TASKING.

TASKING VX-toolset for PCP
User Guide

MA161-800 (v6.3r1) March 26, 2019

Copyright © 2019 TASKING BV.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of TASKING BV. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium®,
TASKING®, and their respective logos are registered trademarks of Altium Limited or its subsidiaries. All other registered
or unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to
the same are claimed.

Table of Contents

I O 1= T o > T TS 1
L1 DALA TYPES e 1
1.1.1. Changing the Alignment: _ align() «...ocovininiiii e 3

1.2, ACCESSING MEBMIOIY ..ottt e e e e e e et 3
1.2.1. Memory Type QUAlIfIErS ... 3
O =011 (= £ P 4
1.2.3. Placing an Object at an Absolute Address: __ at()coveveiiiiiiiiiiiiiiiie e, 5
1.2.4. Accessing Hardware from Coiiiiiiiiii e 6

1.3, Shift JIS Kanji SUPPOIT . ..eeititiit e e e e e e e e 7
1.4. Using Assembly in the C SOUIrCe: _ aSM() .uvuirinininititit i e e 8
T 1] o1 (= 14
1.6. Pragmas to Control the COomPIiler ... e 18
1.7. Predefined PreproCesSOr MACIOSvui.iiiiiii e et aaaas 23
1.8, SWILCH STAIEMIENT ...t 24
1.0, FUNCHIONS oottt 25
1.9.1. Calling CONVENLIONuiiii e aaans 25
1.9.2. REGISIEI USAQE ..uiuiiiiiiiitit ettt 26
1.9.3. Inlining FUNCLONS: INHINE ... i e 27
1.9.4. INtErrUPt FUNCHIONS ...uitiii e e aaans 28
1.9.5. INtrINSIC FUNCHONS ...\iitii e 31

1.10. PCP COUE GENEIALIONeuittieiet ettt ettt ettt ettt eenaenes 38
1.10.1. Non-interruptible Code Generationcccouiuitiiriii e aaaes 38
1.10.2. Interruptible Code GENEIatioNc.iuirieieiiii i 39

1.11. Compiler Generated SECHONSvii i e 41
1.11.1. RENAME SECHOMS ...euittiiit ittt et et aenes 42

2. ASSEMDBIY LANQUAGE ... vttt ettt e e ettt aas 45
2.0, ASSEMDBIY SYNTAX ...ttt 45
2.2. Assembler Significant Charactersc.ouiiiiiiiii e 46
2.3. Operands of an Assembly INSTIUCHIONoiniiiii e a7
b2 S V1] o Yo I NN = T = a7
2.4.1. Predefined Preprocessor SYmbBOIScouiuiiiiii i 48

2. D, RIS IS Lttt 48
2.5.1. Special FUNCLION REQISIEIS ... vttt e 49

2.6. ASSEMDBIY EXPIrESSIONS .uuiiiiiii it 49
2.6.1. NUMEIIC CONSEANESeuitiiit ettt e ea e 50

b S (14T 1 PSPPI 50
2.6.3. EXPression OPEIatOrSc.iuiuiuiiiiiet ettt aaans 51

2.7. WOrKing With SECHONS ... vttt e e 52
2.8. Built-in Assembly FUNCLIONS ... 53
2.9. Assembler Directives and CONLIOISc.iuieiiiiiii e 65
2.9.1. ASSEMDIET DIFECLIVESviiiitii e e 66
2.9.2. AssembBIEr CONLIOISeuiee e 113

b2 (O IV - Vo (o I @ o 1Y - [0 PP 125
2.10.1. DEfiNING @ MACIO ...iuiiititiie e e 125
2.10.2. CalliNg @ MACKO ...vutiiie it e e e e 125
2.10.3. Using Operators for Macro ArgumENtSouvuiririeieieiienenieneeieieeaananns 126

2.11. GENEIIC INSITUCHIONS ...ttt e e e es 130
3. USING the € COMPIIET et 133

TASKING VX-toolset for PCP User Guide

3.1, COMPIIALION PrOCESS ... vttt et ettt et et eenas 133
3.2. Calling the C COMPIIET ... ot 134
3.3.The C StArtUP COUEeiit ettt aenes 136
3.4. How the Compiler Searches INclude FIles ..o, 137
3.5. Compiling for DEDUGGING ... vneiiiie e 137
3.6. Compiler OPtIMIZAtIONSuie e 138
3.6.1. Generic Optimizations (frontend)cc.ovuieiiiii e 139
3.6.2. Core Specific Optimizations (backend)cooiiiiiiiiii e 142
3.6.3. Optimize for Code Size or Execution Speedccoviiiiiiiiiiiiiiieen 143
3.6.4. Static Stack Alignment OptimiZationscoouviiiiiiii e 146

3.7. StAtiC COUE ANAIYSIS ...ttt 147
3.7.1. C Code Checking: CERT C ..ottt 148
3.7.2. C Code Checking: MISRA € . ..uiiiiie e 150

3.8. C Compiler ErrOr MESSAQES .. .uvuteiitiet et ettt et 151
4. USING the ASSEMDIET ...t e 153
4.1, ASSEMDBIY PrOCESS ...ttt et 153
4.2. Calling the ASSEMDIETt 154
4.3. How the Assembler Searches Include Files ..o 155
4.4, Assembler OPMIZALIONS c.uieit e eenas 156
4.5.Generating a LISt File ... 156
4.6. ASSEMDIET ErrOr MESSAGES .. enittetetiiete ettt et ettt e 157
5. USING The LINKET ...ttt et 159
5.1, LINKING PIrOCESS ...ttt e et 159
5.1.1. Ph@Se 1: LINKING .. euentiniteeee e et e 161
5.1.2. PhaSE 2: LOCALNG ... teninteieei et ettt 162

5.2. CalliNg the LINKET ... e e e 163
5.3. LinKing With LIDrariesoeiei e 164
5.3.1. How the Linker Searches LIbrariescoooviiiiiiii e 166
5.3.2. How the Linker Extracts Objects from Librariescoooveiiiiiiiiniiiniennen. 167

5.4. Incremental LINKINGo.eie e e e 167
5.5.Importing BiNary FilES ... 168
5.6. LINKer OPtMIZALIONSviiniiieiee et 169
5.7. Controlling the Linker With @ SCHPLouiiii e 170
5.7.1. Purpose of the Linker Script LAanQUAagEcovuviiiiiiiiiiiiiieeneeieeeeee 171
5.7.2. ECIPSE @NA LSL ...eiiitiie e e 171
5.7.3. Structure of a Linker SCript Filecieiii e 173
5.7.4. The Architecture Definitioncooiiiiiii e 177
5.7.5. The Derivative Definition ..o 179
5.7.6. The Processor Definitiono 182
5.7.7.The Memory Definitionc.ouiiiii e 182
5.7.8. The Section Layout Definition: Locating SeCtionscoooveviriiiieniiinieninnn. 184

5.8, LINKEr LADEIS ... 185
5.9.Generating @aMap File ... e 188
5.10. LINKEr ErrOr MESSAUESuuvuiiiiietiet et ettt e e e 189
6. USING the ULIIIESeeieeie et et ene e 191
Lo OToT o1 1 o] I ol (o £=1 1 o H PP 191
6.2. Make ULIlItY 8IMK ... e e 193
6.2.1. MaKEfile RUIESeieiti e 193
6.2.2. MAKETIIE DIFECHIVES ...ttt 195
6.2.3. MacCro DEfINItIONSt 195

TASKING VX-toolset for PCP User Guide

6.2.4. MaKefile FUNCHIONSttt e 198
6.2.5. ConditioNal PrOCESSINGcuviitiiitie e 198
6.2.6. MAKETIIE PAISINGeueiiiie e 199
6.2.7. Makefile Command ProCeSSINGcuuiuiiiiiiiii e 200
6.2.8. Calling the amk Make ULIlItYcooiiriiii e 201

6.3. Make ULIlItY MKPCP . .oeeenii e e 202
6.3.1. Calling the Make ULIlItYcouiiiiii e 203
6.3.2. Writing a Makefile ... 204

B.4. ATCNIVET . e 213
6.4.1. Calling the ArChIVETo e 213
6.4.2. ArChiVEr EXAMPIES ... 215

6.5. EXPIre Cache ULIlILYc.ouiiinii e e 217
7. USING the DEDUGOET ... ettt et ettt et et e e e aeaes 219
7.1. Reading the Eclipse DOCUMENTALIONvuiuitieiieeee et 219
7.2. Debugging @ PCP PrOJECTcuiiiiiiiei e 219
7.3. Creating a Customized Debug Configurationcoooviiiiiiiiiie 220
7.4, TrOUDIESNOOTING . ..vieiei e e 227
7.5. TASKING DebUQ PEISPECLIVEvieiiiiiitiei et 227
7.5.1. DEDUG VIBW .ottt e e 228
7.5.2. BreakpOointS VIEWc..uiieiiiie et e 230
7.5.3. File System Simulation (FSS) VIEWcciuiiiiiiiiii e 236
7.5.4. DiSASSEMDBIY VIBW ..ot 237
7.5.5. EXPreSSIONS VIBWciiiitiii ettt 237
7.5.6. MEIMOIY VIBWiiiiit et 238
7.5.7. Compare APPlICAtION VIEWouieii i 239
7.5.8. HEAP VIBW .ot 239
7.5.9. LOGUING VIBW .ttt ettt et e 239
7.5.20. RTOS VIBW ...ttt ettt et et et ettt e s 240
7.5.11. REQISIEIS VIBW ..ottt ettt et e 240
T.5.12. TrACE VIBW ..ottt ettt ettt 241

7.6. PCP Simulator Configurationocuieiiiii e 242
T [oTo] I @] o] 1To] o 1 PP 243
8.1. Configuring the Command Line ENVIFONMENTcuiviiieiiiiiiie e 247
8.2. C COMPIIEr OPLIONS ...ttt ettt et 249
8.3. ASSEMDIET OPLIONS ...ttt e 315
8.4 LINKEI OPLIONS ...ttt ettt ettt et 354
8.5. Control Program OPLIONSc..veieiteeeie et 398
8.6. Make ULIlity OPLIONSceiit ittt et 448
8.7. Parallel Make ULility OPtIONSueuireiteei ettt neenas 476
8.8. ArChIVEN OPLIONS ...ttt ettt et 490
8.9. Expire Cache ULility OPLIONSeuieiit et eeenes 505
9. Influencing the Build TiMe ... e 515
0., S R Il e 515
9.2, MIL LINKING -+ttt 515
9.3. OPLMIZALION OPLIONS .. vuenitee et et ettt et e enen e 515
9.4. AULOMALIC INNNING ... e e 516
9.5. COdE COMPACTION ..venieeteee ettt et ettt et e et es 516
9.6. COMPIIEr CACKE ...ceei e 516
0.7, HeAdEr FIlES ..ot 517
9.8. Parallel BUIIL 517

TASKING VX-toolset for PCP User Guide

L0, LDIAIIES ettt e e 519
10.1. LIBrary FUNCHONS ...t e et enas 520
L0, 1.0, @SSO N et 520
10.1.2. COMPIEX.N Lo 520
L0.1.3. CStANT N Lot 521
10.1.4. ctype.h and WCLYPE.N ..o 521
10,15, dBG.N e 522
F0.1.6. ITNO.N Lo 523
10,1, 7. EXCEPL N o 524

L0, 1.8, FCNEL N e 524
10.1.0. OV L 524
10.1.20. FOAEN oo 525
10.1.11. inttypes.h and Stdint.h ... 526
10,002, 10 e 526

L0, 1,130 0S0646.1 .ot 527
L0104, IMIES. N e e 527
10.1.15. 10CAIE.N ..o 527
10.1.26. MAIIOC.H .t 527
10.1.17. math.h and tgmath.h ... 528
10,108, SEUMP.N e 532
10.1.19. SIGNALIN o 532
10.1.20. StAAlIGN.N oot 533
10,120, SEAANG.N e 533
10.1.22. StADOOLN .o 533
10.1.23. StAAEf.N oo 534
10.1.24. SEAINEN oo e 534
10.1.25. stdio.h @and WChar.h ... 534
10.1.26. stdlib.h and WChar.h 542
10.1.27. StANOIELUIN.N L. e 545
10.1.28. string.h and wWeharh ... 546
10.1.29. time.h and WCharh ... 547
10.1.30. UChAIN Lo 550
T0.1.32. UNISEA.N oo 550
10.1.32. WCNAEN o 551
10,133 WOEYPE. N o 552

10.2. C Library REENIIANCYvuiiitiii et 553
I I O L= o g PP 565
11.1. Assembler List File FOrMALooieieiii e 565
11.2. Linker Map File FOIMAL et 566
12. Linker SCript LANGUAGE (LSL) .. euuuiiireet ettt et 571
12.1. Structure of @ Linker SCript File ... 571
12.2. Syntax of the Linker SCript LANQUAGEoeuirieieiiiiieie e 573
12.2.0. PrePIrOCESSING . vueuetetiet ettt et et ettt et ettt 573
12.2.2. LEXICAI SYNTAX ..ot ettt ettt et e 574
12.2.3. 1dentifiers @nd TAGSovvrieiieee e 575
12.2.4, EXPIESSIONS ...vuetiiiiet ettt ettt 575
12.2.5. BUIlt-IN FUNCHONSvieiei et e 576
12.2.6. LSL Definitions in the Linker Script File ..o 578
12.2.7. Memory and Bus Definitionsc.oeiuieiiiii e 579
12.2.8. Architecture Definitionooieriuiiii e 581

Vi

TASKING VX-toolset for PCP User Guide

12.2.9. Derivative Definitionc.ouiiiniiiie e 584
12.2.10. Processor Definition and Board Specificationcccovviiiiiiiiiiiiinenennn. 584
12.2.10. SECHON SEIUP . euetintteet ettt et ettt e 585
12.2.12. Section Layout Definitioncoeiiiiiiiii e 585

12.3. EXPression EVAIUBLIONvuiiiitiiee e e 590
12.4. Semantics of the Architecture Definition ..o 590
12.4.1. Defining @an ArChiteCIUIEieiiii i e 591
12.4.2. Defining INtErNal BUSESouiiiiieie e 592
12.4.3. Defining AdAreSS SPACESuiuiiiiitiii e 592
12,44, MAPPINGS -ttt ettt 595

12.5. Semantics of the Derivative Definitioncooiiiiii 598
12.5.1. Defining @ DErIVALIVEouiiiiie e 599
12.5.2. Instantiating Core ArchiteCIUIrESoovuiriniiiie e 600
12.5.3. Defining Internal Memory and BUSESccveiiiiiiiiiiiiieenee e 601

12.6. Semantics of the Board SpecifiCationcocoiiiiiiiiii e 602
12.6.1. DefiniNg @ PrOCESSONuiieiiiiie e 603
12.6.2. Instantiating DeriVALIVESc.ivuiiiiiii e 603
12.6.3. Defining External Memory and BUSEScveiiiiiiiiiiiiiiieeeeeeea 604

12.7. Semantics of the Section Setup Definition ..o 605
12.7.1. SEttiNg UP 8 SECHON ...uvutiiitee et ettt 605

12.8. Semantics of the Section Layout Definitioncovviiiiiii e 607
12.8.1. Defining @ SECHON LAYOULc.uvuitieieiii e e 608
12.8.2. Creating and Locating Groups Of SECHONSccviiiiiiiiiiiiieiieieeeene 608
12.8.3. Creating or Modifying Special SECHONSc.ociviiiiiiiiiiie e 614
12.8.4. Creating SYMDOISoviiei e 619
12.8.5. Conditional Group StateMENTSereuiiiieneiee e 619

13. Debug Target Configuration FileSoeieiiiiiii e 621
13.1. CUStOM BOArd SUPPOITttt ettt et 621
13.2. Description of DTC Elements and AUMNDULESooiiiiiiiii e 622
13.3. Special ResSource Identifiersoc.ouiee i 625
13.4. INItiAlize EIBMENLSoie i 625
14. CPU Problem Bypasses and CheCKSo 627
15. CERT C Secure CodiNg StanCardc.ovuieieiniaiiee e 631
15.1. PreproCeSSOr (PRE)cuiiiitiii et 631
15.2. Declarations and Initialization (DCL)c.vveiriiiiiiiee e 632
15.3. EXPreSSiONS (EXP) ..uuiiiiiii e et 633
15,4, INEEOEIS (INT) ettt et et 634
15.5. Floating POINt (FLP)t e et 634
15.6. AITAYS (ARR) et 635
15.7. Characters and Strings (STR)vuiueii it 635
15.8. Memory Management (MEM) ...t 635
15.9. ENVIONMENE (ENV) ..o e et 636
15.10. SIGNAIS (SIG) .. entiiitie et e 636
15.11. MiISCEllaN@0US (MSC) ...uiiitiiii ettt 637
16. MISRA C RUIES ...t e et et 639
16.1. MISRA C:iL1998 ...ttt ettt 639
16.2. MISRA C:2004 ..ot ettt 643
16.3. MISRA Ci2002 ..ot e et 651

Vii

TASKING VX-toolset for PCP User Guide

viii

Chapter 1. C Language

This chapter describes the target specific features of the C language, including language extensions that
are not standard in ISO-C. For example, pragmas are a way to control the compiler from within the C
source.

The TASKING C compiler fully supports the ISO C99 standard and supports all mandatory language
features of the C11 standard, and adds extra possibilities to program the special functions of the target.
C11 is the default of the C compiler.

C11 language features

All mandatory ISO C11 language features are supported (ISO/IEC 9899:2011 section 6.10.8.1 Mandatory
macros). Furthermore the C compiler supports the following conditional features (ISO/IEC 9899:2011
section 6.10.8.3 Conditional feature macros):

« variable length arrays and variably modified types

Other conditional language features such as threads, as mentioned in section 6.10.8.3 Conditional feature
macros and section 6.10.8.2 Environment macros of the ISO/IEC 9899:2011 standard, are not supported.
__STDC NO ATOM CS__and __ STDC NO THREADS _ are defined as 1.

Additional language features

In addition to the standard C language, the compiler supports the following:
» keywords to specify memory types for data and functions

« attribute to specify alignment and absolute addresses

« intrinsic (built-in) functions that result in target specific assembly instructions
» pragmas to control the compiler from within the C source

» predefined macros

« the possibility to use assembly instructions in the C source

» keywords for inlining functions and programming interrupt routines

* libraries

All non-standard keywords have two leading underscores (__).

In this chapter the target specific characteristics of the C language are described, including the above
mentioned extensions.

1.1. Data Types

The C compiler supports the following data types.

TASKING VX-toolset for PCP User Guide

CType Size Align Limits

_Bool 32 32 Oorl

__far __mau8 signed char i 8 8 [-27, 27-1]

signed char 32 32 [-231, 231-1]

__far __mau8 unsigned char) 8 8 [0, 28-1]

unsigned char 32 32 [0, 232-1]

__far __mau8 short i 16 16 [-215, 215-1]

short 32 32 [-2%, 2%

__far __maus8 unsigned short * 16 16 [0, 21°-1]

unsigned short 32 32 [0, 232-1]

int 32 32 [-2°1, 2%1.1)

unsigned int 32 32 [0, 232-1]

enum 32 32 [-2%%, 2%

long 32 32 [-2°, 2%1.1)

unsigned long 32 32 [0, 2%°-1]

long long 32 32 [-231, 231-1]

unsigned long long 32 32 [0, 232-1]

float (23-bit mantissa) 32 32 [-3.402E+38, —1.175E-38]
[+1.175E-38, +3.402E+38]

double 32 32 [-3.402E+38, —1.175E-38]

long double (23-bit mantissa) [+1.175E-38, +3.402E+38]

pointer to data - . 32 32 [0, 214-1]

pointer to function (code pointer) [0, 216-1]

__far pointer [0, 232-1]

" You can use the type qualifier __nmau8 only on objects that have the __f ar qualifier, because
only objects located in the FPI space can have byte access.

