop expansion or a
.REPEAT loop expansion. In case of nested loops or macros, the .BREAK directive returns to the previous
level of expansion.

The .BREAK directive is, for example, useful in combination with the .IF directive to terminate expansion
when error conditions are detected.

The assembler does not allow a label with this directive.

Example

.FOR MYVAR IN 10 TO 20
 ... ;
 ... ; assembly source lines
 ... ;
 .IF MYVAR > 15
 .BREAK
 .ENDIF
.ENDFOR

101

Assembly Language

.BS, .BSB, .BSH, .BSW, .BSD

Syntax

[label] .BS count[,value]
[label] .BSB count[,value]
[label] .BSH count[,value]
[label] .BSW count[,value]
[label] .BSD count[,value]

Description

With the .BS directive the assembler reserves a block of memory. The reserved block of memory is
initialized to the value of value, or zero if omitted.

With count you specify the number of minimum addressable units (MAUs) you want to reserve, and how
much the location counter will advance. The expression must be an integer greater than zero and cannot
contain any forward references to address labels (labels that have not yet been defined).

With value you can specify a value to initialize the block with. Only the least significant MAU of value is
used. If you omit value, the default is zero.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

You cannot initialize of a block of memory in sections with prefix .bss. In those sections, the
assembler issues a warning and only reserves space, just as with .DS.

The .BSB, .BSH, .BSW and .BSD directives are variants of the .BS directive.The difference is the number
of bits that are reserved for the count argument:

Reserved bitsDirective

8.BSB

16.BSH

32.BSW

64.BSD

Example

The .BSB directive is for example useful to define and initialize an array that is only partially filled:

 .section .data
 .DB 84,101,115,116 ; initialize 4 bytes
 .BSB 96,0xFF ; reserve another 96 bytes, initialized with 0xFF
 .endsec

102

TASKING VX-toolset for ARM User Guide

Related Information

.DB (Define Memory)

.DS (Define Storage)

103

Assembly Language

.CALLS

Syntax

.CALLS ’caller’,’callee’

or

.CALLS ’caller’,’’,stack_usage[,...]

Description

The first syntax creates a call graph reference between caller and callee.The linker needs this information
to build a call graph. caller and callee are names of functions.

The second syntax specifies stack information. When callee is an empty name, this means we define the
stack usage of the function itself. The value specified is the stack usage in bytes at the time of the call
including the return address. A function can use multiple stacks.

This information is used by the linker to compute the used stack within the application. The information
is found in the generated linker map file within the Memory Usage.

This directive is generated by the C compiler. Use the .CALLS directive in hand-coded assembly when
the assembly code calls a C function. If you manually add .CALLS directives, make sure they connect
to the compiler generated .CALLS directives: the name of the caller must also be named as a callee in
another directive.

A label is not allowed before this directive.

Example

 .CALLS 'main','nfunc'

Indicates that the function main calls the function nfunc.

 .CALLS 'main','',8

The function main uses 8 bytes on the stack.

104

TASKING VX-toolset for ARM User Guide

.CODE16, .CODE32, .THUMB, .ARM

Syntax

.CODE16

.CODE32

.THUMB

.ARM

Description

With the .CODE16 directive you instruct the assembler to interpret subsequent instructions as 16-bit
Thumb instructions using the pre-UAL syntax until it encounters another mode directive or till it reaches
the end of the active section. This directive causes an implicit alignment of two bytes.

The .THUMB directive is the same as the .CODE16 directive except that the UAL syntax is expected.

With the .CODE32 directive you instruct the assembler to interpret subsequent instructions as 32-bit ARM
instructions using the pre-UAL syntax until it encounters another mode directive or till it reaches the end
of the active section. This directive causes an implicit alignment of four bytes. The assembler issues an
error message if .CODE32 is used in combination with option --cpu=ARMv7M.

The .ARM directive is the same as the .CODE32 directive except that the UAL syntax is expected.

These directives are useful when you have files that contain both ARM and Thumb instructions. The
directive must appear before the instruction change and between a .SECTION/.ENDSEC. The default
instruction set at the start of a section depends on the use of assembler option --thumb.

Example

 .section .text
 .code32
 ;following instructions are ARM instructions
 ;
 .endsec

Related Information

Assembler option --thumb (Treat input as Thumb instructions)

105

Assembly Language

.DB, .DH, .DW, .DD

Syntax

[label] .DB argument[,argument]...
[label] .DH argument[,argument]...
[label] .DW argument[,argument]...
[label] .DD argument[,argument]...

Description

With these directive you can define memory. With each directive the assembler allocates and initializes
one or more bytes of memory for each argument.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

An argument can be a single- or multiple-character string constant, an expression or empty. Multiple
arguments must be separated by commas with no intervening spaces. Empty arguments are stored as
0 (zero).

The following table shows the number of bits initialized.

BitsDirective

8.DB

16.DH

32.DW

64.DD

The value of the arguments must be in range with the size of the directive; floating-point numbers are not
allowed. If the evaluated argument is too large to be represented in a half word / word / double-word, the
assembler issues a warning and truncates the value.

String constants

Single-character strings are stored in a byte whose lower seven bits represent the ASCII value of the
character, for example:

.DB 'R' ; = 0x52

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like ‘\n’ are permitted.

.DB 'AB',,'C' ; = 0x41420043 (second argument is empty)

Example

When a string is supplied as argument of a directive that initializes multiple bytes, each character in the
string is stored in consecutive bytes whose lower seven bits represent the ASCII value of the character.
For example:

106

TASKING VX-toolset for ARM User Guide

HTBL: .DH 'ABC',,'D' ; results in 0x424100004400 , the 'C' is truncated
WTBL: .DW 'ABC' ; results in 0x43424100

Related Information

.BS (Block Storage)

.DS (Define Storage)

107

Assembly Language

.DEFINE

Syntax

.DEFINE symbol string

Description

With the .DEFINE directive you define a substitution string that you can use on all following source lines.
The assembler searches all succeeding lines for an occurrence of symbol, and replaces it with string. If
the symbol occurs in a double quoted string it is also replaced. Strings between single quotes are not
expanded.

This directive is useful for providing better documentation in the source program. A symbol can consist
of letters, digits and underscore characters (_), and the first character cannot be a digit.

Macros represent a special case. .DEFINE directive translations will be applied to the macro definition
as it is encountered. When the macro is expanded, any active .DEFINE directive translations will again
be applied.

The assembler issues a warning if you redefine an existing symbol.

A label is not allowed before this directive.

Example

Suppose you defined the symbol LEN with the substitution string "32":

 .DEFINE LEN "32"

Then you can use the symbol LEN for example as follows:

 .DS LEN
 .MESSAGE "The length is: LEN"

The assembler preprocessor replaces LEN with "32" and assembles the following lines:

 .DS 32
 .MESSAGE "The length is: 32"

Related Information

.UNDEF (Undefine a .DEFINE symbol)

.MACRO, .ENDM (Define a macro)

108

TASKING VX-toolset for ARM User Guide

.DS, .DSB, .DSH, .DSW, .DSD

Syntax

[label] .DS expression
[label] .DSB expression
[label] .DSH expression
[label] .DSW expression
[label] .DSD expression

Description

With the .DS directive the assembler reserves a block in memory. The reserved block of memory is not
initialized to any value.

With the expression you specify the number of MAUs (Minimal Addressable Units) that you want to
reserve, and how much the location counter will advance. The expression must evaluate to an integer
greater than zero and cannot contain any forward references (symbols that have not yet been defined).

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

The .DSB, .DSH, .DSW and .DSD directives are variants of the .DS directive.The difference is the number
of bits that are reserved per expression argument:

Reserved bitsDirective

8.DSB

16.DSH

32.DSW

64.DSD

Example

 .section .bss
RES: .DS 5+3 ; allocate 8 bytes
 .endsec

Related Information

.BS (Block Storage)

.DB (Define Memory)

109

Assembly Language

.END

Syntax

.END

Description

With the optional .END directive you tell the assembler that the end of the module is reached. If the
assembler finds assembly source lines beyond the .END directive, it ignores those lines and issues a
warning.

You cannot use the .END directive in a macro expansion.

The assembler does not allow a label with this directive.

Example

 .section .text
 ; source lines
 .endsec
 .END ; End of assembly module

110

TASKING VX-toolset for ARM User Guide

.EQU

Syntax

symbol .EQU expression

Description

With the .EQU directive you assign the value of expression to symbol permanently. The expression can
be relative or absolute. Once defined, you cannot redefine the symbol. With the .GLOBAL directive you
can declare the symbol global.

Example

To assign the value 0x400 permanently to the symbol MYSYMBOL:

MYSYMBOL .EQU 0x4000

You cannot redefine the symbol MYSYMBOL after this.

Related Information

.SET (Set temporary value to a symbol)

111

Assembly Language

.EXTERN

Syntax

.EXTERN symbol[,symbol]...

Description

With the .EXTERN directive you define an external symbol. It means that the specified symbol is referenced
in the current module, but is not defined within the current module. This symbol must either have been
defined outside of any module or declared as globally accessible within another module with the .GLOBAL
directive.

If you do not use the .EXTERN directive and the symbol is not defined within the current module, the
assembler issues a warning and inserts the .EXTERN directive.

A label is not allowed with this directive.

Example

 .EXTERN AA,CC,DD ;defined elsewhere

Related Information

.GLOBAL (Declare global section symbol)

112

TASKING VX-toolset for ARM User Guide

.FLOAT, .DOUBLE

Syntax

[label].FLOAT expression[,expression]...

[label].DOUBLE expression[,expression]...

Description

With the .FLOAT or .DOUBLE directive the assembler allocates and initializes a floating-point number
(32 bits) or a double (64 bits) in memory for each argument.

An expression can be:

• a floating-point expression

• NULL (indicated by two adjacent commas: ,,)

You can represent a constant as a signed whole number with fraction or with the 'e' format as used in the
C language. For example, 12.457 and +0.27E-13 are legal floating-point constants.

If the evaluated argument is too large to be represented in a single word / double-word, the assembler
issues an error and truncates the value.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

FLT: .FLOAT 12.457,+0.27E-13
DBL: .DOUBLE 12.457,+0.27E-13

Related Information

.DS (Define Storage)

113

Assembly Language

.FOR, .ENDFOR

Syntax

[label] .FOR var IN expression[,expression]...

.ENDFOR

or:

[label] .FOR var IN start TO end [STEP step]

.ENDFOR

Description

With the .FOR/.ENDFOR directive you can repeat a block of assembly source lines with an iterator. As
shown by the syntax, you can use the .FOR/.ENDFOR in two ways.

1. In the first method, the block of source statements is repeated as many times as the number of
arguments following IN. If you use the symbol var in the assembly lines between .FOR and .ENDFOR,
for each repetition the symbol var is substituted by a subsequent expression from the argument list. If
the argument is a null, then the block is repeated with each occurrence of the symbol var removed. If
an argument includes an embedded blank or other assembler-significant character, it must be enclosed
with single quotes.

2. In the second method, the block of source statements is repeated using the symbol var as a counter.
The counter passes all integer values from start to end with a step. If you do not specify step, the
counter is increased by one for every repetition.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

In the following example the block of source statements is repeated 4 times (there are four arguments).
With the .DB directive you allocate and initialize a byte of memory for each repetition of the loop (a word
for the .DW directive). Effectively, the preprocessor duplicates the .DB and .DW directives four times in
the assembly source.

 .FOR VAR1 IN 1,2+3,4,12
 .DB VAR1
 .DW (VAR1*VAR1)
 .ENDFOR

In the following example the loop is repeated 16 times. With the .DW directive you allocate and initialize
four bytes of memory for each repetition of the loop. Effectively, the preprocessor duplicates the .DW
directive 16 times in the assembled file, and substitutes VAR2 with the subsequent numbers.

 .FOR VAR2 IN 1 to 0x10
 .DW (VAR1*VAR1)
 .ENDFOR

114

TASKING VX-toolset for ARM User Guide

Related Information

.REPEAT,.ENDREP (Repeat sequence of source lines)

115

Assembly Language

.GLOBAL

Syntax

.GLOBAL symbol[,symbol]...

Description

All symbols or labels defined in the current section or module are local to the module by default.You can
change this default behavior with assembler option --symbol-scope=global.

With the .GLOBAL directive you declare one of more symbols as global. It means that the specified
symbols are defined within the current section or module, and that those definitions should be accessible
by all modules.

To access a symbol, defined with .GLOBAL, from another module, use the .EXTERN directive.

Only program labels and symbols defined with .EQU can be made global.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.

The assembler does not allow a label with this directive.

Example

LOOPA .EQU 1 ; definition of symbol LOOPA
 .GLOBAL LOOPA ; LOOPA will be globally
 ; accessible by other modules

Related Information

.EXTERN (Import global section symbol)

116

TASKING VX-toolset for ARM User Guide

.IF, .ELIF, .ELSE, .ENDIF

Syntax

.IF expression
 .
 .
 [.ELIF expression] ; the .ELIF directive is optional
 .
 .
 [.ELSE] ; the .ELSE directive is optional
 .
 .

.ENDIF

Description

With the .IF/.ENDIF directives you can create a part of conditional assembly code. The assembler
assembles only the code that matches a specified condition.

The expression must evaluate to an absolute integer and cannot contain forward references. If expression
evaluates to zero, the IF-condition is considered FALSE, any non-zero result of expression is considered
as TRUE.

If the optional .ELSE and/or .ELIF directives are not present, then the source statements following the
.IF directive and up to the next .ENDIF directive will be included as part of the source file being assembled
only if the expression had a non-zero result.

If the expression has a value of zero, the source file will be assembled as if those statements between
the .IF and the .ENDIF directives were never encountered.

If the .ELSE directive is present and expression has a nonzero result, then the statements between the
.IF and .ELSE directives will be assembled, and the statement between the .ELSE and .ENDIF directives
will be skipped. Alternatively, if expression has a value of zero, then the statements between the .IF and
.ELSE directives will be skipped, and the statements between the .ELSE and .ENDIF directives will be
assembled.

You can nest .IF directives to any level. The .ELSE and .ELIF directive always refer to the nearest
previous .IF directive.

A label is not allowed with this directive.

Example

Suppose you have an assemble source file with specific code for a test version, for a demo version and
for the final version. Within the assembly source you define this code conditionally as follows:

 .IF TEST
 ... ; code for the test version
 .ELIF DEMO
 ... ; code for the demo version
 .ELSE

117

Assembly Language

 ... ; code for the final version
 .ENDIF

Before assembling the file you can set the values of the symbols TEST and DEMO in the assembly source
before the .IF directive is reached. For example, to assemble the demo version:

TEST .SET 0
DEMO .SET 1

Related Information

Assembler option --define (Define preprocessor macro)

118

TASKING VX-toolset for ARM User Guide

.INCLUDE

Syntax

.INCLUDE "filename" | <filename>

Description

With the .INCLUDE directive you include another file at the exact location where the .INCLUDE occurs.
This happens before the resulting file is assembled. The .INCLUDE directive works similarly to the
#include statement in C. The source from the include file is assembled as if it followed the point of the
.INCLUDE directive. When the end of the included file is reached, assembly of the original file continues.

The string specifies the filename of the file to be included. The filename must be compatible with the
operating system (forward/backward slashes) and can contain a directory specification. If you omit a
filename extension, the assembler assumes the extension .asm.

If an absolute pathname is specified, the assembler searches for that file. If a relative path is specified
or just a filename, the order in which the assembler searches for include files is:

1. The current directory if you use the "filename" construction.

The current directory is not searched if you use the <filename> syntax.

2. The path that is specified with the assembler option --include-directory.

3. The path that is specified in the environment variable ASARMINC when the product was installed.

4. The default include directory in the installation directory.

The assembler does not allow a label with this directive.

The state of the assembler is not changed when an include file is processed. The lines of the include file
are inserted just as if they belong to the file where it is included.

Example

Suppose that your assembly source file test.src contains the following line:

 .INCLUDE "c:\myincludes\myinc.inc"

The assembler issues an error if it cannot find the file at the specified location.

 .INCLUDE "myinc.inc"

The assembler searches the file myinc.inc according to the rules described above.

Related Information

Assembler option --include-directory (Add directory to include file search path)

119

Assembly Language

.LIST, .NOLIST

Syntax

.NOLIST
 .
 . ; assembly source lines
 .
.LIST

Description

If you generate a list file with the assembler option --list-file, you can use the directives .LIST and
.NOLIST to specify which source lines the assembler must write to the list file. Without the assembler
option --list-file these directives have no effect. The directives take effect starting at the next line.

The assembler prints all source lines to the list file, until it encounters a .NOLIST directive.The assembler
does not print the .NOLIST directive and subsequent source lines. When the assembler encounters the
.LIST directive, it resumes printing to the list file.

It is possible to nest the .LIST/.NOLIST directives.

Example

Suppose you assemble the following assembly code with the assembler option --list-file:

 .SECTION .text
 ... ; source line 1
 .NOLIST
 ... ; source line 2
 .LIST
 ... ; source line 3
 .ENDSEC

The assembler generates a list file with the following lines:

 .SECTION .text
 ... ; source line 1
 ... ; source line 3
 .ENDSEC

Related Information

Assembler option --list-file (Generate list file)

120

TASKING VX-toolset for ARM User Guide

.LTORG

Syntax

.LTORG

Description

With this directive you force the assembler to generate a literal pool (data pocket) at the current location.

All literals from the LDR= pseudo-instructions (except those which could be translated to MOV or MVN
instructions) between the previous literal pool and the current location will be assembled in a new literal
pool using .DW directives.

By default, the assembler generates a literal pool at the end of a code section, i.e. the .ENDSEC directive
at the end of a code section causes an implicit .LTORG directive. However, the default literal pool may
be out-of-reach of one or more LDR= pseudo-instructions in the section. In that case the assembler issues
an error message and you should insert .LTORG directives at proper locations in the section.

Example

 .section .text
 ;
 LDR r1,=0x12345678
 ; code
 .ltorg ; literal pool contains the literal &0x12345678
 ;
 ;
 .endsec ; default literal pool is empty

Related Information

LDR= ARM generic instruction

LDR= Thumb generic instruction

121

Assembly Language

.MACRO, .ENDM

Syntax

macro_name .MACRO [argument[,argument]...]
 ...

macro_definition_statements
 ...

.ENDM

Description

With the .MACRO directive you define a macro. Macros provide a shorthand method for handling a repeated
pattern of code or group of instructions.You can define the pattern as a macro, and then call the macro
at the points in the program where the pattern would repeat.

The definition of a macro consists of three parts:

• Header, which assigns a name to the macro and defines the arguments (.MACRO directive).

• Body, which contains the code or instructions to be inserted when the macro is called.

• Terminator, which indicates the end of the macro definition (.ENDM directive).

The arguments are symbolic names that the macro processor replaces with the literal arguments when
the macro is expanded (called). Each formal argument must follow the same rules as symbol names: the
name can consist of letters, digits and underscore characters (_). The first character cannot be a digit.
Argument names cannot start with a percent sign (%).

Macro definitions can be nested but the nested macro will not be defined until the primary macro is
expanded.

You can use the following operators in macro definition statements:

DescriptionNameOperator

Concatenates a macro argument with adjacent
alphanumeric characters.

Macro argument concatenation\

Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

Return decimal value of symbol?

Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

Return hex value of symbol%

Allows the use of macro arguments as literal strings.Macro string delimiter“

Prevents name mangling on labels in macros.Macro local label override^

Example

The macro definition:

macro_a .MACRO arg1,arg2 ;header
 .db arg1 ;body

122

TASKING VX-toolset for ARM User Guide

 .dw (arg1*arg2)
 .ENDM ;terminator

The macro call:

 .section far
macro_a 2,3
 .endsec

The macro expands as follows:

 .db 2
 .dw (2*3)

Related Information

Section 3.10, Macro Operations

.DEFINE (Define a substitution string)

123

Assembly Language

.MESSAGE

Syntax

.MESSAGE type [{str|exp}[,{str|exp}]...]

Description

With the .MESSAGE directive you tell the assembler to print a message to stderr during the assembling
process.

With type you can specify the following types of messages:

Information message. Error and warning counts are not affected and the assembler continues
the assembling process.

I

Warning message. Increments the warning count and the assembler continues the assembling
process.

W

Error message. Increments the error count and the assembler continues the assembling process.E

Fatal error message.The assembler immediately aborts the assembling process and generates
no object file or list file.

F

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated message. If you use expressions,
the assembler outputs the result. The assembler outputs a space between each argument.

The error and warning counts will not be affected. The .MESSAGE directive is for example useful in
combination with conditional assembly to indicate which part is assembled. The assembling process
proceeds normally after the message has been printed.

This directive has no effect on the exit code of the assembler.

A label is not allowed with this directive.

Example

 .MESSAGE I 'Generating tables'

ID .EQU 4
 .MESSAGE E 'The value of ID is',ID

 .DEFINE LONG "SHORT"
 .MESSAGE I 'This is a LONG string'
 .MESSAGE I "This is a LONG string"

Within single quotes, the defined symbol LONG is not expanded. Within double quotes the symbol LONG
is expanded so the actual message is printed as:

This is a LONG string
This is a SHORT string

124

TASKING VX-toolset for ARM User Guide

.MISRAC

Syntax

.MISRAC string

Description

The C compiler can generate the .MISRAC directive to pass the compiler’s MISRA C settings to the object
file. The linker performs checks on these settings and can generate a report. It is not recommended to
use this directive in hand-coded assembly.

Example

 .MISRAC 'MISRA-C:2004,64,e2,0b,e,e11,27,6,ef83,e1,ef,66,cb75,af1,eff,e7,
 e7f,8d,63,87ff7,6ff3,4'

Related Information

Section 4.6.2, C Code Checking: MISRA C

C compiler option --misrac

125

Assembly Language

.OFFSET

Syntax

.OFFSET expression

Description

With the .OFFSET directive you tell the assembler to give the location counter a new offset relative to the
start of the section.

When the assembler encounters the .OFFSET directive, it moves the location counter forwards to the
specified address, relative to the start of the section, and places the next instruction on that address. If
you specify an address equal to or lower than the current position of the location counter, the assembler
issues an error.

A label is not allowed with this directive.

Example

 .SECTION .text
 nop
 nop
 nop
 .OFFSET 0x20 ; the assembler places
 nop ; this instruction at address 0x20
 ; relative to the start of the section.
 .ENDSEC

 .SECTION .text
 nop
 nop
 nop
 .OFFSET 0x02 ; WRONG: the current position of the
 nop ; location counter is 0x0C.
 .ENDSEC

Related Information

.SECTION (Start a new section)

126

TASKING VX-toolset for ARM User Guide

.PAGE

Syntax

.PAGE [pagewidth[,pagelength[,blankleft[,blanktop[,blankbtm]]]]

Default

.PAGE 132,72,0,0,0

Description

If you generate a list file with the assembler option --list-file, you can use the directive .PAGE to format
the generated list file.

The arguments may be any positive absolute integer expression, and must be separated by commas.

Number of columns per line. The default is 132, the minimum is 40.pagewidth

Total number of lines per page. The default is 72, the minimum is 10.
As a special case, a page length of 0 turns off page breaks.

pagelength

Number of blank columns at the left of the page. The default is 0, the
minimum is 0, and the maximum must maintain the relationship: blankleft
< pagewidth.

blankleft

Number of blank lines at the top of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) ≤ (pagelength - 10).

blanktop

Number of blank lines at the bottom of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) ≤ (pagelength - 10).

blankbtm

If you use the .PAGE directive without arguments, it causes a 'formfeed': the next source line is printed
on the next page in the list file. The .PAGE directive itself is not printed.

You can omit an argument by using two adjacent commas. If the remaining arguments after an argument
are all empty, you can omit them.

Example

 .PAGE ; formfeed, the next source line is printed
 ; on the next page in the list file.

 .PAGE 96 ; set page width to 96. Note that you can
 ; omit the last four arguments.

 .PAGE ,,,3,3 ; use 3 line top/bottom margins.

Related Information

.TITLE (Set program title in header of assembler list file)

127

Assembly Language

Assembler option --list-file

128

TASKING VX-toolset for ARM User Guide

.REPEAT, .ENDREP

Syntax

[label] .REPEAT expression

.ENDREP

Description

With the .REPEAT/.ENDREP directive you can repeat a sequence of assembly source lines.With expression
you specify the number of times the loop is repeated. If the expression evaluates to a number less than
or equal to 0, the sequence of lines will not be included in the assembler output. The expression result
must be an absolute integer and cannot contain any forward references (symbols that have not already
been defined). The .REPEAT directive may be nested to any level.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

In this example the loop is repeated 3 times. Effectively, the preprocessor repeats the source lines (.DB
10) three times, then the assembler assembles the result:

 .REPEAT 3
 .DB 10 ; assembly source lines
 .ENDFOR

Related Information

.FOR,.ENDFOR (Repeat sequence of source lines n times)

129

Assembly Language

.SECTION, .ENDSEC

Syntax

.SECTION name[,at(address)]

.ENDSEC

Description

With the .SECTION directive you define a new section. Each time you use the .SECTION directive, a
new section is created. It is possible to create multiple sections with exactly the same name.

If you define a section, you must always specify the section name. The names have a special meaning
to the locating process and have to start with a predefined name, optionally extended by a dot '.' and a
user defined name. The predefined section name also determines the type of the section (code, data or
debug). Optionally, you can specify the at() attribute to locate a section at a specific address.

You can use the following predefined section names:

Section typeDescriptionSection name

codeCode sections.text

dataInitialized data.data

dataUninitialized data (cleared).bss

dataROM data (constants).rodata

debugDebug sections.debug

Sections of a specified type are located by the linker in a memory space. The space names are defined
in a so-called 'linker script file' (files with the extension .lsl) delivered with the product in the directory
installation-dir\include.lsl.

Example

 .SECTION .data ; Declare a .data section
 ;;
 .ENDSEC

 .SECTION .data.abs, at(0x0) ; Declare a .data.abs section at
 ; an absolute address
 ;;
 .ENDSEC

Related Information

.OFFSET (Move location counter forwards)

130

TASKING VX-toolset for ARM User Guide

.SET

Syntax

symbol .SET expression

.SET symbol expression

Description

With the .SET directive you assign the value of expression to symbol temporarily. If a symbol was defined
with the .SET directive, you can redefine that symbol in another part of the assembly source, using the
.SET directive again. Symbols that you define with the .SET directive are always local: you cannot define
the symbol global with the .GLOBAL directive.

The .SET directive is useful in establishing temporary or reusable counters within macros. expression
must be absolute and cannot include a symbol that is not yet defined (no forward references are allowed).

Example

COUNT .SET 0 ; Initialize count. Later on you can
 ; assign other values to the symbol

Related Information

.EQU (Set permanent value to a symbol)

131

Assembly Language

.SIZE

Syntax

.SIZE symbol,expression

Description

With the .SIZE directive you set the size of the specified symbol to the value represented by expression.

The .SIZE directive may occur anywhere in the source file unless the specified symbol is a function. In
this case, the .SIZE directive must occur after the function has been defined.

Example

 .section .text
 .global main
 .arm
 .align 4
; Function main
main: .type func
 ;
 .SIZE main,$-main
 .endsec

Related Information

.TYPE (Set symbol type)

132

TASKING VX-toolset for ARM User Guide

.SOURCE

Syntax

.SOURCE string

Description

With the .SOURCE directive you specify the name of the original C source module. This directive is
generated by the C compiler.You do not need this directive in hand-written assembly.

Example

 .SOURCE "main.c"

133

Assembly Language

.TITLE

Syntax

.TITLE ["string"]

Default

.TITLE ""

Description

If you generate a list file with the assembler option --list-file, you can use the .TITLE directive to specify
the program title which is printed at the top of each page in the assembler list file.

If you use the .TITLE directive without the argument, the title becomes empty. This is also the default.
The specified title is valid until the assembler encounters a new .TITLE directive.

The .TITLE directive itself will not be printed in the source listing.

If the page width is too small for the title to fit in the header, it will be truncated.

Example

 .TITLE "This is the title"

Related Information

.PAGE (Format the assembler list file)

Assembler option --list-file

134

TASKING VX-toolset for ARM User Guide

.TYPE

Syntax

symbol .TYPE typeid

Description

With the .TYPE directive you set a symbol's type to the specified value in the ELF symbol table. Valid
symbol types are:

The symbol is associated with a function or other executable code.FUNC

The symbol is associated with an object such as a variable, an array, or a structure.OBJECT

The symbol name represents the filename of the compilation unit.FILE

Labels in code sections have the default type FUNC. Labels in data sections have the default type OBJECT.

Example

Afunc: .type func

Related Information

.SIZE (Set symbol size)

135

Assembly Language

.UNDEF

Syntax

.UNDEF symbol

Description

With the .UNDEF directive you can undefine a substitution string that was previously defined with the
.DEFINE directive. The substitution string associated with symbol is released, and symbol will no longer
represent a valid .DEFINE substitution or macro.

The assembler issues a warning if you redefine an existing symbol.

The assembler does not allow a label with this directive.

Example

The following example undefines the LEN substitution string that was previously defined with the .DEFINE
directive:

 .UNDEF LEN

Related Information

.DEFINE (Define a substitution string)

.MACRO,.ENDM (Define a macro)

136

TASKING VX-toolset for ARM User Guide

.WEAK

Syntax

.WEAK symbol[,symbol]...

Description

With the .WEAK directive you mark one or more symbols as 'weak'. The symbol can be defined in the
same module with the .GLOBAL directive or the .EXTERN directive. If the symbol does not already exist,
it will be created.

A 'weak' external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference.

You can overrule a weak definition with a .GLOBAL definition in another module. The linker will not
complain about the duplicate definition, and ignore the weak definition.

Only program labels and symbols defined with .EQU can be made weak.

Example

LOOPA .EQU 1 ; definition of symbol LOOPA
 .GLOBAL LOOPA ; LOOPA will be globally
 ; accessible by other modules
 .WEAK LOOPA ; mark symbol LOOPA as weak

Related Information

.EXTERN (Import global section symbol)

.GLOBAL (Declare global section symbol)

137

Assembly Language

3.10. Macro Operations

Macros provide a shorthand method for inserting a repeated pattern of code or group of instructions.You
can define the pattern as a macro, and then call the macro at the points in the program where the pattern
would repeat.

Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly.

When a macro is called, the assembler executes the macro and replaces the call by the resulting in-line
source statements. 'In-line' means that all replacements act as if they are on the same line as the macro
call. The generated statements may contain substitutable arguments. The statements produced by a
macro can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions as any
other statements.

Macros can be nested. The assembler processes nested macros when the outer macro is expanded.

3.10.1. Defining a Macro

The first step in using a macro is to define it.

The definition of a macro consists of three parts:

• Header, which assigns a name to the macro and defines the arguments (.MACRO directive).

• Body, which contains the code or instructions to be inserted when the macro is called.

• Terminator, which indicates the end of the macro definition (.ENDM directive).

A macro definition takes the following form:

macro_name .MACRO [argument[,argument]...]
 ...

macro_definition_statements
 ...

.ENDM

For more information on the definition see the description of the .MACRO directive.

3.10.2. Calling a Macro

To invoke a macro, construct a source statement with the following format:

[label] macro_name [argument[,argument]...] [; comment]

where,

An optional label that corresponds to the value of the location counter
at the start of the macro expansion.

label

The name of the macro. This may not start in the first column.macro_name

138

TASKING VX-toolset for ARM User Guide

One or more optional, substitutable arguments. Multiple arguments
must be separated by commas.

argument

An optional comment.comment

The following applies to macro arguments:

• Each argument must correspond one-to-one with the formal arguments of the macro definition. If the
macro call does not contain the same number of arguments as the macro definition, the assembler
issues a warning.

• If an argument has an embedded comma or space, you must surround the argument by single quotes
(').

• You can declare a macro call argument as null in three ways:

• enter delimiting commas in succession with no intervening spaces

macroname ARG1,,ARG3 ; the second argument is a null argument

• terminate the argument list with a comma, the arguments that normally would follow, are now
considered null

macroname ARG1, ; the second and all following arguments are null

• declare the argument as a null string

• No character is substituted in the generated statements that reference a null argument.

3.10.3. Using Operators for Macro Arguments

The assembler recognizes certain text operators within macro definitions which allow text substitution of
arguments during macro expansion.You can use these operators for text concatenation, numeric
conversion, and string handling.

DescriptionNameOperator

Concatenates a macro argument with adjacent
alphanumeric characters.

Macro argument concatenation\

Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

Return decimal value of symbol?

Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

Return hex value of symbol%

Allows the use of macro arguments as literal strings.Macro string delimiter“

Prevents name mangling on labels in macros.Macro local label override^

139

Assembly Language

Example: Argument Concatenation Operator - \

Consider the following macro definition:

MAC_A .MACRO reg,val
 sub r\reg,r\reg,#val
 .ENDM

The macro is called as follows:

MAC_A 2,1

The macro expands as follows:

 sub r2,r2,#1

The macro preprocessor substitutes the character '2' for the argument reg, and the character '1' for the
argument val. The concatenation operator (\) indicates to the macro preprocessor that the substitution
characters for the arguments are to be concatenated with the characters 'r'.

Without the '\' operator the macro would expand as:

 sub rreg,rreg,#1

which results in an assembler error (invalid operand).

Example: Decimal Value Operator - ?

Instead of substituting the formal arguments with the actual macro call arguments, you can also use the
value of the macro call arguments.

Consider the following source code that calls the macro MAC_A after the argument AVAL has been set to
1.

AVAL .SET 1
 MAC_A 2,AVAL

If you want to replace the argument val with the value of AVAL rather than with the literal string 'AVAL',
you can use the ? operator and modify the macro as follows:

MAC_A .MACRO reg,val
 sub r\reg,r\reg,#?val
 .ENDM

Example: Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator (?) except that it returns the
hexadecimal value of a symbol.

140

TASKING VX-toolset for ARM User Guide

Consider the following macro definition:

GEN_LAB .MACRO LAB,VAL,STMT
LAB\%VAL STMT
 .ENDM

The macro is called after NUM has been set to 10:

NUM .SET 10
 GEN_LAB HEX,NUM,NOP

The macro expands as follows:

HEXA NOP

The %VAL argument is replaced by the character 'A' which represents the hexadecimal value 10 of the
argument VAL.

Example: Argument String Operator - "

To generate a literal string, enclosed by single quotes ('), you must use the argument string operator (")
in the macro definition.

Consider the following macro definition:

STR_MAC .MACRO STRING
 .DB "STRING"
 .ENDM

The macro is called as follows:

 STR_MAC ABCD

The macro expands as follows:

 .DB 'ABCD'

Within double quotes .DEFINE directive definitions can be expanded.Take care when using constructions
with single quotes and double quotes to avoid inappropriate expansions. Since .DEFINE expansion
occurs before macro substitution, any .DEFINE symbols are replaced first within a macro argument string:

 .DEFINE LONG 'short'
STR_MAC .MACRO STRING
 .MESSAGE I 'This is a LONG STRING'
 .MESSAGE I "This is a LONG STRING"
 .ENDM

If the macro is called as follows:

 STR_MAC sentence

141

Assembly Language

it expands as:

 .MESSAGE I 'This is a LONG STRING'
 .MESSAGE I 'This is a short sentence'

Macro Local Label Override Operator - ^

If you use labels in macros, the assembler normally generates another unique name for the labels (such
as LOCAL__M_L000001).

The macro ^-operator prevents name mangling on macro local labels.

Consider the following macro definition:

INIT .MACRO addr
LOCAL: ldr r0,^addr
 .ENDM

The macro is called as follows:

LOCAL:
 INIT LOCAL

The macro expands as:

LOCAL__M_L000001: ldr r0,LOCAL

If you would not have used the ̂ operator, the macro preprocessor would choose another name for LOCAL
because the label already exists. The macro would expand like:

LOCAL__M_L000001: ldr r0,LOCAL__M_L000001

3.11. Generic Instructions

The assembler supports so-called 'generic instructions'. Generic instructions are pseudo instructions (no
instructions from the instruction set). Depending on the situation in which a generic instruction is used,
the assembler replaces the generic instruction with appropriate real assembly instruction(s).

3.11.1. ARM Generic Instructions

The ARM assembler recognizes the following generic instructions in ARM mode:

ADR, ADRL, ADRLL ARM generics

Load a PC-relative address into a register. The address is specified as a target label. The assembler
generates one (ADR), two (ADRL) or three (ADRLL) generic DPR instruction (called ADR) and one, two
or three PC-relative relocation types for the target label.The linker evaluates the relocation types (calculate
the PC-relative offset) and generates one, two or three add or sub instructions each with an 8-bit immediate
operand plus a 4-bit rotation. If the offset cannot be encoded the linker generates an error message.

142

TASKING VX-toolset for ARM User Guide

ReplacementInstruction

ADRcond Rd, PC, @ALUPCREL(label,0,1)ADRcond Rd,label

ADRcond Rd, PC, @ALUPCREL(label,0,0)
ADRcond Rd, Rd, @ALUPCREL(label,1,1)

ADRLcond Rd,label

ADRcond Rd, PC, @ALUPCREL(label,0,0)
ADRcond Rd, Rd, @ALUPCREL(label,1,0)
ADRcond Rd, Rd, @ALUPCREL(label,2,1)

ADRLLcond Rd,label

3.11.2. ARM and Thumb-2 32-bit Generic Instructions

LDR= ARM and Thumb-2 generic

Load an address or a 32-bit constant value into a register. If the constant or its bitwise negation can be
encoded, then the assembler will generate a MOV or a MVN instruction. Otherwise the assembler places
the constant or the address in a literal pool and generates a PC-relative LDR instruction that loads the
value from the literal pool.

RemarksReplacementInstruction

If expr can be encodedMOVcond Rd, #exprLDRcond
Rd,=expr If ~expr can be encodedMVNcond Rd,#@LSW(~(expr))

If expr is external or PC-relative, or cannot
be encoded

 LDRcond Rd,ltpool
 ;; code
ltpool:
 .DW expr

The PC-relative offset from the LDR instruction to the value in the literal pool must be positive and less
than 4 kB. By default the assembler will place a literal pool at the end of each code section. If the default
literal pool is out-of-range you will have to ensure that there is another literal pool within range by means
of the .LTORG directive.

VLDR= ARM and Thumb-2 generic

Load a 32-bit or 64-bit floating-point constant value into a register. The assembler places the constant in
a literal pool and generates a PC-relative VLDR instruction that loads the value from the literal pool.

ReplacementInstruction

 VLDRcond Sd,ltpool
 ;; code
ltpool:
 .FLOAT expr

VLDRcond Sd,=expr

 VLDRcond Dd,ltpool
 ;; code
ltpool:
 .DOUBLE expr

VLDRcond Dd,=expr

143

Assembly Language

MOV32 ARM and Thumb-2 generic

Load an address or a 32-bit constant value into a register.

RemarksReplacementInstruction

If expr is internal and absoluteMOVWcond Rd, #@LSH(expr)
MOVTcond Rd, #@MSH(expr)

MOV32cond Rd,=expr

If expr is external or relocatableMOVWcond Rd, #expr
MOVTcond Rd, #expr

ARM and Thumb-2 generic DPR inversions for immediate operands

For data processing instructions (DPR) which operate on an immediate operand, the operand value must
be encoded as an 8-bit value plus a 4-bit even rotation value. If a value does not fit in such an encoding,
it could be possible that the negated value (-value) or the bitwise negated value (~value) does fit in such
an encoding. In that case the assembler will replcace the DPR instruction by its inverse DPR instruction
operating on the negated value.

Replacement (if #-imm or #~imm can be encoded)Instruction

SUBcond Rd,Rn,#-(imm32)ADDcond Rd,Rn,#imm32

SUBcondS Rd,Rn,#-(imm32)ADDcondS Rd,Rn,#imm32

SUBWcond Rd,Rn,#-(imm12)ADDWcond Rd,Rn,#imm12

ADDcond Rd,Rn,#-(imm32)SUBcond Rd,Rn,#imm32

ADDcondS Rd,Rn,#-(imm32)SUBcondS Rd,Rn,#imm32

ADDWcond Rd,Rn,#-(imm12)SUBWcond Rd,Rn,#imm12

SBCcond Rd,Rn,#-(imm32)ADCcond Rd,Rn,#imm32

SBCcondS Rd,Rn,#-(imm32)ADCcondS Rd,Rn,#imm32

ADCcond Rd,Rn,#-(imm32)SBCcond Rd,Rn,#imm32

ADCcondS Rd,Rn,#-(imm32)SBCcondS Rd,Rn,#imm32

BICcond Rd,Rn,#@LSW(~(imm32))ANDcond Rd,Rn,#imm32

BICcondS Rd,Rn,#@LSW(~(imm32))ANDcondS Rd,Rn,#imm32

ANDcond Rd,Rn,#@LSW(~(imm32))BICcond Rd,Rn,#imm32

ANDcondS Rd,Rn,#@LSW(~(imm32))BICcondS Rd,Rn,#imm32

CMPcond Rn,#-(imm)CMNcond Rn,#imm32

CMNcond Rn,#-(imm)CMPcond Rn,#imm32

MVNcond Rd,#@LSW(~(imm32))MOVcond Rd,#imm32

MVNcondS Rd,#@LSW(~(imm32))MOVcondS Rd,#imm32

MOVcond Rd,#@LSW(~(imm32))MVNcond Rd,#imm32

MOVcondS Rd,#@LSW(~(imm32))MVNcondS Rd,#imm32

144

TASKING VX-toolset for ARM User Guide

Note that the built-in function @LSW() must be used on the bitwise negated immediate value because
all values are interpreted by the assembler as 64-bit signed values. The @LSW() function returns the
lowest 32 bits.

3.11.3.Thumb 16-bit Generic Instructions

The ARM assembler recognizes the following generic instructions in Thumb mode:

ADR Thumb 16-bit generic

Load a PC-relative address into a low register. The address is specified as a target label. The PC-relative
offset must be less than 1 kB. The target label must be defined locally, must be word-aligned and must
be in the same code section as the instruction.The assembler will not emit a relocation type for the target
label. If the offset is out-of-range or the target label is external or in another section, then the assembler
generates an error message.

LDR= Thumb 16-bit generic

Load an address or a 32-bit constant value into a low register. If the constant is in the range [0,255] the
assembler will generate a MOV instruction. Otherwise the assembler places the constant or the address
in a literal pool and generates a PC-relative LDR instruction that loads the value from the literal pool.

RemarksReplacementInstruction

If expr is in rangeMOV Rd, #exprLDR Rd,=expr

If expr is external or PC-relative, or not in
range

 LDR Rd,ltpool
 ;; code
ltpool:
 .DW expr

The PC-relative offset from the LDR instruction to the value in the literal pool must be positive and less
than 1 kB. By default the assembler will place a literal pool at the end of each code section. If the default
literal pool is out-of-range you will have to ensure that there is another literal pool within range by means
of the .LTORG directive.

Bcond inversion Thumb 16-bit generic

The PC-relative conditional branch instruction has a range of (-256,+255) bytes.The unconditional version
has a range of (-2048,+2047) bytes. If the conditional branch target is out-of-range, the assembler will
rewrite the conditional branch instruction with an inversed conditional branch and an unconditional branch.

RemarksReplacementInstruction

If target label out-of-range Binv_cond ~1
 B label
~1:

Bcond label

145

Assembly Language

ADD, SUB inversions Thumb 16-bit generic

For the following six instructions the assembler accepts negative values for the immediate operand. If a
negative value is specified, the assembler inverts the instruction from ADD to SUB or vice versa. For
example: ADD R1,#-4 will be rewritten as SUB R1,#4.

ReplacementInstruction

SUB Rd,Rn,#-(imm)ADD Rd,Rn,#imm

SUB Rd,#-(imm)ADD Rd,#imm

SUB SP,#-(imm)ADD SP,#imm

ADD Rd,Rn,#-(imm)SUB Rd,Rn,#imm

ADD Rd,#-(imm)SUB Rd,#imm

ADD SP,#-(imm)SUB SP,#imm

146

TASKING VX-toolset for ARM User Guide

Chapter 4. Using the C Compiler
This chapter describes the compilation process and explains how to call the C compiler.

The TASKING VX-toolset for ARM under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire embedded project, from C source till the final
ELF/DWARF object file which serves as input for the debugger.

Although in Eclipse you cannot run the C compiler separately from the other tools, this section discusses
the options that you can specify for the C compiler.

On the command line it is possible to call the C compiler separately from the other tools. However, it is
recommended to use the control program for command line invocations of the toolset (see Section 9.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line.

The C compiler takes the following files for input and output:

This chapter first describes the compilation process which consists of a frontend and a backend part.
Next it is described how to call the C compiler and how to use its options. An extensive list of all options
and their descriptions is included in Section 11.2, C Compiler Options. Finally, a few important basic tasks
are described, such as including the C startup code and performing various optimizations.

4.1. Compilation Process

During the compilation of a C program, the C compiler runs through a number of phases that are divided
into two parts: frontend and backend.

The backend part is not called for each C statement, but starts after a complete C module or set of modules
has been processed by the frontend (in memory). This allows better optimization.

The C compiler requires only one pass over the input file which results in relative fast compilation.

Frontend phases

1. The preprocessor phase:

The preprocessor includes files and substitutes macros by C source. It uses only string manipulations
on the C source. The syntax for the preprocessor is independent of the C syntax but is also described
in the ISO/IEC 9899:1999(E) standard.

147

2. The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

3. The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs a syntactic and semantic
analysis of the program, and generates an intermediate representation of the program. This code is
called MIL (Medium level Intermediate Language).

4. The frontend optimization phase:

Target processor independent optimizations are performed by transforming the intermediate code.

Backend phases

1. Instruction selector phase:

This phase reads the MIL input and translates it into Low level Intermediate Language (LIL). The LIL
objects correspond to a processor instruction, with an opcode, operands and information used within
the C compiler.

2. Peephole optimizer/instruction scheduler/software pipelining phase:

This phase replaces instruction sequences by equivalent but faster and/or shorter sequences, rearranges
instructions and deletes unnecessary instructions.

3. Register allocator phase:

This phase chooses a physical register to use for each virtual register.

4. The backend optimization phase:

Performs target processor independent and dependent optimizations which operate on the Low level
Intermediate Language.

5. The code generation/formatter phase:

This phase reads through the LIL operations to generate assembly language output.

4.2. Calling the C Compiler

The TASKING VX-toolset for ARM under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire project. After you have built your project, the
output files are available in a subdirectory of your project directory, depending on the active configuration
you have set in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

148

TASKING VX-toolset for ARM User Guide

• Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.

1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

• Build Individual Project ().

To build individual projects incrementally, select Project » Build project.

• Rebuild Project (). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...

2. Enable the option Start a build immediately and click OK.

• Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behaviour tab of the C/C++ Build page of the Project » Properties for dialog.

See also Chapter 12, Influencing the Build Time.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file.This is a regular
include file which enables you to use virtual registers that are located in memory.

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Processor.

In the right pane the Processor page appears.

3. From the Processor selection list, select a processor.

To access the C/C++ compiler options

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

149

Using the C Compiler

3. On the Tool Settings tab, select C/C++ Compiler.

4. Select the sub-entries and set the options in the various pages.

Note that the C/C++ compiler options are used to create an object file from a C or C++ file. The
options you enter in the Assembler page are not only used for hand-coded assembly files, but
also for intermediate assembly files.

You can find a detailed description of all C compiler options in Section 11.2, C Compiler Options.

Invocation syntax on the command line (Windows Command Prompt):

carm [[option]... [file]...]...

4.3. How the Compiler Searches Include Files

When you use include files (with the #include statement), you can specify their location in several ways.
The compiler searches the specified locations in the following order:

1. If the #include statement contains an absolute pathname, the compiler looks for this file. If no path
or a relative path is specified, the compiler looks in the same directory as the source file. This is only
possible for include files that are enclosed in "".

This first step is not done for include files enclosed in <>.

2. When the compiler did not find the include file, it looks in the directories that are specified in the C/C++
Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-I)). If the option Add CMSIS include
paths is enabled, this path is search first.

3. When the compiler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable CARMINC.

4. When the compiler still did not find the include file, it finally tries the default include directory relative
to the installation directory (unless you specified option --no-stdinc).

Example

Suppose that the C source file test.c contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the compiler as follows:

carm -Imyinclude test.c

150

TASKING VX-toolset for ARM User Guide

First the compiler looks for the file stdio.h in the directory myinclude relative to the current directory.
If it was not found, the compiler searches in the environment variable CARMINC and then in the default
include directory.

The compiler now looks for the file myinc.h, in the directory where test.c is located. If the file is not
there the compiler searches in the directory myinclude. If it was still not found, the compiler searches
in the environment variable CARMINC and then in the default include directory.

4.4. Compiling for Debugging

Compiling your files is the first step to get your application ready to run on a target. However, during
development of your application you first may want to debug your application.

To create an object file that can be used for debugging, you must instruct the compiler to include symbolic
debug information in the source file.

To include symbolic debug information

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C/C++ Compiler » Debugging.

4. Select Default in the Generate symbolic debug information box.

Debug and optimizations

Due to different compiler optimizations, it might be possible that certain debug information is optimized
away. Therefore, if you encounter strange behavior during debugging it might be necessary to reduce
the optimization level, so that the source code is still suitable for debugging. For more information on
optimization see Section 4.5, Compiler Optimizations.

Invocation syntax on the command line (Windows Command Prompt)

The invocation syntax on the command line is:

carm -g file.c

4.5. Compiler Optimizations

The compiler has a number of optimizations which you can enable or disable.

1. From the Project menu, select Properties for

151

Using the C Compiler

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C/C++ Compiler » Optimization.

4. Select an optimization level in the Optimization level box.

or:

In the Optimization level box select Custom optimization and enable the optimizations you want
on the Custom optimization page.

Optimization levels

The TASKING C compiler offers four optimization levels and a custom level, at each level a specific set
of optimizations is enabled.

• Level 0 - No optimization: No optimizations are performed. The compiler tries to achieve a 1-to-1
resemblance between source code and produced code. Expressions are evaluated in the order written
in the source code, associative and commutative properties are not used.

• Level 1 - Optimize: Enables optimizations that do not affect the debug-ability of the source code. Use
this level when you encounter problems during debugging your source code with optimization level 2.

• Level 2 - Optimize more (default): Enables more optimizations to reduce the memory footprint and/or
execution time. This is the default optimization level.

• Level 3 - Optimize most: This is the highest optimization level. Use this level when your
program/hardware has become too slow to meet your real-time requirements.

• Custom optimization: you can enable/disable specific optimizations on the Custom optimization page.

Optimization pragmas

If you specify a certain optimization, all code in the module is subject to that optimization. Within the C
source file you can overrule the C compiler options for optimizations with #pragma optimize flag
and #pragma endoptimize. Nesting is allowed:

#pragma optimize e /* Enable expression
... simplification */
... C source ...
...
#pragma optimize c /* Enable common expression
... elimination. Expression
... C source ... simplification still enabled */
...
#pragma endoptimize /* Disable common expression
... elimination */

152

TASKING VX-toolset for ARM User Guide

#pragma endoptimize /* Disable expression
... simplification */

The compiler optimizes the code between the pragma pair as specified.

You can enable or disable the optimizations described in the following subsection. The command line
option for each optimization is given in brackets.

4.5.1. Generic Optimizations (frontend)

Common subexpression elimination (CSE) (option -Oc/-OC)

The compiler detects repeated use of the same (sub-)expression. Such a "common" expression is replaced
by a variable that is initialized with the value of the expression to avoid recomputation. This method is
called common subexpression elimination (CSE).

Expression simplification (option -Oe/-OE)

Multiplication by 0 or 1 and additions or subtractions of 0 are removed. Such useless expressions may
be introduced by macros or by the compiler itself (for example, array subscripting).

Constant propagation (option -Op/-OP)

A variable with a known value is replaced by that value.

Automatic function inlining (option -Oi/-OI)

Small functions that are not too often called, are inlined. This reduces execution time at the cost of code
size.

Control flow simplification (option -Of/-OF)

A number of techniques to simplify the flow of the program by removing unnecessary code and reducing
the number of jumps. For example:

• Switch optimization: A number of optimizations of a switch statement are performed, such as removing
redundant case labels or even removing an entire switch.

• Jump chaining: A (conditional) jump to a label which is immediately followed by an unconditional jump
may be replaced by a jump to the destination label of the second jump. This optimization speeds up
execution.

• Conditional jump reversal: A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the code size and the execution
time.

• Dead code elimination: Code that is never reached, is removed. The compiler generates a warning
messages because this may indicate a coding error.

153

Using the C Compiler

Subscript strength reduction (option -Os/-OS)

An array or pointer subscripted with a loop iterator variable (or a simple linear function of the iterator
variable), is replaced by the dereference of a pointer that is updated whenever the iterator is updated.

Loop transformations (option -Ol/-OL)

Transform a loop with the entry point at the bottom, to a loop with the entry point at the top. This enables
constant propagation in the initial loop test and code motion of loop invariant code by the CSE optimization.

Forward store (option -Oo/-OO)

A temporary variable is used to cache multiple assignments (stores) to the same non-automatic variable.

MIL linking (Control program option --mil-link)

The frontend phase performs its optimizations on the MIL code. When all C modules and/or MIL modules
of an application are given to the C compiler in a single invocation, the C compiler will link MIL code of
the modules to a complete application automatically. Next, the frontend will run its optimizations again
with application scope. After this, the MIL code is passed on to the backend, which will generate a single
.src file for the whole application. Linking with the run-time library, floating-point library and C library is
still necessary. Linking with the C library is required because this library contains some hand-coded
assembly functions, that are not linked in at MIL level.

In the ISO C99 standard a "translation unit" is a preprocessed source file together with all the headers
and source files included via the preprocessing directive #include. After MIL linking the compiler will
treat the linked sources files as a single translation unit, allowing global optimizations to be performed,
that otherwise would be limited to a single module.

154

TASKING VX-toolset for ARM User Guide

MIL splitting (option --mil-split)

When you specify that the C compiler has to use MIL splitting, the C compiler will first link the application
at MIL level as described above. However, after rerunning the optimizations the MIL code is not passed
on to the backend. Instead the frontend writes a .ms file for each input file or library. A .ms file has the
same format as a .mil file. Only .ms files that really change are updated.The advantage of this approach
is that it is possible to use the make utility to translate only those parts of the application to a .src file
that really have changed. MIL splitting is therefore a more efficient build process than MIL linking. The
penalty for this is that the code compaction optimization in the backend does not have application scope.
As with MIL linking, it is still required to link with the normal libraries to build an ELF file.

To read more about how MIL linking influences the build process of your application, see Section 12.1,
MIL Linking.

4.5.2. Core Specific Optimizations (backend)

Coalescer (option -Oa/-OA)

The coalescer seeks for possibilities to reduce the number of moves (MOV instruction) by smart use of
registers. This optimizes both speed and code size.

Interprocedural register optimization (option -Ob/-OB)

Register allocation is improved by taking note of register usage in functions called by a given function.

155

Using the C Compiler

Peephole optimizations (option -Oy/-OY)

The generated assembly code is improved by replacing instruction sequences by equivalent but faster
and/or shorter sequences, or by deleting unnecessary instructions.

Instruction Scheduler (option -Ok/-OK)

The instruction scheduler is a backend optimization that acts upon the generated instructions. When two
instructions need the same machine resource - like a bus, register or functional unit - at the same time,
they suffer a structural hazard, which stalls the pipeline. This optimization tries to rearrange instructions
to avoid structural hazards, for example by inserting another non-related instruction.

First the instruction stream is partitioned into basic blocks. A new basic block starts at a label, or right
after a jump instruction. Unschedulable instructions and, when -Av is enabled, instructions that access
volatile objects, each get their own basic block. Next, the scheduler searches the instructions within a
basic block, looking for places where the pipeline stalls. After identifying these places it tries to rebuild
the basic block using the existing instructions, while avoiding the pipeline stalls. In this process data
dependencies between instructions are honoured.

Note that the function inlining optimization happens in the frontend of the compiler. The instruction
scheduler has no knowledge about the origin of the instructions.

Unroll small loops (option -Ou/-OU)

To reduce the number of branches, short loops are eliminated by replacing them with a number of copies.

Software pipelining (option -Ow/-OW)

A number of techniques to optimize loops. For example, within a loop the most efficient order of instructions
is chosen by the pipeline scheduler and it is examined what instructions can be executed parallel.

Code compaction (reverse inlining) (option -Or/-OR)

Compaction is the opposite of inlining functions: chunks of code that occur more than once, are transformed
into a function. This reduces code size at the cost of execution speed. The size of the chunks of code to
be inlined depends on the setting of the C compiler option --tradeoff (-t). See the subsection Code
Compaction in Section 4.5.3, Optimize for Code Size or Execution Speed.

Generic assembly optimizations (option -Og/-OG)

A set of target independent optimizations that increase speed and decrease code size.

Cluster global variables (option -O+cluster/-O-cluster)

Global variables are accessed by first loading their address into a register and then accessing them via
this register. Each address will result in an entry in the constant pool. By clustering global variables it is
possible to access multiple variables using the same base register, which means we can lower the amount
of entries in the constant pool. It also means that potentially we need less base registers. Clustering
ensures that the linker locates the global variables together.

156

TASKING VX-toolset for ARM User Guide

4.5.3. Optimize for Code Size or Execution Speed

You can tell the compiler to focus on execution speed or code size during optimizations.You can do this
by specifying a size/speed trade-off level from 0 (speed) to 4 (size).This trade-off does not turn optimization
phases on or off. Instead, its level is a weight factor that is used in the different optimization phases to
influence the heuristics. The higher the level, the more the compiler focusses on code size optimization.
To choose a trade-off value read the description below about which optimizations are affected and the
impact of the different trade-off values.

Note that the trade-off settings are directions and there is no guarantee that these are followed. The
compiler may decide to generate different code if it assessed that this would improve the result.

Optimization hint: Optimizing for size has a speed penalty and vice versa. The advice is to
optimize for size by default and only optimize those areas for speed that are critical for the
application with respect to speed. Using the tradeoff options -t0, -t1 and -t2 globally for the
application is not recommended.

To specify the size/speed trade-off optimization level:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C/C++ Compiler » Optimization.

4. Select a trade-off level in the Trade-off between speed and size box.

See also C compiler option --tradeoff (-t)

Instruction Selection

Trade-off levels 0, 1 and 2: the compiler selects the instructions with the smallest number of cycles.

Trade-off levels 3 and 4: the compiler selects the instructions with the smallest number of bytes.

Switch Jump Chain versus Jump Table

Instruction selection for the switch statements follows different trade-off rules. A switch statement can
result in a jump chain or a jump table. The compiler makes the decision between those by measuring
and weighing bytes and cycles. This weigh is controlled with the trade-off values:

SizeTimeTrade-off value

0%100%0

25%75%1

50%50%2

157

Using the C Compiler

SizeTimeTrade-off value

75%25%3

100%0%4

Loop Optimization

For a top-loop, the loop is entered at the top of the loop. A bottom-loop is entered at the bottom. Every
loop has a test and a jump at the bottom of the loop, otherwise it is not possible to create a loop. Some
top-loops also have a conditional jump before the loop. This is only necessary when the number of loop
iterations is unknown. The number of iterations might be zero, in this case the conditional jump jumps
over the loop.

Bottom loops always have an unconditional jump to the loop test at the bottom of the loop.

Optimize loops for
size/speed

Try to rewrite top-loops to
bottom-loops

Trade-off value

speedno0

speedyes1

speedyes2

sizeyes3

sizeyes4

Example:

int a;

void i(int l, int m)
{
 int i;

 for (i = m; i < l; i++)
 {
 a++;
 }
 return;
}

Coded as a bottom loop (compiled with --tradeoff=4) is:

 ldr r2,.L4
 b .L2 ;; unconditional jump to loop test at bottom
.L3:
 ldr r3,[r2,#0]
 add r1,r1,#1
 add r3,r3,#1
 str r3,[r2,#0]
.L2: ;; loop entry point

158

TASKING VX-toolset for ARM User Guide

 cmp r1,r0
 blt .L3

Coded as a top loop (compiled with --tradeoff=0) is:

 cmp r1,r0 ;; test for at least one loop iteration
 ldr r2,.L4 ;; can be omitted when number of iterations is known
 ldr r3,[r2,#0]
 bge .L2
 sub r0,r0,r1
.L3: ;; loop entry point
 subs r0,r0,#1
 add r0,r0,#1
 bgt .L3
.L2:
 str r3,[r2,#0]

Automatic Function Inlining

You can enable automatic function inlining with the option --optimize=+inline (-Oi) or by using #pragma
optimize +inline. This option is also part of the -O3 predefined option set.

When automatic inlining is enabled, you can use the options --inline-max-incr and --inline-max-size (or
their corresponding pragmas inline_max_incr / inline_max_size) to control automatic inlining.
By default their values are set to -1. This means that the compiler will select a value depending upon the
selected trade-off level. The defaults are:

inline-max-sizeinline-max-incrTrade-off value

501000

25501

20202

10103

004

For example with trade-off value 1, the compiler inlines all functions that are smaller or equal to 25 internal
compiler units. After that the compiler tries to inline even more functions as long as the function will not
grow more than 50%.

When these options/pragmas are set to a value >= 0, the specified value is used instead of the values
from the table above.

Static functions that are called only once, are always inlined, independent of the values chosen for
inline-max-incr and inline-max-size.

Code Compaction

Trade-off levels 0 and 1: code compaction is disabled.

Trade-off level 2: only code compaction of matches outside loops.

159

Using the C Compiler

Trade-off level 3: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 10.

Trade-off level 4: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 100.

For loops where the iteration count is unknown an iteration count of 10 is assumed.

For the execution frequency the compiler also accounts nested loops.

See C compiler option --compact-max-size

Cluster global variables

Clustering of global variables is only done for trade-off level 4.

4.6. Static Code Analysis

Static code analysis (SCA) is a relatively new feature in compilers. Various approaches and algorithms
exist to perform SCA, each having specific pros and cons.

SCA Implementation Design Philosophy

SCA is implemented in the TASKING compiler based on the following design criteria:

• An SCA phase does not take up an excessive amount of execution time. Therefore, the SCA can be
performed during a normal edit-compile-debug cycle.

• SCA is implemented in the compiler front-end. Therefore, no new makefiles or work procedures have
to be developed to perform SCA.

• The number of emitted false positives is kept to a minimum. A false positive is a message that indicates
that a correct code fragment contains a violation of a rule/recommendation. A number of warnings is
issued in two variants, one variant when it is guaranteed that the rule is violated when the code is
executed, and the other variant when the rules is potentially violated, as indicated by a preceding
warning message.

For example see the following code fragment:

extern int some_condition(int);
void f(void)
{
 char buf[10];
 int i;

 for (i = 0; i <= 10; i++)
 {
 if (some_condition(i))
 {
 buf[i] = 0; /* subscript may be out of bounds */

160

TASKING VX-toolset for ARM User Guide

 }
 }
}

As you can see in this example, if i=10 the array buf[] might be accessed beyond its upper boundary,
depending on the result of some_condition(i). If the compiler cannot determine the result of this
function at run-time, the compiler issues the warning "subscript is possibly out of bounds" preceding
the CERT warning "ARR35: do not allow loops to iterate beyond the end of an array". If the compiler
can determine the result, or if the if statement is omitted, the compiler can guarantee that the "subscript
is out of bounds".

• The SCA implementation has real practical value in embedded system development.There are no real
objective criteria to measure this claim.Therefore, the TASKING compilers support well known standards
for safety critical software development such as the MISRA guidelines for creating software for safety
critical automotive systems and secure "CERT C Secure Coding Standard" released by CERT. CERT
is founded by the US government and studies internet and networked systems security vulnerabilities,
and develops information to improve security.

Effect of optimization level on SCA results

The SCA implementation in the TASKING compilers has the following limitations:

• Some violations of rules will only be detected when a particular optimization is enabled, because they
rely on the analysis done for that optimization, or on the transformations performed by that optimization.
In particular, the constant propagation and the CSE/PRE optimizations are required for some checks.
It is preferred that you enable these optimizations. These optimizations are enabled with the default
setting of the optimization level (-O2).

• Some checks require cross-module inspections and violations will only be detected when multiple
source files are compiled and linked together by the compiler in a single invocation.

4.6.1. C Code Checking: CERT C

The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities.The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

For details about the standard, see the CERT C Secure Coding Standard web site. For general information
about CERT secure coding, see www.cert.org/secure-coding.

Versions of the CERT C standard

Version 1.0 of the CERT C Secure Coding Standard is available as a book by Robert C. Seacord
[Addison-Wesley]. Whereas the web site is a wiki and reflects the latest information, the book serves as
a fixed point of reference for the development of compliant applications and source code analysis tools.

The rules and recommendations supported by the TASKING compiler reflect the version of the CERT
web site as of June 1 2009.

161

Using the C Compiler

https://www.securecoding.cert.org/confluence/display/c/CERT+C+Coding+Standard
http://www.cert.org/secure-coding

The following rules/recommendations implemented by the TASKING compiler, are not part of the book:
PRE11-C, FLP35-C, FLP36-C, MSC32-C

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 20, CERT C Secure Coding Standard.

Priority and Levels of CERT C

Each CERT C rule and recommendation has an assigned priority. Three values are assigned for each
rule on a scale of 1 to 3 for

• severity - how serious are the consequences of the rule being ignored

1. low (denial-of-service attack, abnormal termination)

2. medium (data integrity violation, unintentional information disclosure)

3. high (run arbitrary code)

• likelihood - how likely is it that a flaw introduced by ignoring the rule could lead to an exploitable
vulnerability

1. unlikely

2. probable

3. likely

• remediation cost - how expensive is it to comply with the rule

1. high (manual detection and correction)

2. medium (automatic detection and manual correction)

3. low (automatic detection and correction)

The three values are then multiplied together for each rule. This product provides a measure that can be
used in prioritizing the application of the rules. These products range from 1 to 27. Rules and
recommendations with a priority in the range of 1-4 are level 3 rules (low severity, unlikely, expensive to
repair flaws), 6-9 are level 2 (medium severity, probable, medium cost to repair flaws), and 12-27 are
level 1 (high severity, likely, inexpensive to repair flaws).

The TASKING compiler checks most of the level 1 and some of the level 2 CERT C recommendations/rules.

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 20, CERT C Secure Coding Standard.

To apply CERT C code checking to your application

1. From the Project menu, select Properties for

The Properties dialog appears.

162

TASKING VX-toolset for ARM User Guide

http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html
http://doc.tasking.com/cert/msc32.html

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C/C++ Compiler » CERT C Secure Coding.

4. Make a selection from the CERT C secure code checking list.

5. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

On the command line you can use the option --cert.

carm --cert={all | name [-name],...]

With --diag=cert you can see a list of the available checks, or you can use a three-letter mnemonic to
list only the checks in a particular category. For example, --diag=pre lists all supported checks in the
preprocessor category.

4.6.2. C Code Checking: MISRA C

The C programming language is a standard for high level language programming in embedded systems,
yet it is considered somewhat unsuitable for programming safety-related applications.Through enhanced
code checking and strict enforcement of best practice programming rules, TASKING MISRA C code
checking helps you to produce more robust code.

MISRA C specifies a subset of the C programming language which is intended to be suitable for embedded
automotive systems. It consists of a set of rules, defined in MISRA-C:2004, Guidelines for the Use of the
C Language in Critical Systems (Motor Industry Research Association (MIRA), 2004).

The compiler also supports MISRA C:1998, the first version of MISRA C and MISRA C: 2012, the latest
version of MISRA C.You can select the version with the following C compiler option:

--misrac-version=1998
--misrac-version=2004
--misrac-version=2012

In your C source files you can check against the MISRA C version used. For example:

#if __MISRAC_VERSION__ == 1998
 ...
#elif __MISRAC_VERSION__ == 2004
 ...
#elif __MISRAC_VERSION__ == 2012
 ...
#endif

For a complete overview of all MISRA C rules, see Chapter 21, MISRA C Rules.

163

Using the C Compiler

Implementation issues

The MISRA C implementation in the compiler supports nearly all rules. Only a few rules are not supported
because they address documentation, run-time behavior, or other issues that cannot be checked by static
source code inspection, or because they require an application-wide overview.

During compilation of the code, violations of the enabled MISRA C rules are indicated with error messages
and the build process is halted.

MISRA C rules are divided in mandatory rules, required rules and advisory rules. If rules are violated,
errors are generated causing the compiler to stop. With the following options warnings, instead of errors,
are generated:

--misrac-mandatory-warnings
--misrac-required-warnings
--misrac-advisory-warnings

Note that not all MISRA C violations will be reported when other errors are detected in the input
source. For instance, when there is a syntax error, all semantic checks will be skipped, including
some of the MISRA C checks. Also note that some checks cannot be performed when the
optimizations are switched off.

Quality Assurance report

To ensure compliance to the MISRA C rules throughout the entire project, the TASKING linker can
generate a MISRA C Quality Assurance report. This report lists the various modules in the project with
the respective MISRA C settings at the time of compilation.You can use this in your company's quality
assurance system to provide proof that company rules for best practice programming have been applied
in the particular project.

To apply MISRA C code checking to your application

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C/C++ Compiler » MISRA C.

4. Select the MISRA C version (1998, 2004 or 2012).

5. In the MISRA C checking box select a MISRA C configuration. Select a predefined configuration
for conformance with the required rules in the MISRA C guidelines.

6. (Optional) In the Custom 1998, Custom 2004 or Custom 2012 entry, specify the individual rules.

On the command line you can use the option --misrac.

164

TASKING VX-toolset for ARM User Guide

carm --misrac={all | number [-number],...]

4.7. C Compiler Error Messages

The C compiler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the compiler immediately aborts compilation.

E (Errors)

Errors are reported, but the compiler continues compilation. No output files are produced unless you have
set the C compiler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the compiler for a situation which may not be correct.You can control warnings
in the C/C++ Build » Settings » Tool Settings » C/C++ Compiler » Diagnostics page of the Project
» Properties for menu (C compiler option --no-warnings).

I (Information)

Information messages are always preceded by an error message. Information messages give extra
information about the error.

S (System errors)

System errors occur when internal consistency checks fail and should never occur.When you still receive
the system error message

S9##: internal consistency check failed - please report

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

165

Using the C Compiler

A dialog box appears with additional information.

On the command line you can use the C compiler option --diag to see an explanation of a diagnostic
message:

carm --diag=[format:]{all | number,...]

166

TASKING VX-toolset for ARM User Guide

Chapter 5. Using the C++ Compiler
This chapter describes the compilation process and explains how to call the C++ compiler.You should
be familiar with the C++ language and with the ISO C language.

The C++ compiler can be seen as a preprocessor or front end which accepts C++ source files or sources
using C++ language features. The output generated by the C++ compiler (cparm) is intermediate C,
which can be translated with the C compiler (carm).

The C++ compiler is part of a complete toolset, the TASKING VX-toolset for ARM. For details about the
C compiler see Chapter 4, Using the C Compiler.

The C++ compiler takes the following files for input and output:

Although in Eclipse you cannot run the C++ compiler separately from the other tools, this section discusses
the options that you can specify for the C++ compiler.

On the command line it is possible to call the C++ compiler separately from the other tools. However, it
is recommended to use the control program for command line invocations of the toolset (see Section 9.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line. Eclipse also uses the control program to call the C++ compiler. Files with the extensions .cc, .cpp
or .cxx are seen as C++ source files and passed to the C++ compiler.

The C++ compiler accepts the C++ language of the ISO/IEC 14882:2003 C++ standard, with some minor
exceptions documented in Chapter 2, C++ Language. It also accepts embedded C++ language extensions.

The C++ compiler does no optimization. Its goal is to produce quickly a complete and clean parsed form
of the source program, and to diagnose errors. It does complete error checking, produces clear error
messages (including the position of the error within the source line), and avoids cascading of errors. It
also tries to avoid seeming overly finicky to a knowledgeable C or C++ programmer.

5.1. Calling the C++ Compiler

Under Eclipse you cannot run the C++ compiler separately. However, you can set options specific for the
C++ compiler. After you have built your project, the output files are available in a subdirectory of your
project directory, depending on the active configuration you have set in the C/C++ Build » Settings page
of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

167

• Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.

1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

• Build Individual Project ().

To build individual projects incrementally, select Project » Build project.

• Rebuild Project (). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...

2. Enable the option Start a build immediately and click OK.

• Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behaviour tab of the C/C++ Build page of the Project » Properties for dialog.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file.This is a regular
include file which enables you to use virtual registers that are located in memory.

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Processor.

In the right pane the Processor page appears.

3. From the Processor selection list, select a processor.

To access the C/C++ compiler options

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C/C++ Compiler.

168

TASKING VX-toolset for ARM User Guide

4. Select the sub-entries and set the options in the various pages.

Note that C++ compiler options are only enabled if you have added a C++ file to your project, a
file with the extension .cc, .cpp or .cxx.

Note that the options you enter in the Assembler page are also used for intermediate assembly
files.

You can find a detailed description of all C++ compiler options in Section 11.3, C++ Compiler Options.

Invocation syntax on the command line (Windows Command Prompt):

cparm [[option]... [file]...]...

5.2. How the C++ Compiler Searches Include Files

When you use include files (with the #include statement), you can specify their location in several ways.
The C++ compiler searches the specified locations in the following order:

1. If the #include statement contains an absolute pathname, the C++ compiler looks for this file. If no
path or a relative path is specified, the C++ compiler looks in the same directory as the source file.
This is only possible for include files that are enclosed in "".

This first step is not done for include files enclosed in <>.

2. When the C++ compiler did not find the include file, it looks in the directories that are specified in the
C/C++ Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the
Project Properties dialog (equivalent to the --include-directory (-I) command line option).

3. When the C++ compiler did not find the include file (because it is not in the specified include directory
or because no directory is specified), it looks in the path(s) specified in the environment variable
CPARMINC.

4. When the C++ compiler still did not find the include file, it finally tries the default include.cpp and
include directory relative to the installation directory.

5. If the include file is still not found, the directories specified in the --sys-include option are searched.

If the include directory is specified as -, e.g., -I-, the option indicates the point in the list of -I or
--include-directory options at which the search for file names enclosed in <...> should begin. That is,
the search for <...> names should only consider directories named in -I or --include-directory options
following the -I-, and the directories of items 3 and 4 above. -I- also removes the directory containing the
current input file (item 1 above) from the search path for file names enclosed in "...".

An include directory specified with the --sys-include option is considered a "system" include directory.
Warnings are suppressed when processing files found in system include directories.

169

Using the C++ Compiler

If the filename has no suffix it will be searched for by appending each of a set of include file suffixes.
When searching in a given directory all of the suffixes are tried in that directory before moving on to the
next search directory.The default set of suffixes is, no extension and .stdh.The default can be overridden
using the --incl-suffixes command line option. A null file suffix cannot be used unless it is present in the
suffix list (that is, the C++ compiler will always attempt to add a suffix from the suffix list when the filename
has no suffix).

Example

Suppose that the C++ source file test.cc contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the C++ compiler as follows:

cparm -Imyinclude test.cc

First the C++ compiler looks for the file stdio.h in the directory myinclude relative to the current
directory. If it was not found, the C++ compiler searches in the environment variable CPARMINC and then
in the default include directory.

The C++ compiler now looks for the file myinc.h, in the directory where test.cc is located. If the file
is not there the C++ compiler searches in the directory myinclude. If it was still not found, the C++
compiler searches in the environment variable CPARMINC and then in the default include.cpp and
include directories.

5.3. C++ Compiler Error Messages

The C++ compiler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

Catastrophic errors, also called 'fatal errors', indicate problems of such severity that the compilation cannot
continue. For example: command-line errors, internal errors, and missing include files. If multiple source
files are being compiled, any source files after the current one will not be compiled.

E (Errors)

Errors indicate violations of the syntax or semantic rules of the C++ language. Compilation continues,
but object code is not generated.

W (Warnings)

Warnings indicate something valid but questionable. Compilation continues and object code is generated
(if no errors are detected).You can control warnings in the C/C++ Build » Settings » Tool Settings »
C/C++ Compiler » Diagnostics page of the Project » Properties for menu (C++ compiler option
--no-warnings).

170

TASKING VX-toolset for ARM User Guide

R (Remarks)

Remarks indicate something that is valid and probably intended, but which a careful programmer may
want to check. These diagnostics are not issued by default. Compilation continues and object code is
generated (if no errors are detected).To enable remarks, enable the option Issue remarks on C++ code
in the C/C++ Build » Settings » Tool Settings » C/C++ Compiler » Diagnostics page of the Project
» Properties for menu (C++ compiler option --remarks).

S (Internal errors)

Internal compiler errors are caused by failed internal consistency checks and should never occur. However,
if such a 'SYSTEM' error appears, please report the occurrence to Altium. Please include a small C++
program causing the error.

Message format

By default, diagnostics are written in a form like the following:

cparm E0020: ["test.cc" 3] identifier "name" is undefined

With the command line option --error-file=file you can redirect messages to a file instead of stderr.

Note that the message identifies the file and line involved. Long messages are wrapped to additional lines
when necessary.

With the option C/C++ Build » Settings » Tool Settings » Global Options » Treat warnings as errors
(option --warnings-as-errors) you can change the severity of warning messages to errors.

With the command line option --diag you can see a list of all messages.

For some messages, a list of entities is useful; they are listed following the initial error message:

cparm E0308: ["test.cc" 4] more than one instance of overloaded
 function "f" matches the argument list:
 function "f(int)"
 function "f(float)"
 argument types are: (double)

In some cases, some additional context information is provided; specifically, such context information is
useful when the C++ compiler issues a diagnostic while doing a template instantiation or while generating
a constructor, destructor, or assignment operator function. For example:

cparm E0265: ["test.cc" 7] "A::A()" is inaccessible
 detected during implicit generation of "B::B()" at line 7

Without the context information, it is very hard to figure out what the error refers to.

Termination Messages

The C++ compiler writes sign-off messages to stderr (the Problems view in Eclipse) if errors are detected.
For example, one of the following forms of message

171

Using the C++ Compiler

n errors detected in the compilation of "file".

1 catastrophic error detected in the compilation of "file".

n errors and 1 catastrophic error detected in the compilation of "file".

is written to indicate the detection of errors in the compilation. No message is written if no errors were
detected. The following message

Error limit reached.

is written when the count of errors reaches the error limit (see the option --error-limit); compilation is
then terminated. The message

Compilation terminated.

is written at the end of a compilation that was prematurely terminated because of a catastrophic error.
The message

Compilation aborted

is written at the end of a compilation that was prematurely terminated because of an internal error. Such
an error indicates an internal problem in the compiler. If such an internal error appears, please report the
occurrence to Altium. Please include a small C++ program causing the error.

172

TASKING VX-toolset for ARM User Guide

Chapter 6. Using the Assembler
This chapter describes the assembly process and explains how to call the assembler.

The assembler converts hand-written or compiler-generated assembly language programs into machine
language, resulting in object files in the ELF/DWARF object format.

The assembler takes the following files for input and output:

The following information is described:

• The assembly process.

• How to call the assembler and how to use its options. An extensive list of all options and their descriptions
is included in Section 11.4, Assembler Options.

• How to generate a list file.

• Types of assembler messages.

6.1. Assembly Process

The assembler generates relocatable output files with the extension .obj. These files serve as input for
the linker.

Phases of the assembly process

• Parsing of the source file: preprocessing of assembler directives and checking of the syntax of
instructions

• Generation of the relocatable object file and optionally a list file

The assembler integrates file inclusion and macro facilities. See Section 3.10, Macro Operations for more
information.

173

6.2. Assembler Versions

The TASKING VX-toolset for ARM consists of a set of three assemblers. Depending on the architecture
and the selection of the Thumb or mixed ARM/Thumb instruction set Eclipse and the control program
select the correct assembler, which results in faster build times.

supports both ARM and Thumb/Thumb-2 instruction set (full assembler)asarm

supports ARM instruction set onlyasarma

supports Thumb/Thumb-2 instruction set onlyasarmt

All command line options are the same for all three assemblers.

Also see control program option --thumb.

6.3. Calling the Assembler

The TASKING VX-toolset for ARM under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire project. After you have built your project, the
output files are available in a subdirectory of your project directory, depending on the active configuration
you have set in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

• Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.

1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

• Build Individual Project ().

To build individual projects incrementally, select Project » Build project.

• Rebuild Project (). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...

2. Enable the option Start a build immediately and click OK.

• Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically

174

TASKING VX-toolset for ARM User Guide

menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behaviour tab of the C/C++ Build page of the Project » Properties for dialog.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file.This is a regular
include file which enables you to use virtual registers that are located in memory.

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Processor.

In the right pane the Processor page appears.

3. From the Processor selection list, select a processor.

To access the assembler options

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler.

4. Select the sub-entries and set the options in the various pages.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

You can find a detailed description of all assembler options in Section 11.4, Assembler Options.

Invocation syntax on the command line (Windows Command Prompt):

asarm [[option]... [file]...]...

The input file must be an assembly source file (.asm or .src).

6.4. How the Assembler Searches Include Files

When you use include files (with the .INCLUDE directive), you can specify their location in several ways.
The assembler searches the specified locations in the following order:

175

Using the Assembler

1. If the .INCLUDE directive contains an absolute path name, the assembler looks for this file. If no path
or a relative path is specified, the assembler looks in the same directory as the source file.

2. When the assembler did not find the include file, it looks in the directories that are specified in the
Assembler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-I)).

3. When the assembler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable ASARMINC.

4. When the assembler still did not find the include file, it finally tries the default include directory relative
to the installation directory.

Example

Suppose that the assembly source file test.asm contains the following lines:

.INCLUDE 'myinc.inc'

You can call the assembler as follows:

asarm -Imyinclude test.asm

First the assembler looks for the file myinc.asm, in the directory where test.asm is located. If the file
is not there the assembler searches in the directory myinclude. If it was still not found, the assembler
searches in the environment variable ASARMINC and then in the default include directory.

6.5. Generating a List File

The list file is an additional output file that contains information about the generated code.You can
customize the amount and form of information.

If the assembler generates errors or warnings, these are reported in the list file just below the source line
that caused the error or warning.

To generate a list file

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler » List File.

4. Enable the option Generate list file.

5. (Optional) Enable the options to include that information in the list file.

176

TASKING VX-toolset for ARM User Guide

Example on the command line (Windows Command Prompt)

The following command generates the list file test.lst:

asarm -l test.asm

See Section 15.1, Assembler List File Format, for an explanation of the format of the list file.

6.6. Assembler Error Messages

The assembler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the assembler immediately aborts the assembly process.

E (Errors)

Errors are reported, but the assembler continues assembling. No output files are produced unless you
have set the assembler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the assembler for a situation which may not be correct.You can control
warnings in the C/C++ Build » Settings » Tool Settings » Assembler » Diagnostics page of the Project
» Properties for menu (assembler option --no-warnings).

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

On the command line you can use the assembler option --diag to see an explanation of a diagnostic
message:

asarm --diag=[format:]{all | number,...]

177

Using the Assembler

178

TASKING VX-toolset for ARM User Guide

Chapter 7. Using the Linker
This chapter describes the linking process, how to call the linker and how to control the linker with a script
file.

The TASKING linker is a combined linker/locator. The linker phase combines relocatable object files
(.obj files, generated by the assembler), and libraries into a single relocatable linker object file (.out).
The locator phase assigns absolute addresses to the linker object file and creates an absolute object file
which you can load into a target processor. From this point the term linker is used for the combined
linker/locator.

The linker can simultaneously link and locate all programs for all cores available on a target board. The
target board may be of arbitrary complexity. A simple target board may contain one standard processor
with some external memory that executes one task. A complex target board may contain multiple standard
processors and DSPs combined with configurable IP-cores loaded in an FPGA. Each core may execute
a different program, and external memory may be shared by multiple cores.

The linker takes the following files for input and output:

This chapter first describes the linking process. Then it describes how to call the linker and how to use
its options. An extensive list of all options and their descriptions is included in Section 11.5, Linker Options.

To control the link process, you can write a script for the linker.This chapter shortly describes the purpose
and basic principles of the Linker Script Language (LSL) on the basis of an example. A complete description
of the LSL is included in Linker Script Language.

7.1. Linking Process

The linker combines and transforms relocatable object files (.obj) into a single absolute object file. This
process consists of two phases: the linking phase and the locating phase.

In the first phase the linker combines the supplied relocatable object files and libraries into a single
relocatable object file. In the second phase, the linker assigns absolute addresses to the object file so it
can actually be loaded into a target.

179

Terms used in the linking process

DefinitionTerm

Object code in which addresses have fixed absolute values, ready to load into a
target.

Absolute object file

A specification of a location in an address space.Address

The set of possible addresses. A core can support multiple spaces, for example in
a Harvard architecture the addresses that identify the location of an instruction
refer to code space, whereas addresses that identify the location of a data object
refer to a data space.

Address space

A description of the characteristics of a core that are of interest for the linker. This
encompasses the address space(s) and the internal bus structure. Given this
information the linker can convert logical addresses into physical addresses.

Architecture

A section created by the linker. This section contains data that specifies how the
startup code initializes the data sections. For each section the copy table contains
the following fields:

• action: defines whether a section is copied or zeroed

• destination: defines the section's address in RAM

• source: defines the sections address in ROM

• length: defines the size of the section in MAUs of the destination space

Copy table

An instance of an architecture.Core

The design of a processor. A description of one or more cores including internal
memory and any number of buses.

Derivative

Collection of relocatable object files. Usually each object file in a library contains
one symbol definition (for example, a function).

Library

An address as encoded in an instruction word, an address generated by a core
(CPU).

Logical address

The set of linker script files that are passed to the linker.LSL file

Minimum Addressable Unit. For a given processor the number of bits between an
address and the next address. This is not necessarily a byte or a word.

MAU

The binary machine language representation of the C source.Object code

An address generated by the memory system.Physical address

An instance of a derivative. Usually implemented as a (custom) chip, but can also
be implemented in an FPGA, in which case the derivative can be designed by the
developer.

Processor

Object code in which addresses are represented by symbols and thus relocatable.Relocatable object
file

The process of assigning absolute addresses.Relocation

180

TASKING VX-toolset for ARM User Guide

DefinitionTerm

Information about how the linker must modify the machine code instructions when
it relocates addresses.

Relocation
information

A group of instructions and/or data objects that occupy a contiguous range of
addresses.

Section

Attributes that define how the section should be linked or located.Section attributes

The hardware board on which an application is executing. A board contains at least
one processor. However, a complex target may contain multiple processors and
external memory and may be shared between processors.

Target

A reference to a symbol for which the linker did not find a definition yet.Unresolved
reference

7.1.1. Phase 1: Linking

The linker takes one or more relocatable object files and/or libraries as input. A relocatable object file, as
generated by the assembler, contains the following information:

• Header information: Overall information about the file, such as the code size, name of the source file
it was assembled from, and creation date.

• Object code: Binary code and data, divided into various named sections. Sections are contiguous
chunks of code that have to be placed in specific parts of the memory. The program addresses start
at zero for each section in the object file.

• Symbols: Some symbols are exported - defined within the file for use in other files. Other symbols are
imported - used in the file but not defined (external symbols). Generally these symbols are names of
routines or names of data objects.

• Relocation information: A list of places with symbolic references that the linker has to replace with
actual addresses. When in the code an external symbol (a symbol defined in another file or in a library)
is referenced, the assembler does not know the symbol's size and address. Instead, the assembler
generates a call to a preliminary relocatable address (usually 0000), while stating the symbol name.

• Debug information: Other information about the object code that is used by a debugger.The assembler
optionally generates this information and can consist of line numbers, C source code, local symbols
and descriptions of data structures.

The linker resolves the external references between the supplied relocatable object files and/or libraries
and combines the files into a single relocatable linker object file.

The linker starts its task by scanning all specified relocatable object files and libraries. If the linker
encounters an unresolved symbol, it remembers its name and continues scanning. The symbol may be
defined elsewhere in the same file, or in one of the other files or libraries that you specified to the linker.
If the symbol is defined in a library, the linker extracts the object file with the symbol definition from the
library. This way the linker collects all definitions and references of all of the symbols.

Next, the linker combines sections with the same section name and attributes into single sections. The
linker also substitutes (external) symbol references by (relocatable) numerical addresses where possible.

181

Using the Linker

At the end of the linking phase, the linker either writes the results to a file (a single relocatable object file)
or keeps the results in memory for further processing during the locating phase.

The resulting file of the linking phase is a single relocatable object file (.out). If this file contains unresolved
references, you can link this file with other relocatable object files (.obj) or libraries (.lib) to resolve
the remaining unresolved references.

With the linker command line option --link-only, you can tell the linker to only perform this linking phase
and skip the locating phase. The linker complains if any unresolved references are left.

7.1.2. Phase 2: Locating

In the locating phase, the linker assigns absolute addresses to the object code, placing each section in
a specific part of the target memory.The linker also replaces references to symbols by the actual address
of those symbols. The resulting file is an absolute object file which you can actually load into a target
memory. Optionally, when the resulting file should be loaded into a ROM device the linker creates a
so-called copy table section which is used by the startup code to initialize the data sections.

Code modification

When the linker assigns absolute addresses to the object code, it needs to modify this code according
to certain rules or relocation expressions to reflect the new addresses. These relocation expressions are
stored in the relocatable object file. Consider the following snippet of x86 code that moves the contents
of variable a to variable b via the eax register:

A1 3412 0000 mov a,%eax (a defined at 0x1234, byte reversed)
A3 0000 0000 mov %eax,b (b is imported so the instruction refers to
 0x0000 since its location is unknown)

Now assume that the linker links this code so that the section in which a is located is relocated by 0x10000
bytes, and b turns out to be at 0x9A12. The linker modifies the code to be:

A1 3412 0100 mov a,%eax (0x10000 added to the address)
A3 129A 0000 mov %eax,b (0x9A12 patched in for b)

These adjustments affect instructions, but keep in mind that any pointers in the data part of a relocatable
object file have to be modified as well.

Output formats

The linker can produce its output in different file formats.The default ELF/DWARF format (.abs) contains
an image of the executable code and data, and can contain additional debug information. The Intel-Hex
format (.hex) and Motorola S-record format (.sre) only contain an image of the executable code and
data.You can specify a format with the options --output (-o) and --chip-output (-c).

Controlling the linker

Via a so-called linker script file you can gain complete control over the linker.The script language is called
the Linker Script Language (LSL). Using LSL you can define:

• The memory installed in the embedded target system:

182

TASKING VX-toolset for ARM User Guide

To assign locations to code and data sections, the linker must know what memory devices are actually
installed in the embedded target system. For each physical memory device the linker must know its
start-address, its size, and whether the memory is read-write accessible (RAM) or read-only accessible
(ROM).

• How and where code and data should be placed in the physical memory:

Embedded systems can have complex memory systems. If for example on-chip and off-chip memory
devices are available, the code and data located in internal memory is typically accessed faster and
with dissipating less power. To improve the performance of an application, specific code and data
sections should be located in on-chip memory. By writing your own LSL file, you gain full control over
the locating process.

• The underlying hardware architecture of the target processor.

To perform its task the linker must have a model of the underlying hardware architecture of the processor
you are using. For example the linker must know how to translate an address used within the object
file (a logical address) into an offset in a particular memory device (a physical address). In most linkers
this model is hard coded in the executable and can not be modified. For the TASKING linker this
hardware model is described in the linker script file. This solution is chosen to support configurable
cores that are used in system-on-chip designs.

When you want to write your own linker script file, you can use the standard linker script files with
architecture descriptions delivered with the product.

See also Section 7.7, Controlling the Linker with a Script.

7.2. Calling the Linker

In Eclipse you can set options specific for the linker. After you have built your project, the output files are
available in a subdirectory of your project directory, depending on the active configuration you have set
in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

• Build Individual Project ().

To build individual projects incrementally, select Project » Build project.

• Rebuild Project (). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...

2. Enable the option Start a build immediately and click OK.

183

Using the Linker

• Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended, but to enable this feature select Project » Build Automatically
and ensure there is a check mark beside the Build Automatically menu item. In order for this option
to work, you must also enable option Build on resource save (Auto build) on the Behaviour tab of
the C/C++ Build page of the Project » Properties for dialog.

To access the linker options

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker.

4. Select the sub-entries and set the options in the various pages.

You can find a detailed description of all linker options in Section 11.5, Linker Options.

Invocation syntax on the command line (Windows Command Prompt):

lkarm [[option]... [file]...]...

When you are linking multiple files, either relocatable object files (.obj) or libraries (.lib), it is important
to specify the files in the right order. This is explained in Section 7.3, Linking with Libraries.

Example:

lkarm -darm.lsl test.obj

This links and locates the file test.obj and generates the file test.abs.

7.3. Linking with Libraries

There are two kinds of libraries: system libraries and user libraries.