" Pointers are calculated using 32-bit arithmetic and compared as 14-bit values (data pointers),
16-bit values (code pointers) or 32-bit values (__f ar pointers).

Aggregate and Union Types

Aggregate types are aligned on 32 bits by default. All members of the aggregate types are aligned as
required by their individual types as listed in the table above. The struct/union data types may contain
bit-fields. The allowed bit-field fundamental data types are _Bool , (un)si gned char and (un)si gned
i nt . The maximum bit-field size is equal to that of the type’s size. For the bit-field types the same rules
regarding to alignment and signed-ness apply as specified for the fundamental data types. In addition,
the following rules apply:

» The first bit-field is stored at the least significant bits. Subsequent bit-fields fill the higher significant bits.

C Language
» A bit-field of a particular type cannot cross a boundary as is specified by its maximum width. For example,
a bit-field of type i nt cannot cross a 32-bit boundary.

« Bit-fields share a storage unit with other bit-field members if and only if there is sufficient space in the
storage unit.

« An unnamed bit-field creates a gap that has the size of the specified width. As a special case, an
unnamed bit-field having width 0 (zero) prevents any further bit-field from residing in the storage unit
corresponding to the type of the zero-width bit-field.

1.1.1. Changing the Alignment: __align()

By default the PCP compiler aligns objects to the minimum alignment required by the architecture. With
the attribute __al i gn() you can change the object alignment that is located in the FPI space. Objects
qualified with __f ar are located in the FPI space. The alignment must be a power of two. __al i gn()
has no effect on object located in the PRAM space of the PCP.

Example:
int __align(8) _ far src[4];

The compiler generates the following assembly:

.sdecl '.bss.linear', data, linear, clear
. sect '.bss.linear’
.gl obal _PCP_src
.align 8
_PCP_src: .type obj ect
.size _PCP_src, 16
.Space 16

Instead of the attribute __al i gn() you can also use #pragma al i gn.

1.2. Accessing Memory

You can use static memory type qualifiers to allocate static objects in a particular part of the addressing
space of the processor.

In addition, you can place variables at absolute addresses with the keyword __at () .

1.2.1. Memory Type Qualifiers

In the C language you can specify that a variable must lie in a specific part of memory. You can do this
with a memory type qualifier. If you do not specify a memory type qualifier, data objects get a default
memory type.

You can specify the following memory type qualifiers:

TASKING VX-toolset for PCP User Guide

Qualifier Description Location Maximum Pointer Pointer Section
object size size arithmetic |type
__near Data PRAM space |64 kB 32-bit 14-bit data
_ far . Far data FPlspace |4GB 32-bit 32-bit linear
_ far Allow 8-bit or FPI space 8-bit or 16-bit |32-bit 32-bit linear
__mau8 16-bit data
allocation

" f you do not specify __f ar, the compiler chooses where to place the declared object.

Data objects are located by default in the PRAM space of the PCP (__near is the default). The
Memory Access Unit (MAU) of PRAM is 32-bit. All objects located in the PRAM always have a

size of 32 bits.

Data objects that are qualified __f ar are located in the FPI space. The FPI space is the TriCore® linear
address space. The Memory Access Unit (MAU) of the FPI is 8-bit. By default the object size of __f ar
qualified objects is 32-bit, because the default data type size is 32-bits on the PCP for PRAM and FPI.

__far data objects with type char or short can have type modifier __nau8 to allow 8-bit and 16-bit
data allocation on the FPI. FPI instructions are generated to access objects that are qualified __f ar.

Examples

char c; /1 32-bit object in PRAM

short s; /1 32-bit object in PRAM

i nt i; /1 32-bit object in PRAM

char text[] = "No snoking"; // 11 words in PRAM
__far char c; /1 32-bit object in FPI

__far short s; /1 32-bit object in FPI

__far int i; /1 32-bit object in FPI

__far char text[] = "No snoking"; // 11 words in FPI
__far __mau8 char c; /1 8-bit object in FPI

__far __mau8 short s; /1 16-bit object in FPI

__far __mau8 int i /1 32-bit object in FPI

__far __mau8 char text[] = "No snoking"; // 11 bytes

1.2.2. Pointers

in FPI

The PCP compiler supports code and data pointers as shown in the following table.

Pointer Location Maximum object size |Pointer size |Section type
__near data pointer|PRAM space |64 kB 14-bit data

__far data pointer |FPI space 4GB 32-bit linear

code pointer CMEM space 128 kB 16-bit code

C Language

The default section name is equal to the generated section type that is prefixed with . pcpt ext . for code
in CMEM and . pcpdat a. for data in PRAM. The default code section name is . pcpt ext . code and
the default PRAM data section name is . pcpdat a. dat a. The default FPI data section name uses a
prefix conform the TriCore C compiler. E.g. __far int i; islocated in a section with name

. bss. | i near .You can change section names with #pr agna sect i on or with the command line option
--rename-sections.

Pointers with memory type qualifiers
Pointers for the PCP can have two types: a 'logical' type and a memory type. For example,
char __far * p;

means p has memory type PRAM (p itself is allocated in PRAM, PRAM is the default), but has logical
type 'character in target memory space FPI (__f ar)'. The memory type qualifier used left to the ",
specifies the target memory of the pointer, the memory type qualifier used right to the *', specifies the
storage memory of the pointer.

Examples:

int * p; // pointer 'p' located in PRAM pointing to int in PRAM
int _ far * q; // pointer 'q' located in PRAM pointing to int in FPI
-
g

int * _ far r, // pointer located in FPI pointing to int in PRAM
i nt far * _ far s; // pointer located in FPI pointing to int in FPI

A PRAM pointer cannot be converted to an FPI (__f ar) pointer or visa versa.

1.2.3. Placing an Object at an Absolute Address: __ at()

Just like you can declare a variable in a specific part of memory (using memory type qualifiers), you can
also place an object or function at an absolute address in memory.

With the attribute __at () you can specify an absolute address. The address is a 32-bit linear address.
Examples

unsi gned char Display[80*24] __ at(0x2000);

The array Di spl ay is placed at address 0x2000. In the generated assembly, an absolute section is
created. On this position space is reserved for the variable Di spl ay.

int i __at(0x1000) = 1,

The variable i is placed at address 0x1000 and is initialized.
void f(void) __at(oxfoff + 1) { }

The function f is placed at address 0xf100.

Restrictions

Take note of the following restrictions if you place a variable at an absolute address:

TASKING VX-toolset for PCP User Guide

The argument of the __at () attribute must be a constant address expression. Otherwise the compiler
generates an error.

You can place only global variables at absolute addresses. Parameters of functions, or automatic
variables within functions cannot be placed at absolute addresses. If they are, the compiler generates
an error.

A variable that is declared ext er n, is not allocated by the compiler in the current module. Hence you
should not use the keyword __at () on an external variable. If you do, the compiler ignores the keyword
__at () without generating an error. Use __at () at the definition of the variable.

You cannot place structure members at an absolute address. If you do, the compiler ignores the keyword
__at () and generates a warning.

Absolute variables cannot overlap each other. If you declare two absolute variables at the same address,
the assembler and/or linker issues an error. The compiler does not check this.

1.2.4. Accessing Hardware from C

Using Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from C. The SFRs are
defined in a special function register file (*.sfr) as symbol names for use with the compiler. An SFR file
contains the names of the SFRs and the bits in the SFRs.

Example use in C (SFRs from r egt c1796b. sfr):

voi d set_sfr(void)

{

}

SBCU SRC. | |= 0xb32a; /* access SBCU Service Request
Control register as a whole */

SBCU_SRC. B. SRE = 0x1; /* access SRE bit-field of SBCU
Servi ce Request Control register */

You can find a list of defined SFRs and defined bits by inspecting the SFR file for a specific processor.
The files are located in the sf r subdirectory of the standard i ncl ude directory. The files are named

r egepu. sf r, where cpu is the CPU specified with the control program option --cpu. The compiler includes
this register file if you specify option --include-file=sfr/regtc179b.sfr.

Defining Special Function Registers: __ sfrbit32

SFRs are defined in SFR files and are written in C. With the data type qualifier __sf r bi t 32 you can
declare bit-fields in special function registers.

According to the TriCore Embedded Applications Binary Interface, 'normal’ bit-fields are accessed as
char, short ori nt. Bit-fields are aligned according to the table in Section 1.1, Data Types.

C Language

If you declare bit-fields in special function registers, this behavior is not always desired: some special
function registers require 32-bit access. To force 32-bit access, you can use the data type qualifier
__sfrbit32.

When the SFR contains fields, the layout of the SFR is defined by a typedef-ed union. The next example
is part of an SFR file and illustrates the declaration of a special function register using the data type
qualifier __sfrhbit32:

typedef volatile union

{
struct
{
unsigned __sfrbit32 SRPN : 8; /* Service Priority Nunber */
unsi gned __sfrbit32 D2
unsi gned __sfrbit32 TOS 2; |* Type-of-Service Control */
unsi gned __sfrbit32 SRE 1; /* Service Request Enable Control */
unsigned __sfrbit32 SRR : 1; /* Service Request Flag */
unsigned __sfrbit32 CLRR: 1; /* Request Flag Clear Bit */
unsigned __sfrbit32 SETR: 1; /* Request Flag Set Bit */
unsi gned __sfrbit32 : 16;
} B
int I;

unsi gned int U,
} LBCU_SRC type;

Read-only fields can be marked by using the const keyword.

The SFR is defined by a cast to a ‘typedef-ed union’ pointer. The SFR address is given in parenthesis.
Read-only SFRs are marked by using the const keyword in the macro definition.

#def i ne LBCU_SRC (*(LBCU_SRC_type*) (O0xF87FFEFCu))
/* LBCU Service Control Register */

Restrictions

* You can use the __sfrbi t 32 data type qualifier only for i nt types. The compiler issues an error if
you use for example __sfrbit32 char x : 8§;

« When you use the __sfr bi t 32 data type qualifier for other types than a bit-field, the compiler ignores
this without a warning. For example, __sfrbit32 int gl obal ; isequaltoint global;.

« Structures or unions that contain a member qualified with __sf r bi t 32, are zero padded to complete
a full word if necessary. The structure or union will be word aligned.

1.3. Shift JIS Kanji Support

In order to allow for Japanese character support on non-Japanese systems (like PCs), you can use the
Shift JIS Kanji Code standard. This standard combines two successive ASCII characters to represent
one Kaniji character. A valid Kanji combination is only possible within the following ranges:

TASKING VX-toolset for PCP User Guide

* First (high) byte is in the range 0x81-0x9f or Oxe0-0xef.
» Second (low) byte is in the range 0x40-0x7e or 0x80-0xfc

Compiler option -Ak enables support for Shift JIS encoded Kanji multi-byte characters in strings and
(wide) character constants. Without this option, encodings with 0x5c as the second byte conflict with the
use of the backslash (\ ') as an escape character. Shift JIS in comments is supported regardless of this
option.

Note that Shift JIS also includes Katakana and Hiragana.
Example:

/1l Exanpl e usage of Shift JIS Kanji
/1 Do not switch off option -Ak
/1 At the position of the italic text you can
/1 put your Shift JI'S Kanji code
int i; // put Shift JIS Kanji here
char c1;
char c2;
unsi gned int ui;
const char mes[]="put Shift JIS Kanji here";
const unsigned int ar[5]={"K,"a",
SRR Y
/1 5 Japanese array

n.,

voi d mai n(voi d)

{
i=(int)cl;
i++;, /* put Shift JIS Kanji here\
conti nuous comment */
c2=nmes[9];
ui =ar[0];
}

1.4. Using Assembly in the C Source: __asm()

With the keyword __asmyou can use assembly instructions in the C source and pass C variables as
operands to the assembly code. Be aware that C modules that contain assembly are not portable and
harder to compile in other environments.

The compiler does not interpret assembly blocks but passes the assembly code to the assembly source
file; they are regarded as a black box. So, it is your responsibility to make sure that the assembly block
is syntactically correct. Possible errors can only be detected by the assembler.

You need to tell the compiler exactly what happens in the inline assembly code because it uses that for
code generation and optimization. The compiler needs to know exactly which registers are written and
which registers are only read. For example, if the inline assembly writes to a register from which the
compiler assumes that it is only read, the generated code after the inline assembly is based on the fact
that the register still contains the same value as before the inline assembly. If that is not the case the
results may be unexpected. Also, an inline assembly statement using multiple input parameters may be

C Language

assigned the same register if the compiler finds that the input parameters contain the same value. As
long as this register is only read this is not a problem.

General syntax of the __asm keyword

_asn("instruction_tenplate"”
[: output_paramli st
[@ input_paramli st
[: register_reserve_list]]]);

instruction_template

Y%parm_nr
output_param_list
input_param_list

&

constraint _char
C_expression

register_reserve_list
register_name

Assembly instructions that may contain parameters from the input
list or output list in the form: %parm_nr

Parameter number in the range 0 .. 9.
[["=[&]constraint_char" (C_expression)],...]
["constraint_char" (C_expression)],...]

Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.

Constraint character: the type of register to be used for the
C_expression. See the table below.

Any C expression. For output parameters it must be an Ivalue, that
is, something that is legal to have on the left side of an assignment.

["register_name"],...]

Name of the register you want to reserve. For example because this
register gets clobbered by the assembly code. The compiler will not
use this register for inputs or outputs. Note that reserving too many
registers can make register allocation impossible.

Specifying registers for C variables

With a constraint character you specify the register type for a parameter.

You can reserve the registers that are used in the assembly instructions, either in the parameter lists or
in the reserved register list (register_reserve_list). The compiler takes account of these lists, so no
unnecessary register saves and restores are placed around the inline assembly instructions.

Constraint Type Operand Remark

character

r register r0..r7

number type of operand it is same as %number |Input constraint only. The number must

associated with

refer to an output parameter. Indicates
that %number and number are the same
register.

TASKING VX-toolset for PCP User Guide

If an input parameter is modified by the inline assembly then this input parameter must also be
added to the list of output parameters (see Example 6). If this is not the case, the resulting code
may behave differently than expected since the compiler assumes that an input parameter is not
being changed by the inline assembly.

Loops and conditional jumps

The compiler does not detect loops with multiple __asn{) statements or (conditional) jumps across
__asn() statements and will generate incorrect code for the registers involved.

If you want to create a loop with __asn{() , the whole loop must be contained in a single __asm()
statement. The same counts for (conditional) jumps. As a rule of thumb, all references to a label in an
__asm() statement must be in that same statement. You can use numeric labels for these purposes.

Example 1: no input or output

A simple example without input or output parameters. You can use any instruction or label. When it is
required that a sequence of __asn{) statements generates a contiguous sequence of instructions, then
they can be best combined to a single __asn{) statement. Compiler optimizations can insert instruction(s)
in between __asn() statements. Use newline characters ‘\n’ to continue on a new lineina __asn()
statement. For multi-line output, use tab characters '\t' to indent instructions.

_asn("nop\n"
" nopll) ;

Example 2: using output parameters

Assign the result of inline assembly to a variable. With the constraint r a register is chosen for the
parameter; the compiler decides which register it uses. The %® in the instruction template is replaced with
the name of this register. The compiler generates code to assign the result to the output variable.

int out;
voi d addone(void)

{
_asm "add.i 90, #1"
"=rt (out));
}

Generated assembly code:

add.i rb5, #1
Idl.il r7, @PTR(_PCP_out)
st. pi r5,[_PCP_out]

Example 3: using input parameters

Assign a variable to a register. A register is chosen for the parameter because of the constraint r ; the
compiler decides which register is best to use. The %9 in the instruction template is replaced with the

10

C Language

name of this register. The compiler generates code to move the input variable to the input register. Because
there are no output parameters, the output parameter list is empty. Only the colon has to be present.

int in;
void initreg(void)
{
_asnm "MV RO, %,cc_Z"
S (i));
}

Generated assembly code:

Idl.il r7, @PTR(_PCP_in)
I d. pi r5,[_PCP_in]
MOV RO, r5,cc_Z

Example 4: using input and output parameters

Multiply two C variables and assign the result to a third C variable. Registers are necessary for the input
and output parameters (constraint r , %@ for out , %4 for i n1, 92 for i n2 in the instruction template). The
compiler generates code to move the input expressions into the input registers and to assign the result
to the output variable.

int inl, in2, out;

void nmultiply(void)
{
_asn("mnit\tod, %2\ n"
"\t mst ep. u\ t %0, %2\ n"
"\t mst ep. u\ t %0, %2\ n"
"\t mst ep. u\ t %0, %2\ n"
"\t st ep. u\ t %0, 9R"
"=r" (out)
“r* (inl), "r" (in2));
}

Generated assembly code:

_PCP_multiply: .type func
Idl.il r7, @PTR(_PCP_inl)
| d. pi r5,[_PCP_inl]
| d. pi ri, [_PCP_i n2]
mnit r5ril

mstep.u r5,rl
mstep.u r5,rl
mstep.u r5,rl
mstep.u r5,rl
Idl.il r7, @GPTR(_PCP_out)

st. pi r5,[_PCP_out]

11

TASKING VX-toolset for PCP User Guide

Example 5: reserving registers

Sometimes an instruction knocks out certain specific registers. The most common example of this is a
function call, where the called function is allowed to do whatever it likes with some registers. If this is the
case, you can list specific registers that get clobbered by an operation after the inputs.

Same as Example 4, but now register r 1 is a reserved register. You can do this by adding a reserved
register list (: "r1"). As you can see in the generated assembly code, register r 1 is not used (register
r 3 is used instead).

int inl, in2, out;

void nmultiply(void)
{
_asn("mnit\tod, %2\ n"
"\t st ep. u\ t %0, %2\ n"
"\t mst ep. u\ t %0, %2\ n"
"\t st ep. u\ t %0, %2\ n"
"\t nst ep. u\ t %0, %"
© "=r" (out)
“r" (inl), "r" (in2)
i)
}

Generated assembly code:

_PCP_multiply: .type func
Idl.il r7, @PTR(_PCP_inl)
I d. pi r5, [_PCP_in1]
I d. pi r3,[_PCP_in2]
m nit r5,r3

mstep.u r5,r3
mstep.u r5,r3
mstep.u r5,r3
mstep.u r5,r3
ldl.il r7, @PTR(_PCP_out)

st. pi r5,[_PCP_out]

Example 6: use the same register for input and output

As input constraint you can use a nhumber to refer to an output parameter. This tells the compiler that the
same register can be used for the input and output parameter. When the input and output parameter are
the same C expression, these will effectively be treated as if the input parameter is also used as output.
In that case it is allowed to write to this register. For example:

inline int foo(int parl, int par2, int * par3)

{

int retval ue;
__asn(

12

C Language

"shl %, #2\ n\ t"
"add 9%, 9%, cc_uc\n\t"
" mov 9%, %2, cc_uc\n\t"
" nov %, %2, cc_uc"
"=&" (retvalue), "=r" (parl), "=r" (par2)
"1" (parl), "2" (par2), "r" (par3)
)
return retval ue;

}

int result,parm

voi d func(void)

{
result = foo(1000, 1000, &arm ;

}

In this example the "1" constraint for the input parameter par 1 refers to the output parameter par 1, and
similar for the "2" constraint and par 2. In the inline assembly %4 (par 1) and %2 (par 2) are written. This
is allowed because the compiler is aware of this.

This results in the following generated assembly code:

Id.i r5, 0x28

Idl.i rb5,0x3e8

nov rl, r5,cc_uc

ldl.il r3, @Q(_PCP_parm

shl r5, #2

add rl, r5,cc_uc

nmov r3,rl,cc_uc

nov r4,rl,cc_uc

Idl.il r7, @PTR(_PCP_result)

st.pi r4,[_PCP_result]

However, when the inline assembly would have been as given below, the compiler would have assumed
that %4 (par 1) and 92 (par 2) were read-only. Because of the i nl i ne keyword the compiler knows that
par 1 and par 2 both contain 1000. Therefore the compiler can optimize and assign the same register to
% and 9%2. This would have given an unexpected result.