System library

System libraries are stored in the directories:

<ARM installation path>\lib\v6M\le (little-endian variant)
<ARM installation path>\lib\v6M\be (big-endian variant)
<ARM installation path>\lib\v7[EM|M|R]\le
<ARM installation path>\lib\v7[EM|M|R]\be
<ARM installation path>\lib\v7R\be32 (big-endian 32 variant)

184

TASKING VX-toolset for ARM User Guide

An overview of the system libraries is given in the following table:

DescriptionLibraries

C libraries for ARM and Thumb instructions respectively
Optional letter:
s = single precision floating-point (compiler option --no-double)

carm[s].lib
cthumb[s].lib

Floating-point libraries for ARM and Thumbfparm.lib
fpthumb.lib

Run-time library for ARM and Thumbrtarm.lib
rtthumb.lib

Profiling libraries for ARM and Thumb
pb = block/function counter
pc = call graph
pct = call graph and timing
pd = dummy
pt = function timing

pbarm.lib / pbthumb.lib
pcarm.lib / pcthumb.lib
pctarm.lib / pctthumb.lib
pdarm.lib / pdthumb.lib
ptarm.lib / ptthumb.lib

CMSIS DSP libraries
Optional letter:
s = single precision floating-point

dspthumb[s].lib

C++ libraries for ARM and Thumb
Optional letter:
s = single precision floating-point
x = exception handling

cparm[s][x].lib
cpthumb[s][x].lib

STLport C++ libraries (exception handling variants only)
Optional letter:
s = single precision floating-point

stlarmx.lib
stlthumbx.lib

To link the default C (system) libraries

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Enable the option Link default libraries.

When you want to link system libraries from the command line, you must specify this with the option
--library (-l). For example, to specify the system library carm.lib, type:

lkarm --library=carm test.obj

185

Using the Linker

To use the CMSIS DSP library in your Eclipse project

Part of the CMSIS standard is a DSP library.The CMSIS DSP library is included in the TASKING product's
cmsis folder. The library is also available as a pre-built library file in the lib folders for v6M, v7M and
v7EM. The libraries are dspthumb.lib (double precision floating point) and dspthumbs.lib (single
precision floating point). MIL libraries are present also: dspthumb.ma and dspthumbs.ma.

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C/C++ Compiler » Include Paths .

4. Enable the option Add CMSIS include paths.

5. On the Tool Settings tab, select Linker » Libraries.

6. Enable the option Link CMSIS DSP library.

This passes the option --dsp-library of the control program (ccarm) for compilation of C/C++ files
and for linking. With this option the control program sets the compiler macro ARM_MATH_CM0,
ARM_MATH_CM3 or ARM_MATH_CM4, depending on the selected processor. These macros are
required for the CMSIS arm_math.h header file to operate correctly. With --dsp-library the control
program also selects the appropriate library.

User library

You can create your own libraries. Section 9.4, Archiver describes how you can use the archiver to create
your own library with object modules.

To link user libraries

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Add your libraries to the Libraries box.

When you want to link user libraries from the command line, you must specify their filenames on the
command line:

lkarm start.obj mylib.lib

186

TASKING VX-toolset for ARM User Guide

If the library resides in a sub-directory, specify that directory with the library name:

lkarm start.obj mylibs\mylib.lib

If you do not specify a directory, the linker searches the library in the current directory only.

Library order

The order in which libraries appear on the command line is important. By default the linker processes
object files and libraries in the order in which they appear at the command line. Therefore, when you use
a weak symbol construction, like printf, in an object file or your own library, you must position this
object/library before the C library.

With the option --first-library-first you can tell the linker to scan the libraries from left to right, and extract
symbols from the first library where the linker finds it. This can be useful when you want to use newer
versions of a library routine:

lkarm --first-library-first a.lib test.obj b.lib

If the file test.obj calls a function which is both present in a.lib and b.lib, normally the function in
b.lib would be extracted. With this option the linker first tries to extract the symbol from the first library
a.lib.

Note that routines in b.lib that call other routines that are present in both a.lib and b.lib are now
also resolved from a.lib.

7.3.1. How the Linker Searches Libraries

System libraries

You can specify the location of system libraries in several ways.The linker searches the specified locations
in the following order:

1. The linker first looks in the Library search path that are specified in the Linker » Libraries page in
the C/C++ Build » Settings » Tool Settings tab of the Project Properties dialog (equivalent to the -L
command line option). If you specify the -L option without a pathname, the linker stops searching after
this step.

2. When the linker did not find the library (because it is not in the specified library directory or because
no directory is specified), it looks in the path(s) specified in the environment variable LIBARM.

3. When the linker did not find the library, it tries the default lib directory relative to the installation
directory (or a processor specific sub-directory).

User library

If you use your own library, the linker searches the library in the current directory only.

187

Using the Linker

7.3.2. How the Linker Extracts Objects from Libraries

A library built with the TASKING archiver ararm always contains an index part at the beginning of the
library. The linker scans this index while searching for unresolved externals. However, to keep the index
as small as possible, only the defined symbols of the library members are recorded in this area.

When the linker finds a symbol that matches an unresolved external, the corresponding object file is
extracted from the library and is processed. After processing the object file, the remaining library index
is searched. If after a complete search of the library unresolved externals are introduced, the library index
will be scanned again. After all files and libraries are processed, and there are still unresolved externals
and you did not specify the linker option --no-rescan, all libraries are rescanned again. This way you do
not have to worry about the library order on the command line and the order of the object files in the
libraries. However, this rescanning does not work for 'weak symbols'. If you use a weak symbol construction,
like printf, in an object file or your own library, you must position this object/library before the C library.

The option --verbose (-v) shows how libraries have been searched and which objects have been extracted.

Resolving symbols

If you are linking from libraries, only the objects that contain symbols to which you refer, are extracted
from the library. This implies that if you invoke the linker like:

lkarm mylib.lib

nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through mylib.lib.

It is possible to force a symbol as external (unresolved symbol) with the option --extern (-e):

lkarm --extern=main mylib.lib

In this case the linker searches for the symbol main in the library and (if found) extracts the object that
contains main.

If this module contains new unresolved symbols, the linker looks again in mylib.lib. This process
repeats until no new unresolved symbols are found.

7.4. Incremental Linking

With the TASKING linker it is possible to link incrementally. Incremental linking means that you link some,
but not all .obj modules to a relocatable object file .out. In this case the linker does not perform the
locating phase. With the second invocation, you specify both new .obj files as the .out file you had
created with the first invocation.

Incremental linking is only possible on the command line.

lkarm -darm.lsl --incremental test1.obj -otest.out
lkarm -darm.lsl test2.obj test.out

188

TASKING VX-toolset for ARM User Guide

This links the file test1.obj and generates the file test.out.This file is used again and linked together
with test2.obj to create the file test.abs (the default name if no output filename is given in the default
ELF/DWARF format).

With incremental linking it is normal to have unresolved references in the output file until all .obj files
are linked and the final .out or .abs file has been reached.The option --incremental (-r) for incremental
linking also suppresses warnings and errors because of unresolved symbols.

7.5. Importing Binary Files

With the TASKING linker it is possible to add a binary file to your absolute output file. In an embedded
application you usually do not have a file system where you can get your data from. With the linker option
--import-object you can add raw data to your application. This makes it possible for example to display
images on a device or play audio.The linker puts the raw data from the binary file in a section.The section
is aligned on a 4-byte boundary.The section name is derived from the filename, in which dots are replaced
by an underscore. So, when importing a file called my.mp3, a section with the name my_mp3 is created.
In your application you can refer to the created section by using linker labels.

For example:

#include <stdio.h>
extern char _lc_ub_my_mp3; /* linker labels */
extern char _lc_ue_my_mp3;
char* mp3 = &_lc_ub_my_mp3;

void main(void)
{
 int size = &_lc_ue_my_mp3 - &_lc_ub_my_mp3;
 int i;
 for (i=0;i<size;i++)
 putchar(mp3[i]);
}

If you want to use the export functionality of Eclipse, the binary file has to be part of your project.

7.6. Linker Optimizations

During the linking and locating phase, the linker looks for opportunities to optimize the object code. Both
code size and execution speed can be optimized.

To enable or disable optimizations

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

189

Using the Linker

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Optimization.

4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Delete unreferenced sections (option -Oc/-OC)

This optimization removes unused sections from the resulting object file.

First fit decreasing (option -Ol/-OL)

When the physical memory is fragmented or when address spaces are nested it may be possible that a
given application cannot be located although the size of the available physical memory is larger than the
sum of the section sizes. Enable the first-fit-decreasing optimization when this occurs and re-link your
application.

The linker's default behavior is to place sections in the order that is specified in the LSL file (that is, working
from low to high memory addresses or vice versa). This also applies to sections within an unrestricted
group. If a memory range is partially filled and a section must be located that is larger than the remainder
of this range, then the section and all subsequent sections are placed in a next memory range. As a result
of this gaps occur at the end of a memory range.

When the first-fit-decreasing optimization is enabled the linker will first place the largest sections in the
smallest memory ranges that can contain the section. Small sections are located last and can likely fit in
the remaining gaps.

Compress copy table (option -Ot/-OT)

The startup code initializes the application's data areas.The information about which memory addresses
should be zeroed and which memory ranges should be copied from ROM to RAM is stored in the copy
table.

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

Delete duplicate code (option -Ox/-OX)

Delete duplicate constant data (option -Oy/-OY)

These two optimizations remove code and constant data that is defined more than once, from the resulting
object file.

Compress ROM sections of copy table items (option -Oz/-OZ)

Reduces the size of the application's ROM image by compressing the ROM image of initialized data
sections. At application startup time the ROM image is decompressed and copied to RAM.

190

TASKING VX-toolset for ARM User Guide

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

7.7. Controlling the Linker with a Script

With the options on the command line you can control the linker's behavior to a certain degree. From
Eclipse it is also possible to determine where your sections will be located, how much memory is available,
which sorts of memory are available, and so on. Eclipse passes these locating directions to the linker via
a script file. If you want even more control over the locating process you can supply your own script.

The language for the script is called the Linker Script Language, or shortly LSL.You can specify the script
file to the linker, which reads it and locates your application exactly as defined in the script. If you do not
specify your own script file, the linker always reads a standard script file which is supplied with the toolset.

7.7.1. Purpose of the Linker Script Language

The Linker Script Language (LSL) serves three purposes:

1. It provides the linker with a definition of the target's core architecture. This definition is supplied with
the toolset.

2. It provides the linker with a specification of the memory attached to the target processor.

3. It provides the linker with information on how your application should be located in memory. This gives
you, for example, the possibility to create overlaying sections.

The linker accepts multiple LSL files.You can use the specifications of the core architectures that Altium
has supplied in the include.lsl directory. Do not change these files.

If you use a different memory layout than described in the LSL file supplied for the target core, you must
specify this in a separate LSL file and pass both the LSL file that describes the core architecture and your
LSL file that contains the memory specification to the linker. Next you may want to specify how sections
should be located and overlaid.You can do this in the same file or in another LSL file.

LSL has its own syntax. In addition, you can use the standard C preprocessor keywords, such as #include
and #define, because the linker sends the script file first to the C preprocessor before it starts interpreting
the script.

The complete LSL syntax is described in Chapter 17, Linker Script Language (LSL).

7.7.2. Eclipse and LSL

In Eclipse you can specify the size of the stack and heap; the physical memory attached to the processor;
identify that particular address ranges are reserved; and specify which sections are located where in
memory. Eclipse translates your input into an LSL file that is stored in the project directory under the
name project_name.lsl and passes this file to the linker. If you want to learn more about LSL you can
inspect the generated file project_name.lsl.

191

Using the Linker

To add a generated Linker Script File to your project

1. From the File menu, select File » New » TASKING ARM C/C++ Project.

The New C/C++ Project wizard appears.

2. Fill in the project settings in each dialog and click Next > until the following dialog appears.

3. Enable the option Add linker script file to the project and click Finish.

Eclipse creates your project and the file "project_name.lsl" in the project directory.

If you do not add the linker script file here, you can always add it later with File » New » Linker Script
File (LSL)

To change the Linker Script File in Eclipse

There are two ways of changing the LSL file in Eclipse.

• You can change the LSL file directly in an editor.

1. Double-click on the file project_name.lsl.

The project LSL file opens in the editor area.

192

TASKING VX-toolset for ARM User Guide

2. You can edit the LSL file directly in the project_name.lsl editor.

A * appears in front of the name of the LSL file to indicate that the file has changes.

3. Click or select File » Save to save the changes.

• You can also make changes to the property pages Memory and Stack/Heap.

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Memory or Stack/Heap.

In the right pane the corresponding property page appears.

3. Make changes to memory and/or stack/heap and click OK.

The project LSL file is updated automatically according to the changes you make in the pages.

You can quickly navigate through the LSL file by using the Outline view (Window » Show View » Outline).

7.7.3. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each

193

Using the Linker

space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the vector table.

This specification is normally written by Altium. Altium supplies LSL files in the include.lsl directory.

The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

The linker uses the architecture name in the LSL file to identify the target. For example, the default library
search path can be different for each core architecture.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

The processor definition

The processor definition describes an instance of a derivative. A processor definition is only needed in a
multi-processor embedded system. It allows you to define multiple processors of the same type.

If for a derivative 'A' no processor is defined in the LSL file, the linker automatically creates a processor
named 'A' of derivative 'A'.This is why for single-processor applications it is enough to specify the derivative
in the LSL file.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems.The board specification describes all characteristics of your target board's system buses, memory
devices, I/O sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

• convert a logical address to an offset within a memory device

• locate sections in physical memory

• maintain an overall view of the used and free physical memory within the whole system while locating

194

TASKING VX-toolset for ARM User Guide

The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given address, to place sections in a
given order, and to overlay code and/or data sections.

Example: Skeleton of a Linker Script File

A linker script file that defines a derivative "X'" based on the ARM architecture, its external memory and
how sections are located in memory, may have the following skeleton:

architecture ARM
{
 // Specification of the ARM core architecture.
 // Written by Altium.
}

derivative X // derivative name is arbitrary
{
 // Specification of the derivative.
 // Written by Altium.
 core ARM // always specify the core
 {
 architecture = ARM;
 }

 bus local_bus // local bus
 {
 // maps to bus "local_bus" in "ARM" core
 }

 // internal memory
}

processor spe // processor name is arbitrary
{
 derivative = X;

 // You can omit this part, except if you use a
 // multi-core system.
}

memory ext_name
{
 // external memory definition
}

section_layout spe:ARM:linear // section layout
{
 // section placement statements

195

Using the Linker

 // sections are located in address space 'linear'
 // of core 'ARM' of processor 'spe'
}

Overview of LSL files delivered by Altium

Altium supplies the following LSL files in the directory include.lsl.

DescriptionLSL file

Defines the base architecture (ARM) for all cores.arm_arch.lsl

It includes the file arm_arch.lsl and contains a default specification of the
external memory attached to the target processor.

arm.lsl

Default LSL file. This file includes the file arm.lsl or device.lsl if
__DEVICE_LSL_FILE is defined.

default.lsl

This file includes a processor specific LSL file based on the selected processor.
See control program option --cpu.

device.lsl

Processor specific LSL file with a specification of the external memory attached
to the target processor. It includes the file arm_arch.lsl.

processor.lsl

This file is used by Eclipse as a template for the project LSL file. It includes
the file device.lsl.

template.lsl

When you select to add a linker script file when you create a project in Eclipse, Eclipse makes a copy of
the file template.lsl and names it “project_name.lsl". On the command line, the linker uses the file
default.lsl, unless you specify another file with the linker option --lsl-file (-d).

7.7.4.The Architecture Definition

Although you will probably not need to write an architecture definition (unless you are building your own
processor core) it helps to understand the Linker Script Language and how the definitions are interrelated.

Within an architecture definition the characteristics of a target processor core that are important for the
linking process are defined. These include:

• space definitions: the logical address spaces and their properties

• bus definitions: the I/O buses of the core architecture

• mappings: the address translations between logical address spaces, the connections between logical
address spaces and buses and the address translations between buses

Address spaces

A logical address space is a memory range for which the core has a separate way to encode an address
into instructions. Most microcontrollers and DSPs support multiple address spaces. For example, separate
spaces for code and data. Normally, the size of an address space is 2N, with N the number of bits used
to encode the addresses.

196

TASKING VX-toolset for ARM User Guide

The relation of an address space with another address space can be one of the following:

• one space is a subset of the other. These are often used for "small" absolute or relative addressing.

• the addresses in the two address spaces represent different locations so they do not overlap. This
means the core must have separate sets of address lines for the address spaces. For example, in
Harvard architectures we can identify at least a code and a data memory space.

Address spaces (even nested) can have different minimal addressable units (MAU), alignment restrictions,
and page sizes. All address spaces have a number that identifies the logical space (id). The following
table lists the different address spaces for the architecture ARM as defined in arm_arch.lsl.

DescriptionMAUIdSpace

Linear address space.81linear

The ARM architecture in LSL notation

The best way to write the architecture definition, is to start with a drawing. The following figure shows a
part of the ARM architecture:

The figure shows one address space called linear. The address space has attributes like a number
that identifies the logical space (id), a MAU and an alignment. In LSL notation the definition of this address
space looks as follows:

space linear
{
 id = 1;
 mau = 8;

 map (size=4G, dest=bus:local_bus);
}

The keyword map corresponds with the arrows in the drawing.You can map:

• address space => address space (not shown in the drawing)

• address space => bus

• memory => bus (not shown in the drawing)

• bus => bus (not shown in the drawing)

Next the internal buses, named local_bus must be defined in LSL:

197

Using the Linker

bus local_bus
{
 mau = 8;
 width = 32; // there are 32 data lines on the bus
}

This completes the LSL code in the architecture definition. Note that all code above goes into the
architecture definition, thus between:

architecture ARM
{
 // All code above goes here.
}

7.7.5.The Derivative Definition

Although you will probably not need to write a derivative definition (unless you are using multiple cores
that both access the same memory device) it helps to understand the Linker Script Language and how
the definitions are interrelated.

A derivative is the design of a processor, as implemented on a chip (or FPGA). It comprises one or more
cores and on-chip memory. The derivative definition includes:

• core definition: an instance of a core architecture

• bus definition: the I/O buses of the core architecture

• memory definitions: internal (or on-chip) memory

Core

Each derivative must have at least one core and each core must have a specification of its core architecture.
This core architecture must be defined somewhere in the LSL file(s).

core ARM
{
 architecture = ARM;
}

Bus

Each derivative can contain a bus definition for connecting external memory. In this example, the bus
local_bus maps to the bus local_bus defined in the architecture definition of core ARM:

bus local_bus
{
 mau = 8;
 width = 32;
 map (dest=bus:ARM:local_bus, dest_offset=0, size=4G);
}

198

TASKING VX-toolset for ARM User Guide

Memory

Memory is usually described in a separate memory definition, but you can specify on-chip memory for a
derivative. For example:

memory internal_code_rom
{
 mau = 8;
 type = rom;
 size = 2k;
 map(dest=bus:ARM:local_bus, size = 2k, dest_offset = 0x00100000);
 // src_offset is zero by default
}

This completes the LSL code in the derivative definition. Note that all code above goes into the derivative
definition, thus between:

derivative X // name of derivative
{
 // All code above goes here
}

7.7.6.The Processor Definition

The processor definition is only needed when you write an LSL file for a multi-processor embedded
system. The processor definition explicitly instantiates a derivative, allowing multiple processors of the
same type.

processor name
{
 derivative = derivative_name;
}

If no processor definition is available that instantiates a derivative, a processor is created with the same
name as the derivative.

7.7.7.The Memory Definition

Once the core architecture is defined in LSL, you may want to extend the processor with external (or
off-chip) memory.You need to specify the location and size of the physical external memory devices in
the target system.

The principle is the same as defining the core's architecture but now you need to fill the memory definition:

memory name
{
 // memory definitions
}

199

Using the Linker

Suppose your embedded system has 512kB of external ROM, named simrom, 512kB of external RAM,
named simram and 32kB of external NVRAM, named my_nvram (see figure above.) All memories are
connected to the bus local_bus. In LSL this looks like follows:

memory simrom
{
 mau = 8;
 type = rom;
 size = 512k;
 map (size = 512k, dest_offset=0, dest=bus:X:local_bus);
}

memory simram
{
 mau = 8;
 type = ram;
 size = 512k;
 map (size = 512k, dest_offset=512k, dest=bus:X:local_bus);
}

memory my_nvram
{
 mau = 8;
 size = 32k;
 type = ram;
 map (size = 32k, dest_offset=1M, dest=bus:X:local_bus);
}

If you use a different memory layout than described in the LSL file supplied for the target core, you can
specify this in Eclipse or you can specify this in a separate LSL file and pass both the LSL file that describes
the core architecture and your LSL file that contains the memory specification to the linker.

To add memory using Eclipse

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Memory.

In the right pane the Memory page appears.

3. Open the Memory tab and click on the Add... button.

200

TASKING VX-toolset for ARM User Guide

The Add new memory dialog appears.

4. Enter the memory name (for example my_nvram), type (for example nvram) and size.

5. Click on the Add... button.

The Add new mapping dialog appears.

6. You have to specify at least one mapping. Enter the mapping name (optional), address, size and
destination and click OK.

The new mapping is added to the list of mappings.

7. Click OK.

The new memory is added to the list of memories (user memory).

8. Click OK to close the Properties dialog.

The updated settings are stored in the project LSL file.

If you make changes to the on-chip memory as defined in the architecture LSL file, the memory is copied
to your project LSL file and the line #define __MEMORY is added. If you remove all the on-chip memory
from your project LSL file, also make sure you remove this define.

7.7.8.The Section Layout Definition: Locating Sections

Once you have defined the internal core architecture and optional memory, you can actually define where
your application must be located in the physical memory.

During compilation, the compiler divides the application into sections. Sections have a name, an indication
(section type) in which address space it should be located and attributes like writable or read-only.

In the section layout definition you can exactly define how input sections are placed in address spaces,
relative to each other, and what their absolute run-time and load-time addresses will be.

Example: section propagation through the toolset

To illustrate section placement, the following example of a C program (bat.c) is used. The program
saves the number of times it has been executed in battery back-upped memory, and prints the number.

#define BATTERY_BACKUP_TAG 0xa5f0
#include <stdio.h>

int uninitialized_data;
int initialized_data = 1;
#pragma section "non_volatile"
int battery_backup_tag;
int battery_backup_invok;
#pragma endsection

void main (void)

201

Using the Linker

{
 if (battery_backup_tag != BATTERY_BACKUP_TAG)
 {
 // battery back-upped memory area contains invalid data
 // initialize the memory
 battery_backup_tag = BATTERY_BACKUP_TAG;
 battery_backup_invok = 0;
 }
 printf("This application has been invoked %d times\n",
 battery_backup_invok++);
}

The compiler assigns names and attributes to sections. With the #pragma section and #pragma
endsection the compiler's default section naming convention is overruled and a section with the name
non_volatile appended is defined. In this section the battery back-upped data is stored.

As a result of the #pragma section "non_volatile", the data objects between the pragma pair
are placed in a section with the name ”.bss.non_volatile". Note that ".bss" sections are cleared at
startup. However, battery back-upped sections should not be cleared and therefore we will change this
section attribute using the LSL.

Section placement

The number of invocations of the example program should be saved in non-volatile (battery back-upped)
memory. This is the memory my_nvram from the example in Section 7.7.7, The Memory Definition.

To control the locating of sections, you need to write one or more section definitions in the LSL file. At
least one for each address space where you want to change the default behavior of the linker. In our
example, we need to locate sections in the address space linear:

section_layout ::linear
{
 // Section placement statements
}

To locate sections, you must create a group in which you select sections from your program. For the
battery back-up example, we need to define one group, which contains the section .bss.non_volatile.
All other sections are located using the defaults specified in the architecture definition. Section
.bss.non_volatile should be placed in non-volatile ram. To achieve this, the run address refers to
our non-volatile memory called my_nvram. Furthermore, the section should not be cleared and therefore
the attribute s (scratch) is assigned to the group:

group (ordered, run_addr = mem:my_nvram, attributes = rws)
{
 select ".bss.non_volatile";
}

This completes the LSL file for the sample architecture and sample program.You can now invoke the
linker with this file and the sample program to obtain an application that works for this architecture.

202

TASKING VX-toolset for ARM User Guide

For a complete description of the Linker Script Language, refer to Chapter 17, Linker Script Language
(LSL).

7.8. Linker Labels

The linker creates labels that you can use to refer to from within the application software. Some of these
labels are real labels at the beginning or the end of a section. Other labels have a second function, these
labels are used to address generated data in the locating phase. The data is only generated if the label
is used.

Linker labels are labels starting with _lc_. The linker assigns addresses to the following labels when
they are referenced:

DescriptionLabel

Begin of section name. Also used to mark the begin of the stack or heap or
copy table.

_lc_ub_name

_lc_b_name

End of section name. Also used to mark the end of the stack or heap._lc_ue_name

_lc_e_name

Start address of an overlay section in ROM._lc_cb_name

End address of an overlay section in ROM._lc_ce_name

Begin of group name. This label appears in the output file even if no reference
to the label exists in the input file.

_lc_gb_name

End of group name. This label appears in the output file even if no reference
to the label exists in the input file.

_lc_ge_name

The linker only allocates space for the stack and/or heap when a reference to either of the section labels
exists in one of the input object files.

If you want to use linker labels in your C source for sections that have a dot (.) in the name, you
have to replace all dots by underscores.

Example: refer to a label with section name with dots from C

Suppose a section has the name .text. When you want to refer to the begin of this section you have to
replace all dots in the section name by underscores:

#include <stdio.h>
extern void * _lc_ub__text;

void main(void)
{
 printf("The function main is located at %x\n",
 &_lc_ub__text);
}

203

Using the Linker

Example: refer to the stack

Suppose in an LSL file a stack section is defined with the name "stack" (with the keyword stack).You
can refer to the begin and end of the stack from your C source as follows:

#include <stdio.h>
extern char _lc_ub_stack[];
extern char _lc_ue_stack[];
void main()
{
 printf("Size of stack is %d\n",
 _lc_ub_stack - _lc_ue_stack);
 /* stack grows from high to low */
}

From assembly you can refer to the end of the stack with:

 .extern _lc_ue_stack ; end of user stack

7.9. Generating a Map File

The map file is an additional output file that contains information about the location of sections and symbols.
You can customize the type of information that should be included in the map file.

To generate a map file

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Map File.

4. Enable the option Generate XML map file format (.mapxml) for map file viewer.

5. (Optional) Enable the option Generate map file (.map).

6. (Optional) Enable the options to include that information in the map file.

Example on the command line (Windows Command Prompt)

The following command generates the map file test.map:

lkarm --map-file test.obj

With this command the map file test.map is created.

See Section 15.2, Linker Map File Format, for an explanation of the format of the map file.

204

TASKING VX-toolset for ARM User Guide

7.10. Linker Error Messages

The linker reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the linker immediately aborts the link/locate process.

E (Errors)

Errors are reported, but the linker continues linking and locating. No output files are produced unless you
have set the linker option --keep-output-files.

W (Warnings)

Warning messages do not result into an erroneous output file. They are meant to draw your attention to
assumptions of the linker for a situation which may not be correct.You can control warnings in the C/C++
Build » Settings » Tool Settings » Linker » Diagnostics page of the Project » Properties for menu
(linker option --no-warnings).

I (Information)

Verbose information messages do not indicate an error but tell something about a process or the state
of the linker. To see verbose information, use the linker option --verbose.

S (System errors)

System errors occur when internal consistency checks fail and should never occur.When you still receive
the system error message

S6##: message

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

On the command line you can use the linker option --diag to see an explanation of a diagnostic message:

205

Using the Linker

lkarm --diag=[format:]{all | number,...]

206

TASKING VX-toolset for ARM User Guide

Chapter 8. Run-time Environment
This chapter describes the startup code used by the TASKING VX-toolset for ARM C Compiler, the vector
table, the stack layout and the heap.

8.1. Startup Code

You need the run-time startup code to build an executable application. The default startup code consists
of the following components:

• Initialization code. This code is executed when the program is initiated and before the function main()
is called.

• Exit code. This controls the close down of the application after the program's main function terminates.

The startup code is part of the C library, and the source is present in the file cstart.asm (ARM and
Thumb), or cstart.c (Thumb2 specific) in the directory lib\src. This code is generic code. It uses
linker generated symbols which you can give target specific or application specific values.These symbols
are defined in the linker script file (include.lsl\arm_arch.lsl) and you can specify their values in
Eclipse or on the command line with linker option --define. If the default run-time startup code does not
match your configuration, you need to make a copy of the startup file, modify it and add it to your project.
A typical example for doing this is when main() has arguments, typically argc/argv. In this case cstart
needs to be recompiled with the macro __USE_ARGC_ARGV set.When necessary you can use the macro
__ARGCV_BUFSIZE to define the size of the buffer used to pass arguments to main().

The entry point of the startup code (reset handler) is label _START. This global label should not be
removed, since the linker uses it in the linker script file. It is also used as the default start address of the
application.

Initialization code

The following initialization actions are executed before the application starts:

• Load the 'real' program address. This assures that the reset handler is immune for any ROM/RAM
re-mapping.

• Initialize the stack pointers for each processor mode. The stack pointers are loaded in memory by the
stack address located at a linker generate symbol (for example _lc_ub_stack). These symbols are
defined in the linker script file. See Section 8.4, Stack and Heap, for detailed information on the stack.

• Call a user function which initializes hardware.The startup code calls the function __init_hardware.
This function has an empty implementation in the C library, which you should change if certain hardware
initializations, such as ROM/RAM re-mapping or MMU configuration, are required before calling the
main application.

• Copy initialized sections from ROM to RAM, using a linker generated table (also known as the 'copy
table') and clear uninitialized data sections in RAM.

207

• Initialize or copy the vector table. The startup code calls the function __init_vector_table. This
function has a default implementation in the C library, which copies the vector table from ROM to RAM
if necessary.You should only change it in very specific situations. For example, in case position
dependent vectors are used (B instructions instead of LDR PC) and the vector table must be generated
in RAM (or copied from ROM to RAM with patched offsets in the B instructions).

• (cstart.asm only) Switch to the user-defined application mode as defined through the symbol
_APPLICATION_MODE_ in the LSL file.This symbol is used to set the value of the CPSR status register
before calling the function main.

• (cstart.asm only) Switch to Thumb code if you specified command line option --thumb.

• Initialize profiling if profiling is enabled. For an extensive description of profiling refer to Chapter 13,
Profiling.

• Initialize the argc and argv arguments.

• Call the entry point of your application with a call to function main().

Exit code

When the C application 'returns', which is not likely to happen in an embedded environment, the program
ends with a call to the library function exit().

Macro preprocessor symbols

A number of macro preprocessor symbols are used in the startup code. These are enabled when you
use a particular option or you can enable or disable them using the assembler option --define with the
following syntax:

--define=symbol[=value]

In the startup file (cstart.asm and cstart.c) the following macro preprocessor symbols are used:

DescriptionDefine

If defined, initialize profiling.__PROF_ENABLE__

If defined, call posix_main instead of main.__POSIX__

If defined, pass arguments to main: int main(int argc, char
*argv[]).

__USE_ARGC_ARGV

Define buffer size for argv. (default: 256 bytes)__ARGCV_BUFSIZE

The following table shows the linker labels and other labels used in the startup code.

DescriptionDefine

Start label, mentioned in LSL file (arm_arch.lsl)_START

Real program address. (*)_Next

Start label user C program.main

208

TASKING VX-toolset for ARM User Guide

DescriptionDefine

Start label of exit() function.exit

User/system mode stack pointer._lc_ub_stack

Undefined mode stack pointer. (*)_lc_ub_stack_und

Supervisor mode stack pointer. (*)_lc_ub_stack_svc

Abort mode stack pointer. (*)_lc_ub_stack_abt

IRQ mode stack pointer. (*)_lc_ub_stack_irq

FIQ mode stack pointer. (*)_lc_ub_stack_fiq

ROM to RAM copy table._lc_ub_table

Contains the processor mode, and the IRQ/FIQ interrupts mode.*_APPLICATION_MODE_

Start label of hardware initialization routine.__init_hardware

Start label of vector table initialization.__init_vector_table

(*) The labels marked with a * are available in cstart.asm only.

8.2. Reset Handler and Vector Table

Reset handler

As explained in the previous section the entry point of the startup code (reset handler) is label _START.
The reset handler can have a fixed ROM address (run address). If the reset handler is called from the
vector table, you do not need the specify a fixed address. In this case the linker determines the address
and patches the vector table.There are however situations were you have to specify a fixed ROM address:

• If _START is the entry point upon reset.Typically you would set the ROM address to the address which
is mapped at address 0x00000000.Your initialization code remaps this address during startup. Note
that the reset handler in the run-time library is immune to this remapping because the first instruction
in the startup code sets the program counter to the actual ROM address.

• When the reset handler is called from the vector table with a branch instruction (B _START) and the
linker has located the reset handler at an address that is out-of-range of the branch instruction. When
you specify a fixed ROM address you can make sure that the reset handler can be called from the
vector table. Note however that you can prevent out-of-range branches by using a position independent
vector table, which loads the handler addresses into the program counter by means of a PC-relative
load from a literal pool.

Reset handler on fixed ROM address (all architectures)

To force the reset handler on a fixed ROM address, you need to define the symbol __START.This symbol
is used in the linker script file arm_arch.lsl. By default, __START is not defined.

209

Run-time Environment

To define a symbol for the linker script file

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. Select Linker » Script File.

The Defined symbols box shows the symbols that are currently defined.

4. To define a new symbol, click on the Add button in the Defined symbols box.

5. Type the symbol definition (for example, __START=0x0).

The following table contains an overview of the defines you can set. The defines are used in
arm_arch.lsl.

DescriptionDefine

Reset handler ROM address__START

Main application execution mode. Default value is 0x1F (SYS
mode).

__PROCESSOR_MODE

If 0, IRQ interrupts are enabled. The default value is 0x80 (IRQ
disabled).

__IRQ_BIT

If 0, FIQ interrupts are enabled. The default value is 0x40 (FIQ
disabled).

__FIQ_BIT

If defined, the vector table will not be generated.__NO_AUTO_VECTORS

If defined, the vector table will not be generated.__NO_DEFAULT_AUTO_VECTORS

Number of vectors (default 16).__NR_OF_VECTORS

If defined, position independent vectors are used.__PIC_VECTORS

If defined, the FIQ handler is located directly at the FIQ vector
(position dependent vector table only).

__FIQ_HANDLER_INLINE

Address of the vector table in ROM (default 0x00000000).__VECTOR_TABLE_ROM_ADDR

If defined, space must be reserved for a copy of the vector table
in RAM.

__VECTOR_TABLE_RAM_SPACE

Address of the copy of the vector table in RAM (default
0x00000000).

__VECTOR_TABLE_RAM_ADDR

If defined, the linker provides copy address symbols so that the
startup code can copy the vector table from ROM to RAM.

__VECTOR_TABLE_RAM_COPY

210

TASKING VX-toolset for ARM User Guide

Main application execution mode (all architectures except M-profile)

With the symbol __PROCESSOR_MODE you can define the execution mode in which the processor should
run when your application's main program is called. Based on this setting, together with the interrupt
status (FIQ interrupts enabled/disabled, IRQ interrupts enabled/disabled), the linker will generate a symbol
(_APPLICATION_MODE_) which value is used in the startup code in the run-time library to set the value
of the CPSR status register before calling your main function. Available values:

DescriptionValue

USR mode0x10

FIQ mode0x11

IRQ mode0x12

SVC mode0x13

ABT mode0x17

UND mode0x1B

SYS mode (default)0x1F

Interrupt Status (all architectures except M-profile)

It is common use to start with interrupts disabled (__IRQ_BIT=0x80 and __FIQ_BIT=0x40) and enable
interrupt during run-time after installing all exception handlers and initializing all peripherals. To enable
interrupts during run-time, use the __setcpsr() intrinsic:

__setcpsr (0x00, 0x80); /* Enable IRQ interrupts */
__setcpsr (0x00, 0x40); /* Enable FIQ interrupts */

If you want to start with interrupts enabled, set the define the symbols __IRQ_BIT=0 and/or __FIQ_BIT=0.

Vector table

By default the linker can generate a vector table, unless you define the symbol __NO_AUTO_VECTORS
or __NO_DEFAULT_AUTO_VECTORS.

The linker will look for specific symbols designating the start of a handler function. These symbols are
generated by the compiler when one of the following function qualifiers is used:

Vector symbolFunction type qualifier

_vector_1__interrupt_und

_vector_2 (*)__interrupt_svc

_vector_3__interrupt_iabt

_vector_4__interrupt_dabt

_vector_6__interrupt_irq

_vector_7__interrupt_fiq

_vector_n__interrupt(n)

211

Run-time Environment

(*) For M-profile architecture the __interrupt_swi qualifier is mapped to _vector_11. Function
qualifier __interrupt_swi is equal to __interrupt_svc.

Note that the reset handler is designated by the symbol _START instead of _vector_0. The fifth vector,
with symbol _vector_5 is reserved.You should use the same vector symbols in hand-coded assembly
handlers.You may first want to generate an idle handler in C with the compiler and than use the result
as a starting point for your assembly implementation. If the linker does not find the symbol for a handler,
it will generate a loop for the corresponding vector, i.e. a jump to itself.

Note that if you have more than one handler for the same exception, for example for different IRQ's or
for different run-time phases of your application, and you are using the __interrupt_type function
qualifier of the compiler, you will need to specify the __novector attribute in order to prevent the compiler
from generating the _vector_nr symbol multiple times, as this would lead to a link error.

Vector table size (M-profile architectures)

The vector table size for M-profile architectures is calculated as 4 times the number of vectors.The default
number of vectors is 16, but you can specify another value by defining the symbol __NR_OF_VECTORS.

Vector table versions (all architectures except M-profile)

You can select between two versions of the vector table: position dependent or position independent.

The position dependent table contains branch instructions to the handlers. The handlers must be located
in-range of the branch instructions. The size of the table is 32 bytes. This is the default.

The position independent table contains PC-relative load instructions of the PC. The handler addresses
are in a literal pool (data pocket) following the vector table. There are no range restrictions. The size of
the table and pool together is 64 bytes.

A position independent table is recommended if the table is copied from ROM to RAM at run-time or if
the ROM table is re-mapped to address 0x00000000 after startup.

To select a position independent vector table, define the symbol __PIC_VECTORS.

FIQ handler at FIQ vector (all architectures except M-profile)

If you selected a position dependent vector table (this is the default), it is possible to locate the FIQ handler
directly at the FIQ vector, since the FIQ vector is the last vector in the table. To do this, define the symbol
__FIQ_HANDLER_INLINE. Doing so saves a branch instruction when servicing a fast interrupt. The
generated vector table or the space reserved for the table will be 28 bytes instead of 32.

This option is not available for a position independent vector table. Note that you need to use the __at()
attribute to specify the actual position of the FIQ handler.

Vector table ROM address (all architectures)

The ROM address of the vector table is usually address 0x00000000.You have to specify an address if
the vector table will be copied from ROM to RAM (address 0x00000000 is mapped to RAM) or if the
hardware uses high vectors at address 0xFFFF0000. If you forced the reset handler on address

212

TASKING VX-toolset for ARM User Guide

0x00000000 then you also have to specify a vector table ROM address to prevent overlapping address
ranges.

By default, the symbol __VECTOR_TABLE_ROM_ADDR is defined as 0x00000000.

Reserve RAM space for copy of vector table (all architectures except
M-profile)

You can ask the linker to reserve space in RAM memory for a copy of the vector table at run-time at a
certain address in memory. Typically this would be the address which will be the mapping of address
0x00000000 after ROM/RAM re-mapping. If you reserve space for a copy you can also let the startup
code copy the table automatically from ROM to RAM, but only if position independent vectors are used.

By default, the symbol __VECTOR_TABLE_RAM_SPACE is not defined.

Vector table RAM address (all architectures except M-profile)

With the define __VECTOR_TABLE_RAM_ADDR you can set the address in RAM of the copy of the vector
table (default 0x00000000).

Copy of vector table in RAM (all architectures except M-profile)

If you define the symbol __VECTOR_TABLE_RAM_COPY, the linker will provide copy address symbols
that will be used by the startup code to copy the vector table from ROM to RAM.

Refer to the run-time library implementation of the __init_vector_table routine in
lib\src\initvectortable.asm or initvectortable_thumb.asm for more information.

8.3. CMSIS Support

The interrupt vector table, required for CMSIS, is defined in device specific LSL files. These LSL files are
available in the include.lsl directory of the product installation directory. Device LSL files are similarly
named as the CMSIS header files. For example when you use stm32f10x.h the LSL file stm32f10x.lsl
is available. The device LSL files include the file arm_arch.lsl.You can control the allocated amount
of flash and SRAM by using defines for the linker. The names of these defines vary per device.

The following table contains an overview of the defines you can set.

Vector table defines

DescriptionDefine

If defined, the default vector table will not be generated.__NO_DEFAULT_AUTO_VECTORS

If defined, the CMSIS vector table will be generated.__CMSIS_VECTORS

Number of vectors.__NR_OF_VECTORS

If defined, the vector table is copied from ROM to RAM at startup.__COPY_VECTOR_TABLE

Address of the vector table in ROM.__VECTOR_TABLE_ROM_ADDR

213

Run-time Environment

DescriptionDefine

If defined, space must be reserved for a copy of the vector table
in RAM.

__VECTOR_TABLE_RAM_SPACE

Address of the copy of the vector table in RAM.__VECTOR_TABLE_RAM_ADDR

If defined, the linker provides copy address symbols so that the
startup code can copy the vector table from ROM to RAM.

__VECTOR_TABLE_RAM_COPY

Memory defines

DescriptionDefine

Size of ROM memory to be allocated.__ROM_SIZE

Size of RAM memory to be allocated.__RAM_SIZE

Size of the flash memory to be allocated.__FLASH_SIZE

Size of the SRAM memory to be allocated.__SRAM_SIZE

Size of the SRAM memory to be allocated.__CPU_SRAM_SIZE

Size of the AHH SRAM bank 0memory.The memory is not allocated if this macro
is not defined.

__AHB_SRAM0_SIZE

Size of the AHH SRAM bank 1 memory. The memory is not allocated if this
macro is not defined.

__AHB_SRAM1_SIZE

An example of the invocation of the linker (using the control program):

ccarm -CARMv7M "installation_dir\include.lsl\stm32f10x.lsl"
 -Wl-D__FLASH_SIZE=128k -Wl-D__SRAM_SIZE=20k file.obj

When you create a new project in Eclipse the LSL template file will be copied to the project. Eclipse will
pass device specific macro definitions to the linker, depending on the device selected in the Project »
Properties for » C/C++ Build » Processor properties page. This way the project LSL file will include
the appropriate device LSL file and memories are mapped as required for the selected device.

8.4. Stack and Heap

The stack is used for local automatic variables and function parameters. The following diagram shows
the structure of a stack frame.

214

TASKING VX-toolset for ARM User Guide

All ARM architectures, except for M-profile architectures, have separate stack pointers for each processor
mode. M-profile architectures have one stack pointer.These stack pointers should be initialized at run-time.
This is taken care of by the startup code in the run-time library, by means of linker-generated symbols
defined in the LSL file. See Section 8.1, Startup Code, for a list of these symbols.

You can define the values of these symbols in Eclipse as follows.

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Stack/Heap.

In the right pane the Stack/Heap property page appears.

3. Make your changes and click OK.

215

Run-time Environment

The project LSL file is updated automatically according to the changes you make.

You can specify the size and location of the stacks.

The stack size is defined in the linker script file (arm_arch.lsl in directory include.lsl) with macros:

DescriptionDefine

Size of user stack.__STACK

Abort mode stack size. (*)__STACK_ABT

FIQ mode stack size. (*)__STACK_FIQ

IRQ mode stack size. (*)__STACK_IRQ

Supervisor mode stack size. (*)__STACK_SVC

Undefined mode stack size. (*)__STACK_UND

Defined if you do not expand the user stack if space is left.__STACK_FIXED

User stack start address.__STACKADDR

(*) The defines marked with a * are not used for M-profile architectures.

Heap allocation

The heap is only needed when you use one or more of the dynamic memory management library functions:
malloc(), calloc(), free() and realloc(). The heap is a reserved area in memory. Only if you
use one of the memory allocation functions listed above, the linker automatically allocates a heap, as
specified in the linker script file with the keyword heap.

A special section called heap is used for the allocation of the heap area. The size of the heap is defined
in the linker script file (arm_arch.lsl in directory include.lsl) with the macro __HEAP, which results
in a section called heap. The linker defined labels _lc_ub_heap and _lc_ue_heap (begin and end of
heap) are used by the library function sbrk(), which is called by malloc() when memory is needed
from the heap.

The following heap macros are used in arm_arch.lsl:

DescriptionDefine

Size of heap.__HEAP

Defined if you do not expand the heap if space is left.__HEAP_FIXED

Heap start address.__HEAPADDR

216

TASKING VX-toolset for ARM User Guide

Chapter 9. Using the Utilities
The TASKING VX-toolset for ARM comes with a number of utilities:

A control program. The control program invokes all tools in the toolset and lets you quickly
generate an absolute object file from C and/or assembly source input files. Eclipse uses
the control program to call the compiler, assembler and linker.

ccarm

A utility program to maintain, update, and reconstruct groups of programs.The make utility
looks whether files are out of date, rebuilds them and determines which other files as a
consequence also need to be rebuilt.

mkarm

The make utility which is used in Eclipse. It supports parallelism which utilizes the multiple
cores found on modern host hardware.

amk

An archiver. With this utility you create and maintain library files with relocatable object
modules (.obj) generated by the assembler.

ararm

A high level language (HLL) object dumper.With this utility you can dump information about
an absolute object file (.abs) . Key features are a disassembler with HLL source intermixing
and HLL symbol display and a HLL symbol listing of static and global symbols.

hldumparm

A utility to limit the size of the cache by removing all files older than a few days or by
removing older files until the total size of the cache is smaller than a specified size.

expirearm

9.1. Control Program

The control program is a tool that invokes all tools in the toolset for you. It provides a quick and easy way
to generate the final absolute object file out of your C/C++ sources without the need to invoke the compiler,
assembler and linker manually.

Eclipse uses the control program to call the C++ compiler, C compiler, assembler and linker, but you can
call the control program from the command line. The invocation syntax is:

ccarm [[option]... [file]...]...

Recognized input files

• Files with a .cc, .cxx or .cpp suffix are interpreted as C++ source programs and are passed to the
C++ compiler.

• Files with a .c suffix are interpreted as C source programs and are passed to the compiler.

• Files with a .asm suffix are interpreted as hand-written assembly source files which have to be passed
to the assembler.

• Files with a .src suffix are interpreted as compiled assembly source files. They are directly passed to
the assembler.

• Files with a .lib suffix are interpreted as library files and are passed to the linker.

• Files with a .obj suffix are interpreted as object files and are passed to the linker.

217

• Files with a .out suffix are interpreted as linked object files and are passed to the locating phase of
the linker. The linker accepts only one .out file in the invocation.

• Files with a .lsl suffix are interpreted as linker script files and are passed to the linker.

Options

The control program accepts several command line options. If you specify an unknown option to the
control program, the control program looks if it is an option for a specific tool. If so, it passes the option
directly to the tool. However, it is recommended to use the control program options --pass-* (-Wcp, -Wc,
-Wa, -Wl) to pass arguments directly to tools.

For a complete list and description of all control program options, see Section 11.6, Control Program
Options.

Example with verbose output

ccarm --verbose test.c

The control program calls all tools in the toolset and generates the absolute object file test.abs. With
option --verbose (-v) you can see how the control program calls the tools:

+ "path\carm" -o cc3248a.src test.c
+ "path\asarm" -o cc3248b.obj cc3248a.src
+ "path\lkarm" cc3248b.obj -o test.abs --map-file
 -lcarm -lfparm -lrtarm"

The control program produces unique filenames for intermediate steps in the compilation process (such
as cc3248a.src and cc3248b.obj in the example above) which are removed afterwards, unless you
specify command line option --keep-temporary-files (-t).

Example with argument passing to a tool

ccarm --pass-compiler=-Oc test.c

The option -Oc is directly passed to the compiler.

218

TASKING VX-toolset for ARM User Guide

9.2. Make Utility mkarm

If you are working with large quantities of files, or if you need to build several targets, it is rather
time-consuming to call the individual tools to compile, assemble, link and locate all your files.

You save already a lot of typing if you use the control program and define an options file.You can even
create a batch file or script that invokes the control program for each target you want to create. But with
these methods all files are completely compiled, assembled and linked to obtain the target file, even if
you changed just one C source. This may demand a lot of (CPU) time on your host.

The make utility mkarm is a tool to maintain, update, and reconstruct groups of programs. The make
utility looks which files are out-of-date and only recreates these files to obtain the updated target.

Make process

In order to build a target, the make utility needs the following input:

• the target it should build, specified as argument on the command line

• the rules to build the target, stored in a file usually called makefile

In addition, the make utility also reads the file mkarm.mk which contains predefined rules and
macros. See Section 9.2.2, Writing a Makefile.

The makefile contains the relationships among your files (called dependencies) and the commands
that are necessary to create each of the files (called rules). Typically, the absolute object file (.abs) is
updated when one of its dependencies has changed.The absolute file depends on .obj files and libraries
that must be linked together. The .obj files on their turn depend on .src files that must be assembled
and finally, .src files depend on the C source files (.c) that must be compiled. In the makefile this
looks like:

test.src : test.c # dependency
 carm test.c # rule

test.obj : test.src
 asarm test.src

test.abs : test.obj
 lkarm test.obj -o test.abs --map-file -lcarm -lfparm -lrtarm

You can use any command that is valid on the command line as a rule in the makefile. So, rules are
not restricted to invocation of the toolset.

Example

To build the target test.abs, call mkarm with one of the following lines:

219

Using the Utilities

mkarm test.abs

mkarm -fmymake.mak test.abs

By default the make utility reads the file makefile so you do not need to specify it on the command line.
If you want to use another name for the makefile, use the option -f.

If you do not specify a target, mkarm uses the first target defined in the makefile. In this example it would
build test.src instead of test.abs.

Based on the sample invocation, the make utility now tries to build test.abs based on the makefile and
performs the following steps:

1. From the makefile the make utility reads that test.abs depends on test.obj.

2. If test.obj does not exist or is out-of-date, the make utility first tries to build this file and reads from
the makefile that test.obj depends on test.src.

3. If test.src does exist, the make utility now creates test.obj by executing the rule for it: asarm
test.src.

4. There are no other files necessary to create test.abs so the make utility now can use test.obj to
create test.abs by executing the rule: lkarm test.obj -o test.abs ...

The make utility has now built test.abs but it only used the assembler to update test.obj and the
linker to create test.abs.

If you compare this to the control program:

ccarm test.c

This invocation has the same effect but now all files are recompiled (assembled, linked and located).

9.2.1. Calling the Make Utility

You can only call the make utility from the command line. The invocation syntax is:

mkarm [[option]... [target]... [macro=def]...]

For example:

mkarm test.abs

You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

target

Macro definition. This definition remains fixed for the mkarm invocation. It overrides
any regular definitions for the specified macro within the makefiles and from the
environment. It is inherited by subordinate mkarm's but act as an environment variable
for these. That is, depending on the -e setting, it may be overridden by a makefile
definition.

macro=def

220

TASKING VX-toolset for ARM User Guide

For a complete list and description of all make utility options, see Section 11.7, Make
Utility Options.

option

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

9.2.2. Writing a Makefile

In addition to the standard makefile makefile, the make utility always reads the makefile mkarm.mk
before other inputs. This system makefile contains implicit rules and predefined macros that you can use
in the makefile makefile.

With the option -r (Do not read the mkarm.mk file) you can prevent the make utility from reading mkarm.mk.

The default name of the makefile is makefile in the current directory. If you want to use another makefile,
use the option -f.

The makefile can contain a mixture of:

• targets and dependencies

• rules

• macro definitions or functions

• conditional processing

• comment lines

• include lines

• export lines

To continue a line on the next line, terminate it with a backslash (\):

this comment line is continued\
on the next line

If a line must end with a backslash, add an empty macro:

this comment line ends with a backslash \$(EMPTY)
this is a new line

9.2.2.1.Targets and Dependencies

The basis of the makefile is a set of targets, dependencies and rules. A target entry in the makefile has
the following format:

221

Using the Utilities

target ... : [dependency ...] [; rule]
 [rule]
 ...

Target lines must always start at the beginning of a line, leading white spaces (tabs or spaces) are not
allowed. A target line consists of one or more targets, a semicolon and a set of files which are required
to build the target (dependencies). The target itself can be one or more filenames or symbolic names:

all: demo.abs final.abs

demo.abs final.abs: test.obj demo.obj final.obj

You can now can specify the target you want to build to the make utility. The following three invocations
all have the same effect:

mkarm
mkarm all
mkarm demo.abs final.abs

If you do not specify a target, the first target in the makefile (in this example all) is built. The target all
depends on demo.abs and final.abs so the second and third invocation have the same effect and
the files demo.abs and final.abs are built.

You can normally use colons to denote drive letters. The following works as intended:

c:foo.obj : a:foo.c

If a target is defined in more than one target line, the dependencies are added to form the target's complete
dependency list:

all: demo.abs # These two lines are equivalent with:
all: final.abs # all: demo.abs final.abs

Special targets

There are a number of special targets. Their names begin with a period.

DescriptionTarget

If you call the make utility with a target that has no definition in the makefile, this
target is built.

.DEFAULT

When the make utility has finished building the specified targets, it continues with
the rules following this target.

.DONE

Non-zero error codes returned from commands are ignored. Encountering this in a
makefile is the same as specifying the option -i on the command line.

.IGNORE

The rules following this target are executed before any other targets are built..INIT

Dependency files mentioned for this target are never removed. Normally, if a
command in a rule returns an error or when the target construction is interrupted,
the make utility removes that target file.You can use the option -p on the command
line to make all targets precious.

.PRECIOUS

222

TASKING VX-toolset for ARM User Guide

DescriptionTarget

Commands are not echoed before executing them. Encountering this in a makefile
is the same as specifying the option -s on the command line.

.SILENT

This target specifies a list of file extensions. Instead of building a completely specified
target, you now can build a target that has a certain file extension. Implicit rules to
build files with a number of extensions are included in the system makefile mkarm.mk.

If you specify this target with dependencies, these are added to the existing
.SUFFIXES target in mkarm.mk. If you specify this target without dependencies,
the existing list is cleared.

.SUFFIXES

9.2.2.2. Makefile Rules

A line with leading white space (tabs or spaces) is considered as a rule and associated with the most
recently preceding dependency line. A rule is a line with commands that are executed to build the
associated target. A target-dependency line can be followed by one or more rules.

final.src : final.c # target and dependency
 move test.c final.c # rule1
 carm final.c # rule2

You can precede a rule with one or more of the following characters:

does not echo the command line, except if -n is used.@

the make utility ignores the exit code of the command. Normally the make utility stops if a
non-zero exit code is returned.This is the same as specifying the option -i on the command
line or specifying the special .IGNORE target.

-

The make utility uses a shell or Windows command prompt (cmd.exe) to execute the
command. If the '+' is not followed by a shell line, but the command is an MS-DOS command
or if redirection is used (<, |, >), the shell line is passed to cmd.exe anyway.

+

You can force mkarm to execute multiple command lines in one shell environment. This is accomplished
with the token combination ';\'. For example:

cd c:\Tasking\bin ;\
mkarm -V

Note that the ';' must always directly be followed by the '\' token. Whitespace is not removed when it is at
the end of the previous command line or when it is in front of the next command line. The use of the ';'
as an operator for a command (like a semicolon ';' separated list with each item on one line) and the '\'
as a layout tool is not supported, unless they are separated with whitespace.

Inline temporary files

The make utility can generate inline temporary files. If a line contains <<LABEL (no whitespaces!) then
all subsequent lines are placed in a temporary file until the line LABEL is encountered. Next, <<LABEL
is replaced by the name of the temporary file. For example:

223

Using the Utilities

lkarm -o $@ -f <<EOF
 $(separate "\n" $(match .obj $!))
 $(separate "\n" $(match .lib $!))
 $(LKFLAGS)
EOF

The three lines between <<EOF and EOF are written to a temporary file (for example mkce4c0a.tmp),
and the rule is rewritten as: lkarm -o $@ -f mkce4c0a.tmp.

Suffix targets

Instead of specifying a specific target, you can also define a general target. A general target specifies the
rules to generate a file with extension .ex1 to a file with extension .ex2. For example:

.SUFFIXES: .c

.c.obj :
 ccarm -c $<

Read this as: to build a file with extension .obj out of a file with extension .c, call the control program
with -c $<. $< is a predefined macro that is replaced with the name of the current dependency file. The
special target .SUFFIXES: is followed by a list of file extensions of the files that are required to build the
target.

Implicit rules

Implicit rules are stored in the system makefile mkarm.mk and are intimately tied to the .SUFFIXES
special target. Each dependency that follows the .SUFFIXES target, defines an extension to a filename
which must be used to build another file. The implicit rules then define how to actually build one file from
another. These files share a common basename, but have different extensions.

If the specified target on the command line is not defined in the makefile or has not rules in the makefile,
the make utility looks if there is an implicit rule to build the target.

Example:

LIB = -lcarm -lfparm -lrtarm # macro

prog.abs: prog.obj sub.obj
 lkarm prog.obj sub.obj $(LIB) -o prog.abs

prog.obj: prog.c inc.h
 carm prog.c
 asarm prog.src

sub.obj: sub.c inc.h
 carm sub.c
 asarm sub.src

This makefile says that prog.abs depends on two files prog.obj and sub.obj, and that they in turn
depend on their corresponding source files (prog.c and sub.c) along with the common file inc.h.

The following makefile uses implicit rules (from mkarm.mk) to perform the same job.

224

TASKING VX-toolset for ARM User Guide

LDFLAGS = -lcarm -lfparm -lrtarm # macro used by implicit rules
prog.abs: prog.obj sub.obj # implicit rule used
prog.obj: prog.c inc.h # implicit rule used
sub.obj: sub.c inc.h # implicit rule used

9.2.2.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lowercase or uppercase characters, uppercase is an accepted convention.
The general form of a macro definition is:

MACRO = text
MACRO += and more text

Spaces around the equal sign are not significant. With the += operator you can add a string to an existing
macro. An extra space is inserted before the added string automatically.

To use a macro, you must access its contents:

$(MACRO) # you can read this as
${MACRO} # the contents of macro MACRO

If the macro name is a single character, the parentheses are optional. Note that the expansion is done
recursively, so the body of a macro may contain other macros. These macros are expanded when the
macro is actually used, not at the point of definition:

FOOD = $(EAT) and $(DRINK)
EAT = meat and/or vegetables
DRINK = water
export FOOD

The macro FOOD is expanded as meat and/or vegetables and water at the moment it is used in
the export line, and the environment variable FOOD is set accordingly.

Predefined macros

DescriptionMacro

Holds the value mkarm. Any line which uses MAKE, temporarily overrides the option
-n (Show commands without executing), just for the duration of the one line. This way
you can test nested calls to MAKE with the option -n.

MAKE

Holds the set of options provided to mkarm (except for the options -f and -d). If this
macro is exported to set the environment variable MAKEFLAGS, the set of options is
processed before any command line options.You can pass this macro explicitly to
nested mkarm's, but it is also available to these invocations as an environment variable.

MAKEFLAGS

225

Using the Utilities

DescriptionMacro

Holds the name of the directory where mkarm is installed.You can use this macro to
refer to files belonging to the product, for example a library source file.

DOPRINT = $(PRODDIR)/lib/src/_doprint.c

When mkarm is installed in the directory c:/Tasking/bin this line expands to:

DOPRINT = c:/Tasking/lib/src/_doprint.c

PRODDIR

Holds the default list of commands which are local to the SHELL. If a rule is an
invocation of one of these commands, a SHELL is automatically spawned to handle
it.

SHELLCMD

This macro translates to a dollar sign.Thus you can use "$$" in the makefile to represent
a single "$".

$

Dynamically maintained macros

There are several dynamically maintained macros that are useful as abbreviations within rules. It is best
not to define them explicitly.

DescriptionMacro

The basename of the current target.$*

The name of the current dependency file.$<

The name of the current target.$@

The names of dependents which are younger than the target.$?

The names of all dependents.$!

The $< and $* macros are normally used for implicit rules. They may be unreliable when used within
explicit target command lines. All macros may be suffixed with F to specify the Filename components
(e.g. ${*F}, ${@F}). Likewise, the macros $*, $< and $@ may be suffixed by D to specify the Directory
component.

The result of the $* macro is always without double quotes ("), regardless of the original target having
double quotes (") around it or not.

The result of using the suffix F (Filename component) or D (Directory component) is also always without
double quotes ("), regardless of the original contents having double quotes (") around it or not.

9.2.2.4. Makefile Functions

A function not only expands but also performs a certain operation. Functions syntactically look like macros
but have embedded spaces in the macro name, e.g. '$(match arg1 arg2 arg3)'. All functions are built-in
and currently these are: match, separate, protect, exist,nexist and addprefix.

$(match suffix filename ...)

The match function yields all arguments which match a certain suffix:

226

TASKING VX-toolset for ARM User Guide

$(match .obj prog.obj sub.obj mylib.lib)

yields:

prog.obj sub.obj

$(separate separator argument ...)

The separate function concatenates its arguments using the first argument as the separator. If the first
argument is enclosed in double quotes then '\n' is interpreted as a newline character, '\t' is interpreted as
a tab, '\ooo' is interpreted as an octal value (where, ooo is one to three octal digits), and spaces are taken
literally. For example:

$(separate "\n" prog.obj sub.obj)

results in:

prog.obj
sub.obj

Function arguments may be macros or functions themselves. So,

$(separate "\n" $(match .obj $!))

yields all object files the current target depends on, separated by a newline string.

$(protect argument)

The protect function adds one level of quoting.This function has one argument which can contain white
space. If the argument contains any white space, single quotes, double quotes, or backslashes, it is
enclosed in double quotes. In addition, any double quote or backslash is escaped with a backslash.

Example:

echo $(protect I'll show you the "protect" function)

yields:

echo "I'll show you the \"protect\" function"

$(exist file | directory argument)

The exist function expands to its second argument if the first argument is an existing file or directory.

Example:

$(exist test.c ccarm test.c)

When the file test.c exists, it yields:

ccarm test.c

When the file test.c does not exist nothing is expanded.

227

Using the Utilities

$(nexist file|directory argument)

The nexist function is the opposite of the exist function. It expands to its second argument if the first
argument is not an existing file or directory.

Example:

$(nexist test.src ccarm test.c)

$(addprefix prefix, argument ...)

The addprefix function adds a prefix to its arguments. It is used in mkarm.mk for invocation of the
control program to pass arguments directly to a tool.

Example:

ccarm $(addprefix -Wc, -g1 -O2) test.c

yields:

ccarm -Wc-g1 -Wc-O2 test.c

9.2.2.5. Conditional Processing

Lines containing ifdef, ifndef, else or endif are used for conditional processing of the makefile.
They are used in the following way:

ifdef macro-name
if-lines
else
else-lines
endif

The if-lines and else-lines may contain any number of lines or text of any kind, even other ifdef, ifndef,
else and endif lines, or no lines at all.The else line may be omitted, along with the else-lines following
it.

First the macro-name after the ifdef command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an else line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the ifndef line instead of ifdef, the macro is tested for not being defined. These
conditional lines can be nested up to 6 levels deep.

You can also add tests based on strings. With ifeq the result is true if the two strings match, with ifneq
the result is true if the two strings do not match. They are used in the following way:

ifeq(string1,string2)
if-lines
else

228

TASKING VX-toolset for ARM User Guide

else-lines
endif

9.2.2.6. Comment, Include and Export Lines

Comment lines

Anything after a "#" is considered as a comment, and is ignored. If the "#" is inside a quoted string, it is
not treated as a comment. Completely blank lines are ignored.

test.src : test.c # this is comment and is
 ccarm test.c # ignored by the make utility

Include lines

An include line is used to include the text of another makefile (like including a .h file in a C source).
Macros in the name of the included file are expanded before the file is included.You can include several
files. Include files may be nested.

include makefile2 makefile3

Export lines

An export line is used to export a macro definition to the environment of any command executed by the
make utility.

GREETING = Hello
export GREETING

This example creates the environment variable GREETING with the value Hello. The macro is exported
at the moment the export line is read so the macro definition has to precede the export line.

229

Using the Utilities

9.3. Make Utility amk

amk is the make utility Eclipse uses to maintain, update, and reconstruct groups of programs. But you
can also use it on the command line. Its features are a little different from mkarm. The main difference
compared to mkarm and other make utilities, is that amk features parallelism which utilizes the multiple
cores found on modern host hardware, hardening for path names with embedded white space and it has
an (internal) interface to provide progress information for updating a progress bar. It does not use an
external command shell (/bin/sh, cmd.exe) but executes commands directly.

The primary purpose of any make utility is to speed up the edit-build-test cycle. To avoid having to build
everything from scratch even when only one source file changes, it is necessary to describe dependencies
between source files and output files and the commands needed for updating the output files. This is
done in a so called "makefile".

9.3.1. Makefile Rules

A makefile dependency rule is a single line of the form:

[target ...] : [prerequisite ...]

where target and prerequisite are path names to files. Example:

test.obj : test.c

This states that target test.obj depends on prerequisite test.c. So, whenever the latter is modified
the first must be updated. Dependencies accumulate: prerequisites and targets can be mentioned in
multiple dependency rules (circular dependencies are not allowed however).The command(s) for updating
a target when any of its prerequisites have been modified must be specified with leading white space
after any of the dependency rule(s) for the target in question. Example:

test.obj :
 ccarm test.c # leading white space

Command rules may contain dependencies too. Combining the above for example yields:

test.obj : test.c
 ccarm test.c

White space around the colon is not required. When a path name contains special characters such as
':', '#' (start of comment), '=' (macro assignment) or any white space, then the path name must be enclosed
in single or double quotes. Quoted strings can contain anything except the quote character itself and a
newline. Two strings without white space in between are interpreted as one, so it is possible to embed
single and double quotes themselves by switching the quote character.

When a target does not exist, its modification time is assumed to be very old. So, amk will try to make it.
When a prerequisite does not exist possibly after having tried to make it, it is assumed to be very new.
So, the update commands for the current target will be executed in that case. amk will only try to make
targets which are specified on the command line.The default target is the first target in the makefile which
does not start with a dot.

230

TASKING VX-toolset for ARM User Guide

Static pattern rules

Static pattern rules are rules which specify multiple targets and construct the prerequisite names for each
target based on the target name.

[target ...] : target-pattern : [prerequisite-patterns ...]

The target specifies the targets the rules applies to. The target-pattern and prerequisite-patterns specify
how to compute the prerequisites of each target. Each target is matched against the target-pattern to
extract a part of the target name, called the stem. This stem is substituted into each of the
prerequisite-patterns to make the prerequisite names (one from each prerequisite-pattern).

Each pattern normally contains the character '%' just once. When the target-pattern matches a target,
the '%' can match any part of the target name; this part is called the stem. The rest of the pattern must
match exactly. For example, the target foo.obj matches the pattern '%.obj', with 'foo' as the stem.
The targets foo.c and foo.abs do not match that pattern.

The prerequisite names for each target are made by substituting the stem for the '%' in each prerequisite
pattern.

Example:

objects = test.obj filter.obj

all: $(objects)

$(objects): %.obj: %.c
 ccarm -c $< -o $@
 echo the stem is $*

Here '$<' is the automatic variable that holds the name of the prerequisite, '$@' is the automatic variable
that holds the name of the target and '$*' is the stem that matches the pattern. Internally this translates
to the following two rules:

test.obj: test.c
 ccarm -c test.c -o test.obj
 echo the stem is test

filter.obj: filter.c
 ccarm -c filter.c -o filter.obj
 echo the stem is filter

Each target specified must match the target pattern; a warning is issued for each target that does not.

231

Using the Utilities

Special targets

There are a number of special targets. Their names begin with a period.

DescriptionTarget

If you call the make utility with a target that has no definition in the makefile, this
target is built.

.DEFAULT

When the make utility has finished building the specified targets, it continues with
the rules following this target.

.DONE

The rules following this target are executed before any other targets are built..INIT

The prerequisites of this target are considered to be phony targets. A phony target
is a target that is not really the name of a file. The rules following a phony target are
executed unconditionally, regardless of whether a file with that name exists or what
its last-modification time is.

For example:

.PHONY: clean

clean:
 rm *.obj

With amk clean, the command is executed regardless of whether there is a file
named clean.

.PHONY

9.3.2. Makefile Directives

Directives inside makefiles are executed while reading the makefile. When a line starts with the word
"include" or "-include" then the remaining arguments on that line are considered filenames whose
contents are to be inserted at the current line. "-include" will silently skip files which are not present.
You can include several files. Include files may be nested.

Example:

include makefile2 makefile3

White spaces (tabs or spaces) in front of the directive are allowed.

9.3.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lowercase or uppercase characters, uppercase is an accepted convention.
When a line does not start with white space and contains the assignment operator '=', ':=' or '+=' then the
line is interpreted as a macro definition. White space around the assignment operator and white space
at the end of the line is discarded. Single character macro evaluation happens by prefixing the name with
'$'. To evaluate macros with names longer than one character put the name between parentheses '()' or
curly braces '{}'. Macro names may contain anything, even white space or other macro evaluations.
Example:

232

TASKING VX-toolset for ARM User Guide

DINNER = $(FOOD) and $(BEVERAGE)
FOOD = pizza
BEVERAGE = sparkling water
FOOD += with cheese

With the += operator you can add a string to an existing macro. An extra space is inserted before the
added string automatically.

Macros are evaluated recursively. Whenever $(DINNER) or ${DINNER} is mentioned after the above,
it will be replaced by the text "pizza with cheese and sparkling water". The left hand side in
a macro definition is evaluated before the definition takes place. Right hand side evaluation depends on
the assignment operator:

Evaluate the macro at the moment it is used.=

Evaluate the replacement text before defining the macro.:=

Subsequent '+=' assignments will inherit the evaluation behavior from the previous assignment. If there
is none, then '+=' is the same as '='.The default value for any macro is taken from the environment. Macro
definitions inside the makefile overrule environment variables. Macro definitions on the amk command
line will be evaluated first and overrule definitions inside the makefile.

Predefined macros

DescriptionMacro

This macro translates to a dollar sign.Thus you can use "$$" in the makefile to represent
a single "$".

$

The name of the current target. When a rule has multiple targets, then it is the name
of the target that caused the rule commands to be run.

@

The basename (or stem) of the current target. The stem is either provided via a static
pattern rule or is calculated by removing all characters found after and including the
last dot in the current target name. If the target name is 'test.c' then the stem is
'test' (if the target was not created via a static pattern rule).

*

The name of the first prerequisite.<

The amk path name (quoted if necessary). Optionally followed by the options -n and
-s.

MAKE

The name of the directory where amk is installed (quoted if necessary).ORIGIN

The argument of option -G. If you have nested makes with -G options, the paths are
combined. This macro is defined in the environment (i.e. default macro value).

SUBDIR

The @, * and < macros may be suffixed by 'D' to specify the directory component or by 'F' to specify the
filename component. $(@D) evaluates to the directory name holding the file$(@F). $(@D)/$(@F) is
equivalent to $@. Note that on MS-Windows most programs accept forward slashes, even for UNC path
names.

The result of the predefined macros @, * and < and 'D' and 'F' variants is not quoted, so it may be necessary
to put quotes around it.

233

Using the Utilities

Note that stem calculation can cause unexpected values. For example:

$@ $*
 /home/.wine/test /home/
 /home/test/.project /home/test/
 /../file /.

Macro string substitution

When the macro name in an evaluation is followed by a colon and equal sign as in

$(MACRO:string1=string2)

then amk will replace string1 at the end of every word in $(MACRO) by string2 during evaluation. When
$(MACRO) contains quoted path names, the quote character must be mentioned in both the original string
and the replacement string1. For example:

$(MACRO:.obj"=.d")

9.3.4. Makefile Functions

A function not only expands but also performs a certain operation. The following functions are available:

$(filter pattern ...,item ...)

The filter function filters a list of items using a pattern. It returns items that do match any of the pattern
words, removing any items that do not match. The patterns are written using '%',

 ${filter %.c %.h, test.c test.h test.obj readme.txt .project output.c}

results in:

 test.c test.h output.c

$(filter-out pattern ...,item ...)

The filter-out function returns all items that do not match any of the pattern words, removing the
items that do match one or more. This is the exact opposite of the filter function.

 ${filter-out %.c %.h, test.c test.h test.obj readme.txt .project output.c}

results in:

 test.obj readme.txt .project

1Internally, amk tokenizes the evaluated text, but performs substitution on the original input text to preserve compatibility here with
existing make implementations and POSIX.

234

TASKING VX-toolset for ARM User Guide

$(foreach var-name, item ..., action)

The foreach function runs through a list of items and performs the same action for each item. The
var-name is the name of the macro which gets dynamically filled with an item while iterating through the
item list. In the action you can refer to this macro. For example:

 ${foreach T, test filter output, ${T}.c ${T}.h}

results in:

 test.c test.h filter.c filter.h output.c output.h

9.3.5. Conditional Processing

Lines containing ifdef, ifndef, else or endif are used for conditional processing of the makefile.
They are used in the following way:

ifdef macro-name
if-lines
else
else-lines
endif

The if-lines and else-lines may contain any number of lines or text of any kind, even other ifdef, ifndef,
else and endif lines, or no lines at all.The else line may be omitted, along with the else-lines following
it. White spaces (tabs or spaces) in front of preprocessing directives are allowed.

First the macro-name after the ifdef command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an else line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the ifndef line instead of ifdef, the macro is tested for not being defined. These
conditional lines can be nested to any level.

You can also add tests based on strings. With ifeq the result is true if the two strings match, with ifneq
the result is true if the two strings do not match. They are used in the following way:

ifeq(string1,string2)
if-lines
else
else-lines
endif

9.3.6. Makefile Parsing

amk reads and interprets a makefile in the following order:

1. When the last character on a line is a backslash (\) (i.e. without trailing white space) then that line and
the next line will be concatenated, removing the backslash and newline.

235

Using the Utilities

2. The unquoted '#' character indicates start of comment and may be placed anywhere on a line. It will
be removed in this phase.

this comment line is continued\
on the next line

3. Trailing white space is removed.

4. When a line starts with white space and it is not followed by a directive or preprocessing directive, then
it is interpreted as a command for updating a target.

5. Otherwise, when a line contains the unquoted text '=', '+=' or ':=' operator, then it will be interpreted as
a macro definition.

6. Otherwise, all macros on the line are evaluated before considering the next steps.

7. When the resulting line contains an unquoted ':' the line is interpreted as a dependency rule.

8. When the first token on the line is "include" or "-include" (which by now must start on the first
column of the line), amk will execute the directive.

9. Otherwise, the line must be empty.

Macros in commands for updating a target are evaluated right before the actual execution takes place
(or would take place when you use the -n option).

9.3.7. Makefile Command Processing

A line with leading white space (tabs or spaces) without a (preprocessing) directive is considered as a
command for updating a target. When you use the option -j or -J, amk will execute the commands for
updating different targets in parallel. In that case standard input will not be available and standard output
and error output will be merged and displayed on standard output only after the commands have finished
for a target.

You can precede a command by one or more of the following characters:

Do not show the command. By default, commands are shown prior to their output.@

Continue upon error. This means that amk ignores a non-zero exit code of the command.-

Execute the command, even when you use option -n (dry run).+

Execute the command on the foreground with standard input, standard output and error
output available.

|

Built-in commands

DescriptionCommand

This command does nothing. Arguments are ignored.true

This command does nothing, except failing with exit code 1. Arguments are
ignored.

false

236

TASKING VX-toolset for ARM User Guide

DescriptionCommand

Display a line of text.echo arg...

Exit with defined code. Depending on the program arguments and/or the extra
rule options '-' this will cause amk to exit with the provided code. Please note
that 'exit 0' has currently no result.

exit code

Create an argument file suitable for the --option-file (-f) option of all the other
tools. The first argfile argument is the name of the file to be created.
Subsequent arguments specify the contents. An existing argument file is not
modified unless necessary. So, the argument file itself can be used to create
a dependency to options of the command for updating a target.

argfile file arg...

Remove the specified file(s). The following options are available:

Remove directories and their contents recursively.-r, --recursive

Force deletion. Ignore non-existent files, never prompt.-f, --force

Interactive. Prompt before every removal.-i, --interactive

Verbose mode. Explain what is being done.-v, --verbose

Read options from file..-m file

Show usage.-?, --help

rm [option]... file...

9.3.8. Calling the amk Make Utility

The invocation syntax of amk is:

amk [option]... [target]... [macro=def]...

For example:

amk test.abs

You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

target

Macro definition.This definition remains fixed for the amk invocation. It overrides any
regular definitions for the specified macro within the makefiles and from the
environment. It is not inherited by subordinate amk's

macro=def

For a complete list and description of all amk make utility options, see Section 11.8,
Parallel Make Utility Options.

option

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

237

Using the Utilities

9.4. Archiver

The archiver ararm is a program to build and maintain your own library files. A library file is a file with
extension .lib and contains one or more object files (.obj) that may be used by the linker.

The archiver has five main functions:

• Deleting an object module from the library

• Moving an object module to another position in the library file

• Replacing an object module in the library or add a new object module

• Showing a table of contents of the library file

• Extracting an object module from the library

The archiver takes the following files for input and output:

The linker optionally includes object modules from a library if that module resolves an external symbol
definition in one of the modules that are read before.

9.4.1. Calling the Archiver

You can create a library in Eclipse, which calls the archiver or you can call the archiver on the command
line.

To create a library in Eclipse

Instead of creating an ARM absolute ELF file, you can choose to create a library.You do this when you
create a new project with the New C/C++ Project wizard.

1. From the File menu, select New » TASKING ARM C/C++ Project.

The New C/C++ Project wizard appears.

2. Enter a project name.

3. In the Project type box, select TASKING ARM Library and clickNext >.

4. Follow the rest of the wizard and click Finish.

5. Add the files to your project.

238

TASKING VX-toolset for ARM User Guide

6. Build the project as usual. For example, select Project » Build Project ().

Eclipse builds the library. Instead of calling the linker, Eclipse now calls the archiver.

Command line invocation

You can call the archiver from the command line. The invocation syntax is:

ararm key_option [sub_option...] library [object_file]

With a key option you specify the main task which the archiver should perform.You
must always specify a key option.

key_option

Sub-options specify into more detail how the archiver should perform the task that is
specified with the key option. It is not obligatory to specify sub-options.

sub_option

The name of the library file on which the archiver performs the specified action.You
must always specify a library name, except for the options -? and -V. When the library
is not in the current directory, specify the complete path (either absolute or relative) to
the library.

library

The name of an object file.You must always specify an object file name when you
add, extract, replace or remove an object file from the library.

object_file

Options of the archiver utility

The following archiver options are available:

Sub-optionOptionDescription

Main functions (key options)

-a -b -c -u -v-rReplace or add an object module

-v-xExtract an object module from the library

-v-dDelete object module from library

-a -b -v-mMove object module to another position

-s0 -s1-tPrint a table of contents of the library

-pPrint object module to standard output

Sub-options

-a nameAppend or move new modules after existing module name

-b nameAppend or move new modules before existing module name

-cCreate library without notification if library does not exis

-oPreserve last-modified date from the library

-s{0|1}Print symbols in library modules

-uReplace only newer modules

-vVerbose

Miscellaneous

239

Using the Utilities

Sub-optionOptionDescription

-?Display options

-VDisplay version header

-f fileRead options from file

-wnSuppress warnings above level n

For a complete list and description of all archiver options, see Section 11.9, Archiver Options.

9.4.2. Archiver Examples

Create a new library

If you add modules to a library that does not yet exist, the library is created. To create a new library with
the name mylib.lib and add the object modules cstart.obj and calc.obj to it:

ararm -r mylib.lib cstart.obj calc.obj

Add a new module to an existing library

If you add a new module to an existing library, the module is added at the end of the module. (If the
module already exists in the library, it is replaced.)

ararm -r mylib.lib mod3.obj

Print a list of object modules in the library

To inspect the contents of the library:

ararm -t mylib.lib

The library has the following contents:

cstart.obj
calc.obj
mod3.obj

Move an object module to another position

To move mod3.obj to the beginning of the library, position it just before cstart.obj:

ararm -mb cstart.obj mylib.lib mod3.obj

Delete an object module from the library

To delete the object module cstart.obj from the library mylib.lib:

ararm -d mylib.lib cstart.obj

240

TASKING VX-toolset for ARM User Guide

Extract all modules from the library

Extract all modules from the library mylib.lib:

ararm -x mylib.lib

241

Using the Utilities

9.5. HLL Object Dumper

The high level language (HLL) dumper hldumparm is a program to dump information about an absolute
object file (.abs) . Key features are a disassembler with HLL source intermixing and HLL symbol display
and a HLL symbol listing of static and global symbols.

9.5.1. Invocation

Command line invocation

You can call the HLL dumper from the command line. The invocation syntax is:

hldumparm [option]... file...

The input file must be an ELF file with or without DWARF debug info (.abs).

The HLL dumper can process multiple input files. Files and options can be intermixed on the command
line. Options apply to all supplied files. If multiple files are supplied, the disassembly of each file is preceded
by a header to indicate which file is dumped. For example:

========== file.abs ==========

For a complete list and description of all options, see Section 11.10, HLL Object Dumper Options. With
hldumparm --help you will see the options on stdout.

9.5.2. HLL Dump Output Format

The HLL dumper produces output in text format by default, but you can also specify the XML output format
with --output-type=xml. The XML output is mainly for use in the Eclipse editor. The output is printed on
stdout, unless you specify an output file with --output=filename.

The parts of the output are dumped in the following order:

1. Module list

2. Section list

3. Section dump (disassembly)

4. HLL symbol table

5. Assembly level symbol table

6. Note sections

With the option --dump-format=flag you can control which parts are shown. By default, all parts are
shown.

242

TASKING VX-toolset for ARM User Guide

Example

Suppose we have a simple "Hello World" program in a file called hello.c. We call the control program
as follows:

ccarm -g -t hello.c

Option -g tells to include DWARF debug information. Option -t tells to keep the intermediate files. This
command results (among other files) in the file hello.abs (the absolute output file).

We can dump information about the absolute object file with the following command:

hldumparm hello.abs

---------- Module list ----------

Name Full path
hello.c hello.c

---------- Section list ----------

Address Size Align Type Name
00000690 24 4 text .text
000006b4 6 4 romdata .rodata
00040180 4 4 bss .data
000006a8 11 4 romdata .rodata

---------- Section dump ----------

 .section .data, '[.data]', at(0x000000e8)
 .db b8,06,00,00 ;
 .endsec

 .section .text, at(0x00000690)
00000690 08 00 9f e5 main ldr r0, [r15, #+0x8]
00000694 00 10 90 e5 ldr r1, [r0, #+0x0]
00000698 04 00 9f e5 ldr r0, [r15, #+0x4]
0000069c 74 ff ff ea b printf
000006a0 80 01 .dh 0180
000006a2 04 00 .dh 0004
000006a4 a8 06 .dh 06a8
000006a6 00 00 .dh 0000
 .endsec

 .section .data, '.rodata', at(0x000006a8)
 .db 48,65,6c,6c,6f,20,25,73,21,0a,00 ; Hello %s!..
 .endsec

 .section .data, '.rodata', at(0x000006b4)
 .db 77,6f,72,6c,64,00 ; world.
 .endsec

243

Using the Utilities

---------- HLL symbol table ----------

Address Size HLL Type Name
00000390 88 void Reset_Handler()
00000408 104 void __init()
00000474 64 int printf(const char * restrict format, ...)
00000690 16 void main()
00040000 24 struct _dbg_request [dbg.c]
00040018 80 static char stdin_buf[80] [_iob.c]
00040068 80 static char stdout_buf[80] [_iob.c]
000400b8 200 struct _iobuf _iob[10] [_iob.c]
00040180 4 char * world [hello.c]

---------- assembly level symbol table ----------

Address Size Type Name
00000000
00000000 [.data.libc]
00000000 [.data]
00000000 _vector_0
00000000 hello.c
00000390 120 code Reset_Handler
00000474 72 code printf
00000690 24 code main
00040180 4 data world

---------- .note sections ----------
No .note sections present

Module list

This part lists all modules (C/C++ files) found in the object file(s). It lists the filename and the complete
path name at the time the module was built.

Section list

This part lists all sections found in the object file(s).

The start address of the section. Hexadecimal, 8 digits, 32-bit.Address

The size (length) of the section in bytes. Decimal, filled up with spaces.Size

The alignment of the section in number of bytes. Decimal, filled up with spaces.Align

The section type.Type

The name of the section.Name

With option --sections=name[,name]... you can specify a list of sections that should be dumped.

244

TASKING VX-toolset for ARM User Guide

Section dump

This part contains the disassembly. It consists of the following columns:

Contains the address of the instruction or directive that is shown in the disassembly.
If the section is relocatable the section start address is assumed to be 0. The
address is represented in hexadecimal and has a fixed width. The address is
padded with zeros. No 0x prefix is displayed. For example, on a 32-bit architecture,
the address 0x32 is displayed as 00000032.

address column

Shows the hexadecimal encoding of the instruction (code sections) or it shows the
hexadecimal representation of data (data sections). The encoding column has a
maximum width of eight digits, i.e. it can represent a 32-bit hexadecimal value.
The encoding is padded to the size of the data or instruction. For example, a 16-bit
instruction only shows four hexadecimal digits. The encoding is aligned left and
padded with spaces to fill the eight digits.

encoding column

Displays the label depending on the option --symbols=[hll|asm|none].The default
is asm, meaning that the low level (ELF) symbols are used.With hll, HLL (DWARF)
symbols are used. With none, no symbols will be included in the disassembly.

label column

For code sections the instructions are disassembled. Operands are replaced with
labels, depending on the option --symbols=[hll|asm|none].

The contents of data sections are represented by directives. A new directive will
be generated for each symbol. ELF labels in the section are used to determine
the start of a directive. ROM sections are represented with .db, .dh, .dw, .dd
kind of directives, depending on the size of the data. RAM sections are represented
with .ds directives, with a size operand depending on the data size. This can be
either the size specified in the ELF symbol, or the size up to the next label.

disassembly column

With option --hex, no directives will be generated for ROM data sections and no disassembly dump will
be done for code sections. Instead a hex dump is done with the following format:

AAAAAAAA H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 HA HB HC HD HE HF RRRRRRRRRRRRRRRR

where,

A = Address (8 digits, 32-bit)

Hx = Hex contents, one byte (16 bytes max)

R = ASCII representation (16 characters max)

For example:

 section 7 (.rodata):
000006a8 48 65 6c 6c 6f 20 25 73 21 0a 00 Hello %s!..

With option --hex, RAM sections will be represented with only a start address and a size indicator:

AAAAAAAA Space: 48 bytes

With option --disassembly-intermix you can intermix the disassembly with HLL source code.

245

Using the Utilities

HLL symbol table

This part contains a symbol listing based on the HLL (DWARF) symbols found in the object file(s). The
symbols are sorted on address.

The start address of the symbol. Hexadecimal, 8 digits, 32-bit.Address

The size of the symbol from the DWARF info in bytes.Size

The HLL symbol type.HLL Type

The name of the HLL symbol.Name

HLL arrays are indicated by adding the size in square brackets to the symbol name. For example:

00040018 80 static char stdin_buf[80] [_iob.c]

With option --expand-symbols=+basic-types HLL struct and union symbols are listed including all fields.
Array members are expanded in one array member per line regardless of the HLL type. For example:

00040018 80 static char stdin_buf[80] [_iob.c]
00040018 1 char
00040019 1 char
0004001a 1 char
 ...
00040067 1 char

HLL struct and union symbols are listed by default without fields. For example:

00040000 24 struct _dbg_request [dbg.c]

With option --expand-symbols all struct, union and array fields are included as well. For the fields the
types and names are indented with two spaces. For example:

00040000 24 struct _dbg_request [dbg.c]
00040000 4 int _errno
00040004 4 enum nr
00040008 16 union u
00040008 4 struct exit
00040008 4 int status
00040008 8 struct open
00040008 4 const char * pathname
0004000c 2 unsigned short int flags
 ...

Functions are displayed with the full function prototype. Size is the size of the function. HLL Type is the
return type of the function. For example:

00000474 64 int printf(const char * restrict format, ...)

The local and static symbols get an identification between square brackets. The filename is printed and
if a function scope is known the function name is printed between the square brackets as well. If multiple
files with the same name exist, the unique part of the path is added. For example:

246

TASKING VX-toolset for ARM User Guide

00040100 4 int count [file.c, somefunc()]
00040104 4 int count [x\a.c]
00040108 4 int count [y\a.c, foo()]

Global symbols do not get information in square brackets.

Assembly level symbol table

This part contains a symbol listing based on the assembly level (ELF) symbols found in the object file(s).
The symbols are sorted on address.

The start address of the symbol. Hexadecimal, 8 digits, 32-bit.Address

The size of the symbol from the ELF info in bytes. If this field is empty, the size is
zero.

Size

Code or Data, depending on the section the symbol belongs to. If this field is empty,
the symbol does not belong to a section.

Type

The name of the ELF symbol.Name

247

Using the Utilities

9.6. Expire Cache Utility

With the utility expirearm you can limit the size of the cache (C compiler option --cache) by removing all
files older than a few days or by removing older files until the total size of the cache is smaller than a
specified size. See also Section 12.5, Compiler Cache.

The invocation syntax is:

expirearm [option]... cache-directory

The compiler cache is present in the directory carmcache under the specified cache-directory.

For a complete list and description of all options, see Section 11.11, Expire Cache Utility Options. With
expirearm --help you will see the options on stdout.

Examples

To remove all files older than seven days, enter:

expirearm --days=7 "installation-dir\mproject\.cache"

To reduce the compiler cache size to 4 MB, enter:

expirearm --megabytes=4 "installation-dir\mproject\.cache"

Older files are removed until the total size of the cache is smaller than 4 MB.

To clear the compiler cache, enter:

expirearm --megabytes=0 "installation-dir\mproject\.cache"

248

TASKING VX-toolset for ARM User Guide

Chapter 10. Using the Debugger
This chapter describes the debugger and how you can run and debug a C or C++ application.This chapter
only describes the TASKING specific parts.

10.1. Reading the Eclipse Documentation

Before you start with this chapter, it is recommended to read the Eclipse documentation first. It provides
general information about the debugging process.This chapter guides you through a number of examples
using the TASKING debugger with simulation as target.

You can find the Eclipse documentation as follows:

1. Start Eclipse.

2. From the Help menu, select Help Contents.

The help screen overlays the Eclipse Workbench.

3. In the left pane, select C/C++ Development User Guide.

4. Open the Getting Started entry and select Debugging projects.

This Eclipse tutorial provides an overview of the debugging process. Be aware that the Eclipse
example does not use the TASKING tools and TASKING debugger.

10.2. Creating a Customized Debug Configuration

Before you can debug a project, you need a Debug launch configuration. Such a configuration, identified
by a name, contains all information about the debug project: which debugger is used, which project is
used, which binary debug file is used, which perspective is used, ... and so forth.

If you want to debug on a target board, you have to create a custom debug configuration for your target
board, otherwise you have to create a debug launch configuration for the TASKING simulator.

To debug a project, you need at least one opened and active project in your workbench. In this
chapter, it is assumed that the myproject is opened and active in your workbench.

Create or customize your debug configuration

To create or change a debug configuration follow the steps below.

1. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.

2. Select TASKING C/C++ Debugger and click the New launch configuration button (

249

) to add a new configuration.
Or: In the left pane, select the configuration you want to change, for example, TASKING C/C++
Debugger » myproject.

3. In the Name field enter the name of the configuration. By default, this is the name of the project, but
you can give your configuration any name you want to distinguish it from the project name. For
example enter myproject.simulator to identify the simulator debug configuration.

4. On the Target tab, select the ARM Simulator or any of the target boards.

The dialog shows several tabs.

Target tab

On the Target tab you can select on which target the application should be debugged. An application
can run on an external evaluation board, or on a simulator using your own PC. On this tab you can also
select the connection settings (J-Link, RS-232, TCP/IP).The information in this tab is based on the Debug
Target Configuration (DTC) files as explained in Chapter 18, Debug Target Configuration Files.

Initialization tab

On the Initialization tab enable one or more of the following options:

250

TASKING VX-toolset for ARM User Guide

• Initial download of program

If enabled, the target application is downloaded onto the target. If disabled, only the debug information
in the file is loaded, which may be useful when the application has already been downloaded (or flashed)
earlier. If downloading fails, the debugger will shut down.

• Verify download of program

If enabled, the debugger verifies whether the code and data has been downloaded successfully. This
takes some extra time but may be useful if the connection to the target is unreliable.

• Program flash when downloading

If enabled, also flash devices are programmed (if necessary). Flash programming will not work when
you use a simulator.

• Reset target

If enabled, the target is immediately reset after downloading has completed.

• Goto main

If enabled, only the C startup code is processed when the debugger is launched.The application stops
executing when it reaches the first C instruction in the function main(). Usually you enable this option
in combination with the option Reset Target.

• Break on exit

If enabled, the target halts automatically when the exit() function is called.