__asn(
"shl o, #2\ n\ t "
"add 9%, 9%, cc_uc\n\t"
" nov 98, %2, cc_uc\n\t"
" mov %, %2, cc_uc"

"=&" (retval ue)
"r" (parl), "r" (par2), "r" (par3)
)

Generated assembly code:

13

TASKING VX-toolset for PCP User Guide

Id.i r5, 0x28

Idl.i rb5,0x3e8

ldl.il rl, @Q(_PCP_parm

shl r5, #2

add r5,r5,cc_uc ; sane register, but is expected read-only
nov rl, r5,cc_uc

nov r3,r5,cc_uc

Idl.il r7, @PTR(_PCP_result)

st.pi r3,[_PCP_result] ; contains unexpected result

1.5. Attributes

You can use the keyword __att ri but e__ to specify special attributes on declarations of variables,
functions, types, and fields.

Syntax:
__attribute_ ((nane,...))
or:

nane

The second syntax allows you to use attributes in header files without being concerned about a possible
macro of the same name. For example, you may use __nor et ur n___ instead of
__attribute__((noreturn)).

alias("symbol")

Youcanuse _attribute_ ((alias("synbol"))) to specify that the function declaration appears
in the object file as an alias for another symbol. For example:

void _ f() { /* function body */; }
void f() __attribute_ ((weak, alias("__f")));

declares 'f ' to be a weak alias for'__f .

const

Youcanuse __attribute__ ((const)) to specify that a function has no side effects and will not
access global data. This can help the compiler to optimize code. See also attribute pur e.

The following kinds of functions should not be declared __const __:
A function with pointer arguments which examines the data pointed to.

» A function that calls a non-const function.

14

C Language

export

Youcanuse __attribute__((export)) to specify that a variable/function has external linkage and
should not be removed. During MIL linking, the compiler treats external definitions at file scope as if they
were declared st at i c. As a result, unused variables/functions will be eliminated, and the alias checking
algorithm assumes that objects with static storage cannot be referenced from functions outside the current
module. During MIL linking not all uses of a variable/function can be known to the compiler. For example
when a variable is referenced in an assembly file or a (third-party) library. With the export attribute the
compiler will not perform optimizations that affect the unknown code.

int i __attribute__((export));, /* 'i' has external |inkage */

flatten

Youcanuse __attribute__((flatten)) to force inlining of all function calls in a function, including
nested function calls.

Unless inlining is impossible or disabled by __attribute__((noinline)) for one of the calls, the
generated code for the function will not contain any function calls.

format(type,arg_string_index,arg_check_start)

Youcanuse __attribute_ ((format(type,arg_string_index,arg _check_start))) to
specify that functions take pri nt f, scanf,strfti ne or strf nmon style arguments and that calls to
these functions must be type-checked against the corresponding format string specification.

type determines how the format string is interpreted, and should be pri ntf, scanf,strftinme or
strfron.

arg_string_index is a constant integral expression that specifies which argument in the declaration of the
user function is the format string argument.

arg_check_start is a constant integral expression that specifies the first argument to check against the
format string. If there are no arguments to check against the format string (that is, diagnostics should only
be performed on the format string syntax and semantics), arg_check_start should have a value of 0. For
strfti me-style formats, arg_check_start must be 0.

Example:
int foo(int i, const char * ny_format, ...) _ attribute__((format(printf, 2,

The format string is the second argument of the function f oo and the arguments to check start with the
third argument.

leaf

Youcanuse __attribute__((leaf)) tospecify that a function is a leaf function. A leaf function is
an external function that does not call a function in the current compilation unit, directly or indirectly. The
attribute is intended for library functions to improve dataflow analysis. The attribute has no effect on
functions defined within the current compilation unit.

15

3)));

TASKING VX-toolset for PCP User Guide

malloc

Youcanuse __attribute__ ((rmalloc)) toimprove optimization and error checking by telling the
compiler that:

» The return value of a call to such a function points to a memory location or can be a null pointer.

» Onreturn of such a call (before the return value is assigned to another variable in the caller), the memory
location mentioned above can be referenced only through the function return value; e.g., if the pointer
value is saved into another global variable in the call, the function is not qualified for the malloc attribute.

» The lifetime of the memory location returned by such a function is defined as the period of program
execution between a) the point at which the call returns and b) the point at which the memory pointer
is passed to the corresponding deallocation function. Within the lifetime of the memory object, no other
calls to malloc routines should return the address of the same object or any address pointing into that
object.

noinline

Youcanuse __attribute__((noinline)) topreventa function from being considered for inlining.
Same as keyword __noi nl i ne or #pragnma noi nl i ne.

always_inline

With __attribute__((always_inline)) you force the compiler to inline the specified function,
regardless of the optimization strategy of the compiler itself. Same as keyword i nl i ne or #pr agna
i nline.

noreturn

Some standard C function, such as abort and exit cannot return. The C compiler knows this automatically.
Youcanuse __attribute__((noreturn)) to tell the compiler that a function never returns. For
example:

void fatal () __attribute__((noreturn));

void fatal (/* ... */)

{
/* Print error nessage */
exit(1);

}

The function f at al cannot return. The compiler can optimize without regard to what would happen if
f at al ever did return. This can produce slightly better code and it helps to avoid warnings of uninitialized
variables.

16

C Language

protect

Youcanuse __attribute__ ((protect)) toexclude avariable/function from the duplicate/unreferenced
section removal optimization in the linker. When you use this attribute, the compiler will add the "protect”
section attribute to the symbol's section. Example:

int i __attribute__ ((protect));

Note that the protect attribute will not prevent the compiler from removing an unused variable/function
(see the used symbol attribute).

This attribute is the same as #pr agna pr ot ect/ endpr ot ect .

pure

Youcanuse __attribute__((pure)) to specify that a function has no side effects, although it may
read global data. Such pure functions can be subject to common subexpression elimination and loop
optimization. See also attribute const .

section("section_name")

Youcanuse __attribute__((section("nanme"))) to specify that a function must appear in the
object file in a particular section. For example:

extern void foobar(void) __attribute_ ((section("bar")));

puts the function f oobar in the section named bar .

See also #pragnma secti on.

used

Youcanuse __attribute__((used)) to prevent an unused symbol from being removed, by both the
compiler and the linker. Example:

static const char copyright[] __attribute__((used)) = "Copyright 2019 TASKI NG BV";

When there is no C code referring to the copyr i ght variable, the compiler will normally remove it. The
__attribute__((used)) symbol attribute prevents this. Because the linker should also not remove
this symbol, __attribute__ ((used)) implies__attribute__((protect)).

unused

Youcanuse __attribute__ ((unused)) to specify that a variable or function is possibly unused. The
compiler will not issue warning messages about unused variables or functions.

weak

Youcanuse __attribute_ ((weak)) tospecify that the symbol resulting from the function declaration
or variable must appear in the object file as a weak symbol, rather than a global one. This is primarily

17

TASKING VX-toolset for PCP User Guide
useful when you are writing library functions which can be overwritten in user code without causing
duplicate name errors.

See also #pragma weak.

1.6. Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options. Put pragmas in your C source where you want them to take effect. Unless stated
otherwise, a pragma is in effect from the point where it is included to the end of the compilation unit or
until another pragma changes its status.

The syntax is:

#pragma [| abel :] pragnma-spec pragnma-argunents [on | off | default | restore]

or:

_Pragma("[I| abel :] pragma-spec pragma-argunments [on | off | default | restore]"”)

Some pragmas can accept the following special arguments:

on switch the flag on (same as without argument)
of f switch the flag off

def aul t set the pragma to the initial value

restore restore the previous value of the pragma
Examples:

/1l by default all warnings are shown

#pragma warni ng 535 /1 disable W35

#pragnma war ni ng 530 /1 also disable W30

const char var_1 = 0x5678; // W30 is not shown

var_2; /1 W35 is not shown

#pragnma warni ng restore /1 restore one level, only W35 is disabl ed
const char var_3 = 0x56789; // W30 is shown

#pragma war ni ng defaul t /1 back to default, all warnings are shown
var _4; /1 W35 is shown

Label pragmas

Some pragmas support a label prefix of the form "label:" between #pr agnma and the pragma name. Such
a label prefix limits the effect of the pragma to the statement following a label with the specified name.
The r est or e argument on a pragma with a label prefix has a special meaning: it removes the most
recent definition of the pragma for that label.

You can see a label pragma as a kind of macro mechanism that inserts a pragma in front of the statement
after the label, and that adds a corresponding #pr agma ... rest or e after the statement.

18

C Language

Compared to regular pragmas, label pragmas offer the following advantages:

» The pragma text does not clutter the code, it can be defined anywhere before a function, or even in a
header file. So, the pragma setting and the source code are uncoupled. When you use different header
files, you can experiment with a different set of pragmas without altering the source code.

» The pragma has an implicit end: the end of the statement (can be a loop) or block. So, no need for
pragma restore / endoptimize etc.

Example:
#pragma | abl:optimze P
volatile int v;

void f(void)

{
int i, a
a = 42,
labl: for(i=1; i<10; i++)
{
/* the entire for loop is part of the pragma optim ze */
a +=i;
}
vV = a;

}
Supported pragmas

The compiler recognizes the following pragmas, other pragmas are ignored. On the command line you

can use cpcp --help=pragmas to get a list of all supported pragmas. Pragmas marked with (*) support
a label prefix.

STDC FP_CONTRACT [on | off | default | restore] (*)

This pragma is defined in ISO C99/C11. With this pragma you can control the +contract flag of C compiler
option --fp-model.

alias symbol=defined_symbol
Define symbol as an alias for defined_symbol. It corresponds to a . ALI AS directive at assembly level.

The symbol should not be defined elsewhere, and defined_symbol should be defined with static storage
duration (not extern or automatic).

19

TASKING VX-toolset for PCP User Guide

align {value | default | restore} (*)

Change the alignment of objects located in the FPI space. By default the PCP compiler aligns objects to
the minimum alignment required by the architecture. With this pragma you can increase this alignment
for objects of four bytes or larger. The value must be a power of two.

See Section 1.1.1, Changing the Alignment: __align().

boolean [on | off | default | restore] (*)

This pragma is used to mark the macros "false" and "true" from the library header file st dbool . h as
"essentially BOOLEAN", which is a concept from the MISRA C:2012 standard.

clear / noclear [on | off | default | restore] (*)

By default, uninitialized global or static variables are cleared to zero on startup. With pragma nocl ear,
this step is skipped. Pragma cl ear resumes normal behavior. This pragma applies to constant data as
well as non-constant data.

See C compiler option --no-clear.

compactmaxmatch {value | default | restore} (*)
With this pragma you can control the maximum size of a match.

See C compiler option --compact-max-size.

extension isuffix [on | off | default | restore] (*)

Enables a language extension to specify imaginary floating-point constants. With this extension, you can
use an "i" suffix on a floating-point constant, to make the type _I nagi nary.

float O0.5i
extern symbol
Normally, when you use the C keyword ext er n, the compiler generates an . EXTERN directive in the

generated assembly source. However, if the compiler does not find any references to the ext er n symbol
in the C module, it optimizes the assembly source by leaving the . EXTERN directive out.

With this pragma you can force an external reference (. EXTERN assembler directive), even when the
symbol is not used in the module.

fp_negzero [on | off | default | restore] (*)

With this pragma you can control the +negzero flag of C compiler option --fp-model.

20

C Language

fp_nonan [on | off | default | restore] (*)

With this pragma you can control the +nonan flag of C compiler option --fp-model.

fp_rewrite [on | off | default | restore] (*)

With this pragma you can control the +rewrite flag of C compiler option --fp-model.

inline / noinline / smartinline [default | restore] (*)

See Section 1.9.3, Inlining Functions: inline.

inline_max_incr {value | default | restore} (*)
inline_max_size {value | default | restore} (*)

With these pragmas you can control the automatic function inlining optimization process of the compiler.
It has effect only when you have enabled the inlining optimization (C compiler option --optimize=+inline).

See C compiler options --inline-max-incr / --inline-max-size.
linear_switch / jump_switch / binary_switch / smart_switch
With these pragmas you can overrule the compiler chosen switch method:

| i near _swi tch force jump chain code. A jump chain is comparable with an if/else-if/else-if/else
construction.

jump_switch force jump table code. A jump table is a table filled with jump instructions for each
possible switch value. The switch argument is used as an index to jump within this
table.

bi nary_swi tch force binary lookup table code. A binary search table is a table filled with a value to
compare the switch argument with and a target address to jump to.

smart_switch letthe compiler decide the switch method used
See also Section 1.8, Switch Statement.

macro / nomacro [on | off | default | restore] (*)

Turns macro expansion on or off. By default, macro expansion is enabled.

message "message" ...

Print the message string(s) on standard output.

nomisrac [nr,...] [default | restore] (*)

Without arguments, this pragma disables MISRA C checking. Alternatively, you can specify a
comma-separated list of MISRA C rules to disable.

21

TASKING VX-toolset for PCP User Guide

See C compiler option --misrac and Section 3.7.2, C Code Checking: MISRA C.

novector value [default | restore] (*)

With this pragma you tell the compiler not to generate code for channel vectors and channel context.
See C compiler option --no-vector.

optimize [flags] / endoptimize [default | restore] (*)

You can overrule the C compiler option --optimize for the code between the pragmas opt i m ze and
endopt i m ze. The pragma works the same as C compiler option --optimize.

See Section 3.6, Compiler Optimizations.

protect / endprotect [on | off | default | restore] (*)

With these pragmas you can protect sections against linker optimizations. This excludes a section from
unreferenced section removal and duplicate section removal by the linker. endpr ot ect restores the
default section protection.

section [type=name] / endsection [default | restore] (*)

Changes section names. See Section 1.11, Compiler Generated Sections and C compiler option
--rename-sections for more information.

source / nosource [on | off | default | restore] (*)
With these pragmas you can choose which C source lines must be listed as comments in assembly output.

See C compiler option --source.

stdinc [on | off | default | restore] (*)

This pragma changes the behavior of the #i ncl ude directive. When set, the C compiler options
--include-directory and --no-stdinc are ignored.

tradeoff {level | default | restore} (*)

Specify tradeoff between speed (0) and size (4). See C compiler option --tradeoff

warning [number,...] [default | restore] (*)

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed.

22

weak symbol

C Language

Mark a symbol as "weak" (. WEAK assembler directive). The symbol must have external linkage, which
means a global or external object or function. A static symbol cannot be declared weak.

A weak external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference. When a weak external reference cannot be resolved, the null pointer is substituted.

A weak definition can be overruled by a normal global definition. The linker will not complain about the
duplicate definition, and ignore the weak definition.

1.7. Predefined Preprocessor Macros

You can use the following predefined macros in your C source. The macros are useful to create conditional

C code.

Macro Description

_ BIG_ENDIAN__ Expands to 0. The processor accesses data in little-endian.

__BUILD__ Identifies the build number of the compiler in the format yymmddqq (year,
month, day and quarter in UTC).

__CORE__ Expands to pcp2.

__CORE_PCP2__ Expands to 1.

__CPU__ Expands to the name of the CPU supplied with the control program option
--cpu=cpu. When no --cpu is supplied, or when you do not use the control
program, this symbol is not defined. For example, if --cpu=tc1796b is
specified, the symbol __CPU__ expands tot c1796b.

_ CPU_cpu__ A symbol is defined depending on the control program option --cpu=cpu.
The cpu is converted to uppercase. For example, if --cpu=tc1796b is
specified to the control program, the symbol __CPU_TC1796B___is defined.
When no --cpu is supplied, or when you do not use the control program,
this symbol is not defined.

__ DATE__ Expands to the compilation date: “mmm dd yyyy”.

__FILE__ Expands to the current source file name.

__LINE__ Expands to the line number of the line where this macro is called.

__MISRAC_VERSION__

Expands to the MISRA C version used 1998, 2004 or 2012 (option
--misrac-version). The default is 2004.

__REVISION__

Expands to the revision number of the compiler. Digits are represented as
they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

23

TASKING VX-toolset for PCP User Guide

Macro Description

_ SFRFILE__(cpu) If control program option --cpu=cpu is specified, this macro expands to the
filename of the used SFR file, including the pathname and the < >. The cpu
is the argument of the macro. For example, if --cpu=tc1796b is specified,
themacro__ SFRFILE _(__CPU_) expandsto__ SFRFILE_(tc1796b),
which expands to <sfr/regt c1796b. sfr>.

__SINGLE_FP__ Expands to 1 (‘double’ is always treated as ‘float’).

__STDC__ Identifies the level of ANSI standard. The macro expands to 1 if you set
option --language (Control language extensions), otherwise expands to 0.

__STDC_HOSTED__ Always expands to 0, indicating the implementation is not a hosted
implementation.

__STDC_NO_ATOMICS__ |(C11 only) Expands to 1 to indicate that this implementation does not support
atomic types and the st dat omi c. h header file.

__STDC_NO_THREADS__ |(C11 only) Expands to 1 to indicate that this implementation does not support
the t hr eads. h header file.

__STDC_VERSION__ Identifies the 1SO-C version number. Expands to 201112L for ISO C11,
199901L for ISO C99 or 199409L for ISO C90.

__TASKING__ Identifies the compiler as a TASKING compiler. Expands to 1 if a TASKING
compiler is used.

__TIME__ Expands to the compilation time: “hh:mm:ss”

__VERSION__ Identifies the version number of the compiler. For example, if you use version

6.1r1 of the compiler, _ VERSION__ expands to 6001 (dot and revision
number are omitted, minor version number in 3 digits).

Example

#i fdef _ CPU TC1796B__
/* this part is only valid for the TC1796B */

#endi f

1.8. Switch Statement

The TASKING C compiler supports three ways of code generation for a switch statement: a jump chain
(linear switch), a jump table or a binary search table.

A jump chain is comparable with an if/else-if/else-if/else construction. A jump table is a table filled with
jump instructions for each possible switch value. The switch argument is used as an index to jump within
this table. A binary search table is a table filled with a value to compare the switch argument with and a
target address to jump to.

By default, the compiler will automatically choose the most efficient switch implementation based on code
and data size and execution speed. With the C compiler option --tradeoff you can tell the compiler to put
more emphasis on speed than on ROM size.

24

C Language

Especially for large switch statements, the jump table approach executes faster than the lookup table
approach. Also the jump table has a predictable behavior in execution speed: independent of the switch
argument, every case is reached in the same execution time. However, when the case labels are distributed
far apart, the jump table becomes sparse, wasting code memory. The compiler will not use the jump table
method when the waste becomes excessive.

With a small number of cases, the jump chain method can be faster in execution and shorter in size.

How to overrule the default switch method
You can overrule the compiler chosen switch method by using a pragma:

#pragma |inear_switch force jump chain code

#pragma junp_switch force jump table code

#pragma bi nary_sw tch force binary search table code

#pragma snart_sw tch let the compiler decide the switch method used (this is the default)

The switch pragmas must be placed before the swi t ch statement. Nested swi t ch statements use the
same switch method, unless the nested swi t ch is implemented in a separate function which is preceded
by a different switch pragma.

Example:
/* place pragma before function body */
#pragnma j unp_swi tch

voi d test(unsigned char val)
{ I'* function containing the switch */
switch (val)

{
}

/* use junp table */

1.9. Functions

1.9.1. Calling Convention

Parameter passing

A lot of execution time of an application is spent transferring parameters between functions. The fastest
parameter transport is via registers. Therefore, function parameters are first passed via registers. If no
more registers are available for a parameter, the compiler pushes parameters on the stack.