• Reduce target state polling

251

Using the Debugger

If you have set a breakpoint, the debugger checks the status of the target every number of seconds to
find out if the breakpoint is hit. In this field you can change the polling frequency.

• Monitor file (Flash settings)

Filename of the monitor, usually an Intel Hex or S-Record file.

• Sector buffer size (Flash settings)

Specifies the buffer size for buffering a flash sector.

• Workspace address (Flash settings)

The address of the workspace of the flash programming monitor.

Project tab

On the Project tab, you can set the properties for the debug configuration such as a name for the project
and the application binary file which are used when you choose this configuration.

• In the Project field, you can choose the project for which you want to make a debug configuration.
Because the project myproject is the active project, this project is filled in automatically. Click the
Browse... button to select a different project. Only the opened projects in your workbench are listed.

• In the C/C++ Application field, you can choose the binary file to debug. The file myproject.abs is
automatically selected from the active project.

Arguments tab

If your application's main() function takes arguments, you can pass them in this tab. Arguments are
conventionally passed in the argv[] array. Because this array is allocated in target memory, make sure
you have allocated sufficient memory space for it.

252

TASKING VX-toolset for ARM User Guide

Source tab

On the Source tab, you can add additional source code locations in which the debugger should search
for debug data.

• Usually, the default source code location is correct.

Miscellaneous tab

On the Miscellaneous tab you can specify several file locations.

253

Using the Debugger

• Debugger location

The location of the debugger itself. This should not be changed.

• FSS root directory

The initial directory used by file system simulation (FSS) calls. See the description of the FSS view.

• ORTI file and KSM module

If you wish to use the debugger's special facilities for kernel-aware debugging, specify the name of a
Kernel Debug Interface (KDI) compatible KSM module (shared library) in the appropriate edit box. The
toolset comes with a KSM suitable for OSEK kernels. If you wish to use this, browse for the file
osek_radm.dll in the bin directory of the toolset. See also the description of the RTOS view.

• GDI log file and Debug instrument log file

You can use the options GDI log file and Debug instrument log file (if applicable) to control the generation
of internal log files.These are primarily intended for use by or at the request of Altium support personnel.

• Cache target access

Except when using a simulator, the debugger's performance is generally strongly dependent on the
throughput and latency of the connection to the target. Depending on the situation, enabling this option
may result in a noticeable improvement, as the debugger will then avoid re-reading registers and
memory while the target remains halted. However, be aware that this may cause the debugger to show
the wrong data if tasks with a higher priority or external sources can influence the halted target's state.

• Launch in background

254

TASKING VX-toolset for ARM User Guide

When this option is disabled you will see a progress bar when the debugger starts. If you do not want
to see the progress bar and want that the debugger launches in the background you can enable this
option.

• Use linker/locator memory map file (.mdf) for memory map

You can use this option to find errors in your application that cause access to non-existent memory or
cause an attempt to write to read-only memory. When building your project, the linker/locator creates
a memory description file (.mdf) file which describes the memory regions of the target you selected
in your project properties. The debugger uses this file to initialize the debugging target.

This option is only useful in combination with a simulator as debug target. The debugger may fail to
start if you use this option in combination with other debugging targets than a simulator.

10.3.Troubleshooting

If the debugger does not launch properly, this is likely due to mistakes in the settings of the execution
environment or to an improper connection between the host computer and the execution environment.
Always read the notes for your particular execution environment.

Some common problems you may check for, are:

SolutionProblem

Make sure the specified device name is correct.Wrong device name in the launch
configuration

Specify baud rate that matches the baud rate the execution
environment is configured to expect.

Invalid baud rate

Make sure the execution environment or attached probe is powered.No power to the execution
environment.

Make sure you are using the correct type of RS-232 cable.Wrong type of RS–232 cable.

Some target machines and hosts have several ports. Make sure
you connect the cable to the correct port.

Cable connected to the wrong port
on the execution environment or host.

A device driver or background application may use the same
communications port on the host system as the debugger. Disable
any service that uses the same port-number or choose a different
port-number if possible.

Conflict between communication
ports.

The port may already be in use by another user on some UNIX
hosts, or being allocated by a login process. Some target machines
and hosts have several ports. Make sure you connect the cable to
the correct port.

Port already in use by another user.

10.4.TASKING Debug Perspective

After you have launched the debugger, you are either asked if the TASKING Debug perspective should
be opened or it is opened automatically. The Debug perspective consists of several views.

255

Using the Debugger

To open views in the Debug perspective:

1. Make sure the Debug perspective is opened

2. From the Window menu, select Show View »

3. Select a view from the menu or choose Other... for more views.

By default, the Debug perspective is opened with the following views:

10.4.1. Debug View

The Debug view shows the target information in a tree hierarchy shown below with a sample of the
possible icons:

DescriptionSession itemIcon

Launch configuration name and launch typeLaunch instance

Debugger name and stateDebugger instance

Thread number and stateThread instance

256

TASKING VX-toolset for ARM User Guide

DescriptionSession itemIcon

Stack frame number, function, file name, and file line numberStack frame
instance

Stack display

During debugging (running) the actual stack is displayed as it increases or decreases during program
execution. By default, all views present information that is related to the current stack item (variables,
memory, source code etc.). To obtain the information from other stack items, click on the item you want.

The Debug view displays stack frames as child elements. It displays the reason for the suspension beside
the thread, (such as end of stepping range, breakpoint hit, and signal received). When a program exits,
the exit code is displayed.

The Debug view contains numerous functions for controlling the individual stepping of your programs and
controlling the debug session.You can perform actions such as terminating the session and stopping the
program. All functions are available from the right-click menu, though commonly used functions are also
available from the toolbar.

Controlling debug sessions

DescriptionActionIcon

Removes all terminated launches.Remove all

Resets the target system and restarts the application.Reset target
system

Restarts the application. The target system is not reset.Restart

Resumes the application after it was suspended (manually, breakpoint,
signal).

Resume

Suspends the application (pause). Use the Resume button to continue.Suspend

Right-click menu. Restarts the selected debug session when it was
terminated. If the debug session is still running, a new debug session is
launched.

Relaunch

Reloads the current application without restarting the debug session. The
application does restart of course.

Reload current
application

Ends the selected debug session and/or process. Use Relaunch to restart
this debug session, or start another debug session.

Terminate

Right-click menu. As terminate. Ends all debug sessions.Terminate all

Right-click menu. Ends the debug session and removes it from the Debug
view.

Terminate and
remove

Right-click menu. Ends the debug session and relaunches it. This is the
same as choosing Terminate and then Relaunch.

Terminate and
Relaunch

Detaches the debugger from the selected process (useful for debugging
attached processes).

Disconnect

257

Using the Debugger

Stepping through the application

DescriptionActionIcon

Steps to the next source line or instruction.Step into

Steps over a called function. The function is executed and the application
suspends at the next instruction after the call.

Step over

Executes the current function. The application suspends at the next
instruction after the return of the function.

Step return

Toggle. If enabled, the stepping functions are performed on instruction level
instead of on C source line level.

Instruction
stepping

Toggle. If enabled, the stepping functions do not step into an interrupt when
it occurs.

Interrupt aware
stepping

Miscellaneous

DescriptionActionIcon

Right-click menu. Copies the stack as text to the windows clipboard.You
can paste the copied selection as text in, for example, a text editor.

Copy Stack

Right-click menu. Opens the debug configuration dialog to let you edit the
current debug configuration.

Edit project...

Right-click menu. Opens the Edit Source Lookup Path window to let you
edit the search path for locating source files.

Edit Source
Lookup...

10.4.2. Breakpoints View

You can add, disable and remove breakpoints by clicking in the marker bar (left margin) of the Editor
view. This is explained in the Getting Started manual.

Description

The Breakpoints view shows a list of breakpoints that are currently set. The button bar in the Breakpoints
view gives access to several common functions. The right-most button opens the Breakpoints menu.

Types of breakpoints

To access the breakpoints dialog, add a breakpoint as follows:

1. Click the Add TASKING Breakpoint button ().

The Breakpoints dialog appears.

Each tab lets you set a breakpoint of a special type.You can set the following types of breakpoints:

• File breakpoint

258

TASKING VX-toolset for ARM User Guide

The target halts when it reaches the specified line of the specified source file. Note that it is possible
that a source line corresponds to multiple addresses, for example when a header file has been included
into two different source files or when inlining has occurred. If so, the breakpoint will be associated with
all those addresses.

• Function

The target halts when it reaches the first line of the specified function. If no source file has been specified
and there are multiple functions with the given name, the target halts on all of those. Note that function
breakpoints generally will not work on inlined instances of a function.

• Address

The target halts when it reaches the specified instruction address.

• Stack

The target halts when it reaches the specified stack level.

• Data

The target halts when the given variable or memory location (specified in terms of an absolute address)
is read or written to, as specified.

• Instruction

The target halts when the given number of instructions has been executed.

• Cycle

The target halts when the given number of clock cycles has elapsed.

• Timer

The target halts when the given amount of time elapsed.

In addition to the type of the breakpoint, you can specify the condition that must be met to halt the program.

In the Condition field, type a condition.The condition is an expression which evaluates to 'true' (non-zero)
or 'false' (zero). The program only halts on the breakpoint if the condition evaluates to 'true'.

In the Ignore count field, you can specify the number of times the breakpoint is ignored before the program
halts. For example, if you want the program to halt only in the fifth iteration of a while-loop, type '4': the
first four iterations are ignored.

10.4.3. File System Simulation (FSS) View

Description

The File System Simulation (FSS) view is automatically opened when the target requests FSS input or
generates FSS output. The virtual terminal that the FSS view represents, follows the VT100 standard. If
you right-click in the view area of the FSS view, a menu is presented which gives access to some
self-explanatory functions.

259

Using the Debugger

VT100 characteristics

The queens example demonstrates some of the VT100 features. (You can find the queens example in
the <ARM installation path>\examples directory from where you can import it into your workspace.)
Per debugging session, you can have more than one FSS view, each of which is associated with a positive
integer. By default, the view "FSS #1" is associated with the standard streams stdin, stdout, stderr
and stdaux. Other views can be accessed by opening a file named "terminal window <number>", as
shown in the example below.

FILE * f3 = fopen("terminal window 3", "rw");
fprintf(f3, "Hello, window 3.\n");
fclose(f3);

You can set the initial working directory of the target application in the Debug configuration dialog (see
also Section 10.2, Creating a Customized Debug Configuration):

1. On the Debugger tab, select the Miscellaneous sub-tab.

2. In the FSS root directory field, specify the FSS root directory.

The FSS implementation is designed to work without user intervention. Nevertheless, there are some
aspects that you need to be aware of.

First, the interaction between the C library code (in the files dbg*.c and dbg*.h; see Section 14.2.5,
dbg.h) and the debugger takes place via a breakpoint, which incidentally is not shown in the Breakpoints
view. Depending on the situation this may be a hardware breakpoint, which may be in short supply.

Secondly, proper operation requires certain code in the C library to have debug information. This debug
information should normally be present but might get lost when this information is stripped later in the
development process.

10.4.4. Disassembly View

The Disassembly view shows target memory disassembled into instructions and / or data. If possible, the
associated C / C++ source code is shown as well. The Address field shows the address of the current
selected line of code.

To view the contents of a specific memory location, type the address in the Address field. If the address
is invalid, the field turns red.

10.4.5. Expressions View

The Expressions view allows you to evaluate and watch regular C expressions.

To add an expression:

Click OK to add the expression.

1. Right-click in the Expressions View and select Add Watch Expression.

The Add Watch Expression dialog appears.

260

TASKING VX-toolset for ARM User Guide

2. Enter an expression you want to watch during debugging, for example, the variable name "i"

If you have added one or more expressions to watch, the right-click menu provides options to Remove
and Edit or Enable and Disable added expressions.

• You can access target registers directly using #NAME. For example "arr[#R0 << 3]" or "#TIMER3
= m++". If a register is memory-mapped, you can also take its address, for example, "&#ADCIN".

• Expressions may contain target function calls like for example "g1 + invert(&g2)". Be aware that
this will not work if the compiler has optimized the code in such a way that the original function code
does not actually exist anymore. This may be the case, for example, as a result of inlining. Also, be
aware that the function and its callees use the same stack(s) as your application, which may cause
problems if there is too little stack space. Finally, any breakpoints present affect the invoked code in
the normal way.

10.4.6. Memory View

Use the Memory view to inspect and change process memory. The Memory view supports the same
addressing as the C and C++ languages.You can address memory using expressions such as:

• 0x0847d3c

• (&y)+1024

• *ptr

Monitors

To monitor process memory, you need to add a monitor:

1. In the Debug view, select a debug session. Selecting a thread or stack frame automatically selects
the associated session.

2. Click the Add Memory Monitor button in the Memory Monitors pane.

The Monitor Memory dialog appears.

3. Type the address or expression that specifies the memory section you want to monitor and click OK.

The monitor appears in the monitor list and the Memory Renderings pane displays the contents of
memory locations beginning at the specified address.

To remove a monitor:

1. In the Monitors pane, right-click on a monitor.

2. From the popup menu, select Remove Memory Monitor.

261

Using the Debugger

Renderings

You can inspect the memory in so-called renderings. A rendering specifies how the output is displayed:
hexadecimal, ASCII, signed integer, unsigned integer or traditional.You can add or remove renderings
per monitor. Though you cannot change a rendering, you can add or remove them:

1. Click the New Renderings... tab in the Memory Renderings pane.

The Add Memory Rendering dialog appears.

2. Select the rendering you want (Hex Integer, Hex, ASCII, Signed Integer, Unsigned Integer or
Traditional) and click Add Rendering(s).

To remove a rendering:

1. Right-click on a memory address in the rendering.

2. From the popup menu, select Remove Rendering.

Changing memory contents

In a rendering you can change the memory contents. Simply type a new value.

Warning: Changing process memory can cause a program to crash.

The right-click popup menu gives some more options for changing the memory contents or to change the
layout of the memory representation.

10.4.7. Compare Application View

You can use the Compare Application view to check if the downloaded application matches the application
in memory. Differences may occur, for example, if you changed memory addresses in the Memory view.

• To check for differences, click the Compare button.

10.4.8. Heap View

With the Heap view you can inspect the status of the heap memory. This can be illustrated with the
following example:

 string = (char *) malloc(100);
 strcpy (string, "abcdefgh");
 free (string);

If you step through these lines during debugging, the Heap view shows the situation after each line has
been executed. Before any of these lines has been executed, there is no memory allocated and the Heap
view is empty.

• After the first line the Heap view shows that memory is occupied, the description tells where the block
starts, how large it is (100 MAUs) and what its content is (0x0, 0x0, ...).

262

TASKING VX-toolset for ARM User Guide

• After the second line, "abcdefgh" has been copied to the allocated block of memory. The description
field of the Heap view again shows the actual contents of the memory block (0x61, 0x62,...).

• The third line frees the memory. The Heap view is empty again because after this line no memory is
allocated anymore.

10.4.9. Logging View

Use the Logging view to control the generation of internal log files. This view is intended mainly for use
by or at the request of Altium support personnel.

10.4.10. RTOS View

The debugger has special support for debugging real-time operating systems (RTOSs). This support is
implemented in an RTOS-specific shared library called a kernel support module (KSM) or RTOS-aware
debugging module (RADM). Specifically, the TASKING VX-toolset for ARM ships with a KSM supporting
the OSEK standard.You have to create your own OSEK Run Time Interface (ORTI) and specify this file
on the Miscellaneous tab while configuring a customized debug configuration (see also Section 10.2,
Creating a Customized Debug Configuration):

1. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.

2. In the left pane, select the configuration you want to change, for example, TASKING C/C++ Debugger
» myproject.

Or: click the New launch configuration button () to add a new configuration.

3. Open the Miscellaneous tab

4. In the ORTI file field, specify the name of your own ORTI file.

5. If you want to use the supplied KSM suitable for OSEK kernels, in the KSM module field browse for
the file osek_radm.dll in the bin directory of the toolset.

The debugger supports ORTI specifications v2.0 and v2.1.

10.4.11. Registers View

In the Registers view you can examine the value of registers while stepping through your application.The
registers are organized in a number of register groups, which together contain all known registers.You
can select a group to see which registers it contains. This view has a number of features:

• While you step through the application, the registers involved in the step turn yellow. If you scroll in the
view or switch groups, some registers may appear on a lighter yellow background, indicating that the
debugger does not know whether the registers have changed because the debugger did not read the
registers before the step began.

263

Using the Debugger

• You can change each register's value.

• For some registers the menu entry Symbolic Representation is available in their right-click popup
menu. This opens a new view which shows the internal fields of the register. (Alternatively, you can
double-click on a register). For example, the XPSR register from the Core group may be shown as
follows:

In this view you can set the individual values in the register, either by selecting a value from a drop-down
box or by simply entering a value depending on the chosen field. To update the register with the new
values, click the Write button.

• You can search for a specific register: right-click on a register and from the popup menu select Find
Register.... Enter a group or register name filter, click the register you want to see and click OK. The
register of your interest will be shown in the view.

264

TASKING VX-toolset for ARM User Guide

10.4.12.Trace View

If tracing is enabled, the Trace view shows the code was most recently executed. For example, while you
step through the application, the Trace view shows the executed code of each step. To enable tracing:

• Right-click in the Trace view and select Trace.

A check mark appears when tracing is enabled.

The view has three tabs, Source, Instruction and Raw, each of which represents the trace in a different
way. However, not all target environments will support all three of these.The view is updated automatically
each time the target halts.

When you use the simulator, this works as is. Otherwise, tracing only works when the processor has a
Trace Port Interface Unit (TPIU) and this is supported.

When tracing is enabled note the following:

• If the condition associated with a conditional instruction was false, the instruction will still be shown in
the trace, with no distinct visual indication.This applies to conditional branches, but also to instructions
inside an IT block, for example.

• If the target halted due to a software breakpoint, then technically a BKPT instruction was executed and
hence traced. However, for convenience this will not actually be shown in the Trace view.

• For bandwidth and performance reasons, the trace shown may be shorter than what would be expected
considering the amount of data the debug probe can provide.

• The Raw tab shows the trace in its compressed form, i.e. compliant with the Embedded Trace Macrocell
(ETM) signal protocol as defined by ARM Ltd. Usually, you will not need this information, but it may be
useful if you suspect problems with the target communication or the decompression.

10.5. Programming a Flash Device

With the TASKING debugger you can download an application file to flash memory. Before you download
the file, you must specify the type of flash devices you use in your system and the address range(s) used
by these devices.

To program a flash device the debugger needs to download a flash programming monitor to the target
to execute the flash programming algorithm (target-target communication). This method uses temporary
target memory to store the flash programming monitor and you have to specify a temporary data workspace
for interaction between the debugger and the flash programming monitor.

Two types of flash devices can exist: on-chip flash devices and external flash devices.

Setup an on-chip flash device

When you specify a target configuration board using the New C/C++ wizard, as explained in the Getting
Started manual, any on-chip flash devices are setup automatically.

265

Using the Debugger

Setup an external flash device

1. From the Project menu, select Properties for

The Properties for project dialog appears.

2. In the left pane, expand Run/Debug Settings and select Flash Programming.

The Flash Programming pane appears.

3. Click Add... to specify an external flash device.

The Select a New Flash Device dialog appears.

266

TASKING VX-toolset for ARM User Guide

4. In the Device type box, expand the name of the manufacturer of the device and select a device.

The Sector map displays the memory layout of the flash device(s). Each sector has a size and

5. In the Base address field enter the start address of the memory range that will be covered by the
flash device. Any following addresses separated by commas are considered mirror addresses. This
allows the flash device to be programmed through its mirror address before switching the flash to its
base address.

6. In the Chip width field select the width of the flash device.

7. In the Number of chips field, enter the number of flash devices that are located in parallel. For
example, if you have two 8-bit devices in parallel attached to a 16-bit data bus, enter 2.

8. Fill in the Number of unused address lines field, if necessary.

The flash memory is added to the linker script file automatically with the tag "flash=flash-id".

To program a flash device

1. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.

267

Using the Debugger

2. In the left pane, select the configuration you want to change, for example, TASKING C/C++ Debugger
» myproject.board.

3. On the Debugger tab, select the Initialization tab

4. Enable the option Program flash when downloading.

The Flash settings group box becomes active.

5. In the Monitor file field, specify the filename of the flash programming monitor, usually an Intel Hex
or S-Record file.

6. In the Sector buffer size field, specify the buffer size for buffering a flash sector.

7. Specify the data Workspace address used by the flash programming monitor. This address may
not conflict with the addresses of the flash devices.

8. Click Debug to program the flash device and start debugging.

268

TASKING VX-toolset for ARM User Guide

Chapter 11.Tool Options
This chapter provides a detailed description of the options for the compiler, assembler, linker, control
program, make utility and the archiver.

Tool options in Eclipse (Menu entry)

For each tool option that you can set from within Eclipse, a Menu entry description is available. In Eclipse
you can customize the tools and tool options in the following dialog:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. Open the Tool Settings tab.

You can set all tool options here.

Unless stated otherwise, all Menu entry descriptions expect that you have this Tool Settings tab
open.

The following tables give an overview of all tool options on the Tool Settings tab in Eclipse with hyperlinks
to the corresponding command line options (if available).

Global Options

Description or optionEclipse option

Directory where the TASKING toolset is
installed

Use global 'product directory' preference

Control program option --warnings-as-errorsTreat warnings as errors

Control program option
--keep-temporary-files (-t)

Keep temporary files

Control program option --verbose (-v)Verbose mode of control program

Control program option --endiannessEndianness

C/C++ Compiler

Description or optionEclipse option

Preprocessing

C compiler option --include-fileInclude CMSIS device register definition header file

269

Description or optionEclipse option

Control program option --preprocess (-E) /
--no-preprocessing-only

Store preprocessor output in <file>.pre

Control program option
--preprocess=+comments

Keep comments in preprocessor output

Control program option
--preprocess=-noline

Keep #line info in preprocessor output

C compiler option --defineDefined symbols

C compiler option --include-filePre-include files

Include Paths

C compiler option --include-directoryAdd CMSIS include paths

C compiler option --include-directoryInclude paths

Precompiled C++ Headers

C++ compiler option --pchAutomatically use/create precompiled header file

C++ compiler option --create-pchCreate precompiled header file

C++ compiler option --use-pchUse precompiled header file

C++ compiler option --pch-dirPrecompiled header file directory

Language

C compiler option --isoComply to C standard

C compiler option --language=+gccAllow GNU C extensions

C compiler option --language=+commentsAllow // comments in ISO C90 mode

C compiler option --language=-stringsCheck assignment of string literal to non-'const' string
pointer

C compiler option --ucharTreat 'char' variables as unsigned

C compiler option --no-doubleTreat 'double' as 'float'

C compiler option --language=-volatileAllow optimization across volatile access

C compiler option --language=+kanjiAllow Shift JIS Kanji in strings

C++ compiler option --embedded-c++Comply to embedded C++ subset

C++ compiler option --io-streamsSupport for C++ I/O streams

C++ compiler option --exceptionsSupport for C++ exception handling

C++ compiler option --rttiSupport for C++ RTTI (run-time type information)

C++ compiler option --wchar_t-keywordAllow the 'wchar_t' keyword (C++)

C++ compiler option --strictAllow non-ANSI/ISO C++ features

C++ compiler option --anachronismsC++ anachronisms

C++ compiler option --g++Allow GNU C++ extensions

Code Generation

C compiler option --thumbUse Thumb instruction set

270

TASKING VX-toolset for ARM User Guide

Description or optionEclipse option

C compiler option --interworkCompile for ARM/Thumb interworking

C compiler option --fpuUse FPU

C compiler option --align-compositesAlignment for composite types

C compiler option --callSelect call mode

Optimization

C compiler option --optimizeOptimization level

C compiler option --tradeoffTrade-off between speed and size

C compiler option --compact-max-sizeMaximum size for code compaction

C compiler option --max-call-depthMaximum call depth for code compaction

C compiler option --inlineAlways inline function calls

C compiler option --inline-max-incrMaximum size increment when inlining (in %)

C compiler option --inline-max-sizeMaximum size for functions to always inline

Control program option --mil-link / --mil-splitBuild for application wide optimizations (MIL linking)

Control program option --mil-link / --mil-splitApplication wide optimization mode

C compiler option --optimizeCustom Optimization

C compiler option --cacheCompilation Speed

Debugging

C compiler option --debug-infoGenerate symbolic debug information

C compiler option --profile=+staticStatic profiling

C compiler option --profile=+blockGenerate profiling information for block counters

C compiler option --profile=+callgraphGenerate profiling information to build a call graph

C compiler option --profile=+functionGenerate profiling information for function counters

C compiler option --profile=+timeGenerate profiling information for function timers

C compiler option --profile=+time,+interruptExclude time spent in interrupt functions

C compiler option --runtime=+boundsGenerate code for bounds checking

C compiler option --runtime=+caseGenerate code to detect unhandled case in a switch

C compiler option --runtime=+mallocGenerate code for malloc consistency checks

C compiler option --runtime=+stackGenerate code for stack overflow checks (allowed for USR
and SYS mode only)

C compiler option --runtime=+zeroGenerate code for division by zero checks

MISRA C

C compiler option --misracMISRA C checking

C compiler option --misrac-versionMISRA C version

C compiler option
--misrac-mandatory-warnings

Warnings instead of errors for mandatory rules

271

Tool Options

Description or optionEclipse option

C compiler option
--misrac-required-warnings

Warnings instead of errors for required rules

C compiler option
--misrac-advisory-warnings

Warnings instead of errors for advisory rules

C compiler option --misracCustom 1998 / Custom 2004 / Custom 2012

CERT C Secure Coding

C compiler option --certCERT C secure code checking

C compiler option
--warnings-as-errors=700-715

Warnings instead of errors

C compiler option --certCustom CERT C

Diagnostics

C compiler option --no-warnings=numSuppress C compiler warnings

C compiler option --no-warningsSuppress all warnings

C++ compiler option
--no-use-before-set-warnings

Suppress C++ compiler “used before set” warnings

C++ compiler option --remarksIssue remarks on C++ code

C compiler option --global-type-checkingPerform global type checking on C code

Miscellaneous

C compiler option --sourceMerge C source code with generated assembly

C++ compiler option --force-vtblForce definition of virtual function tables (C++)

C++ compiler option --suppress-vtblSuppress definition of virtual function tables (C++)

C++ compiler option --implicit-includeImplicit inclusion of source files for finding templates

C++ compiler option --no-inliningMinimal inlining of function calls (C++)

C++ compiler option --instantiateInstantiation mode of external template entities

C compiler options, Control program optionsGenerated options

C compiler options, C++ compiler options,
Control program options

Additional options

Assembler

Description or optionEclipse option

Preprocessing

Assembler option --preprocessor-typeUse TASKING preprocessor

Assembler option --defineDefined symbols

Assembler option --include-filePre-include files

Include Paths

Assembler option --include-directoryInclude paths

272

TASKING VX-toolset for ARM User Guide

Description or optionEclipse option

Symbols

Assembler option --debug-infoGenerate symbolic debug

Assembler option --case-insensitiveCase insensitive identifiers

Assembler option --emit-locals=+equEmit local EQU symbols

Assembler option --emit-locals=+mappingsEmit mapping symbols ($a,$t,$d)

Assembler option --emit-locals=+symbolsEmit local non-EQU symbols

Assembler option --symbol-scopeSet default symbol scope to global

List File

Control program option --list-filesGenerate list file

Assembler option --list-formatList ...

Assembler option --section-info=+listList section summary

Diagnostics

Assembler option --no-warnings=numSuppress warnings

Assembler option --no-warningsSuppress all warnings

Assembler option --section-info=+consoleDisplay section summary

Assembler option --error-limitMaximum number of emitted errors

Miscellaneous

Control program option --mixed-arm-thumbUse full assembler for mixed ARM and Thumb instructions

Control program option --thumbAssemble Thumb instructions by default

Assembler option --relaxedAllow 2-operand form for 3-operand instructions

Assembler option --old-syntaxUAL syntax mode

Assembler option --inversionsAllow instruction inversions

Assembler option --kanjiAllow Shift JIS Kanji in strings

Assembler optionsAdditional options

Linker

Description or optionEclipse option

Output Format

Linker option --output=file:IHEXGenerate Intel Hex format file

Linker option --output=file:SRECGenerate S-records file

Linker option --chip-outputCreate file for each memory chip

Linker option --output=file:IHEX:sizeSize of addresses (in bytes) for Intel Hex records

Linker option --output=file:SREC:sizeSize of addresses (in bytes) for Motorola S records

Linker option --hex-format=sEmit start address record

Libraries

273

Tool Options

Description or optionEclipse option

Control program option --no-default-librariesLink default libraries

Control program option --dsp-libraryLink CMSIS DSP library

Linker option --no-rescanRescan libraries to solve unresolved externals

The libraries are added as files on the
command line.

Libraries

Linker option --library-directoryLibrary search path

Data Objects

Linker option --import-objectData objects

Script File

Linker option --defineDefined symbols

Linker option --lsl-fileLinker script file (.lsl)

Optimization

Linker option --optimize=cDelete unreferenced sections

Linker option --optimize=lUse a 'first-fit decreasing' algorithm

Linker option --optimize=tCompress copy table

Linker option --optimize=xDelete duplicate code

Linker option --optimize=yDelete duplicate data

Linker option --optimize=zCompress ROM sections of copy table items

Map File

Control program option --no-map-fileGenerate map file (.map)

Linker option --map-file=file.mapxml:XMLGenerate XML map file format (.mapxml) for map file viewer

Linker option --map-file-formatInclude ...

Diagnostics

Linker option --no-warnings=numSuppress warnings

Linker option --no-warningsSuppress all warnings

Linker option --error-limitMaximum number of emitted errors

Miscellaneous

Linker option --strip-debugStrip symbolic debug information

Linker option --case-insensitiveLink case insensitive

Linker option
--user-provided-initialization-code

Do not use standard copy table for initialization

Linker option --verboseShow link phases during processing

Linker option --long-branch-veneersGenerate long-branch veneers

Linker option --non-romableApplication is not romable

Linker optionsAdditional options

274

TASKING VX-toolset for ARM User Guide

11.1. Configuring the Command Line Environment

If you want to use the tools on the command line (using a Windows command prompt), you can set
environment variables.

You can set the following environment variables:

DescriptionEnvironment
variable

With this variable you specify one or more additional directories in which the
assembler looks for include files. See Section 6.4, How the Assembler Searches
Include Files.

ASARMINC

With this variable you specify one or more additional directories in which the C
compiler looks for include files. See Section 4.3, How the Compiler Searches
Include Files.

CARMINC

With this variable you specify one or more additional directories in which the C++
compiler looks for include files. See Section 5.2, How the C++ Compiler Searches
Include Files.

CPARMINC

When this variable is set, the control program prepends the directory specified by
this variable to the names of the tools invoked.

CCARMBIN

With this variable you specify one or more additional directories in which the linker
looks for libraries. See Section 7.3.1, How the Linker Searches Libraries.

LIBCARM

With this variable you specify the directory in which the executables reside. This
allows you to call the executables when you are not in the bin directory. Usually
your system already uses the PATH variable for other purposes. To keep these
settings, you need to add (rather than replace) the path. Use a semicolon (;) to
separate path names.

PATH

With this variable you specify the location where programs can create temporary
files. Usually your system already uses this variable. In this case you do not need
to change it.

TMPDIR

See the documentation of your operating system on how to set environment variables.

275

Tool Options

11.2. C Compiler Options

This section lists all C compiler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the compiler via the control program. Therefore, it uses the syntax of
the control program to pass options and files to the C compiler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C/C++ Compiler » Miscellaneous.

4. In the Additional options field, enter one or more command line options.

Because Eclipse uses the control program, you have to precede the option with -Wc to pass the
option via the control program directly to the C compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -n sends output to stdout instead of a file and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on', use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

carm -Oac test.c
carm --optimize=+coalesce,+cse test.c

When you do not specify an option, a default value may become active.

276

TASKING VX-toolset for ARM User Guide

C compiler option: --align-composites

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Select the Alignment for composite types: Natural alignment or Optimal alignment.

Command line syntax

--align-composites=alignment

You can specify the following alignments:

Natural alignment (default)n

Optimal alignmento

Description

With this option you can set the alignment for composite types (structs, unions and arrays).

Natural alignment (n) uses the natural alignment of the most-aligned member of the composite type.

Optimal alignment (o) sets the alignment to 8, 16, or 32 bits depending on the size of the composite type.

Example

Consider the following structure of three chars.

struct s
{
 char a;
 char b;
 char c;
} s_var;

With natural alignment this results in a size of s_var of three bytes.

s_var .type object
 .size s_var,3
 .ds 3

With --align-composites=o, s_var is padded with one extra byte, so that the contents of the struct is
aligned at 4 bytes.

s_var .type object
 .size s_var,4
 .ds 4

277

Tool Options

Related information

-

278

TASKING VX-toolset for ARM User Guide

C compiler option: --cache

Menu entry

1. Select C/C++ Compiler » Optimization » Compilation Speed.

2. Enable the option Cache generated code to improve the compilation speed.

3. In the Directory for cached files field, enter the name for the location of the cache.

Command line syntax

--cache[=directory]

Default on command line: . (current directory)

Default in Eclipse: .cache directory under project directory

Description

This option enables a cache for output files in the specified directory. When the source code after
preprocessing and relevant compiler options and the compiler version are the same as in a previous
invocation, the previous result is copied to the output file. The cache only works when there is a single C
input file and a single output file (no --mil-split).

You can also enable the cache and specify the cache directory with the environment variable
CARMCACHE. This option takes precedence over the environment variable.

The cache directory may be shared, for instance by placing it on a network drive.

The compiler creates a directory carmcache in the directory specified with the option --cache or the
environment variable CARMCACHE. The directory is only created when it does not yet exist. The cache
files are stored in this directory.

Example

To improve the compilation speed and put cached files in directory .cache, enter:

carm --cache=.cache test.c

Related information

Section 12.5, Compiler Cache

Section 9.6, Expire Cache Utility

279

Tool Options

C compiler option: --call (-m)

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Set the option Select call mode to Use PC-relative calls (default) or to Use 32-bit indirect calls.

Command line syntax

--call={far|near}

-m{f|n}

Description

To address the memory of the ARM, you can use two different call modes:

32-bit indirect calls. Though you can address the full range of memory, the
address is first loaded into a register after which the call is executed.

far

26-bit PC-relative call.The PC-relative call is directly coded into the B instruction.
This way of calling results in higher execution speed. However, not the full range
of memory can be addressed with near calls.

near

If you compile your C source with near calls but the called address cannot be reached with a near
call, the linker will generate an error.

It is recommended to use the near addressing mode unless your application needs calls to addresses
that fall outside a 256 MB region.

Instead of using this option, it is recommended to use the linker option --long-branch-veneers. This
linker option only adds long branch veneers where necessary.

Example

Consider the following function q which calls function p:

extern int p(int a, int b, int c, int d)
{
 return a+b+c+d + a*b*c*d;
}

extern int iii;
void q(void)
{
 iii=p(42,43,44,45);
}

280

TASKING VX-toolset for ARM User Guide

With --call=near, this results into

q: .type func

 str lr,[sp,#-4]!

 mov r3,#45
 mov r2,#44
 mov r1,#43
 mov r0,#42
 bl p ; PC-relative call
 ldr r1,.L3
 str r0,[r1,#0]
 ldr pc,[sp],#4
 .align 4
.L3:
 .dw iii
 .size q,$-q

 .calls 'q','p'
 .calls 'p','',8
 .calls 'q','',4
 .extern iii

With --call=far, this results into

q: .type func

 stmfd sp!,{r4,lr}

 ldr r4,.L3 ; address loaded in register
 mov r3,#45
 mov r2,#44
 mov r1,#43
 mov r0,#42
 mov lr,pc
 bx r4 ; indirect call
 ldr r1,.L3+4
 str r0,[r1,#0]
 ldmfd sp!,{r4,pc}
 .align 4
.L3:
 .dw p
 .dw iii
 .size q,$-q

 .calls '__INDIRECT__','p' ; indirect calls
 .calls 'q','__INDIRECT__'
 .calls 'p','',8
 .calls 'q','',8

281

Tool Options

 .extern iii
 .extern __INDIRECT__

Related information

Linker option --long-branch-veneers

282

TASKING VX-toolset for ARM User Guide

C compiler option: --cert

Menu entry

1. Select C/C++ Compiler » CERT C Secure Coding.

2. Make a selection from the CERT C secure code checking list.

3. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

Command line syntax

--cert={all | name[-name],...}

Default format: all

Description

With this option you can enable one or more checks for CERT C Secure Coding Standard
recommendations/rules. When you omit the argument, all checks are enabled. name is the name of a
CERT recommendation/rule, consisting of three letters and two digits. Specify only the three-letter
mnemonic to select a whole category. For the list of names you can use, see Chapter 20, CERT C Secure
Coding Standard.

On the command line you can use --diag=cert to see a list of the available checks, or you can use a
three-letter mnemonic to list only the checks in a particular category. For example, --diag=pre lists all
supported preprocessor checks.

Example

To enable the check for CERT rule STR30-C, enter:

carm --cert=str30 test.c

Related information

Chapter 20, CERT C Secure Coding Standard

C compiler option --diag (Explanation of diagnostic messages)

283

Tool Options

C compiler option: --check

Menu entry

-

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler reports any warnings and/or errors.

This option is available on the command line only.

Related information

Assembler option --check (Check syntax)

284

TASKING VX-toolset for ARM User Guide

C compiler option: --code-endianness

Menu entry

-

Command line syntax

--code-endianness=endianness

You can specify the following endianness:

Big endianbbig

Little endian (default)llittle

Description

This option tells the compiler what code endianness you want, little-endian (least significant byte of a
word at lowest byte code address) or big-endian (most significant byte of a word at lowest byte code
address). The code endianness used must be a valid one for the architecture you are compiling for. This
option is only available for ARMv7R.

Related information

C compiler option --endianness (Data endianness)

285

Tool Options

C compiler option: --compact-max-size

Menu entry

1. Select C/C++ Compiler » Optimization.

2. In the Maximum size for code compaction field, enter the maximum size of a match.

Command line syntax

--compact-max-size=value

Default: 200

Description

This option is related to the compiler optimization --optimize=+compact (Code compaction or reverse
inlining). Code compaction is the opposite of inlining functions: large sequences of code that occur more
than once, are transformed into a function. This reduces code size (possibly at the cost of execution
speed).

However, in the process of finding sequences of matching instructions, compile time and compiler memory
usage increase quadratically with the number of instructions considered for code compaction. With this
option you tell the compiler to limit the number of matching instructions it considers for code compaction.

Example

To limit the maximum number of instructions in functions that the compiler generates during code
compaction:

carm --optimize=+compact --compact-max-size=100 test.c

Related information

C compiler option --optimize=+compact (Optimization: code compaction)

C compiler option --max-call-depth (Maximum call depth for code compaction)

286

TASKING VX-toolset for ARM User Guide

C compiler option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, make a selection by Architecture, Core or one of the
manufacturers.

Command line syntax

--cpu=architecture

-Carchitecture

You can specify the following architectures:

Compile for ARMv6-M architectureARMv6M

Compile for ARMv7-M architectureARMv7M

Compile for ARMv7E-M architectureARMv7EM

Compile for ARMv7-R architectureARMv7R

Description

With this option you specify the ARM architecture for which you create your application. The ARM target
supports more than one architecture and therefore you need to specify for which architecture the compiler
should compile. The architecture determines which instructions are valid and which are not.

You choose one of the following architectures: ARMv6-M, ARMv7-M, ARMv7E-M or ARMv7-R. The
compiler sets the Thumb instruction set implicitly (option --thumb).

The macro __CPU_arch__ is defined in the C source file. The arch is converted to uppercase.

When you call the compiler from the command line, make sure you specify the same core type to the
assembler to avoid conflicts!

Example

To compile the file test.c for the ARMv7E-M processor type, enter the following on the command line:

carm --cpu=ARMv7EM test.c

The compiler compiles for the chosen processor type.

Related information

Control program option --cpu (Select architecture)

Assembler option --cpu (Select architecture)

287

Tool Options

C compiler option: --debug-info (-g)

Menu entry

1. Select C/C++ Compiler » Debugging.

2. To generate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax

--debug-info[=suboption]

-g[suboption]

You can set the following suboptions:

Emit small set of debug information.1 / csmall

Emit default symbolic debug information.2 / ddefault

Emit full symbolic debug information.3 / aall

Default: --debug-info (same as --debug-info=default)

Description

With this option you tell the compiler to add directives to the output file for including symbolic information.
This facilitates high level debugging but increases the size of the resulting assembler file (and thus the
size of the object file). For the final application, compile your C files without debug information.

The DWARF debug format allows for a flexible approach as to how much symbolic information is included,
as long as the structure is valid. Adding all possible DWARF data for a program is not practical. The
amount of DWARF information per compilation unit can be huge. And for large projects, with many object
modules the link time can grow unacceptably long.That is why the compiler has several debug information
levels. In general terms one can say, the higher the level the more DWARF information is produced.

The DWARF data in an object module is not only used for debugging. The toolset can also do "type
checking" of the whole application. In that case the linker will use the DWARF information of all object
modules to determine if every use of a symbol is done with the same type. In other words, if the application
is built with type checking enabled then the compiler will add DWARF information too.

Small set of debug information

With this suboption only DWARF call frame information and type information are generated.This enables
you to inspect parameters of nested functions.The type information improves debugging.You can perform
a stack trace, but stepping is not possible because debug information on function bodies is not generated.
You can use this suboption, for example, to compact libraries.

288

TASKING VX-toolset for ARM User Guide

Default debug information

This provides all debug information you need to debug your application. It meets the debugging
requirements in most cases without resulting in oversized assembler/object files.

Full debug information

With this suboption extra debug information is generated about unused typedefs and DWARF "lookup
table sections". Under normal circumstances this extra debug information is not needed to debug the
program. Information about unused typedefs concerns all typedefs, even the ones that are not used for
any variable in the program. (Possibly, these unused typedefs are listed in the standard include files.)
With this suboption, the resulting assembler/object file will increase significantly.

In the following table you see in more detail what DWARF information is included for the debug option
levels.

Remarkstype check-g3-g2-g1Feature

info such as symbol name and type++++basic info

this is information for a debugger to compute
a stack trace when a program has stopped
at a breakpoint

++++call frame

this is information about where symbols live
(e.g. on stack at offset so and so, when the
program counter is in this range)

++symbol lifetime

file name, line number, column number+++line number info

DWARF sections ... this is an optimization
for the DWARF data, it is not essential

+”lookup tables"

in the C/C++ code of the program there can
be (many) typedefs that are not used for any
variable. Sometimes this can cause
enormous expansion of the DWARF data and
thus it is only included in -g3.

+unused typedefs

Related information

-

289

Tool Options

C compiler option: --define (-D)

Menu entry

1. Select C/C++ Compiler » Preprocessing.

The Defined symbols box shows the symbols that are currently defined.

2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

--define=macro_name[=macro_definition]

-Dmacro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, you can use the option --define (-D) multiple times. If the command line exceeds
the limit of the operating system, you can define the macros in an option file which you then must specify
to the compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

Consider the following C program with conditional code to compile a demo program and a real program:

void main(void)
{
#if DEMO
 demo_func(); /* compile for the demo program */
#else
 real_func(); /* compile for the real program */
#endif
}

290

TASKING VX-toolset for ARM User Guide

You can now use a macro definition to set the DEMO flag:

carm --define=DEMO test.c
carm --define=DEMO=1 test.c

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

carm --define="MAX(A,B)=((A) > (B) ? (A) : (B))" test.c

Related information

C compiler option --undefine (Remove preprocessor macro)

C compiler option --option-file (Specify an option file)

291

Tool Options

C compiler option: --dep-file

Menu entry

Eclipse uses this option in the background to create a file with extension .d (one for every input file).

Command line syntax

--dep-file[=file]

Description

With this option you tell the compiler to generate dependency lines that can be used in a Makefile. In
contrast to the option --preprocess=+make, the dependency information will be generated in addition to
the normal output file.

By default, the information is written to a file with extension .d (one for every input file).When you specify
a filename, all dependencies will be combined in the specified file.

Example

carm --dep-file=test.dep test.c

The compiler compiles the file test.c, which results in the output file test.src, and generates
dependency lines in the file test.dep. For example:

test.obj : test.c
test.c :
test.obj : <install-dir>/carm/include/stdio.h
<install-dir>/carm/include/stdio.h :
test.obj : <install-dir>/carm/include/stdarg.h
<install-dir>/carm/include/stdarg.h :

Related information

C compiler option --preprocess=+make (Generate dependencies for make)

292

TASKING VX-toolset for ARM User Guide

C compiler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | msg[-msg],...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The compiler does
not compile any files.You can specify the following formats: html, rtf or text (default). To create a file
with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given (except for the CERT checks). If
you want the description of one or more selected error messages, you can specify the error message
numbers, separated by commas, or you can specify a range.

With --diag=cert you can see a list of the available CERT checks, or you can use a three-letter mnemonic
to list only the checks in a particular category. For example, --diag=pre lists all supported preprocessor
checks.

Example

To display an explanation of message number 282, enter:

carm --diag=282

This results in the following message and explanation:

293

Tool Options

E282: unterminated comment

Make sure that every comment starting with /* has a matching */.
Nested comments are not possible.

To write an explanation of all errors and warnings in HTML format to file cerrors.html, use redirection
and enter:

carm --diag=html:all > cerrors.html

Related information

Section 4.7, C Compiler Error Messages

C compiler option --cert (Enable individual CERT checks)

294

TASKING VX-toolset for ARM User Guide

C compiler option: --endianness

Menu entry

1. Select Global Options.

2. Specify the Endianness:Little-endian mode or Big-endian mode.

Command line syntax

--endianness=endianness

-B
--big-endian

You can specify the following endianness:

Big endianbbig

Little endian (default)llittle

Description

By default, the compiler generates code for a little-endian target (least significant byte of a word at lowest
byte address).With --endianness=big the compiler generates code for a big-endian target (most significant
byte of a word at lowest byte address). -B is an alias for option --endianness=big.

Related information

C compiler option --code-endianness (Code endianness)

295

Tool Options

C compiler option: --error-file

Menu entry

-

Command line syntax

--error-file[=file]

Description

With this option the compiler redirects error messages to a file. If you do not specify a filename, the error
file will be named after the output file with extension .err.

Example

To write errors to errors.err instead of stderr, enter:

carm --error-file=errors.err test.c

Related information

-

296

TASKING VX-toolset for ARM User Guide

C compiler option: --fp-model

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat 'double' as 'float'.

Command line syntax

--fp-model=flags

You can set the following flags:

treat 'double' as 'float'f/F+/-float

allow expression rewritingr/R+/-rewrite

ignore sign of -0.0z/Z+/-negzero

alias for --fp-model=FRZ1

alias for --fp-model=Frz2

alias for --fp-model=frz3

Default: --fp-model=Frz

Description

With this option you select the floating-point execution model.

With --fp-model=+float you tell the compiler to treat variables and constants of type double as float.
Because the float type takes less space, execution speed increases and code size decreases, both at
the cost of less precision. Make sure you specify the corresponding libraries to the linker.

With --fp-model=+rewrite you allow the compiler to rewrite expressions by reassociating. This might
result in rounding differences and possibly different exceptions. An example is to rewrite (a*c)+(b*c) as
(a+b)*c.

With --fp-model=+negzero you allow the compiler to ignore the sign of -0.0 values. An example is to
replace (a-a) by zero.

Related information

Pragmas fp_negzero and fp_rewrite in Section 1.8, Pragmas to Control the Compiler.

297

Tool Options

C compiler option: --fpu

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Enable the option Use FPU.

Command line syntax

--fpu=fpu

You can specify the following arguments:

alias for VFPv4-spFPv4-sp

alias for VFPv3VFPv2

Compile for VFPv3 architectureVFPv3

Compile for VFPv3-sp architectureVFPv3-sp

Compile for VFPv4-sp architectureVFPv4-sp

Compile for software FPU library (default)none

Description

With this option you define the kind of FPU support with which you create your application.The "sp" suffix
denotes single precision floating-point only.

The macro __FPU_fpu__ is defined in the C source file. The fpu is converted to uppercase and the
lowercase “v" and the '-' will be removed. Also when "none" is not used, the macro __FPU_VFP__ is
defined in the C source file, otherwise the macro __FPU_NONE__ is defined.

Example

To compile the file test.c for the VFPv3-sp architecture, enter the following on the command line:

carm --fpu=VFPv3-sp test.c

This defines the symbols __FPU_VFP__ and __FPU_VFP3SP__.

Related information

-

298

TASKING VX-toolset for ARM User Guide

C compiler option: --global-type-checking

Menu entry

1. Select C/C++ Compiler » Diagnostics.

2. Enable the option Perform global type checking on C code.

Command line syntax

--global-type-checking

Description

The C compiler already performs type checking within each module. Use this option when you want the
linker to perform type checking between modules.

Related information

-

299

Tool Options

C compiler option: --help (-?)

Menu entry

-

Command line syntax

--help[=item]

-?

You can specify the following arguments:

Show the list of intrinsic functionsiintrinsics

Show extended option descriptionsooptions

Show the list of supported pragmasppragmas

Show the list of predefined typedefsttypedefs

Description

Displays an overview of all command line options. With an argument you can specify which extended
information is shown.

Example

The following invocations all display a list of the available command line options:

carm -?
carm --help
carm

The following invocation displays a list of the available pragmas:

carm --help=pragmas

Related information

-

300

TASKING VX-toolset for ARM User Guide

C compiler option: --include-directory (-I)

Menu entry

1. Select C/C++ Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.

2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

4. Optionally enable the option Add CMSIS include paths.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--include-directory=path,...

-Ipath,...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the compiler searches for include files is:

1. The pathname in the C source file and the directory of the C source (only for #include files that are
enclosed in "")

2. The path or paths that are specified with this option. Multiple paths/options are handled by the C
compiler from left to right. From Eclipse, the CMSIS include paths, if enabled, are the first option, so
they are searched first.

3. The path that is specified in the environment variable CARMINC when the product was installed.

4. The default directory $(PRODDIR)\include (unless you specified option --no-stdinc).

Example

Suppose that the C source file test.c contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the compiler as follows:

carm --include-directory=myinclude test.c

301

Tool Options

First the compiler looks for the file stdio.h in the directory myinclude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

The compiler now looks for the file myinc.h in the directory where test.c is located. If the file is not
there the compiler searches in the directory myinclude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information

C compiler option --include-file (Include file at the start of a compilation)

C compiler option --no-stdinc (Skip standard include files directory)

302

TASKING VX-toolset for ARM User Guide

C compiler option: --include-file (-H)

Menu entry

1. Select C/C++ Compiler » Preprocessing.

The Pre-include files box shows the files that are currently included before the compilation starts.

2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.

4. (Optional) Enable the option Include CMSIS device register definition header file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax

--include-file=file,...

-Hfile,...

Description

With this option you include one or more extra files at the beginning of each C source file, before other
includes. This is the same as specifying #include "file" at the beginning of each of your C sources.

Example

carm --include-file=stdio.h test1.c test2.c

The file stdio.h is included at the beginning of both test1.c and test2.c.

Related information

C compiler option --include-directory (Add directory to include file search path)

303

Tool Options

C compiler option: --inline

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Enable the option Always inline function calls.

Command line syntax

--inline

Description

With this option you instruct the compiler to inline calls to functions without the __noinline function
qualifier whenever possible. This option has the same effect as a #pragma inline at the start of the
source file.

This option can be useful to increase the possibilities for code compaction (C compiler option
--optimize=+compact).

Example

To always inline function calls:

carm --optimize=+compact --inline test.c

Related information

C compiler option --optimize=+compact (Optimization: code compaction)

Section 1.11.2, Inlining Functions: inline

304

TASKING VX-toolset for ARM User Guide

C compiler option: --inline-max-incr / --inline-max-size

Menu entry

1. Select C/C++ Compiler » Optimization.

2. In the Maximum size increment when inlining field, enter a value (default -1).

3. In the Maximum size for functions to always inline field, enter a value (default -1).

Command line syntax

--inline-max-incr=percentage (default: -1)

--inline-max-size=threshold (default: -1)

Description

With these options you can control the automatic function inlining optimization process of the compiler.
These options only have effect when you have enabled the inlining optimization (option --optimize=+inline
or Optimize most).

Regardless of the optimization process, the compiler always inlines all functions that have the
function qualifier inline.

With the option --inline-max-size you can specify the maximum size of functions that the compiler inlines
as part of the optimization process. The compiler always inlines all functions that are smaller than the
specified threshold. The threshold is measured in compiler internal units and the compiler uses this
measure to decide which functions are small enough to inline. The default threshold is -1, which means
that the threshold depends on the option --tradeoff.

After the compiler has inlined all functions that have the function qualifier inline and all functions that
are smaller than the specified threshold, the compiler looks whether it can inline more functions without
increasing the code size too much.With the option --inline-max-incr you can specify how much the code
size is allowed to increase. The default value is -1, which means that the value depends on the option
--tradeoff.

Example

carm --optimize=+inline --inline-max-incr=40 --inline-max-size=15 test.c

The compiler first inlines all functions with the function qualifier inline and all functions that are smaller
than the specified threshold of 15. If the code size has still not increased with 40%, the compiler decides
which other functions it can inline.

Related information

C compiler option --optimize=+inline (Optimization: automatic function inlining)

Section 1.11.2, Inlining Functions: inline

305

Tool Options

Section 4.5.3, Optimize for Code Size or Execution Speed

306

TASKING VX-toolset for ARM User Guide

C compiler option: --interwork

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Enable the option Compile for ARM/Thumb interworking.

Command line syntax

--interwork

Description

With this option the compiler generates code which supports calls between functions with the ARM and
Thumb instruction set.

Use this option if your program consists of both ARM and Thumb functions.

By default this option is disabled, since it produces slightly larger code.

Related information

C compiler option --thumb (Use Thumb instruction set)

307

Tool Options

C compiler option: --iso (-c)

Menu entry

1. Select C/C++ Compiler » Language.

2. From the Comply to C standard list, select ISO C99 or ISO C90.

Command line syntax

--iso={90|99}

-c{90|99}

Default: --iso=99

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99
refers to the newer ISO/IEC 9899:1999 (E) standard. C99 is the default.

Example

To select the ISO C90 standard on the command line:

carm --iso=90 test.c

Related information

C compiler option --language (Language extensions)

308

TASKING VX-toolset for ARM User Guide

C compiler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the .src file when errors occur during compilation.

Command line syntax

--keep-output-files

-k

Description

If an error occurs during compilation, the resulting .src file may be incomplete or incorrect. With this
option you keep the generated output file (.src) when an error occurs.

By default the compiler removes the generated output file (.src) when an error occurs. This is useful
when you use the make utility. If the erroneous files are not removed, the make utility may process corrupt
files on a subsequent invocation.

Use this option when you still want to inspect the generated assembly source. Even if it is incomplete or
incorrect.

Example

carm --keep-output-files test.c

When an error occurs during compilation, the generated output file test.src will not be removed.

Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

309

Tool Options

C compiler option: --language (-A)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable or disable one or more of the following options:

• Allow GNU C extensions

• Allow // comments in ISO C90 mode

• Check assignment of string literal to non-'const' string pointer

• Allow optimization across volatile access

Command line syntax

--language=[flags]

-A[flags]

You can set the following flags:

enable a number of gcc extensionsg/G+/-gcc

support for Shift JIS Kanji in stringsk/K+/-kanji

// comments in ISO C90 modep/P+/-comments

don't optimize across volatile accessv/V+/-volatile

relaxed const check for string literalsx/X+/-strings

Default: -AGKpVx

Default (without flags): -AGKPVX

Description

With this option you control the language extensions the compiler can accept. By default the ARM compiler
allows all language extensions, except for gcc extensions.

The option --language (-A) without flags disables all language extensions.

GNU C extensions

The --language=+gcc (-Ag) option enables the following gcc language extensions:

• The identifier __FUNCTION__ expands to the current function name.

• Alternative syntax for variadic macros.

• Alternative syntax for designated initializers.

310

TASKING VX-toolset for ARM User Guide

• Allow zero sized arrays.

• Allow empty struct/union.

• Allow unnamed struct/union fields.

• Allow empty initializer list.

• Allow initialization of static objects by compound literals.

• The middle operand of a ? : operator may be omitted.

• Allow a compound statement inside braces as expression.

• Allow arithmetic on void pointers and function pointers.

• Allow a range of values after a single case label.

• Additional preprocessor directive #warning.

• Allow comma operator, conditional operator and cast as lvalue.

• An inline function without "static" or "extern" will be global.

• An "extern inline" function will not be compiled on its own.

• An __attribute__ directly following a struct/union definition relates to that tag instead of to the
objects in the declaration.

For a more complete description of these extensions, you can refer to the UNIX gcc info pages (info
gcc).

Shift JIS Kanji support

With --language=+kanji (-Ak) you tell the compiler to support Shift JIS encoded Kanji multi-byte characters
in strings, (wide) character constants and // comments. Without this option, encodings with 0x5c as the
second byte conflict with the use of the backslash as an escape character. Shift JIS in /*...*/ comments
is supported regardless of this option. Note that Shift JIS also includes Katakana and Hiragana.

Comments in ISO C90 mode

With --language=+comments (-Ap) you tell the compiler to allow C++ style comments (//) in ISO C90
mode (option --iso=90). In ISO C99 mode this style of comments is always accepted.

Check assignment of string literal to non-const string pointer

With --language=+strings (-Ax) you disable warnings about discarded const qualifiers when a string
literal is assigned to a non-const pointer.

char *p;
void main(void) { p = "hello"; }

311

Tool Options

Optimization across volatile access

With the --language=+volatile (-Av) option, the compiler will block optimizations when reading or writing
a volatile object, by executing all memory and (SFR) register accesses before the access of the volatile
object. The volatile access acts as a memory barrier. With this option you can prevent for example that
code below the volatile object is optimized away to somewhere above the volatile object.

Example:

extern unsigned int variable;
extern volatile unsigned int access;

void TestFunc(unsigned int flag)
{
 access = 0;
 variable |= flag;
 if(variable == 3)
 {
 variable = 0;
 }
 variable |= 0x8000;
 access = 1;
}

Result with --language=-volatile (default):

TestFunc: .type func
 str lr,[sp,#-4]!
 ldr r1,.L3
 ldr lr,.L3+4
 ldr r2,[r1,#0] ; <== Moved across volatile access
 mov r3,#0
 orr r0,r2,r0
 cmp r0,#3
 str r3,[lr,#0] ; <== Volatile access
 bne .L2
 mov r0,r3
.L2:
 orr r0,r0,#32768
 mov r2,#1
 str r2,[lr,#0] ; <== Volatile access
 str r0,[r1,#0] ; <== Moved across volatile access
 ldr pc,[sp],#4
 .size TestFunc,$-TestFunc
 .align 4
.L3:
 .dw variable
 .dw access

Result with --language=+volatile:

312

TASKING VX-toolset for ARM User Guide

TestFunc: .type func
 str lr,[sp,#-4]!
 ldr r3,.L3
 ldr r2,.L3+4
 ldr lr,[r3,#0]
 mov r1,#0
 orr r0,lr,r0
 cmp r0,#3
 str r1,[r2,#0] ; <== Volatile access
 str r0,[r3,#0] ; <== Not moved
 bne .L2
 str r1,[r3,#0]
.L2:
 ldr r0,[r3,#0]
 orr r0,r0,#32768
 str r0,[r3,#0] ; <== Not moved
 mov r0,#1
 str r0,[r2,#0] ; <== Volatile access
 ldr pc,[sp],#4
 .size TestFunc,$-TestFunc
 .align 4
.L3:
 .dw variable
 .dw access

Note that the volatile behavior of the compiler with option --language=-volatile or --language=+volatile
is ISO C compliant in both cases.

Example

carm --language=-comments,+strings --iso=90 test.c
carm -APx -c90 test.c

The compiler compiles in ISO C90 mode, accepts assignments of a constant string to a non-constant
string pointer and does not allow C++ style comments.

Related information

C compiler option --iso (ISO C standard)

Section 1.5, Shift JIS Kanji Support

313

Tool Options

C compiler option: --make-target

Menu entry

-

Command line syntax

--make-target=name

Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file.The default target name is the basename of the input
file, with extension .obj.

Example

carm --preprocess=+make --make-target=mytarget.obj test.c

The compiler generates dependency lines with the default target name mytarget.obj instead of
test.obj.

mytarget.obj : test.c
test.c :

Related information

C compiler option --preprocess=+make (Generate dependencies for make)

C compiler option --dep-file (Generate dependencies in a file)

314

TASKING VX-toolset for ARM User Guide

C compiler option: --max-call-depth

Menu entry

1. Select C/C++ Compiler » Optimization.

2. In the Maximum call depth for code compaction field, enter a value.

Command line syntax

--max-call-depth=value

Default: -1

Description

This option is related to the compiler optimization --optimize=+compact (Code compaction or reverse
inlining). Code compaction is the opposite of inlining functions: large sequences of code that occur more
than once, are transformed into a function. This reduces code size (possibly at the cost of execution
speed).

During code compaction it is possible that the compiler generates nested calls. This may cause the
program to run out of its stack. To prevent stack overflow caused by too deeply nested function calls, you
can use this option to limit the call depth. This option can have the following values:

Poses no limit to the call depth (default)-1

The compiler will not generate any function calls. (Effectively the same as if you turned of
code compaction with option --optimize=-compact)

0

Code sequences are only reversed if this will not lead to code at a call depth larger than
specified with value. Function calls will be placed at a call depth no larger than value-1.
(Note that if you specified a value of 1, the option --optimize=+compact may remain
without effect when code sequences for reversing contain function calls.)

> 0

This option does not influence the call depth of user written functions.

If you use this option with various C modules, the call depth is valid for each individual module.
The call depth after linking may differ, depending on the nature of the modules.

Related information

C compiler option --optimize=+compact (Optimization: code compaction)

C compiler option --compact-max-size (Maximum size of a match for code compaction)

315

Tool Options

C compiler option: --mil / --mil-split

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Enable the option Build for application wide optimizations (MIL linking).

3. Select Optimize less/Build faster or Optimize more/Build slower.

Command line syntax

--mil
--mil-split[=file,...]

Description

With option --mil the C compiler skips the code generator phase and writes the optimized intermediate
representation (MIL) to a file with the suffix .mil. The C compiler accepts .mil files as input files on the
command line.

Option --mil-split does the same as option --mil, but in addition, the C compiler splits the MIL representation
and writes it to separate files with suffix .ms. One file is written for each input file or MIL library specified
on the command line. The .ms files are only updated on a change. The C compiler accepts .ms files as
input files on the command line.

With option --mil-split you can perform application-wide optimizations during the frontend phase by
specifying all modules at once, and still invoke the backend phase one module at a time to reduce the
total compilation time. Application wide code compaction is not possible in this case.

Optionally, you can specify another filename for the .ms file the C compiler generates. Without an
argument, the basename of the C source file is used to create the .ms filename. Note that if you specify
a filename, you have to specify one filename for every input file.

Note that with both options some extra strict type checking is done that can cause building to fail in a way
that is unforeseen and difficult to understand. For example, when you use one of these options in
combination with option --uchar and you link the MIL library, you might get the following error:

carm E289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
carm I802: ["installation-dir\include\string.h" 44/17]
 previous declaration of "strlen"
1 errors, 0 warnings

This is caused by the fact that the MIL library is built without --uchar.You can workaround this problem
by rebuilding the MIL libraries.

Build for application wide optimizations (MIL linking) and Optimize less/Build faster

This option is standard MIL linking and splitting. Note that you can control the optimizations to be performed
with the optimization settings.

316

TASKING VX-toolset for ARM User Guide

Optimize more/Build slower

When you enable this option, the compiler's frontend does not split the MIL stream in separate modules,
but feeds it directly to the compiler's backend, allowing the code compaction to be performed application
wide.

Related information

Section 4.1, Compilation Process

Control program option --mil-link / --mil-split

317

Tool Options

C compiler option: --misrac

Menu entry

1. Select C/C++ Compiler » MISRA C.

2. Make a selection from the MISRA C checking list.

3. If you selected Custom, expand the Custom 1998, Custom 2004 or Custom 2012 entry and enable
one or more individual rules.

Command line syntax

--misrac={all | nr[-nr]},...

Description

With this option you specify to the compiler which MISRA C rules must be checked. With the option
--misrac=all the compiler checks for all supported MISRA C rules.

Example

carm --misrac=9-13 test.c

The compiler generates an error for each MISRA C rule 9, 10, 11, 12 or 13 violation in file test.c.

Related information

Section 4.6.2, C Code Checking: MISRA C

C compiler option --misrac-mandatory-warnings

C compiler option --misrac-advisory-warnings

C compiler option --misrac-required-warnings

Linker option --misrac-report

318

TASKING VX-toolset for ARM User Guide

C compiler option: --misrac-advisory-warnings / --misrac-required-warnings
/ --misrac-mandatory-warnings

Menu entry

1. Select C/C++ Compiler » MISRA C.

2. Make a selection from the MISRA C checking list.

3. Enable one or more of the options:
Warnings instead of errors for mandatory rules
Warnings instead of errors for required rules
Warnings instead of errors for advisory rules.

Command line syntax

--misrac-advisory-warnings
--misrac-required-warnings
--misrac-mandatory-warnings

Description

Normally, if an advisory rule, required rule or mandatory rule is violated, the compiler generates an error.
As a consequence, no output file is generated.With this option, the compiler generates a warning instead
of an error.

Related information

Section 4.6.2, C Code Checking: MISRA C

C compiler option --misrac

Linker option --misrac-report

319

Tool Options

C compiler option: --misrac-version

Menu entry

1. Select C/C++ Compiler » MISRA C.

2. Select the MISRA C version: 1998, 2004 or 2012.

Command line syntax

--misrac-version={1998|2004|2012}

Default: 2004

Description

MISRA C rules exist in three versions: MISRA C:1998, MISRA C:2004 and MISRA C:2012. By default,
the C source is checked against the MISRA C:2004 rules. With this option you can select which version
to use.

Related information

Section 4.6.2, C Code Checking: MISRA C

C compiler option --misrac

320

TASKING VX-toolset for ARM User Guide

C compiler option: --no-double (-F)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat 'double' as 'float'.

Command line syntax

--no-double

-F

Description

With this option you tell the compiler to treat variables and constants of type double as float. Because
the float type takes less space, execution speed increases and code size decreases, both at the cost
of less precision.

This option is an alias for C compiler option --fp-model=+float.

Example

carm --no-double test.c

The file test.c is compiled where variables and constants of type double are treated as float.

Related information

C compiler option --fp-model (floating-point model)

321

Tool Options

C compiler option: --no-stdinc

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --no-stdinc to the Additional options field.

Command line syntax

--no-stdinc

Description

With this option you tell the compiler not to look in the default include directory relative to the installation
directory, when searching for include files. This way the compiler only searches in the include file search
paths you specified.

Related information

C compiler option --include-directory (Add directory to include file search path)

Section 4.3, How the Compiler Searches Include Files

322

TASKING VX-toolset for ARM User Guide

C compiler option: --no-warnings (-w)

Menu entry

1. Select C/C++ Compiler » Diagnostics.

The Suppress C compiler warnings box shows the warnings that are currently suppressed.

2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas or as a range, of the warnings you want to suppress (for
example 537,538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

--no-warnings[=number[-number],...]

-w[number[-number],...]

Description

With this option you can suppresses all warning messages or specific warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are suppressed.

• If you specify this option with a number or a range, only the specified warnings are suppressed.You
can specify the option --no-warnings=number multiple times.

Example

To suppress warnings 537 and 538, enter:

carm test.c --no-warnings=537,538

Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

Pragma warning

323

Tool Options

C compiler option: --optimize (-O)

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Select an optimization level in the Optimization level box.

Command line syntax

--optimize[=flags]

-Oflags

You can set the following flags:

Coalescer: remove unnecessary movesa/A+/-coalesce

Interprocedural register optimizationsb/B+/-ipro

Common subexpression eliminationc/C+/-cse

Expression simplificatione/E+/-expression

Control flow simplificationf/F+/-flow

Generic assembly code optimizationsg/G+/-glo

Automatic function inliningi/I+/-inline

Sign extend eliminationj/J+/-sign

Instruction schedulerk/K+/-schedule

Loop transformationsl/L+/-loop

Forward storeo/O+/-forward

Constant propagationp/P+/-propagate

Code compaction (reverse inlining)r/R+/-compact

Subscript strength reductions/S+/-subscript

Unroll small loopsu/U+/-unroll

Peephole optimizationsy/Y+/-peephole

Cluster global variables+/-cluster

Use the following options for predefined sets of flags:

No optimization
Alias for -OaBCEFGIJKLOPRSUY,-cluster

-O0--optimize=0

No optimizations are performed except for the coalescer (to allow better debug information).The compiler
tries to achieve an optimal resemblance between source code and produced code. Expressions are
evaluated in the same order as written in the source code, associative and commutative properties are
not used.

324

TASKING VX-toolset for ARM User Guide

Optimize
Alias for -OabcefgIJKLOPRSUy,-cluster

-O1--optimize=1

Enables optimizations that do not affect the debug ability of the source code. Use this level when you
encounter problems during debugging your source code with optimization level 2.

Optimize more (default)
Alias for -OabcefgIJkloprsUy,-cluster

-O2--optimize=2

Enables more optimizations to reduce code size and/or execution time. This is the default optimization
level.

Optimize most
Alias for -OabcefgiJkloprsuy,+cluster

-O3--optimize=3

This is the highest optimization level. Use this level to decrease execution time to meet your real-time
requirements.

Default: --optimize=2

Description

With this option you can control the level of optimization. If you do not use this option, the default
optimization level is Optimize more (option --optimize=2 or --optimize).

When you use this option to specify a set of optimizations, you can overrule these settings in your C
source file with #pragma optimize flag / #pragma endoptimize.

In addition to the option --optimize, you can specify the option --tradeoff (-t). With this option you specify
whether the used optimizations should optimize for more speed (regardless of code size) or for smaller
code size (regardless of speed).

Example

The following invocations are equivalent and result all in the default optimization set:

carm test.c

carm --optimize=2 test.c
carm -O2 test.c

carm --optimize test.c
carm -O test.c

carm -OabcefgIJklopsrUy test.c
carm --optimize=+coalesce,+ipro,+cse,+expression,+flow,+glo,
 -inline,-sign,+schedule,+loop,+forward,+propagate,
 +compact,+subscript,-unroll,+peephole,-cluster test.c

325

Tool Options

Related information

C compiler option --tradeoff (Trade off between speed and size)

Pragma optimize/endoptimize

Section 4.5, Compiler Optimizations

326

TASKING VX-toolset for ARM User Guide

C compiler option: --option-file (-f)

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the C compiler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the compiler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

 -> "This is a continuation line"

327

Tool Options

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

--debug-info
--define=DEMO=1
test.c

Specify the option file to the compiler:

carm --option-file=myoptions

This is equivalent to the following command line:

carm --debug-info --define=DEMO=1 test.c

Related information

-

328

TASKING VX-toolset for ARM User Guide

C compiler option: --output (-o)

Menu entry

Eclipse names the output file always after the C source file.

Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the compiler. Without this option
the basename of the C source file is used with extension .src.

Example

To create the file output.src instead of test.src, enter:

carm --output=output.src test.c

Related information

-

329

Tool Options

C compiler option: --preprocess (-E)

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.

4. (Optional) Enable the option Keep #line info in preprocessor output.

Command line syntax

--preprocess[=flags]

-E[flags]

You can set the following flags:

keep commentsc/C+/-comments

generate a list of included source filesi/I+/-includes

generate a list of macro definitionsl/L+/-list

generate dependencies for makem/M+/-make

strip #line source position informationp/P+/-noline

Default: -ECILMP

Description

With this option you tell the compiler to preprocess the C source. Under Eclipse the compiler sends the
preprocessed output to the file name.pre (where name is the name of the C source file to compile).
Eclipse also compiles the C source.

On the command line, the compiler sends the preprocessed file to stdout. To capture the information in
a file, specify an output file with the option --output.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+includes the compiler will generate a list of all included source files.The preprocessor
output is discarded.

With --preprocess=+list the compiler will generate a list of all macro definitions.The preprocessor output
is discarded.

With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The preprocessor output is discarded. The default target name is the basename of the input file, with the
extension .obj.With the option --make-target you can specify a target name which overrules the default
target name.

330

TASKING VX-toolset for ARM User Guide

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #line). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example

carm --preprocess=+comments,+includes,-list,-make,-noline test.c --output=test.pre

The compiler preprocesses the file test.c and sends the output to the file test.pre. Comments and
a list of all included source files are included but no list of macro definitions and no dependencies are
generated and the line source position information is not stripped from the output file.

Related information

C compiler option --dep-file (Generate dependencies in a file)

C compiler option --make-target (Specify target name for -Em output)

331

Tool Options

C compiler option: --profile (-p)

Menu entry

1. Select C/C++ Compiler » Debugging.

2. Enable or disable Static profiling.

3. Enable or disable one or more of the following Generate profiling information options (dynamic
profiling):

• for block counters (not in combination with Call graph or Function timers)

• to build a call graph

• for function counters

• for function timers

Note that the more detailed information you request, the larger the overhead in terms of execution
time, code size and heap space needed. The option --debug does not affect profiling, execution
time or code size.

Command line syntax

--profile[=flag,...]

-p[flags]

Use the following option for a predefined set of flags:

Profiling with call graph and function timers.
Alias for: -pBcFSt

-pg--profile=g

You can set the following flags:

block countersb/B+/-block

call graphc/C+/-callgraph

function countersf/F+/-function

static profile generations/S+/-static

function timerst/T+/-time

Default (without flags): -pBCfST

Description

Profiling is the process of collecting statistical data about a running application. With these data you can
analyze which functions are called, how often they are called and what their execution time is.

332

TASKING VX-toolset for ARM User Guide

Several methods of profiling exist. One method is code instrumentation which adds code to your application
that takes care of the profiling process when the application is executed. Another method is static profiling.

For an extensive description of profiling refer to Chapter 13, Profiling.

You can obtain the following profiling data (see flags above):

Block counters (not in combination with Call graph or Function timers)

This will instrument the code to perform basic block counting. As the program runs, it counts the number
of executions of each branch in an if statement, each iteration of a for loop, and so on. Note that though
you can combine Block counters with Function counters, this has no effect because Function counters
is only a subset of Block counters.

Call graph (not in combination with Block counters)

This will instrument the code to reconstruct the run-time call graph. As the program runs it associates the
caller with the gathered profiling data.

Function counters

This will instrument the code to perform function call counting.This is a subset of the basic Block counters.

Function timers (not in combination with Block counters/Function counters)

This will instrument the code to measure the time spent in a function. This includes the time spent in all
sub functions (callees).

Static profiling

With this option you do not need to run the application to get profiling results. The compiler generates
profiling information at compile time, without adding extra code to your application.

If you use one or more profiling options that use code instrumentation, you must link the corresponding
libraries too! Refer to Section 7.3, Linking with Libraries, for an overview of the (profiling) libraries. In
Eclipse the correct libraries are linked automatically.

Example

To generate block count information for the module test.c during execution, compile as follows:

carm --profile=+block test.c

In this case you must link the library libpb.a.

Related information

Chapter 13, Profiling

333

Tool Options

C compiler option: --rename-sections (-R)

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --rename-sections to the Additional options field.

Command line syntax

--rename-sections=[name=]suffix

-R[name=]suffix

Description

In case a module must be loaded at a fixed address, or a data section needs a special place in memory,
you can use this option to generate different section names.You can then use this unique section name
in the linker script file for locating. Because sections have reserved names, the compiler will not actually
change the section name, but will add a suffix to the name.

With the section name you select which sections are renamed. With suffix you specify the suffix part
which will be attached to the existing name. The suffix can contain the following suffix specifiers:

expands to the module name{module}

expands to the symbol name as generated in the assembly file, including compiler
generated prefixes and suffixes

{name}

expands to the symbol name as used in your C source. Compiler generated names
will be cleaned up and prefixed by a '$'.

{cname}

If you do not specify a section name, all sections will receive the specified suffix.

Example

To change all sections named .data into .data.NEW, enter:

carm --rename-sections=.data=NEW test.c

To add the name of the current module as suffix to all data sections, resulting in .data.test, enter:

carm --rename-sections=.data={module} test.c

The following examples show the difference when using --rename-sections={name} or
--rename-sections={cname}.

Generated labels:

 .section .text.tm..cocofun_1 ;; {name}
 .section .text.tm.$cocofun ;; {cname}
 .section .rodata.hs..1.str ;; {name}
 .section .rodata.hs.$str ;; {cname}

334

TASKING VX-toolset for ARM User Guide

 .section .rodata.hs..2.ini ;; {name}
 .section .rodata.hs.$ini ;; {cname}

Statics within a function:

 .section .data.hs._999001_my_local ;; {name}
 .section .data.hs.my_local ;; {cname}
 .section .data.hs._999002_my_local ;; {name}
 .section .data.hs.my_local ;; {cname}

Several modules with static functions of the same name:

 .section .text.hs1.f1 ;; {name}
 .section .text.hs1.f1 ;; {cname}
 .section .text.hs2.f1.1 ;; {name}
 .section .text.hs2.f1 ;; {cname}

Related information

Assembler directive .SECTION

335

Tool Options

C compiler option: --runtime (-r)

Menu entry

1. Select C/C++ Compiler » Debugging.

2. Enable or disable one or more of the following run-time error checking options:

• Generate code for bounds checking

• Generate code to detect unhandled case in a switch

• Generate code for malloc consistency checks

• Generate code for stack overflow checks (allowed for USR and SYS mode only)

• Generate code for division by zero checks

Command line syntax

--runtime[=flag,...]

-r[flags]

You can set the following flags:

bounds checkingb/B+/-bounds

report unhandled case in a switchc/C+/-case

malloc consistency checksm/M+/-malloc

check for stack overflows/S+/-stack

check for divide by zeroz/Z+/-zero

Default (without flags): -rbcmSZ

Description

This option controls a number of run-time checks to detect errors during program execution. Some of
these checks require additional code to be inserted in the generated code, and may therefore slow down
the program execution. The following checks are available:

Bounds checking

Every pointer update and dereference will be checked to detect out-of-bounds accesses, null pointers
and uninitialized automatic pointer variables. This check will increase the code size and slow down the
program considerably. In addition, some heap memory is allocated to store the bounds information.You
may enable bounds checking for individual modules or even parts of modules only (see #pragma
runtime).

336

TASKING VX-toolset for ARM User Guide

Report unhandled case in a switch

Report an unhandled case value in a switch without a default part. This check will add one function call
to every switch without a default part, but it will have little impact on the execution speed.

Malloc consistency checks

This option enables the use of wrappers around the functions malloc/realloc/free that will check for common
dynamic memory allocation errors like:

• buffer overflow

• write to freed memory

• multiple calls to free

• passing invalid pointer to free

Enabling this check will extract some additional code from the library, but it will not enlarge your application
code. The dynamic memory usage will increase by a couple of bytes per allocation.

Stack overflow check

The compiler generates extra code within the function prolog that will check the available stack size before
allocating. This is only useful when the processor runs in USR or SYS mode.

Division by zero check

The compiler generates a call to specific run-time functions for additional division by zero checks. If this
situation occurs, an abort signal is issued.Without this check, a division by zero could lead to unpredictable
results.

Related information

Pragma runtime

337

Tool Options

C compiler option: --silicon-bug

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, select a processor.

The CPU problem bypasses and checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.

4. Click Select All or select one or more individual options.

Command line syntax

--silicon-bug[=bug,...]

Description

With this option you specify for which hardware problems the compiler should generate workarounds.
Please refer to Chapter 19, CPU Problem Bypasses and Checks for the numbers and descriptions. Silicon
bug numbers are specified as a comma separated list. When you use this option without arguments, all
silicon bug workarounds are enabled.

Example

To enable workarounds for problem 602117, enter:

carm --silicon-bug=602117 test.c

Related information

Chapter 19, CPU Problem Bypasses and Checks

Assembler option --silicon-bug

338

TASKING VX-toolset for ARM User Guide

C compiler option: --source (-s)

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Merge C source code with generated assembly.

Command line syntax

--source

-s

Description

With this option you tell the compiler to merge C source code with generated assembly code in the output
file. The C source lines are included as comments.

Related information

Pragmas source/nosource

339

Tool Options

C compiler option: --stdout (-n)

Menu entry

-

Command line syntax

--stdout

-n

Description

With this option you tell the compiler to send the output to stdout (usually your screen). No files are
created. This option is for example useful to quickly inspect the output or to redirect the output to other
tools.

Related information

-

340

TASKING VX-toolset for ARM User Guide

C compiler option: --thumb

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Enable the option Use Thumb instruction set.

Command line syntax

--thumb

Description

With this option you tell the compiler to generate Thumb or Thumb-2 instructions, depending on the
architecture.

When you specify the ARMv6-M, ARMv7-M or ARMv7E-M architecture (option --cpu), the compiler
automatically selects the Thumb-2 instruction set.

Related information

C compiler option --cpu (Select architecture)

C compiler option --interwork (Generate interworking code)

341

Tool Options

C compiler option: --tradeoff (-t)

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Select a trade-off level in the Trade-off between speed and size box.

Command line syntax

--tradeoff={0|1|2|3|4}

-t{0|1|2|3|4}

Default: --tradeoff=4

Description

If the compiler uses certain optimizations (option --optimize), you can use this option to specify whether
the used optimizations should optimize for more speed (regardless of code size) or for smaller code size
(regardless of speed).

By default the compiler optimizes for code size (--tradeoff=4).

If you have not specified the option --optimize, the compiler uses the default Optimize more
optimization. In this case it is still useful to specify a trade-off level.

Example

To set the trade-off level for the used optimizations:

carm --tradeoff=2 --thumb test.c

The compiler uses the default Optimize more optimization level and optimizes for code size.

Related information

C compiler option --optimize (Specify optimization level)

Section 4.5.3, Optimize for Code Size or Execution Speed

342

TASKING VX-toolset for ARM User Guide

C compiler option: --uchar (-u)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat 'char' variables as unsigned.

Command line syntax

--uchar

-u

Description

By default char is the same as specifying signed char.With this option char is the same as unsigned
char.

Note that this option can cause conflicts when you use it in combination with MIL linking. With MIL linking
some extra strict type checking is done that can cause building to fail in a way that is unforeseen and
difficult to understand. For example, when you use option --mil in combination with option --uchar and
you link the MIL library, you might get the following error:

carm E289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
carm I802: ["installation-dir\include\string.h" 44/17]
 previous declaration of "strlen"
1 errors, 0 warnings

This is caused by the fact that the MIL library is built without --uchar.You can workaround this problem
by rebuilding the MIL libraries.

Related information

Section 1.1, Data Types

343

Tool Options

C compiler option: --unaligned-access

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --unaligned-access to the Additional options field.

Command line syntax

--unaligned-access

Description

With this option you tell the compiler to generate more efficient instructions to access unaligned 16-bit or
larger data. Halfword or word load and store instructions are used instead of byte instructions.

This option is only useful for cores that have support for unaligned access.

Related information

-

344

TASKING VX-toolset for ARM User Guide

C compiler option: --undefine (-U)

Menu entry

1. Select C/C++ Compiler » Preprocessing

The Defined symbols box shows the symbols that are currently defined.

2. To remove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax

--undefine=macro_name

-Umacro_name

Description

With this option you can undefine an earlier defined macro as with #undef. This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

current source filename__FILE__

current source line number (int type)__LINE__

hh:mm:ss__TIME__

Mmm dd yyyy__DATE__

level of ANSI standard__STDC__

Example

To undefine the predefined macro __TASKING__:

carm --undefine=__TASKING__ test.c

Related information

C compiler option --define (Define preprocessor macro)

Section 1.9, Predefined Preprocessor Macros

345

Tool Options

C compiler option: --verbose (-v)

Menu entry

-

Command line syntax

--verbose

-v

Description

With this option you put the C compiler in verbose mode. The C compiler performs its tasks while it prints
the steps it performs to stdout.

Related information

-

346

TASKING VX-toolset for ARM User Guide

C compiler option: --version (-V)

Menu entry

-

Command line syntax

--version

-V

Description

Display version information. The compiler ignores all other options or input files.

Related information

-

347

Tool Options

C compiler option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

--warnings-as-errors[=number[-number],...]

Description

If the compiler encounters an error, it stops compiling. When you use this option without arguments, you
tell the compiler to treat all warnings not suppressed by option --no-warnings (or #pragma warning)
as errors. This means that the exit status of the compiler will be non-zero after one or more compiler
warnings. As a consequence, the compiler now also stops after encountering a warning.

You can limit this option to specific warnings by specifying a comma-separated list of warning numbers
or ranges. In this case, this option takes precedence over option --no-warnings (and #pragma warning).

Related information

C compiler option --no-warnings (Suppress some or all warnings)

Pragma warning

348

TASKING VX-toolset for ARM User Guide

11.3. C++ Compiler Options

This section lists all C++ compiler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the C++ compiler via the control program.Therefore, it uses the syntax
of the control program to pass options and files to the C++ compiler. If there is no equivalent option in
Eclipse, you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C/C++ Compiler » Miscellaneous.

4. In the Additional options field, enter one or more command line options.

Because Eclipse uses the control program, you have to precede the option with -Wcp to pass the
option via the control program directly to the C++ compiler.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

If an option requires an argument, the argument may be separated from the keyword by white space, or
the keyword may be immediately followed by =option. When the second form is used there may not be
any white space on either side of the equal sign.

Options can have flags or suboptions. To switch a flag 'on', use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

cparm -Ecp test.cc
cparm --preprocess=+comments,+noline test.cc

When you do not specify an option, a default value may become active.

The priority of the options is left-to-right: when two options conflict, the first (most left) one takes effect.
The -D and -U options are not considered conflicting options, so they are processed left-to-right for each
source file.You can overrule the default output file name with the --output-file option.

349

Tool Options

C++ compiler option: --alternative-tokens

Menu entry

-

Command line syntax

--alternative-tokens

Description

Enable recognition of alternative tokens. This controls recognition of the digraph tokens in C++, and
controls recognition of the operator keywords (e.g., not, and, bitand, etc.).

Example

To enable operator keywords (e.g., "not", "and") and digraphs, enter:

cparm --alternative-tokens test.cc

Related information

-

350

TASKING VX-toolset for ARM User Guide

C++ compiler option: --anachronisms

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option C++ anachronisms.

Command line syntax

--anachronisms

Description

Enable C++ anachronisms.This option also enables --nonconst-ref-anachronism. But you can turn this
off individually with option --no-nonconst-ref-anachronism.

Related information

C++ compiler option --nonconst-ref-anachronism (Nonconst reference anachronism)

Section 2.2.3, Anachronisms Accepted

351

Tool Options

C++ compiler option: --auto-type

Menu entry

-

Command line syntax

--auto-type

--no-auto-type

Default: auto is a storage class specifier.

Description

Enable or disable auto as a type specifier where the actual type is deduced from an initializer that follows.

This feature is implicitly enabled in C++0x mode.

Related information

C++ compiler option --no-auto-storage (Do not allow auto as storage specifier)

C++ compiler option --c++0x (C++0x language extensions)

352

TASKING VX-toolset for ARM User Guide

C++ compiler option: --base-assign-op-is-default

Menu entry

-

Command line syntax

--base-assign-op-is-default

Description

Enable the anachronism of accepting a copy assignment operator that has an input parameter that is a
reference to a base class as a default copy assignment operator for the derived class.

Related information

-

353

Tool Options

C++ compiler option: --building-runtime

Menu entry

-

Command line syntax

--building-runtime

Description

Special option for building the C++ run-time library. Used to indicate that the C++ run-time library is being
compiled.This causes additional macros to be predefined that are used to pass configuration information
from the C++ compiler to the run-time.

Related information

-

354

TASKING VX-toolset for ARM User Guide

C++ compiler option: --c++0x

Menu entry

-

Command line syntax

--c++0x

Description

Enable the C++ extensions that are defined by the latest C++ working paper.

Related information

-

355

Tool Options

C++ compiler option: --c++0x-sfinae

Menu entry

-

Command line syntax

--c++0x-sfinae

--no-c++0x-sfinae

Description

Enable or disable template deduction in the style dictated by the C++0x standard (SFINAE rules of
document N2634), i.e., where general expressions are allowed in deduction contexts and they undergo
the full usual semantic checking.This type of deduction is necessary to get the full power of the decltype
feature in return types. “SFINAE” refers to the initials of the phrase “Substitution Failure Is Not An Error”,
which is the guiding principle for template deduction, and by extension a name for the process of deduction.

This feature is implicitly enabled in C++0x mode (option --c++0x), and is implicitly disabled in GNU modes.

Related information

C++ compiler option --c++0x (C++0x language extensions)

356

TASKING VX-toolset for ARM User Guide

C++ compiler option: --c++0x-sfinae-ignore-access

Menu entry

-

Command line syntax

--c++0x-sfinae-ignore-access

--no-c++0x-sfinae-ignore-access

Default: --no-c++0x-sfinae-ignore-access

Description

When C++0x SFINAE is enabled (option --c++0x-sfinae), option --c++0x-sfinae-ignore-access indicates
that access errors are not counted as errors that cause deduction failures. In document N2634 access
errors are ignored, but the standards committee changed its mind about that later. So, the default (option
--no-c++0x-sfinae-ignore-access) is that access errors cause a deduction failure.

Related information

C++ compiler option --c++0x-sfinae (C++0x SFINAE rules)

357

Tool Options

C++ compiler option: --check

Menu entry

-

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The C++ compiler reports any warnings and/or errors.

This option is available on the command line only.

Related information

C compiler option --check (Check syntax)

Assembler option --check (Check syntax)

358

TASKING VX-toolset for ARM User Guide

C++ compiler option: --check-concatenations

Menu entry

-

Command line syntax

--check-concatenations

Description

With this option the preprocessor will generate a diagnostic when a macro concatenation (such as a ##
b) does not result in a valid token.

Related information

-

359

Tool Options

C++ compiler option: --compound-literals

Menu entry

-

Command line syntax

--compound-literals

Description

Allow compound literals in expressions. A compound literal looks like a cast containing an initializer. Its
value is an object of the type specified in the cast, containing the elements specified in the initializer; it is
an lvalue.

For example:

static int i[] = (int []) {1, 2, 3};

Related information

-

360

TASKING VX-toolset for ARM User Guide

C++ compiler option: --context-limit

Menu entry

-

Command line syntax

--context-limit=number

Default: --context-limit=10

Description

Set the context limit to number.The context limit is the maximum number of template instantiation context
entries to be displayed as part of a diagnostic message. If the number of context entries exceeds the
limit, the first and last N context entries are displayed, where N is half of the context limit. A value of zero
is used to indicate that there is no limit.

Example

To set the context limit to 5, enter:

cparm --context-limit=5 test.cc

Related information

-

361

Tool Options

C++ compiler option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, make a selection by Architecture, Core or one of the
manufacturers.

Command line syntax

--cpu=architecture

-Carchitecture

You can specify the following architectures:

Compile for ARMv6-M architectureARMv6M

Compile for ARMv7-M architectureARMv7M

Compile for ARMv7E-M architectureARMv7EM

Compile for ARMv7-R architectureARMv7R

Description

With this option you specify the ARM architecture for which you create your application. The ARM target
supports more than one architecture and therefore you need to specify for which architecture the compiler
should compile. The architecture determines which instructions are valid and which are not.

The effect of this option is that the C++ compiler uses the appropriate instruction set.You choose one of
the following architectures: ARMv6-M, ARMv7-M, ARMv7E-M or ARMv7-R.

The macro __CPU__ is set to the name of the architecture.

Example

To compile the file test.cc for the ARMv7E-M architecture, enter the following on the command line:

cparm --cpu=ARMv7EM test.cc

Related information

C compiler option --cpu (Select architecture)

362

TASKING VX-toolset for ARM User Guide

C++ compiler option: --create-pch

Menu entry

1. Select C/C++ Compiler » Precompiled C++ Headers.

2. Enter a filename in the Create precompiled header file field.

Command line syntax

--create-pch=filename

Description

If other conditions are satisfied, create a precompiled header file with the specified name. If --pch (automatic
PCH mode) or --use-pch appears on the command line following this option, its effect is erased.

Example

To create a precompiled header file with the name test.pch, enter:

cparm --create-pch=test.pch test.cc

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --use-pch (Use precompiled header file)

Section 2.10, Precompiled Headers

363

Tool Options

C++ compiler option: --default-nocommon-tentative-definitions

Menu entry

-

Command line syntax

--default-nocommon-tentative-definitions

Description

In GNU C++ mode, this option prevents tentative definitions to be placed in common storage.

Related information

-

364

TASKING VX-toolset for ARM User Guide

C++ compiler option: --defer-parse-function-templates

Menu entry

-

Command line syntax

--defer-parse-function-templates

--no-defer-parse-function-templates

Default: --defer-parse-function-templates in GNU C++ mode.