Registers available for parameter passing are R1, R3, R4, R6, R0O. The parameters are processed from
left to right. The first unused register is used. Registers are searched for in the order listed above. When
a parameter is larger than 32 bit, or when all registers are used, parameter passing continues on the

25

TASKING VX-toolset for PCP User Guide

stack. The stack grows from higher towards lower addresses, each parameter on the stack is stored in
little endian. The alignment on the stack depends on the data type as listed in Section 1.1, Data Types.
Structures up to four bytes are passed via a register. Larger structures are passed via the stack.

The PCP compiler uses a static stack, which restricts the number of arguments passed for an indirect
function call. Parameters of an indirect function call can only be passed in registers and not via the static
stack.

Example with three arguments:

funcl(int a, long b, char c)

a (first parameter) is passed in register R1.

b (second parameter) is passed in register R3.

c (third parameter) is passed in register R4.

Variable argument lists

For functions with a variable argument list, the last fixed parameter and all subsequent parameters must
be pushed on the stack. For parameters before the last fixed parameter the normal parameter passing
rules apply.

Variable arguments are not supported for indirect function calls, due to the static stack implementation.
Function return values
The C compiler uses register R1 to store C function return values.

When the function return type is a structure, it is copied to a "return area" that is allocated by the caller.
The address of this area is passed as an implicit first argument in R6.

Stack usage
The stack is used for parameter passing, allocation of automatics, temporary storage and storing the

function return address. The compiler uses a static stack. Overlay sections are generated by the compiler
to contain the stack objects. The overlay sections are overlayed by the linker using a call graph.

1.9.2. Register Usage

The PCP C compiler uses registers according to the convention given in the following table.

Register Class Purpose

RO caller saves Parameter passing and automatic variables

R1 caller saves Parameter passing, automatic variables and return values

R2 callee saves Automatic variables, stack frame pointer and function return
address

R3 caller saves Parameter passing and automatic variables

26

C Language

Register Class Purpose

R4 caller saves Parameter passing and automatic variables

R5 caller saves Automatic variables and function return address of code
compaction functions

R6 caller saves Parameter passing, automatic variables and return buffer

R7 special purpose PC, CC, DPTR

The registers are classified: caller saves, callee saves and special purpose.

caller saves These registers are allowed to be changed by a function without saving the contents.
Therefore, the calling function must save these registers when necessary prior to a
function call.

callee saves These registers must be saved by the called function, i.e. the caller expects them not
to be changed after the function call.

special purpose The purpose of R7 is defined by the PCP core.

1.9.3. Inlining Functions: inline

With the C compiler option --optimize=+inline, the C compiler automatically inlines small functions in
order to reduce execution time (smart inlining). The compiler inserts the function body at the place the
function is called. The C compiler decides which functions will be inlined. You can overrule this behavior
with the two keywords i nl i ne (ISO-C) and __noi nl i ne.

With the i nl i ne keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

If a function with the keyword i nl i ne is not called at all, the compiler does not generate code for it.

You must define inline functions in the same source module as in which you call the function, because
the compiler only inlines a function in the module that contains the function definition. When you need to
call the inline function from several source modules, you must include the definition of the inline function
in each module (for example using a header file).

With the __noi nl i ne keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)

{
unsigned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

27

TASKING VX-toolset for PCP User Guide

Using pragmas: inline, noinline, smartinline

Instead of the i nl i ne qualifier, you can also use #pr agma i nl i ne and #pr agma noi nl i ne to inline
a function body:

#pragma inline
unsi gned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

#pragma noi nline
void main(void)
{ . .

int i;

i = abs(-1);
}

If a function has ani nl i ne/__noi nl i ne function qualifier, then this qualifier will overrule the current
pragma setting.

With the #pr agma noi nl i ne/#pragnma smartinl i ne you can temporarily disable the default behavior
that the C compiler automatically inlines small functions when you turn on the C compiler option
--optimize=+inline.

With the C compiler options --inline-max-incr and --inline-max-size you have more control over the
automatic function inlining process of the compiler.

Combining inline with __asm to create intrinsic functions

With the keyword __asmit is possible to use assembly instructions in the body of an inline function.
Because the compiler inserts the (assembly) body at the place the function is called, you can create your
own intrinsic function. See Section 1.9.5, Intrinsic Functions.

1.9.4. Interrupt Functions

The PCP has an unusual programming model. The best way to think of PCP programming is that there
is a series of autonomous programs, or tasks that are called channel programs. These can be very short
and simple, or very complex and long, and these can be mixed together. The PCP has a channel program
associated with each interrupt number (SRPN). This could be thought of as the interrupt routine for a
given interrupt source. When an interrupt of number “n” is received by the PCP core, it restores the context
associated with number “n” from PRAM, and begins executing Channel Program “n” from Code Memory
until it encounters a terminating condition - usually an EXIT instruction. At that point it saves the current
context for number “n” back into the PRAM. If there is a new pending interrupt it starts this process again.
If there is no pending new interrupt, the PCP stops until there is a new interrupt to process.

The PCP C compiler only supports the Full Context Model. Full context means that there are eight registers
per channel available for the compiler.

28

C Language

For an extensive description of the PCP channel operation, see chapter Peripheral Control Processor
(PCP) in the User's Manual of the TriCore [Infineon].

1.9.4.1. Defining an Interrupt Service Routine: __interrupt()

With the function type qualifier __i nt er rupt () you can declare a function as an interrupt function
(interrupt service routine or channel program). The function type qualifier __i nt errupt () takes one
channel number (0..255) as argument.

Interrupt functions cannot return anything and must have a void argument type list:

void __interrupt(channel _nunber)
isr(void)

{

}

The argument channel_number is an 8-bit channel number that defines the channel entry table address
and the context address. The channel number must be in range [0..255]. Channel number 0 is not used
on the PCP; for interrupts with channel number 0 the channel entry table and the channel context are not
generated.

For "Channel Start at Context PC" mode (CS.RCB=0) the compiler generates a section containing the
context of the appropriate channel. The PC context (R7.PC) is initialized with the start address of interrupt
service routine. The Channel Enable (R7.CEN) context is set to 1. The Enable Interrupt Control context
is by default set to zero, because a channel cannot be interrupted by another channel. With the C compiler
option --interrupt-enable you can set the Interrupt Control context to allow the channel to be interrupted.
Channels that have interrupts enabled must be linked separately, because they cannot share static stack.
See Section 1.10, PCP Code Generation. The remainder of the R7 context is cleared also
(Z,N,C,V,CN1Z,DPTR).

All other context registers (R0..R6) are initialized to zero.

For "Channel Start at Base" mode (CS.RCB=1) the compiler generates a section with the channel entry
table entry of the appropriate channel. The channel table entry contains a jump to the interrupt service
routine.

At interrupt function return, an EXIT instruction is generated. The arguments of the EXIT instruction
generated are: EC=0, ST=0, INT=0, EP=0, cc_UC.

Example

void __interrupt(1) isr(void)

{
}
1.9.4.2. Setting the Current PCP Priority Number: __cppn()

With the function qualifier __cppn() you can define the interrupt priority of an interruptible function.
__cppn() can only be used on functions that are qualified __i nt er r upt, and the functions must be

29

TASKING VX-toolset for PCP User Guide
interruptible (option --interrupt-enable). The CPPN is superfluous for functions that have interrupts
disabled (R7.IEN=0).

void __interrupt(channel _nunber) _ _cppn(CPPN) isr(void)
{

The function qualifier takes one argument CPPN. The CPPN (Current PCP interrupt Priority Number) is
an 8-bit channel interrupt priority number in the range [0..255]. The channel interrupt priority number is
defined in the register context R6.CPPN. At interrupt EXIT R6.CPPN is restored to this value.

1.9.4.3. Shared Data: __share, __share_pcp

Shared data between PCP channels

Global data can be shared between separately linked channels with the keyword __shar e. Only global
and external variables can be qualified with the keyword __shar e.

For example, in one channel the following variable is defined:
int _ share channel 1_shared_PCP_PRAM = O0;

In another channel you can reference this variable as:
extern int __share channel 1_shar ed_PCP_PRAM

__shar e variables get application scope instead of channel scope. __shar e global variables get the
I c linker prefix instead of the default _PCP_ symbol prefix.

To link channels separately use linker option --link-only.
Shared data between TriCore and PCP
The __shar e_pcp qualifier is used for sharing global data with the TriCore CPU.

For example, in the TriCore source t c_mai n. ¢ of the pcp- nul ti - st art example delivered with the
product, the following variable is defined:

volatile int __far __share_pcp shared_CPU FPI;

In the PCP source channel 1. ¢ of the pcp- mul ti - chl example delivered with the product, this variable
is referenced as:

extern int _ far _ share_pcp shared_CPU FPI;

To access PCP PRAM data from the TriCore CPU you can use the keyword __pr amin the TriCore
source. Also see the linker share label | c_s_.

30

C Language

1.9.5. Intrinsic Functions

Some specific assembly instructions have no equivalence in C. Intrinsic functions give the possibility to
use these instructions. Intrinsic functions are predefined functions that are recognized by the compiler.
The compiler generates the most efficient assembly code for these functions.

The compiler always inlines the corresponding assembly instructions in the assembly source (rather than
calling it as a function). This avoids parameter passing and register saving instructions which are normally
necessary during function calls.

Intrinsic functions produce very efficient assembly code. Though it is possible to inline assembly code by
hand, intrinsic functions use registers even more efficiently. At the same time your C source remains very
readable.

You can use intrinsic functions in C as if they were ordinary C (library) functions. All intrinsics begin with
a double underscore character (__).

The following example illustrates the use of an intrinsic function and its resulting assembly code.
__nhop();
The resulting assembly code is inlined rather than being called:

nop

Writing your own intrinsic function

Because you can use any assembly instruction with the __asn() keyword, you can use the __asn{)
keyword to create your own intrinsic functions. The essence of an intrinsic function is that it is inlined.

1. First write a function with assembly in the body using the keyword __asn{() . See Section 1.4, Using
Assembly in the C Source: __asm()

2. Next make sure that the function is inlined rather than being called. You can do this with the function
qualifieri nl i ne. This qualifier is discussed in more detail in Section 1.9.3, Inlining Functions: inline.

int inl, in2, out;

inline void __ny_mul(void)
{
_asm "mnit\towd, %2\ n"
"\t nst ep. u\ t %0, %2\ n"
"\t nst ep. u\ t %0, %2\ n"
"\t nst ep. u\ t %0, %2\ n"
"\t nst ep. U\t %0, 72"
"=r" (out)
“r" (inl), "r" (in2));
}

voi d nmai n(voi d)

/1 call to function __ny_mul

31

TASKING VX-toolset for PCP User Guide

__ny_mul ();
}

Generated assembly code:

_PCP_muain: .type func
; __ny_mul code is inlined here
Idl.il r7, @PTR(_PCP_inl)
| d. pi r5,[_PCP_inl]
I d. pi ri, [_PCP_in2]
m nit r5ri

mstep.u r5,r1
mstep.u r5,r1
mstep.u r5,r1
mstep.u r5,r1
Idl.il r7, @PTR(_PCP out)

st. pi r5,[_PCP_out]
As you can see, the generated assembly code for the function __ny_nul is inlined rather than called.

Supported intrinsic functions

You can use the following intrinsic functions in your C source:

__alloc
_alloc_t volatile __alloc(__size_t size);

Allocate memory. Same as C library function mal | oc() . Returns a pointer to space in external memory
of si ze bytes length. Returns NULL if there is not enough space left. This function is used internally for
variable length arrays, it is not to be used by end users.

__bcopy

void volatile __bcopy(void __far * dst, void __far * src,
const signed int DSTINCDEC, const signed int SRClI NCDEC,
const unsigned int CNC, const unsigned int CNTO,
unsi gned int CNT1);

This intrinsic generates a BCOPY instruction. The BCOPY instruction moves a block of data (always
32-bit data) from source (sr c=R[4]) location on the FPI bus to destination (dst = R[5]) on the FPI bus.
Constant arguments DSTI NCDEC and SRClI NCDEC determine if source and destination pointer are
incremented or decremented, 1 for increment, -1 for decrement and 0 for no change. Constant arguments
CNC and CNTO are conform the argument values of the BCOPY instruction. CNT1 is loaded in R6.CNT1
if the value of CNCis 1 or 2. If CNCis 1 this intrinsic generates a outer loop.

The BCOPY instruction use FPI Burst mode (CNT0=2, 4 or 8 words), which requires alignment of source

and destination data blocks. Use the attribute __al i gn({8| 16| 32}) to specify the data block alignment.
E.g.unsigned int __align(8) _ far array[2];

32

C Language

Example:

int __align(8) __far src[4], dst[4];
voi d bcopy(void)

/1 bcopy dst, src, +, +, CNC=2, CNT0=2, CNT1=2
__bcopy(dst, src, 1, 1, 2, 2, 2);

}
generates:
Idl.iu r5, @l (_PCP_dst)
Idl.il r5, @QQ(_PCP_dst)
ldl.iu r4, @ (_PCP_src)
ldl.il r4, QQ(_PCP_src)
I d.i r6, 0x2
bcopy dst +, src+, cnc=0x2, cnt 0=0x2
cen

void __cen(const unsigned int value);

Set or clear the CEN flag. You can use this intrinsic safely only when the R7 flags are preserved by the
compiler (--preserve-r7-flags).

__copy

void volatile __copy(void __far * dst, void _ far * src,
const signed int DSTINCDEC, const signed int SRCI NCDEC,
const unsigned int CNC, const unsigned int CNTO,
unsi gned int CNT1l, const unsigned int SIZE);

This intrinsic generates a COPY instruction. The COPY instruction moves content of source (sr c=R[4])
location on the FPI bus to destination (dst = R[5]) on the FPI bus. Constant arguments DSTI NCDEC
and SRCI NCDEC determine if source and destination pointer are incremented or decremented, 1 for
increment, -1 for decrement and O for no change. Constant arguments CNC, CNTO and Sl ZE are conform
the argument values of the COPY instruction. CNT1 is loaded in R6.CNTL1 if the value of CNCis 1 or 2. If
CNC s 1 this intrinsic generates a outer loop.

Example:

int _ far src[4], dst[4];
voi d copy(void)

/'l copy dst, src, +, +, CNC=1, CNT0=2, CNT1=8 Sl ZE=8
__copy(dst, src, 1, 1, 1, 2, 8, 8);
}

generates:

ldl.iu r5, @ (_PCP_dst)
ldl.il r5 @O _PCP_dst)

33

TASKING VX-toolset for PCP User Guide

ldl.iu rd4, @ (_PCP_src)
ldl.il r4, QQ(_PCP_src)
Id.i re, 0x8
_l oop:
copy dst +, src+, cnc=0x1, cnt 0=0x2, si ze=0x8
ig _loop, cc_cnn
__debug

void __debug(const unsigned int eda, const unsigned int dac,
const unsigned int rta, const unsigned int sdb);

This intrinsic generates a DEBUG instruction for the PCP2. The generated DEBUG instruction
unconditionally cause a debug event. Optionally stop the channel execution (sdb=1), generate an external
debug event (eda=1), disable further channel invocation (rta=0) or disable the PCP for operation (dac=1).

Example:

void __interrupt(4) channel _4(void)

{
/* DEBUG i nstruction that stops unconditionally the PCP,
* prevents the serving of any other interrupt and generates
* an "lllegal Operation Error".
>/
__debug(1,1,0,1);
}
generates:
debug eda=0x1, sdb=0x1, dac=0x1, rt a=0x0, cc_uc
__dotdotdot___

char * _ dotdotdot__(void);

Variable argument '..." operator. Used in C library function va_st art () . Returns the stack offset to the
variable argument list.

__exit
void __exit(const unsigned |ong srpn);

To allow rearbitration of interrupts, a 'voluntary exiting' scheme is supported via the intrinsic __exi t ().
This intrinsic generates an EXIT instruction with the following settings: EC=0, ST=0, INT=1, EP=1, cc_UC.

The R6.TOS is set for a PCP service request and the sr pn value is loaded in R6.SRPN. It is your
responsibility not to use this intrinsic in combination with the 'Channel Start at Base' mode.

The sr pn value must be in range 0..255. If R6.SRPN is set to zero, it causes an illegal operation error
on the PCP.When sr pn is set to zero, no code is generated for loading R6.SRPN and the interrupt flag
in the EXIT instruction is disabled (EXIT EC=0, ST=0, INT=0, EP=1, cc_UC).

34

C Language

The __exi t () intrinsic function is kept simple as apposed to the EXIT instruction. The concept
of the program flow in C (and any high level language), is that you have a routine that starts at
the top and runs to the end (return), and then the initiative is past to the 'caller' side again. The
flow can be interrupted by an interrupt. With the EXIT instructions however, other interrupts can
be started (in fact anything is possible), enabling all kind of 'unwanted' flow.

__exit_cpu
void __exit_cpu(const unsigned long srpn);

To service TriCore CPU interrupts, a 'voluntary exiting' scheme is supported via the intrinsic

__exi t_cpu().This intrinsic generates an EXIT instruction with the following settings: EC=0, ST=0,
INT=1, EP=1, cc_UC.The R6.TOS is set for a TriCore CPU service request and the sr pn value is loaded
in R6.SRPN.

__Exit
void __Exit(int status);
Exit unconditionally. Same as C library function _Exi t (') . This intrinsic generates an EXIT instruction

with the following settings: EC=0, ST=1, INT=0, EP=0, cc_UC. The CEN flag is cleared. Returns with
st at us as the return value.

__free
void volatile __free(__alloc_t buffer);

Deallocate the memory pointed to by buf f er . buf f er must point to memory earlier allocated by a call
to__alloc().Same as library functionfree() .

__get_return_address

__codeptr volatile __get_return_address(void);
Returns the return address of a function.

__ien

void __ien(const unsigned int value);

Set or clear the IEN flag. You can use this intrinsic safely only when the R7 flags are preserved by the
compiler (--preserve-r7-flags).

__1d32_fpi
unsigned long volatile __1d32_fpi(unsigned | ong addr);

Load a 32-bit value from a 32-bit FPI address using the | d. f instruction with si ze=32. Returns a 32-bit
value for FPI memory address.

35

TASKING VX-toolset for PCP User Guide

Example:

#i nclude <regtcl791.sfr>
unsigned int 1d32(void)

{
return _ 1d32_fpi((unsigned |ong) (& P10_QUT.U)));
}
generates:
[dl.iu rb5, @ (0xf0003210)
ldl.il r5, @Q0xf0003210)
| d.f ri,[r5], size=32
__hop

void _ nop(void);

A NORP instruction is generated.

__pri

unsigned int _ _pri(unsigned int value);

Use PRI R[b], R a], cc_UCinstruction to prioritize val ue.

ol

unsigned int _ rl(unsigned int val ue,
unsi gned int count);

Rotate val ue left count times. This intrinsic uses RL R[a] , | b instruction(s). Returns the rotated
value.

rr

unsigned int _ _rr(unsigned int val ue,
unsi gned int count);

Rotate val ue right count times. This intrinsic uses RR R[a] , | mb instruction(s). Returns the rotated
value.

__st32_fpi

void volatile __st32 fpi(unsigned | ong addr,
unsi gned | ong val ue);

Store a 32-bit value on a 32-bit FPI address using the st . f instruction with si ze=32.

Example:

36

C Language

#i nclude <regtcl791.sfr>
voi d st32(unsigned int value)

{
__st32_fpi((unsigned | ong) (& P10_OUT.U)), value);
}
generates:
Idl.iu r5, @ (Oxf0003210)
ldl.il r5, @O 0xf0003210)
st.f ri,[r5], size=32
__xchf8

unsigned int volatile __ xchf8(unsigned int val ue,
unsigned int _ far * address);

Exchange the 8-bit contents of register val ue and FPI variable. addr ess must be a constant FPI address
expression. This intrinsic generates a XCH. F R[b], [Rl a]] instruction.

Returns: 8-bit contents of FPI address

__xchfl6

unsigned int volatile _ xchf16(unsigned int val ue,
unsigned int _ far * address);

Exchange the 16-bit contents of register val ue and FPI variable. addr ess must be a constant FPI
address expression. This intrinsic generates a XCH. F R[b] , [Rl a]] instruction.

Returns: 16-bit contents of FPI address

__xchf32

unsigned int volatile __xchf32(unsigned int val ue,
unsigned int _ far * address);

Exchange the 32-bit contents of register val ue and FPI variable. addr ess must be a constant FPI
address expression. This intrinsic generates a XCH. F R[b] , [Rl a]] instruction.

Returns: 32-bit contents of FPI address
__xchpi

unsigned int volatile __ xchpi(unsigned int val ue,
unsigned int _ near * address);

Exchange the 32-bit contents of register val ue and PRAM variable. addr ess must be a constant PRAM
address expression. This intrinsic generates a XCH. PI R[a] , [#of f set 6] instruction.

Returns: 32-bit contents of PRAM address

37

TASKING VX-toolset for PCP User Guide

1.10. PCP Code Generation

The effectiveness of the code generated by the PCP C compiler strongly depends on its stack
implementation which is a static one. This means automatic stack variables, function stack parameters
and temporary data are stored in overlayable static data areas.

A dynamic stack cannot be supported because the PCP instruction set does not have push and pop
instructions. Simulating push and pop instructions is not an option because that requires registers by
itself. This might force the compiler to abort in cases where a register must be pushed but all registers
are in use.

A static stack poses the restriction that functions cannot be reentrant or recursive. Additionally, function
pointer prototypes are limited to register parameters as the remaining parameters require a dynamic
stack. Because the PCP does not have a hardware stack, function return addresses are stored on the
static stack as well.

For effectiveness of the code generated by the PCP C compiler it is advised to use MIL linking and MIL
archives, which is the default for building PCP applications with the Eclipse development environment.

The PCP core is designed to support high(est) priority non-interruptible functions most effectively. It is
defined by Infineon to use a programming model for PCP applications that mainly consists of
non-interruptible functions called non-interruptible PCP channels. The TriCore itself is intended to be
used as the scheduler and arbitrator for these high priority non-interruptible PCP channels. Interruptible
PCP channels, that can interrupt each other, are intended to be an exceptional case, they are supported
but not by default.

1.10.1. Non-interruptible Code Generation

By default the compiler supports code generation for high(est) priority non-interruptible functions. Functions
using a static stack are implicitly not interruptible, because they are not reentrant. The interrupt flag is
disabled and must be kept disabled (IEN=0).

Lower priority interruptible functions can only be supported when they do not share static stack space,
which means that they cannot have common functions. See Section 1.10.2, Interruptible Code Generation.

Preserving R7.IEN and R7.CEN when updating DPTR for PRAM access is superfluous if functions are
not interruptible. For example, when accessing global variable "x" in PRAM the next code is generated.

ldl.il r7, @PTR(_PCP_x) ; load R7.DPTR, R7.[7..0] flags are cleared
st. pi r5,[_PCP_x]

Not preserving the IEN and CEN reduces the amount of generated code substantially, an average of
45%? of the code size is saved. The CEN flag is not explicitly set for each PRAM access, although it
would not cost any extra code for direct PRAM access in the above example, but for each indirect PRAM
access an extra set bit instruction is required to keep the CEN enabled.

A non-interruptible function can voluntarily exit, by using an __exi t () intrinsic function. The __exi t ()
SRPN argument specifies the interrupt channel that needs to be serviced. This can be itself or another
interrupt. If another interrupt is serviced this interrupt cannot use the same functions that use the static

LThis average is statistically determined on a large number of test programs.

38

C Language

stack, because functions using a static stack are not reentrant. Ignoring this requirement will result in
undefined run-time behavior. The same interrupt can be serviced without any restrictions.

The IEN flag in the channel context, generated by the compiler for __i nt er rupt () qualified functions,
is set to zero, because functions are not interruptible by default. The interrupt priority of the channel
R6.CPPN is set to zero, because channels that do not allow interrupts do not need a interrupt priority
value. Channels that have IEN disabled in the channel context are serviced if their channel number is
higher than the priority of the currently running channel.

The CEN flag in the context channel is set. For each PRAM access CEN is cleared. CEN is re-set at
interrupt function return or at voluntary exit when using the __exi t () intrinsic.

Depending on the channels start mode the channel continues execution at the next PC or restarts. The
channels start at context PC mode is the default of the PCP (CS.RCB=0), the channel continues on the
next PC after a voluntary exit (EP=1). Voluntary exit and channel start at base is not supported, it may
lead to undefined run-time behavior. See the __exi t () intrinsic function.

1.10.2. Interruptible Code Generation

Interruptible functions can only be supported when they do not share static stack space, which means
that they cannot have common functions that use the static stack. The static stack is not only used for
user defined functions, but also for compiler run-time functions and C library functions.

Each interrupt channel must be linked separately when they have commonly used functions. The linker
option --link-only is used to link a single channel without locating it. Several linked channels can be
located with the linker to a single PCP application. Functions that are used in different interrupt channels
are duplicated, their names need to be unique to avoid duplicate name conflicts. With the compiler option
--symbol-prefix="name" you can prefix all global variables with name. You need to rebuild the libraries
with the prefix that corresponds to the channel. Each channel needs its own prefixed library functions. It
is not required to create C libraries for each channel when C libraries are linked in the compiler with the
option --mil.

To share global variables between PCP channels the qualifier __shar e needs to be used on the (external)
definition. E.g.extern int __share vari abl e.__shar e variables get application scope instead
of channel scope, using the _| c linker label prefix.

To share global functions between PCP channels the PCP can post channel requests to itself using the
__exi t (SRPN) intrinsic function. For servicing TriCore CPU interrupts the __exi t _cpu(SRPN) intrinsic
need to be used. The SRPN is the channel number to service, which can be an interruptible or
non-interruptible channel.

The IEN flag in the channel context, generated by the compiler for __i nt er rupt () qualified functions,
is set to one, when interruptible code generation is enabled with the PCP C compiler option
--interrupt-enable.

The PCP interrupt priority CPPN can be set using __cppn(CPPN) interrupt function qualifier. The
__cppn() function qualifier can only be used for __i nt er r upt () qualified functions and have interrupting
enabled. The R6.CPPN value is restored at function exit, because R6 is used by the PCP C compiler as
general purpose register to store local objects.

39

TASKING VX-toolset for PCP User Guide

Functions that are interruptible need to keep the IEN flag enabled or need to preserve its state. With the
PCP C compiler option --interrupt-enable the IEN flag is kept enabled.

With PCP C compiler option --preserve-r7-flags code is generated for PRAM access that does not write
any of the R7.0..7 flags. Preserving the R7 flags increases the generated code substantially, but the state
of the IEN and CEN flags can be changed anywhere in the C code. For example the interrupts can be
temporary turned off in the code to call a non-interruptible function and turn it on afterwards. Also the
channel can be turned off to prevent servicing the channel anymore. The code generated for accessing
global PRAM variable "x" is:

Id.i ri, Ox3f

Idl.il r1,0xff

and r7,rl,cc_uc

Idl.il rl, @PTR(_PCP_x)

or r7,rl,cc_uc ; load R7.DPTR

st. pi r5,[_PCP_x]

With the intrinsics __i en() and __cen() the IEN and CEN flags can be set or cleared in the code.
These intrinsics can only be safely used when the r7 flags are preserved by the compiler.

When --preserve-r7-flags is not used and --interrupt-enable is used code is generated by the PCP C
compiler that keeps the IEN and CEN flags enabled when accessing PCP PRAM. For example, when
accessing global variable "x" in PRAM next code is generated.

Idl.ilf r7, @PTR _FLAGS(_PCP_x, 0x60) ; load R7.DPTR, |EN=1 and CEN-1
st. pi r5,[_PCP_x]

For direct PRAM access the generated code is comparable for interruptible and un-interruptible code

generation (--interrupt-enable). Indirect PRAM access is smaller and faster for un-interruptible code

generation, because for interruptible code generation the IEN and CEN flags are set for every indirect
PRAM access. For example, the next indirect PRAM access is generated for --interrupt-enable.

Idl.il r3,0x3fcO

and r3,rl,cc_uc

shl r3, 0x2

set r3,0x5 ; set |EN

set r3,0x6 ; set CEN

nov r7,r3,cc_uc ; load R7.DPTR

st.p r5,[rl],cc_uc

The generated code with --interrupt-enable averages 1.5% larger in code size and 1.3% slower in
performance than the default code generation. With --preserve-r7-flags the generated code increases
an average of 45%2.

This average is statistically determined on a large number of test programs.

40

C Language

1.11. Compiler Generated Sections

The compiler generates several . SDECL/. SECT assembler directives containing code and data. The
compiler uses the following naming convention:

section_type_prefix.section_type

The default section name is equal to the generated section type that is prefixed with . pcpt ext . for code
in CMEM and . pcpdat a. for data in PRAM. The default code section name is . pcpt ext . code and
the default PRAM data section name is . pcpdat a. dat a. The default FPI data section name uses a
prefix conform the TriCore C compiler. E.g. __far int i; islocated in a section with name

. bss. | i near .You can change section names with #pr agna sect i on or with the command line option
--rename-sections.

The following table lists the section types and name prefixes.

Section type |[Name prefix Description

code .pcptext program code

data .pcpdata initialized __near data
linear conform TriCore |initialized __far data

The names used in the . SDECL/. SECT directives are independent of the section attributes such as cl ear ,
i ni t, max, group and over | ay, whereas the assembler also uses the attributes to generate the actual
section names.
For example, if part of a C source file hel | 0. ¢ contains:

char * worl d;

The compiler generates the following directives in the assembly source:

.sdecl '.pcpdata.data', data, group('pageO_hello")
.sect '.pcpdata.data'

Because of the gr oup attribute, the assembler generates the following section name:
. pcpdat a. dat a@ageO_hel | o
Section names are case sensitive. By default, the sections are not concatenated by the linker. This means

that multiple sections with the same name may exist. At link time, sections with different attributes can
be selected by their attributes. The linker may remove unreferenced sections from the application.

Overlay sections

For static stack overlay sections the compiler uses a different section naming convention. The name used
in the generated . SDECL/. SECT assembler directives equals the function name in which the overlay
section is allocated.

For example, for function mai n, the compiler generates the following assembler directives:

41

TASKING VX-toolset for PCP User Guide
.sdecl ' _PCP_nmin', data, overlay('_PCP_stack data')
.sect ' _PCP_muin'
The assembler generates static stack overlay sections using the following naming convention:
section_type_prefix.overlay_nane@uncti on_nane
In our example, for function mai n the assembler generates the following static stack overlay section:
. pcpdat a. _PCP_st ack_dat a@ PCP_nai n
1.11.1. Rename Sections
You can rename sections with a pragma or with a command line option. The syntax is the same:
--renane-sections=[type=]format _string[,[type=]format_string]...
#pragma section [type=]format_string[,[type=]format_string]...
With the memory type you select which sections are renamed. The matching sections will get the specified

format string for the section name. The format string can contain characters and may contain the following
format specifiers:

{attrib} section attributes, separated by underscores
{nodul e} module name

{nane} object name, name of variable or function
{type} section type

The naming convention for the renamed section is:
section_type_prefix.pragm_val ue

Some examples (file t est . c):

#pragma section data={nodul e} _{type} {attrib}

int x;
/* Section nane: .pcpdata.test_data data_clear */

#pragma section dat a=cpcp_{ nodul e} _{nane}

int status;

/* Section nanme: .pcpdata.cpcp_test_status */
#pragma secti on dat a=RENAMED_{ nane}

i nt barcode;
/* Section nane: .pcpdata. RENAMED barcode */

#pragma endsection

With the #pr agma endsect i on the default section name is restored. Nesting of pragma
section/endsection pairs will save the status of the previous level.

42

Examples (file exanpl e. c)

char a; /1 allocated in '.pcpdata.data’
#pragma section dat a=MyDat al

char b; /1 allocated in '.pcpdata. MyDatal’

#pragma section dat a=MyDat a2

char c; /1 allocated in '.pcpdata. MyDat a2’

#pragma endsection

char d; /1 allocated in '.pcpdata. MyDatal’

#pragma endsection
char e; /1 allocated in '.pcpdata.data’

C Language

43

TASKING VX-toolset for PCP User Guide

44

Chapter 2. Assembly Language

This chapter describes the most important aspects of the TASKING assembly language for the PCP. For
a complete overview of the PCP2 architecture, refer to the PCP2 Target Specification [V 1.0, 2000-06,
Infineon).

2.1. Assembly Syntax

An assembly program consists of statements. A statement may optionally be followed by a comment.
Any source statement can be extended to more lines by including the line continuation character (\) as
the last character on the line. The length of a source statement (first line and continuation lines) is only
limited by the amount of available memory.

Mnemonics, directives and other keywords are case insensitive. Labels, symbols, directive arguments,
and literal strings are case sensitive.

The syntax of an assembly statement is:

[label [:]] [instruction | directive | macro_call] [;conmment]

label A label is a special symbol which is assigned the value and type of the current
program location counter. A label can consist of letters, digits and underscore
characters (). The first character cannot be a digit. The label can also be a
number. A label which is prefixed by whitespace (spaces or tabs) has to be
followed by a colon (:). The size of an identifier is only limited by the amount of
available memory.

number is a number ranging from 1 to 255. This type of label is called a numeric
label or local label. To refer to a numeric label, you must put an n (next) or p
(previous) immediately after the label. This is required because the same label
number may be used repeatedly.

Examples:
LAB1: ; This label is followed by a colon and

; can be prefixed by whitespace

LAB1 ; This label has to start at the begi nning
;o of aline

1: jog 1p ; This is an endl ess | oop
; using nuneric |abels

instruction An instruction consists of a mnemonic and zero, one or more operands. It must

not start in the first column.

Operands are described in Section 2.3, Operands of an Assembly Instruction.
The instructions are described in the target's core Architecture Manual.

45

TASKING VX-toolset for PCP User Guide

directive With directives you can control the assembler from within the assembly source.
Except for preprocessing directives, these must not start in the first column.
Directives are described in Section 2.9, Assembler Directives and Controls.

macro_call A call to a previously defined macro. It must not start in the first column. See
Section 2.10, Macro Operations.

comment Comment, preceded by a ; (semicolon).

You can use empty lines or lines with only comments.

Apart from the assembly statements as described above, you can put a so-called ‘control line' in your
assembly source file. These lines start with a $ in the first column and alter the default behavior of the
assembler.

$cont r ol

For more information on controls see Section 2.9, Assembler Directives and Controls.

2.2. Assembler Significant Characters

You can use all ASCII characters in the assembly source both in strings and in comments. Also the
extended characters from the ISO 8859-1 (Latin-1) set are allowed.

Some characters have a special meaning to the assembler. Special characters associated with expression
evaluation are described in Section 2.6.3, Expression Operators. Other special assembler characters
are:

Character |Description

; Start of a comment

\ Line continuation character or macro operator: argument concatenation
? Macro operator: return decimal value of a symbol

% Macro operator: return hex value of a symbol

n Macro operator: override local label

Macro string delimiter or quoted string . DEFI NE expansion character

' String constants delimiter

@ Start of a built-in assembly function

*

Location counter substitution

Constant number
++ String concatenation operator
[] Substring delimiter

46

Assembly Language

2.3. Operands of an Assembly Instruction

In an instruction, the mnemonic is followed by zero, one or more operands. An operand has one of the
following types:

Operand Description

symbol A symbolic name as described in Section 2.4, Symbol Names. Symbols can also occur
in expressions.

register Any valid register as listed in Section 2.5, Registers.

expression Any valid expression as described in Section 2.6, Assembly Expressions.

address A combination of expression, register and symbol.

Addressing modes
The PCP assembly language has several addressing modes. These addressing modes are used for FPI

addressing, PRAM data indirect addressing or flow control destination addressing. For details see the
PCP2 Target Specification [V 1.0, 2000-06, Infineon].

2.4. Symbol Names

User-defined symbols
A user-defined symbol can consist of letters, digits and underscore characters (). The first character
cannot be a digit. The size of an identifier is only limited by the amount of available memory. The case

of these characters is significant. You can define a symbol by means of a label declaration or an equate
or set directive.

Predefined preprocessor symbols

These symbols start and end with two underscore characters, __symbol__, and you can use them in your
assembly source to create conditional assembly. See Section 2.4.1, Predefined Preprocessor Symbols.

Labels

Symbols used for memory locations are referred to as labels. It is allowed to use reserved symbols as
labels as long as the label is followed by a colon.

Reserved symbols
Symbol names and other identifiers starting with a period (.) are reserved for the system (for example for

directives or section names). Identifiers starting with an at sign ('@") are reserved for built-in assembler
functions. Instructions are also reserved. The case of these built-in symbols is insignificant.

Examples
Valid symbol names:

47

TASKING VX-toolset for PCP User Guide

| oop_1
ENTRY
aBc
_aBC

Invalid symbol names:

1 | oop ; starts with a nunber
ri ; reserved register nane
. DEFI NE ; reserved directive nane

2.4.1. Predefined Preprocessor Symbols

The TASKING assembler knows the predefined symbols as defined in the table below. The symbols are
useful to create conditional assembly.

Symbol Description

__ASPCP__ Identifies the assembler. You can use this symbol to flag parts of the source
which must be recognized by the aspcp assembler only. It expands to 1.

__BUILD__ Identifies the build number of the assembler in the format yymmddqq (year,
month, day and quarter in UTC).

__REVISION__ Expands to the revision number of the assembler. Digits are represented
as they are; characters (for prototypes, alphas, betas) are represented by
-1. Examples: v1.0r1 -> 1, v1.0rb -> -1

__TASKING__ Identifies the assembler as a TASKING assembler. Expands to 1 if a
TASKING assembler is used.
_ _VERSION__ Identifies the version number of the assembler. For example, if you use

version 2.1r1 of the assembler, _ VERSION___ expands to 2001 (dot and
revision number are omitted, minor version number in 3 digits).

Example

.if @efined(' __ASPCP__'")
; this part is only for the aspcp assenbl er

_endi f
2.5. Registers

The following register names, either uppercase or lowercase, should not be used for user-defined symbol
names in an assembly language source file:

RO .. R7 (general purpose registers)

48

Assembly Language

2.5.1. Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from assembly. The
SFRs are defined in a special function register definition file (*.def) as symbol names for use by the
assembler. The assembler can include the SFR definition file with the command line option --include-file
(-H). SFRs are defined with . EQU directives.

For example (from r egt c1796b. def):
PC .equ OxFEO8

Without an SFR file the assembler only knows the general purpose registers RO-R7.

2.6. Assembly Expressions

An expression is a combination of symbols, constants, operators, and parentheses which represent a
value that is used as an operand of an assembler instruction (or directive).

Expressions can contain user-defined labels (and their associated integer or floating-point values), and
any combination of integers, floating-point numbers, or ASCII literal strings.

Expressions follow the conventional rules of algebra and boolean arithmetic.

Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker. Relocatable expressions can only
contain integral functions; floating-point functions and numbers are not supported by the ELF/DWARF
object format.

The assembler evaluates expressions with 64-bit precision in two's complement.
The syntax of an expression can be any of the following:

* numeric constant

* string

* symbol

» expression binary_operator expression

* unary_operator expression

* (expression)

« function call

All types of expressions are explained in separate sections.

49

TASKING VX-toolset for PCP User Guide

2.6.1. Numeric Constants

Numeric constants can be used in expressions. If there is no prefix, by default the assembler assumes
the number is a decimal number. Prefixes can be used in either lowercase or uppercase.