Description

Enable or disable deferral of prototype instantiations until the first actual instantiation of a function. This
is used to permit the compilation of programs that contain definitions of unusable function templates.

It is enabled by default in GNU C++ mode.

Related information

-

365

Tool Options

C++ compiler option: --define (-D)

Menu entry

1. Select C/C++ Compiler » Preprocessing.

The Defined symbols box shows the symbols that are currently defined.

2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

--define=macro_name[(parm-list)][=macro_definition]

-Dmacro_name(parm-list)][=macro_definition]

Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1'.

Function-style macros can be defined by appending a macro parameter list to macro_name.

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, you can use the option --define (-D) multiple times. If the command line exceeds
the limit of the operating system, you can define the macros in an option file which you then must specify
to the C++ compiler with the option --option-file (-f) file.

The definition can be tested by the preprocessor with #if, #ifdef and #ifndef, for conditional
compilations.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

Consider the following program with conditional code to compile a demo program and a real program:

void main(void)
{
#if DEMO
 demo_func(); /* compile for the demo program */
#else
 real_func(); /* compile for the real program */

366

TASKING VX-toolset for ARM User Guide

#endif
}

You can now use a macro definition to set the DEMO flag:

cparm --define=DEMO test.cc
cparm --define=DEMO=1 test.cc

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

cparm --define="MAX(A,B)=((A) > (B) ? (A) : (B))" test.cc

Related information

C++ compiler option --undefine (Remove preprocessor macro)

C++ compiler option --option-file (Specify an option file)

367

Tool Options

C++ compiler option: --dep-file

Menu entry

-

Command line syntax

--dep-file[=file]

Description

With this option you tell the C++ compiler to generate dependency lines that can be used in a Makefile.
In contrast to the option --preprocess=+make, the dependency information will be generated in addition
to the normal output file.

By default, the information is written to a file with extension .d (one for every input file).When you specify
a filename, all dependencies will be combined in the specified file.

Example

cparm --dep-file=test.dep test.cc

The C++ compiler compiles the file test.cc, which results in the output file test.ic, and generates
dependency lines in the file test.dep.

Related information

C++ compiler option --preprocess=+make (Generate dependencies for make)

368

TASKING VX-toolset for ARM User Guide

C++ compiler option: --diag

Menu entry

-

Command line syntax

--diag

Description

With this option the C++ compiler displays a list of all diagnostic messages on stdout (usually your
screen). The C++ compiler does not compile any files.

Related information

Section 5.3, C++ Compiler Error Messages

369

Tool Options

C++ compiler option: --dollar

Menu entry

-

Command line syntax

--dollar

Default format: No dollar signs are allowed in identifiers.

Description

Accept dollar signs in identifiers. Names like A$VAR are allowed.

Related information

-

370

TASKING VX-toolset for ARM User Guide

C++ compiler option: --embedded-c++

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Comply to embedded C++ subset.

Command line syntax

--embedded-c++

Description

The "Embedded C++" subset does not support templates, exceptions, namespaces, new-style casts,
RTTI, multiple inheritance, virtual base classes, and the mutable keyword. Select this option when you
want the C++ compiler to give an error when you use any of them in your C++ source.

Related information

-

371

Tool Options

C++ compiler option: --endianness

Menu entry

1. Select Global Options.

2. Specify the Endianness:Little-endian mode or Big-endian mode.

Command line syntax

--endianness=endianness

-B
--big-endian

You can specify the following endianness:

Big endianbbig

Little endian (default)llittle

Description

By default, the C++ compiler generates code for a little-endian target (least significant byte of a word at
lowest byte address). With --endianness=big the C++ compiler generates code for a big-endian target
(most significant byte of a word at lowest byte address). -B is an alias for option --endianness=big.

The macro __BIG_ENDIAN__ is defined when this option is specified, otherwise the macro
__LITTLE_ENDIAN__ is defined.

372

TASKING VX-toolset for ARM User Guide

C++ compiler option: --error-file

Menu entry

-

Command line syntax

--error-file[=file]

Description

With this option the C++ compiler redirects error messages to a file. If you do not specify a filename, the
error file will be named after the output file with extension .ecp.

Example

To write errors to errors.ecp instead of stderr, enter:

cparm --error-file=errors.ecp test.cc

Related information

-

373

Tool Options

C++ compiler option: --error-limit (-e)

Menu entry

-

Command line syntax

--error-limit=number

-enumber

Default: --error-limit=100

Description

Set the error limit to number. The C++ compiler will abandon compilation after this number of errors
(remarks and warnings are not counted). By default, the limit is 100.

Example

When you want compilation to stop when 10 errors occurred, enter:

cparm --error-limit=10 test.cc

Related information

-

374

TASKING VX-toolset for ARM User Guide

C++ compiler option: --exceptions (-x)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable or disable the option Support for C++ exception handling.

Command line syntax

--exceptions
-x

--no-exceptions

Default: --no-exceptions

Default in C++0x mode: --exceptions

Description

With this option you enable or disable support for exception handling in the C++ compiler.

The macro __EXCEPTIONS is defined when exception handling support is enabled.

This feature is implicitly enabled in C++0x mode.

Related information

C++ compiler option --c++0x (C++0x language extensions)

375

Tool Options

C++ compiler option: --exported-template-file

Menu entry

-

Command line syntax

--exported-template-file=file

Description

This option specifies the name to be used for the exported template file used for processing of exported
templates.

This option is supplied for use by the control program that invokes the C++ compiler and is not intended
to be used by end-users.

Related information

-

376

TASKING VX-toolset for ARM User Guide

C++ compiler option: --extended-variadic-macros

Menu entry

-

Command line syntax

--extended-variadic-macros

--no-extended-variadic-macros

Description

Enable or disable support for macros with a variable number of arguments (implies --variadic-macros)
and allow the naming of the variable argument list.

Related information

C++ compiler option --variadic-macros (Allow variadic macros)

377

Tool Options

C++ compiler option: --force-vtbl

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Force definition of virtual function tables (C++).

Command line syntax

--force-vtbl

Description

Force definition of virtual function tables in cases where the heuristic used by the C++ compiler to decide
on definition of virtual function tables provides no guidance.

Related information

C++ compiler option --suppress-vtbl (Suppress definition of virtual function tables)

378

TASKING VX-toolset for ARM User Guide

C++ compiler option: --friend-injection

Menu entry

-

Command line syntax

--friend-injection

Default: friend names are not injected.

Description

Controls whether the name of a class or function that is declared only in friend declarations is visible
when using the normal lookup mechanisms. When friend names are injected, they are visible to such
lookups. When friend names are not injected (as required by the standard), function names are visible
only when using argument-dependent lookup, and class names are never visible.

Related information

C++ compiler option --no-arg-dep-lookup (Disable argument dependent lookup)

379

Tool Options

C++ compiler option: --g++

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Allow GNU C++ extensions.

Command line syntax

--g++

Description

Enable GNU C++ compiler language extensions.

Related information

Section 2.3, GNU Extensions

380

TASKING VX-toolset for ARM User Guide

C++ compiler option: --gnu-version

Menu entry

-

Command line syntax

--gnu-version=version

Default: 30300 (version 3.3.0)

Description

It depends on the GNU C++ compiler version if a particular GNU extension is supported or not. With this
option you set the GNU C++ compiler version that should be emulated in GNU C++ mode. Version x.y.z
of the GNU C++ compiler is represented by the value x*10000+y*100+z.

Example

To specify version 3.4.1 of the GNU C++ compiler, enter:

cparm --g++ --gnu-version=30401 test.cc

Related information

Section 2.3, GNU Extensions

381

Tool Options

C++ compiler option: --guiding-decls

Menu entry

-

Command line syntax

--guiding-decls

Description

Enable recognition of "guiding declarations" of template functions. A guiding declaration is a function
declaration that matches an instance of a function template but has no explicit definition (since its definition
derives from the function template). For example:

template <class T> void f(T) { ... }
void f(int);

When regarded as a guiding declaration, f(int) is an instance of the template; otherwise, it is an
independent function for which a definition must be supplied.

Related information

C++ compiler option --old-specializations (Old-style template specializations)

382

TASKING VX-toolset for ARM User Guide

C++ compiler option: --help (-?)

Menu entry

-

Command line syntax

--help[=item]

-?

You can specify the following arguments:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify an argument you can list extended
information such as a list of option descriptions.

Example

The following invocations all display a list of the available command line options:

cparm -?
cparm --help
cparm

The following invocation displays an extended list of the available options:

cparm --help=options

Related information

-

383

Tool Options

C++ compiler option: --ignore-std

Menu entry

-

Command line syntax

--ignore-std

Description

Enable a GNU C++ compatibility feature that makes the std namespace a synonym for the global
namespace.

Related information

-

384

TASKING VX-toolset for ARM User Guide

C++ compiler option: --implicit-extern-c-type-conversion

Menu entry

-

Command line syntax

--implicit-extern-c-type-conversion

Description

Enable the implicit type conversion between pointers to extern "C" and extern "C++" function types.

Related information

-

385

Tool Options

C++ compiler option: --implicit-include

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Implicit inclusion of source files for finding templates.

Command line syntax

--implicit-include

Description

Enable implicit inclusion of source files as a method of finding definitions of template entities to be
instantiated.

Related information

C++ compiler option --instantiate (Instantiation mode)

Section 2.5, Template Instantiation

386

TASKING VX-toolset for ARM User Guide

C++ compiler option: --incl-suffixes

Menu entry

-

Command line syntax

--incl-suffixes=suffixes

Default: no extension and .stdh.

Description

Specifies the list of suffixes to be used when searching for an include file whose name was specified
without a suffix. If a null suffix is to be allowed, it must be included in the suffix list. suffixes is a
colon-separated list of suffixes (e.g., "::stdh").

Example

To allow only the suffixes .h and .stdh as include file extensions, enter:

cparm --incl-suffixes=h:stdh test.cc

Related information

C++ compiler option --include-file (Include file at the start of a compilation)

Section 5.2, How the C++ Compiler Searches Include Files

387

Tool Options

C++ compiler option: --include-directory (-I)

Menu entry

1. Select C/C++ Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.

2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--include-directory=path,...

-Ipath,...

Description

Add path to the list of directories searched for #include files whose names do not have an absolute
pathname.You can specify multiple directories separated by commas.

Example

To add the directory /proj/include to the include file search path, enter:

cparm --include-directory=/proj/include test.cc

Related information

C++ compiler option --include-file (Include file at the start of a compilation)

C++ compiler option --sys-include (Add directory to system include file search path)

Section 5.2, How the C++ Compiler Searches Include Files

388

TASKING VX-toolset for ARM User Guide

C++ compiler option: --include-file (-H)

Menu entry

1. Select C/C++ Compiler » Preprocessing.

The Pre-include files box shows the files that are currently included before the compilation starts.

2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.

4. (Optional) Enable the option Include CMSIS device register definition header file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax

--include-file=file

-Hfile

Description

Include the source code of the indicated file at the beginning of the compilation. This is the same as
specifying #include "file" at the beginning of each of your C++ sources.

All files included with --include-file are processed after any of the files included with --include-macros-file.

The filename is searched for in the directories on the include search list.

Example

cparm --include-file=extra.h test1.cc test2.cc

The file extra.h is included at the beginning of both test1.cc and test2.cc.

Related information

C++ compiler option --include-directory (Add directory to include file search path)

Section 5.2, How the C++ Compiler Searches Include Files

389

Tool Options

C++ compiler option: --include-macros-file

Menu entry

-

Command line syntax

--include-macros-file=file

Description

Include the macros of the indicated file at the beginning of the compilation. Only the preprocessing
directives from the file are evaluated. All of the actual code is discarded. The effect of this option is that
any macro definitions from the specified file will be in effect when the primary source file is compiled. All
of the macro-only files are processed before any of the normal includes (--include-file). Within each
group, the files are processed in the order in which they were specified.

Related information

C++ compiler option --include-file (Include file at the start of a compilation)

Section 5.2, How the C++ Compiler Searches Include Files

390

TASKING VX-toolset for ARM User Guide

C++ compiler option: --init-priority

Menu entry

-

Command line syntax

--init-priority=number

Default: 0

Description

Normally, the C++ compiler assigns no priority to the global initialization functions and the exact order is
determined by the linker. This option sets the default priority for global initialization functions. Default
value is "0".You can also set the default priority with the #pragma init_priority.

Values from 1 to 100 are for internal use only and should not be used. Values 101 to 65535 are available
for user code. A lower number means a higher priority.

Example

cparm --init-priority=101 test.cc

Related information

-

391

Tool Options

C++ compiler option: --instantiate (-t)

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Select an instantiation mode in the Instantiation mode of external template entities box.

Command line syntax

--instantiate=mode

-tmode

You can specify the following modes:

used

all

local

Default: --instantiate=used

Description

Control instantiation of external template entities. External template entities are external (that is, non-inline
and non-static) template functions and template static data members.The instantiation mode determines
the template entities for which code should be generated based on the template definition. Normally,
when a file is compiled, template entities are instantiated wherever they are used (the linker will discard
duplicate definitions). The overall instantiation mode can, however, be changed with this option.You can
specify the following modes:

Instantiate those template entities that were used in the compilation.This will include
all static data members for which there are template definitions. This is the default.

used

Instantiate all template entities declared or referenced in the compilation unit. For
each fully instantiated template class, all of its member functions and static data
members will be instantiated whether or not they were used. Non-member template
functions will be instantiated even if the only reference was a declaration.

all

Similar to --instantiate=used except that the functions are given internal linkage.
This is intended to provide a very simple mechanism for those getting started with
templates. The compiler will instantiate the functions that are used in each
compilation unit as local functions, and the program will link and run correctly (barring
problems due to multiple copies of local static variables). However, one may end
up with many copies of the instantiated functions, so this is not suitable for production
use.

local

You cannot use --instantiate=local in conjunction with automatic template instantiation.

392

TASKING VX-toolset for ARM User Guide

Related information

C++ compiler option --no-auto-instantiation (Disable automatic C++ instantiation)

Section 2.5, Template Instantiation

393

Tool Options

C++ compiler option: --io-streams

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ I/O streams.

Command line syntax

--io-streams

Description

As I/O streams require substantial resources they are disabled by default. Use this option to enable I/O
streams support in the C++ library.

This option also enables exception handling.

Related information

-

394

TASKING VX-toolset for ARM User Guide

C++ compiler option: --lambdas

Menu entry

-

Command line syntax

--lambdas

--no-lambdas

Default: --no-lambdas

Default in C++0x mode: --lambdas

Description

Enable or disable support for C++0x lambdas.

This feature is implicitly enabled in C++0x mode.

Related information

C++ compiler option --c++0x (C++0x language extensions)

395

Tool Options

C++ compiler option: --late-tiebreaker

Menu entry

-

Command line syntax

--late-tiebreaker

Default: early tiebreaker processing.

Description

Select the way that tie-breakers (e.g., cv-qualifier differences) apply in overload resolution. In "early"
tie-breaker processing, the tie-breakers are considered at the same time as other measures of the
goodness of the match of an argument value and the corresponding parameter type (this is the standard
approach).

In "late" tie-breaker processing, tie-breakers are ignored during the initial comparison, and considered
only if two functions are otherwise equally good on all arguments; the tie-breakers can then be used to
choose one function over another.

Related information

-

396

TASKING VX-toolset for ARM User Guide

C++ compiler option: --list-file (-L)

Menu entry

-

Command line syntax

--list-file=file

-Lfile

Default: -1

Description

Generate raw listing information in the file. This information is likely to be used to generate a formatted
listing. The raw listing file contains raw source lines, information on transitions into and out of include
files, and diagnostics generated by the C++ compiler.

Each line of the listing file begins with a key character that identifies the type of line, as follows:

A normal line of source; the rest of the line is the text of the line.N

The expanded form of a normal line of source; the rest of the line is the text of the line.
This line appears following the N line, and only if the line contains non-trivial modifications
(comments are considered trivial modifications; macro expansions, line splices, and
trigraphs are considered non-trivial modifications). Comments are replaced by a single
space in the expanded-form line.

X

A line of source skipped by an #if or the like; the rest of the line is text. Note that the
#else, #elif, or #endif that ends a skip is marked with an N.

S

An indication of a change in source position. The line has a format similar to the #
line-identifying directive output by the C preprocessor, that is to say

L line_number "file-name" [key]

where key is, 1 for entry into an include file, or 2 for exit from an include file, and omitted
otherwise.

The first line in the raw listing file is always an L line identifying the primary input file. L
lines are also output for #line directives (key is omitted). L lines indicate the source position
of the following source line in the raw listing file.

L

397

Tool Options

An indication of a diagnostic (R for remark, W for warning, E for error, and C for catastrophic
error). The line has the form:

S "file-name" line_number column-number message-text

where S is R, W, E, or C, as explained above. Errors at the end of file indicate the last line
of the primary source file and a column number of zero. Command line errors are
catastrophes with an empty file name ("") and a line and column number of zero. Internal
errors are catastrophes with position information as usual, and message-text beginning
with (internal error). When a diagnostic displays a list (e.g., all the contending routines
when there is ambiguity on an overloaded call), the initial diagnostic line is followed by
one or more lines with the same overall format (code letter, file name, line number, column
number, and message text), but in which the code letter is the lowercase version of the
code letter in the initial line. The source position in such lines is the same as that in the
corresponding initial line.

R, W,
E, or C

Example

To write raw listing information to the file test.lst, enter:

cparm --list-file=test.lst test.cc

Related information

-

398

TASKING VX-toolset for ARM User Guide

C++ compiler option: --long-lifetime-temps

Menu entry

-

Command line syntax

--long-lifetime-temps

Description

Select the lifetime for temporaries: short means to end of full expression; long means to the earliest of
end of scope, end of switch clause, or the next label. Short is the default.

Related information

-

399

Tool Options

C++ compiler option: --long-long

Menu entry

-

Command line syntax

--long-long

Description

Permit the use of long long in strict mode in dialects in which it is non-standard.

Related information

-

400

TASKING VX-toolset for ARM User Guide

C++ compiler option: --make-target

Menu entry

-

Command line syntax

--make-target=name

Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file.The default target name is the basename of the input
file, with extension .obj.

Example

cparm --preprocess=+make --make-target=mytarget.obj test.cc

The compiler generates dependency lines with the default target name mytarget.obj instead of
test.obj.

Related information

C++ compiler option --preprocess=+make (Generate dependencies for make)

C++ compiler option --dep-file (Generate dependencies in a file)

401

Tool Options

C++ compiler option: --multibyte-chars

Menu entry

-

Command line syntax

--multibyte-chars

Default: multibyte character sequences are not allowed.

Description

Enable processing for multibyte character sequences in comments, string literals, and character constants.
Multibyte encodings are used for character sets like the Japanese SJIS.

Related information

-

402

TASKING VX-toolset for ARM User Guide

C++ compiler option: --namespaces

Menu entry

-

Command line syntax

--namespaces

--no-namespaces

Default: namespaces are supported.

Description

When you used option --embedded-c++ namespaces are disabled. With option --namespaces you can
enable support for namespaces in this case.

The macro __NAMESPACES is defined when namespace support is enabled.

Related information

C++ compiler option --embedded-c++ (Embedded C++ compliancy tests)

C++ compiler option --using-std (Implicit use of the std namespace)

Section 2.4, Namespace Support

403

Tool Options

C++ compiler option: --no-arg-dep-lookup

Menu entry

-

Command line syntax

--no-arg-dep-lookup

Default: argument dependent lookup of unqualified function names is performed.

Description

With this option you disable argument dependent lookup of unqualified function names.

Related information

-

404

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-array-new-and-delete

Menu entry

-

Command line syntax

--no-array-new-and-delete

Default: array new and delete are supported.

Description

Disable support for array new and delete.

The macro __ARRAY_OPERATORS is defined when array new and delete is enabled.

Related information

-

405

Tool Options

C++ compiler option: --no-auto-instantiation

Menu entry

-

Command line syntax

--no-auto-instantiation

Default: the C++ compiler automatically instantiates templates.

Description

With this option automatic instantiation of templates is disabled.

Related information

C++ compiler option --instantiate (Set instantiation mode)

Section 2.5, Template Instantiation

406

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-auto-storage

Menu entry

-

Command line syntax

--no-auto-storage

Default: auto is a storage class specifier.

Description

Disable the traditional meaning of auto keyword as a storage class specifier.

Related information

C++ compiler option --auto-type (auto can be used as type specifier)

407

Tool Options

C++ compiler option: --no-bool

Menu entry

-

Command line syntax

--no-bool

Default: bool is recognized as a keyword.

Description

Disable recognition of the bool keyword.

The macro _BOOL is defined when bool is recognized as a keyword.

Related information

-

408

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-class-name-injection

Menu entry

-

Command line syntax

--no-class-name-injection

Default: the name of a class is injected into the scope of the class (as required by the standard).

Description

Do not inject the name of a class into the scope of the class (as was true in earlier versions of the C++
language).

Related information

-

409

Tool Options

C++ compiler option: --no-const-string-literals

Menu entry

-

Command line syntax

--no-const-string-literals

Default: C++ string literals and wide string literals are const (as required by the standard).

Description

With this option C++ string literals and wide string literals are non-const (as was true in earlier versions
of the C++ language).

Related information

-

410

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-dep-name

Menu entry

-

Command line syntax

--no-dep-name

Default: dependent name processing is enabled.

Description

Disable dependent name processing; i.e., the special lookup of names used in templates as required by
the C++ standard. This option implies the use of --no-parse-templates.

Related information

C++ compiler option --no-parse-templates (Disable parsing of nonclass templates)

411

Tool Options

C++ compiler option: --no-distinct-template-signatures

Menu entry

-

Command line syntax

--no-distinct-template-signatures

Description

Control whether the signatures for template functions can match those for non-template functions when
the functions appear in different compilation units. By default a normal function cannot be used to satisfy
the need for a template instance; e.g., a function "void f(int)" could not be used to satisfy the need
for an instantiation of a template "void f(T)" with T set to int.

--no-distinct-template-signatures provides the older language behavior, under which a non-template
function can match a template function. Also controls whether function templates may have template
parameters that are not used in the function signature of the function template.

Related information

-

412

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-double (-F)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat double as float.

Command line syntax

--no-double

-F

Description

With this option you tell the C++ compiler to treat variables of the type double as float. Because the
float type takes less space, execution speed increases and code size decreases, both at the cost of less
precision.

Example

cparm --no-double test.cc

The file test.cc is compiled where variables of the type double are treated as float.

Related information

-

413

Tool Options

C++ compiler option: --no-enum-overloading

Menu entry

-

Command line syntax

--no-enum-overloading

Description

Disable support for using operator functions to overload built-in operations on enum-typed operands.

Related information

-

414

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-explicit

Menu entry

-

Command line syntax

--no-explicit

Default: the explicit specifier is allowed.

Description

Disable support for the explicit specifier on constructor declarations.

Related information

-

415

Tool Options

C++ compiler option: --no-export

Menu entry

-

Command line syntax

--no-export

Default: exported templates (declared with the keyword export) are allowed.

Description

Disable recognition of exported templates.This option requires that dependent name processing be done,
and cannot be used with implicit inclusion of template definitions.

Related information

Section 2.5.5, Exported Templates

416

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-extern-inline

Menu entry

-

Command line syntax

--no-extern-inline

Default: inline functions are allowed to have external linkage.

Description

Disable support for inline functions with external linkage in C++. When inline functions are allowed
to have external linkage (as required by the standard), then extern and inline are compatible specifiers
on a non-member function declaration; the default linkage when inline appears alone is external (that
is, inline means extern inline on non-member functions); and an inline member function takes
on the linkage of its class (which is usually external). However, when inline functions have only internal
linkage (using --no-extern-inline), then extern and inline are incompatible; the default linkage when
inline appears alone is internal (that is, inline means static inline on non-member functions);
and inline member functions have internal linkage no matter what the linkage of their class.

Related information

Section 2.7, Extern Inline Functions

417

Tool Options

C++ compiler option: --no-for-init-diff-warning

Menu entry

-

Command line syntax

--no-for-init-diff-warning

Description

Disable a warning that is issued when programs compiled without the --old-for-init option would have
had different behavior under the old rules.

Related information

C++ compiler option --old-for-init (Use old for scoping rules)

418

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-implicit-typename

Menu entry

-

Command line syntax

--no-implicit-typename

Default: implicit typename determination is enabled.

Description

Disable implicit determination, from context, whether a template parameter dependent name is a type or
nontype.

Related information

C++ compiler option --no-typename (Disable the typename keyword)

419

Tool Options

C++ compiler option: --no-inlining

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Disable the option Minimal inlining of function calls (C++).

Command line syntax

--no-inlining

Description

Disable minimal inlining of function calls.

Related information

-

420

TASKING VX-toolset for ARM User Guide

C++ compiler option: --nonconst-ref-anachronism

Menu entry

-

Command line syntax

--nonconst-ref-anachronism

--no-nonconst-ref-anachronism

Default: --no-nonconst-ref-anachronism

Description

Enable or disable the anachronism of allowing a reference to nonconst to bind to a class rvalue of the
right type. This anachronism is also enabled by the --anachronisms option.

Related information

C++ compiler option --anachronisms (Enable C++ anachronisms)

Section 2.2.3, Anachronisms Accepted

421

Tool Options

C++ compiler option: --nonstd-default-arg-deduction

Menu entry

-

Command line syntax

--nonstd-default-arg-deduction

Description

Controls whether default arguments are retained as part of deduced function types. The C++ standard
requires that default arguments not be part of deduced function types.This option changes that behavior.

Related information

-

422

TASKING VX-toolset for ARM User Guide

C++ compiler option: --nonstd-instantiation-lookup

Menu entry

-

Command line syntax

--nonstd-instantiation-lookup

Description

Controls whether the lookup of names during template instantiation should, instead of the normal lookup
rules, use rules that were part of the C++98 working paper for some time during the development of the
standard. In this mode, names are looked up in both the namespace of the template definition and in the
namespace in which a template entity was first referenced in a way that would require an instantiation.

Related information

-

423

Tool Options

C++ compiler option: --nonstd-qualifier-deduction

Menu entry

-

Command line syntax

--nonstd-qualifier-deduction

Description

Controls whether non-standard template argument deduction should be performed in the qualifier portion
of a qualified name. With this feature enabled, a template argument for the template parameter T can be
deduced in contexts like A<T>::B or T::B. The standard deduction mechanism treats these as
non-deduced contexts that use the values of template parameters that were either explicitly specified or
deduced elsewhere.

Related information

-

424

TASKING VX-toolset for ARM User Guide

C++ compiler option: --nonstd-using-decl

Menu entry

-

Command line syntax

--nonstd-using-decl

Default: non-standard using declarations are not allowed.

Description

Allow a non-member using declaration that specifies an unqualified name.

Related information

-

425

Tool Options

C++ compiler option: --no-parse-templates

Menu entry

-

Command line syntax

--no-parse-templates

Default: parsing of nonclass templates is enabled.

Description

Disable the parsing of nonclass templates in their generic form (i.e., even if they are not really instantiated).
It is done by default if dependent name processing is enabled.

Related information

C++ compiler option --no-dep-name (Disable dependent name processing)

426

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-pch-messages

Menu entry

-

Command line syntax

--no-pch-messages

Default: a message is displayed indicating that a precompiled header file was created or used in the
current compilation. For example,

"test.cc": creating precompiled header file "test.pch"

Description

Disable the display of a message indicating that a precompiled header file was created or used in the
current compilation.

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --use-pch (Use precompiled header file)

C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

427

Tool Options

C++ compiler option: --no-preprocessing-only

Menu entry

Eclipse always does a full compilation.

Command line syntax

--no-preprocessing-only

Description

You can use this option in conjunction with the options that normally cause the C++ compiler to do
preprocessing only (e.g., --preprocess, etc.) to specify that a full compilation should be done (not just
preprocessing). When used with the implicit inclusion option, this makes it possible to generate a
preprocessed output file that includes any implicitly included files.

Example

cparm --preprocess --implicit-include --no-preprocessing-only test.cc

Related information

C++ compiler option --preprocess (Preprocessing only)

C++ compiler option --implicit-include (Implicit source file inclusion)

428

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-stdarg-builtin

Menu entry

-

Command line syntax

--no-stdarg-builtin

Description

Disable special treatment of the stdarg.h header. When enabled, the stdarg.h header is treated as
a built-in, and references to its macros ("va_start" et al) are passed through as such in generated C
code.

Related information

-

429

Tool Options

C++ compiler option: --no-stdinc / --no-stdstlinc

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --no-stdinc or --no-stdstlinc to the Additional options field.

Command line syntax

--no-stdinc

--no-stdstlinc

Description

With option --no-stdinc you tell the C++ compiler not to look in the default include directory relative to
the installation directory, when searching for standard include files.

With option --no-stdstlinc you tell the C++ compiler not to look in the default include.stl directory
relative to the installation directory, when searching for standard STL include files.

This way the C++ compiler only searches in the include file search paths you specified.

Related information

Section 5.2, How the C++ Compiler Searches Include Files

430

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-typename

Menu entry

-

Command line syntax

--no-typename

Default: typename is recognized as a keyword.

Description

Disable recognition of the typename keyword.

Related information

C++ compiler option --no-implicit-typename (Disable implicit typename determination)

431

Tool Options

C++ compiler option: --no-use-before-set-warnings (-j)

Menu entry

1. Select C/C++ Compiler » Diagnostics.

2. Enable the option Suppress C++ compiler "used before set" warnings.

Command line syntax

--no-use-before-set-warnings

-j

Description

Suppress warnings on local automatic variables that are used before their values are set.

Related information

C++ compiler option --no-warnings (Suppress all warnings)

432

TASKING VX-toolset for ARM User Guide

C++ compiler option: --no-warnings (-w)

Menu entry

1. Select C/C++ Compiler » Diagnostics.

2. Enable the option Suppress all warnings.

Command line syntax

--no-warnings

-w

Description

With this option you suppress all warning messages. Error messages are still issued.

Related information

C++ compiler option --warnings-as-errors (Treat warnings as errors)

433

Tool Options

C++ compiler option: --nullptr

Menu entry

-

Command line syntax

--nullptr

--no-nullptr

Default: --no-nullptr

Default in C++0x mode: --nullptr

Description

Enable or disable support for the C++0x nullptr keyword.

This feature is implicitly enabled in C++0x mode.

Related information

C++ compiler option --c++0x (C++0x language extensions)

434

TASKING VX-toolset for ARM User Guide

C++ compiler option: --old-for-init

Menu entry

-

Command line syntax

--old-for-init

Description

Control the scope of a declaration in a for-init-statement.The old (cfront-compatible) scoping rules
mean the declaration is in the scope to which the for statement itself belongs; the default
(standard-conforming) rules in effect wrap the entire for statement in its own implicitly generated scope.

Related information

C++ compiler option --no-for-init-diff-warning (Disable warning for old for-scoping)

435

Tool Options

C++ compiler option: --old-line-commands

Menu entry

-

Command line syntax

--old-line-commands

Description

When generating source output, put out #line directives in the form # nnn instead of #line nnn.

Example

To do preprocessing only, without comments and with old style line control information, enter:

cparm --preprocess --old-line-commands test.cc

Related information

C++ compiler option --preprocess (Preprocessing only)

436

TASKING VX-toolset for ARM User Guide

C++ compiler option: --old-specializations

Menu entry

-

Command line syntax

--old-specializations

Description

Enable acceptance of old-style template specializations (that is, specializations that do not use the
template<> syntax).

Related information

-

437

Tool Options

C++ compiler option: --option-file (-f)

Menu entry

-

Command line syntax

--option-file=file

-f file

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the C++ compiler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

 -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

438

TASKING VX-toolset for ARM User Guide

Example

Suppose the file myoptions contains the following lines:

--embedded-c++
--define=DEMO=1
test.cc

Specify the option file to the C++ compiler:

cparm --option-file=myoptions

This is equivalent to the following command line:

cparm --embedded-c++ --define=DEMO=1 test.cc

Related information

-

439

Tool Options

C++ compiler option: --output (-o)

Menu entry

Eclipse names the output file always after the C++ source file.

Command line syntax

--output-file=file

-o file

Default: module name with .ic suffix.

Description

With this option you can specify another filename for the output file of the C++ compiler. Without this
option the basename of the C++ source file is used with extension .ic.

You can also use this option in combination with the option --preprocess (-E) to redirect the preprocessing
output to a file.

Example

To create the file output.ic instead of test.ic, enter:

cparm --output=output.ic test.cc

To use the file my.pre as the preprocessing output file, enter:

cparm --preprocess --output=my.pre test.cc

Related information

C++ compiler option --preprocess (Preprocessing)

440

TASKING VX-toolset for ARM User Guide

C++ compiler option: --pch

Menu entry

1. Select C/C++ Compiler » Precompiled C++ Headers.

2. Enable the option Automatically use/create precompiled header file.

Command line syntax

--pch

Description

Automatically use and/or create a precompiled header file. If --use-pch or --create-pch (manual PCH
mode) appears on the command line following this option, its effect is erased.

Related information

C++ compiler option --use-pch (Use precompiled header file)

C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

441

Tool Options

C++ compiler option: --pch-dir

Menu entry

1. Select C/C++ Compiler » Precompiled C++ Headers.

2. Enter a path in the Precompiled header file directory.

Command line syntax

--pch-dir=directory-name

Description

Specify the directory in which to search for and/or create a precompiled header file. This option may be
used with automatic PCH mode (--pch) or manual PCH mode (--create-pch or --use-pch).

Example

To use the directory c:\usr\include\pch to automatically create precompiled header files, enter:

cparm --pch-dir=c:\usr\include\pch --pch test.cc

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --use-pch (Use precompiled header file)

C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

442

TASKING VX-toolset for ARM User Guide

C++ compiler option: --pch-verbose

Menu entry

-

Command line syntax

--pch-verbose

Description

In automatic PCH mode, for each precompiled header file that cannot be used for the current compilation,
a message is displayed giving the reason that the file cannot be used.

Example

cparm --pch --pch-verbose test.cc

Related information

C++ compiler option --pch (Automatic PCH mode)

Section 2.10, Precompiled Headers

443

Tool Options

C++ compiler option: --pending-instantiations

Menu entry

-

Command line syntax

--pending-instantiations=n

where n is the maximum number of instantiations of a single template.

Default: 64

Description

Specifies the maximum number of instantiations of a given template that may be in process of being
instantiated at a given time. This is used to detect runaway recursive instantiations. If n is zero, there is
no limit.

Example

To specify a maximum of 32 pending instantiations, enter:

cparm --pending-instantiations=32 test.cc

Related information

Section 2.5, Template Instantiation

444

TASKING VX-toolset for ARM User Guide

C++ compiler option: --preprocess (-E)

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.

4. (Optional) Enable the option Keep #line info in preprocessor output.

Command line syntax

--preprocess[=flags]

-E[flags]

You can set the following flags:

keep commentsc/C+/-comments

generate a list of included source filesi/I+/-includes

generate dependencies for makem/M+/-make

strip #line source position informationp/P+/-noline

Default: -ECIMP

Description

With this option you tell the C++ compiler to preprocess the C++ source. Under Eclipse the C++ compiler
sends the preprocessed output to the file name.pre (where name is the name of the C++ source file to
compile). Eclipse also compiles the C++ source.

On the command line, the C++ compiler sends the preprocessed file to stdout.To capture the information
in a file, specify an output file with the option --output.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C++ source
file in the preprocessed output.

With --preprocess=+includes the C++ compiler will generate a list of all included source files. The
preprocessor output is discarded.

With --preprocess=+make the C++ compiler will generate dependency lines that can be used in a
Makefile. The preprocessor output is discarded. The default target name is the basename of the input
file, with the extension .obj.With the option --make-target you can specify a target name which overrules
the default target name.

When implicit inclusion of templates is enabled, the output may indicate false (but safe)
dependencies unless --no-preprocessing-only is also used.

445

Tool Options

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #line). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example

cparm --preprocess=+comments,-make,-noline test.cc --output=test.pre

The C++ compiler preprocesses the file test.cc and sends the output to the file test.pre. Comments
are included but no dependencies are generated and the line source position information is not stripped
from the output file.

Related information

C++ compiler option --no-preprocessing-only (Force full compilation)

C++ compiler option --dep-file (Generate dependencies in a file)

C++ compiler option --make-target (Specify target name for -Em output)

446

TASKING VX-toolset for ARM User Guide

C++ compiler option: --remarks (-r)

Menu entry

1. Select C/C++ Compiler » Diagnostics.

2. Enable the option Issue remarks on C++ code.

Command line syntax

--remarks

-r

Description

Issue remarks, which are diagnostic messages even milder than warnings.

Related information

Section 5.3, C++ Compiler Error Messages

447

Tool Options

C++ compiler option: --remove-unneeded-entities

Menu entry

-

Command line syntax

--remove-unneeded-entities

Description

Enable an optimization to remove types, variables, routines, and related constructs that are not really
needed. Something may be referenced but unneeded if it is referenced only by something that is itself
unneeded; certain entities, such as global variables and routines defined in the translation unit, are always
considered to be needed.

Related information

-

448

TASKING VX-toolset for ARM User Guide

C++ compiler option: --rtti

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ RTTI (run-time type information).

Command line syntax

--rtti

Default: RTTI (run-time type information) features are disabled.

Description

Enable support for RTTI (run-time type information) features: dynamic_cast, typeid.

The macro __RTTI is defined when RTTI support is enabled.

Related information

-

449

Tool Options

C++ compiler option: --rvalue-ctor-is-not-copy-ctor

Menu entry

-

Command line syntax

--rvalue-ctor-is-not-copy-ctor

Description

Do not treat an rvalue (or "move") constructor as a copy constructor. In the default situation, where rvalue
constructors are treated as copy constructors, a user-declared rvalue constructor will inhibit the implicit
generation of a traditional copy constructor.

Related information

-

450

TASKING VX-toolset for ARM User Guide

C++ compiler option: --rvalue-refs

Menu entry

-

Command line syntax

--rvalue-refs

--no-rvalue-refs

Default: --no-rvalue-refs

Default in C++0x mode: --rvalue-refs

Description

Enable or disable support for rvalue references.

This feature is implicitly enabled in C++0x mode.

Related information

C++ compiler option --c++0x (C++0x language extensions)

451

Tool Options

C++ compiler option: --schar (-s)

Menu entry

1. Select C/C++ Compiler » Language.

2. Disable the option Treat "char" variables as unsigned.

Command line syntax

--schar

-s

Description

With this option char is the same as signed char. This is the default.

When plain char is signed, the macro __SIGNED_CHARS__ is defined.

Related information

C++ compiler option --uchar (Plain char is unsigned)

Section 1.1, Data Types

452

TASKING VX-toolset for ARM User Guide

C++ compiler option: --special-subscript-cost

Menu entry

-

Command line syntax

--special-subscript-cost

Description

Enable a special nonstandard weighting of the conversion to the integral operand of the [] operator in
overload resolution.

This is a compatibility feature that may be useful with some existing code. With this feature enabled, the
following code compiles without error:

struct A {
 A();
 operator int *();
 int operator[](unsigned);
};
void main() {
 A a;
 a[0]; // Ambiguous, but allowed with this option
 // operator[] is chosen
}

Related information

-

453

Tool Options

C++ compiler option: --strict (-A)

Menu entry

1. Select C/C++ Compiler » Language.

2. Disable the option Allow non-ANSI/ISO C++ features.

Command line syntax

--strict

-A

Default: non-ANSI/ISO C++ features are enabled.

Description

Enable strict ANSI/ISO mode, which provides diagnostic messages when non-standard features are used,
and disables features that conflict with ANSI/ISO C or C++. All ANSI/ISO violations are issued as errors.

Example

To enable strict ANSI mode, with error diagnostic messages, enter:

cparm --strict test.cc

Related information

C++ compiler option --strict-warnings (Strict ANSI/ISO mode with warnings)

454

TASKING VX-toolset for ARM User Guide

C++ compiler option: --strict-warnings (-a)

Menu entry

-

Command line syntax

--strict-warnings

-a

Default: non-ANSI/ISO C++ features are enabled.

Description

This option is similar to the option --strict, but all violations are issued as warnings instead of errors.

Example

To enable strict ANSI mode, with warning diagnostic messages, enter:

cparm --strict-warnings test.cc

Related information

C++ compiler option --strict (Strict ANSI/ISO mode with errors)

455

Tool Options

C++ compiler option: --suppress-vtbl

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Suppress definition of virtual function tables (C++).

Command line syntax

--suppress-vtbl

Description

Suppress definition of virtual function tables in cases where the heuristic used by the C++ compiler to
decide on definition of virtual function tables provides no guidance. The virtual function table for a class
is defined in a compilation if the compilation contains a definition of the first non-inline non-pure virtual
function of the class. For classes that contain no such function, the default behavior is to define the virtual
function table (but to define it as a local static entity).The --suppress-vtbl option suppresses the definition
of the virtual function tables for such classes, and the --force-vtbl option forces the definition of the virtual
function table for such classes. --force-vtbl differs from the default behavior in that it does not force the
definition to be local.

Related information

C++ compiler option --force-vtbl (Force definition of virtual function tables)

456

TASKING VX-toolset for ARM User Guide

C++ compiler option: --sys-include

Menu entry

-

Command line syntax

--sys-include=directory,...

Description

Change the algorithm for searching system include files whose names do not have an absolute pathname
to look in directory.

Example

To add the directory c:\proj\include to the system include file search path, enter:

cparm --sys-include=c:\proj\include test.cc

Related information

C++ compiler option --include-directory (Add directory to include file search path)

Section 5.2, How the C++ Compiler Searches Include Files

457

Tool Options

C++ compiler option: --template-directory

Menu entry

-

Command line syntax

--template-directory=directory,...

Description

Specifies a directory name to be placed on the exported template search path. The directories are used
to find the definitions of exported templates (.et files) and are searched in the order in which they are
specified on the command line. The current directory is always the first entry on the search path.

Example

To add the directory export to the exported template search path, enter:

cparm --template-directory=export test.cc

Related information

Section 2.5.5, Exported Templates

458

TASKING VX-toolset for ARM User Guide

C++ compiler option: --template-typedefs-in-diagnostic

Menu entry

-

Command line syntax

--template-typedefs-in-diagnostic

Default: typedefs declared in template classes are not replaced with their underlying type.

Description

Enable the replacement of typedefs declared in template classes with their underlying type. Diagnostic
messages are often more useful when such typedefs are replaced.

Related information

-

459

Tool Options

C++ compiler option: --thumb

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Enable the option Use Thumb instruction set.

Command line syntax

--thumb

Description

Generate code in Thumb mode. The Thumb instruction set is a subset of the ARM instruction set which
is encoded using 16-bit instructions instead of 32-bit instructions.

The macro __THUMB__ is defined when the Thumb mode is enabled.

Related information

-

460

TASKING VX-toolset for ARM User Guide

C++ compiler option: --timing

Menu entry

-

Command line syntax

--timing

Default: no timing information is generated.

Description

Generate compilation timing information. This option causes the C++ compiler to display the amount of
CPU time and elapsed time used by each phase of the compilation and a total for the entire compilation.

Example

cparm --timing test.cc

processed 180 lines at 8102 lines/min

Related information

-

461

Tool Options

C++ compiler option: --trace-includes

Menu entry

-

Command line syntax

--trace-includes

Description

Output a list of the names of files #included to the error output file. The source file is compiled normally
(i.e. it is not just preprocessed) unless another option that causes preprocessing only is specified.

Example

cparm --trace-includes test.cc

iostream.h
string.h

Related information

C++ compiler option --preprocess (Preprocessing only)

462

TASKING VX-toolset for ARM User Guide

C++ compiler option: --type-traits-helpers

Menu entry

-

Command line syntax

--type-traits-helpers

--no-type-traits-helpers

Default: in C++ mode type traits helpers are enabled by default. In GNU C++ mode, type traits helpers
are never enabled by default.

Description

Enable or disable type traits helpers (like __is_union and __has_virtual_destructor).Type traits
helpers are meant to ease the implementation of ISO/IEC TR 19768.

The macro __TYPE_TRAITS_ENABLED is defined when type traits pseudo-functions are enabled.

Related information

-

463

Tool Options

C++ compiler option: --uchar (-u)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat "char" variables as unsigned.

Command line syntax

--uchar

-u

Description

By default char is the same as specifying signed char.With this option char is the same as unsigned
char.

Related information

C++ compiler option --schar (Plain char is signed)

Section 1.1, Data Types

464

TASKING VX-toolset for ARM User Guide

C++ compiler option: --uliterals

Menu entry

-

Command line syntax

--uliterals

Default: U-literals are not recognized.

Description

Enable recognition of U-literals (string literals of the forms U"..." and u"...", and character literals of
the forms U'...' and u'...').

Related information

-

465

Tool Options

C++ compiler option: --undefine (-U)

Menu entry

1. Select C/C++ Compiler » Preprocessing

The Defined symbols box shows the symbols that are currently defined.

2. To remove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax

--undefine=macro_name

-Umacro_name

Description

Remove any initial definition of macro_name as in #undef. --undefine options are processed after all
--define options have been processed.

You cannot undefine a predefined macro as specified in Section 2.9, Predefined Macros, except for:

__STDC__

__cplusplus

__SIGNED_CHARS__

Example

To undefine the predefined macro __cplusplus:

cparm --undefine=__cplusplus test.cc

Related information

C++ compiler option --define (Define preprocessor macro)

Section 2.9, Predefined Macros

466

TASKING VX-toolset for ARM User Guide

C++ compiler option: --use-pch

Menu entry

1. Select C/C++ Compiler » Precompiled C++ Headers.

2. Enter a filename in the Use precompiled header file field.

Command line syntax

--use-pch=filename

Description

Use a precompiled header file of the specified name as part of the current compilation. If --pch (automatic
PCH mode) or --create-pch appears on the command line following this option, its effect is erased.

Example

To use the precompiled header file with the name test.pch, enter:

cparm --use-pch=test.pch test.cc

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

467

Tool Options

C++ compiler option: --using-std

Menu entry

-

Command line syntax

--using-std

Default: implicit use of the std namespace is disabled.

Description

Enable implicit use of the std namespace when standard header files are included. Note that this does
not do the equivalent of putting a "using namespace std;" in the program to allow old programs to
be compiled with new header files; it has a special and localized meaning related to the TASKING versions
of certain header files, and is unlikely to be of much use to end-users of the TASKING C++ compiler.

Related information

C++ compiler option --namespaces (Support for namespaces)

Section 2.4, Namespace Support

468

TASKING VX-toolset for ARM User Guide

C++ compiler option: --variadic-macros

Menu entry

-

Command line syntax

--variadic-macros

--no-variadic-macros

Default: --no-variadic-macros

Default in C++0x mode: --variadic-macros

Description

Allow or do not allow macros with a variable number of arguments.

This feature is implicitly enabled in C++0x mode.

Related information

C++ compiler option --extended-variadic-macros (Allow extended variadic macros)

C++ compiler option --c++0x (C++0x language extensions)

469

Tool Options

C++ compiler option: --version (-V)

Menu entry

-

Command line syntax

--version

-V

Description

Display version information. The C++ compiler ignores all other options or input files.

470

TASKING VX-toolset for ARM User Guide

C++ compiler option: --vla

Menu entry

-

Command line syntax

--vla

Description

Enable support for variable length arrays. This allows the declaration and use of arrays of automatic
storage duration with dimensions that are fixed at run-time.

471

Tool Options

C++ compiler option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

--warnings-as-errors[=number,...]

Description

If the C++ compiler encounters an error, it stops compiling. When you use this option without arguments,
you tell the C++ compiler to treat all warnings as errors.This means that the exit status of the C++ compiler
will be non-zero after one or more compiler warnings. As a consequence, the C++ compiler now also
stops after encountering a warning.

You can limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

C++ compiler option --no-warnings (Suppress all warnings)

472

TASKING VX-toolset for ARM User Guide

C++ compiler option: --wchar_t-keyword

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Allow the 'wchar_t' keyword (C++).

Command line syntax

--wchar_t-keyword

Default: wchar_t is not recognized as a keyword.

Description

Enable recognition of wchar_t as a keyword.

The macro _WCHAR_T is defined when wchar_t is recognized as a keyword.

Related information

-

473

Tool Options

C++ compiler option: --xref-file (-X)

Menu entry

-

Command line syntax

--xref-file=file

-Xfile

Description

Generate cross-reference information in a file. For each reference to an identifier in the source program,
a line of the form

symbol_id name X file-name line-number column-number

is written, where X is

for definition;D

for declaration (that is, a declaration that is not a definition);d

for modification;M

for address taken;A

for used;U

for changed (but actually meaning used and modified in a single operation, such as an
increment);

C

for any other kind of reference, orR

for an error in which the kind of reference is indeterminate.E

symbol-id is a unique decimal number for the symbol. The fields of the above line are separated by tab
characters.

Related information

-

474

TASKING VX-toolset for ARM User Guide

11.4. Assembler Options

This section lists all assembler options. All options are the same for all three assemblers, asarm (mixed
ARM/Thumb), asarma (ARM only) and asarmt (Thumb only). In the examples we only use asarm.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the assembler via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the assembler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler » Miscellaneous.

4. In the Additional options field, enter one or more command line options.

Because Eclipse uses the control program, Eclipse automatically precedes the option with -Wa to
pass the option via the control program directly to the assembler.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -V displays version header information and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on', use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

asarm -l -LeM test.src
asarm --list-file --list-format=+symbol,-macro test.src

When you do not specify an option, a default value may become active.

475

Tool Options

Assembler option: --case-insensitive (-c)

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.

Command line syntax

--case-insensitive

-c

Default: case sensitive

Description

With this option you tell the assembler not to distinguish between uppercase and lowercase characters.
By default the assembler considers uppercase and lowercase characters as different characters.

Assembly source files that are generated by the compiler must always be assembled case sensitive.
When you are writing your own assembly code, you may want to specify the case insensitive mode.

Example

When assembling case insensitive, the label LabelName is the same label as labelname.

asarm --case-insensitive test.src

Related information

-

476

TASKING VX-toolset for ARM User Guide

Assembler option: --check

Menu entry

-

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application.

The assembler reports any warnings and/or errors.

This option is available on the command line only.

Related information

C compiler option --check (Check syntax)

477

Tool Options

Assembler option: --code-endianness

Menu entry

-

Command line syntax

--code-endianness=endianness

You can specify the following endianness:

Big endianbbig

Little endian (default)llittle

Description

This option tells the assembler what code endianness you want, little-endian (least significant byte of a
word at lowest byte code address) or big-endian (most significant byte of a word at lowest byte code
address). The code endianness used must be a valid one for the architecture you are assembling for.
This option is only available for ARMv7R.

Related information

Assembler option --endianness (Data endianness)

478

TASKING VX-toolset for ARM User Guide

Assembler option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, make a selection by Architecture, Core one of the manufacturers.

Command line syntax

--cpu=architecture

-Carchitecture

You can specify the following architectures:

Assemble for ARMv6-M architectureARMv6M

Assemble for ARMv7-M architectureARMv7M

Assemble for ARMv7E-M architectureARMv7EM

Assemble for ARMv7-R architectureARMv7R

Description

With this option you specify the ARM architecture for which you create your application. The architecture
determines which instructions are valid and which are not. The default architecture is ARMv7M and the
complete list of supported architectures is: ARMv6-M, ARMv7-M, ARMv7E-M or ARMv7-R.

Assembly code can check the value of the option by means of the built-in function @CPU(). Architecture
ARMv7-M only supports the Thumb-2 instruction set, i.e. it has no ARM execution state.

To avoid conflicts, make sure you specify the same architecture as you did for the compiler (Eclipse and
the control program do this automatically).

Related information

Assembly function @CPU()

Control program option --cpu (Select architecture)

C compiler option --cpu (Select architecture)

479

Tool Options

Assembler option: --debug-info (-g)

Menu entry

1. Select Assembler » Symbols.

2. Select an option from the Generate symbolic debug list.

Command line syntax

--debug-info[=flags]

-g[flags]

You can set the following flags:

Assembly source line informationa/A+/-asm

Pass high level language debug information (HLL)h/H+/-hll

Assembler local symbols debug informationl/L+/-local

Smart debug informations/S+/-smart

Default: --debug-info=+hll

Default (without flags): --debug-info=+smart

Description

With this option you tell the assembler which kind of debug information to emit in the object file.

You cannot specify --debug-info=+asm,+hll. Either the assembler generates assembly source line
information, or it passes HLL debug information.

When you specify --debug-info=+smart, the assembler selects which flags to use. If high level language
information is available in the source file, the assembler passes this information (same as
--debug-info=-asm,+hll,-local). If not, the assembler generates assembly source line information (same
as --debug-info=+asm,-hll,+local).

With --debug-info=AHLS the assembler does not generate any debug information.

Related information

-

480

TASKING VX-toolset for ARM User Guide

Assembler option: --define (-D)

Menu entry

1. Select Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.

2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

--define=macro_name[=macro_definition]

-Dmacro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the assembler preprocessor. If you only specify
a macro name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
assembler with the option --option-file (-f) file.

Defining macros with this option (instead of in the assembly source) is, for example, useful in combination
with conditional assembly as shown in the example below.

This option has the same effect as defining symbols via the .DEFINE, .SET, and .EQU directives
(similar to #define in the C language). With the .MACRO directive you can define more complex
macros.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

481

Tool Options

Example

Consider the following assembly program with conditional code to assemble a demo program and a real
program:

.IF DEMO == 1

... ; instructions for demo application

.ELSE

... ; instructions for the real application

.ENDIF

You can now use a macro definition to set the DEMO flag:

asarm --define=DEMO test.src
asarm --define=DEMO=1 test.src

Note that both invocations have the same effect.

Related information

Assembler option --option-file (Specify an option file)

482

TASKING VX-toolset for ARM User Guide

Assembler option: --dep-file

Menu entry

-

Command line syntax

--dep-file[=file]

Description

With this option you tell the assembler to generate dependency lines that can be used in a Makefile. The
dependency information will be generated in addition to the normal output file.

By default, the information is written to a file with extension .d. When you specify a filename, all
dependencies will be combined in the specified file.

Example

asarm --dep-file=test.dep test.src

The assembler assembles the file test.src, which results in the output file test.obj, and generates
dependency lines in the file test.dep.

Related information

Assembler option --make-target (Specify target name for --dep-file output)

483

Tool Options

Assembler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify.You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 244, enter:

asarm --diag=244

This results in the following message and explanation:

W244: additional input files will be ignored

The assembler supports only a single input file. All other input files are ignored.

484

TASKING VX-toolset for ARM User Guide

To write an explanation of all errors and warnings in HTML format to file aserrors.html, use redirection
and enter:

asarm --diag=html:all > aserrors.html

Related information

Section 6.6, Assembler Error Messages

485

Tool Options

Assembler option: --emit-locals

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable one or both of the following options:

• Emit local EQU symbols

• Emit mapping symbols ($a, $t, $d)

• Emit local non-EQU symbols

Command line syntax

--emit-locals[=flag,...]

You can set the following flags:

emit local EQU symbolse/E+/-equs

emit mapping symbols ($a, $t, $d)m/M+/-mappings

emit local non-EQU symbolss/S+/-symbols

Default: --emit-locals=+mappings,+symbols

Description

With the option --emit-locals=+equs the assembler also emits local EQU symbols to the object file.
Normally, only global symbols, mapping symbols and non-EQU local symbols are emitted. Having local
symbols in the object file can be useful for debugging.

Mapping symbols are local symbols inside code sections which mark the start of a range of ARM
instructions ($a), a range of Thumb instructions ($t), or a literal pool a.k.a. data pocket ($d). Also, data
sections start with a $d symbol. The mapping symbol names are made unique with a'.' character suffix
followed by a unique integer, for example: $a.1, $t.2 and $d.3. This option only takes effect if local labels
are emitted as well (default).

Related information

Assembler directive .EQU

486

TASKING VX-toolset for ARM User Guide

Assembler option: --endianness

Menu entry

1. Select Global Options.

2. Specify the Endianness:Little-endian mode or Big-endian mode.

Command line syntax

--endianness=endianness

-B
--big-endian

You can specify the following endianness:

Big endianbbig

Little endian (default)llittle

Description

By default, the assembler generates object files with instructions and data in little-endian format (least
significant byte of a word at lowest byte address).With --endianness=big the assembler generates object
files in big-endian format (most significant byte of a word at lowest byte address). -B is an alias for option
--endianness=big.

The endianness is reflected in the list file.

Assembly code can check the setting of this option by means of the built-in assembly function
@BIGENDIAN().

Related information

Assembly function @BIGENDIAN()

Assembler option --code-endianness (Code endianness)

487

Tool Options

Assembler option: --error-file

Menu entry

-

Command line syntax

--error-file[=file]

Description

With this option the assembler redirects error messages to a file. If you do not specify a filename, the
error file will be named after the output file with extension .ers.

Example

To write errors to errors.ers instead of stderr, enter:

asarm --error-file=errors.ers test.src

Related information

Section 6.6, Assembler Error Messages

488

TASKING VX-toolset for ARM User Guide

Assembler option: --error-limit

Menu entry

1. Select Assembler » Diagnostics.

2. Enter a value in the Maximum number of emitted errors field.

Command line syntax

--error-limit=number

Default: 42

Description

With this option you tell the assembler to only emit the specified maximum number of errors. When 0
(null) is specified, the assembler emits all errors. Without this option the maximum number of errors is
42.

Related information

Section 6.6, Assembler Error Messages

489

Tool Options

Assembler option: --help (-?)

Menu entry

-

Command line syntax

--help[=item]

-?

You can specify the following arguments:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

asarm -?
asarm --help
asarm

To see a detailed description of the available options, enter:

asarm --help=options

Related information

-

490

TASKING VX-toolset for ARM User Guide

Assembler option: --include-directory (-I)

Menu entry

1. Select Assembler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.

2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--include-directory=path,...

-Ipath,...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the assembler searches for include files is:

1. The pathname in the assembly file and the directory of the assembly source.

2. The path that is specified with this option.

3. The path that is specified in the environment variable ASARMINC when the product was installed.

4. The default directory $(PRODDIR)\include.

Example

Suppose that the assembly source file test.src contains the following lines:

.INCLUDE 'myinc.inc'

You can call the assembler as follows:

asarm --include-directory=c:\proj\include test.src

First the assembler looks for the file myinc.inc in the directory where test.src is located. If it does
not find the file, it looks in the directory c:\proj\include (this option). If the file is still not found, the
assembler searches in the environment variable and then in the default include directory.

491

Tool Options

Related information

Assembler option --include-file (Include file at the start of the input file)

492

TASKING VX-toolset for ARM User Guide

Assembler option: --include-file (-H)

Menu entry

1. Select Assembler » Preprocessing.

The Pre-include files box shows the files that are currently included before the assembling starts.

2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax

--include-file=file,...

-Hfile,...

Description

With this option (set at project level) you include one extra file at the beginning of the assembly source
file.The specified include file is included before all other includes.This is the same as specifying .INCLUDE
'file' at the beginning of your assembly source.

Example

asarm --include-file=myinc.inc test.src

The file myinc.inc is included at the beginning of test.src before it is assembled.

Related information

Assembler option --include-directory (Add directory to include file search path)

493

Tool Options

Assembler option: --inversions

Menu entry

1. Select Assembler » Miscellaneous.

2. Enable the option Allow instruction inversions.

Command line syntax

--inversions

Description

With this option you tell the assembler to try to invert some data processing instructions with an immediate
operand. Inversions are available for MOV/MVN, CMP/CMN, AND/BIC, ADC/SBC, and ADD/SUB.

Example

With this option enabled, you can write

 add r1,r2,#-4

and the assembler will generate

 sub r1,r2,#4

and instead of

 mov r1,0xFFFFFFFF

the assembler will generate

 mvn r1,0

Related information

-

494

TASKING VX-toolset for ARM User Guide

Assembler option: --kanji

Menu entry

1. Select Assembler » Miscellaneous.

2. Enable the option Allow Shift JIS Kanji in strings.

Command line syntax

--kanji

Description

With this option you tell the assembler to support Shift JIS encoded Kanji multi-byte characters in strings.
Without this option, encodings with 0x5c as the second byte conflict with the use of the backslash as an
escape character. Shift JIS in comments is supported regardless of this option.

Note that Shift JIS also includes Katakana and Hiragana.

Related information

C compiler option --language=+kanji (Allow Shift JIS Kanji in strings)

495

Tool Options

Assembler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the object file when errors occur during assembling.

Command line syntax

--keep-output-files

-k

Description

If an error occurs during assembling, the resulting object file (.obj) may be incomplete or incorrect. With
this option you keep the generated object file when an error occurs.

By default the assembler removes the generated object file when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated object. For example when you know that a
particular error does not result in a corrupt object file.

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

496

TASKING VX-toolset for ARM User Guide

Assembler option: --list-file (-l)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.

Command line syntax

--list-file[=file]

-l[file]

Default: no list file is generated

Description

With this option you tell the assembler to generate a list file. A list file shows the generated object code
and the relative addresses. Note that the assembler generates a relocatable object file with relative
addresses.

With the optional file you can specify an alternative name for the list file. By default, the name of the list
file is the basename of the source file with the extension .lst.

Related information

Assembler option --list-format (Format list file)

497

Tool Options

Assembler option: --list-format (-L)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.

Command line syntax

--list-format=flag,...

-Lflags

You can set the following flags:

List section directives (.SECTION)d/D+/-section

List symbol definition directivese/E+/-symbol

List expansion of generic instructionsg/G+/-generic-expansion

List generic instructionsi/I+/-generic

List C preprocessor #line directivesl/L+/-line

List macro definitionsm/M+/-macro

List empty source lines and comment lines (newline)n/N+/-empty-line

List conditional assemblyp/P+/-conditional

List equate and set directives (.EQU, .SET)q/Q+/-equate

List relocations characters ('r')r/R+/-relocations

List HLL symbolic debug informationss/S+/-hll

List equate and set valuesv/V+/-equate-values

Wrap source linesw/W+/-wrap-lines

List macro expansionsx/X+/-macro-expansion

List cycle countsy/Y+/-cycle-count

List define expansionsz/Z+/-define-expansion

Use the following options for predefined sets of flags:

All options disabled
Alias for --list-format=DEGILMNPQRSVWXYZ

-L0--list-format=0

All options enabled
Alias for --list-format=degilmnpqrsvwxyz

-L1--list-format=1

Default: --list-format=dEGilMnPqrsVwXyZ

498

TASKING VX-toolset for ARM User Guide

Description

With this option you specify which information you want to include in the list file.

On the command line you must use this option in combination with the option --list-file (-l).

Related information

Assembler option --list-file (Generate list file)

Assembler option --section-info=+list (Display section information in list file)

499

Tool Options

Assembler option: --make-target

Menu entry

-

Command line syntax

--make-target=name

Description

With this option you can overrule the default target name in the make dependencies generated by the
option --dep-file. The default target name is the basename of the input file, with extension .obj.

Example

asarm --dep-file --make-target=../mytarget.obj test.src

The assembler generates dependency lines with the default target name ../mytarget.obj instead of
test.obj.

Related information

Assembler option --dep-file (Generate dependencies in a file)

500

TASKING VX-toolset for ARM User Guide

Assembler option: --no-warnings (-w)

Menu entry

1. Select Assembler » Diagnostics.

The Suppress warnings box shows the warnings that are currently suppressed.

2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
201,202). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

--no-warnings[=number,...]

-w[number,...]

Description

With this option you can suppresses all warning messages or specific warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are suppressed.

• If you specify this option with a number, only the specified warning is suppressed.You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 201 and 202, enter:

asarm test.src --no-warnings=201,202

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

501

Tool Options

Assembler option: --old-syntax

Menu entry

1. Select Assembler » Miscellaneous.

2. Disable the option UAL syntax mode.

Command line syntax

--old-syntax

Description

In UAL syntax mode the assembler will not accept instructions which use the pre-UAL syntax and will
select encodings based on the UAL syntax in case both syntaxes are the same.

With this option you can change this default behavior. The assembler will run in pre-UAL mode. The
built-in function @PRE_UAL() will return true, so you can use:

.IF @PRE_UAL()
 ; <old code>
.ELSE
 ; <new code>
.ENDIF

Related information

Assembly function @PRE_UAL()

502

TASKING VX-toolset for ARM User Guide

Assembler option: --option-file (-f)

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the assembler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the assembler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility.You can specify the option
--option-file multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

 -> "This is a continuation line"

503

Tool Options

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

--debug=+asm,-local
test.src

Specify the option file to the assembler:

asarm --option-file=myoptions

This is equivalent to the following command line:

asarm --debug=+asm,-local test.src

Related information

-

504

TASKING VX-toolset for ARM User Guide

Assembler option: --output (-o)

Menu entry

Eclipse names the output file always after the input file.

Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the assembler. Without this option,
the basename of the assembly source file is used with extension .obj.

Example

To create the file relobj.obj instead of asm.obj, enter:

asarm --output=relobj.obj asm.src

Related information

-

505

Tool Options

Assembler option: --page-length

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-length to the Additional options field.

Command line syntax

--page-length=number

Default: 72

Description

If you generate a list file with the assembler option --list-file, this option sets the number of lines in a page
in the list file. The default is 72, the minimum is 10. As a special case, a page length of 0 turns off page
breaks.

Related information

Assembler option --list-file (Generate list file)

Assembler directive .PAGE

506

TASKING VX-toolset for ARM User Guide

Assembler option: --page-width

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-width to the Additional options field.

Command line syntax

--page-width=number

Default: 132

Description

If you generate a list file with the assembler option --list-file, this option sets the number of columns per
line on a page in the list file. The default is 132, the minimum is 40.

Related information

Assembler option --list-file (Generate list file)

Assembler directive .PAGE

507

Tool Options

Assembler option: --preprocess (-E)

Menu entry

-

Command line syntax

--preprocess

-E

Description

With this option the assembler will only preprocess the assembly source file. The assembler sends the
preprocessed file to stdout.

Related information

-

508

TASKING VX-toolset for ARM User Guide

Assembler option: --preprocessor-type (-m)

Menu entry

1. Select Assembler » Preprocessing.

2. Enable or disable the option Use TASKING preprocessor.

Command line syntax

--preprocessor-type=type

-mtype

You can set the following preprocessor types:

No preprocessornnone

TASKING preprocessorttasking

Default: --preprocessor-type=tasking

Description

With this option you select the preprocessor that the assembler will use. By default, the assembler uses
the TASKING preprocessor.

When the assembly source file does not contain any preprocessor symbols, you can specify to the
assembler not to use a preprocessor.

Related information

-

509

Tool Options

Assembler option: --relaxed

Menu entry

1. Select Assembler » Miscellaneous.

2. Enable the option Allow 2-operand form for 3-operand instructions.

Command line syntax

--relaxed

Description

With this option you tell the assembler that a relaxed 2-operand syntax is allowed on 3-operand instructions.
If the first two register operands are equal, you can replace the two registers by one.

Example

With this option enabled, instead of

 add r1,r1,#4

you can write

 add r1,#4

and instead of

 add r1,r1,r2

you can write

 add r1,r2

Related information

-

510

TASKING VX-toolset for ARM User Guide

Assembler option: --section-info (-t)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable the option List section summary.

and/or

1. Select Assembler » Diagnostics.

2. Enable the option Display section summary.

Command line syntax

--section-info[=flag,...]

-t[flags]

You can set the following flags:

Display section summary on consolec/C+/-console

List section summary in list filel/L+/-list

Default: --section-info=CL

Default (without flags): --section-info=cl

Description

With this option you tell the assembler to display section information. For each section its memory space,
size, total cycle counts and name is listed on stdout and/or in the list file.

The cycle count consists of two parts: the total accumulated count for the section and the total accumulated
count for all repeated instructions. In the case of nested loops it is possible that the total supersedes the
section total.

Example

To writes the section information to the list file and also display the section information on stdout, enter:

asarm --list-file --section-info asm.src

Related information

Assembler option --list-file (Generate list file)

511

Tool Options

Assembler option: --silicon-bug

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, select a processor.

The CPU problem bypasses and checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.

4. Click Select All or select one or more individual options.

Command line syntax

--silicon-bug[=bug,...]

Description

With this option you specify for which hardware problems the assembler should check. Please refer to
Chapter 19, CPU Problem Bypasses and Checks for the numbers and descriptions. Silicon bug numbers
are specified as a comma separated list. When this option is used without arguments, all silicon bugs are
checked.

Example

To check for problem 602117, enter:

asarm --silicon-bug=602117 test.src

Related information

Chapter 19, CPU Problem Bypasses and Checks

512

TASKING VX-toolset for ARM User Guide

Assembler option: --symbol-scope (-i)

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable the option Set default symbol scope to global.

Command line syntax

--symbol-scope=scope

-iscope

You can set the following scope:

Default symbol scope is globalgglobal

Default symbol scope is localllocal

Default: --symbol-scope=local

Description

With this option you tell the assembler how to treat symbols that you have not specified explicitly as global
or local. By default the assembler treats all symbols as local symbols unless you have defined them
explicitly as global.

Related information

Assembler directive .GLOBAL

513

Tool Options

Assembler option: --thumb

Menu entry

1. Select Assembler » Miscellaneous.

2. Enable the option Assemble Thumb instructions by default.

Command line syntax

--thumb

Description

With this option you tell the assembler that the input file contains Thumb code. By default the assembler
assumes that the input file contains ARM code. Specifying --thumb with --cpu=ARMv7M or with the
Thumb only assembler (asarmt) is not required.

Note that the input may still contain mixed Thumb and ARM code because the .ARM, .THUMB, .CODE16
and .CODE32 directives overrule the --thumb option. Assembly code can check the setting of the --thumb
option by means of the built-in assembly function @THUMB(). So, if you use @THUMB() in a .ARM part
and you specified --thumb, @THUMB() still returns 1.

Related information

Assembly function @THUMB()

Assembler directives .CODE16, .CODE32, .ARM, .THUMB

514

TASKING VX-toolset for ARM User Guide

Assembler option: --version (-V)

Menu entry

-

Command line syntax

--version

-V

Description

Display version information. The assembler ignores all other options or input files.

Related information

-

515

Tool Options

Assembler option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

--warnings-as-errors[=number,...]

Description

If the assembler encounters an error, it stops assembling. When you use this option without arguments,
you tell the assembler to treat all warnings as errors. This means that the exit status of the assembler will
be non-zero after one or more assembler warnings. As a consequence, the assembler now also stops
after encountering a warning.

You can limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Assembler option --no-warnings (Suppress some or all warnings)

516

TASKING VX-toolset for ARM User Guide

11.5. Linker Options

This section lists all linker options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the linker via the control program. Therefore, it uses the syntax of the
control program to pass options and files to the linker. If there is no equivalent option in Eclipse, you can
specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Miscellaneous.

4. In the Additional options field, enter one or more command line options.

Because Eclipse uses the control program, Eclipse automatically precedes the option with -Wl to
pass the option via the control program directly to the linker.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option --keep-output-files keeps files after an error occurred. When you specify this option
in Eclipse, it will have no effect because Eclipse always removes the output file after an error had occurred.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on', use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

lkarm -mfkl test.obj
lkarm --map-file-format=+files,+link,+locate test.obj

When you do not specify an option, a default value may become active.

517

Tool Options

Linker option: --case-insensitive

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Link case insensitive.

Command line syntax

--case-insensitive

Default: case sensitive

Description

With this option you tell the linker not to distinguish between uppercase and lowercase characters in
symbols. By default the linker considers uppercase and lowercase characters as different characters.

Assembly source files that are generated by the compiler must always be assembled and thus linked
case sensitive. When you have written your own assembly code and specified to assemble it case
insensitive, you must also link the .obj file case insensitive.

Related information

Assembler option --case-insensitive

518

TASKING VX-toolset for ARM User Guide

Linker option: --chip-output (-c)

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file and/or Generate S-records file.

3. Enable the option Create file for each memory chip.

4. Optionally, specify the Size of addresses.

Eclipse always uses the project name as the basename for the output file.

Command line syntax

--chip-output=[basename]:format[:addr_size],...

-c[basename]:format[:addr_size],...

You can specify the following formats:

Intel HexIHEX

Motorola S-recordsSREC

The addr_size specifies the size of the addresses in bytes (record length). For Intel Hex you can use the
values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records) or 4 bytes
(S3 records, default).

Description

With this option you specify the Intel Hex or Motorola S-record output format for loading into a
PROM-programmer. The linker generates a file for each ROM memory defined in the LSL file, where
sections are located:

memory memname
{ type=rom; }

The name of the file is the name of the Eclipse project or, on the command line, the name of the memory
device that was emitted with extension .hex or .sre. Optionally, you can specify a basename which
prepends the generated file name.

The linker always outputs a debugging file in ELF/DWARF format and optionally an absolute
object file in Intel Hex-format and/or Motorola S-record format.

Example

To generate Intel Hex output files for each defined memory, enter the following on the command line:

lkarm --chip-output=myfile:IHEX test1.obj

519

Tool Options

In this case, this generates the file myfile_memname.hex.

Related information

Linker option --output (Output file)

520

TASKING VX-toolset for ARM User Guide

Linker option: --code-endianness

Menu entry

-

Command line syntax

--code-endianness=endianness

You can specify the following endianness:

Big endianbbig

Little endian (default)llittle

Description

This option tells the linker what code endianness you want, little-endian (least significant byte of a word
at lowest byte code address) or big-endian (most significant byte of a word at lowest byte code address).
The code endianness used must be a valid one for the architecture you are compiling for. This option is
only available for ARMv7R.

Related information

Linker option --endianness (Data endianness)

521

Tool Options

Linker option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, make a selection by Architecture, Core or one of the
manufacturers.

Command line syntax

--cpu=architecture

-Carchitecture

You can specify the following architectures:

Link for ARMv6-M architectureARMv6M

Link for ARMv7-M architectureARMv7M

Link for ARMv7E-M architectureARMv7EM

Link for ARMv7-R architectureARMv7R

Description

With this option you specify the ARM architecture for which you create your application. The linker uses
the architecture to determine which libraries must be linked and what kind of veneers to generate. The
default architecture is ARMv7M and the complete list of supported architectures is: ARMv6-M, ARMv7-M,
ARMv7E-M or ARMv7-R.

Architecture ARMv7-M only supports the Thumb-2 instruction set.

Related information

C compiler option --cpu (Select architecture)

522

TASKING VX-toolset for ARM User Guide

Linker option: --define (-D)

Menu entry

1. Select Linker » Script File.

The Defined symbols box shows the symbols that are currently defined.

2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

--define=macro_name[=macro_definition]

-Dmacro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the linker LSL file preprocessor. If you only
specify a macro name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like; just use the option --define (-D) multiple times. If the
command line exceeds the limit of the operating system, you can define the macros in an option file which
you then must specify to the linker with the option --option-file (-f) file.

The definition can be tested by the preprocessor with #if, #ifdef and #ifndef, for conditional locating.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

To define the stack size and start address which are used in the linker script file arm.lsl, enter:

lkarm test.obj -otest.abs --lsl-file=arm.lsl --define=__STACK=32k
 --define=__START=0x00000000

Related information

Linker option --option-file (Specify an option file)

523

Tool Options

Linker option: --dep-file

Menu entry

Eclipse uses this option in the background to create a file with extension .d (one for every input file).

Command line syntax

--dep-file[=file]

Description

With this option you tell the linker to generate dependency lines that can be used in a Makefile. The
dependency information will be generated in addition to the normal output file.

By default, the information is written to the file lkarm.d. When you specify a filename, all dependencies
will be combined in the specified file.

Example

lkarm --dep-file=test.dep test.obj

The linker links the file test.obj, which results in the output file test.abs, and generates dependency
lines in the file test.dep.

Related information

Linker option --make-target (Target to use in dependencies file)

524

TASKING VX-toolset for ARM User Guide

Linker option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify.You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

With this option the linker does not link/locate any files.

Example

To display an explanation of message number 106, enter:

lkarm --diag=106

This results in the following message and explanation:

E106: unresolved external: <message>

The linker could not resolve all external symbols.

525

Tool Options

This is an error when the incremental linking option is disabled.
The <message> indicates the symbol that is unresolved.

To write an explanation of all errors and warnings in HTML format to file lkerrors.html, use redirection
and enter:

lkarm --diag=html:all > lkerrors.html

Related information

Section 7.10, Linker Error Messages

526

TASKING VX-toolset for ARM User Guide

Linker option: --endianness

Menu entry

1. Select Global Options.

2. Specify the Endianness:Little-endian mode or Big-endian mode.

Command line syntax

--endianness=endianness

-B
--big-endian

You can specify the following endianness:

Big endianbbig

Little endian (default)llittle

Description

By default, the linker links objects in little-endian mode. With --endianness=big you tell the linker to link
the input files in big-endian mode. The endianness used must be valid for the architecture you are linking
for. Depending on the endianness used, the linker links different libraries. -B is an alias for option
--endianness=big.

Related information

Linker option --code-endianness (Code endianness)

527

Tool Options

Linker option: --error-file

Menu entry

-

Command line syntax

--error-file[=file]

Description

With this option the linker redirects error messages to a file. If you do not specify a filename, the error file
is lkarm.elk.

Example

To write errors to errors.elk instead of stderr, enter:

lkarm --error-file=errors.elk test.obj

Related information

Section 7.10, Linker Error Messages

528

TASKING VX-toolset for ARM User Guide

Linker option: --error-limit

Menu entry

1. Select Linker » Diagnostics.

2. Enter a value in the Maximum number of emitted errors field.

Command line syntax

--error-limit=number

Default: 42

Description

With this option you tell the linker to only emit the specified maximum number of errors. When 0 (null) is
specified, the linker emits all errors. Without this option the maximum number of errors is 42.

Related information

Section 7.10, Linker Error Messages

529

Tool Options

Linker option: --extern (-e)

Menu entry

-

Command line syntax

--extern=symbol,...

-esymbol,...

Description

With this option you force the linker to consider the given symbol as an undefined reference. The linker
tries to resolve this symbol, either the symbol is defined in an object file or the linker extracts the
corresponding symbol definition from a library.

This option is, for example, useful if the startup code is part of a library. Because your own application
does not refer to the startup code, you can force the startup code to be extracted by specifying the symbol
_START as an unresolved external.

Example

Consider the following invocation:

lkarm mylib.lib

Nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through mylib.lib.

lkarm --extern=_START mylib.lib

In this case the linker searches for the symbol _START in the library and (if found) extracts the object that
contains _START, the startup code. If this module contains new unresolved symbols, the linker looks
again in mylib.lib. This process repeats until no new unresolved symbols are found.

Related information

Section 7.3, Linking with Libraries

530

TASKING VX-toolset for ARM User Guide

Linker option: --first-library-first

Menu entry

-

Command line syntax

--first-library-first

Description

When the linker processes a library it searches for symbols that are referenced by the objects and libraries
processed so far. If the library contains a definition for an unresolved reference the linker extracts the
object that contains the definition from the library.

By default the linker processes object files and libraries in the order in which they appear on the command
line. If you specify the option --first-library-first the linker always tries to take the symbol definition from
the library that appears first on the command line before scanning subsequent libraries.

This is for example useful when you are working with a newer version of a library that partially overlaps
the older version. Because they do not contain exactly the same functions, you have to link them both.
However, when a function is present in both libraries, you may want the linker to extract the most recent
function.

Example

Consider the following example:

lkarm --first-library-first a.lib test.obj b.lib

If the file test.obj calls a function which is both present in a.lib and b.lib, normally the function in
b.lib would be extracted. With this option the linker first tries to extract the symbol from the first library
a.lib.

Note that routines in b.lib that call other routines that are present in both a.lib and b.lib
are now also resolved from a.lib.

Related information

Linker option --no-rescan (Rescan libraries to solve unresolved externals)

531

Tool Options

Linker option: --global-type-checking

Menu entry

-

Command line syntax

--global-type-checking

Description

Use this option when you want the linker to check the types of variable and function references against
their definitions, using DWARF 2 or DWARF 3 debug information.

This check should give the same result as the C compiler when you use MIL linking.

Related information

C compiler option --global-type-checking (Global type checking)

532

TASKING VX-toolset for ARM User Guide

Linker option: --help (-?)

Menu entry

-

Command line syntax

--help[=item]

-?

You can specify the following arguments:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

lkarm -?
lkarm --help
lkarm

To see a detailed description of the available options, enter:

lkarm --help=options

Related information

-

533

Tool Options

Linker option: --hex-format

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file.

3. Enable or disable the option Emit start address record.

Command line syntax

--hex-format=flag,...

You can set the following flag:

Emit start address records/S+/-start-address

Default: --hex-format=s

Description

With this option you can specify to emit or omit the start address record from the hex file.

Related information

Linker option --output (Output file)

534

TASKING VX-toolset for ARM User Guide

Linker option: --hex-record-size

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file.

3. Select Linker » Miscellaneous.

4. Add the option --hex-record-size to the Additional options field.

Command line syntax

--hex-record-size=size

Default: 32

Description

With this option you can set the size (width) of the Intel Hex data records.

Related information

Linker option --output (Output file)

Section 16.2, Intel Hex Record Format

535

Tool Options

Linker option: --import-object

Menu entry

1. Select Linker » Data Objects.

The Data objects box shows the list of object files that are imported.

2. To add a data object, click on the Add button in the Data objects box.

3. Type or select a binary file (including its path).

Use the Edit and Delete button to change a filename or to remove a data object from the list.

Command line syntax

--import-object=file,...

Description

With this option the linker imports a binary file containing raw data and places it in a section. The section
name is derived from the filename, in which dots are replaced by an underscore. So, when importing a
file called my.jpg, a section with the name my_jpg is created. In your application you can refer to the
created section by using linker labels.

Related information

Section 7.5, Importing Binary Files

536

TASKING VX-toolset for ARM User Guide

Linker option: --include-directory (-I)

Menu entry

-

Command line syntax

--include-directory=path,...

-Ipath,...

Description

With this option you can specify the path where your LSL include files are located. A relative path will be
relative to the current directory.

The order in which the linker searches for LSL include files is:

1. The pathname in the LSL file and the directory where the LSL file is located (only for #include files that
are enclosed in "")

2. The path that is specified with this option.

3. The default directory $(PRODDIR)\include.lsl.

Example

Suppose that your linker script file mylsl.lsl contains the following line:

#include "myinc.inc"

You can call the linker as follows:

lkarm --include-directory=c:\proj\include --lsl-file=mylsl.lsl test.obj

First the linker looks for the file myinc.inc in the directory where mylsl.lsl is located. If it does not
find the file, it looks in the directory c:\proj\include (this option). Finally it looks in the directory
$(PRODDIR)\include.lsl.

Related information

Linker option --lsl-file (Specify linker script file)

537

Tool Options

Linker option: --incremental (-r)

Menu entry

-

Command line syntax

--incremental

-r

Description

Normally the linker links and locates the specified object files. With this option you tell the linker only to
link the specified files. The linker creates a linker output file .out.You then can link this file again with
other object files until you have reached the final linker output file that is ready for locating.

In the last pass, you call the linker without this option with the final linker output file .out. The linker will
now locate the file.

Example

In this example, the files test1.obj, test2.obj and test3.obj are incrementally linked:

1. lkarm --incremental test1.obj test2.obj --output=test.out

test1.obj and test2.obj are linked

2. lkarm --incremental test3.obj test.out

test3.obj and test.out are linked, task1.out is created

3. lkarm task1.out

task1.out is located

Related information

Section 7.4, Incremental Linking

538

TASKING VX-toolset for ARM User Guide

Linker option: --keep-output-files (-k)

Menu entry

Eclipse always removes the output files when errors occurred.

Command line syntax

--keep-output-files

-k

Description

If an error occurs during linking, the resulting output file may be incomplete or incorrect. With this option
you keep the generated output files when an error occurs.

By default the linker removes the generated output file when an error occurs.This is useful when you use
the make utility. If the erroneous files are not removed, the make utility may process corrupt files on a
subsequent invocation.

Use this option when you still want to use the generated file. For example when you know that a particular
error does not result in a corrupt object file, or when you want to inspect the output file, or send it to Altium
support.

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

539

Tool Options

Linker option: --library (-l)

Menu entry

1. Select Linker » Libraries.

The Libraries box shows the list of libraries that are linked with the project.

2. To add a library, click on the Add button in the Libraries box.

3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.

Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax

--library=name

-lname

Description

With this option you tell the linker to use system library name.lib, where name is a string. The linker
first searches for system libraries in any directories specified with --library-directory, then in the directories
specified with the environment variables LIBARM, unless you used the option --ignore-default-library-path.

Example

To search in the system library carm.lib (C library):

lkarm test.obj mylib.lib --library=carm

The linker links the file test.obj and first looks in library mylib.lib (in the current directory only),
then in the system library carm.lib to resolve unresolved symbols.

Related information

Linker option --library-directory (Additional search path for system libraries)

Section 7.3, Linking with Libraries

540

TASKING VX-toolset for ARM User Guide

Linker option: --library-directory (-L) / --ignore-default-library-path

Menu entry

1. Select Linker » Libraries.

The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path,...
-Lpath,...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-l), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is$(PRODDIR)\lib\architecture\endianness.

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variables LIBARM.
So, the linker ignores steps 2 and 3 as listed below.

The priority order in which the linker searches for system libraries specified with the option --library (-l)
is:

1. The path that is specified with the option --library-directory.

2. The path that is specified in the environment variables LIBARM.

3. The default directory $(PRODDIR)\libarchitecture\endianness.

Example

Suppose you call the linker as follows:

lkarm test.obj --library-directory=c:\mylibs --library=carm

541

Tool Options

First the linker looks in the directory c:\mylibs for library carm.lib (this option). If it does not find the
requested libraries, it looks in the directory that is set with the environment variables LIBARM. Then the
linker looks in the default directory $(PRODDIR)\libarchitecture\endianness for libraries.

Related information

Linker option --library (Link system library)

Linker option --cpu (Select architecture)

Linker option --endianness (Specify endianness)

Section 7.3.1, How the Linker Searches Libraries

542

TASKING VX-toolset for ARM User Guide

Linker option: --link-only

Menu entry

-

Command line syntax

--link-only

Description

With this option you suppress the locating phase. The linker stops after linking and informs you about
unresolved references.

Related information

Control program option --create=relocatable (-cl) (Stop after linking)

543

Tool Options

Linker option: --long-branch-veneers

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Generate long-branch veneers.

Command line syntax

--long-branch-veneers

Description

With this option you enable the linker to generate a long-branch veneer if the target of a B (ARM only,
not for Thumb), BL or BLX instruction is out-of-range.The locating process of the linker may become less
efficient if this option is switched on, even if no long-branch veneers are required after all. Therefore it is
better to first see if out-of-range branches are in the code (unlikely) before switching on this option.

Related information

-

544

TASKING VX-toolset for ARM User Guide

Linker option: --lsl-check

Menu entry

-

Command line syntax

--lsl-check

Description

With this option the linker just checks the syntax of the LSL file(s) and exits. No linking or locating is
performed. Use the option --lsl-file to specify the name of the Linker Script File you want to test.

Related information

Linker option --lsl-file (Linker script file)

Linker option --lsl-dump (Dump LSL info)

Section 7.7, Controlling the Linker with a Script

545

Tool Options

Linker option: --lsl-dump

Menu entry

-

Command line syntax

--lsl-dump[=file]

Description

With this option you tell the linker to dump the LSL part of the map file in a separate file, independent of
the option --map-file (generate map file). If you do not specify a filename, the file lkarm.ldf is used.

Related information

Linker option --map-file-format (Map file formatting)

546

TASKING VX-toolset for ARM User Guide

Linker option: --lsl-file (-d)

Menu entry

An LSL file can be generated when you create your project in Eclipse:

1. From the File menu, select File » New » TASKING ARM C/C++ Project.

The New C/C++ Project wizard appears.

2. Fill in the project settings in each dialog and click Next > until the ARM Project Settings appear.

3. Enable the option Add linker script file to the project and click Finish.

Eclipse creates your project and the file project.lsl in the project directory.

The LSL file can be specified in the Properties dialog:

1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.lsl) field (default ../${ProjName}.lsl).

Command line syntax

--lsl-file=file

-dfile

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

• the architecture definition describes the core's hardware architecture.

• the memory definition describes the physical memory available in the system.

• the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file to the linker. If you do not specify this option, the linker uses
a default script file (default.lsl).You can specify the existing file target.lsl or the name of a manually
written linker script file.You can use this option multiple times. The linker processes the LSL files in the
order in which they appear on the command line.

Related information

Linker option --lsl-check (Check LSL file(s) and exit)

Section 7.7, Controlling the Linker with a Script

547

Tool Options

Linker option: --make-target

Menu entry

-

Command line syntax

--make-target=name

Description

With this option you can overrule the default target name in the make dependencies generated by the
option --dep-file. The default target name is the basename of the input file, with extension .abs.

Example

lkarm --make-target=mytarget.abs test.obj

The linker generates dependency lines with the default target name mytarget.abs instead of test.abs.

Related information

Linker option --dep-file (Generate dependencies in a file)

548

TASKING VX-toolset for ARM User Guide

Linker option: --map-file (-M)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.

3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax

--map-file[=file][:XML]

-M[file][:XML]

Default (Eclipse): XML map file is generated

Default (linker): no map file is generated

Description

With this option you tell the linker to generate a linker map file. If you do not specify a filename and you
specified the option --output, the linker uses the same basename as the output file with the extension
.map. If you did not specify the option --output, the linker uses the file task1.map. Eclipse names the
.map file after the project.

In Eclipse the XML variant of the map file (extension .mapxml) is used for graphical display in the map
file viewer.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (.obj) to the linked object file. A locate part shows the absolute position of each
section. External symbols are listed per space with their absolute address, both sorted on symbol and
sorted on address.

Related information

Linker option --map-file-format (Format map file)

Section 15.2, Linker Map File Format

549

Tool Options

Linker option: --map-file-format (-m)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.

3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax

--map-file-format=flag,...

-mflags

You can set the following flags:

Include call graph informationc/C+/-callgraph

Include information on removed sectionsd/D+/-removed

Include processed files informationf/F+/-files

Include information on invocation and toolsi/I+/-invocation

Include link result informationk/K+/-link

Include locate result informationl/L+/-locate

Include memory usage informationm/M+/-memory

Include information of non-alloc sectionsn/N+/-nonalloc

Include overlay informationo/O+/-overlay

Include module local symbols informationq/Q+/-statics

Include cross references informationr/R+/-crossref

Include processor and memory informations/S+/-lsl

Include locate rulesu/U+/-rules

Use the following options for predefined sets of flags:

Link information
Alias for -mcDfikLMNoQrSU

-m0--map-file-format=0

Locate information
Alias for -mCDfiKlMNoQRSU

-m1--map-file-format=1

Most information
Alias for -mcdfiklmNoQrSu

-m2--map-file-format=2

Default: --map-file-format=2

550

TASKING VX-toolset for ARM User Guide

Description

With this option you specify which information you want to include in the map file.

On the command line you must use this option in combination with the option --map-file (-M).

Related information

Linker option --map-file (Generate map file)

Section 15.2, Linker Map File Format

551

Tool Options

Linker option: --misra-c-report

Menu entry

-

Command line syntax

--misra-c-report[=file]

Description

With this option you tell the linker to create a MISRA C Quality Assurance report. This report lists the
various modules in the project with the respective MISRA C settings at the time of compilation. If you do
not specify a filename, the file basename.mcr is used.

Related information

C compiler option --misrac (MISRA C checking)

552

TASKING VX-toolset for ARM User Guide

Linker option: --munch

Menu entry

-

Command line syntax

--munch

Description

With this option you tell the linker to activate the muncher in the pre-locate phase.

The muncher phase is a special part of the linker that creates sections containing a list of pointers to the
initialization and termination routines.The list of pointers is consulted at run-time by startup code invoked
from main, and the routines on the list are invoked at the appropriate times.

Related information

-

553

Tool Options

Linker option: --non-romable

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Application is not romable.

Command line syntax

--non-romable

Description

With this option you tell the linker that the application must not be located in ROM. The linker will locate
all ROM sections, including a copy table if present, in RAM. When the application is started, the data
sections are re-initialized and the BSS sections are cleared as usual.

This option is, for example, useful when you want to test the application in RAM before you put the final
application in ROM. This saves you the time of flashing the application in ROM over and over again.

If you want to locate your application in RAM only, without using ROM/flash resources of the chip, for
example when you run the debugger in RAM only, also specify the options --no-rom-copy and
--user-provided-initialization-code.

Related information

Linker option --no-rom-copy (Do not generate ROM copy)

Linker option --user-provided-initialization-code (Own initialization code, no standard copy table)

554

TASKING VX-toolset for ARM User Guide

Linker option: --no-rescan

Menu entry

1. Select Linker » Libraries.

2. Disable the option Rescan libraries to solve unresolved externals.

Command line syntax

--no-rescan

Description

When the linker processes a library it searches for symbol definitions that are referenced by the objects
and libraries processed so far. If the library contains a definition for an unresolved reference the linker
extracts the object that contains the definition from the library. The linker processes object files and
libraries in the order in which they appear on the command line.

When all objects and libraries are processed the linker checks if there are unresolved symbols left. If so,
the default behavior of the linker is to rescan all libraries in the order given at the command line. The
linker stops rescanning the libraries when all symbols are resolved, or when the linker could not resolve
any symbol(s) during the rescan of all libraries. Notice that resolving one symbol may introduce new
unresolved symbols.

With this option, you tell the linker to scan the object files and libraries only once. When the linker has
not resolved all symbols after the first scan, it reports which symbols are still unresolved. This option is
useful if you are building your own libraries. The libraries are most efficiently organized if the linker needs
only one pass to resolve all symbols.

Related information

Linker option --first-library-first (Scan libraries in given order)

555

Tool Options

Linker option: --no-rom-copy (-N)

Menu entry

-

Command line syntax

--no-rom-copy

-N

Description

With this option the linker will not generate a ROM copy for data sections. A copy table is generated and
contains entries to clear BSS sections. However, no entries to copy data sections from ROM to RAM are
placed in the copy table.

The data sections are initialized when the application is downloaded.The data sections are not re-initialized
when the application is restarted.

Related information

Linker option --non-romable (Application is not romable)

Linker option --user-provided-initialization-code (Own initialization code, no standard copy table)

556

TASKING VX-toolset for ARM User Guide

Linker option: --no-warnings (-w)

Menu entry

1. Select Linker » Diagnostics.

The Suppress warnings box shows the warnings that are currently suppressed.

2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
135,136). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

--no-warnings[=number,...]

-w[number,...]

Description

With this option you can suppresses all warning messages or specific warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are suppressed.

• If you specify this option with a number, only the specified warning is suppressed.You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 135 and 136, enter:

lkarm --no-warnings=135,136 test.obj

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

557

Tool Options

Linker option: --optimize (-O)

Menu entry

1. Select Linker » Optimization.

2. Select one or more of the following options:

• Delete unreferenced sections

• Use a 'first-fit decreasing' algorithm

• Compress copy table

• Delete duplicate code

• Delete duplicate data

• Compress ROM sections of copy table items

Command line syntax

--optimize=flag,...

-Oflags

You can set the following flags:

Delete unreferenced sections from the output
file

c/C+/-delete-unreferenced-sections

Use a 'first-fit decreasing' algorithm to locate
unrestricted sections in memory

l/L+/-first-fit-decreasing

Emit smart restrictions to reduce copy table sizet/T+/-copytable-compression

Delete duplicate code sections from the output
file

x/X+/-delete-duplicate-code

Delete duplicate constant data from the output
file

y/Y+/-delete-duplicate-data

Try to compress ROM sections of copy table
items

z/Z+/-copytable-item-compression

Use the following options for predefined sets of flags:

No optimization
Alias for -OCLTXYZ

-O0--optimize=0

Default optimization
Alias for -OcLtxyZ

-O1--optimize=1

All optimizations
Alias for -OcltxyZ

-O2--optimize=2

558

TASKING VX-toolset for ARM User Guide

Default: --optimize=1

Description

With this option you can control the level of optimization.

Related information

For details about each optimization see Section 7.6, Linker Optimizations.

559

Tool Options

Linker option: --option-file (-f)

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the linker options you have set in the other
pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the linker.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility.You can specify the option
--option-file multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

 -> "This is a continuation line"

560

TASKING VX-toolset for ARM User Guide

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

--map-file=my.map (generate a map file)
test.obj (input file)
--library-directory=c:\mylibs (additional search path for system libraries)

Specify the option file to the linker:

lkarm --option-file=myoptions

This is equivalent to the following command line:

lkarm --map-file=my.map test.obj --library-directory=c:\mylibs

Related information

-

561

Tool Options

Linker option: --output (-o)

Menu entry

1. Select Linker » Output Format.

2. Enable one or more output formats.

For some output formats you can specify a number of suboptions.

Eclipse always uses the project name as the basename for the output file.

Command line syntax

--output=[filename][:format[:addr_size][,space_name]]...

-o[filename][:format[:addr_size]]...

You can specify the following formats:

ELF/DWARFELF

Intel HexIHEX

Motorola S-recordsSREC

Description

By default, the linker generates an output file in ELF/DWARF format, with the name task1.abs.

With this option you can specify an alternative filename, and an alternative output format. The default
output format is the format of the first input file.

You can use the --output option multiple times. This is useful to generate multiple output formats. With
the first occurrence of the --output option you specify the basename (the filename without extension),
which is used for subsequent --output options with no filename specified. If you do not specify a filename,
or you do not specify the --output option at all, the linker uses the default basename taskn.

IHEX and SREC formats

If you specify the Intel Hex format or the Motorola S-records format, you can use the argument addr_size
to specify the size of addresses in bytes (record length). For Intel Hex you can use the values: 1, 2, and
4 (default). For Motorola S-records you can specify: 2 (S1 records), 3 (S2 records, default) or 4 bytes (S3
records). Note that if you make the addr_size too small, the linker might give a fatal object writer error
indicating an address overflow.

The name of the output file will be filename with the extension .hex or .sre and contains the code and
data allocated in the default address space. If they exist, any other address spaces are also emitted
whereas their output files are named filename_spacename with the extension .hex or .sre.

Use option --chip-output (-c) to create Intel Hex or Motorola S-record output files for each chip defined
in the LSL file (suitable for loading into a PROM-programmer).

562

TASKING VX-toolset for ARM User Guide

Example

To create the output file myfile.hex of the default address space, enter:

lkarm test.obj --output=myfile.hex:IHEX:4

Related information

Linker option --chip-output (Generate an output file for each chip)

Linker option --hex-format (Specify Hex file format settings)

563

Tool Options

Linker option: --print-mangled-symbols (-P)

Menu entry

-

Command line syntax

--print-mangled-symbols

-P

Description

C++ compilers generate unreadable symbol names.These symbols cannot easily be related to your C++
source file anymore. Therefore the linker will by default decode these symbols conform the IA64 ABI
when printed to stdout. With this option you can override this default setting and print the mangled
names instead.

Related information

-

564

TASKING VX-toolset for ARM User Guide

Linker option: --strip-debug (-S)

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Strip symbolic debug information.

Command line syntax

--strip-debug

-S

Description

With this option you specify not to include symbolic debug information in the resulting output file.

Related information

-

565

Tool Options

Linker option: --user-provided-initialization-code (-i)

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Do not use standard copy table for initialization.

Command line syntax

--user-provided-initialization-code

-i

Description

It is possible to use your own initialization code, for example, to save ROM space. With this option you
tell the linker not to generate a copy table for initialize/clear sections. Use linker labels in your source
code to access the positions of the sections when located.

If the linker detects references to the TASKING initialization code, an error is emitted: it is either the
TASKING initialization routine or your own, not both.

Note that the options --no-rom-copy and --non-romable, may vary independently. The
'copytable-compression' optimization (--optimize=t) is automatically disabled when you enable this option.

Related information

Linker option --no-rom-copy (Do not generate ROM copy)

Linker option --non-romable (Application is not romable)

Linker option --optimize (Specify optimization)

566

TASKING VX-toolset for ARM User Guide

Linker option: --verbose (-v)

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Show link phases during processing.

The verbose output is displayed in the Problems view and the Console view.

Command line syntax

--verbose

-v

Description

With this option you put the linker in verbose mode. The linker prints the link phases while it processes
the files. The linker prints one entry for each action it executes for a task. When you use this option twice
(-vv) you put the linker in extra verbose mode. In this mode the linker also prints the filenames and it
shows which objects are extracted from libraries and it shows verbose information that would normally
be hidden when you use the normal verbose mode or when you run without verbose. With this option you
can monitor the current status of the linker.

Related information

-

567

Tool Options

Linker option: --version (-V)

Menu entry

-

Command line syntax

--version

-V

Description

Display version information. The linker ignores all other options or input files.

Related information

-

568

TASKING VX-toolset for ARM User Guide

Linker option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

--warnings-as-errors[=number,...]

Description

When the linker detects an error or warning, it tries to continue the link process and reports other errors
and warnings. When you use this option without arguments, you tell the linker to treat all warnings as
errors. This means that the exit status of the linker will be non-zero after the detection of one or more
linker warnings. As a consequence, the linker will not produce any output files.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Linker option --no-warnings (Suppress some or all warnings)

569

Tool Options

Linker option: --whole-archive

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --whole-archive to the Additional options field.

Command line syntax

--whole-archive=file

Description

This option tells the linker to directly load all object modules in a library, as if they were placed on the
command line. This is different from libraries specified as input files or with the -l option, which are only
used to resolve references in object files that were loaded earlier.

Example

Suppose the library myarchive.lib contains the objects my1.obj, my2.obj and my3.obj. Specifying

lkarm --whole-archive=myarchive.lib

is the same as specifying

lkarm my1.obj my3.obj my3.obj

Related information

Linker option --library (Link system library)

570

TASKING VX-toolset for ARM User Guide

11.6. Control Program Options

The control program ccarm facilitates the invocation of the various components of the ARM toolset from
a single command line.

Options in Eclipse versus options on the command line

Eclipse invokes the compiler, assembler and linker via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the tools. The control program processes command
line options either by itself, or, when the option is unknown to the control program, it looks whether it can
pass the option to one of the other tools. However, for directly passing an option to the C++ compiler, C
compiler, assembler or linker, it is recommended to use the control program options --pass-c++, --pass-c,
--pass-assembler, --pass-linker.

See the previous sections for details on the options of the tools.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on', use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

ccarm -Wc-Oac test.c
ccarm --pass-c=--optimize=+coalesce,+cse test.c

When you do not specify an option, a default value may become active.

571

Tool Options

Control program option: --address-size

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file and/or Generate S-records file.

3. Specify the Size of addresses.

Eclipse always uses the project name as the basename for the output file.

Command line syntax

--address-size=addr_size

Description

If you specify IHEX or SREC with the control option --format, you can additionally specify the record
length to be emitted in the output files.

With this option you can specify the size of the addresses in bytes (record length). For Intel Hex you can
use the values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records)
or 4 bytes (S3 records, default).

If you do not specify addr_size, the default address size is generated.

Example

To create the SREC file test.sre with S1 records, type:

ccarm --format=SREC --address-size=2 test.c

Related information

Control program option --format (Set linker output format)

Control program option --output (Output file)

572

TASKING VX-toolset for ARM User Guide

Control program option: --be32

Menu entry

-

Command line syntax

--be32

Description

This option is an alias for --endianness=big --code-endianness=big, big-endian code and data. This
option is only available for ARMv7R.

Related information

Control program option --endianness (Data endianness)

Control program option --code-endianness (Code endianness)

573

Tool Options

Control program option: --check

Menu entry

-

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler/assembler reports any warnings and/or errors.

This option is available on the command line only.

Related information

C compiler option --check (Check syntax)

Assembler option --check (Check syntax)

574

TASKING VX-toolset for ARM User Guide

Control program option: --code-endianness

Menu entry

-

Command line syntax

--code-endianness=endianness

You can specify the following endianness:

Big endianbbig

Little endian (default)llittle

Description

This option tells the compiler what code endianness you want, little-endian (least significant byte of a
word at lowest byte code address) or big-endian (most significant byte of a word at lowest byte code
address). The code endianness used must be a valid one for the architecture you are compiling for. This
option is only available for ARMv7R.

Related information

Control program option --endianness (Data endianness)

575

Tool Options

Control program option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, make a selection by Architecture, Core or one of the
manufacturers.

Command line syntax

--cpu=architecture | processor

-Carchitecture | processor

You can specify the following architectures:

Compile/assemble for ARMv6-M architectureARMv6M

Compile/assemble for ARMv7-M architectureARMv7M

Compile/assemble for ARMv7E-M architectureARMv7EM

Compile/assemble for ARMv7-R architectureARMv7R

Description

With this option you specify the ARM architecture for which you create your application. The architecture
determines which instructions are valid and which are not. The default architecture is ARMv7M and the
complete list of supported architectures is: ARMv6-M, ARMv7-M, ARMv7E-M or ARMv7-R. Instead of
the architecture name you can also specify the full processor name, like "STM32F205RB".

The standard list of supported processors is defined in the file processors.xml. This file defines for
each processor its full name (for example, STM32F205RB), its ID (for example, stm32f205rb), the
architecture name (for example, ARMv7M), the core settings (for example, cortexm3), the on-chip flash
settings, the list of silicon bugs for that processor. Each processor also defines options to supply to the
linker for preprocessing the LSL file for the applicable on-chip memory definitions (for example,
-D__FLASH_SIZE=128k).

The control program reads the file processors.xml. The lookup sequence for names specified to this
option is as follows:

1. match any of the standard architecture names (as listed above, for example ARMv7M)

2. if none matched, match with the 'id' attribute in processors.xml (case insensitive, for example
armv7_m)

3. if still none matched, match with the 'name' attribute in processors.xml (case insensitive, for example
STM32F205RB)

4. if still none matched, the control program issues a fatal error.

576

TASKING VX-toolset for ARM User Guide

If you specify a full processor name (or its ID), the control program passes the option -D__PROC_id __
to C compiler and the linker. id is the 'id' attribute belonging to the processor found in processors.xml,
in uppercase. The control program also passes the macros defined with the 'linker_macros' property
of the processor found in the processors.xml to the linker (for example,
-D__DEVICE_LSL_FILE=stm32f2xx.lsl).

Assembly code can check the value of the option by means of the built-in function @CPU(). Architecture
ARMv7-M only supports the Thumb-2 instruction set, i.e. it has no ARM execution state.

Example

After

ccarm --cpu="STM32F205RB" -v -t test.c

the control program will call the tools as follows:

carm -CARMv7M -D__PROC_STM32F205RB__ -o test.src test.c
asarmt -CARMv7M -o test.obj test.src
lkarm test.obj -o test.abs -CARMv7M -D__PROC_STM32F205RB__
 -D__DEVICE_LSL_FILE=stm32f2xx.lsl -D__FLASH_SIZE=128k -D__SRAM_SIZE=64k
 --map-file -lcthumb -lfpthumb -lrtthumb

Related information

Control program option --cpu-list (Show list of processors)

C compiler option --cpu (Select architecture)

Assembler option --cpu (Select architecture)

Control program option --processors (Read additional processor definitions)

Control program option --tasking-sfr (Include CMSIS SFR file)

Assembly function @CPU()

577

Tool Options

Control program option: --cpu-list

Menu entry

-

Command line syntax

--cpu-list[=pattern]

Description

With this option the control program shows a list of supported processors as defined in the file
processors.xml. This can be useful when you want to select a processor name or id for the --cpu
option.

The pattern works similar to the UNIX grep utility.You can use it to limit the output list.

Example

To show a list of all processors, enter:

ccarm --cpu-list

To show all processors that have stm32f107 in their name, enter:

ccarm --cpu-list=stm32f107

--- ~/carm/etc/processors.xml ---
 id name CPU core
 stm32f107rb STM32F107RB ARMv7M cortexm3
 stm32f107rc STM32F107RC ARMv7M cortexm3
 stm32f107vb STM32F107VB ARMv7M cortexm3
 stm32f107vc STM32F107VC ARMv7M cortexm3

Related information

Control program option --cpu (Select processor)

578

TASKING VX-toolset for ARM User Guide

Control program option: --create (-c)

Menu entry

-

Command line syntax

--create[=stage]

-c[stage]

You can specify the following stages:

Stop after C++ files are compiled to intermediate C files (.ic)cintermediate-c

Stop after the files are linked to a linker object file (.out)lrelocatable

Stop after C++ files or C files are compiled to MIL (.mil)mmil

Stop after the files are assembled to objects (.obj)oobject

Stop after C++ files or C files are compiled to assembly (.src)sassembly

Default (without flags): --create=object

Description

Normally the control program generates an absolute object file of the specified output format from the file
you supplied as input.With this option you tell the control program to stop after a certain number of phases.

Example

To generate the object file test.obj:

ccarm --create test.c

The control program stops after the file is assembled. It does not link nor locate the generated output.

Related information

Linker option --link-only (Link only, no locating)

579

Tool Options

Control program option: --debug-info (-g)

Menu entry

1. Select C/C++ Compiler » Debugging.

2. To generate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax

--debug-info

-g

Description

With this option you tell the control program to include debug information in the generated object file.

The control program passes the option --debug-info (-g) to the C compiler and calls the assembler with
--debug-info=+smart (-g).

Related information

C compiler option --debug-info (Generate symbolic debug information)

Assembler option --debug-info (Generate symbolic debug information)

580

TASKING VX-toolset for ARM User Guide

Control program option: --define (-D)

Menu entry

1. Select C/C++ Compiler » Preprocessing and/or Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.

2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

--define=macro_name[=macro_definition]

-Dmacro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

The control program passes the option --define (-D) to the compiler and the assembler.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

Consider the following C program with conditional code to compile a demo program and a real program:

void main(void)
{
#if DEMO
 demo_func(); /* compile for the demo program */
#else
 real_func(); /* compile for the real program */

581

Tool Options

#endif
}

You can now use a macro definition to set the DEMO flag:

ccarm --define=DEMO test.c
ccarm --define=DEMO=1 test.c

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

ccarm --define="MAX(A,B)=((A) > (B) ? (A) : (B))" test.c

Related information

Control program option --undefine (Remove preprocessor macro)

Control program option --option-file (Specify an option file)

582

TASKING VX-toolset for ARM User Guide

Control program option: --dep-file

Menu entry

-

Command line syntax

--dep-file[=file]

Description

With this option you tell the compiler to generate dependency lines that can be used in a Makefile. In
contrast to the option --preprocess=+make, the dependency information will be generated in addition to
the normal output file.

By default, the information is written to a file with extension .d (one for every input file).When you specify
a filename, all dependencies will be combined in the specified file.

Example

ccarm --dep-file=test.dep -t test.c

The compiler compiles the file test.c, which results in the output file test.src, and generates
dependency lines in the file test.dep.

Related information

Control program option --preprocess=+make (Generate dependencies for make)

583

Tool Options

Control program option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify.You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 103, enter:

ccarm --diag=103

This results in message 103 with explanation.

To write an explanation of all errors and warnings in HTML format to file ccerrors.html, use redirection
and enter:

ccarm --diag=html:all > ccerrors.html

584

TASKING VX-toolset for ARM User Guide

Related information

Section 4.7, C Compiler Error Messages

585

Tool Options

Control program option: --dry-run (-n)

Menu entry

-

Command line syntax

--dry-run

-n

Description

With this option you put the control program in verbose mode. The control program prints the invocations
of the tools it would use to process the files without actually performing the steps.

Related information

Control program option --verbose (Verbose output)

586

TASKING VX-toolset for ARM User Guide

Control program option: --dsp-library

Menu entry

1. Select C/C++ Compiler » Include Paths.

2. Enable the option Add CMSIS include paths.

3. Select Linker » Libraries.

4. Enable the option Link CMSIS DSP library.

Command line syntax

--dsp-library

Description

With this option the control program sets the C/C++ compiler macro ARM_MATH_CM0, ARM_MATH_CM3
or ARM_MATH_CM4, depending on the selected processor. These macros are required for the CMSIS
arm_math.h header file to operate correctly. The control program also passes the appropriate CMSIS
DSP library to the linker. When MIL linking, the MIL library variant will be used.

Example

After

ccarm --cpu=STM32F205RB --dsp-library --tasking-sfr -v -t test.c

the control program will call the tools as follows:

carm -CARMv7M -D__PROC_STM32F205RB__ -Hstm32f2xx.h -Icmsis/Include,
 cmsis/Device/ST/STM32F2xx/Include -DARM_MATH_CM3
 -o test.src test.c
asarmt -CARMv7M -o test.obj test.src
lkarm test.obj -o test.abs -CARMv7M -D__PROC_STM32F205RB__
 -D__DEVICE_LSL_FILE=stm32f2xx.lsl -D__FLASH_SIZE=128k -D__SRAM_SIZE=64k
 --map-file -lcthumb -lfpthumb -lrtthumb -ldspthumb

Related information

Section 14.1, Using the CMSIS DSP Library

Control program option --tasking-sfr (Include CMSIS SFR file)

587

Tool Options

Control program option: --endianness

Menu entry

1. Select Global Options.

2. Specify the Endianness:Little-endian mode or Big-endian mode.

Command line syntax

--endianness=endianness

-B
--big-endian

--be32

You can specify the following endianness:

Big endianbbig

Little endian (default)llittle

Description

By default, the compiler generates code for a little-endian target (least significant byte of a word at lowest
byte address).With --endianness=big the compiler generates code for a big-endian target (most significant
byte of a word at lowest byte address). -B is an alias for option --endianness=big.

--be32 is an alias for --endianness=big --code-endianness=big

Related information

Control program option --be32 (Big-endian code and data)

Control program option --code-endianness (Code endianness)

588

TASKING VX-toolset for ARM User Guide

Control program option: --error-file

Menu entry

-

Command line syntax

--error-file

Description

With this option the control program tells the compiler, assembler and linker to redirect error messages
to a file.

The error file will be named after the output file with extension .err (for compiler) or .ers (for assembler).
For the linker, the error file is lkarm.elk.

Example

To write errors to error files instead of stderr, enter:

ccarm --error-file -t test.c

Related information

Control Program option --warnings-as-errors (Treat warnings as errors)

589

Tool Options

Control program option: --exceptions

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ exception handling.

Command line syntax

--exceptions

Description

With this option you enable support for exception handling in the C++ compiler.

Related information

-

590

TASKING VX-toolset for ARM User Guide

Control program option: --force-c

Menu entry

-

Command line syntax

--force-c

Description

With this option you tell the control program to treat all .cc files as C files instead of C++ files.This means
that the control program does not call the C++ compiler and forces the linker to link C libraries.

Related information

Control program option --force-c++ (Force C++ compilation and linking)

591

Tool Options

Control program option: --force-c++

Menu entry

Eclipse always uses this option for a C++ project.

Command line syntax

--force-c++

Description

With this option you tell the control program to treat all .c files as C++ files instead of C files. This means
that the control program calls the C++ compiler prior to the C compiler and forces the linker to link C++
libraries.

Related information

Control program option --force-c (Treat C++ files as C files)

592

TASKING VX-toolset for ARM User Guide

Control program option: --force-munch

Menu entry

Eclipse always uses this option for a C++ project.

Command line syntax

--force-munch

Description

With this option you force the control program to activate the muncher in the pre-locate phase.

Related information

-

593

Tool Options

Control program option: --format

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file and/or Generate S-records file.

3. Optionally, specify the Size of addresses.

Eclipse always uses the project name as the basename for the output file.

Command line syntax

--format=format

You can specify the following formats:

ELF/DWARFELF

Intel HexIHEX

Motorola S-recordsSREC

Description

With this option you specify the output format for the resulting (absolute) object file. The default output
format is ELF/DWARF, which can directly be used by the debugger.

If you choose IHEX or SREC, you can additionally specify the address size of the chosen format (option
--address-size).

Example

To generate a Motorola S-record output file:

ccarm --format=SREC test1.c test2.c --output=test.sre

Related information

Control program option --address-size (Set address size for linker IHEX/SREC files)

Control program option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

594

TASKING VX-toolset for ARM User Guide

Control program option: --fp-model

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat 'double' as 'float'.

Command line syntax

--fp-model=flags

You can set the following flags:

treat 'double' as 'float'f/F+/-float

allow expression rewritingr/R+/-rewrite

ignore sign of -0.0z/Z+/-negzero

alias for --fp-model=FRZ1

alias for --fp-model=Frz2

alias for --fp-model=frz3

Default: --fp-model=Frz

Description

With this option you select the floating-point execution model.

With --fp-model=+float you tell the compiler to treat variables and constants of type double as float.
Because the float type takes less space, execution speed increases and code size decreases, both at
the cost of less precision. The control program automatically selects the correct libraries.

With --fp-model=+rewrite you allow the compiler to rewrite expressions by reassociating. This might
result in rounding differences and possibly different exceptions. An example is to rewrite (a*c)+(b*c) as
(a+b)*c.

With --fp-model=+negzero you allow the compiler to ignore the sign of -0.0 values. An example is to
replace (a-a) by zero.

Related information

Pragmas fp_negzero and fp_rewrite in Section 1.8, Pragmas to Control the Compiler.

595

Tool Options

Control program option: --fpu

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Enable the option Use FPU.

Command line syntax

--fpu=fpu

You can specify the following arguments:

alias for VFPv4-spFPv4-sp

alias for VFPv3VFPv2

Compile for VFPv3 architectureVFPv3

Compile for VFPv3-sp architectureVFPv3-sp

Compile for VFPv4-sp architectureVFPv4-sp

Compile for software FPU library (default)none

Description

With this option you define the kind of FPU support with which you create your application.The "sp" suffix
denotes single precision floating-point only.

Related information

-

596

TASKING VX-toolset for ARM User Guide

Control program option: --global-type-checking

Menu entry

1. Select C/C++ Compiler » Diagnostics.

2. Enable the option Perform global type checking on C code.

Command line syntax

--global-type-checking

Description

The C compiler already performs type checking within each module. Use this option when you want the
linker to perform type checking between modules. The control program passes this option to both the C
compiler and the linker.

Related information

-

597

Tool Options

Control program option: --help (-?)

Menu entry

-

Command line syntax

--help[=item]

-?

You can specify the following argument:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

ccarm -?
ccarm --help
ccarm

To see a detailed description of the available options, enter:

ccarm --help=options

Related information

-

598

TASKING VX-toolset for ARM User Guide

Control program option: --include-directory (-I)

Menu entry

1. Select C/C++ Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.

2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

4. Optionally enable the option Add CMSIS include paths.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--include-directory=path,...

-Ipath,...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory.

The control program passes this option to the compiler and the assembler.

Example

Suppose that the C source file test.c contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the control program as follows:

ccarm --include-directory=myinclude test.c

First the compiler looks for the file stdio.h in the directory myinclude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

The compiler now looks for the file myinc.h in the directory where test.c is located. If the file is not
there the compiler searches in the directory myinclude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information

C compiler option --include-directory (Add directory to include file search path)

599

Tool Options

C compiler option --include-file (Include file at the start of a compilation)

600

TASKING VX-toolset for ARM User Guide

Control program option: --instantiate

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Select an instantiation mode in the Instantiation mode of external template entities box.

Command line syntax

--instantiate=mode

You can specify the following modes:

used

all

local

Default: --instantiate=used

Description

Control instantiation of external template entities. External template entities are external (that is, non-inline
and non-static) template functions and template static data members.The instantiation mode determines
the template entities for which code should be generated based on the template definition. Normally,
when a file is compiled, template entities are instantiated wherever they are used (the linker will discard
duplicate definitions). The overall instantiation mode can, however, be changed with this option.You can
specify the following modes:

Instantiate those template entities that were used in the compilation.This will include
all static data members for which there are template definitions. This is the default.

used

Instantiate all template entities declared or referenced in the compilation unit. For
each fully instantiated template class, all of its member functions and static data
members will be instantiated whether or not they were used. Non-member template
functions will be instantiated even if the only reference was a declaration.

all

Similar to --instantiate=used except that the functions are given internal linkage.
This is intended to provide a very simple mechanism for those getting started with
templates. The compiler will instantiate the functions that are used in each
compilation unit as local functions, and the program will link and run correctly (barring
problems due to multiple copies of local static variables). However, one may end
up with many copies of the instantiated functions, so this is not suitable for production
use.

local

You cannot use --instantiate=local in conjunction with automatic template instantiation.

Related information

Control program option --no-auto-instantiation (Disable automatic C++ instantiation)

601

Tool Options

Section 2.5, Template Instantiation

602

TASKING VX-toolset for ARM User Guide

Control program option: --io-streams

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ I/O streams.

Command line syntax

--io-streams

Description

As I/O streams require substantial resources they are disabled by default. Use this option to enable I/O
streams support in the C++ library.

This option also enables exception handling.

Related information

-

603

Tool Options

Control program option: --iso

Menu entry

1. Select C/C++ Compiler » Language.

2. From the Comply to C standard list, select ISO C99 or ISO C90.

Command line syntax

--iso={90|99}

Default: --iso=99

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99
refers to the newer ISO/IEC 9899:1999 (E) standard. C99 is the default.

Independent of the chosen ISO standard, the control program always links libraries with C99 support.

Example

To select the ISO C90 standard on the command line:

ccarm --iso=90 test.c

Related information

C compiler option --iso (ISO C standard)

604

TASKING VX-toolset for ARM User Guide

Control program option: --keep-output-files (-k)

Menu entry

Eclipse always removes generated output files when an error occurs.

Command line syntax

--keep-output-files

-k

Description

If an error occurs during the compilation, assembling or linking process, the resulting output file may be
incomplete or incorrect. With this option you keep the generated output files when an error occurs.

By default the control program removes generated output files when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated files. For example when you know that a particular
error does not result in a corrupt file, or when you want to inspect the output file, or send it to Altium
support.

The control program passes this option to the compiler, assembler and linker.

Example

ccarm --keep-output-files test.c

When an error occurs during compiling, assembling or linking, the erroneous generated output files will
not be removed.

Related information

C compiler option --keep-output-files

Assembler option --keep-output-files

Linker option --keep-output-files

605

Tool Options

Control program option: --keep-temporary-files (-t)

Menu entry

1. Select Global Options.

2. Enable the option Keep temporary files.

Command line syntax

--keep-temporary-files

-t

Description

By default, the control program removes intermediate files like the .src file (result of the compiler phase)
and the .obj file (result of the assembler phase).

With this option you tell the control program to keep temporary files it generates during the creation of
the absolute object file.

Example

ccarm --keep-temporary-files test.c

The control program keeps all intermediate files it generates while creating the absolute object file
test.abs.

Related information

-

606

TASKING VX-toolset for ARM User Guide

Control program option: --library (-l)

Menu entry

1. Select Linker » Libraries.

The Libraries box shows the list of libraries that are linked with the project.

2. To add a library, click on the Add button in the Libraries box.

3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.

Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax

--library=name

-lname

Description

With this option you tell the linker via the control program to use system library name.lib, where name
is a string.The linker first searches for system libraries in any directories specified with --library-directory,
then in the directories specified with the environment variables LIBARM, unless you used the option
--ignore-default-library-path.

Example

To search in the system library carm.lib (C library):

ccarm test.obj mylib.lib --library=carm

The linker links the file test.obj and first looks in library mylib.lib (in the current directory only),
then in the system library carm.lib to resolve unresolved symbols.

Related information

Control program option --no-default-libraries (Do not link default libraries)

Control program option --library-directory (Additional search path for system libraries)

Section 7.3, Linking with Libraries

607

Tool Options

Control program option: --library-directory (-L) /
--ignore-default-library-path

Menu entry

1. Select Linker » Libraries.

The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path,...
-Lpath,...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-l), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is$(PRODDIR)\lib\architecture\endianness.

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variables LIBARM.
So, the linker ignores steps 2 and 3 as listed below.

The priority order in which the linker searches for system libraries specified with the option --library (-l)
is:

1. The path that is specified with the option --library-directory.

2. The path that is specified in the environment variables LIBARM.

3. The default directory $(PRODDIR)\libarchitecture\endianness.

Example

Suppose you call the control program as follows:

ccarm test.c --library-directory=c:\mylibs --library=carm

608

TASKING VX-toolset for ARM User Guide

First the linker looks in the directory c:\mylibs for library carm.lib (this option). If it does not find the
requested libraries, it looks in the directory that is set with the environment variables LIBARM. Then the
linker looks in the default directory $(PRODDIR)\libarchitecture\endianness for libraries.

Related information

Control program option --library (Link system library)

Section 7.3.1, How the Linker Searches Libraries

609

Tool Options

Control program option: --list-files

Menu entry

-

Command line syntax

--list-files[=file]

Default: no list files are generated

Description

With this option you tell the assembler via the control program to generate a list file for each specified
input file. A list file shows the generated object code and the relative addresses. Note that the assembler
generates a relocatable object file with relative addresses.

With the optional file you can specify a name for the list file. This is only possible if you specify only one
input file to the control program. If you do not specify a file name, or you specify more than one input file,
the control program names the generated list file(s) after the specified input file(s) with extension .lst.

Note that object files and library files are not counted as input files.

Related information

Assembler option --list-file (Generate list file)

Assembler option --list-format (Format list file)

610

TASKING VX-toolset for ARM User Guide

Control program option: --lsl-file (-d)

Menu entry

An LSL file can be generated when you create your project in Eclipse:

1. From the File menu, select File » New » TASKING ARM C/C++ Project.

The New C/C++ Project wizard appears.

2. Fill in the project settings in each dialog and click Next > until the ARM Project Settings appear.

3. Enable the option Add linker script file to the project and click Finish.

Eclipse creates your project and the file project.lsl in the project directory.

The LSL file can be specified in the Properties dialog:

1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.lsl) field (default ../${ProjName}.lsl).

Command line syntax

--lsl-file=file,...

-dfile,...

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

• the architecture definition describes the core's hardware architecture.

• the memory definition describes the physical memory available in the system.

• the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file via the control program to the linker. If you do not specify
this option, the linker uses a default script file (default.lsl).You can specify the existing file target.lsl
or the name of a manually written linker script file.You can use this option multiple times. The linker
processes the LSL files in the order in which they appear on the command line.

Related information

Section 7.7, Controlling the Linker with a Script

611

Tool Options

Control program option: --make-target

Menu entry

-

Command line syntax

--make-target=name

Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file.The default target name is the basename of the input
file, with extension .obj.

Example

ccarm --preprocess=+make --make-target=../mytarget.obj test.c

The compiler generates dependency lines with the default target name ../mytarget.obj instead of
test.obj.

Related information

Control program option --preprocess=+make (Generate dependencies for make)

Control program option --dep-file (Generate dependencies in a file)

612

TASKING VX-toolset for ARM User Guide

Control program option: --mil-link / --mil-split

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Enable the option Build for application wide optimizations (MIL linking).

3. Select Optimize less/Build faster or Optimize more/Build slower.

Command line syntax

--mil-link
--mil-split[=file,...]

Description

With option --mil-link the C compiler links the optimized intermediate representation (MIL) of all input
files and MIL libraries specified on the command line in the compiler.The result is one single module that
is optimized another time.

Option --mil-split does the same as option --mil-link, but in addition, the resulting MIL representation is
written to a file with the suffix .mil and the C compiler also splits the MIL representation and writes it to
separate files with suffix .ms. One file is written for each input file or MIL library specified on the command
line. The .ms files are only updated on a change.

With option --mil-split you can perform application-wide optimizations during the frontend phase by
specifying all modules at once, and still invoke the backend phase one module at a time to reduce the
total compilation time. Application wide code compaction is not possible in this case.

Optionally, you can specify another filename for the .ms file the C compiler generates. Without an
argument, the basename of the C source file is used to create the .ms filename. Note that if you specify
a filename, you have to specify one filename for every input file.

Note that with both options some extra strict type checking is done that can cause building to fail in a way
that is unforeseen and difficult to understand. For example, when you use one of these options in
combination with option --uchar you might get the following error:

carm E289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
carm I802: ["installation-dir\include\string.h" 44/17]
 previous declaration of "strlen"
1 errors, 0 warnings

This is caused by the fact that the MIL library is built without --uchar.You can workaround this problem
by rebuilding the MIL libraries.

Build for application wide optimizations (MIL linking) and Optimize less/Build faster

This option is standard MIL linking and splitting. Note that you can control the optimizations to be performed
with the optimization settings.

613

Tool Options

Optimize more/Build slower

When you enable this option, the compiler's frontend does not split the MIL stream in separate modules,
but feeds it directly to the compiler's backend, allowing the code compaction to be performed application
wide.

Related information

Section 4.1, Compilation Process

C compiler option --mil / --mil-split

614

TASKING VX-toolset for ARM User Guide

Control program option: --mixed-arm-thumb

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Enable the option Use full assembler for mixed ARM and Thumb instructions.

Command line syntax

--mixed-arm-thumb

Description

With this option the control program calls the mixed ARM and Thumb assembler (asarm).

When you do not use this option, option --thumb determines which target assembler is chosen. Without
--thumb: the ARM instruction set only assembler (asarma).With --thumb: the Thumb instruction set only
assembler (asmarmt).

See the description of --thumb for more information.

Note that when you specify the ARMv6-M or ARMv7-M architecture profile with --cpu, this automatically
selects the Thumb-2 instruction set.

Related information

Control program option --thumb (use Thumb instruction set)

615

Tool Options

Control program option: --no-auto-instantiation

Menu entry

-

Command line syntax

--no-auto-instantiation

Default: the C++ compiler automatically instantiates templates.

Description

With this option automatic instantiation of templates is disabled.

Related information

Control program option --instantiate (Set instantiation mode)

Section 2.5, Template Instantiation

616

TASKING VX-toolset for ARM User Guide

Control program option: --no-default-libraries

Menu entry

1. Select Linker » Libraries.

2. Disable the option Link default libraries.

Command line syntax

--no-default-libraries

Description

By default the control program specifies the standard C libraries (C99) and run-time library to the linker.
With this option you tell the control program not to specify the standard C libraries and run-time library to
the linker.

In this case you must specify the libraries you want to link to the linker with the option --library=library_name
or pass the libraries as files on the command line. The control program recognizes the option --library
(-l) as an option for the linker and passes it as such.

Example

ccarm --no-default-libraries test.c

The control program does not specify any libraries to the linker. In normal cases this would result in
unresolved externals.

To specify your own libraries (carm.lib) and avoid unresolved externals:

ccarm --no-default-libraries --library=carm test.c

Related information

Control program option --library (Link system library)

Section 7.3.1, How the Linker Searches Libraries

617

Tool Options

Control program option: --no-double (-F)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat double as float.

Command line syntax

--no-double

-F

Description

With this option you tell the compiler to treat variables of the type double as float. Because the float
type takes less space, execution speed increases and code size decreases, both at the cost of less
precision.

The control program also tells the linker to link the single-precision C library.

This option is an alias for Control program option --fp-model=+float.

Related information

Control program option --fp-model

618

TASKING VX-toolset for ARM User Guide

Control program option: --no-map-file

Menu entry

1. Select Linker » Map File.

2. Disable the option Generate map file.

Command line syntax

--no-map-file

Description

By default the control program tells the linker to generate a linker map file.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (.obj) to the linked object file. A locate part shows the absolute position of each
section. External symbols are listed per space with their absolute address, both sorted on symbol and
sorted on address.

With this option you prevent the generation of a map file.

Related information

-

619

Tool Options

Control program option: --no-warnings (-w)

Menu entry

1. Select C/C++ Compiler » Diagnostics.

The Suppress C compiler warnings box shows the warnings that are currently suppressed.

2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas or as a range, of the warnings you want to suppress (for
example 537,538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

--no-warnings[=number[-number],...]

-w[number[-number],...]

Description

With this option you can suppresses all warning messages for the various tools or specific control program
warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings of all tools are suppressed.

• If you specify this option with a number or a range, only the specified control program warnings are
suppressed.You can specify the option --no-warnings=number multiple times.

Example

To suppress all warnings for all tools, enter:

ccarm test.c --no-warnings

Related information

Control program option --warnings-as-errors (Treat warnings as errors)

620

TASKING VX-toolset for ARM User Guide

Control program option: --option-file (-f)

Menu entry

-

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the control program.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

 -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

621

Tool Options

--debug-info
--define=DEMO=1
test.c

Specify the option file to the control program:

ccarm --option-file=myoptions

This is equivalent to the following command line:

ccarm —-debug-info --define=DEMO=1 test.c

Related information

-

622

TASKING VX-toolset for ARM User Guide

Control program option: --output (-o)

Menu entry

Eclipse always uses the project name as the basename for the output file.

Command line syntax

--output=file

-o file

Description

By default, the control program generates a file with the same basename as the first specified input file.
With this option you specify another name for the resulting absolute object file.

The default output format is ELF/DWARF, but you can specify another output format with option --format.

Example

ccarm test.c prog.c

The control program generates an ELF/DWARF object file (default) with the name test.abs.

To generate the file result.abs:

ccarm --output=result.abs test.c prog.c

Related information

Control program option --format (Set linker output format)

Linker option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

623

Tool Options

Control program option: --pass (-W)

Menu entry

1. Select C/C++ Compiler » Miscellaneous or Assembler » Miscellaneous or Linker » Miscellaneous.

2. Add an option to the Additional options field.

Be aware that the options in the option file are added to the options you have set in the other pages.
Only in extraordinary cases you may want to use them in combination. The assembler options are
preceded by -Wa and the linker options are preceded by -Wl. For the C/C++ options you have to do
this manually.

Command line syntax

Pass option directly to the assembler-Waoption--pass-assembler=option

Pass option directly to the C compiler-Wcoption--pass-c=option

Pass option directly to the C++ compiler-Wcpoption--pass-c++=option

Pass option directly to the linker-Wloption--pass-linker=option

Description

With this option you tell the control program to call a tool with the specified option. The control program
does not use or interpret the option itself, but specifies it directly to the tool which it calls.

Example

To pass the option --verbose directly to the linker, enter:

ccarm --pass-linker=--verbose test.c

Related information

-

624

TASKING VX-toolset for ARM User Guide

Control program option: --preprocess (-E) / --no-preprocessing-only

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.

4. (Optional) Enable the option Keep #line info in preprocessor output.

Command line syntax

--preprocess[=flags]

-E[flags]

--no-preprocessing-only

You can set the following flags:

keep commentsc/C+/-comments

generate a list of included source filesi/I+/-includes

generate a list of macro definitionsl/L+/-list

generate dependencies for makem/M+/-make

strip #line source position informationp/P+/-noline

Default: -ECILMP

Description

With this option you tell the compiler to preprocess the C source.The C compiler sends the preprocessed
output to the file name.pre (where name is the name of the C source file to compile). Eclipse also
compiles the C source.

On the command line, the control program stops after preprocessing. If you also want to compile the C
source you can specify the option --no-preprocessing-only. In this case the control program calls the
compiler twice, once with option --preprocess and once for a regular compilation.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+includes the compiler will generate a list of all included source files.The preprocessor
output is discarded.

With --preprocess=+list the compiler will generate a list of all macro definitions.The preprocessor output
is discarded.

625

Tool Options

With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The information is written to a file with extension .d. The preprocessor output is discarded. The default
target name is the basename of the input file, with the extension .obj. With the option --make-target
you can specify a target name which overrules the default target name.

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #line). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example

ccarm --preprocess=+comments,-make,-noline --no-preprocessing-only test.c

The compiler preprocesses the file test.c and sends the output to the file test.pre. Comments are
included but no dependencies are generated and the line source position information is not stripped from
the output file. Next, the control program calls the compiler, assembler and linker to create the final object
file test.abs

Related information

Control program option --dep-file (Generate dependencies in a file)

Control program option --make-target (Specify target name for -Em output)

626

TASKING VX-toolset for ARM User Guide

Control program option: --processors

Menu entry

1. From the Window menu, select Preferences.

The Preferences dialog appears.

2. Select TASKING » ARM.

3. Click the Add button to add additional processor definition files.

Command line syntax

--processors=file

Description

With this option you can specify an additional XML file with processor definitions.

The standard list of supported processors is defined in the file processors.xml. This file defines for
each processor its full name (for example, STM32F205RB), its ID (for example, stm32f205rb), the
architecture name (for example, ARMv7M), the core settings (for example, cortexm3), the on-chip flash
settings, the list of silicon bugs for that processor. Each processor also defines options to supply to the
linker for preprocessing the LSL file for the applicable on-chip memory definitions (for example,
-D__FLASH_SIZE=128k).

The control program reads the specified file after the file processors.xml in the product's etc directory.
Additional XML files can override processor definitions made in XML files that are read before.

Multiple --processors options are allowed.

Eclipse generates a --processors option in the makefiles for each specified XML file.

Example

Specify an additional processor definition file (suppose processors-new.xml contains a new processor
ARMNEW):

ccarm --processors=processors-new.xml --cpu=ARMNEW test.c

Related information

Control program option --cpu (Select architecture)

627

Tool Options

Control program option: --profile (-p)

Menu entry

1. Select C/C++ Compiler » Debugging.

2. Enable or disable Static profiling.

3. Enable or disable one or more of the following Generate profiling information options (dynamic
profiling):

• for block counters (not in combination with Call graph or Function timers)

• to build a call graph

• for function counters

• for function timers

Note that the more detailed information you request, the larger the overhead in terms of execution
time, code size and heap space needed. The option --debug does not affect profiling, execution
time or code size.

Command line syntax

--profile[=flag,...]

-p[flags]

Use the following option for a predefined set of flags:

Profiling with call graph and function timers.
Alias for: -pBcFSt

-pg--profile=g

You can set the following flags:

block countersb/B+/-block

call graphc/C+/-callgraph

function countersf/F+/-function

static profile generations/S+/-static

function timerst/T+/-time

Default (without flags): -pBCfST

Description

Profiling is the process of collecting statistical data about a running application. With these data you can
analyze which functions are called, how often they are called and what their execution time is.

628

TASKING VX-toolset for ARM User Guide

Several methods of profiling exist. One method is code instrumentation which adds code to your application
that takes care of the profiling process when the application is executed. Another method is static profiling.

For an extensive description of profiling refer to Chapter 13, Profiling.

You can obtain the following profiling data (see flags above):

Block counters (not in combination with Call graph or Function timers)

This will instrument the code to perform basic block counting. As the program runs, it counts the number
of executions of each branch in an if statement, each iteration of a for loop, and so on. Note that though
you can combine Block counters with Function counters, this has no effect because Function counters
is only a subset of Block counters.

Call graph (not in combination with Block counters)

This will instrument the code to reconstruct the run-time call graph. As the program runs it associates the
caller with the gathered profiling data.

Function counters

This will instrument the code to perform function call counting.This is a subset of the basic Block counters.

Function timers (not in combination with Block counters/Function counters)

This will instrument the code to measure the time spent in a function. This includes the time spent in all
sub functions (callees).

Static profiling

With this option you do not need to run the application to get profiling results. The compiler generates
profiling information at compile time, without adding extra code to your application.

Note that the more detailed information you request, the larger the overhead in terms of execution
time, code size and heap space needed. The option Generate symbolic debug information
(--debug) does not affect profiling, execution time or code size.

The control program automatically specifies the corresponding profiling libraries to the linker.

Example

To generate block count information for the module test.c during execution, compile as follows:

ccarm --profile=+block test.c

In this case the control program tells the linker to link the library pbarm.lib.

Related information

Chapter 13, Profiling

629

Tool Options

Control program option: --show-c++-warnings

Menu entry

-

Command line syntax

--show-c++-warnings

Description

The C++ compiler may generate a compiled C++ file (.ic) that causes warnings during compilation or
assembling.With this option you tell the control program to show these warnings. By default C++ warnings
are suppressed.

Related information

-

630

TASKING VX-toolset for ARM User Guide

Control program option: --silicon-bug

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, select a processor.

The CPU problem bypasses and checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.

4. Click Select All or select one or more individual options.

Command line syntax

--silicon-bug[=bug,...]

Description

With this option you specify for which hardware problems the compiler should generate workarounds.
Please refer to Chapter 19, CPU Problem Bypasses and Checks for the numbers and descriptions. Silicon
bug numbers are specified as a comma separated list. When you use this option without arguments, all
silicon bug workarounds are enabled.

The control program passes the option to both the compiler and the assembler.

Example

To enable workarounds for problem 602117, enter:

ccarm --silicon-bug=602117 test.c

Related information

Chapter 19, CPU Problem Bypasses and Checks

Compiler option --silicon-bug

Assembler option --silicon-bug

631

Tool Options

Control program option: --tasking-sfr

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Enable the option Include CMSIS device register definition header file.

3. Select C/C++ Compiler » Include Paths.

4. Enable the option Add CMSIS include paths.

Command line syntax

--tasking-sfr

Description

With this option the compiler automatically includes the CMSIS SFR header file belonging to the target
processor you selected on the Processor page (C compiler option --cpu).

Example

After

ccarm --cpu=STM32F205RB --tasking-sfr -v -t test.c

the control program will call the tools as follows:

carm -CARMv7M -D__PROC_STM32F205RB__ -Hstm32f2xx.h -Icmsis/Include,
cmsis/Device/ST/STM32F2xx/Include -o test.src test.c

asarmt -CARMv7M -o test.obj test.src
lkarm test.obj -o test.abs -CARMv7M -D__PROC_STM32F205RB__
 -D__DEVICE_LSL_FILE=stm32f2xx.lsl -D__FLASH_SIZE=128k -D__SRAM_SIZE=64k
 --map-file -lcthumb -lfpthumb -lrtthumb

Related information

Control program option --cpu (Select architecture)

Control program option --dsp-library (Link CMSIS DSP library)

632

TASKING VX-toolset for ARM User Guide

Control program option: --thumb

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Enable the option Use Thumb instruction set.

Command line syntax

--thumb

Description

Generate code in Thumb mode or Thumb-2 mode, depending on the architecture. The Thumb instruction
set is a subset of the ARM instruction set which is encoded using 16-bit instructions instead of 32-bit
instructions. The Thumb-2 instruction set has 16-bit and 32-bit instructions.

Depending on this option and option --mixed-arm-thumb a target assembler is chosen. asarm is the full
assembler with both ARM and Thumb instructions. asarma is the ARM instruction set only assembler.
asarmt is the Thumb instruction set only assembler.

Assembler--mixed-arm-thumb--thumb

asarmanono

asarmyesno

asarmtnoyes

asarm --thumbyesyes

Note that when you specify the ARMv6-M, ARMv7-M, or ARMv7E-M architecture with --cpu, this
automatically selects the Thumb-2 instruction set.

Related information

Control program option --mixed-arm-thumb (use mixed ARM and Thumb assembler)

633

Tool Options

Control program option: --uchar (-u)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat "char" variables as unsigned.

Command line syntax

--uchar

-u

Description

By default char is the same as specifying signed char.With this option char is the same as unsigned
char. This option is passed to both the C++ compiler and the C compiler.

Note that this option can cause conflicts when you use it in combination with MIL linking. With MIL linking
some extra strict type checking is done that can cause building to fail in a way that is unforeseen and
difficult to understand. For example, when you use option --mil-link in combination with option --uchar
you might get the following error:

carm E289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
carm I802: ["installation-dir\include\string.h" 44/17]
 previous declaration of "strlen"
1 errors, 0 warnings

This is caused by the fact that the MIL library is built without --uchar.You can workaround this problem
by rebuilding the MIL libraries.

Related information

Section 1.1, Data Types

634

TASKING VX-toolset for ARM User Guide

Control program option: --undefine (-U)

Menu entry

1. Select C/C++ Compiler » Preprocessing

The Defined symbols box shows the symbols that are currently defined.

2. To remove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax

--undefine=macro_name

-Umacro_name

Description

With this option you can undefine an earlier defined macro as with #undef. This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

current source filename__FILE__

current source line number (int type)__LINE__

hh:mm:ss__TIME__

Mmm dd yyyy__DATE__

level of ANSI standard__STDC__

The control program passes the option --undefine (-U) to the compiler.

Example

To undefine the predefined macro __TASKING__:

ccarm --undefine=__TASKING__ test.c

Related information

Control program option --define (Define preprocessor macro)

Section 1.9, Predefined Preprocessor Macros

635

Tool Options

Control program option: --verbose (-v)

Menu entry

1. Select Global Options.

2. Enable the option Verbose mode of control program.

Command line syntax

--verbose

-v

Description

With this option you put the control program in verbose mode. The control program performs its tasks
while it prints the steps it performs to stdout.

Related information

Control program option --dry-run (Verbose output and suppress execution)

636

TASKING VX-toolset for ARM User Guide

Control program option: --version (-V)

Menu entry

-

Command line syntax

--version

-V

Description

Display version information. The control program ignores all other options or input files.

Related information

-

637

Tool Options

Control program option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

--warnings-as-errors[=number[-number],...]

Description

If one of the tools encounters an error, it stops processing the file(s). With this option you tell the tools to
treat warnings as errors or treat specific control program warning messages as errors:

• If you specify this option but without numbers, all warnings are treated as errors.

• If you specify this option with a number or a range, only the specified control program warnings are
treated as an error.You can specify the option --warnings-as-errors=number multiple times.

Use one of the --pass-tool options to pass this option directly to a tool when a specific warning for that
tool must be treated as an error. For example, use --pass-c=--warnings-as-errors=number to treat a
specific C compiler warning as an error.

Related information

Control program option --no-warnings (Suppress some or all warnings)

Control program option --pass (Pass option to tool)

638

TASKING VX-toolset for ARM User Guide

11.7. Make Utility Options

You can use the make utility mkarm from the command line to build your project. Note that this make
utility is not the default make used by Eclipse. So, you have to create your own makefile.

The invocation syntax is:

mkarm [option...] [target...] [macro=def]

This section describes all options for the make utility. The make utility is a command line tool so there
are no equivalent options in Eclipse.

For detailed information about the make utility and using makefiles see Section 9.2, Make Utility mkarm.

639

Tool Options

Defining Macros

Command line syntax

macro_name[=macro_definition]

Description

With this argument you can define a macro and specify it to the make utility.

A macro definition remains in existence during the execution of the makefile, even when the makefile
recursively calls the make utility again. In the recursive call, the macro acts as an environment variable.
This means that it is overruled by definitions in the recursive call. Use the option -e to prevent this.

You can specify as many macros as you like. If the command line exceeds the limit of the operating
system, you can define the macros in an option file which you then must specify to the make utility with
the option -m) file.

Defining macros on the command line is, for example, useful in combination with conditional processing
as shown in the example below.

Example

Consider the following makefile with conditional rules to build a demo program and a real program:

ifdef DEMO # the value of DEMO is of no importance
 real.abs : demo.obj main.obj
 lkarm demo.obj main.obj -darm.lsl -lcarm -lfparm -lrtarm
else
 real.abs : real.obj main.obj
 lkarm real.obj main.obj -darm.lsl -lcarm -lfparm -lrtarm
endif

You can now use a macro definition to set the DEMO flag:

mkarm real.abs DEMO=1

In both cases the absolute object file real.abs is created but depending on the DEMO flag it is linked
with demo.obj or with real.obj.

Related information

Make utility option -e (Environment variables override macro definitions)

Make utility option -m (Name of invocation file)

640

TASKING VX-toolset for ARM User Guide

Make utility option: -?

Command line syntax

-?

Description

Displays an overview of all command line options.

Example

The following invocation displays a list of the available command line options:

mkarm -?

Related information

-

641

Tool Options

Make utility option: -a

Command line syntax

-a

Description

Normally the make utility rebuilds only those files that are out of date. With this option you tell the make
utility to rebuild all files, without checking whether they are out of date.

Example

mkarm -a

Rebuilds all your files, regardless of whether they are out of date or not.

Related information

-

642

TASKING VX-toolset for ARM User Guide

Make utility option: -c

Command line syntax

-c

Description

Eclipse uses this option when you create sub-projects. In this case the make utility calls another instance
of the make utility for the sub-project. With the option -c, the make utility runs as a child process of the
current make.

The option -c overrules the option -err.

Example

mkarm -c

The make utility runs its commands as a child processes.

Related information

Make utility option -err (Redirect error message to file)

643

Tool Options

Make utility option: -D / -DD

Command line syntax

-D
-DD

Description

With the option -D the make utility prints every line of the makefile to standard output as it is read by
mkarm.

With the option -DD not only the lines of the makefile are printed but also the lines of the mkarm.mk file
(implicit rules).

Example

mkarm -D

Each line of the makefile that is read by the make utility is printed to standard output (usually your screen).

Related information

-

644

TASKING VX-toolset for ARM User Guide

Make utility option: -d/ -dd

Command line syntax

-d
-dd

Description

With the option -d the make utility shows which files are out of date and thus need to be rebuild. The
option -dd gives more detail than the option -d.

Example

mkarm -d

Shows which files are out of date and rebuilds them.

Related information

-

645

Tool Options

Make utility option: -e

Command line syntax

-e

Description

If you use macro definitions, they may overrule the settings of the environment variables. With the option
-e, the settings of the environment variables are used even if macros define otherwise.

Example

mkarm -e

The make utility uses the settings of the environment variables regardless of macro definitions.

Related information

-

646

TASKING VX-toolset for ARM User Guide

Make utility option: -err

Command line syntax

-err file

Description

With this option the make utility redirects error messages and verbose messages to a specified file.

With the option -s the make utility only displays error messages.

Example

mkarm -err error.txt

The make utility writes messages to the file error.txt.

Related information

Make utility option -s (Do not print commands before execution)

Make utility option -c (Run as child process)

647

Tool Options

Make utility option: -f

Command line syntax

-f my_makefile

Description

By default the make utility uses the file makefile to build your files.

With this option you tell the make utility to use the specified file instead of the file makefile. Multiple -f
options act as if all the makefiles were concatenated in a left-to-right order.

If you use '-' instead of a makefile name it means that the information is read from stdin.

Example

mkarm -f mymake

The make utility uses the file mymake to build your files.

Related information

-

648

TASKING VX-toolset for ARM User Guide

Make utility option: -G

Command line syntax

-G path

Description

Normally you must call the make utility from the directory where your makefile and other files are stored.

With the option -G you can call the make utility from within another directory. The path is the path to the
directory where your makefile and other files are stored and can be absolute or relative to your current
directory.

Example

Suppose your makefile and other files are stored in the directory ..\myfiles.You can call the make
utility, for example, as follows:

mkarm -G ..\myfiles

Related information

-

649

Tool Options

Make utility option: -i

Command line syntax

-i

Description

When an error occurs during the make process, the make utility exits with a certain exit code.

With the option -i, the make utility exits without an error code, even when errors occurred.

Example

mkarm -i

The make utility exits without an error code, even when an error occurs.

Related information

-

650

TASKING VX-toolset for ARM User Guide

Make utility option: -K

Command line syntax

-K

Description

With this option the make utility keeps temporary files it creates during the make process.The make utility
stores temporary files in the directory that you have specified with the environment variable TMPDIR or
in the default 'temp' directory of your system when the TMPDIR environment variable is not specified.

Example

mkarm -K

The make utility preserves all temporary files.

Related information

-

651

Tool Options

Make utility option: -k

Command line syntax

-k

Description

When during the make process the make utility encounters an error, it stops rebuilding your files.

With the option -k, the make utility only stops building the target that produced the error. All other targets
defined in the makefile are built.

Example

mkarm -k

If the make utility encounters an error, it stops building the current target but proceeds with the other
targets that are defined in the makefile.

Related information

Make utility option -S (Undo the effect of -k)

652

TASKING VX-toolset for ARM User Guide

Make utility option: -m

Command line syntax

-m file

Description

Instead of typing all options on the command line, you can create an option file which contains all options
and flags you want to specify. With this option you specify the option file to the make utility.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option -m multiple times.

If you use '-' instead of a filename it means that the options are read from stdin.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

Note that adjacent strings are concatenated.

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

 -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

-k
-err errors.txt
test.abs

653

Tool Options

Specify the option file to the make utility:

mkarm -m myoptions

This is equivalent to the following command line:

mkarm -k -err errors.txt test.abs

Related information

-

654

TASKING VX-toolset for ARM User Guide

Make utility option: -n

Command line syntax

-n

Description

With this option you tell the make utility to perform a dry run. The make utility shows what it would do but
does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if you call the make utility.

Example

mkarm -n

The make utility does not perform any tasks but displays what it would do if called without the option -n.

Related information

Make utility option -s (Do not print commands before execution)

655

Tool Options

Make utility option: -p

Command line syntax

-p

Description

Normally, if a command in a target rule in a makefile returns an error or when the target construction is
interrupted, the make utility removes that target file. With this option you tell the make utility to make all
target files precious. This means that all dependency files are never removed.

Example

mkarm -p

The make utility never removes target dependency files.

Related information

Special target .PRECIOUS in Section 9.2.2.1, Targets and Dependencies

656

TASKING VX-toolset for ARM User Guide

Make utility option: -q

Command line syntax

-q

Description

With this option the make utility does not perform any tasks but only returns an exit code. A zero status
indicates that all target files are up to date, a non-zero status indicates that some or all target files are
out of date.

Example

mkarm -q

The make utility only returns an error code that indicates whether all target files are up to date or not. It
does not rebuild any files.

Related information

-

657

Tool Options

Make utility option: -r

Command line syntax

-r

Description

When you call the make utility, it first reads the implicit rules from the file mkarm.mk, then it reads the
makefile with the rules to build your files. (The file mkarm.mkis located in the \etc directory of the toolset.)

With this option you tell the make utility not to read mkarm.mk and to rely fully on the make rules in the
makefile.

Example

mkarm -r

The make utility does not read the implicit make rules in mkarm.mk.

Related information

-

658

TASKING VX-toolset for ARM User Guide

Make utility option: -S

Command line syntax

-S

Description

With this option you cancel the effect of the option -k. This is only necessary in a recursive make where
the option -k might be inherited from the top-level make via MAKEFLAGS or if you set the option -k in
the environment variable MAKEFLAGS.

With this option you tell the make utility not to read mkarm.mk and to rely fully on the make rules in the
makefile.

Example

mkarm -S

The effect of the option -k is cancelled so the make utility stops with the make process after it encounters
an error.

The option -k in this example may have been set with the environment variable MAKEFLAGS or in a
recursive call to mkarm in the makefile.

Related information

Make utility option -k (On error, abandon the work for the current target only)

659

Tool Options

Make utility option: -s

Command line syntax

-s

Description

With this option you tell the make utility to perform its tasks without printing the commands it executes.
Error messages are normally printed.

Example

mkarm -s

The make utility rebuilds your files but does not print the commands it executes during the make process.

Related information

Make utility option -n (Perform a dry run)

660

TASKING VX-toolset for ARM User Guide

Make utility option: -t

Command line syntax

-t

Description

With this option you tell the make utility to touch the target files, bringing them up to date, rather than
performing the rules to rebuild them.

Example

mkarm -t

The make utility updates out-of-date files by giving them a new date and time stamp. The files are not
actually rebuild.

Related information

-

661

Tool Options

Make utility option: -time

Command line syntax

-time

Description

With this option you tell the make utility to display the current date and time on standard output.

Example

mkarm -time

The make utility displays the current date and time and updates out-of-date files.

Related information

-

662

TASKING VX-toolset for ARM User Guide

Make utility option: -V

Command line syntax

-V

Description

Display version information. The make utility ignores all other options or input files.

Related information

-

663

Tool Options

Make utility option: -W

Command line syntax

-W target

Description

With this option the make utility considers the specified target file always as up to date and will not rebuild
it.

Example

mkarm -W test.abs

The make utility rebuilds out of date targets in the makefile except the file test.abs which is considered
now as up to date.

Related information

-

664

TASKING VX-toolset for ARM User Guide

Make utility option: -w

Command line syntax

-w

Description

With this option the make utility sends error messages and verbose messages to standard output.Without
this option, the make utility sends these messages to standard error.

This option is only useful on UNIX systems.

Example

mkarm -w

The make utility sends messages to standard out instead of standard error.

Related information

-

665

Tool Options

Make utility option: -x

Command line syntax

-x

Description

With this option the make utility shows extended error messages. Extended error messages give more
detailed information about the exit status of the make utility after errors.

Example

mkarm -x

If errors occur, the make utility gives extended information.

Related information

-

666

TASKING VX-toolset for ARM User Guide

11.8. Parallel Make Utility Options

When you build a project in Eclipse, Eclipse generates a makefile and uses the make utility amk to build
all your files. However, you can also use the make utility directly from the command line to build your
project.

The invocation syntax is:

amk [option...] [target...] [macro=def]

This section describes all options for the parallel make utility.

For detailed information about the parallel make utility and using makefiles see Section 9.3, Make Utility
amk.

667

Tool Options

Parallel make utility option: --always-rebuild (-a)

Command line syntax

--always-rebuild

-a

Description

Normally the make utility rebuilds only those files that are out of date. With this option you tell the make
utility to rebuild all files, without checking whether they are out of date.

Example

amk -a

Rebuilds all your files, regardless of whether they are out of date or not.

Related information

-

668

TASKING VX-toolset for ARM User Guide

Parallel make utility option: --change-dir (-G)

Command line syntax

--change-dir=path

-G path

Description

Normally you must call the make utility from the directory where your makefile and other files are stored.

With the option -G you can call the make utility from within another directory. The path is the path to the
directory where your makefile and other files are stored and can be absolute or relative to your current
directory.

The macro SUBDIR is defined with the value of path.

Example

Suppose your makefile and other files are stored in the directory ..\myfiles.You can call the make
utility, for example, as follows:

amk -G ..\myfiles

Related information

-

669

Tool Options

Parallel make utility option: --diag

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify.You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 169, enter:

amk --diag=169

This results in the following message and explanation:

F169: target '%s' returned exit code %d

An error occured while executing one of the commands
of the target, and -k option is not specified.

To write an explanation of all errors and warnings in HTML format to file amkerrors.html, use redirection
and enter:

amk --diag=html:all > amkerrors.html

Related information

-

670

TASKING VX-toolset for ARM User Guide

Parallel make utility option: --dry-run (-n)

Command line syntax

--dry-run

-n

Description

With this option you tell the make utility to perform a dry run. The make utility shows what it would do but
does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if you call the make utility.

Example

amk -n

The make utility does not perform any tasks but displays what it would do if called without the option -n.

Related information

Parallel make utility option -s (Do not print commands before execution)

671

Tool Options

Parallel make utility option: --help (-? / -h)

Command line syntax

--help[=item]

-h

-?

You can specify the following arguments:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

amk -?
amk --help

To see a detailed description of the available options, enter:

amk --help=options

Related information

-

672

TASKING VX-toolset for ARM User Guide

Parallel make utility option: --jobs (-j) / --jobs-limit (-J)

Menu

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, select C/C++ Build.

In the right pane the C/C++ Build page appears.

3. On the Behaviour tab, select Use parallel build.

4. You can specify the number of parallel jobs, or you can use an optimal number of jobs. In the last
case, amk will fork as many jobs in parallel as cores are available.

Command line syntax

--jobs[=number]
-j[number]

--jobs-limit[=number]
-J[number]

Description

When these options you can limit the number of parallel jobs.The default is 1. Zero means no limit. When
you omit the number, amk uses the number of cores detected.

Option -J is the same as -j, except that the number of parallel jobs is limited by the number of cores
detected.

Example

amk -j3

Limit the number of parallel jobs to 3.

Related information

-

673

Tool Options

Parallel make utility option: --keep-going (-k)

Command line syntax

--keep-going

-k

Description

When during the make process the make utility encounters an error, it stops rebuilding your files.

With the option -k, the make utility only stops building the target that produced the error. All other targets
defined in the makefile are built.

Example

amk -k

If the make utility encounters an error, it stops building the current target but proceeds with the other
targets that are defined in the makefile.

Related information

-

674

TASKING VX-toolset for ARM User Guide

Parallel make utility option: --list-targets (-l)

Command line syntax

--list-targets

-l

Description

With this option, the make utility lists all "primary" targets that are out of date.

Example

amk -l
list of targets

Related information

-

675

Tool Options

Parallel make utility option: --makefile (-f)

Command line syntax

--makefile=my_makefile

-f my_makefile

Description

By default the make utility uses the file makefile to build your files.

With this option you tell the make utility to use the specified file instead of the file makefile. Multiple -f
options act as if all the makefiles were concatenated in a left-to-right order.

If you use '-' instead of a makefile name it means that the information is read from stdin.

Example

amk -f mymake

The make utility uses the file mymake to build your files.

Related information

-

676

TASKING VX-toolset for ARM User Guide

Parallel make utility option: --no-warnings (-w)

Command line syntax

--no-warnings[=number,...]

-w[number,...]

Description

With this option you can suppresses all warning messages or specific warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are suppressed.

• If you specify this option with a number, only the specified warning is suppressed.You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 751 and 756, enter:

amk --no-warnings=751,756

Related information

Parallel make utility option --warnings-as-errors (Treat warnings as errors)

677

Tool Options

Parallel make utility option: --silent (-s)

Command line syntax

--silent

-s

Description

With this option you tell the make utility to perform its tasks without printing the commands it executes.
Error messages are normally printed.

Example

amk -s

The make utility rebuilds your files but does not print the commands it executes during the make process.

Related information

Parallel make utility option -n (Perform a dry run)

678

TASKING VX-toolset for ARM User Guide

Parallel make utility option: --version (-V)

Command line syntax

--version

-V

Description

Display version information. The make utility ignores all other options or input files.

Related information

-

679

Tool Options

Parallel make utility option: --warnings-as-errors

Command line syntax

--warnings-as-errors[=number,...]

Description

If the make utility encounters an error, it stops. When you use this option without arguments, you tell the
make utility to treat all warnings as errors.This means that the exit status of the make utility will be non-zero
after one or more warnings. As a consequence, the make utility now also stops after encountering a
warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Parallel make utility option --no-warnings (Suppress some or all warnings)

680

TASKING VX-toolset for ARM User Guide

11.9. Archiver Options

The archiver and library maintainer ararm is a tool to build library files and it offers the possibility to
replace, extract and remove modules from an existing library.

The invocation syntax is:

ararm key_option [sub_option...] library [object_file]

This section describes all options for the archiver. Some suboptions can only be used in combination with
certain key options. They are described together. Suboptions that can always be used are described
separately.

For detailed information about the archiver, see Section 9.4, Archiver.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Overview of the options of the archiver utility

The following archiver options are available:

Sub-optionOptionDescription

Main functions (key options)

-a -b -c -n -u -v-rReplace or add an object module

-o -v-xExtract an object module from the library

-v-dDelete object module from library

-a -b -v-mMove object module to another position

-s0 -s1-tPrint a table of contents of the library

-pPrint object module to standard output

Sub-options

-a nameAppend or move new modules after existing module name

-b nameAppend or move new modules before existing module name

-cSuppress the message that is displayed when a new library is
created.

-nCreate a new library from scratch

-oPreserve last-modified date from the library

-s{0|1}Print symbols in library modules

-uReplace only newer modules

-vVerbose

681

Tool Options

Sub-optionOptionDescription

Miscellaneous

-?Display options

--diagDisplay description of one or more diagnostic messages

-VDisplay version header

-f fileRead options from file

-wnSuppress warnings above level n

682

TASKING VX-toolset for ARM User Guide

Archiver option: --diag

Command line syntax

--diag=[format:]{all | msg[-msg],...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The archiver does
not perform any actions.You can specify the following formats: html, rtf or text (default). To create a file
with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

Example

To display an explanation of message number 102, enter:

ararm --diag=102

This results in the following message and explanation:

F102: cannot create "<file>"

The output file or a temporary file could not be created. Check if you have
sufficient disk space and if you have write permissions for the specified
file.

To write an explanation of all errors and warnings in HTML format to file arerrors.html, use redirection
and enter:

ararm --diag=html:all > arerrors.html

Related information

-

683

Tool Options

Archiver option: --delete (-d)

Command line syntax

--delete [--verbose]

-d [-v]

Description

Delete the specified object modules from a library. With the suboption --verbose (-v) the archiver shows
which files are removed.

Verbose: the archiver shows which files are removed.-v--verbose

Example

ararm --delete mylib.lib obj1.obj obj2.obj

The archiver deletes obj1.obj and obj2.obj from the library mylib.lib.

ararm -d -v mylib.lib obj1.obj obj2.obj

The archiver deletes obj1.obj and obj2.obj from the library mylib.lib and displays which files are
removed.

Related information

-

684

TASKING VX-toolset for ARM User Guide

Archiver option: --dump (-p)

Command line syntax

--dump

-p

Description

Print the specified object module(s) in the library to standard output.

This option is only useful when you redirect or pipe the output to other files or tools that serve your own
purposes. Normally you do not need this option.

Example

ararm --dump mylib.lib obj1.obj > file.obj

The archiver prints the file obj1.obj to standard output where it is redirected to the file file.obj. The
effect of this example is very similar to extracting a file from the library but in this case the 'extracted' file
gets another name.

Related information

-

685

Tool Options

Archiver option: --extract (-x)

Command line syntax

--extract [--modtime] [--verbose]

-x [-o] [-v]

Description

Extract an existing module from the library.

Give the extracted object module the same date as the last-modified
date that was recorded in the library. Without this suboption it
receives the last-modified date of the moment it is extracted.

-o--modtime

Verbose: the archiver shows which files are extracted.-v--verbose

Example

To extract the file obj1.obj from the library mylib.lib:

ararm --extract mylib.lib obj1.obj

If you do not specify an object module, all object modules are extracted:

ararm -x mylib.lib

Related information

-

686

TASKING VX-toolset for ARM User Guide

Archiver option: --help (-?)

Command line syntax

--help[=item]

-?

You can specify the following argument:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

ararm -?
ararm --help
ararm

To see a detailed description of the available options, enter:

ararm --help=options

Related information

-

687

Tool Options

Archiver option: --move (-m)

Command line syntax

--move [-a posname] [-b posname]

-m [-a posname] [-b posname]

Description

Move the specified object modules to another position in the library.

The ordering of members in a library can make a difference in how programs are linked if a symbol is
defined in more than one member.

By default, the specified members are moved to the end of the archive. Use the suboptions -a or -b to
move them to a specified place instead.

Move the specified object module(s) after the existing module
posname.

-a
posname

--after=posname

Move the specified object module(s) before the existing
module posname.

-b
posname

--before=posname

Example

Suppose the library mylib.lib contains the following objects (see option --print):

obj1.obj
obj2.obj
obj3.obj

To move obj1.obj to the end of mylib.lib:

ararm --move mylib.lib obj1.obj

To move obj3.obj just before obj2.obj:

ararm -m -b obj3.obj mylib.lib obj2.obj

The library mylib.lib after these two invocations now looks like:

obj3.obj
obj2.obj
obj1.obj

Related information

Archiver option --print (-t) (Print library contents)

688

TASKING VX-toolset for ARM User Guide

Archiver option: --option-file (-f)

Command line syntax

--option-file=file

-f file

Description

Instead of typing all options on the command line, you can create an option file which contains all options
and flags you want to specify. With this option you specify the option file to the archiver.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file (-f) multiple times.

If you use '-' instead of a filename it means that the options are read from stdin.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

 -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

-x mylib.lib obj1.obj
-w5

689

Tool Options

Specify the option file to the archiver:

ararm --option-file=myoptions

This is equivalent to the following command line:

ararm -x mylib.lib obj1.obj -w5

Related information

-

690

TASKING VX-toolset for ARM User Guide

Archiver option: --print (-t)

Command line syntax

--print [--symbols=0|1]

-t [-s0|-s1]

Description

Print a table of contents of the library to standard output. With the suboption -s0 the archiver displays all
symbols per object file.

Displays per object the name of the object itself and all symbols in
the object.

-s0--symbols=0

Displays the symbols of all object files in the library in the form
library_name:object_name:symbol_name

-s1--symbols=1

Example

ararm --print mylib.lib

The archiver prints a list of all object modules in the library mylib.lib:

ararm -t -s0 mylib.lib

The archiver prints per object all symbols in the library. For example:

cstart.obj
 symbols:
 _START

Related information

-

691

Tool Options

Archiver option: --replace (-r)

Command line syntax

--replace [--after=posname] [--before=posname]
 [--create] [--new] [--newer-only] [--verbose]

-r [-a posname] [-b posname][-c] [-n] [-u] [-v]

Description

You can use the option --replace (-r) for several purposes:

• Adding new objects to the library

• Replacing objects in the library with the same object of a newer date

• Creating a new library

The option --replace (-r) normally adds a new module to the library. However, if the library already contains
a module with the specified name, the existing module is replaced. If you specify a library that does not
exist, the archiver creates a new library with the specified name.

If you add a module to the library without specifying the suboption -a or -b, the specified module is added
at the end of the archive. Use the suboptions -a or -b to insert them after/before a specified place instead.

Insert the specified object module(s) after the existing
module posname.

-a posname--after=posname

Insert the specified object module(s) before the existing
module posname.

-b posname--before=posname

Suppress the message that is displayed when a new library
is created.

-c--create

Create a new library from scratch. If the library already
exists, it is overwritten.

-n--new

Insert the specified object module only if it is newer than
the module in the library.

-u--newer-only

Verbose: the archiver shows which files are replaced.-v--verbose

The suboptions -a or -b have no effect when an object is added to the library.

Example

Suppose the library mylib.lib contains the following object (see option --print):

obj1.obj

To add obj2.obj to the end of mylib.lib:

ararm --replace mylib.lib obj2.obj

692

TASKING VX-toolset for ARM User Guide

To insert obj3.obj just before obj2.obj:

ararm -r -b obj2.obj mylib.lib obj3.obj

The library mylib.lib after these two invocations now looks like:

obj1.obj
obj3.obj
obj2.obj

Creating a new library

To create a new library file, add an object file and specify a library that does not yet exist:

ararm --replace newlib.lib obj1.obj

The archiver creates the library newlib.lib and adds the object obj1.obj to it.

To create a new library file and overwrite an existing library, add an object file and specify an existing
library with the supoption --new (-n):

ararm -r -n mylib.lib obj1.obj

The archiver overwrites the library mylib.lib and adds the object obj1.obj to it. The new library
mylib.lib only contains obj1.obj.

Related information

Archiver option --print (-t) (Print library contents)

693

Tool Options

Archiver option: --version (-V)

Command line syntax

--version

-V

Description

Display version information. The archiver ignores all other options or input files.

Related information

-

694

TASKING VX-toolset for ARM User Guide

Archiver option: --warning (-w)

Command line syntax

--warning=level

-wlevel

Description

With this suboption you tell the archiver to suppress all warnings above the specified level. The level is
a number between 0 - 9.

The level of a message is printed between parentheses after the warning number. If you do not use the
-w option, the default warning level is 8.

Example

To suppress warnings above level 5:

ararm --extract --warning=5 mylib.lib obj1.obj

Related information

-

695

Tool Options

11.10. HLL Object Dumper Options

The high level language (HLL) dumper hldumparm is a program to dump information about an absolute
object file (.abs).

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on', use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

hldumparm -FdhMsy test.abs
hldumparm --dump-format=+dump,+hllsymbols,-modules,+sections,+symbols test.abs

When you do not specify an option, a default value may become active.

696

TASKING VX-toolset for ARM User Guide

HLL object dumper option: --class (-c)

Command line syntax

--class[=class]

-c[class]

You can specify one of the following classes:

Dump contents of all sections.aall

Dump contents of code sections.ccode

Dump contents of data sections.ddata

Default: --class=all

Description

With this option you can restrict the output to code or data only. This option affects all parts of the output,
except the module list. The effect is listed in the following table.

Effect of --classOutput part

Not restrictedModule list

Only lists sections of the specified classSection list

Only dumps the contents of the sections of the specified classSection dump

Only lists symbols of the specified classHLL symbol table

Only lists symbols defined in sections of the specified classAssembly level symbol
table

Not restrictedNote sections

By default all sections are included.

Related information

Section 9.5.2, HLL Dump Output Format

697

Tool Options

HLL object dumper option: --copy-table

Command line syntax

--copy-table

Description

With this option the HLL object dumper attempts to translate the specified code address to the destination
address of a copy table copy command during disassembly.

Related information

-

698

TASKING VX-toolset for ARM User Guide

HLL object dumper option: --diag

Command line syntax

--diag=[format:]{all | msg[-msg],...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The HLL object
dumper does not process any files.You can specify the following formats: html, rtf or text (default). To
create a file with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

Example

To display an explanation of message number 101, enter:

hldumparm --diag=101

This results in the following message and explanation:

F101: cannot create "<file>"

The output file or a temporary file could not be created.
Check if you have sufficient disk space and if you have
write permissions for the specified file.

To write an explanation of all errors and warnings in HTML format to file hldumperrors.html, use
redirection and enter:

hldumparm --diag=html:all > hldumperrors.html

Related information

-

699

Tool Options

HLL object dumper option: --disassembly-intermix (-i)

Command line syntax

--disassembly-intermix[=flag]

-i[flag]

You can specify the following format flags:

Force the insert to be limited to the first preceding source line.s/S+/-single-line

Default: --disassembly-intermix=S

Description

With this option the disassembly is intermixed with HLL source code. The source is searched for as
described with option --source-lookup-path

The +single-line sub-option forces the insert to be limited to the first preceding source line. With the
-single-line sub-option all source lines that belong to the address are prefixed. For example comments
are thus also visible. This is the default.

Example

hldumparm --disassembly-intermix --source-lookup-path=c:\mylib\src hello.abs

Related information

HLL object dumper option --source-lookup-path

700

TASKING VX-toolset for ARM User Guide

HLL object dumper option: --dump-format (-F)

Command line syntax

--dump-format[=flag,...]

-F[flag]...

You can specify the following format flags:

Dump the contents of the sections in the object file. Code sections
can be disassembled, data sections are dumped.

d/D+/-dump

List the high level language symbols, with address, size and type.h/H+/-hllsymbols

Print a list of modules found in object file.m/M+/-modules

Dump all ELF .note sections.n/N+/-note

Print a list of sections with start address, length and type.s/S+/-sections

List the low level symbols, with address and length (if known).y/Y+/-symbols

Alias for DHMNSY (nothing)0

Alias for DhMNSY (only HLL symbols)1

Alias for dHMNSY (only section contents)2

Alias for dhmnsy (default, everything)3

Default: --dump-format=dhmnsy

Description

With this option you can control which parts of the dump output you want to see. By default, all parts are
dumped.

1. Module list

2. Section list

3. Section dump (disassembly)

4. HLL symbol table

5. Assembly level symbol table

6. Note sections

You can limit the number of sections that will be dumped with the options --sections and --section-types.

Related information

Section 9.5.2, HLL Dump Output Format

701

Tool Options

HLL object dumper option: --expand-symbols (-e)

Command line syntax

--expand-symbols[=flag],...

-e[flag]...

You can specify one of the following flags:

Expand arrays with basic C types.b/B+/-basic-types

Include the full path to the field level.f/F+/-fullpath

Default (no flags): --expand-symbols=BF

Description

With this option you specify that all struct, union and array symbols are expanded with their fields in the
HLL symbol dump.

With --expand-symbols=+basic-types, HLL struct and union symbols are listed including all fields. Array
members are expanded in one array member per line regardless of the HLL type. For the fields the types
and names are indented with 2 spaces.

With --expand-symbols=+fullpath, all fields of structs and unions and all members of non-basic type
arrays are expanded and prefixed with their parent's names.

Example

hldumparm -F1 hello.abs

---------- HLL symbol table ----------

00040000 24 struct _dbg_request [dbg.c]
00040018 80 static char stdin_buf[80] [_iob.c]

hldumparm -e -F1 hello.abs

---------- HLL symbol table ----------

00040000 24 struct _dbg_request [dbg.c]
00040000 4 int _errno
00040004 4 enum nr
00040008 16 union u
00040008 4 struct exit
00040008 4 int status
00040008 8 struct open
00040008 4 const char * pathname
0004000c 2 unsigned short int flags
 ...
00040018 80 static char stdin_buf[80] [_iob.c]

702

TASKING VX-toolset for ARM User Guide

hldumparm -eb -F1 hello.abs

---------- HLL symbol table ----------

00040000 24 struct _dbg_request [dbg.c]
00040000 4 int _errno
00040004 4 enum nr
00040008 16 union u
00040008 4 struct exit
00040008 4 int status
00040008 8 struct open
00040008 4 const char * pathname
0004000c 2 unsigned short int flags
 ...
00040018 80 static char stdin_buf[80] [_iob.c]
00040018 1 char
00040019 1 char
0004001a 1 char
 ...
00040067 1 char

hldumparm -ef -F1 hello.abs

---------- HLL symbol table ----------

00040028 24 struct _dbg_request [dbg.c]
00040028 4 int _dbg_request._errno
0004002c 4 enum _dbg_request.nr
00040030 16 union _dbg_request.u
00040030 4 struct _dbg_request.u.exit
00040030 4 int _dbg_request.u.exit.status
00040030 8 struct _dbg_request.u.open
00040030 4 const char * _dbg_request.u.open.pathname
00040034 2 unsigned short int _dbg_request.u.open.flags
 ...
00040018 80 static char stdin_buf[80] [_iob.c]

Related information

Section 9.5.2, HLL Dump Output Format

703

Tool Options

HLL object dumper option: --help (-?)

Command line syntax

--help

-?

Description

Displays an overview of all command line options.

Example

The following invocations all display a list of the available command line options:

hldumparm -?
hldumparm --help
hldumparm

Related information

-

704

TASKING VX-toolset for ARM User Guide

HLL object dumper option: --hex (-x)

Command line syntax

--hex

-x

Description

With this option you can control the way data sections and code sections are dumped. By default, the
contents of data sections are represented by directives. A new directive will be generated for each symbol.
ELF labels in the section are used to determine the start of a directive. ROM sections are represented
with .db, .dh, .dw, .dd kind of directives, depending on the size of the data. RAM sections are
represented with .ds directives, with a size operand depending on the data size. This can be either the
size specified in the ELF symbol, or the size up to the next label. Code sections are dumped as
disassembly.

With option --hex, no directives will be generated for ROM data sections and no disassembly dump will
be done for code sections. Instead ROM data sections and code sections are dumped as hexadecimal
code with ASCII translation. RAM sections will be represented with only a start address and a size indicator.

Example

hldumparm -F2 --section=.rodata hello.abs

---------- Section dump ----------

 .section .data, '.rodata', at(0x000006a8)
 .db 48,65,6c,6c,6f,20,25,73,21,0a,00 ; Hello %s!..
 .endsec

 .section .data, '.rodata', at(0x000006b4)
 .db 77,6f,72,6c,64,00 ; world.
 .endsec

hldumparm -F2 --section=.rodata --hex hello.abs

---------- Section dump ----------

 section 7 (.rodata):
000006a8 48 65 6c 6c 6f 20 25 73 21 0a 00 Hello %s!..

 section 5 (.rodata):
000006b4 77 6f 72 6c 64 00 world.

Related information

Section 9.5.2, HLL Dump Output Format

705

Tool Options

HLL object dumper option: --option-file (-f)

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the HLL object dumper.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

 -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

--symbols=hll
--class=code
hello.abs

706

TASKING VX-toolset for ARM User Guide

Specify the option file to the HLL object dumper:

hldumparm --option-file=myoptions

This is equivalent to the following command line:

hldumparm --symbols=hll --class=code hello.abs

Related information

-

707

Tool Options

HLL object dumper option: --output (-o)

Command line syntax

--output=file

-o file

Description

By default, the HLL object dumper dumps the output on stdout. With this option you specify to dump
the information in the specified file.

The default output format is text, but you can specify another output format with option --output-type.

Example

hldumparm --output=dump.txt hello.abs

The HLL object dumper dumps the output in file dump.txt.

Related information

HLL object dumper option --output-type

708

TASKING VX-toolset for ARM User Guide

HLL object dumper option: --output-type (-T)

Command line syntax

--output-type[=type]

-T[type]

You can specify one of the following types:

Output human readable text.ttext

Output XML.xxml

Default: --output-type=text

Description

With this option you can specify whether the output is formatted as plain text or as XML.

Related information

HLL object dumper option --output

709

Tool Options

HLL object dumper option: --print-mangled-symbols (-P)

Command line syntax

--print-mangled-symbols

-P

Description

The C++ compiler can generate unreadable symbol names. These symbols cannot easily be related to
your C++ source file anymore.Therefore the HLL dumper by default demangles C++ function names and
variable names in the HLL symbol table. With this option you can override this default setting and print
the mangled names instead.

Example

hldumparm hellocpp.abs

---------- HLL symbol table ----------

Address Size HLL Type Name
00001254 20 void __register_finalization_routine()

hldumparm --print-mangled-symbols hellocpp.abs

---------- HLL symbol table ----------

Address Size HLL Type Name
00001254 20 void _Z31__register_finalization_routinev()

Related information

-

710

TASKING VX-toolset for ARM User Guide

HLL object dumper option: -r

Command line syntax

-r

Description

With this option the address and encoding are not part of the disassembly of a code section.This is useful
when you only want the disassembly part.

Example

hldumparm -F2 hello.elf

----------- Section dump ----------

 .section .text, at(0x00000690)
00000690 08 00 9f e5 main ldr r0, [r15, #+0x8]
00000694 00 10 90 e5 ldr r1, [r0, #+0x0]
00000698 04 00 9f e5 ldr r0, [r15, #+0x4]
0000069c 74 ff ff ea b printf
000006a0 80 01 .dh 0180
000006a2 04 00 .dh 0004
000006a4 a8 06 .dh 06a8
000006a6 00 00 .dh 0000
 .endsec

hldumparm -F2 -r hello.elf

----------- Section dump ----------

 .section .text, at(0x00000690)
main: ldr r0, [r15, #+0x8]
 ldr r1, [r0, #+0x0]
 ldr r0, [r15, #+0x4]
 b printf
 .dh 0180
 .dh 0004
 .dh 06a8
 .dh 0000
 .endsec

Related information

-

711

Tool Options

HLL object dumper option: --sections (-s)

Command line syntax

--sections=name,...

-sname,...

Description

With this option you can restrict the output to the specified sections only. This option affects the following
parts of the output:

Effect of --sectionsOutput part

Not restrictedModule list

Only lists the specified sectionsSection list

Only dumps the contents of the specified sectionsSection dump

Not restrictedHLL symbol table

Only lists symbols defined in the specified sectionsAssembly level symbol
table

Not restrictedNote sections

By default all sections are included.

Related information

Section 9.5.2, HLL Dump Output Format

712

TASKING VX-toolset for ARM User Guide

HLL object dumper option: --source-lookup-path (-L)

Command line syntax

--source-lookup-path=path

-Lpath

Description

With this option you can specify an additional path where your source files are located. If you want to
specify multiple paths, use the option --source-lookup-path for each separate path.

The order in which the HLL object dumper will search for source files when intermixed disassembly is
used, is:

1. The path obtained from the HLL debug information.

2. The path that is specified with the option --source-lookup-path. If multiple paths are specified, the
paths will be searched for in the order in which they are given on the command line.

Example

Suppose you call the HLL object dumper as follows:

hldumparm --disassembly-intermix --source-lookup-path=c:\mylib\src hello.abs

First the HLL object dumper looks in the directory found in the HLL debug information of file hello.abs
for the location of the source file(s). If it does not find the file(s), it looks in the directory c:\mylib\src.

Related information

HLL object dumper option --disassembly-intermix

713

Tool Options

HLL object dumper option: --symbols (-S)

Command line syntax

--symbols[=type]

-S[type]

You can specify one of the following types:

Display assembly symbols in code dump.aasm

Display HLL symbols in code dump.hhll

Display plain addresses in code dump.nnone

Default: --symbols=asm

Description

With this option you can control symbolic information in the disassembly and data dump. For data sections
this only applies to symbols used as labels at the data addresses. Data within the data sections will never
be replaced with symbols.

Only symbols that are available in the ELF or DWARF information are used. If you build an application
without HLL debug information the --symbols=hll option will result in the same output as with
--symbols=none. The same applies to the --symbols=asm option when all symbols are stripped from
the ELF file.

Example

hldumparm -F2 hello.abs

----------- Section dump ----------

 .section .text, '_vector_0'
00000000 e2 00 00 ea b Reset_Handler
 .endsec

hldumparm --symbols=none -F2 hello.abs

----------- Section dump ----------

 .section .text, '_vector_0'
00000000 e2 00 00 ea b 0x390
 .endsec

Related information

Section 9.5.2, HLL Dump Output Format

714

TASKING VX-toolset for ARM User Guide

HLL object dumper option: --version (-V)

Command line syntax

--version

-V

Description

Display version information. The HLL object dumper ignores all other options or input files.

Related information

-

715

Tool Options

HLL object dumper option: --xml-base-filename (-X)

Command line syntax

--xml-base-filename

-X

Description

With this option the <File name> field in the XML output only contains the filename of the object file.
By default, any path name, if present, is printed as well.

Example

hldumparm --output-type=xml --output=hello.xml ../hello.abs

The field <File name="../hello.abs"> is used in hello.xml.

hldumparm --output-type=xml --output=hello.xml -X ../hello.abs

The field <File name="hello.abs"> is used in hello.xml. The path is stripped from the filename.

Related information

HLL object dumper option --output-type

716

TASKING VX-toolset for ARM User Guide

11.11. Expire Cache Utility Options

With the utility expirearm you can limit the size of the cache (C compiler option --cache) by removing all
files older than a few days or by removing older files until the total size of the cache is smaller than a
specified size. See also Section 12.5, Compiler Cache.

The invocation syntax is:

expirearm [option]... cache-directory

The compiler cache is present in the directory carmcache under the specified cache-directory.

This section describes all options for the expire cache utility.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

717

Tool Options

Expire cache utility option: --access (-a)

Command line syntax

--access

-a

Description

Use the last access time instead of the last modification time to determine which files to delete.

Example

expirearm --access --days=7 "installation-dir\mproject\.cache"

Related information

-

718

TASKING VX-toolset for ARM User Guide

Expire cache utility option: --days (-d)

Menu entry

1. Select C/C++ Compiler » Optimization » Compilation Speed.

2. Enable the option Cache generated code to improve the compilation speed.

3. In the Directory for cached files field, enter the name for the location of the cache.

By default this is the .cache directory under your project directory.

4. Specify the Maximum days files will live in the cache.

Command line syntax

--days=n

-dn

Description

Remove all files older than n days from the cache.