Base Description Example
Binary A Ob or 0B prefix followed by binary digits (0,1). 0B1101

0b11001010
Hexadecimal A 0x or 0X prefix followed by hexadecimal digits (0-9, A-F, a-f). |OX12FF

0x45

Oxf alo
Decimal integer Decimal digits (0-9). 12

1245
Decimal Decimal digits (0-9), includes a decimal point, or an 'E' or ‘e’ 6E10
floating-point followed by the exponent. .6

3.14

2.7e10
2.6.2. Strings

ASCII characters, enclosed in single (') or double (") quotes constitute an ASCII string. Strings between
double quotes allow symbol substitution by a . DEFI NE directive, whereas strings between single quotes
are always literal strings. Both types of strings can contain escape characters.

Strings constants in expressions are evaluated to a number (each character is replaced by its ASCII
value). Strings in expressions can have a size of up to 4 characters or less depending on the operand of
an instruction or directive; any subsequent characters in the string are ignored. In this case the assembler
issues a warning. An exception to this rule is when a string is used in a . BYTE assembler directive; in
that case all characters result in a constant value of the specified size. Null strings have a value of 0.

Square brackets ([]) delimit a substring operation in the form:
[string, of fset, | ength]

offset is the start position within string. length is the length of the desired substring. Both values may not
exceed the size of string.

Examples

" ABCD . (0x41424344)

79 ; to enclose a quote double it
"Al"BC ; or to enclose a quote escape it
"AB' +1 ; (0x4143) string used in expression
v ; null string

.word ' abcdef’ ; (0x64636261) 'ef' are ignored

50

"abc' ++' de'

[' TASKI NG , 0, 4]

war ni ng:

Assembly Language

string val ue truncated

you can concatenate

two strings with the ' ++'

oper ator.

This results in 'abcde'
results in the substring ' TASK

2.6.3. Expression Operators

The next table shows the assembler operators. They are ordered according to their precedence. Operators
of the same precedence are evaluated left to right. Parenthetical expressions have the highest priority
(innermost first).

Valid operands include numeric constants, literal ASCII strings and symbols.

Most assembler operators can be used with both integer and floating-point values. If one operand has
an integer value and the other operand has a floating-point value, the integer is converted to a floating-point
value before the operator is applied. The result is a floating-point value.

Type Operator Name Description

O parenthesis Expressions enclosed by parenthesis are evaluated
first.

Unary + plus Returns the value of its operand.

- minus Returns the negative of its operand.

~ one's complement Integer only. Returns the one’s complement of its
operand. It cannot be used with a floating-point
operand.

! logical negate Returns 1 if the operands' value is O; otherwise 0.
For example, if buf is 0 then ! buf is 1. If buf has
a value of 1000 then ! buf is 0.

Arithmetic * multiplication Yields the product of its operands.

/ division Yields the quotient of the division of the first operand
by the second. For integer operands, the divide
operation produces a truncated integer result.

% modulo Integer only. This operator yields the remainder from
the division of the first operand by the second.

+ addition Yields the sum of its operands.

- subtraction Yields the difference of its operands.

Shift << shift left Integer only. Causes the left operand to be shifted
to the left (and zero-filled) by the number of bits
specified by the right operand.

>> shift right Integer only. Causes the left operand to be shifted

to the right by the number of bits specified by the
right operand. The sign bit will be extended.

51

TASKING VX-toolset for PCP User Guide

Type Operator Name Description
Relational < less than Returns an integer 1 if the indicated condition is
-— less than or equal TRUE or an integer 0 if the indicated condition is
FALSE.
> greater than
- greater than or equal For example, if D has a value of 3 qnd E ha; avalue
of 5, then the result of the expression D<Eis 1, and
== equal the result of the expression D>E is 0.
I= not equal

Use tests for equality involving floating-point values
with caution, since rounding errors could cause
unexpected results.

Bit and & AND Integer only. Yields the bitwise AND function of its
Bitwise operand.
[OR Integer only. Yields the bitwise OR function of its
operand.
A exclusive OR Integer only. Yields the bitwise exclusive OR function

of its operands.

Logical && logical AND Returns an integer 1 if both operands are non-zero;
otherwise, it returns an integer 0.

[logical OR Returns an integer 1 if either of the operands is
non-zero; otherwise, it returns an integer 1

The relational operators and logical operators are intended primarily for use with the conditional assembly
. i f directive, but can be used in any expression.

2.7.Working with Sections

Sections are absolute or relocatable blocks of contiguous memory that can contain code or data. Some
sections contain code or data that your program declared and uses directly, while other sections are
created by the compiler or linker and contain debug information or code or data to initialize your application.
These sections can be named in such a way that different modules can implement different parts of these
sections. These sections are located in memory by the linker (using the linker script language, LSL) so
that concerns about memory placement are postponed until after the assembly process.

All instructions and directives which generate data or code must be within an active section. The assembler
emits a warning if code or data starts without a section definition and activation. The compiler automatically
generates sections. If you program in assembly you have to define sections yourself.

For more information about locating sections see Section 5.7.8, The Section Layout Definition: Locating
Sections.

Section definition

Sections are defined with the . SDECL directive and have a name. A section may have attributes to instruct
the linker to place it on a predefined starting address, or that it may be overlaid with another section.

52

Assembly Language

.SDECL 'nane', type [, attribute]... [AT address]

See the description of the . SDECL directive for a complete description of all possible attributes.

Section activation
Sections are defined once and are activated with the . SECT directive.
. SECT ' nane'

The linker will check between different modules and emits an error message if the section attributes do
not match. The linker will also concatenate all matching section definitions into one section. So, all "code"
sections generated by the compiler will be linked into one big "code" chunk which will be located in one
piece. A . SECT directive referring to an earlier defined section is called a continuation. Only the name
can be specified.

Examples

. SDECL '. pcptext.code', CODE
.SECT '.pcptext.code'

Defines and activates a relocatable section in CODE memory. Other parts of this section, with the same
name, may be defined in the same module or any other module. Other modules should use the same
. SDECL statement. When necessary, it is possible to give the section an absolute starting address.

.SDECL '.pcpdata.data', data at 0x100
.SECT '.pcpdata.data’

Defines and activates an absolute section named . pcpdat a. dat a starting at address 0x100.

2.8. Built-in Assembly Functions

The TASKING assembler has several built-in functions to support data conversion, string comparison,
and math computations. You can use functions as terms in any expression.

Syntax of an assembly function
@ unction_nane([argunent[,argunment]...])

Functions start with the '@' character and have zero or more arguments, and are always followed by
opening and closing parentheses. White space (a blank or tab) is not allowed between the function name
and the opening parenthesis and between the (comma-separated) arguments.

The names of assembly functions are case insensitive.

Overview of mathematical functions

Function Description
@\BS(expr) Absolute value

53

TASKING VX-toolset for PCP User Guide

Function Description

@ACS(expr) Arc cosine

@A\SN(expr) Arc sine

@AT2(exprl, expr2) Arc tangent of exprl / expr2
@ATN(expr) Arc tangent

@CEL (expr) Ceiling function

@COH(expr) Hyperbolic cosine

@Os(expr) Cosine

@ LR(expr) Floor function

@ 10(expr) Log base 10

@.OG(expr) Natural logarithm
@MX(exprl[, ..., exprN]) Maximum value

@ N(exprlf[, ..., exprN]) Minimum value

@POW exprl, expr2) Raise to a power

@RND() Random value

@GN(expr) Returns the sign of an expression as -1, 0 or 1
@l N(expr) Sine

@BNH(expr) Hyperbolic sine

@Qr(expr) Square root

@rAN(expr) Tangent

@I'NH(expr) Hyperbolic tangent

@XPN(expr) Exponential function (raise e to a power)

Overview of conversion functions

Function Description

@CVF(expr) Convert integer to floating-point

@Vl (expr) Convert floating-point to integer

@-LD(base, value, width[, start]) Shift and mask operation

@ RACT(expr) Convert floating-point to 32-bit fractional
@BFRACT(expr) Convert floating-point to 16-bit fractional
@QNGE exprl, expr2) Concatenate to double word

@ UN(expr) Convert long fractional to floating-point
@RVB(expr[, exprN]) Reverse order of bits in field

@INF(expr) Convert fractional to floating-point

54

Overview of string functions

Assembly Language

Function Description
@CAT(strl, str2) Concatenate strl and str2
@EN(string) Length of string

@0S(strl, str2[, start])
@BCP(strl, str2)
@UB(str, exprl, expr2)

Position of str2 in strl
Compare strl with str2

Return substring

Overview of macro functions

Function Description

@\RG(' symbol' | expr) Test if macro argument is present
@CNT() Return number of macro arguments
@/AC(symbol) Test if macro is defined

@MXP() Test if macro expansion is active

Overview of address calculation functions

Function

Description

@PTR(expr)
@PTRBI T(expr)

@ (expr)

@ NI T_R7(start, dptr, flags)
@ expr)

@.SB(expr)

@vBB(expr)

Returns bits 6-13 of the pcpdata address

Returns single negated bit in the range 6-13 of the pcpdata
address

Returns upper 16 bits of expression value
Returns the 32-bit value to initialize R7
Returns lower 16 bits of expression value
Least significant byte of the expression
Most significant byte of the expression

Overview of assembler mode functions

Function Description

@ASPCP() Returns the name of the PCP assembler executable
@EF(' symbol" | symbol) Returns 1 if symbol has been defined

@EXP(expr) Expression check

@ NT(expr) Integer check

@QST() LIST control flag value

55

TASKING VX-toolset for PCP User Guide

Detailed Description of Built-in Assembly Functions

@ABS(expression)
Returns the absolute value of the expression as an integer value.
Example:

AVAL . SET @\BS(-2.1) ; AVAL = 2

@ACS(expression)

Returns the arc cosine of expression as a floating-point value in the range zero to pi. The result of
expression must be between -1 and 1.

Example:

ACCS .SET @\CS(-1.0) ;ACOS = 3.1415926535897931

@ARG('symbol’ | expression)
Returns integer 1 if the macro argument represented by symbol or expression is present, 0 otherwise.

You can specify the argument with a symbol name (the name of a macro argument enclosed in single
quotes) or with expression (the ordinal number of the argument in the macro formal argument list). If you
use this function when macro expansion is not active, the assembler issues a warning.

Example:

JF @R ' TWDDLE') ;is argunment tw ddle present?
I F @GARGQ(1) ;is first argunent present?

@ASN(expression)

Returns the arc sine of expression as a floating-point value in the range -pi/2 to pi/2. The result of
expression must be between -1 and 1.

Example:

ARCSINE .SET @ASN(-1.0) ; ARCSINE = -1.570796

@ASPCP()

Returns the name of the assembler executable. This is ‘aspcp' for the PCP assembler.
Example:

ANAVE: . byte @\SPCP() ; ANAME = ' aspcp'

56

Assembly Language

@AT2(expressionl,expression2)

Returns the arc tangent of expressionl/expression2 as a floating-point value in the range -pi to pi.
expressionl and expression2 must be separated by a comma.

Example:

ATAN2 . EQU @AT2(-1.0,1.0) ; ATAN2 = -0. 7853982

@ATN(expression)
Returns the arc tangent of expression as a floating-point value in the range -pi/2 to pi/2.
Example:

ATAN . SET @ATN(1.0) ; ATAN = 0. 78539816339744828

@CAT(string1,string2)
Concatenates the two strings into one string. The two strings must be enclosed in single or double quotes.
Example:

.DEFINE 1D "@AT(' TASK' ,"ING)" ;1D = " TASKI NG

@CEL (expression)
Returns a floating-point value which represents the smallest integer greater than or equal to expression.
Example:

CEIL .SET @HEL(-1.05) [CEIL = -1.0

@CNT()

Returns the number of macro arguments of the current macro expansion as an integer. If you use this
function when macro expansion is not active, the assembler issues a warning.

Example:

ARGCOUNT . SET @NT() ; reserve argunent count

@COH(expression)
Returns the hyperbolic cosine of expression as a floating-point value.
Example:

HYCOS . EQU @COH(VAL) ; comput e hyperbolic cosine

57

TASKING VX-toolset for PCP User Guide

@COS(expression)
Returns the cosine of expression as a floating-point value.
Example:

.WORD - @OS(@VF(COUNT) *FREQ) ; comput e cosi ne val ue

@CVF(expression)
Converts the result of expression to a floating-point value.
Example:

FLOAT .SET @VF(5) . FLOAT = 5.0

@CVI(expression)

Converts the result of expression to an integer value. This function should be used with caution since the
conversions can be inexact (e.g., floating-point values are truncated).

Example:

INT .SET @Vl (-1.05) INT = -1

@DEF('symbol' | symbol)

Returns 1 if symbol has been defined, 0 otherwise. symbol can be any symbol or label not associated

with a . MACROor . SDECL directive. If symbol is quoted, it is looked up as a . DEFI NE symbol; if it is not
guoted, it is looked up as an ordinary symbol or label.

Example:
.| F @EFI NED(' ANGLE') ;is synbol ANGLE defined?
. | F @EFI NED(ANGLE) ; does | abel ANGLE exist?

@DPTR(expression)
Returns bits 6-13 of the pcpdata address provided. This is equivalent to ((expr essi on>>6) & Oxff).
Example:

Idl.il r7, @PTR(pcp_dat a_a0)

@DPTRBIT(expression)

Returns a single negated bit in the range 6-13 of the pcpdata address provided. This is equivalent to
((expressi on>>n-8+6) ~0x1),wheren=8..15.The bit returned is defined by the BMOVN instruction.

Example:

58

Assembly Language

bnovn r7, 8, @PTRBI T(| abel) ; bnovn R7, 8, ((| abel >>6)~0x1)

@EXP(expression)

Returns 0 if the evaluation of expression would normally result in an error. Returns 1 if the expression
can be evaluated correctly. With the @XP function, you prevent the assembler from generating an error
if the expression contains an error. No test is made by the assembler for warnings. The expression may
be relative or absolute.

Example:
I F 1 @XP(3/0) ;Do the |F on error

; assenbl er generates no error
JAIF 1(3/0) ;assenbl er generates an error

@FLD(base,value,width[,start])

Shift and mask value into base for width bits beginning at bit start. If start is omitted, zero (least significant
bit) is assumed. All arguments must be positive integers and none may be greater than the target word
size. Returns the shifted and masked value.

Example:

VARL .EQU @LD(0,1,1) ;turn bit 0 on, VARI=1

VAR2 . EQU @LD(O0, 3,1) ;turn bit 0 on, VAR2=1

VAR3 . EQU @LD(O0, 3, 2) ;turn bits 0 and 1 on, VAR3=3

VAR4A .EQU @LD(0,3,2,1) ;turn bits 1 and 2 on, VAR4=6
VAR5 . EQU @LD(0,1,1,7) ;turn eighth bit on, VAR5=0x80

@FLR(expression)
Returns a floating-point value which represents the largest integer less than or equal to expression.
Example:

FLOOR .SET @LR(2.5) ; FLOOR = 2.0

@FRACT(expression)

Returns the 32-bit fractional representation of the floating-point expression. The expression must be in
the range [-1,+1>.

Example:
.WORD @RACT(0.1), @RACT(1.0)
@Hl(expression)

Returns the upper 16 bits of a value. @1l (expr essi on) is equivalentto ((expr essi on>>16) &
Oxffff).

59

TASKING VX-toolset for PCP User Guide

Example:
Idl.iu r5,#@H (COUNT) ;upper 16 bits of COUNT
[dl.il r5, #@Q(COUNT)

@INIT_R7(start,dptr,flags)

Returns the 32-bit value needed to initialize R7. This is equivalent to (st art <<16) +
(((dptr&ox3fff)>>6)<<8) + (flags & Oxff).

Example:

.MORD @N T _R7(start_0, pcp_data_0, 7)

@INT(expression)

Returns integer 1 if expression has an integer result; otherwise, it returns a 0. The expression may be
relative or absolute.

Example:

.IF @NT(TERM ; Test if result is an integer

@L10(expression)

Returns the base 10 logarithm of expression as a floating-point value. expression must be greater than
zero.

Example:

LOG .EQU @10(100.0) ; LOG = 2

@LEN(string)
Returns the length of string as an integer.
Example:

SLEN .SET @EN('string") ; SLEN = 6

@LNG(expressionl,expression2)

Concatenates the 16-bit expressionl and expression2 into a 32-bit word value such that expressionl is
the high half and expression2 is the low half.

Example:

LWORD .WORD @NGHI, LO ;build | ong word

60

Assembly Language

@LO(expression)
Returns the lower 16 bits of a value. @Q.O(expr essi on) is equivalent to (expressi on & Oxffff).

Example:

Idl.iu rb5,#@H (COUNT)
Idl.il r5, #@O(COUNT) lower 16 bits of COUNT

@LOG(expression)

Returns the natural logarithm of expression as a floating-point value. expression must be greater than
zero.

Example:

LOG .EQU @0 100. 0) ; LOG = 4.605170

@LSB(expression)

Returns the least significant byte of the result of the expression. The result of the expression is calculated
as 16 hit.

Example:
VARL . SET @ SB(0x34) ; VARL = 0x34
VAR2 . SET @ SB(0x1234) ; VAR2 = 0x34
VAR3 . SET @.SB(0x654321) ; VAR3 = 0x21
@LST()

Returns the value of the $LI ST OV OFF control flag as an integer. Whenever a $LI ST ON control is
encountered in the assembler source, the flag is incremented; when a $LI ST OFF control is encountered,
the flag is decremented.

Example:
.DUP @BS(@QST()) ;list unconditionally
@LUN(expression)

Converts the 32-bit expression to a floating-point value. expression should represent a binary fraction.

Example:

DBLFRCL . EQU @UN(0x40000000) ;DBLFRCL = 0.5

DBLFRC2 . EQU @UN(3928472) ; DBLFRC2 = 0. 007354736
DBLFRC3 . EQU @UN(0xE0000000) ;DBLFRC3 = -0.75

61

TASKING VX-toolset for PCP User Guide

@MAC(symbol)
Returns integer 1 if symbol has been defined as a macro name, 0 otherwise.
Example:

AF @/AC(DOMUL) : does macro DOMUL exi st?

@MAX(expressionl[,expressionN],...)
Returns the maximum value of expressionl, ..., expressionN as a floating-point value.

Example:

MAX: . BYTE @AX(1,-2.137,3.5) ;MAX = 3.5
@MIN(expressionl[,expressionN],...)

Returns the minimum value of expressionl, ..., expressionN as a floating-point value.
Example:

M N: .BYTE @M N(1,-2.137,3.5) ;MN = -2.137

@MSB (expression)

Returns the most significant byte of the result of the expression. The result of the expression is calculated
as 16 bit.

Example:

VARL . SET @/BB(0x34) ; VARL = 0x00

VAR2 . SET @/BB(0x1234) ; VAR2 = 0x12

VAR3 . SET @/BB(0x654321) ; VAR3 = 0x43

@MXP()

Returns integer 1 if the assembler is expanding a macro, O otherwise.
Example:

JAF @MXP() ; macro expansi on active?

@POS(stringl,string2[,start])

Returns the position of string2 in string1 as an integer. If string2 does not occur in stringl, the last string
position + 1 is returned.

With start you can specify the starting position of the search. If you do not specify start, the search is
started from the beginning of string1. Note that the first position in a string is position 0.

62

Assembly Language

Example:

IDL .EQU @OS('TASKING ,"ASK') ; ID1 =1
ID2 .EQU @OS('ABCDABCD ,'B',2) ; ID2 =5
ID3 .EQU @OS('TASKING ,'BUG) ; ID3 =7

@POW(expressionl,expression2)

Returns expressionl raised to the power expression2 as a floating-point value. expressionl and
expression2 must be separated by a comma.

Example:

BUF .EQU @Vl (@OW2.0,3.0)) ;BUF = 8

@RND()

Returns a random value in the range 0.0 to 1.0.

Example:

SEED . EQU @RND() ;save initial SEED val ue

@RVB(expressionl,expression?2)

Reverse the order of bits in expressionl delimited by the number of bits in expression2. If expression2
is omitted the field is bounded by the target word size. Both expressions must be 16-bit integer values.

Example:

VARL . SET @RVB(0x200) ;reverse all bits, VARL=0x40
VAR2 . SET @RVB(0xB02) ;reverse all bits, VAR2=0x40D0
VAR3 . SET @RVB(0xB02,2) ;reverse bits 0 and 1,

; VAR3=0xB01

@SCP(stringl,string2)
Returns integer 1 if the two strings compare, 0 otherwise. The two strings must be separated by a comma.
Example:

.IF @CP(STR, ' MAIN) ; does STR equal 'MAIN ?

@SFRACT (expression)

This function returns the 16-bit fractional representation of the floating-point expression. The expression
must be in the range [-1,+1>.

Example:

.WORD @SFRACT(0. 1), @FRACT(1.0)

63

TASKING VX-toolset for PCP User Guide

@SGN(expression)

Returns the sign of expression as an integer: -1 if the argument is negative, O if zero, 1 if positive. The
expression may be relative or absolute.

Example:

VARL . SET @BG\(-1.2e-92) ;VARL = -1
VAR2 . SET @G\(0) VAR = 0
VAR3 . SET @G\(28.382) VAR = 1

@SIN(expression)
Returns the sine of expression as a floating-point value.

Example:

. WORD @8l N(@CVF(COUNT) * FREQ ;conpute sine val ue

@SNH(expression)

Returns the hyperbolic sine of expression as a floating-point value.
Example:

HSI NE . EQU @5NH(VAL) ; hyperbolic sine
@SQT(expression)

Returns the square root of expression as a floating-point value. expression must be positive.

Example:
SQRT1 .EQU @QT(3.5) ; SQRT1 = 1.870829
SQRT2 . EQU @Qr(16) . SQRT2 = 4

@SUB(string,expressionl,expression2)

Returns the substring from string as a string. expressionl is the starting position within string, and
expression?2 is the length of the desired string. The assembler issues an error if either expressionl or
expression2 exceeds the length of string. Note that the first position in a string is position 0.

Example:

.DEFINE ID "@UB(' TASKING ,3,4)" ;ID="KING

@TAN(expression)
Returns the tangent of expression as a floating-point value.

Example:

64

Assembly Language

TANGENT . SET @AN(1. 0) ; TANGENT = 1.5574077

@TNH(expression)
Returns the hyperbolic tangent of expression as a floating-point value.
Example:

HTAN . SET @NH(1) ; HTAN = 0. 76159415595

@UNF(expression)
Converts expression to a floating-point value. expression should represent a 16-bit binary fraction.
Example:

FRC .EQU @NF(0x4000) “FRC = 0.5

@XPN(expression)

Returns the exponential function (base e raised to the power of expression) as a floating-point value.
Example:

EXP .EQU @PN(1.0) ; EXP = 2.718282

2.9. Assembler Directives and Controls

An assembler directive is simply a message to the assembler. Assembler directives are not translated
into machine instructions. There are three main groups of assembler directives.

» Assembler directives that tell the assembler how to go about translating instructions into machine code.
This is the most typical form of assembly directives. Typically they tell the assembler where to put a
program in memory, what space to allocate for variables, and allow you to initialize memory with data.
When the assembly source is assembled, a location counter in the assembler keeps track of where
the code and data is to go in memory.

The following directives fall under this group:

* Assembly control directives

« Symbol definition and section directives

« Data definition / Storage allocation directives
« High Level Language (HLL) directives

« Directives that are interpreted by the macro preprocessor. These directives tell the macro preprocessor
how to manipulate your assembly code before it is actually being assembled. You can use these
directives to write macros and to write conditional source code. Parts of the code that do not match the
condition, will not be assembled at all.

65

TASKING VX-toolset for PCP User Guide

» Some directives act as assembler options and most of them indeed do have an equivalent assembler
(command line) option. The advantage of using a directive is that with such a directive you can overrule
the assembler option for a particular part of the code. Directives of this kind are called controls. A typical
example is to tell the assembler with an option to generate a list file while with the controls $LI ST ON
and $LI ST OFF you overrule this option for a part of the code that you do not want to appear in the
list file. Controls always appear on a separate line and start with a '$' sign in the first column.

The following controls are available:
« Assembly listing controls
» Miscellaneous controls

Each assembler directive or control has its own syntax. You can use assembler directives and controls
in the assembly code as pseudo instructions.

Some assembler directives can be preceded with a label. If you do not precede an assembler directive

with a label, you must use white space instead (spaces or tabs). The assembler recognizes both uppercase
and lowercase for directives.

2.9.1. Assembler Directives

Overview of assembly control directives

Directive Description

. COMVENT Start comment lines. You cannot use this directive in .IF/.ELSE/.ENDIF
constructs and .MACRO/.DUP definitions.

. END Indicates the end of an assembly module

. FAI'L Programmer generated error message

. | NCLUDE Include file

. MESSAGE Programmer generated message

. VARNI NG Programmer generated warning message

Overview of symbol definition and section directives

Directive Description

. ALl AS Create an alias for a symbol

. EQU Set permanent value to a symbol

. EXTERN Import global section symbol

. GLOBAL Declare global section symbol

. LOCAL Declare local section symbol

. ORG Initialize memory space and location counters to create a nameless section
. SDECL Declare a section with name, type and attributes

. SECT Activate a declared section

66

Assembly Language

Directive Description

. SET Set temporary value to a symbol

. Sl ZE Set size of symbol in the ELF symbol table
. TYPE Set symbol type in the ELF symbol table

. VIEAK Mark a symbol as 'weak’

Overview of data definition / storage allocation directives

Directive Description
. ACCUM Define 64-bit constant of 18 + 46 bits format
.ALI GN Align location counter

.ASCIHL, . ASCl T Z
. BYTE

. DOUBLE

. FLOAT

. FRACT

. HALF

. SFRACT

. SPACE

. VORD

Define ASCII string without / with ending NULL byte
Define byte

Define a 64-bit floating-point constant

Define a 32-bit floating-point constant

Define a 32-bit constant fraction

Define half-word (16 bits)

Define a 16-bit constant fraction

Define storage

Define word (32 bits)

Overview of macro preprocessor directives

Directive Description

. DEFI NE Define substitution string

. DUP, . ENDM Duplicate sequence of source lines
. DUPA, . ENDM Duplicate sequence with arguments
. DUPC, . ENDM Duplicate sequence with characters
. DUPF, . ENDM Duplicate sequence in loop

.IF, . ELIF,.ELSE
. ENDI F

. EXIT™M

. MACRO, . ENDM

. PMACRO

. UNDEF

Conditional assembly directive

End of conditional assembly directive
Exit macro

Define macro

Undefine (purge) macro

Undefine . DEFI NE symbol

67

TASKING VX-toolset for PCP User Guide

Overview of HLL directives

Directive

Description

. CALLS

. COVPI LER | NVOCATI ON
. COVPI LER_NAME

. COWPI LER_VERSI ON

. M SRAC

Pass call tree information and/or stack usage information
Pass C compiler invocation

Pass C compiler name

Pass C compiler version header

Pass MISRA C information

68

Assembly Language

ACCUM

Syntax

[l abel :]. ACCUM expressi on[, expression]. ..

Description

With the . ACCUM(directive the assembler allocates and initializes two words of memory (64 bits) for each
argument. Use commas to separate multiple arguments.

An expression can be:

« afractional fixed point expression (range [-217, 2!

>)
* NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive address locations in sets of two words. If an argument is
NULL its corresponding address location is filled with zeros.

If the evaluated expression is out of the range [-217, 217>, the assembler issues a warning and saturates
the fractional value.

Example

ACC: .ACCUM 0.1,0.2,0.3

Related Information
. FRACT, . SFRACT (Define 32-bit/16-bit constant fraction)

. SPACE (Define Storage)

69

TASKING VX-toolset for PCP User Guide

ALIAS

Syntax

al i as- name . ALI AS synbol - nane
Description

With the . ALI AS directive you can create an alias of a symbol. The C compiler generates this directive
when you use the #pragma al i as.

Example

_PCP_new . ALIAS _PCP_exi sting

Related information

Pragma al i as

70

Assembly Language

ALIGN

Syntax

. ALI GN expression

Description

With the . ALI GNdirective you instruct the assembler to align the location counter. By default the assembler
aligns on one byte.

When the assembler encounters the . ALI GN directive, it advances the location counter to an address
that is aligned as specified by expression and places the next instruction or directive on that address.
The alignment is in minimal addressable units (MAUs). The assembler fills the ‘gap’ with NOP instructions
for code sections or with zeros for data sections. If the location counter is already aligned on the specified
alignment, it remains unchanged. The location of absolute sections will not be changed.

The expression must be a power of two: 2, 4, 8, 16, ... If you specify another value, the assembler changes
the alignment to the next higher power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value occurring in that section.

A label is not allowed before this directive.

Example
.sdecl '.pcptext.code', code
.sect '.pcptext.code'
.ALI GN 16 ; the assenbler aligns
instruction ; this instruction at 16 MAUs and
; fills the "gap' with NOP instructions.
.sdecl '.pcptext.code', code
.sect '.pcptext.code'
.ALIGN 12 ; WRONG not a power of two, the
instruction ; assenbler aligns this instruction at

; 16 MAUs and i ssues a warning.

71

TASKING VX-toolset for PCP User Guide

ASCII, .ASCIIZ

Syntax
[label:] .ASCIl string[,string]...

[label:] .ASCI1Z string[,string]...

Description

With the . ASClI | or . ASCI | Z directive the assembler allocates and initializes memory for each string
argument.

The . ASCI | directive does not add a NULL byte to the end of the string. The . ASCI | Z directive does
add a NULL byte to the end of the string. The "z" in . ASCl | Z stands for "zero". Use commas to separate
multiple strings.

Example

STRING .ASCIl "Hello world"
STRINGZ: .ASCI1Z "Hello world"

Note that with the . BYTE directive you can obtain exactly the same effect:

STRING .BYTE "Hello world" ; Without a NULL byte
STRINGZ: .BYTE "Hello world",0 ; with a NULL byte

Related Information
. BYTE (Define a constant byte)

. SPACE (Define Storage)

72

Assembly Language

.BYTE

Syntax

[label:] .BYTE argunent[, argunent]...

Description

With the . BYTE directive the assembler allocates and initializes a byte of memory for each argument.
An argument can be:

 asingle or multiple character string constant

* an integer expression

* NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive byte locations. If an argument is NULL its corresponding
byte location is filled with zeros.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Integer arguments are stored as is, but must be byte values (within the range 0-255); floating-point
numbers are not allowed. If the evaluated expression is out of the range [-256, +255] the assembler issues
an error. For negative values within that range, the assembler adds 256 to the specified value (for example,
-254 is stored as 2).

String constants

Single-character strings are stored in a byte whose lower seven bits represent the ASCII value of the
character, for example:

.BYTE 'R ;= 0x52

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like ‘\n’ are permitted.

.BYTE "AB',,'C ; = 0x41420043 (second argunent is enpty)
Example

TABLE .BYTE 'two',0,'strings',O
CHARS .BYTE 'A,'B','C,'D

Related Information
.ASCl |, .ASCl | Z (Define ASCII string without/with ending NULL)
. WORD, . HALF (Define a word / halfword)

. SPACE (Define Storage)

73

TASKING VX-toolset for PCP User Guide

.CALLS

Syntax

. CALLS "caller’,’ callee’

or
. CALLS ’'caller’,’’, stack_usage
Description

The first syntax creates a call graph reference between caller and callee. The linker needs this information
to build a call graph. caller and callee are names of functions.

The second syntax specifies stack information. When callee is an empty name, this means we define the
stack usage of the function itself. The value specified is the stack usage in bytes at the time of the call
including the return address.

This information is used by the linker to compute the used stack within the application. The information
is found in the generated linker map file within the Memory Usage.

This directive is generated by the C compiler. Normally you will not use it in hand-coded assembly.
A label is not allowed before this directive.
Example
. CALLS 'nmmin', "' nfunc'
Indicates that the function mai n calls the function nf unc.
. CALLS "main','",8

The function mai n uses 8 bytes on the stack.

74

Assembly Language

.COMMENT

Syntax

.COWENT delimter

delinmter
Description

With the . COMVENT directive you can define one or more lines as comments. The first non-blank character
after the . COMMVENT directive is the comment delimiter. The two delimiters are used to define the comment
text. The line containing the second comment delimiter will be considered the last line of the comment.
The comment text can include any printable characters and the comment text will be produced in the
source listing as it appears in the source file.

A label is not allowed before this directive.

Example

.COMWENT + This is a one |line conment +

.COMWENT * This is a nultiple line
conment. Any nunber of |ines
can be placed between the two
delinmters.

75

TASKING VX-toolset for PCP User Guide

.COMPILER_INVOCATION, .COMPILER_NAME, .COMPILER_VERSION

Syntax

. COWPI LER _VERSI ON "ver si on_header"
. COVPI LER_I NVOCATI ON "i nvocati on"
. COVPI LER_NAME " nane"

Description

The C compiler generates information about itself and the invocation at the start of the assembly source.
This way you can always see how the assembly source file was generated. When you assemble the
source file, this information will appear in . not e sections in the object file.

A label is not allowed before these directives.

Example

. COWPI LER _VERSI ON "TASKI NG VX-tool set for PCP: C conpiler vx.yrz Build yymddqq"
. COVPI LER_| NVOCATI ON "cpcp test.c"
. COVPI LER_NAME " cpcp”

76

Assembly Language

.DEFINE

Syntax

. DEFI NE synmbol string

Description

With the . DEFI NE directive you define a substitution string that you can use on all following source lines.
The assembler searches all succeeding lines for an occurrence of symbol, and replaces it with string. If
the symbol occurs in a double quoted string it is also replaced. Strings between single quotes are not
expanded.

This directive is useful for providing better documentation in the source program. A symbol can consist
of letters, digits and underscore characters (_), and the first character cannot be a digit.

Macros represent a special case. . DEFI NE directive translations will be applied to the macro definition
as it is encountered. When the macro is expanded, any active . DEFI NE directive translations will again
be applied.

The assembler issues a warning if you redefine an existing symbol.

A label is not allowed before this directive.

Example

Suppose you defined the symbol LEN with the substitution string "32":
. DEFI NE LEN " 32"

Then you can use the symbol LEN for example as follows:

. SPACE LEN
. MESSACE "The length is: LEN'

The assembler preprocessor replaces LEN with "32" and assembles the following lines:

. SPACE 32
. MESSACE "The length is: 32"

Related Information
. UNDEF (Undefine a .DEFINE symbol)

. MACRO, . ENDM(Define a macro)

77

TASKING VX-toolset for PCP User Guide

.DUP, .ENDM

Syntax

[l abel :] .DUP expression
- ENDM

Description

With the . DUP/. ENDMdirective you can duplicate a sequence of assembly source lines. With expression
you specify the number of duplications. If the expression evaluates to a number less than or equal to O,
the sequence of lines will not be included in the assembler output. The expression result must be an
absolute integer and cannot contain any forward references (symbols that have not already been defined).
The . DUP directive may be nested to any level.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

In this example the loop is repeated three times. Effectively, the preprocessor repeats the source lines
(. BYTE 10) three times, then the assembler assembles the result:

.DUP 3

.BYTE 10 ; assenbly source lines
. ENDM

Related Information

. DUPA, . ENDM(Duplicate sequence with arguments)
. DUPC, . ENDM(Duplicate sequence with characters)
. DUPF, . ENDM(Duplicate sequence in loop)

. MACRO, . ENDM(Define a macro)

78

Assembly Language

.DUPA, .ENDM

Syntax

[label:] .DUPA formal _arg, argunment[, argunment]. ..
. ENDM

Description

With the . DUPA/. ENDMdirective you can repeat a block of source statements for each argument. For
each repetition, every occurrence of the formal_arg parameter within the block is replaced with each
succeeding argument string. If an argument includes an embedded blank or other assembler-significant
character, it must be enclosed with single quotes.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example
Consider the following source input statements,

.DUPA VALLUE, 12, , 32, 34
. BYTE VALUE
. ENDM

This is expanded as follows:

.BYTE 12
.BYTE VALUE ; results in a warning
.BYTE 32
.BYTE 34

The second statement results in a warning of the assembler that the local symbol VALUE is not defined
in this module and is made external.

Related Information

. DUP, . ENDM(Duplicate sequence of source lines)

. DUPC, . ENDM(Duplicate sequence with characters)
. DUPF, . ENDM(Duplicate sequence in loop)

. MACRO, . ENDM(Define a macro)

79

TASKING VX-toolset for PCP User Guide

.DUPC, .ENDM

Syntax

[label:] .DUPC formal _arg, string
- ENDM

Description

With the . DUPC/. ENDMdirective you can repeat a block of source statements for each character within
string. For each character in the string, the formal_arg parameter within the block is replaced with that
character. If the string is empty, then the block is skipped.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example
Consider the following source input statements,

.DUPC VALLUE, ' 123’
. BYTE VALUE
. ENDM

This is expanded as follows:

.BYTE 1
.BYTE 2
.BYTE 3

Related Information

. DUP, . ENDM(Duplicate sequence of source lines)

. DUPA, . ENDM(Duplicate sequence with arguments)
. DUPF, . ENDM(Duplicate sequence in loop)

. MACRO, . ENDM(Define a macro)

80

Assembly Language

.DUPF, .ENDM

Syntax

[label:] .DUPF formal _arg,[start], end[,increment]
. ENDM

Description

With the . DUPF/. ENDMdirective you can repeat a block of source statements (end - start) + 1/ increment
times. start is the starting value for the loop index; end represents the final value. increment is the increment
for the loop index; it defaults to 1 if omitted (as does the start value). The formal_arg parameter holds the
loop index value and may be used within the body of instructions.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example
Consider the following source input statements,

.DUPF NuM O, 7
. BYTE NUM
. ENDM

This is expanded as follows:

. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE

~NOoO o~ WNEO

81

TASKING VX-toolset for PCP User Guide

Related Information

. DUP, . ENDM(Duplicate sequence of source lines)

. DUPA, . ENDM(Duplicate sequence with arguments)
. DUPC, . ENDM(Duplicate sequence with characters)

. MACRO, . ENDM(Define a macro)

82

Assembly Language

.END

Syntax

. END

Description

With the optional . END directive you tell the assembler that the end of the module is reached. If the
assembler finds assembly source lines beyond the . END directive, it ignores those lines and issues a
warning.

You cannot use the . END directive in a macro expansion.
The assembler does not allow a label with this directive.
Example

; source lines
. END ; End of assenbly nodul e

Related Information

83

TASKING VX-toolset for PCP User Guide

.EQU

Syntax

synmbol . EQU expression

Description

With the . EQU directive you assign the value of expression to symbol permanently. The expression can
be relocatable or absolute and forward references are allowed. Once defined, you cannot redefine the
symbol. With the . GLOBAL directive you can declare the symbol global.

Example

To assign the value 0x400 permanently to the symbol MYSYMBOL:

MYSYMBOL . EQU 0x4000

You cannot redefine the symbol MYSYMBOL after this.

Related Information

. SET (Set temporary value to a symbol)

84

Assembly Language

EXITM

Syntax

.EXIT™

Description

With the . EXI TMdirective the assembler will immediately terminate a macro expansion. It is useful when
you use it with the conditional assembly directive . | F to terminate macro expansion when, for example,
error conditions are detected.

A label is not allowed before this directive.
Example

CALC .MNMACRO XVAL, YVAL

AF XVAL<0

.FAIL " Macro paraneter value out of range'
.EXITM ;Exit macro

. ENDI F

. ENDM

Related Information

. DUP, . ENDM(Duplicate sequence of source lines)

. DUPA, . ENDM(Duplicate sequence with arguments)
. DUPC, . ENDM(Duplicate sequence with characters)
. DUPF, . ENDM(Duplicate sequence in loop)

. MACRO, . ENDM(Define a macro)

85

TASKING VX-toolset for PCP User Guide

.EXTERN

Syntax

. EXTERN synbol [, synbol]. ..