Example

To remove all files older than seven days, enter:

expirearm --days=7 "installation-dir\mproject\.cache"

Related information

-

719

Tool Options

Expire cache utility option: --diag

Command line syntax

--diag=[format:]{all | msg[-msg],...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify.You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

With this option the expire cache utility does not remove any files.

Example

To display an explanation of message number 204, enter:

expirearm --diag=204

This results in the following message and explanation:

E204: failed to remove "<file>" <<cause>>

The removal of the indicated file failed. The <cause>
provides more details of the problem.

To write an explanation of all errors and warnings in HTML format to file expirearm_errors.html,
use redirection and enter:

expirearm --diag=html:all > expirearm_errors.html

Related information

-

720

TASKING VX-toolset for ARM User Guide

Expire cache utility option: --dry-run (-n)

Command line syntax

--dry-run

-n

Description

With this option you put the expire utility in verbose mode. The utility shows which files would be deleted,
without actually removing them.

Related information

Expire cache utility option --verbose (Verbose output)

721

Tool Options

Expire cache utility option: --help (-?)

Command line syntax

--help[=item]

-?

You can specify the following argument:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

expirearm -?
expirearm --help
expirearm

To see a detailed description of the available options, enter:

expirearm --help=options

Related information

-

722

TASKING VX-toolset for ARM User Guide

Expire cache utility option: --megabytes (-m)

Menu entry

1. Select C/C++ Compiler » Optimization » Compilation Speed.

2. Enable the option Cache generated code to improve the compilation speed.

3. In the Directory for cached files field, enter the name for the location of the cache.

By default this is the .cache directory under your project directory.

4. Enable the option Clear cache upon project clean.

Each time you use Project » Clean... the cache is cleared.

Command line syntax

--megabytes=m

-mm

Description

Reduce the size of the cache to m MBytes by removing files from the cache, starting with the oldest file.
With a size of 0 (zero) you clear the entire cache.

Example

To reduce the compiler cache size to 4 MB, enter:

expirearm --megabytes=4 "installation-dir\mproject\.cache"

Older files are removed until the total size of the cache is smaller than 4 MB.

To clear the compiler cache, enter:

expirearm --megabytes=0 "installation-dir\mproject\.cache"

Related information

-

723

Tool Options

Expire cache utility option: --totals (-t)

Command line syntax

--totals

-t

Description

Show the total size of the cache and the number of directories and files. This option is implicit when
invoked without the --days and --megabytes options.

Example

expirearm -t "installation-dir\mproject\.cache"

installation-dir\mproject\.cache\carmcache:
1 MB, 3 directories, 3 files

Related information

-

724

TASKING VX-toolset for ARM User Guide

Expire cache utility option: --verbose (-v)

Command line syntax

--verbose

-v

Description

With this option you put the expire cache utility in verbose mode. The utility shows which files are being
deleted.

Example

expirearm -v --megabytes=0 "installation-dir\mproject\.cache"

2014-06-24 12:36:15 installation-dir\mproject\.cache\carmcache\cstart\30aa7935
2014-06-24 12:36:17 installation-dir\mproject\.cache\carmcache\myproject\6f0a3ba4

Related information

-

725

Tool Options

Expire cache utility option: --version (-V)

Command line syntax

--version

-V

Description

Display version information and exit. The expire cache utility ignores all other options.

Related information

-

726

TASKING VX-toolset for ARM User Guide

Chapter 12. Influencing the Build Time
In general many settings have influence on the build time of a project. Any change in the tool settings of
your project source will have more or less impact on the build time.The following sections describe several
issues that can have significant influence on the build time.

12.1. MIL Linking

With MIL linking (see Section 4.5.1, Generic Optimizations (frontend)) it is possible to let the compiler
apply optimizations application wide. This can yield significant optimization improvements, but the build
times can also be significantly longer. MIL linking itself can require significant time, but also the changed
build process implies longer build times. The MIL linking settings in Eclipse are:

• Build for application wide optimizations (MIL linking)

This enables MIL linking. The build process changes: the C files are translated to intermediate code
(MIL files) and the generated MIL files of the whole project are linked together by the C compiler. The
next step depends on the setting of the option below.

• Application wide optimization mode: Optimize more/Build slower

When this option is enabled, the compiler runs the code generator immediately on the completely linked
MIL stream, which represents the entire application. This way the code generator can perform several
optimizations, such as "code compaction", at application scope. But this also requires significantly more
memory and requires more time to generate code. Besides that, it is no longer possible to do incremental
builds. With each build the full MIL linking phase and code generation has to be done, even with the
smallest change that would in a normal build (not MIL linking) require only a single module to be
translated.

• Application wide optimization mode: Optimize less/Build faster

When this option is disabled, the compiler splits the MIL stream after MIL linking in separate modules.
This allows the code generation to be performed for the modified modules only, and will therefore be
faster than with the other option enabled. Although the MIL stream is split in separate modules after
MIL linking, it still may happen that modifying a single C source file results in multiple MIL files to be
compiled.This is a natural result of global optimizations, where the code generated for multiple modules
was affected by the change.

In general, if you do not need code compaction, for example because you are optimizing fully for speed,
it is recommended to choose Optimize less/Build faster.

12.2. Optimization Options

In general any optimization may require more work to be done by the compiler. But this does not mean
that disabling all optimizations (level 0) gives the fastest compilation time. Disabling optimizations may
result in more code being generated, resulting in more work for other parts of the compiler, like for example
the register allocator.

727

12.3. Automatic Inlining

Automatic inlining is an optimization which can result in significant longer build time.The overall functions
will get bigger, often making it possible to do more optimizations. But also often resulting in more registers
to be in use in a function, giving the register allocation a tougher job.

12.4. Code Compaction

When you disable the code compaction optimization, the build times may be shorter. Certainly when MIL
linking is used where the full application is passed as a single MIL stream to the code generation. Code
compaction is however an optimization which can make a huge difference when optimizing for code size.
When size matters it makes no sense to disable this option. When you choose to optimize for speed
(--tradeoff=0) the code compaction is automatically disabled.

12.5. Compiler Cache

The C compiler has support for caching intermediate results to avoid full compilations. When the source
code after preprocessing and relevant compiler options and the compiler version are the same as in a
previous invocation, the previous result is copied to the output file. The cache only works when there is
a single C input file and a single output file (no --mil-split).

To enable caching from Eclipse:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C/C++ Compiler » Optimization » Compilation Speed.

4. Enable the option Cache generated code to improve the compilation speed.

5. In the Directory for cached files field, enter the name for the location of the cache.

By default this is the .cache directory under your project directory.

6. Specify the Maximum days files will live in the cache.

7. (Optional) Enable the option Clear cache upon project clean.

Each time you use Project » Clean... the cache is cleared.

Eclipse calls the C compiler with option --cache. The cache directory may be shared, for instance by
placing it on a network drive. The compiler creates a directory carmcache in the specified directory.

When a result from the cache is used, the C compiler generates a comment line in the assembly source
file to notify that. In that case be aware of the following:

728

TASKING VX-toolset for ARM User Guide

• In case source merging is enabled an older version of the source is still shown. As long as a source
change has no effect on the preprocessed code, the cached version of the output file is used.

• Some options, like --define, --include-directory and --output are not part of the hash used for the
cache. As long as a change in these options has no influence on the preprocessed code, the cached
version of the output is used.This means that the options listed as comments in the generated assembly
file might not match the options actually used.

With every compilation of a file that results in a cache miss, a new file is stored in the cache. Old files are
not removed from the cache automatically because that would slow down the compiler too much.To keep
the cache size reasonable specify a maximum number of days the files will live in the cache. Eclipse uses
the utility expirearm for this. It is recommended to run this utility frequently, for example with each time
the project is linked. For more information on this utility see Section 9.6, Expire Cache Utility.

12.6. Header Files

Many applications include all header files in each module, often by including them all within a single
include file. Processing header files takes time. It is a good programming practice to only include the
header files that are really required in a module, because:

• it is clear what interfaces are used by a module

• an incremental build after modifying a header file results in less modules required to be rebuild

• it reduces compile time

12.7. Parallel Build

The make utility amk, which is used by Eclipse, has a feature to build jobs in parallel. This means that
multiple modules can be compiled in parallel. With today's multi-core processors this means that each
core can be fully utilized. In practice even on single core machines the compile time decreases when
using parallel jobs. On multi-core machines the build time even improves further when specifying more
parallel jobs than the number of cores.

In Eclipse you can control the parallel build behavior:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, select C/C++ Build.

In the right pane the C/C++ Build page appears.

3. On the Behaviour tab, select Use parallel build.

4. You can specify the number of parallel jobs, or you can use an optimal number of jobs. In the last
case, amk will fork as many jobs in parallel as cores are available.

729

Influencing the Build Time

12.8. Number of Sections

The linker speed depends on the number of sections in the object files. The more sections, the longer
the locating will take.You can decrease the link time by creating output sections in the LSL file. For
example:

Use compiler option --rename-sections=.text={name}

section_layout ::linear
{
 group (ordered)
 {
 section "code_output1" (size = 64k, attributes = x, fill=0xFF,
 overflow = "code_output2")
 {
 select "*__cocofun*";
 }
 }
}

730

TASKING VX-toolset for ARM User Guide

Chapter 13. Profiling
Profiling is the process of collecting statistical data about a running application. With these data you can
analyze which functions are called, how often they are called and what their execution time is.This chapter
describes the TASKING profiling method with code instrumentation techniques and static profiling.

13.1. What is Profiling?

Profiling is a collection of methods to gather data about your application which helps you to identify code
fragments where execution consumes the greatest amount of time.

TASKING supplies a number of profiler tools each dedicated to solve a particular type of performance
tuning problem. Performance problems can be solved by:

• Identifying time-consuming algorithms and rewrite the code using a more time-efficient algorithm.

• Identifying time-consuming functions and select the appropriate compiler optimizations for these functions
(for example, enable loop unrolling or function inlining).

• Identifying time consuming loops and add the appropriate pragmas to enable the compiler to further
optimize these loops.

A profiler helps you to find and identify the time consuming constructs and provides you this way with
valuable information to optimize your application.

TASKING employs various schemes for collecting profiling data, depending on the capabilities of the
target system and different information needs.

13.1.1. Methods of Profiling

There are several methods of profiling: recording by an instruction set simulator, profiling with code
instrumentation techniques (dynamic profiling) and profiling by the C compiler at compile time (static
profiling). Each method has its advantages and disadvantages.

Profiling by an instruction set simulator

One way to gather profiling information is built into the instruction set simulator (ISS). The ISS records
the time consumed by each instruction that is executed.The debugger then retrieves this information and
correlates the time spent for individual instructions to C source statements.

Advantages

• it gives (cycle) accurate information with extreme fine granularity

• the executed code is identical to the non-profiled code

Disadvantages

• the method requires an ISS as execution environment

731

Profiling using code instrumentation techniques (Dynamic Profiling)

The TASKING C compiler has an option to add code to your application which takes care of the profiling
process. This is called code instrumentation. The gathered profiling data is first stored in the target's
memory and will be written to a file when the application finishes execution or when the function
__prof_cleanup() is called.

Advantages

• it can give a complete call graph of the application annotated with the time spent in each function and
basic block

• this profiling method is execution environment independent

• the application is profiled while it executes on its aimed target taking real-life input

Disadvantage

• instrumentation code creates a significant run-time overhead, and instrumentation code and gathered
data take up target memory

This method provides a valuable complement to the other two methods and is described into more detail
below.

Profiling estimation by the C compiler (Static Profiling)

The TASKING C compiler has an option to generate static profile information through various heuristics
and estimates. The profiling data produced this way at compile time is stored in an XML file, which can
be processed and displayed using the same tools used for dynamic (run-time) profiling.

Advantages

• it can give a give a quick estimation of the time spent in each function and basic block

• this profiling method is execution environment independent

• the application is profiled at compile time

• it requires no extra code instrumentation, so no extra run-time overhead

Disadvantage

• it is an estimation by the compiler and therefore less accurate than dynamic profiling

This method also is described into more detail below.

13.2. Profiling using Code Instrumentation (Dynamic Profiling)

Profiling can be used to determine which parts of a program take most of the execution time.

Once the collected data are presented, it may reveal which pieces of your code execute slower than
expected and which functions contribute most to the overall execution time of a program. It gives you

732

TASKING VX-toolset for ARM User Guide

also information about which functions are called more or less often than expected. This information not
only reveal design flaws or bugs that had otherwise been unnoticed, it also reveals parts of the program
which can be effectively optimized.

Important considerations

The dynamic profiling method adds code to your original application which is needed to gather the profiling
data. Therefore, the code size of your application increases. Furthermore, during the profiling process,
the gathered data is initially stored into dynamically allocated memory of the target. The heap of your
application should be large enough to store this data. Since code instrumentation is done by the compiler,
assembly functions used in your program do not show up in the profile.

The profiling information is collected during the actual execution of the program. Therefore, the input of
the program influences the results. If a part/function of the program is not activated while the program is
profiled, no profile data is generated for that part/function.

When you use dynamic profiling on a target board, function clock() must be added to the application
to get profiling timer results.You can add the file clock.c from the example profiling-stm32f1xx
project to your project as a starting point.

It is not possible to profile applications that are compiled with the optimization code compaction (C compiler
option --optimize=+compact).Therefore, when you turn profiling on, the compiler automatically disables
parts of the code compaction optimization.

Overview of steps to perform

To obtain a profile using code instrumentation, perform the following steps:

1. Compile and link your program with profiling enabled

2. Execute the program to generate the profile data

3. Display the profile

First you need a completed project. If you are not using your own project, use the profiling example
as described below.

1. From the File menu, select Import...

The Import dialog appears.

2. Select TASKING C/C++ » TASKING ARM Example Projects and click Next.

3. In the Example projects box, disable all projects except profiling .

4. Click Finish.

The profiling project should now be visible in the C/C++ view.

733

Profiling

13.2.1. Step 1: Build your Application for Profiling

The first step is to add the code that takes care of the profiling, to your application. This is done with C
compiler options:

1. From the Project menu, select Properties for

The Properties for profiling dialog box appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, expand the C/C++ Compiler entry and select Debugging.

4. Enable one or more of the following Generate profiling information options (the sample profiling
project already has profiling options enabled).

• for block counters (not in combination with Call graph or Function timers)

• to build a call graph (not in combination with Block counters)

• for function counters

• for function timers (not in combination with Block counters/Function counters)

Note that the more detailed information you request, the larger the overhead in terms of
execution time, code size and heap space needed. The option Generate symbolic debug
information (--debug) does not affect profiling, execution time or code size.

Block counters (not in combination with Call graph or Function timers)

This will instrument the code to perform basic block counting. As the program runs, it will count how
many time it executed each branch of each if statement, each iteration of a for loop, and so on. Note
that though you can combine Block counters with Function counters, this has no effect because
Function counters is only a subset of Block counters.

Call graph (not in combination with Block counters)

This will instrument the code to reconstruct the run-time call graph. As the program runs it associates
the caller with the gathered profiling data.

Function counters

This will instrument the code to perform function call counting. This is a subset of the basic Block
counters.

Function timers (not in combination with Block counters/Function counters)

This will instrument the code to measure the time spent in a function. This includes the time spent
in all called functions (callees).

734

TASKING VX-toolset for ARM User Guide

For the command line, see the C compiler option --profile (-p).

Profiling is only possible with optimization levels 0, 1 and 2. So:

5. Open the Optimization page and set the Optimization level to 2 - Optimize more.

6. Click OK to apply the new option settings and rebuild the project ().

13.2.1.1. Profiling Modules and C Libraries

Profiling individual modules

It is possible to profile individual C modules. In this case only limited profiling data is gathered for the
functions in the modules compiled without the profiling option. When you use the suboption Call graph,
the profiling data reveals which profiled functions are called by non-profiled functions. The profiling data
does not show how often and from where the non-profiled functions themselves are called. Though this
does not affect the flat profile, it might reduce the usefulness of the call graph.

Profiling C library functions

Eclipse and/or the control program will link your program with the standard version of the C library.
Functions from this library which are used in your application, will not be profiled. If you do want to
incorporate the library functions in the profile, you must set the appropriate C compiler options in the C
library makefiles and rebuild the library.

13.2.1.2. Linking Profiling Libraries

When building your application, the application must be linked against the corresponding profile library.
Eclipse (or the control program) automatically select the correct library based on the profiling options you
specified. However, if you compile, assemble and link your application manually, make sure you specify
the correct library.

See Section 7.3, Linking with Libraries for an overview of the (profiling) libraries.

13.2.2. Step 2: Execute the Application

Once you have compiled and linked the application for profiling, it must be executed to generate the
profiling data. Run the program as usual: the program should run normally taking the same input as usual
and producing the same output as usual. The application will run somewhat slower than normal because
of the extra time spent on collecting the profiling data.

Follow the steps below to run the application on the TASKING simulator, using the debugger. (In fact,
you can run the application also on a target board.)

1. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.

2. Select TASKING C/C++ Debugger and click the New launch configuration button () to add a
new configuration.

735

Profiling

3. In the Name field enter the name of the configuration. By default, this is the name of the project, but
you can give your configuration any name you want to distinguish it from the project name. For
example enter profiling.simulator to identify the simulator debug configuration.

4. On the Target tab, select the ARM Simulator.

5. Click the Apply button.

6. Click the Debug button to start the debugger and launch the profiling application.

Eclipse will open the TASKING Debug perspective (as specified in the configuration) and asks for
confirmation.

7. Click Yes to open the TASKING Debug perspective.

The TASKING Debug perspective opens while the application has stopped before it enters main()

8. From the main toolbar, click on the (Resume) button.

A file system simulation (FSS) view appears in which the application outputs the results.

When the program has finished, the collected profiling data is saved (for details see 'After execution'
below).

Startup code

The startup code initializes the profiling functions by calling the function __prof_init(). Eclipse will
automatically make the required modifications to the startup code. Or, when you use the control program,
this extracts the correct startup code from the C library.

If you use your own startup code, you must manually insert a call to the function __prof_init just before
the call to main and its stack setup.

An application can have multiple entry points, such as main() and other functions that are called by
interrupt. This does not affect the profiling process.

Small heap problem

When the program does not run as usual, this is typically caused by a shortage of heap space. In this
case a message is issued (when running with file system simulation, it is displayed on the Debug console).
To solve this problem, increase the size of the heap. Information about the heap is stored in the linker
script file (.lsl) file which is automatically added when a project is created.

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Stack/Heap.

In the right pane the Stack/Heap property page appears.

3. Enter larger values for heap and click OK.

736

TASKING VX-toolset for ARM User Guide

The project LSL file is updated automatically according to the new settings.

Presumable incorrect call graph

The call graph is based on the compiled source code. Due to compiler optimizations the call graph may
therefor seem incorrect at first sight. For example, the compiler can replace a function call immediately
followed by a return instruction by a jump to the callee, thereby merging the callee function with the caller
function. In this case the time spent in the callee function is not recorded separately anymore, but added
to the time spent in the caller function (which, as said before, now holds the callee function).This represents
exactly the structure of your source in assembly but may differ from the structure in the initial C source.

After execution

When the program has finished (returning from main()), the exit code calls the function
__prof_cleanup(void). This function writes the gathered profiling data to a file on the host system
using the debugger's file system simulation features. If your program does not return from main(), you
can force this by inserting a call to the function __prof_cleanup() in your application source code.
Please note the double underscores when calling from C code!

The resulting profiling data file is named amon.prf.

If your program does not run under control of the debugger and therefore cannot use the file
system simulation (FSS) functionality to write a file to the host system, you must implement a way
to pass the profiling data gathered on the target to the host. Adapt the function
__prof_cleanup() in the profiling libraries or the underlying I/O functions for this purpose.

13.2.3. Step 3: Displaying Profiling Results

After the function __prof_cleanup() has been executed, the result of the profiler can be displayed in
the TASKING Profiler perspective. The profiling data in the file amon.prf is then converted to an XML
file. This file is read and its information is displayed. To view the profiling information, open the TASKING
Profiler perspective:

1. From the Window menu, select Open Perspective » Other...

The Open Perspective dialog appears.

2. Select the TASKING Profiler perspective and click OK.

The TASKING Profiler perspective opens.

737

Profiling

The TASKING Profiler perspective

The TASKING Profiler perspective contains the following Views:

Shows the profiling information of all functions in all C source modules belonging
to your application.

Profiler view

The first table in this view, the callers table, shows the functions that called the
focus function.

The second table in this view, the callees table, shows the functions that are called
by the focus function.

Callers / Callees
view

• Clicking on a function (or on its table row) makes it the focus function.

• Double-clicking on a function, opens the appropriate C source module in the Editor view at the location
of the function definition.

• To sort the rows in the table, click on one of the column headers.

738

TASKING VX-toolset for ARM User Guide

The profiling information

Based on the profiling options you have set before compiling your application, some profiling data may
be present and some may be not. The columns in the tables represent the following information:

The C source module in which the function resides.Module

The line number of the function definition in the C source module.#Line

The function for which profiling data is gathered and (if present) the code blocks in each
function. To show or hide the block counts, in the Profiler view click the Menu button ()
and select Show Block Counts.

Function

The total amount of time in seconds that was spent in this function and all of its
sub-functions.

Total Time

The amount of time in seconds that was spent in the function itself. This excludes the
time spent in the sub-functions. So, self time = function's total time - total times of the
called functions.

Self Time

This is the relative amount of time spent in this function, calculated as a percentage of
the total application time. These should add up to 100%. The total application time is
determined by taking the total time of the call graph. This is usually main. Example:

Total time of main: 0.002000
Self time of function foo: 0.000100
%in Function = (0.000100 / 0.002000) * 100 = 5%

% in
Function

Number of times the function has been executed.Calls

Number of functions by which the function was called.#Callers

Number of functions that was actually called from this function.#Callees

In the caller table: shows for which part (in percent) the caller contributes to the time spent
in the focus function.
In the callee table: shows how much time the focus function has spent relatively in each
of its callees.

Contribution
%

In the caller table: shows how often each callee was called as a percentage of all calls
from the focus function.
In the callee table: shows how often the focus function was called from a particular caller
as a percentage of all calls to the focus function.

Calls %

Common toolbar icons

DescriptionActionIcon

Toggle. If enabled, shows profiling information for block counters.Show/Hide Block
Counts

Opens a dialog where you can specify profiling files for display.Select Profiling
File(s)

739

Profiling

Viewing previously recorded profiling results, combining results

Each time you run your application, new profiling information is gathered and stored in the file amon.prf.
You can store previous results by renaming the file amon.prf (keep the extension .prf); this prevents
the existing amon.prf from being overwritten by the new amon.prf. At any time, you can reload these
profiling results in the profiler.You can even load multiple .prf files into the Profiler to view the combined
results.

First, open the TASKING Profiler perspective if it is not open anymore:

1. In the Profiler view, click on the (Select Profiling File(s)) button.

The Select Profiling File(s) dialog appears.

2. In the Profiling Type group box, select Dynamic Profiling.

3. In the Profiling Files group box, disable the option Use default.

4. Click the Add... button, select the .prf files you want to load and click Open to confirm your choice.

5. Make sure the correct symbol file is selected, in this example profiling.abs.

6. Click OK to finish.

13.3. Profiling at Compile Time (Static Profiling)

Just as with dynamic profiling, static profiling can be used to determine which parts of a program take
most of the execution time. It can provide a good alternative if you do not want that your code is affected
by extra code.

Overview of steps to perform

To obtain a profile using code instrumentation, perform the following steps:

1. Compile and link your program with static profiling enabled

2. Display the profile

First you need a completed project. If you are not using your own project, use the profiling example
as described in Section 13.2, Profiling using Code Instrumentation (Dynamic Profiling).

13.3.1. Step 1: Build your Application with Static Profiling

The first step is to tell the C compiler to make an estimation of the profiling information of your application.
This is done with C compiler options:

1. From the Project menu, select Properties for

The Properties for profiling dialog box appears.

2. In the left pane, expand C/C++ Build and select Settings.

740

TASKING VX-toolset for ARM User Guide

In the right pane the Settings appear.

3. On the Tool Settings tab, expand the C/C++ Compiler entry and select Debugging.

4. Enable Static profiling.

For the command line, see the C compiler option --profile (-p).

Profiling is only possible with optimization levels 0, 1 and 2. So:

5. Open the Optimization page and set the Optimization level to 2 - Optimize more.

6. Click OK to apply the new option settings and rebuild the project ().

13.3.2. Step 2: Displaying Static Profiling Results

After your project has been built with static profiling, the result of the profiler can be displayed in the
TASKING Profiler perspective. The profiling data of each individual file (.sxml), is combined in the XML
file profiling.xprof.This file is read and its information is displayed.To view the profiling information,
open the TASKING Profiler perspective:

1. From the Window menu, select Open Perspective » Other...

The Open Perspective dialog appears.

2. Select the TASKING Profiler perspective and click OK.

The TASKING Profiler perspective opens. This perspective is explained in Section 13.2.3, Step 3:
Displaying Profiling Results

To display static profiling information in the Profiler view

1. In the Profiler view, click on the (Select Profiling File(s)) button.

The Select Profiling File(s) dialog appears.

2. In the Profiling Type group box, select Static Profiling.

3. In the Static Profiling File group box, enable the option Use default.

By default, the file project.xprof is used (profiling.xprof). If you want to specify another file,
disable the option Use default and use the edit field and/or Browse button to specify a static profiling
file (.xprof).

4. Click OK to finish.

741

Profiling

742

TASKING VX-toolset for ARM User Guide

Chapter 14. Libraries
This chapter contains an overview of all library functions that you can call in your C source. This includes
all functions of the standard C library (ISO C99) and some functions of the floating-point library.

A number of standard operations within C are too complex to generate inline code for (too much code).
These operations are implemented as run-time library functions to save code.

Section 14.2, Library Functions, gives an overview of all library functions you can use, grouped per header
file. A number of functions declared in wchar.h are parallel to functions in other header files. These are
discussed together.

Section 14.3, C Library Reentrancy, gives an overview of which functions are reentrant and which are
not.

C library / floating-point library / run-time library

The following libraries are included in the ARM toolset. Both Eclipse and the control program ccarm
automatically select the appropriate libraries depending on the specified options.

DescriptionLibraries

C libraries for ARM and Thumb instructions respectively
Optional letter:
s = single precision floating-point (control program option
--fp-model=+float)

carm[s].lib
cthumb[s].lib

Floating-point libraries for ARM and Thumb (contains floating-point functions
needed by the C compiler)

fparm.lib
fpthumb.lib

Run-time library for ARM and Thumb (contains other run-time functions
needed by the C compiler)

rtarm.lib
rtthumb.lib

Profiling libraries for ARM and Thumb
pb = block/function counter
pc = call graph
pct = call graph and timing
pd = dummy
pt = function timing

pbarm.lib / pbthumb.lib
pcarm.lib / pcthumb.lib
pctarm.lib / pctthumb.lib
pdarm.lib / pdthumb.lib
ptarm.lib / ptthumb.lib

CMSIS DSP libraries
Optional letter:
s = single precision floating-point

dspthumb[s].lib

For the C libraries, profiling libraries and CMIS DPS libraries, also MIL library variants are present (files
with extension .ma).

Sources for the libraries are present in the directories lib\src, lib\src.* in the form of an executable.
If you run the executable it will extract the sources in the corresponding directory.

743

C++ Library

The TASKING C++ compiler supports the STLport C++ libraries. STLport is a multi-platform ISO C++
Standard Library implementation. It is a free, open-source product, which is delivered with the TASKING
C++ compiler. The library supports standard templates and I/O streams.

The include files for the STLport C++ libraries are present in directory include.stl relative to the
product installation directory.

You can find more information on the STLport library on the following site:http://stlport.sourgeforge.net/

Also read the license agreement on http://stlport.sourgeforge.net/License.shtml. This license agreement
is applicable to the STLport C++ library only. All other product components fall under the TASKING license
agreement.

For an STL Programmer's Guide you can see http://www.sgi.com/tech/stl/index.html

The following C++ libraries are delivered with the product:

DescriptionLibraries

C++ libraries for ARM and Thumb
Optional letter:
s = single precision floating-point
x = exception handling

cparm[s][x].lib
cpthumb[s][x].lib

STLport C++ libraries (exception handling variants only)
Optional letter:
s = single precision floating-point

stlarmx.lib
stlthumbx.lib

To build an STLport library

1. Change to the directory
installdir\lib\src.stl\[v6M][v7EM][v7M][v7R]\[le][be][be32]\stl[arm|thumb]x,
depending on the library set used by your project.

2. Run the makefile by executing installdir\bin\mkarm.exe without arguments.

3. Copy the generated C++ library stl[arm|thumb]x.lib to the corresponding directory
installdir\lib\[v6M][v7EM][v7M][v7R]\[le][be][be32].

where,

libraries for ARMv6-M architectures[v6M]

libraries for ARMv7E-M architectures[v7EM]

libraries for ARMv7-M architectures[v7M]

libraries for ARMv7-R architectures[v7R]

little-endian library variant[le]

big-endian library variant[be]

big-endian 32 library variant[be32]

744

TASKING VX-toolset for ARM User Guide

http://stlport.sourgeforge.net/
http://stlport.sourgeforge.net/License.shtml
http://www.sgi.com/tech/stl/index.html

14.1. Using the CMSIS DSP Library

Part of the CMSIS standard is a DSP library.The CMSIS DSP library is included in the TASKING product's
cmsis folder. The library is also available as a pre-built library file in the lib folders for v6M, v7M and
v7EM. The libraries are dspthumb.lib (double precision floating point) and dspthumbs.lib (single
precision floating point). MIL libraries are present also: dspthumb.ma and dspthumbs.ma.

To use the CMSIS DSP library in your Eclipse project

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C/C++ Compiler » Include Paths .

4. Enable the option Add CMSIS include paths.

5. On the Tool Settings tab, select Linker » Libraries.

6. Enable the option Link CMSIS DSP library.

This passes the option --dsp-library of the control program (ccarm) for compilation of C/C++ files
and for linking. With this option the control program sets the compiler macro ARM_MATH_CM0,
ARM_MATH_CM3 or ARM_MATH_CM4, depending on the selected processor. These macros are
required for the CMSIS arm_math.h header file to operate correctly. With --dsp-library the control
program also selects the appropriate library.

14.2. Library Functions

The tables in the sections below list all library functions, grouped per header file in which they are declared.
Some functions are not completely implemented because their implementation depends on the context
where your application will run.These functions are for example all I/O related functions. Where possible,
these functions are implemented using file system simulation (FSS). This system can be used by the
debugger to simulate an I/O environment which enables you to debug your application.

A number of wide-character functions are available as C source code, but have not been compiled with
the C library. To use complete wide-character functionality, you must recompile the libraries with the
macro WCHAR_SUPPORT_ENABLED and keep this macro also defined when compiling your own sources.
See C compiler option --define (-D). The easiest way is to adapt the makefile for the library and change
the CC line to:

CC = $(PRODDIR)\bin\carm -DWCHAR_SUPPORT_ENABLED

745

Libraries

14.2.1. assert.h

Prints a diagnostic message if NDEBUG is not defined. (Implemented as macro)assert(expr)

14.2.2. complex.h

The complex number z is also written as x+yi where x (the real part) and y (the imaginary part) are real
numbers of types float, double or long double.The real and imaginary part can be stored in structs
or in arrays. This implementation uses arrays because structs may have different alignments.

The header file complex.h also defines the following macros for backward compatibility:

complex _Complex /* C99 keyword */
imaginary _Imaginary /* C99 keyword */

Parallel sets of functions are defined for double, float and long double. They are respectively named
function, functionf, functionl. All long type functions, though declared in complex.h, are implemented
as the double type variant which nearly always meets the requirement in embedded applications.

This implementation uses the obvious implementation for complex multiplication; and a more sophisticated
implementation for division and absolute value calculations which handles underflow, overflow and infinities
with more care. The ISO C99 #pragma CX_LIMITED_RANGE therefore has no effect.

Trigonometric functions

Returns the complex sine of z.csinlcsinfcsin

Returns the complex cosine of z.ccoslccosfccos

Returns the complex tangent of z.ctanlctanfctan

Returns the complex arc sine sin-1(z).casinlcasinfcasin

Returns the complex arc cosine cos-1(z).cacoslcacosfcacos

Returns the complex arc tangent tan-1(z).catanlcatanfcatan

Returns the complex hyperbolic sine of z.csinhlcsinhfcsinh

Returns the complex hyperbolic cosine of z.ccoshlccoshfccosh

Returns the complex hyperbolic tangent of z.ctanhlctanhfctanh

Returns the complex arc hyperbolic sinus of z.casinhlcasinhfcasinh

Returns the complex arc hyperbolic cosine of z.cacoshlcacoshfcacosh

Returns the complex arc hyperbolic tangent of z.catanhlcatanhfcatanh

Exponential and logarithmic functions

Returns the result of the complex exponential function ez.cexplcexpfcexp

Returns the complex natural logarithm.cloglclogfclog

746

TASKING VX-toolset for ARM User Guide

Power and absolute-value functions

Returns the complex absolute value of z (also known as norm,
modulus or magnitude).

cabslcabsfcabs

Returns the complex value of x raised to the power y (xy) where
both x and y are complex numbers.

cpowlcpowfcpow

Returns the complex square root of z.csqrtlcsqrtfcsqrt

Manipulation functions

Returns the argument of z (also known as phase angle).carglcargfcarg

Returns the imaginary part of z as a real (respectively as a double,
float, long double)

cimaglcimagfcimag

Returns the complex conjugate value (the sign of its imaginary part
is reversed).

conjlconjfconj

Returns the value of the projection of z onto the Riemann sphere.cprojlcprojfcproj

Returns the real part of z as a real (respectively as a double,
float, long double)

creallcrealfcreal

14.2.3. cstart.h

The header file cstart.h controls the system startup code's general settings and register initializations.
It contains defines only, no functions.

14.2.4. ctype.h and wctype.h

The header file ctype.h declares the following functions which take a character c as an integer type
argument. The header file wctype.h declares parallel wide-character functions which take a character
c of the wchar_t type as argument.

Descriptionwctype.hctype.h

Returns a non-zero value when c is an alphabetic character or a
number ([A-Z][a-z][0-9]).

iswalnumisalnum

Returns a non-zero value when c is an alphabetic character
([A-Z][a-z]).

iswalphaisalpha

Returns a non-zero value when c is a blank character (tab, space...)iswblankisblank

Returns a non-zero value when c is a control character.iswcntrliscntrl

Returns a non-zero value when c is a numeric character ([0-9]).iswdititisdigit

Returns a non-zero value when c is printable, but not a space.iswgraphisgraph

Returns a non-zero value when c is a lowercase character ([a-z]).iswlowerislower

Returns a non-zero value when c is printable, including spaces.iswprintisprint

Returns a non-zero value when c is a punctuation character (such
as '.', ',', '!').

iswpunctispunct

747

Libraries

Descriptionwctype.hctype.h

Returns a non-zero value when c is a space type character (space,
tab, vertical tab, formfeed, linefeed, carriage return).

iswspaceisspace

Returns a non-zero value when c is an uppercase character ([A-Z]).iswupperisupper

Returns a non-zero value when c is a hexadecimal digit
([0-9][A-F][a-f]).

iswxdigitisxdigit

Returns c converted to a lowercase character if it is an uppercase
character, otherwise c is returned.

towlowertolower

Returns c converted to an uppercase character if it is a lowercase
character, otherwise c is returned.

towuppertoupper

Converts c to a lowercase character, does not check if c really is
an uppercase character. Implemented as macro. This macro
function is not defined in ISO C99.

-_tolower

Converts c to an uppercase character, does not check if c really
is a lowercase character. Implemented as macro. This macro
function is not defined in ISO C99.

-_toupper

Returns a non-zero value when c is in the range of 0 and 127.This
function is not defined in ISO C99.

isascii

Converts c to an ASCII value (strip highest bit). This function is
not defined in ISO C99.

toascii

14.2.5. dbg.h

The header file dbg.h contains the debugger call interface for file system simulation. It contains low level
functions. This header file is not defined in ISO C99.

Low level function to trap debug events_dbg_trap

Low level function for command line argument passing_argcv(const char
*buf,size_t size)

14.2.6. errno.h

External variable that holds implementation defined error codes.int errno

The following error codes are defined as macros in errno.h:

EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
EINTR 3 Interrupted system call
EIO 4 I/O error
EBADF 5 Bad file number
EAGAIN 6 No more processes
ENOMEM 7 Not enough core
EACCES 8 Permission denied
EFAULT 9 Bad address

748

TASKING VX-toolset for ARM User Guide

EEXIST 10 File exists
ENOTDIR 11 Not a directory
EISDIR 12 Is a directory
EINVAL 13 Invalid argument
ENFILE 14 File table overflow
EMFILE 15 Too many open files
ETXTBSY 16 Text file busy
ENOSPC 17 No space left on device
ESPIPE 18 Illegal seek
EROFS 19 Read-only file system
EPIPE 20 Broken pipe
ELOOP 21 Too many levels of symbolic links
ENAMETOOLONG 22 File name too long

Floating-point errors

EDOM 23 Argument too large
ERANGE 24 Result too large

Errors returned by printf/scanf

ERR_FORMAT 25 Illegal format string for printf/scanf
ERR_NOFLOAT 26 Floating-point not supported
ERR_NOLONG 27 Long not supported
ERR_NOPOINT 28 Pointers not supported

Encoding errors set by functions like fgetwc, getwc, mbrtowc, etc ...

EILSEQ 29 Invalid or incomplete multibyte or wide character

Errors returned by RTOS

ECANCELED 30 Operation canceled
ENODEV 31 No such device

14.2.7. except.h

The header file except.h contains the ARM specific software floating-point exception handling interface
definition. This header file is not defined in ISO C99.

Installs a floating-point trap handler._fp_install_trap_handler(
void (*) (
_fp_exception_info_t *)
exception)

Returns the exception mask._fp_get_exception_mask(
void)

Sets the exception mask. A value of 0xFF traps all floating-point
exceptions.

_fp_set_exception_mask(int
)

749

Libraries

Returns the exception status._fp_get_exception_status(
void)

Sets the exception status._fp_set_exception_status(
int)name)

For each supported exception, a macro is defined. The following exceptions are defined:

EFINVOP 0x01 Invalid operation, for instance 0.0/0.0, 0.0*INF or on a NaN
EFDIVZ 0x02 Division by zero, for instance 12.5/0.0 (not 0.0/0.0)
EFOVFL 0x04 Overflow, when the result of an operation is too large
EFUNFL 0x08 Underflow, when the result of an operation is too small
EFINEXCT 0x10 Inexact
EFALL 0x1f Combination of all of the above enlisted exceptions

INF means infinite which is the largest absolute floating-point number.

NAN means Not A Number, this is a special notation for an undefined floating-point number.

14.2.8. fcntl.h

The header file fcntl.h contains the function open(), which calls the low level function _open(), and
definitions of flags used by the low level function _open(). This header file is not defined in ISO C99.

Opens a file a file for reading or writing. Calls _open.
(FSS implementation)

open

14.2.9. fenv.h

Contains mechanisms to control the floating-point environment.

Stores the current floating-point environment.fegetenv

Saves the current floating-point environment and installs an environment
that ignores all floating-point exceptions.

feholdexept

Restores a previously saved (fegetenv or feholdexcept) floating-point
environment.

fesetenv

Saves the currently raised floating-point exceptions, restores a previously
saved floating-point environment and finally raises the saved exceptions.

feupdateenv

Clears the current exception status flags corresponding to the flags specified
in the argument.

feclearexcept

Stores the current setting of the floating-point status flags.fegetexceptflag

Raises the exceptions represented in the argument. As a result, other
exceptions may be raised as well.

feraiseexcept

Sets the current floating-point status flags.fesetexceptflag

Returns the bitwise-OR of the exception macros corresponding to the
exception flags which are currently set and are specified in the argument.

fetestexcept

750

TASKING VX-toolset for ARM User Guide

For each supported exception, a macro is defined. The following exceptions are defined:

FE_DIVBYZERO FE_INEXACT FE_INVALID
FE_OVERFLOW FE_UNDERFLOW FE_ALL_EXCEPT

Returns the current rounding direction, represented as one of the values of
the rounding direction macros.

fegetround

Sets the current rounding directions.fesetround

For each supported rounding mode, a macro is defined. The following rounding mode macro is defined:

FE_TONEAREST

14.2.10. float.h

The header file float.h defines the characteristics of the real floating-point types float, double and
long double.

float.h used to contain prototypes for the functions copysign(f), isinf(f), isfinite(f),
isnan(f) and scalb(f).These functions have accordingly to the ISO C99 standard been moved
to the header file math.h. See also Section 14.2.17, math.h and tgmath.h.

The following functions are only available for ISO C90:

Copies the sign of the second argument s to the value of the first
argument f and returns the result.

copysignf(float f,float s)

Copies the sign of the second argument s to the value of the first
argument d and returns the result.

copysign(double d,double s)

Test the variable f on being an infinite (IEEE-754) value.isinff(float f)

Test the variable d on being an infinite (IEEE-754) value.isinf(double d);

Test the variable f on being a finite (IEEE-754) value.isfinitef(float f)

Test the variable d on being a finite (IEEE-754) value.isfinite(double d)

Test the variable f on being NaN (Not a Number, IEEE-754) .isnanf(float f)

Test the variable d on being NaN (Not a Number, IEEE-754) .isnan(double d)

Returns f * 2^p for integral values without computing 2^N.scalbf(float f,int p)

Returns d * 2^p for integral values without computing 2^N. (See
also scalbn in Section 14.2.17, math.h and tgmath.h)

scalb(double d,int p)

14.2.11. inttypes.h and stdint.h

The header files stdint.h and inttypes.h provide additional declarations for integer types and have
various characteristics. The stdint.h header file contains basic definitions of integer types of certain
sizes, and corresponding sets of macros. This header file clearly refers to the corresponding sections in
the ISO C99 standard.

751

Libraries

The inttypes.h header file includes stdint.h and adds portable formatting and conversion functions.
Below the conversion functions from inttypes.h are listed.

Returns the absolute value of jimaxabs(intmax_t j)

Computes numer/denomand numer % denom.The result is stored
in the quot and rem components of the imaxdiv_t structure type.

imaxdiv(intmax_t numer,
intmax_t denom)

Convert string to maximum sized integer. (Compare strtoll)strtoimax(const char *
restrict nptr, char **
restrict endptr, int base)

Convert string to maximum sized unsigned integer. (Compare
strtoull)

strtoumax(const char *
restrict nptr, char **
restrict endptr, int base)

Convert wide string to maximum sized integer. (Compare wcstoll)wcstoimax(const wchar_t *
restrict nptr, wchar_t **
restrict endptr, int base)

Convert wide string to maximum sized unsigned integer. (Compare
wcstoull)

wcstoumax(const wchar_t *
restrict nptr, wchar_t **
restrict endptr, int base)

14.2.12. io.h

The header file io.h contains prototypes for low level I/O functions.This header file is not defined in ISO
C99.

Used by the functions close and fclose. (FSS implementation)_close(fd)

Used by all file positioning functions: fgetpos, fseek, fsetpos,
ftell, rewind. (FSS implementation)

_lseek(fd,offset,whence)

Used by the functions fopen and freopen. (FSS implementation)_open(fd,flags)

Reads a sequence of characters from a file. (FSS implementation)_read(fd,*buff,cnt)

Used by the function remove. (FSS implementation)_unlink(*name)

Writes a sequence of characters to a file. (FSS implementation)_write(fd,*buffer,cnt)

14.2.13. iso646.h

The header file iso646.h adds tokens that can be used instead of regular operator tokens.

#define and &&
#define and_eq &=
#define bitand &
#define bitor |
#define compl ~
#define not !
#define not_eq !=
#define or ||
#define or_eq |=

752

TASKING VX-toolset for ARM User Guide

#define xor ^
#define xor_eq ^=

14.2.14. limits.h

Contains the sizes of integral types, defined as macros.

14.2.15. locale.h

To keep C code reasonable portable across different languages and cultures, a number of facilities are
provided in the header file locale.h.

char *setlocale(int category, const char *locale)

The function above changes locale-specific features of the run-time library as specified by the category
to change and the name of the locale.

The following categories are defined and can be used as input for this function:

LC_ALL 0 LC_NUMERIC 3
LC_COLLATE 1 LC_TIME 4
LC_CTYPE 2 LC_MONETARY 5

struct lconv *localeconv(void)

Returns a pointer to type struct lconv with values appropriate for the formatting of numeric
quantities according to the rules of the current locale. The struct lconv in this header file is
conforming the ISO standard.

14.2.16. malloc.h

The header file malloc.h contains prototypes for memory allocation functions. This include file is not
defined in ISO C99, it is included for backwards compatibility with ISO C90. For ISO C99, the memory
allocation functions are part of stdlib.h. See Section 14.2.25, stdlib.h and wchar.h.

Allocates space for an object with size size.
The allocated space is not initialized. Returns a pointer to the
allocated space.

malloc(size)

Allocates space for n objects with size size.
The allocated space is initialized with zeros. Returns a pointer to
the allocated space.

calloc(nobj,size)

Deallocates the memory space pointed to by ptr which should be
a pointer earlier returned by the malloc or calloc function.

free(*ptr)

753

Libraries

Deallocates the old object pointed to by ptr and returns a pointer
to a new object with size size, while preserving its contents.
If the new size is smaller than the old size, some contents at the
end of the old region will be discarded. If the new size is larger than
the old size, all of the old contents are preserved and any bytes in
the new object beyond the size of the old object will have
indeterminate values.

realloc(*ptr,size)

14.2.17. math.h and tgmath.h

The header file math.h contains the prototypes for many mathematical functions. Before ISO C99, all
functions were computed using the double type (the float was automatically converted to double, prior to
calculation). In this ISO C99 version, parallel sets of functions are defined for double, float and long
double. They are respectively named function, functionf, functionl. All long type functions, though
declared in math.h, are implemented as the double type variant which nearly always meets the
requirement in embedded applications.

The header file tgmath.h contains parallel type generic math macros whose expansion depends on the
used type. tgmath.h includes math.h and the effect of expansion is that the correct math.h functions
are called. The type generic macro, if available, is listed in the second column of the tables below.

Trigonometric and hyperbolic functions

Descriptiontgmath.hmath.h

Returns the sine of x.sinsinlsinfsin

Returns the cosine of x.coscoslcosfcos

Returns the tangent of x.tantanltanftan

Returns the arc sine sin-1(x) of x.asinasinlasinfasin

Returns the arc cosine cos-1(x) of x.acosacoslacosfacos

Returns the arc tangent tan-1(x) of x.atanatanlatanfatan

Returns the result of: tan-1(y/x).atan2atan2latan2fatan2

Returns the hyperbolic sine of x.sinhsinhlsinhfsinh

Returns the hyperbolic cosine of x.coshcoshlcoshfcosh

Returns the hyperbolic tangent of x.tanhtanhltanhftanh

Returns the arc hyperbolic sine of x.asinhasinhlasinhfasinh

Returns the non-negative arc hyperbolic cosine of x.acoshacoshlacoshfacosh

Returns the arc hyperbolic tangent of x.atanhatanhlatanhfatanh

Exponential and logarithmic functions

All of these functions are new in ISO C99, except for exp, log and log10.

Descriptiontgmath.hmath.h

Returns the result of the exponential function ex.expexplexpfexp

754

TASKING VX-toolset for ARM User Guide

Descriptiontgmath.hmath.h

Returns the result of the exponential function 2x.exp2exp2lexp2fexp2

Returns the result of the exponential function ex-1.expm1expm1lexpm1fexpm1

Returns the natural logarithm ln(x), x>0.loglogllogflog

Returns the base-10 logarithm of x, x>0.log10log10llog10flog10

Returns the base-e logarithm of (1+x). x <> -1.log1plog1pllog1pflog1p

Returns the base-2 logarithm of x. x>0.log2log2llog2flog2

Returns the signed exponent of x as an integer. x>0.ilogbilogblilogbfilogb

Returns the exponent of x as a signed integer in value in
floating-point notation. x > 0.

logblogbllogbflogb

frexp, ldexp, modf, scalbn, scalbln

Descriptiontgmath.hmath.h

Splits a float x into fraction f and exponent n, so that:
f = 0.0 or 0.5 ≤ | f | ≤ 1.0 and f*2n = x. Returns f, stores n.

frexpfrexplfrexpffrexp

Inverse of frexp. Returns the result of x*2n.
(x and n are both arguments).

ldexpldexplldexpfldexp

Splits a float x into fraction f and integer n, so that:
| f | < 1.0 and f+n=x. Returns f, stores n.

-modflmodffmodf

Computes the result of x*FLT_RADIXn. efficiently, not
normally by computing FLT_RADIXn explicitly.

scalbnscalbnlscalbnfscalbn

Same as scalbn but with argument n as long int.scalblnscalblnlscalblnfscalbln

Rounding functions

Descriptiontgmath.hmath.h

Returns the smallest integer not less than x, as a double.ceilceillceilfceil

Returns the largest integer not greater than x, as a double.floorfloorlfloorffloor

Returns the rounded integer value as an int according
to the current rounding direction. See fenv.h.

rintrintlrintfrint

Returns the rounded integer value as a long int
according to the current rounding direction. See fenv.h.

lrintlrintllrintflrint

Returns the rounded integer value as a long long int
according to the current rounding direction. See fenv.h.

llrintllrintlllrintfllrint

Returns the rounded integer value as a floating-point
according to the current rounding direction. See fenv.h.

nearbyintnearbyintlnearbyintfnearbyint

Returns the nearest integer value of x as int.roundroundlroundfround

Returns the nearest integer value of x as long int.lroundlroundllroundflround

Returns the nearest integer value of x as long long int.llroundllroundllroundfllround

755

Libraries

Descriptiontgmath.hmath.h

Returns the truncated integer value x.trunctruncltruncftrunc

Remainder after division

Descriptiontgmath.hmath.h

Returns the remainder r of x-ny. n is chosen as
trunc(x/y). r has the same sign as x.

fmodfmodlfmodffmod

Returns the remainder r of x-ny. n is chosen as
trunc(x/y). r may not have the same sign as x.

remainderremainderlremainderfremainder

Same as remainder. In addition, the argument *quo is
given a specific value (see ISO).

remquoremquolremquofremquo

Power and absolute-value functions

Descriptiontgmath.hmath.h

Returns the real cube root of x (=x1/3).cbrtcbrtlcbrtfcbrt

Returns the absolute value of x (|x|). (abs, labs, llabs,
div, ldiv, lldiv are defined in stdlib.h)

fabsfabslfabsffabs

Floating-point multiply add. Returns x*y+z.fmafmalfmaffma

Returns the square root of x2+y2.hypothypotlhypotfhypot

Returns x raised to the power y (xy).powerpowlpowfpow

Returns the non-negative square root of x. x 0.sqrtsqrtlsqrtfsqrt

Manipulation functions: copysign, nan, nextafter, nexttoward

Descriptiontgmath.hmath.h

Returns the value of x with the sign of y.copysigncopysignllcopysignfcopysign

Returns a quiet NaN, if available, with content indicated
through tagp.

-nanlnanfnan

Returns the next representable value in the specified
format after x in the direction of y. Returns y is x=y.

nextafternextafterlnextafterfnextafter

Same as nextafter, except that the second argument
in all three variants is of type long double. Returns y if
x=y.

nexttowardnexttowardlnexttowardfnexttoward

Positive difference, maximum, minimum

Descriptiontgmath.hmath.h

Returns the positive difference between: |x-y|.fdimfdimlfdimffdim

Returns the maximum value of their arguments.fmaxfmaxlfmaxffmax

Returns the minimum value of their arguments.fminfminlfminffmin

756

TASKING VX-toolset for ARM User Guide

Error and gamma

Descriptiontgmath.hmath.h

Computes the error function of x.erferflerfferf

Computes the complementary error function of x.ercerfclerfcferfc

Computes the *loge|Γ(x)|lgammalgammallgammaflgamma

Computes Γ(x)tgammatgammaltgammaftgamma

Comparison macros

The next are implemented as macros. For any ordered pair of numeric values exactly one of the
relationships - less, greater, and equal - is true.These macros are type generic and therefore do not have
a parallel function in tgmath.h. All arguments must be expressions of real-floating type.

Descriptiontgmath.hmath.h

Returns the value of (x) > (y)-isgreater

Returns the value of (x) >= (y)-isgreaterequal

Returns the value of (x) < (y)-isless

Returns the value of (x) <= (y)-islessequal

Returns the value of (x) < (y) || (x) > (y)-islessgreater

Returns 1 if its arguments are unordered, 0 otherwise.-isunordered

Classification macros

The next are implemented as macros.These macros are type generic and therefore do not have a parallel
function in tgmath.h. All arguments must be expressions of real-floating type.

Descriptiontgmath.hmath.h

Returns the class of its argument:
FP_INFINITE, FP_NAN, FP_NORMAL, FP_SUBNORMAL or
FP_ZERO

-fpclassify

Returns a nonzero value if and only if its argument has a finite
value

-isfinite

Returns a nonzero value if and only if its argument has an infinite
value

-isinf

Returns a nonzero value if and only if its argument has NaN value.-isnan

Returns a nonzero value if an only if its argument has a normal
value.

-isnormal

Returns a nonzero value if and only if its argument value is
negative.

-signbit

757

Libraries

14.2.18. setjmp.h

The setjmp and longjmp in this header file implement a primitive form of non-local jumps, which may
be used to handle exceptional situations. This facility is traditionally considered more portable than
signal.h

Records its caller's environment in env and returns 0.int setjmp(jmp_buf
env)

Restores the environment previously saved with a call to setjmp().void longjmp(jmp_buf
env, int status)

14.2.19. signal.h

Signals are possible asynchronous events that may require special processing. Each signal is named by
a number. The following signals are defined:

Receipt of an interactive attention signal1SIGINT

Detection of an invalid function message2SIGILL

An erroneous arithmetic operation (for example, zero divide, overflow)3SIGFPE

An invalid access to storage4SIGSEGV

A termination request sent to the program5SIGTERM

Abnormal termination, such as is initiated by the abort function6SIGABRT

The next function sends the signal sig to the program:

int raise(int sig)

The next function determines how subsequent signals will be handled:

signalfunction *signal (int, signalfunction *);

The first argument specifies the signal, the second argument points to the signal-handler function or has
one of the following values:

Default behavior is usedSIG_DFL

The signal is ignoredSIG_IGN

The function returns the previous value of signalfunction for the specific signal, or SIG_ERR if an
error occurs.

14.2.20. stdarg.h

The facilities in this header file gives you a portable way to access variable arguments lists, such as
needed for as fprintf and vfprintf. va_copy is new in ISO C99. This header file contains the
following macros:

758

TASKING VX-toolset for ARM User Guide

Returns the value of the next argument in the variable argument list.
Its return type has the type of the given argument type. A next call to
this macro will return the value of the next argument.

va_arg(va_list ap,type)

This macro duplicates the current state of src in dest, creating a
second pointer into the argument list. After this call, va_arg() may be
used on src and dest independently.

va_copy(va_list dest,
va_list src)

This macro must be called after the arguments have been processed.
It should be called before the function using the macro 'va_start' is
terminated.

va_end(va_list ap)

This macro initializes ap. After this call, each call to va_arg() will return
the value of the next argument. In our implementation, va_list cannot
contain any bit type variables. Also the given argument lastarg must
be the last non-bit type argument in the list.

va_start(va_list ap,
lastarg)

14.2.21. stdbool.h

This header file contains the following macro definitions. These names for boolean type and values are
consistent with C++.You are allowed to #undefine or redefine the macros below.

#define bool _Bool
#define true 1
#define false 0
#define __bool_true_false_are_defined 1

14.2.22. stddef.h

This header file defines the types for common use:

Signed integer type of the result of subtracting two pointers.ptrdiff_t

Unsigned integral type of the result of the sizeof operator.size_t

Integer type to represent character codes in large character sets.wchar_t

Besides these types, the following macros are defined:

Expands to the null pointer constant for C or 0 (zero) for C++.NULL

Expands to an integer constant expression with type size_t that is the offset
in bytes of _member within structure type _type.

offsetof(_type,
_member)

14.2.23. stdint.h

See Section 14.2.11, inttypes.h and stdint.h

759

Libraries

14.2.24. stdio.h and wchar.h

Types

The header file stdio.h contains functions for performing input and output. A number of functions also
have a parallel wide character function or macro, defined in wchar.h. The header file wchar.h also
includes stdio.h.

In the C language, many I/O facilities are based on the concept of streams. The stdio.h header file
defines the data type FILE which holds the information about a stream. A FILE object is created with
the function fopen. The pointer to this object is used as an argument in many of the in this header file.
The FILE object can contain the following information:

• the current position within the stream

• pointers to any associated buffers

• indications of for read/write errors

• end of file indication

The header file also defines type fpos_t as an unsigned long.

Macros

Descriptionstdio.h

Expands to the null pointer constant for C or 0 (zero) for C++.NULL

Size of the buffer used by the setbuf/setvbuf function: 512BUFSIZ

End of file indicator. Expands to -1.EOF

End of file indicator. Expands to UINT_MAX (defined in limits.h)
NOTE: WEOF need not to be a negative number as long as its value does not
correspond to a member of the wide character set. (Defined in wchar.h).

WEOF

Number of files that can be opened simultaneously: 10FOPEN_MAX

Maximum length of a filename: 100FILENAME_MAX

Expand to an integer expression, suitable for use as argument to the setvbuf function._IOFBF
_IOLBF
_IONBF

Size of the string used to hold temporary file names: 8 (tmpxxxxx)L_tmpnam

Maximum number of unique temporary filenames that can be generated: 0x8000TMP_MAX

Expand to an integer expression, suitable for use as the third argument to the fseek
function.

SEEK_CUR
SEEK_END
SEEK_SET

Expressions of type "pointer to FILE" that point to the FILE objects associated with
standard error, input and output streams.

stderr
stdin
stdout

760

TASKING VX-toolset for ARM User Guide

File access

Descriptionstdio.h

Opens a file for a given mode. Available modes are:fopen(name,mode)

"r" read; open text file for reading
"w" write; create text file for writing;

if the file already exists, its contents is discarded
"a" append; open existing text file or

create new text file for writing at end of file
"r+" open text file for update; reading and writing
"w+" create text file for update; previous

contents if any is discarded
"a+" append; open or create text file for update,

writes at end of file

(FSS implementation)

Flushes the data stream and closes the specified file that was previously
opened with fopen. (FSS implementation)

fclose(name)

If stream is an output stream, any buffered but unwritten date is written.
Else, the effect is undefined. (FSS implementation)

fflush(name)

Similar to fopen, but rather than generating a new value of type FILE *,
the existing value is associated with a new stream. (FSS implementation)

freopen(name,mode,
stream)

If buffer is NULL, buffering is turned off for the stream. Otherwise, setbuf
is equivalent to:(void) setvbuf(stream,buffer,_IOFBF,BUFSIZ).

setbuf(stream,buffer)

Controls buffering for the stream; this function must be called before reading
or writing. Mode can have the following values:
_IOFBF causes full buffering
_IOLBF causes line buffering of text files
_IONBF causes no buffering.
If buffer is not NULL, it will be used as a buffer; otherwise a buffer will be
allocated. size determines the buffer size.

setvbuf(stream,buffer,mode,
size)

Formatted input/output

The format string of printf related functions can contain plain text mixed with conversion specifiers.
Each conversion specifier should be preceded by a '%' character. The conversion specifier should be
built in order:

• Flags (in any order):

specifies left adjustment of the converted argument.-

a number is always preceded with a sign character.
+ has higher precedence than space.

+

a negative number is preceded with a sign, positive numbers with a space.space

specifies padding to the field width with zeros (only for numbers).0

761

Libraries

specifies an alternate output form. For o, the first digit will be zero. For x or X, "0x" and "0X"
will be prefixed to the number. For e, E, f, g, G, the output always contains a decimal point,
trailing zeros are not removed.

#

• A number specifying a minimum field width. The converted argument is printed in a field with at least
the length specified here. If the converted argument has fewer characters than specified, it will be
padded at the left side (or at the right when the flag '-' was specified) with spaces. Padding to numeric
fields will be done with zeros when the flag '0' is also specified (only when padding left). Instead of a
numeric value, also '*' may be specified, the value is then taken from the next argument, which is
assumed to be of type int.

• A period. This separates the minimum field width from the precision.

• A number specifying the maximum length of a string to be printed. Or the number of digits printed after
the decimal point (only for floating-point conversions). Or the minimum number of digits to be printed
for an integer conversion. Instead of a numeric value, also '*' may be specified, the value is then taken
from the next argument, which is assumed to be of type int.

• A length modifier 'h', 'hh', 'l', 'll', 'L', 'j', 'z' or 't'. 'h' indicates that the argument is to be treated as a short
or unsigned short. 'hh' indicates that the argument is to be treated as a char or unsigned char.
'l' should be used if the argument is a long integer, 'll' for a long long. 'L' indicates that the argument
is a long double. 'j' indicates a pointer to intmax_t or uintmax_t, 'z' indicates a pointer to size_t
and 't' indicates a pointer to ptrdiff_t.

Flags, length specifier, period, precision and length modifier are optional, the conversion character is not.
The conversion character must be one of the following, if a character following '%' is not in the list, the
behavior is undefined:

Printed asCharacter

int, signed decimald, i

int, unsigned octalo

int, unsigned hexadecimal in lowercase or uppercase respectivelyx, X

int, unsigned decimalu

int, single character (converted to unsigned char)c

char *, the characters from the string are printed until a NULL character is found. When the
given precision is met before, printing will also stop

s

doublef, F

doublee, E

doubleg, G

doublea, A

int *, the number of characters written so far is written into the argument. This should be a
pointer to an integer in default memory. No value is printed.

n

pointerp

No argument is converted, a '%' is printed.%

762

TASKING VX-toolset for ARM User Guide

printf conversion characters

All arguments to the scanf related functions should be pointers to variables (in default memory) of the
type which is specified in the format string.

The format string can contain :

• Blanks or tabs, which are skipped.

• Normal characters (not '%'), which should be matched exactly in the input stream.

• Conversion specifications, starting with a '%' character.

Conversion specifications should be built as follows (in order) :

• A '*', meaning that no assignment is done for this field.

• A number specifying the maximum field width.

• The conversion characters d, i, n, o, u and x may be preceded by 'h' if the argument is a pointer to
short rather than int, or by 'hh' if the argument is a pointer to char, or by 'l' (letter ell) if the argument
is a pointer to long or by 'll' for a pointer to long long, 'j' for a pointer to intmax_t or uintmax_t,
'z' for a pointer to size_t or 't' for a pointer to ptrdiff_t. The conversion characters e, f, and g
may be preceded by 'l' if the argument is a pointer to double rather than float, and by 'L' for a pointer
to a long double.

• A conversion specifier. '*', maximum field width and length modifier are optional, the conversion character
is not. The conversion character must be one of the following, if a character following '%' is not in the
list, the behavior is undefined.

Length specifier and length modifier are optional, the conversion character is not.The conversion character
must be one of the following, if a character following '%' is not in the list, the behavior is undefined.

Scanned asCharacter

int, signed decimal.d

int, the integer may be given octal (i.e. a leading 0 is entered) or hexadecimal (leading "0x"
or "0X"), or just decimal.

i

int, unsigned octal.o

int, unsigned decimal.u

int, unsigned hexadecimal in lowercase or uppercase.x

single character (converted to unsigned char).c

char *, a string of non white space characters. The argument should point to an array of
characters, large enough to hold the string and a terminating NULL character.

s

floatf, F

floate, E

floatg, G

floata, A

763

Libraries

Scanned asCharacter

int *, the number of characters written so far is written into the argument. No scanning is done.n

pointer; hexadecimal value which must be entered without 0x- prefix.p

Matches a string of input characters from the set between the brackets. A NULL character is
added to terminate the string. Specifying []...] includes the ']' character in the set of scanning
characters.

[...]

Matches a string of input characters not in the set between the brackets. A NULL character
is added to terminate the string. Specifying [^]...] includes the ']' character in the set.

[^...]

Literal '%', no assignment is done.%

scanf conversion characters

Descriptionwchar.hstdio.h

Performs a formatted read from the given stream.
Returns the number of items converted
successfully. (FSS implementation)

fwscanf(stream,
format, ...)

fscanf(stream,
format, ...)

Performs a formatted read from stdin. Returns
the number of items converted successfully. (FSS
implementation)

wscanf(format, ...)scanf(format,...)

Performs a formatted read from the string s.
Returns the number of items converted
successfully.

swscanf(*s, format,
...)

sscanf(*s, format,
...)

Same as fscanf/fwscanf, but extra arguments
are given as variable argument list arg. (See
Section 14.2.20, stdarg.h)

vfwscanf(stream,
format, arg)

vfscanf(stream,
format, arg)

Same as sscanf/swscanf, but extra arguments
are given as variable argument list arg. (See
Section 14.2.20, stdarg.h)

vwscanf(format, arg)vscanf(format, arg)

Same as scanf/wscanf, but extra arguments
are given as variable argument list arg. (See
Section 14.2.20, stdarg.h)

vswscanf(*s, format,
arg)

vsscanf(*s, format,
arg)

Performs a formatted write to the given stream.
Returns EOF/WEOF on error. (FSS
implementation)

fwprintf(stream,
format, ...)

fprintf(stream,
format, ...)

Performs a formatted write to the stream stdout.
Returns EOF/WEOF on error. (FSS
implementation)

wprintf(format, ...)printf(format, ...)

Performs a formatted write to string s. Returns
EOF/WEOF on error.

-sprintf(*s, format,
...)

Same as sprintf, but n specifies the maximum
number of characters (including the terminating
null character) to be written.

swprintf(*s, n,
format, ...)

snprintf(*s, n,
format, ...)

764

TASKING VX-toolset for ARM User Guide

Descriptionwchar.hstdio.h

Same as fprintf/fwprintf, but extra
arguments are given as variable argument list
arg. (See Section 14.2.20, stdarg.h) (FSS
implementation)

vfwprintf(stream,
format, arg)

vfprintf(stream,
format, arg)

Same as printf/wprintf, but extra arguments
are given as variable argument list arg. (See
Section 14.2.20, stdarg.h) (FSS implementation)

vwprintf(format,
arg)

vprintf(format, arg)

Same as sprintf/swprintf, but extra
arguments are given as variable argument list
arg. (See Section 14.2.20, stdarg.h)

vswprintf(*s,
format, arg)

vsprintf(*s, format,
arg)

The C library functions printf(), fprintf(), vfprintf(), vsprintf(), ... call one single function,
_doprint(), that deals with the format string and arguments. The same applies to all scanf type
functions, which call the function _doscan(), and also for the wprintf and wscanf type functions
which call _dowprint() and _dowscan() respectively. The C library contains three versions of these
routines: int, long and long long versions. If you use floating-point the formatter function for
floating-point _doflt() or _dowflt() is called. Depending on the formatting arguments you use, the
correct routine is used from the library. Of course the larger the version of the routine the larger your
produced code will be.

Note that when you call any of the printf/scanf routines indirectly, the arguments are not known and always
the long long version with floating-point support is used from the library.

Example:

#include <stdio.h>

long L;

void main(void)
{
 printf("This is a long: %ld\n", L);
}

The linker extracts the long version without floating-point support from the library.

See also the description of #pragma weak in Section 1.8, Pragmas to Control the Compiler.

Character input/output

Descriptionwchar.hstdio.h

Reads one character from stream. Returns the
read character, or EOF/WEOF on error. (FSS
implementation)

fgetwc(stream)fgetc(stream)

765

Libraries

Descriptionwchar.hstdio.h

Same as fgetc/fgetwc except that is
implemented as a macro.
(FSS implementation)
NOTE: Currently #defined as
getchar()/getwchar() because FILE I/O is
not supported. Returns the read character, or
EOF/WEOF on error.

getwc(stream)getc(stream)

Reads one character from the stdin stream.
Returns the character read or EOF/WEOF on
error. Implemented as macro.
(FSS implementation)

getwchar(stdin)getchar(stdin)

Reads at most the next n-1 characters from the
stream into array s until a newline is found.
Returns s or NULL or EOF/WEOF on error. (FSS
implementation)

fgetws(*s, n,
stream)

fgets(*s, n, stream)

Reads at most the next n-1 characters from the
stdin stream into array s. A newline is ignored.
Returns s or NULL or EOF/WEOF on error. (FSS
implementation)

-gets(*s, n, stdin)

Pushes character c back onto the input stream.
Returns EOF/WEOF on error.

ungetwc(c, stream)ungetc(c, stream)

Put character c onto the given stream. Returns
EOF/WEOF on error. (FSS implementation)

fputwc(c, stream)fputc(c, stream)

Same as fpuc/fputwc except that is
implemented as a macro. (FSS implementation)

putwc(c, stream)putc(c, stream)

Put character c onto the stdout stream. Returns
EOF/WEOF on error.
Implemented as macro. (FSS implementation)

putwchar(c, stdout)putchar(c, stdout)

Writes string s to the given stream. Returns
EOF/WEOF on error. (FSS implementation)

fputws(*s, stream)fputs(*s, stream)

Writes string s to the stdout stream. Returns
EOF/WEOF on error. (FSS implementation)

-puts(*s)

Direct input/output

Descriptionstdio.h

Reads nobj members of size bytes from the given stream into
the array pointed to by ptr. Returns the number of elements
successfully read. (FSS implementation)

fread(ptr,size,nobj,stream)

Writes nobj members of size bytes from to the array pointed to
by ptr to the given stream. Returns the number of elements
successfully written. (FSS implementation)

fwrite(ptr,size,nobj,stream)

766

TASKING VX-toolset for ARM User Guide

Random access

Descriptionstdio.h

Sets the position indicator for stream. (FSS implementation)fseek(stream, offset,
origin)

When repositioning a binary file, the new position origin is given by the following macros:

SEEK_SET 0 offset characters from the beginning of the file
SEEK_CUR 1 offset characters from the current position in the file
SEEK_END 2 offset characters from the end of the file

Returns the current file position for stream, or -1L on error.
(FSS implementation)

ftell(stream)

Sets the file position indicator for the stream to the beginning of the file. This
function is equivalent to:
(void) fseek(stream,0L,SEEK_SET);
clearerr(stream);
(FSS implementation)

rewind(stream)

Stores the current value of the file position indicator for stream in the object
pointed to by pos. (FSS implementation)

fgetpos(stream,pos)

Positions stream at the position recorded by fgetpos in *pos. (FSS
implementation)

fsetpos(stream,pos)

Operations on files

Descriptionstdio.h

Removes the named file, so that a subsequent attempt to open it fails. Returns a
non-zero value if not successful.

remove(file)

Changes the name of the file from old name to new name. Returns a non-zero
value if not successful.

rename(old,new)

Creates a temporary file of the mode "wb+" that will be automatically removed when
closed or when the program terminates normally. Returns a file pointer.

tmpfile()

Creates new file names that do not conflict with other file names currently in use.
The new file name is stored in a buffer which must have room for L_tmpnam
characters. Returns a pointer to the temporary name. The file names are created
in the current directory and all start with "tmp". At most TMP_MAX unique file names
can be generated.

tmpnam(buffer)

Error handling

Descriptionstdio.h

Clears the end of file and error indicators for stream.clearerr(stream)

Returns a non-zero value if the error indicator for stream is set.ferror(stream)

Returns a non-zero value if the end of file indicator for stream is set.feof(stream)

767

Libraries

Descriptionstdio.h

Prints s and the error message belonging to the integer errno. (See
Section 14.2.6, errno.h)

perror(*s)

14.2.25. stdlib.h and wchar.h

The header file stdlib.h contains general utility functions which fall into the following categories (Some
have parallel wide-character, declared in wchar.h)

• Numeric conversions

• Random number generation

• Memory management

• Environment communication

• Searching and sorting

• Integer arithmetic

• Multibyte/wide character and string conversions.

Macros

Predefined exit codes that can be used in the exit function.EXIT_SUCCES
0
EXIT_FAILURE
1

Highest number that can be returned by the rand/srand function.RAND_MAX
32767

Maximum number of bytes in a multibyte character for the extended character set
specified by the current locale (category LC_CTYPE, see Section 14.2.15, locale.h).

MB_CUR_MAX 1

Numeric conversions

The following functions convert the initial portion of a string *s to a double, int, long int and long
long int value respectively.

double atof(*s)
int atoi(*s)
long atol(*s)
long long atoll(*s)

The following functions convert the initial portion of the string *s to a float, double and long double value
respectively. *endp will point to the first character not used by the conversion.

768

TASKING VX-toolset for ARM User Guide

wchar.hstdlib.h

float wcstof(*s,**endp)
double wcstod(*s,**endp)
long double wcstold(*s,**endp)

float strtof(*s,**endp)
double strtod(*s,**endp)
long double strtold(*s,**endp)

The following functions convert the initial portion of the string *s to a long, long long, unsigned
long and unsigned long long respectively. Base specifies the radix. *endp will point to the first
character not used by the conversion.

wchar.hstdlib.h

long wcstol (*s,**endp,base)
long long wcstoll
 (*s,**endp,base)
unsigned long wcstoul
 (*s,**endp,base)
unsigned long long wcstoull
 (*s,**endp,base)

long strtol (*s,**endp,base)
long long strtoll
 (*s,**endp,base)
unsigned long strtoul
 (*s,**endp,base)
unsigned long long strtoull
 (*s,**endp,base)

Random number generation

Returns a pseudo random integer in the range 0 to RAND_MAX.rand

Same as rand but uses seed for a new sequence of pseudo random numbers.srand(seed)

Memory management

Allocates space for an object with size size.
The allocated space is not initialized. Returns a pointer to the allocated space.

malloc(size)

Allocates space for n objects with size size.
The allocated space is initialized with zeros. Returns a pointer to the allocated
space.

calloc(nobj,size)

Deallocates the memory space pointed to by ptr which should be a pointer
earlier returned by the malloc or calloc function.

free(*ptr)

Deallocates the old object pointed to by ptr and returns a pointer to a new
object with size size, while preserving its contents.
If the new size is smaller than the old size, some contents at the end of the
old region will be discarded. If the new size is larger than the old size, all of
the old contents are preserved and any bytes in the new object beyond the
size of the old object will have indeterminate values.

realloc(*ptr,size)

Environment communication

Causes abnormal program termination. If the signal SIGABRT is caught, the
signal handler may take over control. (See Section 14.2.19, signal.h).

abort()

769

Libraries

func points to a function that is called (without arguments) when the program
normally terminates.

atexit(*func)

Causes normal program termination. Acts as if main() returns with status as
the return value. Status can also be specified with the predefined macros
EXIT_SUCCES or EXIT_FAILURE.

exit(status)

Same as exit, but not registered by the atexit function or signal handlers
registered by the signal function are called.

_Exit(status)

Searches an environment list for a string s. Returns a pointer to the contents
of s.
NOTE: this function is not implemented because there is no OS.

getenv(*s)

Passes the string s to the environment for execution.
NOTE: this function is not implemented because there is no OS.

system(*s)

Searching and sorting

This function searches in an array of n members, for the object pointed to by
key. The initial base of the array is given by base. The size of each member
is specified by size. The given array must be sorted in ascending order,
according to the results of the function pointed to by cmp. Returns a pointer
to the matching member in the array, or NULL when not found.

bsearch(*key,
*base, n, size,
*cmp)

This function sorts an array of n members using the quick sort algorithm. The
initial base of the array is given by base. The size of each member is specified
by size. The array is sorted in ascending order, according to the results of the
function pointed to by cmp.

qsort(*base, n,
size, *cmp)

Integer arithmetic

Compute the absolute value of an int, long int, and long long int j
respectively.

int abs(j)
long labs(j)
long long llabs(j)

Compute x/y and x%y in a single operation. X and y have respectively type
int, long int and long long int. The result is stored in the members
quot and rem of struct div_t, ldiv_t and lldiv_t which have the
same types.

div_t div(x,y)
ldiv_t ldiv(x,y)
lldiv_t lldiv(x,y)

Multibyte/wide character and string conversions

Determines the number of bytes in the multi-byte character pointed to by s. At
most n characters will be examined. (See also mbrlen in Section 14.2.29,
wchar.h).

mblen(*s,n)

Converts the multi-byte character in s to a wide-character code and stores it
in pwc. At most n characters will be examined.

mbtowc(*pwc,*s,n)

Converts the wide-character wc into a multi-byte representation and stores it
in the string pointed to by s. At most MB_CUR_MAX characters are stored.

wctomb(*s,wc)

770

TASKING VX-toolset for ARM User Guide

Converts a sequence of multi-byte characters in the string pointed to by s into
a sequence of wide characters and stores at most n wide characters into the
array pointed to by pwcs. (See also mbsrtowcs in Section 14.2.29, wchar.h).

mbstowcs(*pwcs,*s,n)

Converts a sequence of wide characters in the array pointed to by pwcs into
multi-byte characters and stores at most n multi-byte characters into the string
pointed to by s. (See also wcsrtowmb in Section 14.2.29, wchar.h).

wcstombs(*s,*pwcs,n)

14.2.26. string.h and wchar.h

This header file provides numerous functions for manipulating strings. By convention, strings in C are
arrays of characters with a terminating null character. Most functions therefore take arguments of type
*char. However, many functions have also parallel wide-character functions which take arguments of
type *wchar_t. These functions are declared in wchar.h.

Copying and concatenation functions

Descriptionwchar.hstring.h

Copies n characters from *s2 into *s1 and returns *s1. If
*s1 and *s2 overlap the result is undefined.

wmemcpy(*s1,*s2,n)memcpy(*s1,*s2,n)

Same as memcpy, but overlapping strings are handled
correctly. Returns *s1.

wmemmove(*s1,*s2,n)memmove(*s1,*s2,n)

Copies *s2 into *s1 and returns *s1. If *s1 and *s2 overlap
the result is undefined.

wcscpy(*s1,*s2)strcpy(*s1,*s2)

Copies not more than n characters from *s2 into *s1 and
returns *s1. If *s1 and *s2 overlap the result is undefined.

wcsncpy(*s1,*s2,n)strncpy(*s1,*s2,n)

Appends a copy of *s2 to *s1 and returns *s1. If *s1 and
*s2 overlap the result is undefined.

wcscat(*s1,*s2)strcat(*s1,*s2)

Appends not more than n characters from *s2 to *s1 and
returns *s1. If *s1 and *s2 overlap the result is undefined.

wcsncat(*s1,*s2,n)strncat(*s1,*s2,n)

Comparison functions

Descriptionwchar.hstring.h

Compares the first n characters of *s1 to the first n
characters of *s2. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2.

wmemcmp(*s1,*s2,n)memcmp(*s1,*s2,n)

Compares string *s1 to *s2. Returns < 0 if *s1 < *s2, 0 if *s1
= = *s2, or > 0 if *s1 > *s2.

wcscmp(*s1,*s2)strcmp(*s1,*s2)

Compares the first n characters of *s1 to the first n
characters of *s2. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2.

wcsncmp(*s1,*s2,n)strncmp(*s1,*s2,n)

Performs a local-specific comparison between string *s1
and string *s2 according to the LC_COLLATE category of
the current locale. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2. (See Section 14.2.15, locale.h)

wcscoll(*s1,*s2)strcoll(*s1,*s2)

771

Libraries

Descriptionwchar.hstring.h

Transforms (a local) string *s2 so that a comparison
between transformed strings with strcmp gives the same
result as a comparison between non-transformed strings
with strcoll. Returns the transformed string *s1.

wcsxfrm(*s1,*s2,n)strxfrm(*s1,*s2,n)

Search functions

Descriptionwchar.hstring.h

Checks the first n characters of *s on the occurrence of
character c. Returns a pointer to the found character.

wmemchr(*s,c,n)memchr(*s,c,n)

Returns a pointer to the first occurrence of character c in
*s or the null pointer if not found.

wcschr(*s,c)strchr(*s,c)

Returns a pointer to the last occurrence of character c in *s
or the null pointer if not found.

wcsrchr(*s,c)strrchr(*s,c)

Searches *s for a sequence of characters specified in *set.
Returns the length of the first sequence found.

wcsspn(*s,*set)strspn(*s,*set)

Searches *s for a sequence of characters not specified in
*set. Returns the length of the first sequence found.

wcscspn(*s,*set)strcspn(*s,*set)

Same as strspn/wcsspn but returns a pointer to the first
character in *s that also is specified in *set.

wcspbrk(*s,*set)strpbrk(*s,*set)

Searches for a substring *sub in *s. Returns a pointer to the
first occurrence of *sub in *s.

wcsstr(*s,*sub)strstr(*s,*sub)

A sequence of calls to this function breaks the string *s into
a sequence of tokens delimited by a character specified in
*dlm. The token found in *s is terminated with a null
character. Returns a pointer to the first position in *s of the
token.

wcstok(*s,*dlm)strtok(*s,*dlm)

Miscellaneous functions

Descriptionwchar.hstring.h

Fills the first n bytes of *s with character c and returns *s.wmemset(*s,c,n)memset(*s,c,n)

Typically, the values for errno come from int errno. This
function returns a pointer to the associated error message.
(See also Section 14.2.6, errno.h)

-strerror(errno)

Returns the length of string *s.wcslen(*s)strlen(*s)

14.2.27. time.h and wchar.h

The header file time.h provides facilities to retrieve and use the (calendar) date and time, and the
process time. Time can be represented as an integer value, or can be broken-down in components. Two
arithmetic data types are defined which are capable of holding the integer representation of times:

772

TASKING VX-toolset for ARM User Guide

clock_t unsigned long long
time_t unsigned long

The type struct tm below is defined according to ISO C99 with one exception: this implementation
does not support leap seconds. The struct tm type is defines as follows:

struct tm
{
 int tm_sec; /* seconds after the minute - [0, 59] */
 int tm_min; /* minutes after the hour - [0, 59] */
 int tm_hour; /* hours since midnight - [0, 23] */
 int tm_mday; /* day of the month - [1, 31] */
 int tm_mon; /* months since January - [0, 11] */
 int tm_year; /* year since 1900 */
 int tm_wday; /* days since Sunday - [0, 6] */
 int tm_yday; /* days since January 1 - [0, 365] */
 int tm_isdst; /* Daylight Saving Time flag */
};

Time manipulation

Returns the application's best approximation to the processor time used by the
program since it was started. This low-level routine is not implemented because it
strongly depends on the hardware. To determine the time in seconds, the result of
clock should be divided by the value defined by CLOCKS_PER_SEC.

clock

Returns the difference t1-t0 in seconds.difftime(t1,t0)

Converts the broken-down time in the structure pointed to by tp, to a value of type
time_t. The return value has the same encoding as the return value of the time
function.

mktime(tm *tp)

Returns the current calendar time. This value is also assigned to *timer.time(*timer)

Time conversion

Converts the broken-down time in the structure pointed to by tp into a string in the
form Mon Jan 22 16:15:14 2007\n\0. Returns a pointer to this string.

asctime(tm *tp)

Converts the calender time pointed to by timer to local time in the form of a string.
This is equivalent to: asctime(localtime(timer))

ctime(*timer)

Converts the calender time pointed to by timer to the broken-down time, expressed
as UTC. Returns a pointer to the broken-down time.

gmtime(*timer)

Converts the calendar time pointed to by timer to the broken-down time, expressed
as local time. Returns a pointer to the broken-down time.

localtime(*timer)

Formatted time

The next function has a parallel function defined in wchar.h:

773

Libraries

wchar.htime.h

wcsftime(*s,smax,*fmt,tm *tp)strftime(*s,smax,*fmt,tm *tp)

Formats date and time information from struct tm *tp into *s according to the specified format *fmt.
No more than smax characters are placed into *s. The formatting of strftime is locale-specific using
the LC_TIME category (see Section 14.2.15, locale.h).

You can use the next conversion specifiers:

abbreviated weekday name%a

full weekday name%A

abbreviated month name%b

full month name%B

locale-specific date and time representation (same as %a %b %e %T %Y)%c

last two digits of the year%C

day of the month (01-31)%d

same as %m/%d/%y%D

day of the month (1-31), with single digits preceded by a space%e

ISO 8601 date format: %Y-%m-%d%F

last two digits of the week based year (00-99)%g

week based year (0000–9999)%G

same as %b%h

hour, 24-hour clock (00-23)%H

hour, 12-hour clock (01-12)%I

day of the year (001-366)%j

month (01-12)%m

minute (00-59)%M

replaced by newline character%n

locale's equivalent of AM or PM%p

locale's 12-hour clock time; same as %I:%M:%S %p%r

same as %H:%M%R

second (00-59)%S

replaced by horizontal tab character%t

ISO 8601 time format: %H:%M:%S%T

ISO 8601 weekday number (1-7), Monday as first day of the week%u

week number of the year (00-53), week 1 has the first Sunday%U

ISO 8601 week number (01-53) in the week-based year%V

weekday (0-6, Sunday is 0)%w

week number of the year (00-53), week 1 has the first Monday%W

774

TASKING VX-toolset for ARM User Guide

local date representation%x

local time representation%X

year without century (00-99)%y

year with century%Y

ISO 8601 offset of time zone from UTC, or nothing%z

time zone name, if any%Z

%%%

14.2.28. unistd.h

The file unistd.h contains standard UNIX I/O functions. These functions are all implemented using file
system simulation. Except for lstat and fstat which are not implemented. This header file is not
defined in ISO C99.

Use file system simulation to check the permissions of a file on the host. mode
specifies the type of access and is a bit pattern constructed by a logical OR of
the following values:

 R_OK Checks read permission.
 W_OK Checks write permission.
 X_OK Checks execute (search) permission.
 F_OK Checks to see if the file exists.

(FSS implementation)

access(*name,mode)

Use file system simulation to change the current directory on the host to the
directory indicated by path. (FSS implementation)

chdir(*path)

File close function. The given file descriptor should be properly closed. This
function calls _close(). (FSS implementation)

close(fd)

Use file system simulation to retrieve the current directory on the host. Returns
the directory name. (FSS implementation)

getcwd(*buf,size)

Moves read-write file offset. Calls _lseek(). (FSS implementation)lseek(fd,offset,whence)

Reads a sequence of characters from a file.This function calls _read(). (FSS
implementation)

read(fd,*buff,cnt)

Use file system simulation to stat() a file on the host platform. (FSS
implementation)

stat(*name,*buff)

This function is identical to stat(), except in the case of a symbolic link, where
the link itself is 'stat'-ed, not the file that it refers to. (Not implemented)

lstat(*name,*buff)

This function is identical to stat(), except that it uses a file descriptor instead
of a name. (Not implemented)

fstat(fd,*buff)

Removes the named file, so that a subsequent attempt to open it fails. (FSS
implementation)

unlink(*name)

Write a sequence of characters to a file. Calls _write(). (FSS implementation)write(fd,*buff,cnt)

775

Libraries

14.2.29. wchar.h

Many functions in wchar.h represent the wide-character variant of other functions so these are discussed
together. (See Section 14.2.24, stdio.h and wchar.h, Section 14.2.25, stdlib.h and wchar.h, Section 14.2.26,
string.h and wchar.h and Section 14.2.27, time.h and wchar.h).

The remaining functions are described below. They perform conversions between multi-byte characters
and wide characters. In these functions, ps points to struct mbstate_t which holds the conversion state
information necessary to convert between sequences of multibyte characters and wide characters:

typedef struct
{
 wchar_t wc_value; /* wide character value solved
 so far */
 unsigned short n_bytes; /* number of bytes of solved
 multibyte */
 unsigned short encoding; /* encoding rule for wide
 character <=> multibyte
 conversion */
} mbstate_t;

When multibyte characters larger than 1 byte are used, this struct will be used to store the conversion
information when not all the bytes of a particular multibyte character have been read from the source. In
this implementation, multi-byte characters are 1 byte long (MB_CUR_MAX and MB_LEN_MAX are defined
as 1) and this will never occur.

Determines whether the object pointed to by ps, is an initial conversion
state. Returns a non-zero value if so.

mbsinit(*ps)

Restartable version of mbstowcs. See Section 14.2.25, stdlib.h and
wchar.h.The initial conversion state is specified by ps.The input sequence
of multibyte characters is specified indirectly by src.

mbsrtowcs(*pwcs,**src,n,*ps)

Restartable version of wcstombs. See Section 14.2.25, stdlib.h and
wchar.h. The initial conversion state is specified by ps. The input wide
string is specified indirectly by src.

wcsrtombs(*s,**src,n,*ps)

Converts a multibyte character *s to a wide character *pwc according to
conversion state ps. See also mbtowc in Section 14.2.25, stdlib.h and
wchar.h.

mbrtowc(*pwc,*s,n,*ps)

Converts a wide character wc to a multi-byte character according to
conversion state ps and stores the multi-byte character in *s.

wcrtomb(*s,wc,*ps)

Returns the wide character corresponding to character c. Returns WEOF
on error.

btowc(c)

Returns the multi-byte character corresponding to the wide character c.
The returned multi-byte character is represented as one byte. Returns
EOF on error.

wctob(c)

Inspects up to n bytes from the string *s to see if those characters
represent valid multibyte characters, relative to the conversion state held
in *ps.

mbrlen(*s,n,*ps)

776

TASKING VX-toolset for ARM User Guide

14.2.30. wctype.h

Most functions in wctype.h represent the wide-character variant of functions declared in ctype.h and
are discussed in Section 14.2.4, ctype.h and wctype.h. In addition, this header file provides extensible,
locale specific functions and wide character classification.

Constructs a value of type wctype_t that describes a class of wide characters
identified by the string *property. If property identifies a valid class of wide characters
according to the LC_TYPE category (see Section 14.2.15, locale.h) of the current
locale, a non-zero value is returned that can be used as an argument in the
iswctype function.

wctype(*property)

Tests whether the wide character wc is a member of the class represented by
wctype_t desc. Returns a non-zero value if tested true.

iswctype(wc,desc)

Equivalent to locale specific testFunction

iswctype(wc,wctype("alnum"))iswalnum(wc)

iswctype(wc,wctype("alpha"))iswalpha(wc)

iswctype(wc,wctype("cntrl"))iswcntrl(wc)

iswctype(wc,wctype("digit"))iswdigit(wc)

iswctype(wc,wctype("graph"))iswgraph(wc)

iswctype(wc,wctype("lower"))iswlower(wc)

iswctype(wc,wctype("print"))iswprint(wc)

iswctype(wc,wctype("punct"))iswpunct(wc)

iswctype(wc,wctype("space"))iswspace(wc)

iswctype(wc,wctype("upper"))iswupper(wc)

iswctype(wc,wctype("xdigit"))iswxditig(wc)

Constructs a value of type wctype_t that describes a mapping between wide
characters identified by the string *property. If property identifies a valid mapping
of wide characters according to the LC_TYPE category (see Section 14.2.15,
locale.h) of the current locale, a non-zero value is returned that can be used as an
argument in the towctrans function.

wctrans(*property)

Transforms wide character wc into another wide-character, described by desc.towctrans(wc,desc)

Equivalent to locale specific transformationFunction

towctrans(wc,wctrans("tolower")towlower(wc)

towctrans(wc,wctrans("toupper")towupper(wc)

14.3. C Library Reentrancy

Some of the functions in the C library are reentrant, others are not. The table below shows the functions
in the C library, and whether they are reentrant or not. A dash means that the function is reentrant. Note

777

Libraries

that some of the functions are not reentrant because they set the global variable 'errno' (or call other
functions that eventually set 'errno'). If your program does not check this variable and errno is the only
reason for the function not being reentrant, these functions can be assumed reentrant as well.

The explanation of the cause why a function is not reentrant sometimes refers to a footnote because the
explanation is too lengthy for the table.

Not reentrant becauseFunction

Uses global File System Simulation buffer, _dbg_request_close

Uses I/O functions which modify iob[]. See (1)._doflt

Uses indirect access to static iob[] array. See (1)._doprint

Uses indirect access to iob[] and calls ungetc (access to local static
ungetc[] buffer). See (1).

_doscan

See exit._Exit

Uses iob[], which is not reentrant. See (1)._filbuf

Uses iob[]. See (1)._flsbuf

Uses iob[]. See (1)._getflt

Defines static iob[]. See (1)._iob

Uses global File System Simulation buffer, _dbg_request_lseek

Uses global File System Simulation buffer, _dbg_request_open

Uses global File System Simulation buffer, _dbg_request_read

Uses global File System Simulation buffer, _dbg_request_unlink

Uses global File System Simulation buffer, _dbg_request_write

Calls exitabort

-abs labs llabs

Uses global File System Simulation buffer, _dbg_requestaccess

Sets errno.acos acosf acosl

Sets errno via calls to other functions.acosh acoshf acoshl

asctime defines static array for broken-down time string.asctime

Sets errno.asin asinf asinl

Sets errno via calls to other functions.asinh asinhf asinhl

-atan atanf atanl

-atan2 atan2f atan2l

Sets errno via calls to other functions.atanh atanhf atanhl

atexit defines static array with function pointers to execute at exit of
program.

atexit

-atof

-atoi

-atol

778

TASKING VX-toolset for ARM User Guide

Not reentrant becauseFunction

-bsearch

-btowc

Sets errno via calls to other functions.cabs cabsf cabsl

Sets errno via calls to other functions.cacos cacosf cacosl

Sets errno via calls to other functions.cacosh cacosh cfacoshl

calloc uses static buffer management structures. See malloc (5).calloc

-carg cargf cargl

Sets errno via calls to other functions.casin casinf casinl

Sets errno via calls to other functions.casinh casinh cfasinhl

Sets errno via calls to other functions.catan catanf catanl

Sets errno via calls to other functions.catanh catanhf catanhl

-cbrt cbrtf cbrtl

Sets errno via calls to other functions.ccos ccosf ccosl

Sets errno via calls to other functions.ccosh ccoshf ccoshl

-ceil ceilf ceill

Sets errno via calls to other functions.cexp cexpf cexpl

Uses global File System Simulation buffer, _dbg_requestchdir

-cimag cimagf cimagl

Calls fclose. See (1)cleanup

Modifies iob[]. See (1)clearerr

Uses global File System Simulation buffer, _dbg_requestclock

Sets errno via calls to other functions.clog clogf clogl

Calls _closeclose

-conj conjf conjl

-copysign copysignf
copysignl

-cos cosf cosl

cosh calls exp(), which sets errno. If errno is discarded, cosh is
reentrant.

cosh coshf coshl

Sets errno via calls to other functions.cpow cpowf cpowl

-cproj cprojf cprojl

-creal crealf creall

Sets errno via calls to other functions.csin csinf csinl

Sets errno via calls to other functions.csinh csinhf csinhl

Sets errno via calls to other functions.csqrt csqrtf csqrtl

Sets errno via calls to other functions.ctan ctanf ctanl

779

Libraries

Not reentrant becauseFunction

Sets errno via calls to other functions.ctanh ctanhf ctanhl

Calls asctimectime

-difftime

-div ldiv lldiv

-erf erfl erff

-erfc erfcf erfcl

Calls fclose indirectly which uses iob[] calls functions in _atexit
array. See (1). To make exit reentrant kernel support is required.

exit

Sets errno.exp expf expl

Sets errno.exp2 exp2f exp2l

Sets errno via calls to other functions.expm1 expm1f expm1l

-fabs fabsf fabsl

Uses values in iob[]. See (1).fclose

-fdim fdimf fdiml

Writes PSW bits.feclearexcept

- (reads PSW bits)fegetenv

- (reads PSW bits via calls to other functions)fegetexceptflag

- (reads PSW bits)fegetround

Reads/writes PSW bits via calls to other functions.feholdexept

Uses values in iob[]. See (1).feof

Writes PSW bits.feraiseexcept

Uses values in iob[]. See (1).ferror

Writes PSW bits.fesetenv

Writes PSW bits via calls to other functions.fesetexceptflag

Writes PSW bits.fesetround

- (reads PSW bits)fetestexcept

Writes PSW bits via calls to other functions.feupdateenv

Modifies iob[]. See (1).fflush

Uses pointer to iob[]. See (1).fgetc fgetwc

Sets the variable errno and uses pointer to iob[]. See (1) / (2).fgetpos

Uses iob[]. See (1).fgets fgetws

-floor floorf floorl

-fma fmaf fmal

-fmax fmaxf fmaxl

-fmin fminf fminl

780

TASKING VX-toolset for ARM User Guide

Not reentrant becauseFunction

-fmod fmodf fmodl

Uses iob[] and calls malloc when file open for buffered IO. See (1)fopen

-fpclassify

Uses iob[]. See (1).fprintf fwprintf

Uses iob[]. See (1).fputc fputwc

Uses iob[]. See (1).fputs fputws

Calls fgetc. See (1).fread

free uses static buffer management structures. See malloc (5).free

Modifies iob[]. See (1).freopen

-frexp frexpf frexpl

Uses iob[]. See (1)fscanf fwscanf

Uses iob[] and calls _lseek. Accesses ungetc[] array. See (1).fseek

Uses iob[] and sets errno. See (1) / (2).fsetpos

(Not implemented)fstat

Uses iob[] and sets errno. Calls _lseek. See (1) / (2).ftell

Uses iob[]. See (1).fwrite

Uses iob[]. See (1).getc getwc

Uses iob[]. See (1).getchar getwchar

Uses global File System Simulation buffer, _dbg_requestgetcwd

Skeleton only.getenv

Uses iob[]. See (1).gets getws

gmtime defines static structuregmtime

Sets errno via calls to other functions.hypot hypotf hypotl

Sets errno.ilogb ilogbf ilogbl

-imaxabs

-imaxdiv

-isalnum iswalnum

-isalpha iswalpha

-isascii iswascii

-iscntrl iswcntrl

-isdigit iswdigit

-isfinite

-isgraph iswgraph

-isgreater

-isgreaterequal

781

Libraries

Not reentrant becauseFunction

-isinf

-isless

-islessequal

-islessgreater

-islower iswlower

-isnan

-isnormal

-isprint iswprint

-ispunct iswpunct

-isspace iswspace

-isunordered

-isupper iswupper

-iswalnum

-iswalpha

-iswcntrl

-iswctype

-iswdigit

-iswgraph

-iswlower

-iswprint

-iswpunct

-iswspace

-iswupper

-iswxditig

-isxdigit iswxdigit

Sets errno. See (2).ldexp ldexpf ldexpl

Sets errno.lgamma lgammaf lgammal

-llrint llrintf llrintl

Sets errno.llround llroundf llroundl

N.A.; skeleton functionlocaleconv

-localtime

Sets errno. See (2).log logf logl

Sets errno via calls to other functions.log10 log10f log10l

Sets errno.log1p log1pf log1pl

Sets errno.log2 log2f log2l

782

TASKING VX-toolset for ARM User Guide

Not reentrant becauseFunction

Sets errno.logb logbf logbl

-longjmp

-lrint lrintf lrintl

Sets errno.lround lroundf lroundl

Calls _lseeklseek

(Not implemented)lstat

Needs kernel support. See (5).malloc

N.A., skeleton functionmblen

Sets errno.mbrlen

Sets errno.mbrtowc

-mbsinit

Sets errno.mbsrtowcs

N.A., skeleton functionmbstowcs

N.A., skeleton functionmbtowc

-memchr wmemchr

-memcmp wmemcmp

-memcpy wmemcpy

-memmove wmemmove

-memset wmemset

-mktime

-modf modff modfl

-nan nanf nanl

-nearbyint nearbyintf
nearbyintl

-nextafter nextafterf
nextafterl

-nexttoward nexttowardf
nexttowardl

-offsetof

Calls _openopen

Uses errno. See (2)perror

Sets errno. See (2)pow powf powl

Uses iob[]. See (1)printf wprintf

Uses iob[]. See (1)putc putwc

Uses iob[]. See (1)putchar putwchar

Uses iob[]. See (1)puts

783

Libraries

Not reentrant becauseFunction

-qsort

Updates the signal handler tableraise

Uses static variable to remember latest random number. Must
diverge from ISO C standard to define reentrant rand. See (4).

rand

Calls _readread

See malloc (5).realloc

-remainder remainderf
remainderl

Uses global File System Simulation buffer, _dbg_requestremove

-remquo remquof remquol

Uses global File System Simulation buffer, _dbg_requestrename

Eventually calls _lseekrewind

-rint rintf rintl

-round roundf roundl

-scalbln scalblnf scalblnl

-scalbn scalbnf scalbnl

Uses iob[], calls _doscan. See (1).scanf wscanf

Sets iob[]. See (1).setbuf

-setjmp

N.A.; skeleton functionsetlocale

Sets iob and calls malloc. See (1) / (5).setvbuf

Updates the signal handler tablesignal

-signbit

-sin sinf sinl

Sets errno via calls to other functions.sinh sinhf sinhl

Sets errno. See (2).snprintf swprintf

Sets errno. See (2).sprintf

Sets errno. See (2).sqrt sqrtf sqrtl

See randsrand

Sets errno via calls to other functions.sscanf swscanf

Uses global File System Simulation buffer, _dbg_requeststat

-strcat wcscat

-strchr wcschr

-strcmp wcscmp

-strcoll wcscoll

-strcpy wcscpy

784

TASKING VX-toolset for ARM User Guide

Not reentrant becauseFunction

-strcspn wcscspn

-strerror

-strftime wcsftime

-strlen wcslen

-strncat wcsncat

-strncmp wcsncmp

-strncpy wcsncpy

-strpbrk wcspbrk

-strrchr wcsrchr

-strspn wcsspn

-strstr wcsstr

-strtod wcstod

-strtof wcstof

Sets errno via calls to other functions.strtoimax

strtok saves last position in string in local static variable.This function
is not reentrant by design. See (4).

strtok wcstok

Sets errno. See (2).strtol wcstol

-strtold wcstold

Sets errno. See (2).strtoul wcstoul

Sets errno. See (2).strtoull wcstoull

Sets errno via calls to other functions.strtoumax

-strxfrm wcsxfrm

N.A; skeleton functionsystem

Sets errno. See (2).tan tanf tanl

Sets errno via call to other functions.tanh tanhf tanhl

Sets errno.tgamma tgammaf tgammal

Uses static variable which defines initial start timetime

Uses iob[]. See (1).tmpfile

Uses local buffer to build filename.
Function can be adapted to use user buffer.This makes the function
non ISO C. See (4).

tmpnam

-toascii

-tolower

-toupper

-towctrans

-towlower

785

Libraries

Not reentrant becauseFunction

-towupper

-trunc truncf truncl

Uses static buffer to hold unget characters for each file. Can be
moved into iob structure. See (1).

ungetc ungetwc

Uses global File System Simulation buffer, _dbg_requestunlink

Uses iob[]. See (1).vfprintf vfwprintf

Calls _doscanvfscanf vfwscanf

Uses iob[]. See (1).vprintf vwprintf

Calls _doscanvscanf vwscanf

Sets errno.vsprintf vswprintf

Sets errno.vsscanf vswscanf

Sets errno.wcrtomb

Sets errno.wcsrtombs

Sets errno via calls to other functions.wcstoimax

N.A.; skeleton functionwcstombs

Sets errno via calls to other functions.wcstoumax

-wctob

N.A.; skeleton functionwctomb

-wctrans

-wctype

Calls _writewrite

Table: C library reentrancy

Several functions in the C library are not reentrant due to the following reasons:

• The iob[] structure is static. This influences all I/O functions.

• The ungetc[] array is static. This array holds the characters (one for each stream) when ungetc()
is called.

• The variable errno is globally defined. Numerous functions read or modify errno

• _doprint and _doscan use static variables for e.g. character counting in strings.

• Some string functions use locally defined (static) buffers. This is prescribed by ANSI.

• malloc uses a static heap space.

The following description discusses these items in more detail. The numbers at the beginning of each
paragraph relate to the number references in the table above.

(1) iob structures

786

TASKING VX-toolset for ARM User Guide

The I/O part of the C library is not reentrant by design. This is mainly caused by the static declaration of
the iob[] array. The functions which use elements of this array access these elements via pointers (
FILE *).

Building a multi-process system that is created in one link-run is hard to do. The C language scoping
rules for external variables make it difficult to create a private copy of the iob[] array. Currently, the
iob[] array has external scope. Thus it is visible in every module involved in one link phase. If these
modules comprise several tasks (processes) in a system each of which should have its private copy of
iob[], it is apparent that the iob[] declaration should be changed. This requires adaptation of the
library to the multi-tasking environment.The library modules must use a process identification as an index
for determining which iob[] array to use. Thus the library is suitable for interfacing to that kernel only.

Another approach for the iob[] declaration problem is to declare the array static in one of the modules
which create a task.Thus there can be more than one iob[] array is the system without having conflicts
at link time.This brings several restrictions: Only the module that holds the declaration of the static iob[]
can use the standard file handles stdin, stdout and stderr (which are the first three entries in iob[]).
Thus all I/O for these three file handles should be located in one module.

(2) errno declaration

Several functions in the C library set the global variable errno. After completion of the function the user
program may consult this variable to see if some error occurred. Since most of the functions that set
errno already have a return type (this is the reason for using errno) it is not possible to check successful
completion via the return type.

The library routines can set errno to the values defined in errno.h. See the file errno.h for more
information.

errno can be set to ERR_FORMAT by the print and scan functions in the C library if you specify illegal
format strings.

errno will never be set to ERR_NOLONG or ERR_NOPOINT since the C library supports long and
pointer conversion routines for input and output.

errno can be set to ERANGE by the following functions: exp(), strtol(), strtoul() and tan().
These functions may produce results that are out of the valid range for the return type. If so, the result of
the function will be the largest representable value for that type and errno is set to ERANGE.

errno is set to EDOM by the following functions: acos(), asin(), log(), pow() and sqrt(). If the
arguments for these functions are out of their valid range (e.g. sqrt(-1)), errno is set to EDOM.

errno can be set to ERR_POS by the file positioning functions ftell(), fsetpos() and fgetpos().

(3) ungetc

Currently the ungetc buffer is static. For each file entry in the iob[] structure array, there is one character
available in the buffer to unget a character.

(4) local buffers

787

Libraries

tmpnam() creates a temporary filename and returns a pointer to a local static buffer. This is according
to the ANSI definition. Changing this function such that it creates the name in a user specified buffer
requires another calling interface. Thus the function would be no longer portable.

strtok() scans through a string and remembers that the string and the position in the string for
subsequent calls.This function is not reentrant by design. Making it reentrant requires support of a kernel
to store the information on a per process basis.

rand() generates a sequence of random numbers. The function uses the value returned by a previous
call to generate the next value in the sequence. This function can be made reentrant by specifying the
previous random value as one of the arguments. However, then it is no longer a standard function.

(5) malloc

Malloc uses a heap space which is assigned at locate time. Thus this implementation is not reentrant.
Making a reentrant malloc requires some sort of system call to obtain free memory space on a per process
basis. This is not easy to solve within the current context of the library. This requires adaptation to a
kernel.

This paragraph on reentrancy applies to multi-process environments only. If reentrancy is required
for calling library functions from an exception handler, another approach is required. For such a
situation it is of no use to allocate e.g. multiple iob[] structures. In such a situation several pieces
of code in the library have to be declared 'atomic': this means that interrupts have to be disabled
while executing an atomic piece of code.

788

TASKING VX-toolset for ARM User Guide

Chapter 15. List File Formats
This chapter describes the format of the assembler list file and the linker map file.

15.1. Assembler List File Format

The assembler list file is an additional output file of the assembler that contains information about the
generated code. For details on how to generate a list file, see Section 6.5, Generating a List File.

The list file consists of a page header and a source listing.

Page header

The page header is repeated on every page:

TASKING VX-toolset for ARM: assembler vx.yrz Build nnn SN 00000000
Title Page 1

ADDR CODE CYCLES LINE SOURCE LINE

The first line contains version information. The second line can contain a title which you can specify with
the assembler directive .TITLE and always contains a page number. The third line is empty and the
fourth line contains the headings of the columns for the source listing.

With the assembler directives .LIST/.NOLIST, .PAGE, and with the assembler option --list-format you
can format the list file.

Source listing

The following is a sample part of a listing. An explanation of the different columns follows below.

ADDR CODE CYCLES LINE SOURCE LINE
 1 ; Module start
 .
 .
0000 08009FE5 1 1 16 ldr r0,.L2
0004 001090E5 1 2 17 ldr r1,[r0,#0]
0008 04009FE5 1 3 18 ldr r0,.L2+4
000C rrrrrrEA 3 6 19 b printf
 .
 .
0000 38 .ds 2
 | RESERVED
0001

789

This column contains the memory address.The address is a hexadecimal number
that represents the offset from the beginning of a relocatable section or the absolute
address for an absolute section. The address only appears on lines that generate
object code.

ADDR

This is the object code generated by the assembler for this source line, displayed
in hexadecimal format.The displayed code need not be the same as the generated
code that is entered in the object module. The code can also be relocatable code.
In this case the letter 'r' is printed for the relocatable code part in the listing. For
lines that allocate space, the code field contains the text "RESERVED". For lines
that initialize a buffer, the code field lists one value followed by the word
"REPEATS".

CODE

The first number in this column is the number of instruction cycles needed to
execute the instruction(s) as generated in the CODE field. The second number is
the accumulated cycle count of this section.

CYCLES

This column contains the line number. This is a decimal number indicating each
input line, starting from 1 and incrementing with each source line.

LINE

This column contains the source text. This is a copy of the source line from the
assembly source file.

SOURCE LINE

For the .SET and .EQU directives the ADDR and CODE columns do not apply. The symbol value is listed
instead.

15.2. Linker Map File Format

The linker map file is an additional output file of the linker that shows how the linker has mapped the
sections and symbols from the various object files (.obj) to output sections. The locate part shows the
absolute position of each section. External symbols are listed per space with their absolute address, both
sorted on symbol and sorted on address. For details on how to generate a map file, see Section 7.9,
Generating a Map File.

With the linker option --map-file-format you can specify which parts of the map file you want to see.

In Eclipse the linker map file (project.mapxml) is generated in the output directory of the build configuration,
usually Debug or Release.You can open the map file by double-clicking on the file name.

790

TASKING VX-toolset for ARM User Guide

Each page displays a part of the map file.You can use the drop-down list or the Outline view to navigate
through the different tables and you can use the following buttons.

DescriptionActionIcon

Goes back one page in the history list.Back

Goes forward one page in the history list.Forward

Shows the next table from the drop-down list.Next Table

Shows the previous table from the drop-down list.Previous Table

When you right-click in the view, a popup menu appears (for example, to reset the layout of a table). The
meaning of the different parts is:

Tool and Invocation

This part of the map file contains information about the linker, its version header information, binary
location and which options are used to call it.

Used Resources

This part of the map file shows the memory usage at memory level and space level. The largest free
block of memory (Largest gap) is also shown.This part also contains an estimation of the stack usage.

Explanation of the columns:

The names of the system memory and user memory as defined in the linker script
file (*.lsl).

Memory

791

List File Formats

The size of all executable sections.Code

The size of all non-executable sections (not including stacks, heaps, debug sections
in non-alloc space).

Data

The total size of reserved memories, reserved ranges, reserved special sections,
stacks, heaps, alignment protections, sections located in non-alloc space (debug
sections). In fact, this size is the same as the size in the Total column minus the
size of all other columns.

Reserved

The free memory area addressable by this core. This area is accessible for
unrestricted items.

Free

The total memory area addressable by this core.Total

The names of the address spaces as defined in the linker script file (*.lsl). The
names are constructed of the derivative name followed by a colon ':', the core
name, another colon ':' and the space name. For example: ARM:ARM:linear.

Space

The size of sections located in this space.Native used ...

The size of all sections destined for/located in other spaces, but because of overlap
in spaces consume memory in this space.

Foreign used

The name(s) of the stack(s) as defined in the linker script file (*.lsl).Stack Name

An estimation of the stack usage. The linker calculates the required stack size by
using information (.CALLS directives) generated by the compiler. If for example
recursion is detected, the calculated stack size is inaccurate, therefore this is an
estimation only.The calculated stack size is supposed to be smaller than the actual
allocated stack size. If that is not the case, then a warning is given.

Used

Processed Files

This part of the map file shows all processed files. This also includes object files that are extracted from
a library, with the symbol that led to the extraction.

Link Result

This part of the map file shows per object file how the link phase has mapped the sections from the various
object files (.obj) to output sections.

The name of an input object file.[in] File

A section name and id from the input object file.The number between '()' uniquely
identifies the section.

[in] Section

The size of the input section.[in] Size

The offset relative to the start of the output section.[out] Offset

The resulting output section name and id.[out] Section

The size of the output section.[out] Size

792

TASKING VX-toolset for ARM User Guide

Module Local Symbols

This part of the map file shows a table for each local scope within an object file. Each table has three
columns, 1 the symbol name, 2 the address of the symbol and 3 the space where the symbol resides in.
The table is sorted on symbol name within each space.

By default this part is not shown in the map file.You have to turn this part on manually with linker option
--map-file-format=+statics (module local symbols).

Cross References

This part of the map file lists all symbols defined in the object modules and for each symbol the object
modules that contain a reference to the symbol are shown. Also, symbols that remain undefined are
shown.

Call Graph

This part of the map file contains a schematic overview that shows how (library) functions call each other.
To obtain call graph information, the assembly file must contain .CALLS directives.

You can click the + or - sign to expand or collapse a single node. Use the / buttons to expand/collapse
all nodes in the call graph.

DescriptionMeaningIcon

This function is the top of the call graph. If there are interrupt handlers, there
can be several roots.

Root

This function is referenced by several No leaf functions. Right-click on the
function and select Expand all References to see all functions that
reference this function. Select Back to Caller to return to the calling function.

Callee

A normal node (function) in the call graph.Node

This function calls a function which is listed separately in the call graph.
Right-click on the function and select Go to Callee to see the callee. Hover
the mouse over the function to see a popup with all callees.

Caller

Overlay

This part is empty for the ARM.

Locate Result: Sections

This part of the map file shows the absolute position of each section in the absolute object file. It is
organized per memory chip and group and sorted on space address. In Eclipse, right-click in the table
and select Configure Columns to specify which columns you want to see. If you hover the mouse over
a section, you get a popup with information about the section. If you select a range of sections, in the
Fast View bar (at the bottom) you will see information about the selected range, such as the total size,
how many sections are selected and how many gaps are present.

793

List File Formats

The line number and default sort order.#

The name and id of the section. The number between '()' uniquely identifies the
section. Sections within square brackets [] will be copied during initialization from
ROM to the corresponding section name in RAM.

Section
Section name
Section number

The size of the section in minimum addressable units (hexadecimal or decimal).Sect. size (hex)
Sect. size (dec)

Sections can be ordered in groups.These are the names of the groups as defined
in the linker script file (*.lsl) with the keyword group in the section_layout
definition. The name that is displayed is the name of the deepest nested group.

Group

The first address of the section in the address space.Start address

The last address of the section in the address space.End address

The names of the external symbols that are referenced in the section. See Locate
Result: Symbols below.

Symbols in sect.

The names of the input modules the section is defined in. See Link Result: [in]
File above.

Defined in

The names of the modules that contain a reference to the section. See Cross
References above.

Referenced in

The name of the address space.Address space

The names of the memory chips as defined in the linker script file (*.lsl) in the
memory definitions.

Chip name

The absolute offset of the section from the start of a memory chip.Chip addr

The locate rule type and properties. See Locate Rules below.Locate
type:properties

The following buttons are available in this part of the map file.

DescriptionActionIcon

Opens the Configure Section Filter dialog. Here you can select which
sections you want to see in the map file and how.

Configure Section
Filter

All sections that are marked with ”Highlight" in the Configure Section Filter
dialog will be highlighted in the table.

Enable
Highlighting

All sections that are marked with ”Collapse" in the Configure Section Filter
dialog will appear collapsed in the table.

Enable Collapsing

All lines that are not part of the selection in the Configure Section Filter
dialog will be hidden.

Only Show
Matching Lines

Also shows the gaps in the map file. Click the button again to hide the gaps.Show Gaps

Configure Section Filter Dialog

In this dialog you can filter which sections you want to see in the map file and how. Click Add to add a
new filter. Explanation of the columns and fields:

794

TASKING VX-toolset for ARM User Guide

Marks the section as a candidate for highlighting. Turn on Enable Highlighting
to see the effect.

Highlight

The highlight color.Color

Marks the section as a candidate for collapsing. Turn on Enable Collapsing to
see the effect.

Collapse

A filter to select a section or group of sections. Wildcards are allowed. Wildcards
follow the rules of regular expressions. To get help on which wildcards are
supported, press Ctrl-space. Click an item in the list for help, double-click to add
the wildcard.

Section name

The first address of the section in the address space for this filter.Start address

The last address of the section in the address space for this filter.End address

The name of the address space.Address space

The name of the memory chip as defined in the linker script file (*.lsl) in the
memory definitions.

Chip name

If gaps are shown in the map file, here you can limit the number of gaps you want
to see.

Hide gaps smaller
than

The meaning of the check boxes is the same as the corresponding buttons available in this part of the
map file.

Locate Result: Symbols

This part of the map file lists all external symbols per address space name.

The absolute address of the symbol in the address space.Address

The name of the symbol.Name

The names of the address spaces as defined in the linker script file (*.lsl). The
names are constructed of the derivative name followed by a colon ':', the core
name, another colon ':' and the space name. For example: ARM:ARM:linear.

Space

Processor and Memory

This part of the map file shows the processor and memory information of the linker script file.

By default this part is not shown in the map file.You have to turn this part on manually with linker option
--map-file-format=+lsl (processor and memory info).You can print this information to a separate file with
linker option --lsl-dump.

You can click the + or - sign to expand or collapse a part of the information.

Locate Rules

This part of the map file shows the rules the linker uses to locate sections.

795

List File Formats

The names of the address spaces as defined in the linker script file (*.lsl). The
names are constructed of the derivative name followed by a colon ':', the core
name, another colon ':' and the space name.

Address space

The rule type:

ordered/contiguous/clustered/unrestricted

Specifies how sections are grouped. By default, a group is 'unrestricted' which
means that the linker has total freedom to place the sections of the group in the
address space.

Type

absolute

The section must be located at the address shown in the Properties column.

ranged

The section must be located anywhere in the address ranges shown in the
Properties column; end addresses are not included in the range.

page

The sections must be located in some address range with a size not larger than
shown in the Properties column; the first number is the page size, the second part
is the address range restriction within the page.

ranged page

Both the ranged and the paged restriction apply. In the Properties column the
range restriction is listed first, followed by the paged restriction between parenthesis.

ballooned

After locating all sections, the largest remaining gap in the space is used completely
for the stack and/or heap.

The contents depends on the Type column.Properties

The locate priority of the rule. A higher priority value gives a rule precedence over
a rule with a lower priority, but only if the two rules have the same type and the
same properties.The relative order of rules of different types or different properties
is not affected by this priority value.You can set the priority with the priority
group attribute in LSL

Prio

The sections to which the rule applies;

restrictions between sections are shown in this column:

 < ordered
 | contiguous
 + clustered

For contiguous sections, the linker uses the section order as shown here. Clustered
sections can be located in any relative order.

Sections

796

TASKING VX-toolset for ARM User Guide

Removed Sections

This part of the map file shows the sections which are removed from the output file as a result of the
optimization option to delete unreferenced sections and or duplicate code or constant data (linker option
--optimize=cxy).

The name of the section which has been removed.Section

The name of the input object file where the section is removed from.File

The name of the library where the object file is part of.Library

The symbols that were present in the section.Symbol

The reason why the section has been removed. This can be because the section
is unreferenced or duplicated.

Reason

797

List File Formats

798

TASKING VX-toolset for ARM User Guide

Chapter 16. Object File Formats
This chapter describes the format of several object files.

16.1. ELF/DWARF Object Format

The TASKING VX-toolset for ARM by default produces objects in the ELF/DWARF 3 format.

For a complete description of the ELF format, please refer to the Tool Interface Standard (TIS).

For a complete description of the DWARF format, please refer to the DWARF Debugging Information
Format Version 3. See http://dwarfstd.org/

16.2. Intel Hex Record Format

Intel Hex records describe the hexadecimal object file format for 8-bit, 16-bit and 32-bit microprocessors.
The hexadecimal object file is an ASCII representation of an absolute binary object file. There are six
different types of records:

• Data Record (8-, 16, or 32-bit formats)

• End of File Record (8-, 16, or 32-bit formats)

• Extended Segment Address Record (16, or 32-bit formats)

• Start Segment Address Record (16, or 32-bit formats)

• Extended Linear Address Record (32-bit format only)

• Start Linear Address Record (32-bit format only)

To generate an Intel Hex output file:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Output Format.

4. Enable the option Generate Intel Hex format file.

5. (Optional) Specify the Size of addresses (in bytes) for Intel Hex records.

6. (Optional) Enable or disable the option Emit start address record.

By default the linker generates records in the 32-bit format (4-byte addresses).

799

http://dwarfstd.org/

General Record Format

In the output file, the record format is:

checksumcontenttypeoffsetlength:

where:

is the record header.:

is the record length which specifies the number of bytes of the content field. This
value occupies one byte (two hexadecimal digits). The linker outputs records of
255 bytes (32 hexadecimal digits) or less; that is, length is never greater than 0xFF.

length

is the starting load offset specifying an absolute address in memory where the
data is to be located when loaded by a tool. This field is two bytes long. This field
is only used for Data Records. In other records this field is coded as four ASCII
zero characters ('0000').

offset

is the record type. This value occupies one byte (two hexadecimal digits). The
record types are:

Record TypeByte Type

Data00

End of file01

Extended segment address (not used)02

Start segment address (not used)03

Extended linear address (32-bit)04

Start linear address (32-bit)05

type

is the information contained in the record. This depends on the record type.content

is the record checksum. The linker computes the checksum by first adding the
binary representation of the previous bytes (from length to content). The linker
then computes the result of sum modulo 256 and subtracts the remainder from
256 (two's complement). Therefore, the sum of all bytes following the header is
zero.

checksum

800

TASKING VX-toolset for ARM User Guide

Extended Linear Address Record

The Extended Linear Address Record specifies the two most significant bytes (bits 16-31) of the absolute
address of the first data byte in a subsequent Data Record:

checksumupper_address04000002:

The 32-bit absolute address of a byte in a Data Record is calculated as:

 (address + offset + index) modulo 4G

where:

is the base address, where the two most significant bytes are the upper_address
and the two least significant bytes are zero.

address

is the 16-bit offset from the Data Record.offset

is the index of the data byte within the Data Record (0 for the first byte).index

Example:

:0200000400FFFB
 | | | | |_ checksum
 | | | |_ upper_address
 | | |_ type
 | |_ offset
 |_ length

Data Record

The Data Record specifies the actual program code and data.

checksumdata00offsetlength:

The length byte specifies the number of data bytes. The linker has an option (--hex-record-size) that
controls the length of the output buffer for generating Data records. The default buffer length is 32 bytes.

The offset is the 16-bit starting load offset. Together with the address specified in the Extended Address
Record it specifies an absolute address in memory where the data is to be located when loaded by a tool.

Example:

:0F00200000232222754E00754F04AF4FAE4E22C3
 | | | | |_ checksum
 | | | |_ data
 | | |_ type
 | |_ offset
 |_ length

801

Object File Formats

Start Linear Address Record

The Start Linear Address Record contains the 32-bit program execution start address.

checksumaddress05000004:

With linker option --hex-format=S you can prevent the linker from emitting this record.

Example:

:0400000500FF0003F5
 | | | | |_ checksum
 | | | |_ address
 | | |_ type
 | |_ offset
 |_ length

End of File Record

The hexadecimal file always ends with the following end-of-file record:

:00000001FF
 | | | |_ checksum
 | | |_ type
 | |_ offset
 |_ length

16.3. Motorola S-Record Format

To generate a Motorola S-record output file:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Output Format.

4. Enable the option Generate S-records file.

5. (Optional) Specify the Size of addresses (in bytes) for Motorola S records.

By default, the linker produces output in Motorola S-record format with three types of S-records (4-byte
addresses): S0, S3 and S7. Depending on the size of addresses you can force other types of S-records.
They have the following layout:

802

TASKING VX-toolset for ARM User Guide

S0 - record

checksumcomment0000lengthS0

A linker generated S-record file starts with an S0 record with the following contents:

 l k a r m
S00800006C6B61726DE0

The S0 record is a comment record and does not contain relevant information for program execution.

where:

is a comment record and does not contain relevant information for program
execution.

S0

represents the number of bytes in the record, not including the record type and
length byte. This value occupies one byte (two hexadecimal digits).

length

contains the name of the linker.comment

is the record checksum. The linker computes the checksum by first adding the
binary representation of the bytes following the record type (starting with the length
byte) to just before the checksum.Then the one's complement is calculated of this
sum. The least significant byte of the result is the checksum. The sum of all bytes
following the record type is 0xFF.

checksum

S1 / S2 / S3 - record

This record is the program code and data record for 2-byte, 3-byte or 4-byte addresses respectively.

checksumcode bytesaddresslengthS1

checksumcode bytesaddresslengthS2

checksumcode bytesaddresslengthS3

where:

is the program code and data record for 2-byte addresses.S1

is the program code and data record for 3-byte addresses.S2

is the program code and data record for 4-byte addresses (this is the default).S3

represents the number of bytes in the record, not including the record type and
length byte. This value occupies one byte (two hexadecimal digits).

length

contains the code or data address.address

contains the actual program code and data.code bytes

is the record checksum. The checksum calculation is identical to S0.checksum

803

Object File Formats

Example:

S3070000FFFE6E6825
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

S7 / S8 / S9 - record

This record is the termination record for 4-byte, 3-byte or 2-byte addresses respectively.

checksumaddresslengthS7

checksumaddresslengthS8

checksumaddresslengthS9

where:

is the termination record for 4-byte addresses (this is the default). S7 is the
corresponding termination record for S3 records.

S7

is the termination record for 3-byte addresses. S8 is the corresponding termination
record for S2 records.

S8

is the termination record for 2-byte addresses. S9 is the corresponding termination
record for S1 records.

S9

represents the number of bytes in the record, not including the record type and
length byte. This value occupies one byte (two hexadecimal digits).

length

contains the program start address.address

is the record checksum. The checksum calculation is identical to S0.checksum

Example:

S70500000000FA
 | | |_checksum
 | |_ address
 |_ length

804

TASKING VX-toolset for ARM User Guide

Chapter 17. Linker Script Language (LSL)
To make full use of the linker, you can write a script with information about the architecture of the target
processor and locating information.The language for the script is called the Linker Script Language (LSL).
This chapter first describes the structure of an LSL file. The next section contains a summary of the LSL
syntax. In the remaining sections, the semantics of the Linker Script Language is explained.

The TASKING linker is a target independent linker/locator that can simultaneously link and locate all
programs for all cores available on a target board. The target board may be of arbitrary complexity. A
simple target board may contain one standard processor with some external memory that executes one
task. A complex target board may contain multiple standard processors and DSPs combined with
configurable IP-cores loaded in an FPGA. Each core may execute a different program, and external
memory may be shared by multiple cores.

LSL serves two purposes. First it enables you to specify the characteristics (that are of interest to the
linker) of your specific target board and of the cores installed on the board. Second it enables you to
specify how sections should be located in memory.

17.1. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each
space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the vector table.

This specification is normally written by Altium. Altium supplies LSL files in the include.lsl directory.
The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

See Section 17.4, Semantics of the Architecture Definition for detailed descriptions of LSL in the architecture
definition.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

When you build an ASIC or use a derivative that is not (yet) supported by the TASKING tools, you may
have to write a derivative definition.

805

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

See Section 17.5, Semantics of the Derivative Definition for a detailed description of LSL in the derivative
definition.

The processor definition

The processor definition describes an instance of a derivative.Typically the processor definition instantiates
one derivative only (single-core processor). A processor that contains multiple cores having the same
(homogeneous) or different (heterogeneous) architecture can also be described by instantiating multiple
derivatives of the same or different types in separate processor definitions.

See Section 17.6, Semantics of the Board Specification for a detailed description of LSL in the processor
definition.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

See Section 17.6.3, Defining External Memory and Buses, for more information on how to specify the
external physical memory layout. Internal memory for a processor should be defined in the derivative
definition for that processor.

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems.The board specification describes all characteristics of your target board's system buses, memory
devices, I/O sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

• convert a logical address to an offset within a memory device

• locate sections in physical memory

• maintain an overall view of the used and free physical memory within the whole system while locating

The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given load-address or run-time address,
to place sections in a given order, and to overlay code and/or data sections.

Which object files (sections) constitute the task that will run on a given core is specified on the command
line when you invoke the linker. The linker will link and locate all sections of all tasks simultaneously.
From the section layout definition the linker can deduce where a given section may be located in memory,

806

TASKING VX-toolset for ARM User Guide

form the board specification the linker can deduce which physical memory is (still) available while locating
the section.

See Section 17.8, Semantics of the Section Layout Definition, for more information on how to locate a
section at a specific place in memory.

Skeleton of a Linker Script File

architecture architecture_name
{
 // Specification core architecture
}

derivative derivative_name
{
 // Derivative definition
}

processor processor_name
{
 // Processor definition
}

memory and/or bus definitions

section_layout space_name
{
 // section placement statements
}

17.2. Syntax of the Linker Script Language

This section describes what the LSL language looks like. An LSL document is stored as a file coded in
UTF-8 with extension .lsl. Before processing an LSL file, the linker preprocesses it using a standard
C preprocessor. Following this, the linker interprets the LSL file using a scanner and parser. Finally, the
linker uses the information found in the LSL file to guide the locating process.

17.2.1. Preprocessing

When the linker loads an LSL file, the linker processes it with a C-style prepocessor. As such, it strips C
and C++ comments.You can use the standard ISO C preprocessor directives, such as #include,
#define, #if/#ifdef/#else/#endif, #error.

For example:

#include "arch.lsl"

Preprocess and include the file arch.lsl at this point in the LSL file.

807

Linker Script Language (LSL)

17.2.2. Lexical Syntax

The following lexicon is used to describe the syntax of the Linker Script Language:

A is defined as B=A ::= B

A is defined as B and C; B is followed by C=A ::= B C

A is defined as B or C=A ::= B | C

zero or one occurrence of B=0|1

zero of more occurrences of B=>=0

one of more occurrences of B=>=1

a character sequence starting with 'a'-'z', 'A'-'Z' or '_'. Following
characters may also be digits and dots '.'

=IDENTIFIER

sequence of characters not starting with \n, \r or \t=STRING

" STRING " (double quoted string)=DQSTRING

octal number, starting with a zero (06, 045)=OCT_NUM

decimal number, not starting with a zero (14, 1024)=DEC_NUM

hexadecimal number, starting with '0x' (0x0023, 0xFF00)=HEX_NUM

OCT_NUM, DEC_NUM and HEX_NUM can be followed by a k (kilo), M (mega), or G (giga).

Characters in bold are characters that occur literally. Words in italics are higher order terms that are
defined in the same or in one of the other sections.

To write comments in LSL file, you can use the C style '/* */' or C++ style '//'.

17.2.3. Identifiers and Tags

arch_name ::= IDENTIFIER
bus_name ::= IDENTIFIER
core_name ::= IDENTIFIER
derivative_name ::= IDENTIFIER
file_name ::= DQSTRING
group_name ::= IDENTIFIER
heap_name ::= section_name
map_name ::= IDENTIFIER
mem_name ::= IDENTIFIER
proc_name ::= IDENTIFIER
section_name ::= DQSTRING
space_name ::= IDENTIFIER
stack_name ::= section_name
symbol_name ::= DQSTRING

808

TASKING VX-toolset for ARM User Guide

tag_attr ::= (tag<,tag>>=0)
tag ::= tag = DQSTRING

A tag is an arbitrary text that can be added to a statement.

17.2.4. Expressions

The expressions and operators in this section work the same as in ISO C.

number ::= OCT_NUM
 | DEC_NUM
 | HEX_NUM

expr ::= number
 | symbol_name
 | unary_op expr
 | expr binary_op expr
 | expr ? expr : expr
 | (expr)
 | function_call

unary_op ::= ! // logical NOT
 | ~ // bitwise complement
 | - // negative value

binary_op ::= ^ // exclusive OR
 | * // multiplication
 | / // division
 | % // modulus
 | + // addition
 | - // subtraction
 | >> // right shift
 | << // left shift
 | == // equal to
 | != // not equal to
 | > // greater than
 | < // less than
 | >= // greater than or equal to
 | <= // less than or equal to
 | & // bitwise AND
 | | // bitwise OR
 | && // logical AND
 | || // logical OR

17.2.5. Built-in Functions

function_call ::= absolute (expr)
 | addressof (addr_id)
 | checksum (checksum_algo , expr , expr)
 | exists (section_name)
 | max (expr , expr)

809

Linker Script Language (LSL)

 | min (expr , expr)
 | sizeof (size_id)

addr_id ::= sect : section_name
 | group : group_name

checksum_algo ::= crc32w

size_id ::= sect : section_name
 | group : group_name
 | mem : mem_name

• Every space, bus, memory, section or group you refer to, must be defined in the LSL file.

• The addressof() and sizeof() functions with the group or sect argument can only be used in
the right hand side of an assignment. The sizeof() function with the mem argument can be used
anywhere in section layouts.

• The checksum() function can only be used in a struct statement.

You can use the following built-in functions in expressions. All functions return a numerical value. This
value is a 64-bit signed integer.

absolute()

int absolute(expr)

Converts the value of expr to a positive integer.

absolute("labelA"-"labelB")

addressof()

int addressof(addr_id)

Returns the address of addr_id, which is a named section or group. To get the offset of the section with
the name asect:

addressof(sect: "asect")

This function only works in assignments and struct statements.

checksum()

int checksum(checksum_algo, expr, expr)

Returns the computed checksum over a contiguous address range. The first argument specifies how the
checksum must be computed (see below), the second argument is an expression that represents the
start address of the range, while the third argument represents the end address (exclusive). The value
of the end address expression must be strictly larger than the value of the start address (i.e. the size of
the checksum address range must be at least one MAU). Each address in the range must point to a valid

810

TASKING VX-toolset for ARM User Guide

memory location. Memory locations in the address range that are not occupied by a section are filled with
zeros.

The only checksum algorithm (checksum_algo) currently supported is crc32w. This algorithm computes
the checksum using a Cyclic Redundancy Check with the "CRC-32" polynomial 0xEDB88320. The input
range is processed per 4-byte word. Those 4 bytes are passed to the checksum algorithm in reverse
order if the target architecture is little-endian. For big-endian targets, this checksum algorithm is equal to
a regular byte-wise CRC-32 implementation. Both the start address and end address values must be
aligned on 4 MAUs.The behavior of this checksum algorithm is undefined when used in an address space
that has a MAU size not equal to 8.

checksum(crc32w,
 addressof(mem:foo),
 addressof(mem:foo) + sizeof(mem:foo))

This function only works in struct statements.

exists()

int exists(section_name)

The function returns 1 if the section section_name exists in one or more object file, 0 otherwise. If the
section is not present in input object files, but generated from LSL, the result of this function is undefined.

To check whether the section mysection exists in one of the object files that is specified to the linker:

exists("mysection")

max()

int max(expr, expr)

Returns the value of the expression that has the largest value. To get the highest value of two symbols:

max("sym1" , "sym2")

min()

int min(expr, expr)

Returns the value of the expression hat has the smallest value. To get the lowest value of two symbols:

min("sym1" , "sym2")

sizeof()

int sizeof(size_id)

Returns the size of the object (group, section or memory) the identifier refers to. To get the size of the
section "asection":

811

Linker Script Language (LSL)

sizeof(sect: "asection")

The group and sect arguments only works in assignments and struct statements. The mem
argument can be used anywhere in section layouts.

17.2.6. LSL Definitions in the Linker Script File

description ::= <definition>>=1

definition ::= architecture_definition
 | derivative_definition
 | board_spec
 | section_definition
 | section_setup

• At least one architecture_definition must be present in the LSL file.

17.2.7. Memory and Bus Definitions

mem_def ::= memory mem_name <tag_attr>0|1 { <mem_descr ;>>=0 }

• A mem_def defines a memory with the mem_name as a unique name.

mem_descr ::= type = <reserved>0|1 mem_type
 | mau = expr
 | size = expr
 | speed = number
 | priority = number
 | exec_priority = number | fill <= fill_values>0|1

 | mapping

• A mem_def contains exactly one type statement.

• A mem_def contains exactly one mau statement (non-zero size).

• A mem_def contains exactly one size statement.

• A mem_def contains zero or one priority (or speed) statement (if absent, the default value is 1).

• A mem_def contains zero or one exec_priority statement.

• A mem_def contains zero or one fill statement.

• A mem_def contains at least one mapping

mem_type ::= rom // attrs = rx
 | ram // attrs = rw
 | nvram // attrs = rwx
 | blockram

812

TASKING VX-toolset for ARM User Guide

fill_values ::= expr
 | [expr <, expr>>=0]

bus_def ::= bus bus_name { <bus_descr ;>>=0 }

• A bus_def statement defines a bus with the given bus_name as a unique name within a core
architecture.

bus_descr ::= mau = expr
 | width = expr // bus width, nr
 | // of data bits
 | mapping // legal destination
 // 'bus' only

• The mau and width statements appear exactly once in a bus_descr. The default value for width is
the mau size.

• The bus width must be an integer times the bus MAU size.

• The MAU size must be non-zero.

• A bus can only have a mapping on a destination bus (through dest = bus:).

mapping ::= map <map_name>0|1 (map_descr <, map_descr>>=0)

map_descr ::= dest = destination
 | dest_dbits = range
 | dest_offset = expr
 | size = expr
 | src_dbits = range
 | src_offset = expr
 | reserved
 | priority = number
 | exec_priority = number
 | tag

• A map_descr requires at least the size and dest statements.

• A map_descr contains zero or one priority statement (if absent, the default value is 0).

• A map_descr contains zero or one exec_priority statement.

• Each map_descr can occur only once.

• You can define multiple mappings from a single source.

• Overlap between source ranges or destination ranges is not allowed.

• If the src_dbits or dest_dbits statement is not present, its value defaults to the width value if
the source/destination is a bus, and to the mau size otherwise.

• The reserved statement is allowed only in mappings defined for a memory.

813

Linker Script Language (LSL)

destination ::= space : space_name
 | bus : <proc_name |

core_name :>0|1 bus_name

• A space_name refers to a defined address space.

• A proc_name refers to a defined processor.

• A core_name refers to a defined core.

• A bus_name refers to a defined bus.

• The following mappings are allowed (source to destination)

• space => space

• space => bus

• bus => bus

• memory => bus

range ::= expr .. expr

• With address ranges, the end address is not part of the range.

17.2.8. Architecture Definition

architecture_definition
 ::= architecture arch_name
 <(parameter_list)>0|1

 <extends arch_name
 <(argument_list)>0|1 >0|1

{ <arch_spec>>=0 }

• An architecture_definition defines a core architecture with the given arch_name as a unique
name.

• At least one space_def and at least one bus_def have to be present in an
architecture_definition.

• An architecture_definition that uses the extends construct defines an architecture that inherits
all elements of the architecture defined by the second arch_name. The parent architecture must be
defined in the LSL file as well.

parameter_list ::= parameter <, parameter>>=0

parameter ::= IDENTIFIER <= expr>0|1

argument_list ::= expr <, expr>>=0

814

TASKING VX-toolset for ARM User Guide

arch_spec ::= bus_def
 | space_def
 | endianness_def

space_def ::= space space_name <tag_attr>0|1 { <space_descr;>>=0 }

• A space_def defines an address space with the given space_name as a unique name within an
architecture.

space_descr ::= space_property ;
 | section_definition //no space ref
 | vector_table_statement
 | reserved_range

space_property ::= id = number // as used in object
 | mau = expr
 | align = expr
 | page_size = expr <[range] <| [range]>>=0>0|1

 | page
 | direction = direction
 | stack_def
 | heap_def
 | copy_table_def
 | start_address
 | mapping

• A space_def contains exactly one id and one mau statement.

• A space_def contains at most one align statement.

• A space_def contains at most one page_size statement.

• A space_def contains at least one mapping.

stack_def ::= stack stack_name (stack_heap_descr
 <, stack_heap_descr >>=0)

• A stack_def defines a stack with the stack_name as a unique name.

heap_def ::= heap heap_name (stack_heap_descr
 <, stack_heap_descr >>=0)

• A heap_def defines a heap with the heap_name as a unique name.

stack_heap_descr ::= min_size = expr
 | grows = direction
 | align = expr
 | fixed
 | id = expr
 | threads = expr
 | tag

815

Linker Script Language (LSL)

• The min_size statement must be present.

• You can specify at most one align statement, one grows statement and one threads statement.

• Each stack definition has its own unique id, the number specified corresponds to the index in the
.CALLS directive as generated by the compiler.

direction ::= low_to_high
 | high_to_low

• If you do not specify the grows statement, the stack and heap grow low-to-high.

copy_table_def ::= copytable <(copy_table_descr
 <, copy_table_descr >>=0)>0|1

• A space_def contains at most one copytable statement.

• Exactly one copy table must be defined in one of the spaces.

copy_table_descr ::= align = expr
 | copy_unit = expr
 | dest <space_name>0|1 = space_name
 | page
 | tag

• The copy_unit is defined by the size in MAUs in which the startup code moves data.

• The dest statement is only required when the startup code initializes memory used by another processor
that has no access to ROM.

• A space_name refers to a defined address space.

start_addr ::= start_address (start_addr_descr
 <, start_addr_descr>>=0)

start_addr_descr ::= run_addr = expr
 | symbol = symbol_name

• A symbol_name refers to the section that contains the startup code.

vector_table_statement
 ::= vector_table section_name

(vecttab_spec <, vecttab_spec>>=0)
{ <vector_def>>=0 }

vecttab_spec ::= vector_size = expr
 | size = expr
 | id_symbol_prefix = symbol_name
 | run_addr = addr_absolute
 | template = section_name
 | template_symbol = symbol_name
 | vector_prefix = section_name
 | fill = vector_value

816

TASKING VX-toolset for ARM User Guide

 | no_inline
 | copy
 | tag

vector_def ::= vector (vector_spec <, vector_spec>>=0);

vector_spec ::= id = vector_id_spec
 | fill = vector_value
 | optional
 | tag

vector_id_spec ::= number
 | [range] <, [range]>>=0

vector_value ::= symbol_name
 | [number <, number>>=0]
 | loop <[expr]>0|1

reserved_range ::= reserved <tag_attr>0|1 expr .. expr ;

• The end address is not part of the range.

endianness_def ::= endianness { <endianness_type;>>=1 }

endianness_type ::= big
 | little

17.2.9. Derivative Definition

derivative_definition
 ::= derivative derivative_name
 <(parameter_list)>0|1

 <extends derivative_name
 <(argument_list)>0|1 >0|1

{ <derivative_spec>>=0 }

• A derivative_definition defines a derivative with the given derivative_name as a unique
name.

derivative_spec ::= core_def
 | bus_def
 | mem_def
 | section_definition // no processor name
 | section_setup

core_def ::= core core_name { <core_descr ;>>=0 }

• A core_def defines a core with the given core_name as a unique name.

• At least one core_def must be present in a derivative_definition.

817

Linker Script Language (LSL)

core_descr ::= architecture = arch_name
 <(argument_list)>0|1

 | endianness = (endianness_type
 <, endianness_type>>=0)

• An arch_name refers to a defined core architecture.

• Exactly one architecture statement must be present in a core_def.

17.2.10. Processor Definition and Board Specification

board_spec ::= proc_def
 | bus_def
 | mem_def

proc_def ::= processor proc_name
{ proc_descr ; }

proc_descr ::= derivative = derivative_name
 <(argument_list)>0|1

• A proc_def defines a processor with the proc_name as a unique name.

• If you do not explicitly define a processor for a derivative in an LSL file, the linker defines a processor
with the same name as that derivative.

• A derivative_name refers to a defined derivative.

• A proc_def contains exactly one derivative statement.

17.2.11. Section Setup

section_setup ::= section_setup space_ref <tag_attr>0|1

{ <section_setup_item>>=0 }

section_setup_item
 ::= vector_table_statement
 | reserved_range
 | stack_def ;
 | heap_def ;
 | copy_table_def ;
 | start_address ;

17.2.12. Section Layout Definition

section_definition ::= section_layout <space_ref>0|1

 <(space_layout_properties)>0|1

{ <section_statement>>=0 }

• A section definition inside a space definition does not have a space_ref.

818

TASKING VX-toolset for ARM User Guide

• All global section definitions have a space_ref.

space_ref ::= <proc_name>0|1 : <core_name>0|1

: space_name <| space_name>>=0

• If more than one processor is present, the proc_name must be given for a global section layout.

• If the section layout refers to a processor that has more than one core, the core_name must be given
in the space_ref.

• A proc_name refers to a defined processor.

• A core_name refers to a defined core.

• A space_name refers to a defined address space.

space_layout_properties
 ::= space_layout_property <, space_layout_property >>=0

space_layout_property
 ::= locate_direction
 | tag

locate_direction ::= direction = direction

direction ::= low_to_high
 | high_to_low

• A section layout contains at most one direction statement.

• If you do not specify the direction statement, the locate direction of the section layout is
low-to-high.

section_statement
 ::= simple_section_statement ;
 | aggregate_section_statement

simple_section_statement
 ::= assignment
 | select_section_statement
 | special_section_statement

assignment ::= symbol_name assign_op expr

assign_op ::= =
 | :=

select_section_statement
 ::= select <ref_tree>0|1 <section_name>0|1

 <section_selections>0|1

• Either a section_name or at least one section_selection must be defined.

819

Linker Script Language (LSL)

section_selections
 ::= (section_selection
 <, section_selection>>=0)

section_selection
 ::= attributes = < <+|-> attribute>>0

 | tag

• +attribute means: select all sections that have this attribute.

• -attribute means: select all sections that do not have this attribute.

special_section_statement
 ::= heap heap_name <stack_heap_mods>0|1

 | stack stack_name <stack_heap_mods>0|1

 | copytable
 | reserved section_name <reserved_specs>0|1

• Special sections cannot be selected in load-time groups.

stack_heap_mods ::= (stack_heap_mod <, stack_heap_mod>>=0)

stack_heap_mod ::= size = expr
 | tag

reserved_specs ::= (reserved_spec <, reserved_spec>>=0)

reserved_spec ::= attributes
 | fill_spec
 | size = expr
 | alloc_allowed = absolute | ranged

• If a reserved section has attributes r, rw, x, rx or rwx, and no fill pattern is defined, the section is
filled with zeros. If no attributes are set, the section is created as a scratch section (attributes ws, no
image).

fill_spec ::= fill = fill_values

fill_values ::= expr
 | [expr <, expr>>=0]

aggregate_section_statement
 ::= { <section_statement>>=0 }
 | group_descr
 | if_statement
 | section_creation_statement
 | struct_statement

group_descr ::= group <group_name>0|1 <(group_specs)>0|1

section_statement

• For every group with a name, the linker defines a label.

820

TASKING VX-toolset for ARM User Guide

• No two groups for address spaces of a core can have the same group_name.

group_specs ::= group_spec <, group_spec >>=0

group_spec ::= group_alignment
 | attributes
 | copy
 | nocopy
 | group_load_address
 | fill <= fill_values>0|1

 | group_page
 | group_run_address
 | group_type
 | allow_cross_references
 | priority = number
 | tag

• The allow-cross-references property is only allowed for overlay groups.

• Sub groups inherit all properties from a parent group.

group_alignment ::= align = expr

attributes ::= attributes = <attribute>>=1

attribute ::= r // readable sections
 | w // writable sections
 | x // executable code sections
 | i // initialized sections
 | s // scratch sections
 | b // blanked (cleared) sections
 | p // protected sections

group_load_address
 ::= load_addr <= load_or_run_addr>0|1

group_page ::= page <= expr>0|1

 | page_size = expr <[range] <| [range]>>=0>0|1

group_run_address ::= run_addr <= load_or_run_addr>0|1

group_type ::= clustered
 | contiguous
 | ordered
 | overlay

• For non-contiguous groups, you can only specify group_alignment and attributes.

• The overlay keyword also sets the contiguous property.

• The clustered property cannot be set together with contiguous or ordered on a single group.

821

Linker Script Language (LSL)

load_or_run_addr ::= addr_absolute
 | addr_range <| addr_range>>=0

addr_absolute ::= expr
 | memory_reference [expr]

• An absolute address can only be set on ordered groups.

addr_range ::= [expr .. expr]
 | memory_reference
 | memory_reference [expr .. expr]

• The parent of a group with an addr_range or page restriction cannot be ordered, contiguous or
clustered.

• The end address is not part of the range.

memory_reference ::= mem : <proc_name :>0|1 mem_name </ map_name>0|1

• A proc_name refers to a defined processor.

• A mem_name refers to a defined memory.

• A map_name refers to a defined memory mapping.

if_statement ::= if (expr) section_statement
 <else section_statement>0|1

section_creation_statement
 ::= section section_name (section_specs)

{ <section_statement2>>=0 }

section_specs ::= section_spec <, section_spec >>=0

section_spec ::= attributes
 | fill_spec
 | size = expr
 | blocksize = expr
 | overflow = section_name
 | tag

section_statement2
 ::= select_section_statement ;
 | group_descr2
 | { <section_statement2>>=0 }

group_descr2 ::= group <group_name>0|1

(group_specs2)
section_statement2

group_specs2 ::= group_spec2 <, group_spec2 >>=0

822

TASKING VX-toolset for ARM User Guide

group_spec2 ::= group_alignment
 | attributes
 | load_addr
 | tag

struct_statement
 ::= struct { <struct_item>>=0 }

struct_item ::= expr : number ;

17.3. Expression Evaluation

Only constant expressions are allowed, including sizes, but not addresses, of sections in object files.

All expressions are evaluated with 64-bit precision integer arithmetic. The result of an expression can be
absolute or relocatable. A symbol you assign is created as an absolute symbol. Symbol references are
only allowed in symbol assignments and struct statements.

823

Linker Script Language (LSL)

17.4. Semantics of the Architecture Definition

Keywords in the architecture definition

architecture
 extends
endianness big little
bus
 mau
 width
 map
space
 id
 mau
 align
 page_size
 page
 direction low_to_high high_to_low

stack
 min_size
 grows low_to_high high_to_low
 align
 fixed
 id
 threads
 heap
 min_size
 grows low_to_high high_to_low
 align
 fixed
 id
 threads

copytable
 align
 copy_unit
 dest
 page

vector_table
 vector_size
 size
 id_symbol_prefix
 run_addr
 template
 template_symbol
 vector_prefix
 fill
 no_inline
 copy
 vector

824

TASKING VX-toolset for ARM User Guide

 id
 fill loop
 optional

reserved
start_address

 run_addr
 symbol

map

map
 dest bus space
 dest_dbits
 dest_offset
 size
 src_dbits
 src_offset
 priority
 exec_priority

17.4.1. Defining an Architecture

With the keyword architecture you define an architecture and assign a unique name to it. The name
is used to refer to it at other places in the LSL file:

architecture name
{

definitions
}

If you are defining multiple core architectures that show great resemblance, you can define the common
features in a parent core architecture and extend this with a child core architecture that contains specific
features. The child inherits all features of the parent. With the keyword extends you create a child core
architecture:

architecture name_child_arch extends name_parent_arch
{

definitions
}

A core architecture can have any number of parameters. These are identifiers which get values assigned
on instantiation or extension of the architecture.You can use them in any expression within the core
architecture. Parameters can have default values, which are used when the core architecture is instantiated
with less arguments than there are parameters defined for it. When you extend a core architecture you
can pass arguments to the parent architecture. Arguments are expressions that set the value of the
parameters of the sub-architecture.

architecture name_child_arch (parm1,parm2=1)
extends name_parent_arch (arguments)

{
definitions

}

825

Linker Script Language (LSL)

17.4.2. Defining Internal Buses

With the bus keyword you define a bus (the combination of data and corresponding address bus). The
bus name is used to identify a bus and does not conflict with other identifiers. Bus descriptions in an
architecture definition or derivative definition define internal buses. Some internal buses are used to
communicate with the components outside the core or processor. Such buses on a processor have
physical pins reserved for the number of bits specified with the width statements.

• The mau field specifies the MAU size (Minimum Addressable Unit) of the data bus.This field is required.

• The width field specifies the width (number of address lines) of the data bus. The default value is the
MAU size.

• The map keyword specifies how this bus maps onto another bus (if so). Mappings are described in
Section 17.4.4, Mappings.

bus bus_name
{

mau = 8;
width = 8;
map (map_description);

}

17.4.3. Defining Address Spaces

With the space keyword you define a logical address space. The space name is used to identify the
address space and does not conflict with other identifiers.

• The id field defines how the addressing space is identified in object files. In general, each address
space has a unique ID.The linker locates sections with a certain ID in the address space with the same
ID. This field is required.

• The mau field specifies the MAU size (Minimum Addressable Unit) of the space. This field is required.

• The align value must be a power of two. The linker uses this value to compute the start addresses
when sections are concatenated. An align value of n means that objects in the address space have to
be aligned on n MAUs.

• The page_size field sets the page alignment and page size in MAUs for the address space. It must
be a power of 2. The default value is 1. If one or more page ranges are supplied the supplied value
only sets the page alignment. The ranges specify the available space in each page, as offsets to the
page start, which is aligned at the page alignment.

See also the page keyword in subsection Locating a group in Section 17.8.2, Creating and Locating
Groups of Sections.

• With the optional direction field you can specify how all sections in this space should be located.
This can be either from low_to_high addresses (this is the default) or from high_to_low addresses.

• The map keyword specifies how this address space maps onto an internal bus or onto another address
space. Mappings are described in Section 17.4.4, Mappings.

826

TASKING VX-toolset for ARM User Guide

Stacks and heaps

• The stack keyword defines a stack in the address space and assigns a name to it. The architecture
definition must contain at least one stack definition. Each stack of a core architecture must have a
unique name. See also the stack keyword in Section 17.8.3, Creating or Modifying Special Sections.

The stack is described in terms of a minimum size (min_size) and the direction in which the stack
grows (grows). This can be either from low_to_high addresses (stack grows upwards, this is the
default) or from high_to_low addresses (stack grows downwards). The min_size is required.

By default, the linker tries to maximize the size of the stacks and heaps. After locating all sections, the
largest remaining gap in the space is used completely for the stacks and heaps. If you specify the
keyword fixed, you can disable this so-called 'balloon behavior'. The size is also fixed if you used a
stack or heap in the software layout definition in a restricted way. For example when you override a
stack with another size or select a stack in an ordered group with other sections.

The id keyword matches stack information generated by the compiler with a stack name specified in
LSL. This value assigned to this keyword is strongly related to the compiler’s output, so users are not
supposed to change this configuration.

Optionally you can specify an alignment for the stack with the argument align. This alignment must
be equal or larger than the alignment that you specify for the address space itself.

For each stack, a stack size estimation may be computed (and listed in a map file) from a call graph.
Each root node of the call graph is treated as a separate thread that can run independently from the
other threads. The estimated stack usage for a root node is the highest sum of stack usage values
along a path to a leaf node. The total estimated stack usage of a link task is the sum of the calculated
stack usage of such independent call graphs. If only a limited number of these threads can make use
of a specific stack at a time, you can specify this by assigning a number to the threads keyword on
that stack's definition.When threads is set to n, only the n highest stack usage numbers of root nodes
are summed. A threads argument equal to zero or negative is ignored.

• The heap keyword defines a heap in the address space and assigns a name to it. The definition of a
heap is similar to the definition of a stack. See also the heap keyword in Section 17.8.3, Creating or
Modifying Special Sections.

Stacks and heaps are only generated by the linker if the corresponding linker labels are referenced in the
object files.

See Section 17.8, Semantics of the Section Layout Definition, for information on creating and placing
stack sections.

Copy tables

• The copytable keyword defines a copy table in the address space. The content of the copy table is
created by the linker and contains the start address and size of all sections that should be initialized
by the startup code.You must define exactly one copy table in one of the address spaces (for a core).

Optionally you can specify an alignment for the copy table with the argument align. This alignment
must be equal or larger than the alignment that you specify for the address space itself. If smaller, the
alignment for the address space is used.

827

Linker Script Language (LSL)

The copy_unit argument specifies the size in MAUs of information chunks that are copied. If you do
not specify the copy unit, the MAU size of the address space itself is used.

The dest argument specifies the destination address space that the code uses for the copy table. The
linker uses this information to generate the correct addresses in the copy table.The memory into where
the sections must be copied at run-time, must be accessible from this destination space.

Sections generated for the copy table may get a page restriction with the address space's page size,
by adding the page argument.

Vector table

• The vector_table keyword defines a vector table with n vectors of size m (This is an internal LSL
object similar to an LSL group.) The run_addr argument specifies the location of the first vector (id=0).
This can be a simple address or an offset in memory (see the description of the run-time address in
subsection Locating a group in Section 17.8.2, Creating and Locating Groups of Sections). A vector
table defines symbols _lc_ub_foo and _lc_ue_foo pointing to start and end of the table.

vector_table "vector_table" (vector_size=m, size=n, run_addr=x, ...)

See the following example of a vector table definition:

vector_table "vector_table" (vector_size = 4, size = 16, run_addr=0,
 template=".text.handler_address",
 template_symbol="_lc_vector_handler",
 vector_prefix="_vector_",
 id_symbol_prefix="foo",
 no_inline,
 /* default: empty, or */
 fill="foo", /* or */
 fill=[1,2,3,4], /* or */
 fill=loop)
{
 vector (id=23, fill="main", optional);
 vector (id=12, fill=[0xab, 0x21, 0x32, 0x43]);
 vector (id=[1..11], fill=[0]);
 vector (id=[18..23], fill=loop);
}

The template argument defines the name of the section that holds the code to jump to a handler
function from the vector table. This template section does not get located and is removed when the
locate phase is completed. This argument is required.

The template_symbol argument is the symbol reference in the template section that must be replaced
by the address of the handler function. This symbol name should start with the linker prefix for the
symbol to be ignored in the link phase. This argument is required.

The vector_prefix argument defines the names of vector sections: the section for a vector with id
vector_id is $(vector_prefix)$(vector_id). Vectors defined in C or assembly source files that should be
included in the vector table must have the correct symbol name. The compiler uses the prefix that is
defined in the default LSL file(s); if this attribute is changed, the vectors declared in C source files are

828

TASKING VX-toolset for ARM User Guide

not included in the vector table. When a vector supplied in an object file has exactly one relocation, the
linker will assume it is a branch to a handler function, and can be removed when the handler is inlined
in the vector table. Otherwise, no inlining is done. This argument is required.

With the optional no_inline argument the vectors handlers are not inlined in the vector table.

With the optional copy argument a ROM copy of the vector table is made and the vector table is copied
to RAM at startup.

With the optional id_symbol_prefix argument you can set an internal string representing a symbol
name prefix that may be found on symbols in vector handler code. When the linker detects such a
symbol in a handler, the symbol is assigned the vector number. If the symbol was already assigned a
vector number, a warning is issued.

The fill argument sets the default contents of vectors. If nothing is specified for a vector, this setting
is used. See below. When no default is provided, empty vectors may be used to locate large vector
handlers and other sections. Only one fill argument is allowed.

The vector field defines the content of vector with the number specified by id. If a range is specified
for id ([p..q,s..t]) all vectors in the ranges (inclusive) are defined the same way.

With fill=symbol_name, the vector must jump to this symbol. If the section in which the symbol is
defined fits in the vector table (size may be >m), locate the section at the location of the vector.
Otherwise, insert code to jump to the symbol's value. A template interrupt handler section name +
symbol name for the target code must be supplied in the LSL file.

fill=[value(s)], fills the vector with the specified MAU values.

With fill=loop the vector jumps to itself. With the optional [offset] you can specify an offset from the
vector table entry.

When the keyword optional is set on a vector specification with a symbol value and the symbol is
not found, no error is reported. A default fill value is used if the symbol was not found.With other values
the attribute has no effect.

Reserved address ranges

• The reserved keyword specifies to reserve a part of an address space even if not all of the range is
covered by memory. See also the reserved keyword in Section 17.8.3, Creating or Modifying Special
Sections.

Start address

• The start_address keyword specifies the start address for the position where the C startup code is
located.When a processor is reset, it initializes its program counter to a certain start address, sometimes
called the reset vector. In the architecture definition, you must specify this start address in the correct
address space in combination with the name of the label in the application code which must be located
here.

The run_addr argument specifies the start address (reset vector). If the core starts executing using
an entry from a vector table, and directly jumps to the start label, you should omit this argument.

829

Linker Script Language (LSL)

The symbol argument specifies the name of the label in the application code that should be located
at the specified start address.The symbol argument is required.The linker will resolve the start symbol
and use its value after locating for the start address field in IEEE-695 files and Intel Hex files. If you
also specified the run_addr argument, the start symbol (label) must point to a section. The linker
locates this section such that the start symbol ends up on the start address.

space space_name
{

id = 1;
mau = 8;
align = 8;
page_size = 1;
stack name (min_size = 1k, grows = low_to_high);
reserved start_address .. end_address;
start_address (run_addr = 0x0000,

symbol = "start_label")
map (map_description);

}

17.4.4. Mappings

You can use a mapping when you define a space, bus or memory. With the map field you specify how
addresses from the source (space, bus or memory) are translated to addresses of a destination (space,
bus). The following mappings are possible:

• space => space

• space => bus

• bus => bus

• memory => bus

With a mapping you specify a range of source addresses you want to map (specified by a source offset
and a size), the destination to which you want to map them (a bus or another address space), and the
offset address in the destination.

• The dest argument specifies the destination. This can be a bus or another address space (only for
a space to space mapping). This argument is required.

• The src_offset argument specifies the offset of the source addresses. In combination with size, this
specifies the range of address that are mapped. By default the source offset is 0x0000.

• The size argument specifies the number of addresses that are mapped. This argument is required.

• The dest_offset argument specifies the position in the destination to which the specified range of
addresses is mapped. By default the destination offset is 0x0000.

If you are mapping a bus to another bus, the number of data lines of each bus may differ. In this case
you have to specify a range of source data lines you want to map (src_dbits = begin..end) and the
range of destination data lines you want to map them to (dest_dbits = first..last).

830

TASKING VX-toolset for ARM User Guide

• The src_dbits argument specifies a range of data lines of the source bus. By default all data lines
are mapped.

• The dest_dbits argument specifies a range of data lines of the destination bus. By default, all data
lines from the source bus are mapped on the data lines of the destination bus (starting with line 0).

If you define a memory and the memory mapping must not be used by default when locating sections in
address spaces, you can specify the reserved argument. This marks all address space areas that the
mapping points to as reserved. If a section has an absolute or address range restriction, the reservation
is lifted and the section may be located at these locations. This feature is only useful when more than
one mapping is available for a range of memory addresses, otherwise the memory keyword with the same
name would be used.

For example:

memory xrom
{
 mau = 8;
 size = 1M;
 type = rom;

map cached (dest=bus:mycore:local_bus, dest_offset=0x80000000,
 size=1M);

map uncached (dest=bus:mycore:local_bus, dest_offset=0xa0000000,
 size=1M, reserved);
}

Mapping priority

If you define a memory you can set a locate priority on a mapping with the keywords priority and
exec_priority. The values of these priorities are relative which means they add to the priority of
memories. Whereas a priority set on the memory applies to all address space areas reachable through
any mapping of the memory, a priority set on a mapping only applies to address space areas reachable
through the mapping. The memory mapping with the highest priority is considered first when locating. To
set only a priority for non-executable (data) sections, add a priority keyword with the desired value
and an exec_priority set to zero. To set only a priority for executable (code) sections, simply set an
exec_priority keyword to the desired value.

The default for a mapping priority is zero, while the default for exec_priority is the same as the
specified priority. If you specify a value for priority in LSL it must be greater than zero. A value
for exec_priority must be greater or equal to zero.

For more information about priority values see the description of the memory priority keyword.

memory myram
{
 mau = 8;
 size = 112k;
 type = ram;

map (dest=bus:mycore:local_bus, dest_offset=0xd0000000,
 size=112k, priority=8, exec_priority=0);

map (dest=bus:mycore:local_bus, dest_offset=0x70000000,

831

Linker Script Language (LSL)

 size=112k);
}

From space to space

If you map an address space to another address space (nesting), you can do this by mapping the subspace
to the containing larger space. In this example a small space of 64 kB is mapped on a large space of 16
MB.

space small
{
 id = 2;
 mau = 4;

map (src_offset = 0, dest_offset = 0,
dest = space : large, size = 64k);

}

From space to bus

All spaces that are not mapped to another space must map to a bus in the architecture:

space large
{
 id = 1;
 mau = 4;

map (src_offset = 0, dest_offset = 0,
dest = bus:bus_name, size = 16M);

}

From bus to bus

The next example maps an external bus called e_bus to an internal bus called i_bus. This internal bus
resides on a core called mycore.The source bus has 16 data lines whereas the destination bus has only
8 data lines. Therefore, the keywords src_dbits and dest_dbits specify which source data lines are
mapped on which destination data lines.

architecture mycore
{
 bus i_bus
 {
 mau = 4;
 }

 space i_space
 {
 map (dest=bus:i_bus, size=256);
 }
}

bus e_bus
{

832

TASKING VX-toolset for ARM User Guide

 mau = 16;
 width = 16;
 map (dest = bus:mycore:i_bus, src_dbits = 0..7, dest_dbits = 0..7)
}

It is not possible to map an internal bus to an external bus.

17.5. Semantics of the Derivative Definition

Keywords in the derivative definition

derivative
 extends
core
 architecture
bus
 mau
 width
 map
memory
 type reserved rom ram nvram blockram
 mau
 size
 speed
 priority
 exec_priority
 fill
 map
section_layout
section_setup

map
 dest bus space
 dest_dbits
 dest_offset
 size
 src_dbits
 src_offset
 priority
 exec_priority
 reserved

17.5.1. Defining a Derivative

With the keyword derivative you define a derivative and assign a unique name to it.The name is used
to refer to it at other places in the LSL file:

833

Linker Script Language (LSL)

derivative name
{

definitions
}

If you are defining multiple derivatives that show great resemblance, you can define the common features
in a parent derivative and extend this with a child derivative that contains specific features. The child
inherits all features of the parent (cores and memories). With the keyword extends you create a child
derivative:

derivative name_child_deriv extends name_parent_deriv
{

definitions
}

As with a core architecture, a derivative can have any number of parameters. These are identifiers which
get values assigned on instantiation or extension of the derivative.You can use them in any expression
within the derivative definition.

derivative name_child_deriv (parm1,parm2=1)
extends name_parent_deriv (arguments)

{
definitions

}

17.5.2. Instantiating Core Architectures

With the keyword core you instantiate a core architecture in a derivative.

• With the keyword architecture you tell the linker that the given core has a certain architecture. The
architecture name refers to an existing architecture definition in the same LSL file.

For example, if you have two cores (called mycore_1 and mycore_2) that have the same architecture
(called mycorearch), you must instantiate both cores as follows:

core mycore_1
{

architecture = mycorearch;
}

core mycore_2
{

architecture = mycorearch;
}

If the architecture definition has parameters you must specify the arguments that correspond with the
parameters. For example mycorearch1 expects two parameters which are used in the architecture
definition:

core mycore
{

834

TASKING VX-toolset for ARM User Guide

architecture = mycorearch1 (1,2);
}

17.5.3. Defining Internal Memory and Buses

With the keyword memory you define physical memory that is present on the target board. The memory
name is used to identify the memory and does not conflict with other identifiers. It is common to define
internal memory (on-chip) in the derivative definition. External memory (off-chip memory) is usually defined
in the board specification (See Section 17.6.3, Defining External Memory and Buses).

• The type field specifies a memory type:

• rom: read-only memory - it can only be written at load-time

• ram: random access volatile writable memory - writing at run-time is possible while writing at load-time
has no use since the data is not retained after a power-down

• nvram: non volatile ram - writing is possible both at load-time and run-time

• blockram: writing is possible both at load-time and run-time. Changes are applied in RAM, so after
a full device reset the data in a blockram reverts to the original state.

The optional reserved qualifier before the memory type, tells the linker not to locate any section in
the memory by default.You can locate sections in such memories using an absolute address or range
restriction (see subsection Locating a group in Section 17.8.2, Creating and Locating Groups of Sections).

• The mau field specifies the MAU size (Minimum Addressable Unit) of the memory.This field is required.

• The size field specifies the size in MAU of the memory. This field is required.

• The priority field specifies a locate priority for a memory. The speed field has the same meaning
but is considered deprecated. By default, a memory has its priority set to 1. The memories with the
highest priority are considered first when trying to locate a rule. Subsequently, the next highest priority
memories are added if the rule was not located successfully, and so on until the lowest priority that is
available is reached or the rule is located. The lowest priority value is zero. Sections with an ordered
and/or contiguous restriction are not affected by the locate priority. If such sections also have a page
restriction, the locate priority is still used to select a page.

• If an exec_priority is specified for a memory, the regular priority (either specified or its default
value) does not apply to locate rules with only executable sections. Instead, the supplied value applies
for such rules. Additionally, the exec_priority value is used for any executable unrestricted sections,
even if they appear in an unrestricted rule together with non-executable sections.

• The map field specifies how this memory maps onto an (internal) bus. The mapping can have a name.
Mappings are described in Section 17.4.4, Mappings.

• The optional fill field contains a bit pattern that the linker writes to all memory addresses that remain
unoccupied during the locate process. The result of the expression, or list of expressions, is used as
values to write to memory, each in MAU.

835

Linker Script Language (LSL)

memory mem_name
{

type = rom;
mau = 8;
fill = 0xaa;
size = 64k;
priority = 2;
map map_name (map_description);

}

With the bus keyword you define a bus in a derivative definition. Buses are described in Section 17.4.2,
Defining Internal Buses.

17.6. Semantics of the Board Specification

Keywords in the board specification

processor
derivative

bus
 mau
 width
 map
memory
 type reserved rom ram nvram blockram
 mau
 size
 speed
 priority
 exec_priority
 fill
 map

map
 dest bus space
 dest_dbits
 dest_offset
 size
 src_dbits
 src_offset
 priority
 exec_priority
 reserved

17.6.1. Defining a Processor

If you have a target board with multiple processors that have the same derivative, you need to instantiate
each individual processor in a processor definition. This information tells the linker which processor has
which derivative and enables the linker to distinguish between the present processors.

836

TASKING VX-toolset for ARM User Guide

If you use processors that all have a unique derivative, you may omit the processor definitions.
In this case the linker assumes that for each derivative definition in the LSL file there is one
processor. The linker uses the derivative name also for the processor.

With the keyword processor you define a processor.You can freely choose the processor name. The
name is used to refer to it at other places in the LSL file:

processor proc_name
{

processor definition
}

17.6.2. Instantiating Derivatives

With the keyword derivative you tell the linker that the given processor has a certain derivative. The
derivative name refers to an existing derivative definition in the same LSL file.

For example, if you have two processors on your target board (called myproc_1 and myproc_2) that
have the same derivative (called myderiv), you must instantiate both processors as follows:

processor myproc_1
{

derivative = myderiv;
}

processor myproc_2
{

derivative = myderiv;
}

If the derivative definition has parameters you must specify the arguments that correspond with the
parameters. For example myderiv1 expects two parameters which are used in the derivative definition:

processor myproc
{

derivative = myderiv1 (2,4);
}

17.6.3. Defining External Memory and Buses

It is common to define external memory (off-chip) and external buses at the global scope (outside any
enclosing definition). Internal memory (on-chip memory) is usually defined in the scope of a derivative
definition.

With the keyword memory you define physical memory that is present on the target board. The memory
name is used to identify the memory and does not conflict with other identifiers. If you define memory
parts in the LSL file, only the memory defined in these parts is used for placing sections.

837

Linker Script Language (LSL)

If no external memory is defined in the LSL file and if the linker option to allocate memory on demand is
set then the linker will assume that all virtual addresses are mapped on physical memory.You can override
this behavior by specifying one or more memory definitions.

memory mem_name
{

type = rom;
mau = 8;
fill = 0xaa;
size = 64k;
priority = 2;
map map_name (map_description);

}

For a description of the keywords, see Section 17.5.3, Defining Internal Memory and Buses.

With the keyword bus you define a bus (the combination of data and corresponding address bus). The
bus name is used to identify a bus and does not conflict with other identifiers. Bus descriptions at the
global scope (outside any definition) define external buses.These are buses that are present on the target
board.

bus bus_name
{

mau = 8;
width = 8;
map (map_description);

}

For a description of the keywords, see Section 17.4.2, Defining Internal Buses.

You can connect off-chip memory to any derivative: you need to map the off-chip memory to a bus and
map that bus on the internal bus of the derivative you want to connect it to.

17.7. Semantics of the Section Setup Definition

Keywords in the section setup definition

section_setup
stack

 min_size
 grows low_to_high high_to_low
 align
 fixed
 id
 heap
 min_size
 grows low_to_high high_to_low
 align
 fixed
 id

838

TASKING VX-toolset for ARM User Guide

copytable
 align
 copy_unit
 dest
 page

vector_table
 vector_size
 size
 id_symbol_prefix
 run_addr
 template
 template_symbol
 vector_prefix
 fill
 no_inline
 copy
 vector
 id
 fill loop
 optional

reserved
start_address

 run_addr
 symbol

17.7.1. Setting up a Section

With the keyword section_setup you can define stacks, heaps, copy tables, vector tables, start address
and/or reserved address ranges outside their address space definition.

section_setup ::my_space
{

vector table statements
reserved address range
stack definition
heap definition
copy table definition
start adress

}

See the subsections Stacks and heaps, Copy tables, Start address, Vector table and Reserved address
ranges in Section 17.4.3, Defining Address Spaces for details on the keywords stack, heap, copytable,
vector_table and reserved.

839

Linker Script Language (LSL)

17.8. Semantics of the Section Layout Definition

Keywords in the section layout definition

section_layout
 direction low_to_high high_to_low
group

align
 attributes + - r w x b i s p
 copy
 nocopy

fill
ordered

 contiguous
clustered
overlay

 allow_cross_references
load_addr

 mem
run_addr

 mem
page

 page_size
priority

select
stack
 size
heap
 size
reserved
 size
 attributes r w x
 fill
 alloc_allowed absolute ranged
copytable
section
 size
 blocksize
 attributes r w x
 fill
 overflow
struct
 checksum

if
else

840

TASKING VX-toolset for ARM User Guide

17.8.1. Defining a Section Layout

With the keyword section_layout you define a section layout for exactly one address space. In the
section layout you can specify how input sections are placed in the address space, relative to each other,
and what the absolute run and load addresses of each section will be.

You can define one or more section definitions. Each section definition arranges the sections in one
address space.You can precede the address space name with a processor name and/or core name,
separated by colons.You can omit the processor name and/or the core name if only one processor is
defined and/or only one core is present in the processor. A reference to a space in the only core of the
only processor in the system would look like "::my_space". A reference to a space of the only core on
a specific processor in the system could be "my_chip::my_space". The next example shows a section
definition for sections in the my_space address space of the processor called my_chip:

section_layout my_chip::my_space (locate_direction)
{

section statements
}

Locate direction

With the optional keyword direction you specify whether the linker starts locating sections from
low_to_high (default) or from high_to_low. In the second case the linker starts locating sections at
the highest addresses in the address space but preserves the order of sections when necessary (one
processor and core in this example).

section_layout ::my_space (direction = high_to_low)
{

section statements
}

If you do not explicitly tell the linker how to locate a section, the linker decides on the basis of the
section attributes in the object file and the information in the architecture definition and memory
parts where to locate the section.

17.8.2. Creating and Locating Groups of Sections

Sections are located per group. A group can contain one or more (sets of) input sections as well as other
groups. Per group you can assign a mutual order to the sets of sections and locate them into a specific
memory part.

group (group_specifications)
{

section_statements
}

With the section_statements you generally select sets of sections to form the group.This is described
in subsection Selecting sections for a group.

841

Linker Script Language (LSL)

Instead of selecting sections, you can also modify special sections like stack and heap or create a reserved
section. This is described in Section 17.8.3, Creating or Modifying Special Sections.

With the group_specifications you actually locate the sections in the group. This is described in
subsection Locating a group.

Selecting sections for a group

With the keyword select you can select one or more sections for the group.You can select a section
by name or by attributes. If you select a section by name, you can use a wildcard pattern:

matches with all section names*

matches with a single character in the section name?

takes the next character literally\

matches with a single 'a', 'b' or 'c' character[abc]

matches with any single character in the range 'a' to 'z'[a-z]

group (...)
{

select "mysection";
select "*";

}

The first select statement selects the section with the name "mysection". The second select
statement selects all sections that were not selected yet.

A section is selected by the first select statement that matches, in the union of all section layouts for the
address space. Global section layouts are processed in the order in which they appear in the LSL file.
Internal core architecture section layouts always take precedence over global section layouts.

• The attributes field selects all sections that carry (or do not carry) the given attribute.With +attribute
you select sections that have the specified attribute set. With -attribute you select sections that do not
have the specified attribute set.You can specify one or more of the following attributes:

• r readable sections

• w writable sections

• x executable sections

• i initialized sections

• b sections that should be cleared at program startup

• s scratch sections (not cleared and not initialized)

• p protected sections

To select all read-only sections:

842

TASKING VX-toolset for ARM User Guide

group (...)
{

select (attributes = +r-w);
}

Keep in mind that all section selections are restricted to the address space of the section layout in which
this group definition occurs.

• With the ref_tree field you can select a group of related sections. The relation between sections is
often expressed by means of references. By selecting just the 'root' of tree, the complete tree is selected.
This is for example useful to locate a group of related sections in special memory (e.g. fast memory).
The (referenced) sections must meet the following conditions in order to be selected:

1. The sections are within the section layout's address space

2. The sections match the specified attributes

3. The sections have no absolute restriction (as is the case for all wildcard selections)

For example, to select the code sections referenced from foo1:

group refgrp (ordered, contiguous, run_addr=mem:ext_c)
{

select ref_tree "foo1" (attributes=+x);
}

If section foo1 references foo2 and foo2 references foo3, then all these sections are selected by
the selection shown above.

Locating a group

group group_name (group_specifications)
{

section_statements
}

With the group_specifications you actually define how the linker must locate the group.You can
roughly define three things: 1) assign properties to the sections in a group like alignment and read/write
attributes, 2) define the mutual order in the address space for sections in the group and 3) restrict the
possible addresses for the sections in a group.

The linker creates labels that allow you to refer to the begin and end address of a group from within the
application software. Labels _lc_gb_group_name and _lc_ge_group_name mark the begin and end
of the group respectively, where the begin is the lowest address used within this group and the end is the
highest address used. Notice that a group not necessarily occupies all memory between begin and end
address. The given label refers to where the section is located at run-time (versus load-time).

1. Assign properties to the sections in a group like alignment and read/write attributes.

These properties are assigned to all sections in the group (and subgroups) and override the attributes
of the input sections.

843

Linker Script Language (LSL)

• The align field tells the linker to align all sections in the group according to the align value. The
alignment of a section is first determined by its own initial alignment and the defined alignment for
the address space. Alignments are never decreased, if multiple alignments apply to a section, the
largest one is used.

• The attributes field tells the linker to assign one or more attributes to all sections in the group.
This overrules the default attributes. By default the linker uses the attributes of the input sections.
You can set the r, w, or rw attributes and you can switch between the b and s attributes.

• The copy field tells the linker to locate a read-only section in RAM and generate a ROM copy and
a copy action in the copy table.This property makes the sections in the group writable which causes
the linker to generate ROM copies for the sections.

• The effect of the nocopy field is the opposite of the copy field. It prevents the linker from generating
ROM copies of the selected sections.

2. Define the mutual order of the sections in the group.

By default, a group is unrestricted which means that the linker has total freedom to place the sections
of the group in the address space.

• The ordered keyword tells the linker to locate the sections in the same order in the address space
as they appear in the group (but not necessarily adjacent).

Suppose you have an ordered group that contains the sections 'A', 'B' and 'C'. By default the linker
places the sections in the address space like 'A' - 'B' - 'C', where section 'A' gets the lowest possible
address. With direction=high_to_low in the section_layout space properties, the linker
places the sections in the address space like 'C' - 'B' - 'A', where section 'A' gets the highest possible
address.

• The contiguous keyword tells the linker to locate the sections in the group in a single address
range.Within a contiguous group the input sections are located in arbitrary order, however the group
occupies one contiguous range of memory. Due to alignment of sections there can be 'alignment
gaps' between the sections.

When you define a group that is both ordered and contiguous, this is called a sequential group.
In a sequential group the linker places sections in the same order in the address space as they
appear in the group and it occupies a contiguous range of memory.

• The clustered keyword tells the linker to locate the sections in the group in a number of contiguous
blocks. It tries to keep the number of these blocks to a minimum. If enough memory is available, the
group will be located as if it was specified as contiguous. Otherwise, it gets split into two or more
blocks.

If a contiguous or clustered group contains alignment gaps, the linker can locate sections that are
not part of the group in these gaps. To prevent this, you can use the fill keyword. If the group is
located in RAM, the gaps are treated as reserved (scratch) space. If the group is located in ROM,
the alignment gaps are filled with zeros by default.You can however change the fill pattern by
specifying a bit pattern.The result of the expression, or list of expressions, is used as values to write
to memory, each in MAU.

844

TASKING VX-toolset for ARM User Guide

• The overlay keyword tells the linker to overlay the sections in the group. The linker places all
sections in the address space using a contiguous range of addresses. (Thus an overlay group is
automatically also a contiguous group.) To overlay the sections, all sections in the overlay group
share the same run-time address.

For each input section within the overlay the linker automatically defines two symbols. The symbol
_lc_cb_section_name is defined as the load-time start address of the section. The symbol
_lc_ce_section_name is defined as the load-time end address of the section. C (or assembly)
code may be used to copy the overlaid sections.

If sections in the overlay group contain references between groups, the linker reports an error. The
keyword allow_cross_references tells the linker to accept cross-references. Normally, it does
not make sense to have references between sections that are overlaid.

group ovl (overlay)
{
 group a
 {
 select "my_ovl_p1";
 select "my_ovl_p2";
 }
 group b
 {
 select "my_ovl_q1";
 }
}

It may be possible that one of the sections in the overlay group already has been defined in
another group where it received a load-time address. In this case the linker does not overrule
this load-time address and excludes the section from the overlay group.

3. Restrict the possible addresses for the sections in a group.

The load-time address specifies where the group's elements are loaded in memory at download time.
The run-time address specifies where sections are located at run-time, that is when the program is
executing. If you do not explicitly restrict the address in the LSL file, the linker assigns addresses to
the sections based on the restrictions relative to other sections in the LSL file and section alignments.
The program is responsible for copying overlay sections at appropriate moment from its load-time
location to its run-time location (this is typically done by the startup code).

• The run_addr keyword defines the run-time address. If the run-time location of a group is set
explicitly, the given order between groups specify whether the run-time address propagates to the
parent group or not.The location of the sections in a group can be restricted either to a single absolute
address, or to a number of address ranges (not including the end address). With an expression you
can specify that the group should be located at the absolute address specified by the expression:

group (run_addr = 0xa00f0000)

If the group is ordered, the first section in the group is located at the specified absolute address.

845

Linker Script Language (LSL)

You can use the '[offset]' variant to locate the group at the given absolute offset in memory:

group (run_addr = mem:A[0x1000])

If the group is ordered, the first section in the group is located at the specified absolute offset in
memory.

A range can be an absolute space address range, written as [expr .. expr], a complete memory
device, written as mem:mem_name, or a memory address range, mem:mem_name[expr .. expr
]

group (run_addr = mem:my_dram)

You can use the '|' to specify an address range of more than one physical memory device:

group (run_addr = mem:A | mem:B)

When used in top-level section layouts, a memory name refers to a board-level memory.You can
select on-chip memory with mem:proc_name:mem_name. If the memory has multiple parallel
mappings towards the current address space, you can select a specific named mapping in the
memory by appending /map_name to the memory specifier. The linker then maps memory offsets
only through that mapping, so the address(es) where the sections in the group are located are
determined by that memory mapping.

group (run_addr = mem:CPU1:A/cached)

• The load_addr keyword changes the meaning of the section selection in the group: the linker
selects the load-time ROM copy of the named section(s) instead of the regular sections. Just like
run_addr you can specify an absolute address or an address range.

group (contiguous, load_addr)
{
 select "mydata"; // select ROM copy of mydata:
 // "[mydata]"
}

The load-time and run-time addresses of a group cannot be set at the same time. If the load-time
property is set for a group, the group (only) restricts the positioning at load-time of the group's
sections. It is not possible to set the address of a group that has a not-unrestricted parent group.

The properties of the load-time and run-time start address are:

• At run-time, before using an element in an overlay group, the application copies the sections from
their load location to their run-time location, but only if these two addresses are different. For
non-overlay sections this happens at program start-up.

• The start addresses cannot be set to absolute values for unrestricted groups.

• For non-overlay groups that do not have an overlay parent, the load-time start address equals the
run-time start address.

• For any group, if the run-time start address is not set, the linker selects an appropriate address.

846

TASKING VX-toolset for ARM User Guide

• If an ordered group or sequential group has an absolute address and contains sections that have
separate page restrictions (not defined in LSL), all those sections are located in a single page. In
other cases, for example when an unrestricted group has an address range assigned to it, the
paged sections may be located in different pages.

For overlays, the linker reserves memory at the run-time start address as large as the largest element
in the overlay group.

• The page keyword tells the linker to place the group in one page. Instead of specifying a run-time
address, you can specify a page and optional a page number. Page numbers start from zero. If you
omit the page number, the linker chooses a page.

The page keyword refers to pages in the address space as defined in the architecture definition.

• With the page_size keyword you can override the page alignment and size set on the address
space. When you set the page size to zero, the linker removes simple (auto generated) page
restrictions from the selected sections. See also the page_size keyword in Section 17.4.3, Defining
Address Spaces.

• With the priority keyword you can change the order in which sections are located. This is useful
when some sections are considered important for good performance of the application and a small
amount of fast memory is available. The value is a number for which the default is 1, so higher
priorities start at 2. Sections with a higher priority are located before sections with a lower priority,
unless their relative locate priority is already determined by other restrictions like run_addr and
page.

group (priority=2)
{
 select "importantcode1";
 select "importantcode2";
}

17.8.3. Creating or Modifying Special Sections

Instead of selecting sections, you can also create a reserved section or an output section or modify special
sections like a stack or a heap. Because you cannot define these sections in the input files, you must use
the linker to create them.

Stack

• The keyword stack tells the linker to reserve memory for the stack. The name for the stack section
refers to the stack as defined in the architecture definition. If no name was specified in the architecture
definition, the default name is stack.

With the keyword size you can specify the size for the stack. If the size is not specified, the linker uses
the size given by the min_size argument as defined for the stack in the architecture definition. Normally
the linker automatically tries to maximize the size, unless you specified the keyword fixed.

group (...)
{

847

Linker Script Language (LSL)

stack "mystack" (size = 2k);
}

The linker creates two labels to mark the begin and end of the stack, _lc_ub_stack_name for the
begin of the stack and _lc_ue_stack_name for the end of the stack. The linker allocates space for
the stack when there is a reference to either of the labels.

See also the stack keyword in Section 17.4.3, Defining Address Spaces.

Heap

• The keyword heap tells the linker to reserve a dynamic memory range for the malloc() function.
Each heap section has a name. With the keyword size you can change the size for the heap. If the
size is not specified, the linker uses the size given by the min_size argument as defined for the heap
in the architecture definition. Normally the linker automatically tries to maximize the size, unless you
specified the keyword fixed.

group (...)
{

heap "myheap" (size = 2k);
}

The linker creates two labels to mark the begin and end of the heap, _lc_ub_heap_name for the begin
of the heap and _lc_ue_heap_name for the end of the heap. The linker allocates space for the heap
when a reference to either of the section labels exists in one of the input object files.

Reserved section

• The keyword reserved tells the linker to create an area or section of a given size. The linker will not
locate any other sections in the memory occupied by a reserved section, with some exceptions. Each
reserved section has a name. With the keyword size you can specify a size for a given reserved area
or section.

group (...)
{

reserved "myreserved" (size = 2k);
}

The optional fill field contains a bit pattern that the linker writes to all memory addresses that remain
unoccupied during the locate process. The result of the expression, or list of expressions, is used as
values to write to memory, each in MAU. The first MAU of the fill pattern is always the first MAU in the
section.

By default, no sections can overlap with a reserved section.With alloc_allowed=absolute sections
that are located at an absolute address due to an absolute group restriction can overlap a reserved
section.The same applies for reserved sections with alloc_allowed=ranged set. Sections restricted
to a fixed address range can also overlap a reserved section.

With the attributes field you can set the access type of the reserved section. The linker locates the
reserved section in its space with the restrictions that follow from the used attributes, r, w or x or a valid

848

TASKING VX-toolset for ARM User Guide

combination of them. The allowed attributes are shown in the following table. A value between < and
> in the table means this value is set automatically by the linker.

Resulting section propertiesProperties set in LSL

contentmemoryaccessfilledattributes

executable<rom>yesx

data<rom>ryesr

scratch<rom>rnor

executable<rom>ryesrx

data<ram>rwyesrw

scratch<ram>rwnorw

executable<ram>rwyesrwx

group (...)
{

reserved "myreserved" (size = 2k,
attributes = rw, fill = 0xaa);

}

If you do not specify any attributes, the linker will reserve the given number of maus, no matter what
type of memory lies beneath. If you do not specify a fill pattern, no section is generated.

The linker creates two labels to mark the begin and end of the section, _lc_ub_name for the begin of
the section and _lc_ue_name for the end of the reserved section.

Output sections

• The keyword section tells the linker to accumulate sections obtained from object files ("input sections")
into an output section of a fixed size in the locate phase.You can select the input sections with select
statements.You can use groups inside output sections, but you can only set the align, attributes,
copy and load_addr properties and the load_addr property cannot have an address specified.

The fill field contains a bit pattern that the linker writes to all unused space in the output section.
When all input sections have an image (code/data) you must specify a fill pattern. If you do not specify
a fill pattern, all input sections must be scratch sections. The fill pattern is aligned at the start of the
output section.

As with a reserved section you can use the attributes field to set the access type of the output
section.

group (...)
{

section "myoutput" (size = 4k, attributes = rw,
fill = 0xaa)

 {
select "myinput1";
select "myinput2";

849

Linker Script Language (LSL)

 }
}

The available room for input sections is determined by the size, blocksize and overflow fields.
With the keyword size you specify the fixed size of the output section. Input sections are placed from
output section start towards higher addresses (offsets). When the end of the output section is reached
and one or more input sections are not yet placed, an error is emitted. If however, the overflow field
is set to another output section, remaining sections are located as if they were selected for the overflow
output section.

group (...)
{
section "tsk1_data" (size=4k, attributes=rw, fill=0,

 overflow = "overflow_data")
 {
 select ".data.tsk1.*"
 }
section "tsk2_data" (size=4k, attributes=rw, fill=0,

overflow = "overflow_data")
 {
 select ".data.tsk2.*"
 }
section "overflow_data" (size=4k, attributes=rx,

 fill=0)
 {
 }
}

With the keyword blocksize , the size of the output section will adapt to the size of its content. For
example:

group flash_area (run_addr = 0x10000)
{

section "flash_code" (blocksize=4k, attributes=rx,
 fill=0)
 {
 select "*.flash";
 }
}

If the content of the section is 1 mau, the size will be 4 kB, if the content is 11 kB, the section will be
12 kB, etc. If you use size in combination with blocksize, the size value is used as default (minimal)
size for this section. If it is omitted, the default size will be of blocksize. It is not allowed to omit both
size and blocksize from the section definition.

The linker creates two labels to mark the begin and end of the section, _lc_ub_name for the begin of
the section and _lc_ue_name for the end of the output section.

When the copy property is set on an enclosing group, a ROM copy is created for the output section
and the output section itself is made writable causing it to be located in RAM by default. For this to

850

TASKING VX-toolset for ARM User Guide

work, the output section and its input sections must be read-only and the output section must have a
fill property.

Copy table

• The keyword copytable tells the linker to select a section that is used as copy table. The content of
the copy table is created by the linker. It contains the start address and length of all sections that should
be initialized by the startup code.

The linker creates two labels to mark the begin and end of the section, _lc_ub_table for the begin
of the section and _lc_ue_table for the end of the copy table. The linker generates a copy table
when a reference to either of the section labels exists in one of the input object files.

Structures

• A struct statement in a section_layout creates a section and fills it with numbers that each occupy
one or more MAUs. The new section must be named by providing a double-quoted string after the
struct keyword. Each element has the form expr : number ;, where the expression provides the value
to insert in the section and the number determines the number of MAUs occupied by the expression
value. Elements are placed in the section in the order in which they appear in the struct body without
any gaps between them. Multi-MAU elements are split into MAUs according to the endianness of the
target. A struct section is read-only and it cannot be copied to RAM at startup (using the copy group
attribute). No default alignment is set.

For example,

struct "mystruct"
{
 0x1234 : 2;
 addressof(mem:foo) : 4;
 addressof(mem:foo) + sizeof(mem:foo) : 4;
 checksum(crc32w,
 addressof(mem:foo),
 addressof(mem:foo) + sizeof(mem:foo)) : 4}
}

17.8.4. Creating Symbols

You can tell the linker to create symbols before locating by putting assignments in the section layout
definition. Symbol names are represented by double-quoted strings. Any string is allowed, but object files
may not support all characters for symbol names.You can use two different assignment operators. With
the simple assignment operator '=', the symbol is created unconditionally. With the ':=' operator, the
symbol is only created if it already exists as an undefined reference in an object file.

The expression that represents the value to assign to the symbol may contain references to other symbols.
If such a referred symbol is a special section symbol, creation of the symbol in the left hand side of the
assignment will cause creation of the special section.

section_layout
{

851

Linker Script Language (LSL)

 "_lc_bs" := "_lc_ub_stack";
 // when the symbol _lc_bs occurs as an undefined reference
 // in an object file, the linker allocates space for the stack
}

17.8.5. Conditional Group Statements

Within a group, you can conditionally select sections or create special sections.

• With the if keyword you can specify a condition. The succeeding section statement is executed if the
condition evaluates to TRUE (1).

• The optional else keyword is followed by a section statement which is executed in case the if-condition
evaluates to FALSE (0).

group (...)
{

if (exists("mysection"))
 select "mysection";

else
 reserved "myreserved" (size=2k);
}

852

TASKING VX-toolset for ARM User Guide

Chapter 18. Debug Target Configuration Files
DTC files (Debug Target Configuration files) define all possible configurations for a debug target. A debug
target can be target hardware such as an evaluation board or a simulator. The DTC files are used by
Eclipse to configure the project and the debugger. The information is used by the Target Board
Configuration wizard and the debug configuration. DTC files are located in the etc directory of the installed
product and use .dtc as filename suffix.

Based on the DTC files, the Target Board Configuration wizard adjust the project's LSL file and creates
a debug launch configuration.

18.1. Custom Board Support

When you need support for a custom board and the board requires a different configuration than those
that are in the product, it is necessary to create a dedicated DTC file.

To add a custom board

1. From the etc directory of the product, make a copy of a .dtc file and put it in your project directory
(in the current workspace).

In Eclipse, the DTC file should now be visible as part of your project.

2. Edit the file and give it a name that reflects the custom board.

The Import Board Configuration wizard in Eclipse adds DTC files that are present in your current project
to the list of available target boards.

Syntax of a DTC file

DTC files are XML files and use the XML Schema file dtc.xsd, also present in the etc directory of the
installed product.

Inspect the DTC XML schema file dtc.xsd for a description of the allowed elements and the available
attributes. Use a delivered .dtc file as a starting point for creating a custom board specification.

Basically a DTC file consists of the definition of the debug target (debugTarget element) which embodies
one or more configurations (configuration element) and one or more communication methods
(communicationMethod element).The Import Board Configuration wizard in Eclipse reflects the structure
of the DTC file. The elements that determine the settings that are applied by the wizard, can be found at
any level in the DTC file. The wizard will apply all elements that are within the path to the selected
configuration. This is best explained by an example of a DTC file with the following basic layout:

debugTarget: STMicroelectronics STM3210B-Eval board
 lsl
 configuration: Default
 lsl
 communicationMethod: J-Link over USB (JTAG)

853

 lsl

If, in the Import Board Configuration wizard in Eclipse, you set the board configuration to "J-Link-ARM",
the wizard puts the following LSL parts into the project's LSL file in this order:

• the lsl part under the debugTarget element

• the lsl part under the communicationMethod "J-Link over USB" element

• the lsl part under the configuration "J-Link-ARM" in the communicationMethod "J-Link over
USB" element

• the lsl part in the debugTarget element at the end of the DTC file

The same applies to all other elements that determine the underlying settings.

DTC macros in LSL

To protect the Target Board Configuration wizard from changing the LSL file, you can protect the LSL file
by adding the macro __DTC_IGNORE. This can be useful for projects that need the same LSL file, but
still need to run on different target boards.

#define __DTC_IGNORE

18.2. Description of DTC Elements and Attributes

The following table contains a description of the DTC elements and attributes. For each element a list of
allowed elements is listed and the available attributes are described.

Allowed ElementsDescriptionElement / Attribute

flashChips, lsl,
communicationMethod,
def, processor,
resource, initialize

The debug target.debugTarget

The name of the configuration.name

The manufacturer of the debug target.manufacturer

-Defines a processor that can be present on
the debug target. Multiple processor definitions
are allowed. The user should select the actual
processor on the debug target.

processor

A descriptive name of the processor derivative.name

Defines the CPU name, as for example
supplied with the option --cpu of the C
compiler.

cpu

ref, resource, initialize,
configuration, lsl,
processor

Defines a communication method. A
communication method is the channel that is
used to communicate with the target.

communicationMethod

854

TASKING VX-toolset for ARM User Guide

Allowed ElementsDescriptionElement / Attribute

A descriptive name of the communication
method.

name

The debug instrument DLL/Shared library file
to be used for this communication method. Do
not supply a path or a filename suffix.

debugInstrument

This is the method used for communication.
Allowed values: rs232, tcpip, can, none

gdiMethod

lsl, resource, initialize,
ref, configuration,
flashMonitor

Defines a set of elements as a macro. The
macro can be expanded using the ref
element.

def

The macro name.id

-Defines a resource definition that can be used
by Eclipse, the debugger or by the debug
instrument.

resource

The identifier name used by the debugger or
debug instrument to retrieve the value.

id

The value assigned to the resource.value

-Reference to a macro defined with a def
element. The elements contained in the def
element with the same name will be expanded
at the location of the ref. Multiple refs to the
same def are allowed.

ref

The name of the referenced macro.id

ref, initialize, resource,
lsl, flashMonitor,
processor

Defines a configuration.configuration

The descriptive name of the configuration.name

-This element defines an initialization
expression. Each initialize element contains a
resourceId attribute. If the DI requests this
resource the debugger will compose a string
from all initialize elements with the same
resourceId. This DI can use this string to
initialize registers by passing it to the debugger
as an expression to be evaluated.

initialize

The name of the resource to be used.resourceId

The name of the register to be initialized.name

When the cstart attribute is false, this is the
value to be used, otherwise, it is the default
value when using this configuration. It will be
used by the startup code editor to set the
default register values.

value

855

Debug Target Configuration Files

Allowed ElementsDescriptionElement / Attribute

A boolean value. If true the debugger should
ask the C startup code editor for the value,
otherwise the contents of the value attribute is
used. The default value is true.

cstart

-This element specifies the flash programming
monitor to be used for this configuration.

flashMonitor

Filename of the monitor, usually an Intel Hex
or S-Record file.

monitor

The address of the workspace of the flash
programming monitor.

workspaceAddress

Specifies the buffer size for buffering a flash
sector.

flashSectorBufferSize

debugTargetThis element defines a flash chip. It must be
used by the flash properties page to add it on
request to the list of flash chips.

chip

The vendor of this flash chip.vendor

The name of the chip.chip

The width of the chip in bits.width

The number of chips present on the board.chips

The base address of the chip.baseAddress

The size of the chip in bytes.chipSize

chipSpecify a list of flash chips that can be
available on this debug target.

flashChips

-Defines LSL pieces belonging to the
configuration part. The LSL text must be
defined between the start and end tag of this
element. All LSL texts of the active selection
will be placed in the project's LSL file.

lsl

18.3. Special Resource Identifiers

The following resource IDs are available in the TASKING VX-toolset for ARM:

J-Link debug instrument (DI): dijlinkarm

DescriptionResource Name

Clock rate in Hz. Necessary for the initialization of register USECRL.arm.luminary.clockrate

856

TASKING VX-toolset for ARM User Guide

ST-Link debug instrument (DI): distlink

DescriptionResource Name

The interface for using ST-Link. Can be JTAG or SWD.distlink.protocol

857

Debug Target Configuration Files

858

TASKING VX-toolset for ARM User Guide

Chapter 19. CPU Problem Bypasses and
Checks
ARM publishes errata sheets for reporting both CPU core functional problems and deviations from the
electrical and timing specifications.

For some of these functional problems in the CPU core itself, the TASKING VX-toolset for ARM compiler
provides workarounds. In fact these are software workarounds for hardware problems.

This chapter lists a summary of functional problems which can be bypassed by the compiler toolset.
Please refer to the ARM errata sheets for the CPU core you are using, to verify if you need to use one of
these bypasses.

To set a CPU bypass or check

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Processor.

In the right pane the Processor page appears.

3. From the Processor selection list, select a processor.

The CPU problem bypasses and checks box shows the available workarounds/checks available
for the selected processor.

4. (Optional) Select Show all CPU problem bypasses and checks.

5. Click Select All or select one or more individual options.

Overview of the CPU problem bypasses and checks

The following table contains an overview of the silicon bug numbers you can provide to the compiler and
assembler option --silicon-bug. WA means a workaround by the compiler, WL means a workaround by
the linker, CK means a check by the assembler.

CPUCheckWorkaroundDescriptionNumber

Cortex-M3 / Cortex-M3
with ETM

CKWALDRD with base in list may result in
incorrect base register when interrupted
or faulted

602117

Cortex-M3 / Cortex-M3
with ETM / Cortex-M4 /
Cortex-M4 with FPU

CKWALDR SP, mem may result in incorrect SP
when interrupted

752419
752770

XMC4000 familyWLThe use of BX LR for return from interrupt
may trigger a prefetch problem

pmc_cm_001

859

602117 -- LDRD with base in list may result in incorrect base
register when interrupted or faulted

ARM reference

602117

Command line option

--silicon-bug=602117

Description

In the Cortex-M3 or Cortex-M3 with ETM the LDRD instruction with the base register in the list of the form
LDRD Ra, Rb, [Ra, #imm] may not complete after the load of the first destination register due to an
interrupt before the completion of the second load or due to the second load getting a bus fault or an
MPU fault.When you use the C compiler option --silicon-bug=602117 the compiler will replace the LDRD
instruction by an ADD instruction and two LDR instructions which will produce exactly the same functionality:

ADD R12, Ra, #imm
LDR Ra, [R12, #0]
LDR Rb, [R12, #4]

When you use the assembler option --silicon-bug=602117, the assembler issues a warning when the
602117 problem is present.

Related information

ARM Core Cortex-M3 - Errata Notice

860

TASKING VX-toolset for ARM User Guide

http://infocenter.arm.com/help/topic/com.arm.doc.epm039114/index.html

752419 / 752770 -- LDR SP, mem may result in incorrect SP
when interrupted

ARM reference

752419 and 752770

Command line option

--silicon-bug=752419
--silicon-bug=752770

Description

In the Cortex-M3, Cortex-M3 with ETM Cortex-M4 and Cortex-M4 with FPU interrupted loads to SP can
cause erroneous behavior. In the compiler the problem only occurs when the __setsp() instrinsic is
used, or when VLAs are used (via the __free() intrinsic). When you use the C compiler option
--silicon-bug=752419 the compiler generates alternate code in these instances and enough optimizations
are blocked for these specific bits of code so that the suspected instructions should not be admitted.

When you use the assembler option --silicon-bug=752419, the assembler issues a warning when the
752419 problem is present. It is recommended to enable the assembler check for this silicon problem as
well to be sure the suspected instructions will never be generated.

Option --silicon-bug=752770 is an alias for --silicon-bug=752419.

Related information

ARM Core Cortex-M3 - Errata Notice

ARM Core Cortex-M4 - Errata Notice

861

CPU Problem Bypasses and Checks

http://infocenter.arm.com/help/topic/com.arm.doc.epm039114/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.epm039104/index.html

pmc_cm_001 -- The use of BX LR for return from interrupt may
trigger a prefetch problem

Infineon reference

PMU_CM.001

Command line option

--silicon-bug=pmc_cm_001

Description

In the XMC4000 family a branch from a non-cacheable to a cacheable address space instruction may
corrupt the program execution. When you use the control program option --silicon-bug=pmc_cm_001
the control program passes the option -DSILICON_BUG_PMC_CM_001 to the linker. To bypass this
CPU functional problem, the preprocessor define SILICON_BUG_PMC_CM_001 is used in the xmc4*.lsl
linker script files. The vector table is defined in such a way that the interrupt functions are called via a
veneer which returns by using PUSH LR, POP PC instead of BX LR.

Related information

Infineon XMC4000 Documents - Errata Sheet

862

TASKING VX-toolset for ARM User Guide

http://www.infineon.com/xmc4000

Chapter 20. CERT C Secure Coding Standard
The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities.The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

This chapter contains an overview of the CERT C Secure Coding Standard recommendations and rules
that are supported by the TASKING VX-toolset.

For details see the CERT C Secure Coding Standard web site. For general information about CERT
secure coding, see www.cert.org/secure-coding.

Identifiers

Each rule and recommendation is given a unique identifier. These identifiers consist of three parts:

• a three-letter mnemonic representing the section of the standard

• a two-digit numeric value in the range of 00-99

• the letter "C" indicates that this is a C language guideline

The three-letter mnemonic is used to group similar coding practices and to indicate to which category a
coding practice belongs.

The numeric value is used to give each coding practice a unique identifier. Numeric values in the range
of 00-29 are reserved for recommendations, while values in the range of 30-99 are reserved for rules.

C compiler invocation

With the C compiler option --cert you can enable one or more checks for the CERT C Secure Coding
Standard recommendations/rules. With --diag=cert you can see a list of the available checks, or you can
use a three-letter mnemonic to list only the checks in a particular category. For example, --diag=pre lists
all supported checks in the preprocessor category.

20.1. Preprocessor (PRE)

Use parentheses within macros around parameter names

Parenthesize all parameter names in macro definitions to avoid precedence problems.

PRE01-C

863

https://www.securecoding.cert.org/confluence/display/c/CERT+C+Coding+Standard
http://www.cert.org/secure-coding
http://doc.tasking.com/cert/pre01.html

Macro replacement lists should be parenthesized

Macro replacement lists should be parenthesized to protect any lower-precedence operators
from the surrounding expression. The example below is syntactically correct, although the
!= operator was omitted. Enclosing the constant -1 in parenthesis will prevent the incorrect
interpretation and force a compiler error:

#define EOF -1 // should be (-1)
int getchar(void);
void f(void)
{
 if (getchar() EOF) // != operator omitted
 {
 /* ... */
 }
}

PRE02-C

Wrap multi-statement macros in a do-while loop

When multiple statements are used in a macro, enclose them in a do-while statement, so
the macro can appear safely inside if clauses or other places that expect a single statement
or a statement block. Braces alone will not work in all situations, as the macro expansion is
typically followed by a semicolon.

PRE10-C

Do not conclude a single statement macro definition with a semicolon

Macro definitions consisting of a single statement should not conclude with a semicolon. If
required, the semicolon should be included following the macro expansion. Inadvertently
inserting a semicolon can change the control flow of the program.

PRE11-C

20.2. Declarations and Initialization (DCL)

Declare objects with appropriate storage durations

The lifetime of an automatic object ends when the function returns, which means that a
pointer to the object becomes invalid.

DCL30-C

Declare identifiers before using them

The ISO C90 standard allows implicit typing of variables and functions. Because implicit
declarations lead to less stringent type checking, they can often introduce unexpected and
erroneous behavior or even security vulnerabilities. The ISO C99 standard requires type
identifiers and forbids implicit function declarations. For backwards compatibility reasons,
the VX-toolset C compiler assumes an implicit declaration and continues translation after
issuing a warning message (W505 or W535).

DCL31-C

864

TASKING VX-toolset for ARM User Guide

http://doc.tasking.com/cert/pre02.html
http://doc.tasking.com/cert/pre10.html
http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/dcl30.html
http://doc.tasking.com/cert/dcl31.html

Guarantee that mutually visible identifiers are unique

The compiler encountered two or more identifiers that are identical in the first 31 characters.
The ISO C99 standard allows a compiler to ignore characters past the first 31 in an identifier.
Two distinct identifiers that are identical in the first 31 characters may lead to problems when
the code is ported to a different compiler.

DCL32-C

Do not invoke a function using a type that does not match the function definition

This warning is generated when a function pointer is set to refer to a function of an
incompatible type. Calling this function through the function pointer will result in undefined
behavior. Example:

void my_function(int a);
int main(void)
{
 int (*new_function)(int a) = my_function;
 return (*new_function)(10); /* the behavior is undefined */
}

DCL35-C

20.3. Expressions (EXP)

Do not take the size of a pointer to determine the size of the pointed-to type

The size of the object(s) allocated by malloc(), calloc() or realloc() should be a multiple of
the size of the base type of the result pointer. Therefore, the sizeof expression should be
applied to this base type, and not to the pointer type.

EXP01-C

Do not ignore values returned by functions

The compiler gives this warning when the result of a function call is ignored at some place,
although it is not ignored for other calls to this function. This warning will not be issued when
the function result is ignored for all calls, or when the result is explicitly ignored with a (void)
cast.

EXP12-C

Do not depend on order of evaluation between sequence points

Between two sequence points, an object should only be modified once. Otherwise the behavior
is undefined.

EXP30-C

Do not access a volatile object through a non-volatile reference

If an attempt is made to refer to an object defined with a volatile-qualified type through use
of an lvalue with non-volatile-qualified type, the behavior is undefined.

EXP32-C

Do not reference uninitialized memory

Uninitialized automatic variables default to whichever value is currently stored on the stack
or in the register allocated for the variable. Consequently, uninitialized memory can cause a
program to behave in an unpredictable or unplanned manner and may provide an avenue
for attack.

EXP33-C

865

CERT C Secure Coding Standard

http://doc.tasking.com/cert/dcl32.html
http://doc.tasking.com/cert/dcl35.html
http://doc.tasking.com/cert/exp01.html
http://doc.tasking.com/cert/exp12.html
http://doc.tasking.com/cert/exp30.html
http://doc.tasking.com/cert/exp32.html
http://doc.tasking.com/cert/exp33.html

Ensure a null pointer is not dereferenced

Attempting to dereference a null pointer results in undefined behavior, typically abnormal
program termination.

EXP34-C

Call functions with the arguments intended by the API

When a function is properly declared with function prototype information, an incorrect call
will be flagged by the compiler. When there is no prototype information available at the call,
the compiler cannot check the number of arguments and the types of the arguments. This
message is issued to warn about this situation.

EXP37-C

Do not call offsetof() on bit-field members or invalid types

The behavior of the offsetof() macro is undefined when the member designator parameter
designates a bit-field.

EXP38-C

20.4. Integers (INT)

Ensure that unsigned integer operations do not wrap

A constant with an unsigned integer type is truncated, resulting in a wrap-around.

INT30-C

Do not shift a negative number of bits or more bits than exist in the operand

The shift count of the shift operation may be negative or greater than or equal to the size of
the left operand. According to the C standard, the behavior of such a shift operation is
undefined. Make sure the shift count is in range by adding appropriate range checks.

INT34-C

Evaluate integer expressions in a larger size before comparing or assigning to that size

If an integer expression is compared to, or assigned to a larger integer size, that integer
expression should be evaluated in that larger size by explicitly casting one of the operands.

INT35-C

20.5. Floating Point (FLP)

Do not use floating point variables as loop counters

To avoid problems with limited precision and rounding, floating point variables should not be
used as loop counters.

FLP30-C

Take granularity into account when comparing floating point values

Floating point arithmetic in C is inexact, so floating point values should not be tested for exact
equality or inequality.

FLP35-C

Beware of precision loss when converting integral types to floating point

Conversion from integral types to floating point types without sufficient precision can lead to
loss of precision.

FLP36-C

866

TASKING VX-toolset for ARM User Guide

http://doc.tasking.com/cert/exp34.html
http://doc.tasking.com/cert/exp37.html
http://doc.tasking.com/cert/exp38.html
http://doc.tasking.com/cert/int30.html
http://doc.tasking.com/cert/int34.html
http://doc.tasking.com/cert/int35.html
http://doc.tasking.com/cert/flp30.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html

20.6. Arrays (ARR)

Do not apply the sizeof operator to a pointer when taking the size of an array

A function parameter declared as an array, is converted to a pointer by the compiler.Therefore,
the sizeof operator applied to this parameter yields the size of a pointer, and not the size of
an array.

ARR01-C

Ensure that array types in expressions are compatible

Using two or more incompatible arrays in an expression results in undefined behavior.

ARR34-C

Do not allow loops to iterate beyond the end of an array

Reading or writing of data outside the bounds of an array may lead to incorrect program
behavior or execution of arbitrary code.

ARR35-C

20.7. Characters and Strings (STR)

Do not attempt to modify string literals

Writing to a string literal has undefined behavior, as identical strings may be shared and/or
allocated in read-only memory.

STR30-C

Size wide character strings correctly

Wide character strings may be improperly sized when they are mistaken for narrow strings
or for multi-byte character strings.

STR33-C

Cast characters to unsigned types before converting to larger integer sizes

A signed character is sign-extended to a larger signed integer value. Use an explicit cast, or
cast the value to an unsigned type first, to avoid unexpected sign-extension.

STR34-C

Do not specify the bound of a character array initialized with a string literal

The compiler issues this warning when the character buffer initialized by a string literal does
not provide enough room for the terminating null character.

STR36-C

20.8. Memory Management (MEM)

Allocate and free memory in the same module, at the same level of abstraction

The compiler issues this warning when the result of the call to malloc(), calloc() or realloc()
is discarded, and therefore not free()d, resulting in a memory leak.

MEM00-C

Use realloc() only to resize dynamically allocated arrays

Only use realloc() to resize an array. Do not use it to transform an object to an object of a
different type.

MEM08-C

867

CERT C Secure Coding Standard

http://doc.tasking.com/cert/arr01.html
http://doc.tasking.com/cert/arr34.html
http://doc.tasking.com/cert/arr35.html
http://doc.tasking.com/cert/str30.html
http://doc.tasking.com/cert/str33.html
http://doc.tasking.com/cert/str34.html
http://doc.tasking.com/cert/str36.html
http://doc.tasking.com/cert/mem00.html
http://doc.tasking.com/cert/mem08.html

Do not access freed memory

When memory is freed, its contents may remain intact and accessible because it is at the
memory manager's discretion when to reallocate or recycle the freed chunk. The data at the
freed location may appear valid. However, this can change unexpectedly, leading to
unintended program behavior. As a result, it is necessary to guarantee that memory is not
written to or read from once it is freed.

MEM30-C

Free dynamically allocated memory exactly once

Freeing memory multiple times has similar consequences to accessing memory after it is
freed. The underlying data structures that manage the heap can become corrupted. To
eliminate double-free vulnerabilities, it is necessary to guarantee that dynamic memory is
freed exactly once.

MEM31-C

Detect and handle memory allocation errors

The result of realloc() is assigned to the original pointer, without checking for failure. As a
result, the original block of memory is lost when realloc() fails.

MEM32-C

Use the correct syntax for flexible array members

Use the ISO C99 syntax for flexible array members instead of an array member of size 1.

MEM33-C

Only free memory allocated dynamically

Freeing memory that is not allocated dynamically can lead to corruption of the heap data
structures.

MEM34-C

Allocate sufficient memory for an object

The compiler issues this warning when the size of the object(s) allocated by malloc(), calloc()
or realloc() is smaller than the size of an object pointed to by the result pointer. This may be
caused by a sizeof expression with the wrong type or with a pointer type instead of the object
type.

MEM35-C

20.9. Environment (ENV)

All atexit handlers must return normally

The compiler issues this warning when an atexit() handler is calling a function that does not
return. No atexit() registered handler should terminate in any way other than by returning.

ENV32-C

20.10. Signals (SIG)

Call only asynchronous-safe functions within signal handlersSIG30-C

Do not call longjmp() from inside a signal handler

Invoking the longjmp() function from within a signal handler can lead to undefined behavior
if it results in the invocation of any non-asynchronous-safe functions, likely compromising
the integrity of the program.

SIG32-C

868

TASKING VX-toolset for ARM User Guide

http://doc.tasking.com/cert/mem30.html
http://doc.tasking.com/cert/mem31.html
http://doc.tasking.com/cert/mem32.html
http://doc.tasking.com/cert/mem33.html
http://doc.tasking.com/cert/mem34.html
http://doc.tasking.com/cert/mem35.html
http://doc.tasking.com/cert/env32.html
http://doc.tasking.com/cert/sig30.html
http://doc.tasking.com/cert/sig32.html

20.11. Miscellaneous (MSC)

Ensure your random number generator is properly seeded

Ensure that the random number generator is properly seeded by calling srand().

MSC32-C

869

CERT C Secure Coding Standard

http://doc.tasking.com/cert/msc32.html

870

TASKING VX-toolset for ARM User Guide

Chapter 21. MISRA C Rules
This chapter contains an overview of the supported and unsupported MISRA C rules.

21.1. MISRA C:1998

This section lists all supported and unsupported MISRA C:1998 rules.

See also Section 4.6.2, C Code Checking: MISRA C.

A number of MISRA C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

x means that the rule is not supported by the TASKING C compiler. (R) is a required rule, (A) is an advisory
rule.

The code shall conform to standard C, without language extensions.(R)1.

Other languages should only be used with an interface standard.(A)2.x

Inline assembly is only allowed in dedicated C functions.(A)3.

Provision should be made for appropriate run-time checking.(A)4.x

Only use characters and escape sequences defined by ISO C.(R)5.

Character values shall be restricted to a subset of ISO 106460-1.(R)6.x

Trigraphs shall not be used.(R)7.

Multibyte characters and wide string literals shall not be used.(R)8.

Comments shall not be nested.(R)9.

Sections of code should not be "commented out".

In general, it is not possible to decide whether a piece of comment is C code that is
commented out, or just some pseudo code. Instead, the following heuristics are used
to detect possible C code inside a comment:

• a line ends with ';', or

• a line starts with '}', possibly preceded by white space

(A)10.

Identifiers shall not rely on significance of more than 31 characters.(R)11.

The same identifier shall not be used in multiple name spaces.(A)12.

Specific-length typedefs should be used instead of the basic types.(A)13.

Use unsigned char or signed char instead of plain char.(R)14.

Floating-point implementations should comply with a standard.(A)15.x

The bit representation of floating-point numbers shall not be used.
A violation is reported when a pointer to a floating-point type is converted to a pointer
to an integer type.

(R)16.

871

typedef names shall not be reused.(R)17.

Numeric constants should be suffixed to indicate type.
A violation is reported when the value of the constant is outside the range indicated
by the suffixes, if any.

(A)18.

Octal constants (other than zero) shall not be used.(R)19.

All object and function identifiers shall be declared before use.(R)20.

Identifiers shall not hide identifiers in an outer scope.(R)21.

Declarations should be at function scope where possible.(A)22.

All declarations at file scope should be static where possible.(A)23.x

Identifiers shall not have both internal and external linkage.(R)24.

Identifiers with external linkage shall have exactly one definition.(R)25.x

Multiple declarations for objects or functions shall be compatible.(R)26.

External objects should not be declared in more than one file.(A)27.x

The register storage class specifier should not be used.(A)28.

The use of a tag shall agree with its declaration.(R)29.

All automatics shall be initialized before being used .
This rule is checked using worst-case assumptions. This means that violations are
reported not only for variables that are guaranteed to be uninitialized, but also for
variables that are uninitialized on some execution paths.

(R)30.

Braces shall be used in the initialization of arrays and structures.(R)31.

Only the first, or all enumeration constants may be initialized.(R)32.

The right hand operand of && or || shall not contain side effects.(R)33.

The operands of a logical && or || shall be primary expressions.(R)34.

Assignment operators shall not be used in Boolean expressions.(R)35.

Logical operators should not be confused with bitwise operators.(A)36.

Bitwise operations shall not be performed on signed integers.(R)37.

A shift count shall be between 0 and the operand width minus 1.
This violation will only be checked when the shift count evaluates to a constant value
at compile time.

(R)38.

The unary minus shall not be applied to an unsigned expression.(R)39.

sizeof should not be used on expressions with side effects.(A)40.

The implementation of integer division should be documented.(A)41.x

The comma operator shall only be used in a for condition.(R)42.

Don't use implicit conversions which may result in information loss.(R)43.

Redundant explicit casts should not be used.(A)44.

Type casting from any type to or from pointers shall not be used.(R)45.

872

TASKING VX-toolset for ARM User Guide

The value of an expression shall be evaluation order independent.
This rule is checked using worst-case assumptions. This means that a violation will
be reported when a possible alias may cause the result of an expression to be
evaluation order dependent.

(R)46.

No dependence should be placed on operator precedence rules.(A)47.

Mixed arithmetic should use explicit casting.(A)48.

Tests of a (non-Boolean) value against 0 should be made explicit.(A)49.

F.P. variables shall not be tested for exact equality or inequality.(R)50.

Constant unsigned integer expressions should not wrap-around.(A)51.

There shall be no unreachable code.(R)52.

All non-null statements shall have a side-effect.(R)53.

A null statement shall only occur on a line by itself.(R)54.

Labels should not be used.(A)55.

The goto statement shall not be used.(R)56.

The continue statement shall not be used.(R)57.

The break statement shall not be used (except in a switch).(R)58.

An if or loop body shall always be enclosed in braces.(R)59.

All if, else if constructs should contain a final else.(A)60.

Every non-empty case clause shall be terminated with a break.(R)61.

All switch statements should contain a final default case.(R)62.

A switch expression should not represent a Boolean case.(A)63.

Every switch shall have at least one case.(R)64.

Floating-point variables shall not be used as loop counters.(R)65.

A for should only contain expressions concerning loop control.
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

(A)66.

Iterator variables should not be modified in a for loop.(A)67.

Functions shall always be declared at file scope.(R)68.

Functions with variable number of arguments shall not be used.(R)69.

Functions shall not call themselves, either directly or indirectly.
A violation will be reported for direct or indirect recursive function calls in the source
file being checked. Recursion via functions in other source files, or recursion via
function pointers is not detected.

(R)70.

Function prototypes shall be visible at the definition and call.(R)71.

The function prototype of the declaration shall match the definition.(R)72.

Identifiers shall be given for all prototype parameters or for none.(R)73.

Parameter identifiers shall be identical for declaration/definition.(R)74.

Every function shall have an explicit return type.(R)75.

873

MISRA C Rules

Functions with no parameters shall have a void parameter list.(R)76.

An actual parameter type shall be compatible with the prototype.(R)77.

The number of actual parameters shall match the prototype.(R)78.

The values returned by void functions shall not be used.(R)79.

Void expressions shall not be passed as function parameters.(R)80.

const should be used for reference parameters not modified.(A)81.

A function should have a single point of exit.(A)82.

Every exit point shall have a return of the declared return type.(R)83.

For void functions, return shall not have an expression.(R)84.

Function calls with no parameters should have empty parentheses.(A)85.

If a function returns error information, it should be tested.
A violation is reported when the return value of a function is ignored.

(A)86.

#include shall only be preceded by other directives or comments.(R)87.

Non-standard characters shall not occur in #include directives.(R)88.

#include shall be followed by either <filename> or "filename".(R)89.

Plain macros shall only be used for constants/qualifiers/specifiers.(R)90.

Macros shall not be #define'd and #undef'd within a block.(R)91.

#undef should not be used.(A)92.

A function should be used in preference to a function-like macro.(A)93.

A function-like macro shall not be used without all arguments.(R)94.

Macro arguments shall not contain pre-preprocessing directives.
A violation is reported when the first token of an actual macro argument is '#'.

(R)95.

Macro definitions/parameters should be enclosed in parentheses.(R)96.

Don't use undefined identifiers in pre-processing directives.(A)97.

A macro definition shall contain at most one # or ## operator.(R)98.

All uses of the #pragma directive shall be documented.
This rule is really a documentation issue.The compiler will flag all #pragma directives
as violations.

(R)99.

defined shall only be used in one of the two standard forms.(R)100.

Pointer arithmetic should not be used.(A)101.

No more than 2 levels of pointer indirection should be used.
A violation is reported when a pointer with three or more levels of indirection is
declared.

(A)102.

No relational operators between pointers to different objects.
In general, checking whether two pointers point to the same object is impossible.The
compiler will only report a violation for a relational operation with incompatible pointer
types.

(R)103.

Non-constant pointers to functions shall not be used.(R)104.

Functions assigned to the same pointer shall be of identical type.(R)105.

874

TASKING VX-toolset for ARM User Guide

Automatic address may not be assigned to a longer lived object.(R)106.

The null pointer shall not be de-referenced.
A violation is reported for every pointer dereference that is not guarded by a NULL
pointer test.

(R)107.

All struct/union members shall be fully specified.(R)108.

Overlapping variable storage shall not be used.
A violation is reported for every union declaration.

(R)109.

Unions shall not be used to access the sub-parts of larger types.
A violation is reported for a union containing a struct member.

(R)110.

Bit-fields shall have type unsigned int or signed int.(R)111.

Bit-fields of type signed int shall be at least 2 bits long.(R)112.

All struct/union members shall be named.(R)113.

Reserved and standard library names shall not be redefined.(R)114.

Standard library function names shall not be reused.(R)115.

Production libraries shall comply with the MISRA C restrictions.(R)116.x

The validity of library function parameters shall be checked.(R)117.x

Dynamic heap memory allocation shall not be used.(R)118.

The error indicator errno shall not be used.(R)119.

The macro offsetof shall not be used.(R)120.

<locale.h> and the setlocale function shall not be used.(R)121.

The setjmp and longjmp functions shall not be used.(R)122.

The signal handling facilities of <signal.h> shall not be used.(R)123.

The <stdio.h> library shall not be used in production code.(R)124.

The functions atof/atoi/atol shall not be used.(R)125.

The functions abort/exit/getenv/system shall not be used.(R)126.

The time handling functions of library <time.h> shall not be used.(R)127.

21.2. MISRA C:2004

This section lists all supported and unsupported MISRA C:2004 rules.

See also Section 4.6.2, C Code Checking: MISRA C.

A number of MISRA C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

x means that the rule is not supported by the TASKING C compiler. (R) is a required rule, (A) is an advisory
rule.

875

MISRA C Rules

Environment

All code shall conform to ISO 9899:1990 "Programming languages - C", amended
and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC
9899/COR2:1996.

(R)1.1

No reliance shall be placed on undefined or unspecified behavior.(R)1.2

Multiple compilers and/or languages shall only be used if there is a common defined
interface standard for object code to which the languages/compilers/assemblers
conform.

(R)1.3x

The compiler/linker shall be checked to ensure that 31 character significance and
case sensitivity are supported for external identifiers.

(R)1.4x

Floating-point implementations should comply with a defined floating-point standard.(A)1.5x

Language extensions

Assembly language shall be encapsulated and isolated.(R)2.1

Source code shall only use /* ... */ style comments.(R)2.2

The character sequence /* shall not be used within a comment.(R)2.3

Sections of code should not be "commented out". In general, it is not possible to
decide whether a piece of comment is C code that is commented out, or just some
pseudo code. Instead, the following heuristics are used to detect possible C code
inside a comment: - a line ends with ';', or - a line starts with '}', possibly preceded by
white space

(A)2.4

Documentation

All usage of implementation-defined behavior shall be documented.(R)3.1x

The character set and the corresponding encoding shall be documented.(R)3.2x

The implementation of integer division in the chosen compiler should be determined,
documented and taken into account.

(A)3.3x

All uses of the #pragma directive shall be documented and explained. This rule is
really a documentation issue. The compiler will flag all #pragma directives as
violations.

(R)3.4

The implementation-defined behavior and packing of bit-fields shall be documented
if being relied upon.

(R)3.5

All libraries used in production code shall be written to comply with the provisions of
this document, and shall have been subject to appropriate validation.

(R)3.6x

Character sets

Only those escape sequences that are defined in the ISO C standard shall be used.(R)4.1

Trigraphs shall not be used.(R)4.2

876

TASKING VX-toolset for ARM User Guide

Identifiers

Identifiers (internal and external) shall not rely on the significance of more than 31
characters.

(R)5.1

Identifiers in an inner scope shall not use the same name as an identifier in an outer
scope, and therefore hide that identifier.

(R)5.2

A typedef name shall be a unique identifier.(R)5.3

A tag name shall be a unique identifier.(R)5.4

No object or function identifier with static storage duration should be reused.(A)5.5

No identifier in one name space should have the same spelling as an identifier in
another name space, with the exception of structure and union member names.

(A)5.6

No identifier name should be reused.(A)5.7

Types

The plain char type shall be used only for storage and use of character values.(R)6.1

signed and unsigned char type shall be used only for the storage and use of
numeric values.

(R)6.2

typedefs that indicate size and signedness should be used in place of the basic
types.

(A)6.3

Bit-fields shall only be defined to be of type unsigned int or signed int.(R)6.4

Bit-fields of type signed int shall be at least 2 bits long.(R)6.5

Constants

Octal constants (other than zero) and octal escape sequences shall not be used.(R)7.1

Declarations and definitions

Functions shall have prototype declarations and the prototype shall be visible at both
the function definition and call.

(R)8.1

Whenever an object or function is declared or defined, its type shall be explicitly
stated.

(R)8.2

For each function parameter the type given in the declaration and definition shall be
identical, and the return types shall also be identical.

(R)8.3

If objects or functions are declared more than once their types shall be compatible.(R)8.4

There shall be no definitions of objects or functions in a header file.(R)8.5

Functions shall be declared at file scope.(R)8.6

Objects shall be defined at block scope if they are only accessed from within a single
function.

(R)8.7

An external object or function shall be declared in one and only one file.(R)8.8

877

MISRA C Rules

An identifier with external linkage shall have exactly one external definition.(R)8.9

All declarations and definitions of objects or functions at file scope shall have internal
linkage unless external linkage is required.

(R)8.10x

The static storage class specifier shall be used in definitions and declarations of
objects and functions that have internal linkage.

(R)8.11

When an array is declared with external linkage, its size shall be stated explicitly or
defined implicitly by initialization.

(R)8.12

Initialization

All automatic variables shall have been assigned a value before being used.This rule
is checked using worst-case assumptions. This means that violations are reported
not only for variables that are guaranteed to be uninitialized, but also for variables
that are uninitialized on some execution paths.

(R)9.1

Braces shall be used to indicate and match the structure in the non-zero initialization
of arrays and structures.

(R)9.2

In an enumerator list, the "=" construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

(R)9.3

Arithmetic type conversions

The value of an expression of integer type shall not be implicitly converted to a different
underlying type if:
a) it is not a conversion to a wider integer type of the same signedness, or
b) the expression is complex, or
c) the expression is not constant and is a function argument, or
d) the expression is not constant and is a return expression.

(R)10.1

The value of an expression of floating type shall not be implicitly converted to a
different type if:
a) it is not a conversion to a wider floating type, or
b) the expression is complex, or
c) the expression is a function argument, or
d) the expression is a return expression.

(R)10.2

The value of a complex expression of integer type may only be cast to a type of the
same signedness that is no wider than the underlying type of the expression.

(R)10.3

The value of a complex expression of floating type may only be cast to a type that is
no wider than the underlying type of the expression.

(R)10.4

If the bitwise operators ~ and << are applied to an operand of underlying type
unsigned char or unsigned short, the result shall be immediately cast to the
underlying type of the operand.

(R)10.5

A "U" suffix shall be applied to all constants of unsigned type.(R)10.6

878

TASKING VX-toolset for ARM User Guide

Pointer type conversions

Conversions shall not be performed between a pointer to a function and any type
other than an integral type.

(R)11.1

Conversions shall not be performed between a pointer to object and any type other
than an integral type, another pointer to object type or a pointer to void.

(R)11.2

A cast should not be performed between a pointer type and an integral type.(A)11.3

A cast should not be performed between a pointer to object type and a different pointer
to object type.

(A)11.4

A cast shall not be performed that removes any const or volatile qualification
from the type addressed by a pointer.

(R)11.5

Expressions

Limited dependence should be placed on C's operator precedence rules in
expressions.

(A)12.1

The value of an expression shall be the same under any order of evaluation that the
standard permits. This rule is checked using worst-case assumptions. This means
that a violation will be reported when a possible alias may cause the result of an
expression to be evaluation order dependent.

(R)12.2

The sizeof operator shall not be used on expressions that contain side effects.(R)12.3

The right-hand operand of a logical && or || operator shall not contain side effects.(R)12.4

The operands of a logical && or || shall be primary-expressions.(R)12.5

The operands of logical operators (&&, || and !) should be effectively Boolean.
Expressions that are effectively Boolean should not be used as operands to operators
other than (&&, || and !).

(A)12.6

Bitwise operators shall not be applied to operands whose underlying type is signed.(R)12.7

The right-hand operand of a shift operator shall lie between zero and one less than
the width in bits of the underlying type of the left-hand operand.This violation will only
be checked when the shift count evaluates to a constant value at compile time.

(R)12.8

The unary minus operator shall not be applied to an expression whose underlying
type is unsigned.

(R)12.9

The comma operator shall not be used.(R)12.10

Evaluation of constant unsigned integer expressions should not lead to wrap-around.(A)12.11

The underlying bit representations of floating-point values shall not be used. A violation
is reported when a pointer to a floating-point type is converted to a pointer to an
integer type.

(R)12.12

The increment (++) and decrement (--) operators should not be mixed with other
operators in an expression.

(A)12.13

Control statement expressions

Assignment operators shall not be used in expressions that yield a Boolean value.(R)13.1

879

MISRA C Rules

Tests of a value against zero should be made explicit, unless the operand is effectively
Boolean.

(A)13.2

Floating-point expressions shall not be tested for equality or inequality.(R)13.3

The controlling expression of a for statement shall not contain any objects of floating
type.

(R)13.4

The three expressions of a for statement shall be concerned only with loop control.
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

(R)13.5

Numeric variables being used within a for loop for iteration counting shall not be
modified in the body of the loop.

(R)13.6

Boolean operations whose results are invariant shall not be permitted.(R)13.7

Control flow

There shall be no unreachable code.(R)14.1

All non-null statements shall either:
a) have at least one side effect however executed, or
b) cause control flow to change.

(R)14.2

Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment provided that the first character following the null statement
is a white-space character.

(R)14.3

The goto statement shall not be used.(R)14.4

The continue statement shall not be used.(R)14.5

For any iteration statement there shall be at most one break statement used for loop
termination.

(R)14.6

A function shall have a single point of exit at the end of the function.(R)14.7

The statement forming the body of a switch, while, do ... while or for
statement be a compound statement.

(R)14.8

An if (expression) construct shall be followed by a compound statement. The
else keyword shall be followed by either a compound statement, or another if
statement.

(R)14.9

All if ... else if constructs shall be terminated with an else clause.(R)14.10

Switch statements

A switch label shall only be used when the most closely-enclosing compound statement
is the body of a switch statement.

(R)15.1

An unconditional break statement shall terminate every non-empty switch clause.(R)15.2

The final clause of a switch statement shall be the default clause.(R)15.3

A switch expression shall not represent a value that is effectively Boolean.(R)15.4

Every switch statement shall have at least one case clause.(R)15.5

880

TASKING VX-toolset for ARM User Guide

Functions

Functions shall not be defined with variable numbers of arguments.(R)16.1

Functions shall not call themselves, either directly or indirectly. A violation will be
reported for direct or indirect recursive function calls in the source file being checked.
Recursion via functions in other source files, or recursion via function pointers is not
detected.

(R)16.2

Identifiers shall be given for all of the parameters in a function prototype declaration.(R)16.3

The identifiers used in the declaration and definition of a function shall be identical.(R)16.4

Functions with no parameters shall be declared with parameter type void.(R)16.5

The number of arguments passed to a function shall match the number of parameters.(R)16.6

A pointer parameter in a function prototype should be declared as pointer to const
if the pointer is not used to modify the addressed object.

(A)16.7

All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

(R)16.8

A function identifier shall only be used with either a preceding &, or with a
parenthesized parameter list, which may be empty.

(R)16.9

If a function returns error information, then that error information shall be tested. A
violation is reported when the return value of a function is ignored.

(R)16.10

Pointers and arrays

Pointer arithmetic shall only be applied to pointers that address an array or array
element.

(R)17.1x

Pointer subtraction shall only be applied to pointers that address elements of the
same array.

(R)17.2x

>, >=, <, <= shall not be applied to pointer types except where they point to the same
array. In general, checking whether two pointers point to the same object is impossible.
The compiler will only report a violation for a relational operation with incompatible
pointer types.

(R)17.3

Array indexing shall be the only allowed form of pointer arithmetic.(R)17.4

The declaration of objects should contain no more than 2 levels of pointer indirection.
A violation is reported when a pointer with three or more levels of indirection is
declared.

(A)17.5

The address of an object with automatic storage shall not be assigned to another
object that may persist after the first object has ceased to exist.

(R)17.6

Structures and unions

All structure or union types shall be complete at the end of a translation unit.(R)18.1

An object shall not be assigned to an overlapping object.(R)18.2

An area of memory shall not be reused for unrelated purposes.(R)18.3x

881

MISRA C Rules

Unions shall not be used.(R)18.4

Preprocessing directives

#include statements in a file should only be preceded by other preprocessor
directives or comments.

(A)19.1

Non-standard characters should not occur in header file names in #include
directives.

(A)19.2

The #include directive shall be followed by either a <filename> or "filename"
sequence.

(R)19.3x

C macros shall only expand to a braced initializer, a constant, a parenthesized
expression, a type qualifier, a storage class specifier, or a do-while-zero construct.

(R)19.4

Macros shall not be #define'd or #undef'd within a block.(R)19.5

#undef shall not be used.(R)19.6

A function should be used in preference to a function-like macro.(A)19.7

A function-like macro shall not be invoked without all of its arguments.(R)19.8

Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives. A violation is reported when the first token of an actual macro argument
is '#'.

(R)19.9

In the definition of a function-like macro each instance of a parameter shall be enclosed
in parentheses unless it is used as the operand of # or ##.

(R)19.10

All macro identifiers in preprocessor directives shall be defined before use, except in
#ifdef and #ifndef preprocessor directives and the defined() operator.

(R)19.11

There shall be at most one occurrence of the # or ## preprocessor operators in a
single macro definition.

(R)19.12

The # and ## preprocessor operators should not be used.(A)19.13

The defined preprocessor operator shall only be used in one of the two standard
forms.

(R)19.14

Precautions shall be taken in order to prevent the contents of a header file being
included twice.

(R)19.15

Preprocessing directives shall be syntactically meaningful even when excluded by
the preprocessor.

(R)19.16

All #else, #elif and #endif preprocessor directives shall reside in the same file
as the #if or #ifdef directive to which they are related.

(R)19.17

Standard libraries

Reserved identifiers, macros and functions in the standard library, shall not be defined,
redefined or undefined.

(R)20.1

The names of standard library macros, objects and functions shall not be reused.(R)20.2

The validity of values passed to library functions shall be checked.(R)20.3x

882

TASKING VX-toolset for ARM User Guide

Dynamic heap memory allocation shall not be used.(R)20.4

The error indicator errno shall not be used.(R)20.5

The macro offsetof, in library <stddef.h>, shall not be used.(R)20.6

The setjmp macro and the longjmp function shall not be used.(R)20.7

The signal handling facilities of <signal.h> shall not be used.(R)20.8

The input/output library <stdio.h> shall not be used in production code.(R)20.9

The library functions atof, atoi and atol from library <stdlib.h> shall not be
used.

(R)20.10

The library functions abort, exit, getenv and system from library <stdlib.h>
shall not be used.

(R)20.11

The time handling functions of library <time.h> shall not be used.(R)20.12

Run-time failures

Minimization of run-time failures shall be ensured by the use of at least one of:
a) static analysis tools/techniques;
b) dynamic analysis tools/techniques;
c) explicit coding of checks to handle run-time faults.

(R)21.1x

21.3. MISRA C:2012

This section lists all supported and unsupported MISRA C:2012 rules.

See also Section 4.6.2, C Code Checking: MISRA C.

A number of MISRA C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

x means that the rule is not supported by the TASKING C compiler. (M) is a mandatory rule, (R) is a
required rule, (A) is an advisory rule.

A standard C environment

The program shall contain no violations of the standard C syntax and constraints,
and shall not exceed the implementation's translation limits.

(R)1.1

Language extensions should not be used.(A)1.2

There shall be no occurrence of undefined or critical unspecified behavior.(R)1.3

Unused code

A project shall not contain unreachable code.(R)2.1

There shall be no dead code.(R)2.2

A project should not contain unused type declarations.(A)2.3

883

MISRA C Rules

A project should not contain unused tag declarations.(A)2.4

A project should not contain unused macro declarations.(A)2.5

A function should not contain unused label declarations.(A)2.6

There should be no unused parameters in functions.(A)2.7

Comments

The character sequences /* and // shall not be used within a comment.(R)3.1

Line-splicing shall not be used in // comments.(R)3.2

Character sets and lexical conventions

Octal and hexadecimal escape sequences shall be terminated.(R)4.1

Trigraphs should not be used.(A)4.2

Identifiers

External identifiers shall be distinct.(R)5.1x

Identifiers declared in the same scope and name space shall be distinct.(R)5.2x

An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope.

(R)5.3x

Macro identifiers shall be distinct.(R)5.4x

Identifiers shall be distinct from macro names.(R)5.5x

A typedef name shall be a unique identifier.(R)5.6x

A tag name shall be a unique identifier.(R)5.7x

Identifiers that define objects or functions with external linkage shall be unique.(R)5.8x

Identifiers that define objects or functions with internal linkage should be unique.(A)5.9x

Types

Bit-fields shall only be declared with an appropriate type.(R)6.1

Single-bit named bit-fields shall not be of a signed type.(R)6.2

Literals and constants

Octal constants shall not be used.(R)7.1

A "u" or "U" suffix shall be applied to all integer constants that are represented in an
unsigned type.

(R)7.2

The lowercase character "l" shall not be used in a literal suffix trivial.(R)7.3

A string literal shall not be assigned to an object unless the object's type is "pointer
to const-qualified char".

(R)7.4

884

TASKING VX-toolset for ARM User Guide

Declarations and definitions

Types shall be explicitly specified.(R)8.1

Function types shall be in prototype form with named parameters.(R)8.2

All declarations of an object or function shall use the same names and type qualifiers.(R)8.3

A compatible declaration shall be visible when an object or function with external
linkage is defined.

(R)8.4

An external object or function shall be declared once in one and only one file.(R)8.5

An identifier with external linkage shall have exactly one external definition.(R)8.6

Functions and objects should not be defined with external linkage if they are referenced
in only one translation unit.

(A)8.7

The static storage class specifier shall be used in all declarations of objects and
functions that have internal linkage.

(R)8.8

An object should be defined at block scope if its identifier only appears in a single
function.

(A)8.9

An inline function shall be declared with the static storage class.(R)8.10

When an array with external linkage is declared, its size should be explicitly specified.(A)8.11

Within an enumerator list, the value of an implicitly-specified enumeration constant
shall be unique.

(R)8.12

A pointer should point to a const-qualified type whenever possible.(A)8.13

The restrict type qualifier shall not be used.(R)8.14

Initialization

The value of an object with automatic storage duration shall not be read before it has
been set.

(M)9.1

The initializer for an aggregate or union shall be enclosed in braces.(R)9.2

Arrays shall not be partially initialized.(R)9.3

An element of an object shall not be initialized more than once.(R)9.4

Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

(R)9.5

The essential type model

Operands shall not be of an inappropriate essential type.(R)10.1

Expressions of essentially character type shall not be used inappropriately in addition
and subtraction operations.

(R)10.2

The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category.

(R)10.3

Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category.

(R)10.4

885

MISRA C Rules

The value of an expression should not be cast to an inappropriate essential type.(A)10.5

The value of a composite expression shall not be assigned to an object with wider
essential type.

(R)10.6

If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed then the other operand shall not have wider
essential type.

(R)10.7

The value of a composite expression shall not be cast to a different essential type
category or a wider essential type.

(R)10.8

Pointer type conversions

Conversions shall not be performed between a pointer to a function and any other
type.

(R)11.1

Conversions shall not be performed between a pointer to an incomplete type and any
other type.

(R)11.2

A cast shall not be performed between a pointer to object type and a pointer to a
different object type.

(R)11.3

A conversion should not be performed between a pointer to object and an integer
type.

(A)11.4

A conversion should not be performed from pointer to void into pointer to object.(A)11.5

A cast shall not be performed between pointer to void and an arithmetic type.(R)11.6

A cast shall not be performed between pointer to object and a non-integer arithmetic
type.

(R)11.7

A cast shall not remove any const or volatile qualification from the type pointed
to by a pointer.

(R)11.8

The macro NULL shall be the only permitted form of integer null pointer constant.(R)11.9

Expressions

The precedence of operators within expressions should be made explicit.(A)12.1

The right hand operand of a shift operator shall lie in the range zero to one less than
the width in bits of the essential type of the left hand operand.

(R)12.2

The comma operator should not be used.(A)12.3

Evaluation of constant expressions should not lead to unsigned integer wrap-around.(A)12.4

Side effects

Initializer lists shall not contain persistent side effects.(R)13.1

The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders.

(R)13.2

886

TASKING VX-toolset for ARM User Guide

A full expression containing an increment (++) or decrement (--) operator should
have no other potential side effects other than that caused by the increment or
decrement operator.

(A)13.3

The result of an assignment operator should not be used.(A)13.4

The right hand operand of a logical && or || operator shall not contain persistent side
effects.

(R)13.5

The operand of the sizeof operator shall not contain any expression which has
potential side effects.

(M)13.6

Control statement expressions

A loop counter shall not have essentially floating type.(R)14.1

A for loop shall be well-formed.(R)14.2

Controlling expressions shall not be invariant.(R)14.3

The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type.

(R)14.4

Control flow

The goto statement should not be used.(A)15.1

The goto statement shall jump to a label declared later in the same function.(R)15.2

Any label referenced by a goto statement shall be declared in the same block, or in
any block enclosing the goto statement.

(R)15.3

There should be no more than one break or goto statement used to terminate any
iteration statement.

(A)15.4

A function should have a single point of exit at the end.(A)15.5

The body of an iteration-statement or a selection-statement shall be a
compound-statement.

(R)15.6

All if ... else if constructs shall be terminated with an else statement.(R)15.7

Switch statements

All switch statements shall be well-formed.(R)16.1

A switch label shall only be used when the most closely-enclosing compound statement
is the body of a switch statement.

(R)16.2

An unconditional break statement shall terminate every switch-clause.(R)16.3

Every switch statement shall have a default label.(R)16.4

A default label shall appear as either the first or the last switch label of a switch
statement.

(R)16.5

Every switch statement shall have at least two switch-clauses.(R)16.6

A switch-expression shall not have essentially Boolean type.(R)16.7

887

MISRA C Rules

Functions

The features of <stdarg.h> shall not be used.(R)17.1

Functions shall not call themselves, either directly or indirectly.(R)17.2

A function shall not be declared implicitly.(M)17.3

All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

(M)17.4

The function argument corresponding to a parameter declared to have an array type
shall have an appropriate number of elements.

(A)17.5

The declaration of an array parameter shall not contain the static keyword between
the [].

(M)17.6

The value returned by a function having non-void return type shall be used.(R)17.7

A function parameter should not be modified.(A)17.8

Pointers and arrays

A pointer resulting from arithmetic on a pointer operand shall address an element of
the same array as that pointer operand.

(R)18.1

Subtraction between pointers shall only be applied to pointers that address elements
of the same array.

(R)18.2

he relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object.

(R)18.3

The +, -, += and -= operators should not be applied to an expression of pointer type.(A)18.4

Declarations should contain no more than two levels of pointer nesting.(A)18.5

The address of an object with automatic storage shall not be copied to another object
that persists after the first object has ceased to exist.

(R)18.6

Flexible array members shall not be declared.(R)18.7

Variable-length array types shall not be used.(R)18.8

Overlapping storage

An object shall not be assigned or copied to an overlapping object.(M)19.1

The union keyword should not be used.(A)19.2

Preprocessing directives

#include directives should only be preceded by preprocessor directives or
comments.

(A)20.1

The ', " or \ characters and the /* or // character sequences shall not occur in a
header file name.

(R)20.2

The #include directive shall be followed by either a <filename> or "filename"
sequence.

(R)20.3

888

TASKING VX-toolset for ARM User Guide

A macro shall not be defined with the same name as a keyword.(R)20.4

#undef should not be used.(A)20.5

Tokens that look like a preprocessing directive shall not occur within a macro argument(R)20.6

Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses.

(R)20.7

The controlling expression of a #if or #elif preprocessing directive shall evaluate
to 0 or 1.

(R)20.8

All identifiers used in the controlling expression of #if or #elif preprocessing
directives shall be #define'd before evaluation.

(R)20.9

The # and ## preprocessor operators should not be used.(A)20.10

A macro parameter immediately following a # operator shall not immediately be
followed by a ## operator.

(R)20.11

A macro parameter used as an operand to the # or ## operators, which is itself subject
to further macro replacement, shall only be used as an operand to these operators.

(R)20.12

A line whose first token is # shall be a valid preprocessing directive.(R)20.13

All #else, #elif and #endif preprocessor directives shall reside in the same file
as the #if, #ifdef or #ifndef directive to which they are related.

(R)20.14

Standard libraries

#define and #undef shall not be used on a reserved identifier or reserved macro
name.

(R)21.1

A reserved identifier or macro name shall not be declared.(R)21.2

The memory allocation and deallocation functions of <stdlib.h> shall not be used.(R)21.3

The standard header file <setjmp.h> shall not be used.(R)21.4

The standard header file <signal.h> shall not be used.(R)21.5

The Standard Library input/output functions shall not be used.(R)21.6

The atof, atoi, atol and atoll functions of <stdlib.h> shall not be used.(R)21.7

The library functions abort, exit, getenv and system of <stdlib.h> shall not
be used.

(R)21.8

The library functions bsearch and qsort of <stdlib.h> shall not be used.(R)21.9

The Standard Library time and date functions shall not be used(R)21.10

The standard header file <tgmath.h> shall not be used.(R)21.11

The exception handling features of <fenv.h> should not be used.(A)21.12

Resources

All resources obtained dynamically by means of Standard Library functions shall be
explicitly released.

(R)22.1x

889

MISRA C Rules

A block of memory shall only be freed if it was allocated by means of a Standard
Library function.

(M)22.2x

The same file shall not be open for read and write access at the same time on different
streams.

(R)22.3x

There shall be no attempt to write to a stream which has been opened as read-only.(M)22.4x

A pointer to a FILE object shall not be dereferenced.(M)22.5x

The value of a pointer to a FILE shall not be used after the associated stream has
been closed.

(M)22.6x

890

TASKING VX-toolset for ARM User Guide

	TASKING VX-toolset for ARM User Guide
	Table of Contents
	Chapter 1. C Language
	1.1. Data Types
	1.2. Changing the Alignment: __unaligned, __packed__ and __align()
	1.3. Placing an Object at an Absolute Address: __at()
	1.4. Accessing Hardware from C
	1.5. Shift JIS Kanji Support
	1.6. Using Assembly in the C Source: __asm()
	1.7. Attributes
	1.8. Pragmas to Control the Compiler
	1.9. Predefined Preprocessor Macros
	1.10. Switch Statement
	1.11. Functions
	1.11.1. Calling Convention
	1.11.2. Inlining Functions: inline
	1.11.3. Interrupt Functions / Exception Handlers
	1.11.3.1. Defining an Exception Handler: __interrupt Keywords
	1.11.3.2. Interrupt Frame: __frame()

	1.11.4. Intrinsic Functions
	1.11.4.1. Writing Your Own Intrinsic Function

	Chapter 2. C++ Language
	2.1. C++ Language Extension Keywords
	2.2. C++ Dialect Accepted
	2.2.1. Standard Language Features Accepted
	2.2.2. C++0x Language Features Accepted
	2.2.3. Anachronisms Accepted
	2.2.4. Extensions Accepted in Normal C++ Mode

	2.3. GNU Extensions
	2.4. Namespace Support
	2.5. Template Instantiation
	2.5.1. Automatic Instantiation
	2.5.2. Instantiation Modes
	2.5.3. Instantiation #pragma Directives
	2.5.4. Implicit Inclusion
	2.5.5. Exported Templates
	2.5.5.1. Finding the Exported Template Definition
	2.5.5.2. Secondary Translation Units
	2.5.5.3. Libraries with Exported Templates

	2.6. Inlining Functions
	2.7. Extern Inline Functions
	2.8. Pragmas to Control the C++ Compiler
	2.9. Predefined Macros
	2.10. Precompiled Headers
	2.10.1. Automatic Precompiled Header Processing
	2.10.2. Manual Precompiled Header Processing
	2.10.3. Other Ways to Control Precompiled Headers
	2.10.4. Performance Issues

	Chapter 3. Assembly Language
	3.1. Assembly Syntax
	3.2. Assembler Significant Characters
	3.3. Operands of an Assembly Instruction
	3.4. Symbol Names
	3.4.1. Predefined Preprocessor Symbols

	3.5. Registers
	3.6. Assembly Expressions
	3.6.1. Numeric Constants
	3.6.2. Strings
	3.6.3. Expression Operators

	3.7. Working with Sections
	3.8. Built-in Assembly Functions
	3.9. Assembler Directives
	3.9.1. Overview of Assembler Directives
	3.9.2. Detailed Description of Assembler Directives
	.ALIAS
	.ALIGN
	.BREAK
	.BS, .BSB, .BSH, .BSW, .BSD
	.CALLS
	.CODE16, .CODE32, .THUMB, .ARM
	.DB, .DH, .DW, .DD
	.DEFINE
	.DS, .DSB, .DSH, .DSW, .DSD
	.END
	.EQU
	.EXTERN
	.FLOAT, .DOUBLE
	.FOR, .ENDFOR
	.GLOBAL
	.IF, .ELIF, .ELSE, .ENDIF
	.INCLUDE
	.LIST, .NOLIST
	.LTORG
	.MACRO, .ENDM
	.MESSAGE
	.MISRAC
	.OFFSET
	.PAGE
	.REPEAT, .ENDREP
	.SECTION, .ENDSEC
	.SET
	.SIZE
	.SOURCE
	.TITLE
	.TYPE
	.UNDEF
	.WEAK

	3.10. Macro Operations
	3.10.1. Defining a Macro
	3.10.2. Calling a Macro
	3.10.3. Using Operators for Macro Arguments

	3.11. Generic Instructions
	3.11.1. ARM Generic Instructions
	3.11.2. ARM and Thumb-2 32-bit Generic Instructions
	3.11.3. Thumb 16-bit Generic Instructions

	Chapter 4. Using the C Compiler
	4.1. Compilation Process
	4.2. Calling the C Compiler
	4.3. How the Compiler Searches Include Files
	4.4. Compiling for Debugging
	4.5. Compiler Optimizations
	4.5.1. Generic Optimizations (frontend)
	4.5.2. Core Specific Optimizations (backend)
	4.5.3. Optimize for Code Size or Execution Speed

	4.6. Static Code Analysis
	4.6.1. C Code Checking: CERT C
	4.6.2. C Code Checking: MISRA C

	4.7. C Compiler Error Messages

	Chapter 5. Using the C++ Compiler
	5.1. Calling the C++ Compiler
	5.2. How the C++ Compiler Searches Include Files
	5.3. C++ Compiler Error Messages

	Chapter 6. Using the Assembler
	6.1. Assembly Process
	6.2. Assembler Versions
	6.3. Calling the Assembler
	6.4. How the Assembler Searches Include Files
	6.5. Generating a List File
	6.6. Assembler Error Messages

	Chapter 7. Using the Linker
	7.1. Linking Process
	7.1.1. Phase 1: Linking
	7.1.2. Phase 2: Locating

	7.2. Calling the Linker
	7.3. Linking with Libraries
	7.3.1. How the Linker Searches Libraries
	7.3.2. How the Linker Extracts Objects from Libraries

	7.4. Incremental Linking
	7.5. Importing Binary Files
	7.6. Linker Optimizations
	7.7. Controlling the Linker with a Script
	7.7.1. Purpose of the Linker Script Language
	7.7.2. Eclipse and LSL
	7.7.3. Structure of a Linker Script File
	7.7.4. The Architecture Definition
	7.7.5. The Derivative Definition
	7.7.6. The Processor Definition
	7.7.7. The Memory Definition
	7.7.8. The Section Layout Definition: Locating Sections

	7.8. Linker Labels
	7.9. Generating a Map File
	7.10. Linker Error Messages

	Chapter 8. Run-time Environment
	8.1. Startup Code
	8.2. Reset Handler and Vector Table
	8.3. CMSIS Support
	8.4. Stack and Heap

	Chapter 9. Using the Utilities
	9.1. Control Program
	9.2. Make Utility mkarm
	9.2.1. Calling the Make Utility
	9.2.2. Writing a Makefile
	9.2.2.1. Targets and Dependencies
	9.2.2.2. Makefile Rules
	9.2.2.3. Macro Definitions
	9.2.2.4. Makefile Functions
	9.2.2.5. Conditional Processing
	9.2.2.6. Comment, Include and Export Lines

	9.3. Make Utility amk
	9.3.1. Makefile Rules
	9.3.2. Makefile Directives
	9.3.3. Macro Definitions
	9.3.4. Makefile Functions
	9.3.5. Conditional Processing
	9.3.6. Makefile Parsing
	9.3.7. Makefile Command Processing
	9.3.8. Calling the amk Make Utility

	9.4. Archiver
	9.4.1. Calling the Archiver
	9.4.2. Archiver Examples

	9.5. HLL Object Dumper
	9.5.1. Invocation
	9.5.2. HLL Dump Output Format

	9.6. Expire Cache Utility

	Chapter 10. Using the Debugger
	10.1. Reading the Eclipse Documentation
	10.2. Creating a Customized Debug Configuration
	10.3. Troubleshooting
	10.4. TASKING Debug Perspective
	10.4.1. Debug View
	10.4.2. Breakpoints View
	10.4.3. File System Simulation (FSS) View
	10.4.4. Disassembly View
	10.4.5. Expressions View
	10.4.6. Memory View
	10.4.7. Compare Application View
	10.4.8. Heap View
	10.4.9. Logging View
	10.4.10. RTOS View
	10.4.11. Registers View
	10.4.12. Trace View

	10.5. Programming a Flash Device

	Chapter 11. Tool Options
	11.1. Configuring the Command Line Environment
	11.2. C Compiler Options
	C compiler option: --align-composites
	C compiler option: --cache
	C compiler option: --call (-m)
	C compiler option: --cert
	C compiler option: --check
	C compiler option: --code-endianness
	C compiler option: --compact-max-size
	C compiler option: --cpu (-C)
	C compiler option: --debug-info (-g)
	C compiler option: --define (-D)
	C compiler option: --dep-file
	C compiler option: --diag
	C compiler option: --endianness
	C compiler option: --error-file
	C compiler option: --fp-model
	C compiler option: --fpu
	C compiler option: --global-type-checking
	C compiler option: --help (-?)
	C compiler option: --include-directory (-I)
	C compiler option: --include-file (-H)
	C compiler option: --inline
	C compiler option: --inline-max-incr / --inline-max-size
	C compiler option: --interwork
	C compiler option: --iso (-c)
	C compiler option: --keep-output-files (-k)
	C compiler option: --language (-A)
	C compiler option: --make-target
	C compiler option: --max-call-depth
	C compiler option: --mil / --mil-split
	C compiler option: --misrac
	C compiler option: --misrac-advisory-warnings / --misrac-required-warnings / --misrac-mandatory-warnings
	C compiler option: --misrac-version
	C compiler option: --no-double (-F)
	C compiler option: --no-stdinc
	C compiler option: --no-warnings (-w)
	C compiler option: --optimize (-O)
	C compiler option: --option-file (-f)
	C compiler option: --output (-o)
	C compiler option: --preprocess (-E)
	C compiler option: --profile (-p)
	C compiler option: --rename-sections (-R)
	C compiler option: --runtime (-r)
	C compiler option: --silicon-bug
	C compiler option: --source (-s)
	C compiler option: --stdout (-n)
	C compiler option: --thumb
	C compiler option: --tradeoff (-t)
	C compiler option: --uchar (-u)
	C compiler option: --unaligned-access
	C compiler option: --undefine (-U)
	C compiler option: --verbose (-v)
	C compiler option: --version (-V)
	C compiler option: --warnings-as-errors

	11.3. C++ Compiler Options
	C++ compiler option: --alternative-tokens
	C++ compiler option: --anachronisms
	C++ compiler option: --auto-type
	C++ compiler option: --base-assign-op-is-default
	C++ compiler option: --building-runtime
	C++ compiler option: --c++0x
	C++ compiler option: --c++0x-sfinae
	C++ compiler option: --c++0x-sfinae-ignore-access
	C++ compiler option: --check
	C++ compiler option: --check-concatenations
	C++ compiler option: --compound-literals
	C++ compiler option: --context-limit
	C++ compiler option: --cpu (-C)
	C++ compiler option: --create-pch
	C++ compiler option: --default-nocommon-tentative-definitions
	C++ compiler option: --defer-parse-function-templates
	C++ compiler option: --define (-D)
	C++ compiler option: --dep-file
	C++ compiler option: --diag
	C++ compiler option: --dollar
	C++ compiler option: --embedded-c++
	C++ compiler option: --endianness
	C++ compiler option: --error-file
	C++ compiler option: --error-limit (-e)
	C++ compiler option: --exceptions (-x)
	C++ compiler option: --exported-template-file
	C++ compiler option: --extended-variadic-macros
	C++ compiler option: --force-vtbl
	C++ compiler option: --friend-injection
	C++ compiler option: --g++
	C++ compiler option: --gnu-version
	C++ compiler option: --guiding-decls
	C++ compiler option: --help (-?)
	C++ compiler option: --ignore-std
	C++ compiler option: --implicit-extern-c-type-conversion
	C++ compiler option: --implicit-include
	C++ compiler option: --incl-suffixes
	C++ compiler option: --include-directory (-I)
	C++ compiler option: --include-file (-H)
	C++ compiler option: --include-macros-file
	C++ compiler option: --init-priority
	C++ compiler option: --instantiate (-t)
	C++ compiler option: --io-streams
	C++ compiler option: --lambdas
	C++ compiler option: --late-tiebreaker
	C++ compiler option: --list-file (-L)
	C++ compiler option: --long-lifetime-temps
	C++ compiler option: --long-long
	C++ compiler option: --make-target
	C++ compiler option: --multibyte-chars
	C++ compiler option: --namespaces
	C++ compiler option: --no-arg-dep-lookup
	C++ compiler option: --no-array-new-and-delete
	C++ compiler option: --no-auto-instantiation
	C++ compiler option: --no-auto-storage
	C++ compiler option: --no-bool
	C++ compiler option: --no-class-name-injection
	C++ compiler option: --no-const-string-literals
	C++ compiler option: --no-dep-name
	C++ compiler option: --no-distinct-template-signatures
	C++ compiler option: --no-double (-F)
	C++ compiler option: --no-enum-overloading
	C++ compiler option: --no-explicit
	C++ compiler option: --no-export
	C++ compiler option: --no-extern-inline
	C++ compiler option: --no-for-init-diff-warning
	C++ compiler option: --no-implicit-typename
	C++ compiler option: --no-inlining
	C++ compiler option: --nonconst-ref-anachronism
	C++ compiler option: --nonstd-default-arg-deduction
	C++ compiler option: --nonstd-instantiation-lookup
	C++ compiler option: --nonstd-qualifier-deduction
	C++ compiler option: --nonstd-using-decl
	C++ compiler option: --no-parse-templates
	C++ compiler option: --no-pch-messages
	C++ compiler option: --no-preprocessing-only
	C++ compiler option: --no-stdarg-builtin
	C++ compiler option: --no-stdinc / --no-stdstlinc
	C++ compiler option: --no-typename
	C++ compiler option: --no-use-before-set-warnings (-j)
	C++ compiler option: --no-warnings (-w)
	C++ compiler option: --nullptr
	C++ compiler option: --old-for-init
	C++ compiler option: --old-line-commands
	C++ compiler option: --old-specializations
	C++ compiler option: --option-file (-f)
	C++ compiler option: --output (-o)
	C++ compiler option: --pch
	C++ compiler option: --pch-dir
	C++ compiler option: --pch-verbose
	C++ compiler option: --pending-instantiations
	C++ compiler option: --preprocess (-E)
	C++ compiler option: --remarks (-r)
	C++ compiler option: --remove-unneeded-entities
	C++ compiler option: --rtti
	C++ compiler option: --rvalue-ctor-is-not-copy-ctor
	C++ compiler option: --rvalue-refs
	C++ compiler option: --schar (-s)
	C++ compiler option: --special-subscript-cost
	C++ compiler option: --strict (-A)
	C++ compiler option: --strict-warnings (-a)
	C++ compiler option: --suppress-vtbl
	C++ compiler option: --sys-include
	C++ compiler option: --template-directory
	C++ compiler option: --template-typedefs-in-diagnostic
	C++ compiler option: --thumb
	C++ compiler option: --timing
	C++ compiler option: --trace-includes
	C++ compiler option: --type-traits-helpers
	C++ compiler option: --uchar (-u)
	C++ compiler option: --uliterals
	C++ compiler option: --undefine (-U)
	C++ compiler option: --use-pch
	C++ compiler option: --using-std
	C++ compiler option: --variadic-macros
	C++ compiler option: --version (-V)
	C++ compiler option: --vla
	C++ compiler option: --warnings-as-errors
	C++ compiler option: --wchar_t-keyword
	C++ compiler option: --xref-file (-X)

	11.4. Assembler Options
	Assembler option: --case-insensitive (-c)
	Assembler option: --check
	Assembler option: --code-endianness
	Assembler option: --cpu (-C)
	Assembler option: --debug-info (-g)
	Assembler option: --define (-D)
	Assembler option: --dep-file
	Assembler option: --diag
	Assembler option: --emit-locals
	Assembler option: --endianness
	Assembler option: --error-file
	Assembler option: --error-limit
	Assembler option: --help (-?)
	Assembler option: --include-directory (-I)
	Assembler option: --include-file (-H)
	Assembler option: --inversions
	Assembler option: --kanji
	Assembler option: --keep-output-files (-k)
	Assembler option: --list-file (-l)
	Assembler option: --list-format (-L)
	Assembler option: --make-target
	Assembler option: --no-warnings (-w)
	Assembler option: --old-syntax
	Assembler option: --option-file (-f)
	Assembler option: --output (-o)
	Assembler option: --page-length
	Assembler option: --page-width
	Assembler option: --preprocess (-E)
	Assembler option: --preprocessor-type (-m)
	Assembler option: --relaxed
	Assembler option: --section-info (-t)
	Assembler option: --silicon-bug
	Assembler option: --symbol-scope (-i)
	Assembler option: --thumb
	Assembler option: --version (-V)
	Assembler option: --warnings-as-errors

	11.5. Linker Options
	Linker option: --case-insensitive
	Linker option: --chip-output (-c)
	Linker option: --code-endianness
	Linker option: --cpu (-C)
	Linker option: --define (-D)
	Linker option: --dep-file
	Linker option: --diag
	Linker option: --endianness
	Linker option: --error-file
	Linker option: --error-limit
	Linker option: --extern (-e)
	Linker option: --first-library-first
	Linker option: --global-type-checking
	Linker option: --help (-?)
	Linker option: --hex-format
	Linker option: --hex-record-size
	Linker option: --import-object
	Linker option: --include-directory (-I)
	Linker option: --incremental (-r)
	Linker option: --keep-output-files (-k)
	Linker option: --library (-l)
	Linker option: --library-directory (-L) / --ignore-default-library-path
	Linker option: --link-only
	Linker option: --long-branch-veneers
	Linker option: --lsl-check
	Linker option: --lsl-dump
	Linker option: --lsl-file (-d)
	Linker option: --make-target
	Linker option: --map-file (-M)
	Linker option: --map-file-format (-m)
	Linker option: --misra-c-report
	Linker option: --munch
	Linker option: --non-romable
	Linker option: --no-rescan
	Linker option: --no-rom-copy (-N)
	Linker option: --no-warnings (-w)
	Linker option: --optimize (-O)
	Linker option: --option-file (-f)
	Linker option: --output (-o)
	Linker option: --print-mangled-symbols (-P)
	Linker option: --strip-debug (-S)
	Linker option: --user-provided-initialization-code (-i)
	Linker option: --verbose (-v)
	Linker option: --version (-V)
	Linker option: --warnings-as-errors
	Linker option: --whole-archive

	11.6. Control Program Options
	Control program option: --address-size
	Control program option: --be32
	Control program option: --check
	Control program option: --code-endianness
	Control program option: --cpu (-C)
	Control program option: --cpu-list
	Control program option: --create (-c)
	Control program option: --debug-info (-g)
	Control program option: --define (-D)
	Control program option: --dep-file
	Control program option: --diag
	Control program option: --dry-run (-n)
	Control program option: --dsp-library
	Control program option: --endianness
	Control program option: --error-file
	Control program option: --exceptions
	Control program option: --force-c
	Control program option: --force-c++
	Control program option: --force-munch
	Control program option: --format
	Control program option: --fp-model
	Control program option: --fpu
	Control program option: --global-type-checking
	Control program option: --help (-?)
	Control program option: --include-directory (-I)
	Control program option: --instantiate
	Control program option: --io-streams
	Control program option: --iso
	Control program option: --keep-output-files (-k)
	Control program option: --keep-temporary-files (-t)
	Control program option: --library (-l)
	Control program option: --library-directory (-L) / --ignore-default-library-path
	Control program option: --list-files
	Control program option: --lsl-file (-d)
	Control program option: --make-target
	Control program option: --mil-link / --mil-split
	Control program option: --mixed-arm-thumb
	Control program option: --no-auto-instantiation
	Control program option: --no-default-libraries
	Control program option: --no-double (-F)
	Control program option: --no-map-file
	Control program option: --no-warnings (-w)
	Control program option: --option-file (-f)
	Control program option: --output (-o)
	Control program option: --pass (-W)
	Control program option: --preprocess (-E) / --no-preprocessing-only
	Control program option: --processors
	Control program option: --profile (-p)
	Control program option: --show-c++-warnings
	Control program option: --silicon-bug
	Control program option: --tasking-sfr
	Control program option: --thumb
	Control program option: --uchar (-u)
	Control program option: --undefine (-U)
	Control program option: --verbose (-v)
	Control program option: --version (-V)
	Control program option: --warnings-as-errors

	11.7. Make Utility Options
	Defining Macros
	Make utility option: -?
	Make utility option: -a
	Make utility option: -c
	Make utility option: -D / -DD
	Make utility option: -d/ -dd
	Make utility option: -e
	Make utility option: -err
	Make utility option: -f
	Make utility option: -G
	Make utility option: -i
	Make utility option: -K
	Make utility option: -k
	Make utility option: -m
	Make utility option: -n
	Make utility option: -p
	Make utility option: -q
	Make utility option: -r
	Make utility option: -S
	Make utility option: -s
	Make utility option: -t
	Make utility option: -time
	Make utility option: -V
	Make utility option: -W
	Make utility option: -w
	Make utility option: -x

	11.8. Parallel Make Utility Options
	Parallel make utility option: --always-rebuild (-a)
	Parallel make utility option: --change-dir (-G)
	Parallel make utility option: --diag
	Parallel make utility option: --dry-run (-n)
	Parallel make utility option: --help (-? / -h)
	Parallel make utility option: --jobs (-j) / --jobs-limit (-J)
	Parallel make utility option: --keep-going (-k)
	Parallel make utility option: --list-targets (-l)
	Parallel make utility option: --makefile (-f)
	Parallel make utility option: --no-warnings (-w)
	Parallel make utility option: --silent (-s)
	Parallel make utility option: --version (-V)
	Parallel make utility option: --warnings-as-errors

	11.9. Archiver Options
	Archiver option: --diag
	Archiver option: --delete (-d)
	Archiver option: --dump (-p)
	Archiver option: --extract (-x)
	Archiver option: --help (-?)
	Archiver option: --move (-m)
	Archiver option: --option-file (-f)
	Archiver option: --print (-t)
	Archiver option: --replace (-r)
	Archiver option: --version (-V)
	Archiver option: --warning (-w)

	11.10. HLL Object Dumper Options
	HLL object dumper option: --class (-c)
	HLL object dumper option: --copy-table
	HLL object dumper option: --diag
	HLL object dumper option: --disassembly-intermix (-i)
	HLL object dumper option: --dump-format (-F)
	HLL object dumper option: --expand-symbols (-e)
	HLL object dumper option: --help (-?)
	HLL object dumper option: --hex (-x)
	HLL object dumper option: --option-file (-f)
	HLL object dumper option: --output (-o)
	HLL object dumper option: --output-type (-T)
	HLL object dumper option: --print-mangled-symbols (-P)
	HLL object dumper option: -r
	HLL object dumper option: --sections (-s)
	HLL object dumper option: --source-lookup-path (-L)
	HLL object dumper option: --symbols (-S)
	HLL object dumper option: --version (-V)
	HLL object dumper option: --xml-base-filename (-X)

	11.11. Expire Cache Utility Options
	Expire cache utility option: --access (-a)
	Expire cache utility option: --days (-d)
	Expire cache utility option: --diag
	Expire cache utility option: --dry-run (-n)
	Expire cache utility option: --help (-?)
	Expire cache utility option: --megabytes (-m)
	Expire cache utility option: --totals (-t)
	Expire cache utility option: --verbose (-v)
	Expire cache utility option: --version (-V)

	Chapter 12. Influencing the Build Time
	12.1. MIL Linking
	12.2. Optimization Options
	12.3. Automatic Inlining
	12.4. Code Compaction
	12.5. Compiler Cache
	12.6. Header Files
	12.7. Parallel Build
	12.8. Number of Sections

	Chapter 13. Profiling
	13.1. What is Profiling?
	13.1.1. Methods of Profiling

	13.2. Profiling using Code Instrumentation (Dynamic Profiling)
	13.2.1. Step 1: Build your Application for Profiling
	13.2.1.1. Profiling Modules and C Libraries
	13.2.1.2. Linking Profiling Libraries

	13.2.2. Step 2: Execute the Application
	13.2.3. Step 3: Displaying Profiling Results

	13.3. Profiling at Compile Time (Static Profiling)
	13.3.1. Step 1: Build your Application with Static Profiling
	13.3.2. Step 2: Displaying Static Profiling Results

	Chapter 14. Libraries
	14.1. Using the CMSIS DSP Library
	14.2. Library Functions
	14.2.1. assert.h
	14.2.2. complex.h
	14.2.3. cstart.h
	14.2.4. ctype.h and wctype.h
	14.2.5. dbg.h
	14.2.6. errno.h
	14.2.7. except.h
	14.2.8. fcntl.h
	14.2.9. fenv.h
	14.2.10. float.h
	14.2.11. inttypes.h and stdint.h
	14.2.12. io.h
	14.2.13. iso646.h
	14.2.14. limits.h
	14.2.15. locale.h
	14.2.16. malloc.h
	14.2.17. math.h and tgmath.h
	14.2.18. setjmp.h
	14.2.19. signal.h
	14.2.20. stdarg.h
	14.2.21. stdbool.h
	14.2.22. stddef.h
	14.2.23. stdint.h
	14.2.24. stdio.h and wchar.h
	14.2.25. stdlib.h and wchar.h
	14.2.26. string.h and wchar.h
	14.2.27. time.h and wchar.h
	14.2.28. unistd.h
	14.2.29. wchar.h
	14.2.30. wctype.h

	14.3. C Library Reentrancy

	Chapter 15. List File Formats
	15.1. Assembler List File Format
	15.2. Linker Map File Format

	Chapter 16. Object File Formats
	16.1. ELF/DWARF Object Format
	16.2. Intel Hex Record Format
	16.3. Motorola S-Record Format

	Chapter 17. Linker Script Language (LSL)
	17.1. Structure of a Linker Script File
	17.2. Syntax of the Linker Script Language
	17.2.1. Preprocessing
	17.2.2. Lexical Syntax
	17.2.3. Identifiers and Tags
	17.2.4. Expressions
	17.2.5. Built-in Functions
	17.2.6. LSL Definitions in the Linker Script File
	17.2.7. Memory and Bus Definitions
	17.2.8. Architecture Definition
	17.2.9. Derivative Definition
	17.2.10. Processor Definition and Board Specification
	17.2.11. Section Setup
	17.2.12. Section Layout Definition

	17.3. Expression Evaluation
	17.4. Semantics of the Architecture Definition
	17.4.1. Defining an Architecture
	17.4.2. Defining Internal Buses
	17.4.3. Defining Address Spaces
	17.4.4. Mappings

	17.5. Semantics of the Derivative Definition
	17.5.1. Defining a Derivative
	17.5.2. Instantiating Core Architectures
	17.5.3. Defining Internal Memory and Buses

	17.6. Semantics of the Board Specification
	17.6.1. Defining a Processor
	17.6.2. Instantiating Derivatives
	17.6.3. Defining External Memory and Buses

	17.7. Semantics of the Section Setup Definition
	17.7.1. Setting up a Section

	17.8. Semantics of the Section Layout Definition
	17.8.1. Defining a Section Layout
	17.8.2. Creating and Locating Groups of Sections
	17.8.3. Creating or Modifying Special Sections
	17.8.4. Creating Symbols
	17.8.5. Conditional Group Statements

	Chapter 18. Debug Target Configuration Files
	18.1. Custom Board Support
	18.2. Description of DTC Elements and Attributes
	18.3. Special Resource Identifiers

	Chapter 19. CPU Problem Bypasses and Checks
	602117 -- LDRD with base in list may result in incorrect base register when interrupted or faulted
	752419 / 752770 -- LDR SP, mem may result in incorrect SP when interrupted
	pmc_cm_001 -- The use of BX LR for return from interrupt may trigger a prefetch problem

	Chapter 20. CERT C Secure Coding Standard
	20.1. Preprocessor (PRE)
	20.2. Declarations and Initialization (DCL)
	20.3. Expressions (EXP)
	20.4. Integers (INT)
	20.5. Floating Point (FLP)
	20.6. Arrays (ARR)
	20.7. Characters and Strings (STR)
	20.8. Memory Management (MEM)
	20.9. Environment (ENV)
	20.10. Signals (SIG)
	20.11. Miscellaneous (MSC)

	Chapter 21. MISRA C Rules
	21.1. MISRA C:1998
	21.2. MISRA C:2004
	21.3. MISRA C:2012