Description

With the . EXTERNdirective you define an external symbol. It means that the specified symbol is referenced
in the current module, but is not defined within the current module. This symbol must either have been
defined outside of any module or declared as globally accessible within another module with the . GLOBAL
directive.

If you do not use the . EXTERN directive and the symbol is not defined within the current module, the
assembler issues a warning and inserts the . EXTERN directive.

A label is not allowed with this directive.

Example
. EXTERN AA, CC, DD ;defined el sewhere
.sdecl '.pcptext.code', code
.sect '.pcptext.code'
LD. 1 R5, AA : AA is used here

Related Information
. GLOBAL (Declare global section symbol)

. LOCAL (Declare local section symbol)

86

Assembly Language

.FAIL

Syntax

.FAIL {str|exp}[,{str|exp}]...

Description

With the . FAI L directive you tell the assembler to print an error message to st der r during the assembling
process.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated error. If you use expressions, the
assembler outputs the result. The assembler outputs a space between each argument.

The total error count will be incremented as with any other error. The . FAI L directive is for example
useful in combination with conditional assembly for exceptional condition checking. The assembly process
proceeds normally after the error has been printed.

With this directive the assembler exits with exit code 1 (an error).
A label is not allowed with this directive.
Example
.FAIL 'Paraneter out of range'
This results in the error:
E143: ["filenane" |ine] Paraneter out of range
Related Information
. MESSACE (Programmer generated message)

. WARNI NG (Programmer generated warning)

87

TASKING VX-toolset for PCP User Guide

.FLOAT, .DOUBLE

Syntax
[l abel :]. FLOAT expression[, expression]...

[1abel :]. DOUBLE expression[, expression]...

Description

With the . FLOAT or . DOUBLE directive the assembler allocates and initializes a floating-point number
(32 hits) or a double (64 bits) in memory for each argument.

An expression can be:
« afloating-point expression
* NULL (indicated by two adjacent commas: ,,)

You can represent a constant as a signed whole number with fraction or with the 'e' format as used in the
C language. For example, 12. 457 and +0. 27E- 13 are legal floating-point constants.

If the evaluated argument is too large to be represented in a single word / double-word, the assembler
issues an error and truncates the value.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

FLT: .FLOAT 12.457,+0.27E-13
DBL: .DOUBLE 12.457,+0.27E-13

Related Information

. SPACE (Define Storage)

88

Assembly Language

.FRACT, .SFRACT

Syntax

[l abel :].FRACT expression[, expression]...
[1abel :].SFRACT expression[, expression]...
Description

With the . FRACT or . SFRACT directive the assembler allocates and initializes a 32-bit or 16-bit constant
fraction in memory for each argument. Use commas to separate multiple arguments.

An expression can be:
« afractional fixed point expression (range [-1, +1>)
* NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive address locations in sets of two bytes. If an argument is
NULL its corresponding address location is filled with zeros.

If the evaluated expression is out of the range [-1, +1>, the assembler issues a warning and saturates
the fractional value.

Example

FRCT: . FRACT
SFRCT: . SFRACT

0.1,0.2,0.3
0.1,0.2,0.3

Related Information
. ACCUM (Define 64-bit constant fraction in 18+46 bits format)

. SPACE (Define Storage)

89

TASKING VX-toolset for PCP User Guide

.GLOBAL
Syntax

. GLOBAL synbol [, synbol]. ..
Description

All symbols or labels defined in the current section or module are local to the module by default. You can
change this default behavior with assembler option --symbol-scope=global.

With the . GLOBAL directive you declare one of more symbols as global. It means that the specified
symbols are defined within the current section or module, and that those definitions should be accessible
by all modules.

To access a symbol, defined with . GLOBAL, from another module, use the . EXTERN directive.

Only program labels and symbols defined with . EQU can be made global.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.
The assembler does not allow a label with this directive.

Example

.sdecl '.pcpdata.data', data
. sect ' . pcpdat a. dat a'
.GLOBAL LOCPA ; LOOPA will be globally
; accessi bl e by other nodul es
LOOPA .EQU 1 ; definition of synbol LOOPA

Related Information
. EXTERN (Import global section symbol)

. LOCAL (Declare local section symbol)

90

Assembly Language

IF, .ELIF, .ELSE, .ENDIF

Syntax

.1 F expression

[.ELIF expression] ; the .ELIF directive is optional
[. ELSE] ; the .ELSE directive is optional
. ENDI F

Description

With the . | F/. ENDI F directives you can create a part of conditional assembly code. The assembler
assembles only the code that matches a specified condition.

The expression must evaluate to an absolute integer and cannot contain forward references. If expression
evaluates to zero, the IF-condition is considered FALSE, any non-zero result of expression is considered
as TRUE.

If the optional . ELSE and/or . ELI F directives are not present, then the source statements following the
. | Fdirective and up to the next . ENDI F directive will be included as part of the source file being assembled
only if the expression had a non-zero result.

If the expression has a value of zero, the source file will be assembled as if those statements between
the . | F and the . ENDI F directives were never encountered.

If the . ELSE directive is present and expression has a nonzero result, then the statements between the
. | Fand . ELSE directives will be assembled, and the statement between the . ELSE and . ENDI F directives
will be skipped. Alternatively, if expression has a value of zero, then the statements between the . | F and
. ELSE directives will be skipped, and the statements between the . ELSE and . ENDI F directives will be
assembled.

You can nest . | F directives to any level. The . ELSE and . ELI F directive always refer to the nearest
previous . | F directive.

A label is not allowed with this directive.
Example

Suppose you have an assemble source file with specific code for a test version, for a demo version and
for the final version. Within the assembly source you define this code conditionally as follows:

I F TEST
. ; code for the test version
. ELI F DEMO

. ; code for the denp version
. ELSE

91

TASKING VX-toolset for PCP User Guide
; code for the final version
. ENDI F

Before assembling the file you can set the values of the symbols TEST and DEMOin the assembly source
before the . | F directive is reached. For example, to assemble the demo version:

TEST .SET 0O
DEMO . SET 1

You can also define the symbols on the command line with the assembler option --define (-D):

aspcp --defi ne=DEMO --defi ne=TEST=0 test.asm

92

Assembly Language

.INCLUDE

Syntax

. I NCLUDE "fil ename" | <fil enane>

Description

With the . | NCLUDE directive you include another file at the exact location where the . | NCLUDE occurs.
This happens before the resulting file is assembled. The . | NCLUDE directive works similarly to the

#i ncl ude statement in C. The source from the include file is assembled as if it followed the point of the
. | NCLUDE directive. When the end of the included file is reached, assembly of the original file continues.

The string specifies the filename of the file to be included. The filename must be compatible with the
operating system (forward/backward slashes) and can contain a directory specification.

If an absolute pathname is specified, the assembler searches for that file. If a relative path is specified
or just a filename, the order in which the assembler searches for include files is:

1. The current directory if you use the "filename" construction.
The current directory is not searched if you use the <filename> syntax.
2. The path that is specified with the assembler option --include-directory.
3. The path that is specified in the environment variable ASPCPI NC when the product was installed.
4. The default i ncl ude directory in the installation directory.

The assembler does not allow a label with this directive.

Example
. I NCLUDE ' st orage\ nem asm ; include file
. I NCLUDE <dat a. asn® ; Do not look in

; current directory

93

TASKING VX-toolset for PCP User Guide

.LOCAL

Syntax

. LOCAL synmbol [, synbol]. ..

Description

All symbols or labels defined in the current section or module are local to the module by default. You can
change this default behavior with assembler option --symbol-scope=global.

With the . LOCAL directive you declare one of more symbols as local. It means that the specified symbols
are explicitly local to the module in which you define them.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.
The assembler does not allow a label with this directive.
Example

.SDECL '.pcpdata.data', DATA

.SECT '.pcpdata.data'
.LOCAL LOCOPA ; LOOPA is local to this section
LOOPA . HALF 0x100 ; assigns the val ue 0x100 to LOOPA

Related Information
. EXTERN (Import global section symbol)

. GLOBAL (Declare global section symbol)

94

Assembly Language

.MACRO, .ENDM

Syntax

macr o_nhame . MACRO [argument [, argument]...]
rracr o_definition_statenents
. ENDM

Description

With the . MACROdirective you define a macro. Macros provide a shorthand method for handling a repeated
pattern of code or group of instructions. You can define the pattern as a macro, and then call the macro
at the points in the program where the pattern would repeat.

The definition of a macro consists of three parts:

» Header, which assigns a name to the macro and defines the arguments (. MACRO directive).
» Body, which contains the code or instructions to be inserted when the macro is called.

« Terminator, which indicates the end of the macro definition (. ENDMdirective).

The arguments are symbolic names that the macro processor replaces with the literal arguments when
the macro is expanded (called). Each formal argument must follow the same rules as symbol names: the
name can consist of letters, digits and underscore characters (_). The first character cannot be a digit.
Argument names cannot start with a percent sign (%).

Macro definitions can be nested but the nested macro will not be defined until the primary macro is
expanded.

You can use the following operators in macro definition statements:

Operator |[Name Description

\ Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

? Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

A Macro local label override Prevents name mangling on labels in macros.

Example
The macro definition:

CONST. D . MACRO reg, val ue : header
Idl.iu reg, @ (val ue) ; body

95

TASKING VX-toolset for PCP User Guide
Idl.il reg, @QQ(val ue)
. ENDM

The macro call:

. SDECL '. pcptext.code', code
. SECT '. pcptext.code’
CONST.D rb5, 0x12345678

The macro expands as follows:

ldl.iu r5, @ (0x12345678)
ldl.il r5 @QQ0x12345678)

Related Information

Section 2.10, Macro Operations

. DUP, . ENDM(Duplicate sequence of source lines)

. DUPA, . ENDM(Duplicate sequence with arguments)
. DUPC, . ENDM(Duplicate sequence with characters)
. DUPF, . ENDM(Duplicate sequence in loop)

. PMACRO (Undefine macro)

. DEFI NE (Define a substitution string)

96

;term nator

Assembly Language

.MESSAGE

Syntax

. MESSACGE {str|exp}[,{str|exp}]...

Description

With the . MESSAGE directive you tell the assembiler to print a message to st der r during the assembling
process.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated message. If you use expressions,
the assembler outputs the result. The assembler outputs a space between each argument.

The error and warning counts will not be affected. The . MESSAGE directive is for example useful in
combination with conditional assembly to indicate which part is assembled. The assembling process
proceeds normally after the message has been printed.

This directive has no effect on the exit code of the assembler.

A label is not allowed with this directive.

Example

. DEFI NE LONG " SHORT"
.MESSACGE 'This is a LONG string'
.MESSACGE "This is a LONG string"

Within single quotes, the defined symbol LONGis not expanded. Within double quotes the symbol LONG
is expanded so the actual message is printed as:

This is a LONG string
This is a SHORT string

Related Information
. FAI L (Programmer generated error)

. WARNI NG (Programmer generated warning)

97

TASKING VX-toolset for PCP User Guide

.MISRAC

Syntax

.M SRAC string

Description

The C compiler can generate the . M SRAC directive to pass the compiler's MISRA C settings to the object
file. The linker performs checks on these settings and can generate a report. It is not recommended to
use this directive in hand-coded assembly.

Example

.M SRAC ' M SRA- C: 2004, 64, e2, Ob, e, el1, 27, 6, ef 83, el,
ef, 66, cb75, af 1, eff, e7, e7f, 8d, 63, 87ff7, 6ff 3, 4'

Related Information
Section 3.7.2, C Code Checking: MISRA C

C compiler option --misrac

98

Assembly Language

.ORG
Syntax

.ORG [abs-loc][,sect_type][,attribute]...
Description

With the . ORGdirective you can specify an absolute location (abs_loc) in memory of a section. This is
the same as a . SDECL/ . SECT without a section name.

This directive uses the following arguments:

abs-loc Initial value to assign to the run-time location counter. abs-loc must be an absolute
expression. If abs_loc is not specified, then the value is zero.

sect_type |An optional section type: code or data

attribute An optional section attribute: init, noread, noclear, max, rom, group(string), cluster(string),
protect

For more information about the section types and attributes see the assembler directive . SDECL.
The section type and attributes are case insensitive. A label is not allowed with this directive.

Example

; define a section at |ocation 100 deci mal
.org 100

; define a rel ocatable nanel ess section
.org

; define a relocatable data section
.org ,data

; define a data section at 0x8000
.org 0x8000, dat a

Related Information
. SDECL (Declare section name and attributes)

. SECT (Activate a declared section)

99

TASKING VX-toolset for PCP User Guide

.PMACRO
Syntax

. PMACRO synbol [, synbol]. ..
Description

With the . PMACRO directive you tell the assembler to undefine the specified macro, so that later uses of
the symbol will not be expanded.

The assembler does not allow a label with this directive.
Example
. PMACRO MAC1, MAC2
This statement causes the macros named MAC1 and MAC2 to be undefined.
Related Information

. MACRO, . ENDM(Define a macro)

100

.SDECL

Syntax

. SDECL 'nane',type[,attribute]...

Description

Assembly Language

[AT address]

With the . SDECL directive you can define a section with a name, type and optional attributes. Before any
code or data can be placed in a section, you must use the . SECT directive to activate the section.

The name specifies the name of the section. The type operand specifies the section’s type and must be

one of:

Type Description
CODE |[Code section.
DATA |Data section.
DEBUG | Debug section.

The section type and attributes are case insensitive.

The defined attributes are:

Attribute Description Allowed on type
AT address Locate the section at the given address. CODE, DATA
CLEAR Sections are zeroed at startup. DATA
CLUSTER(‘name* |Cluster code sections with companion debug sections. Used |CODE, DATA,
) by the linker during removal of unreferenced sections. The name | DEBUG
must be unique for this module (not for the application). To
prevent naming conflicts with other symbols, the prefix
". cl ust er."is added to the cluster name during object file
generation.
CONCAT Concatenate sections. Used by the linker to merge sections |CODE, DATA
with the same name.
GROUP(‘group‘) |Used to group sections. The assembler appends @r oup to |DATA
the section name.
INIT Defines that the section contains initialization data, which is CODE, DATA
copied from ROM to RAM at program startup.
LINEAR Section in the FPI space (TriCore linear address space). DATA
MAX When data sections with the same name occur in different object | DATA
modules with the MAX attribute, the linker generates a section
of which the size is the maximum of the sizes in the individual
object modules.
NOCLEAR Sections are not zeroed at startup. This is a default attribute for| DATA
data sections. This attribute is only useful with BSS sections,
which are cleared at startup by default.

101

TASKING VX-toolset for PCP User Guide

Attribute Description Allowed on type
NOREAD Defines that the section can be executed from but not read. |CODE
OVERLAY(‘name* |Static stack overlay. Automatic stack variables, function stack |DATA
) parameters and temporary data are stored here. The assembler
appends nane@ unct i on to the section prefix.
PROTECT Tells the linker to exclude a section from unreferenced section | CODE, DATA
removal and duplicate section removal.
ROM Section contains data to be placed in ROM. This ROM area is |CODE, DATA

not executable.

Section names

The name of a section can have a special meaning for locating sections. The name of code sections
should always start with ". pcpt ext ". The name of data sections in PRAM should always start with

". pcpdat a". With data sections in FPI space (data, linear), the prefix in the name is important. The prefix
determines if the section is initialized, constant or uninitialized and which addressing mode is used. See
the following table.

Section name for linear data|Type of section
.data.linear initialized __far data
.rodata.linear constant __far data
.bss.linear uninitialized __far data

Note that the compiler uses the following name convention by default:
prefix. space

where space can be code, data or linear: In the C language you can overrule the default section name
with #pr agma secti on.

Static stack overlay

For static stack overlay sections the compiler uses a different section naming convention. The name in
the . SDECL directive equals the function name. The OVERLAY attribute results in an extended section
name. The name resulting from the . SDECL directive is as follows:

section_type_prefix.overlay_nanme@uncti on_nane
For example:

.sdecl '_PCP_mmin', data, overlay('_PCP_stack_data')
results in a section named: . pcpdat a. _PCP_st ack_dat a@ PCP_mai n.
Group names

The GROUP attribute results in an extended section name. The name resulting from the . SDECL directive
is as follows:

102

secti on- nane[@r oup]

For example:

. sdecl

Assembly Language

' . pcpdata.data', data, group(' groupnane')

results in a section named: . pcpdat a. dat a@r oupnane.

The linker uses this information to locate sections with the same group name in one page.

Example

. sdecl
. sect

. sdecl
. sect

. sdecl
. sect
. sdecl

. sect

. pcpt ext.code', code
. pcpt ext . code’

. pcpdata.data', data
. pcpdat a. dat a'

_PCP_main', data, overl
_PCP_mai n'
. pcpdat a. abssec', data

. pcpdat a. abssec’

Related Information

. SECT (Activate a declared section)

. ORG (Initialize a nameless section)

; decl are code section
; activate section

; declare data section
; activate section

ay(' _PCP_stack_data')
; declare overlay section
; activate section

at 0x100

; absolute section
; activate section

103

TASKING VX-toolset for PCP User Guide

SECT

Syntax

. SECT ' name' [, RESET]

Description

With the . SECT directive you activate a previously declared section with the name name. Before you can
activate a section, you must define the section with the . SDECL directive. You can activate a section as
many times as you need.

With the attribute RESET you can reset counting storage allocation in data sections that have section
attribute MAX.

Example
.sdecl '.pcpdata.data', data ; declare data section
. sect ' . pcpdat a. dat a' ; activate section

Related Information
. SDECL (Declare section name and attributes)

. ORG (Initialize a nameless section)

104

Assembly Language

SET

Syntax

synbol .SET expression
. SET synbol expression

Description

With the . SET directive you assign the value of expression to symbol temporarily. If a symbol was defined
with the . SET directive, you can redefine that symbol in another part of the assembly source, using the
. SET directive again. Symbols that you define with the . SET directive are always local: you cannot define
the symbol global with the . GLOBAL directive.

The . SET directive is useful in establishing temporary or reusable counters within macros. expression
must be absolute and forward references are allowed.

Example

COUNT .SET O ; Initialize count. Later on you can
; assign other values to the synbol

Related Information

. EQU (Set permanent value to a symbol)

105

TASKING VX-toolset for PCP User Guide

SIZE

Syntax
.Sl ZE synbol , expression
Description
With the . SI ZE directive you set the size of the specified symbol to the value represented by expression.

The . SI ZE directive may occur anywhere in the source file unless the specified symbol is a function. In
this case, the . Sl ZE directive must occur after the function has been defined.

Example

_PCP_str: .type obj ect ; object _PCP_str
.size _PCP_str, 4 ; size of object
.word 80
.word 67
.word 80
.word 0

Related Information

. TYPE (Set symbol type)

106

Assembly Language

.SPACE

Syntax

[l abel :] .SPACE expression

Description

The . SPACE directive reserves a block in memory. The reserved block of memory is not initialized to any
value.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

The expression specifies the number of MAUs (Minimal Addressable Units) to be reserved, and how
much the location counter will advance. The expression must evaluate to an integer greater than zero
and cannot contain any forward references (symbols that have not yet been defined). For the TriCore the
MAU size is 8 (1 byte).

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

To reserve 12 bytes (not initialized) of memory in a PRAM data section:

.sdecl '.pcpdata.data', data
. sect ' . pcpdat a. dat a'
uninit .SPACE 12 ; Sanpl e buffer

Related Information

. BYTE (Define a constant byte)

107

TASKING VX-toolset for PCP User Guide

.TYPE
Syntax
synmbol . TYPE typeid

Description

With the . TYPE directive you set a symbol's type to the specified value in the ELF symbol table. Valid
symbol types are:

FUNC The symbol is associated with a function or other executable code.
OBJECT The symbol is associated with an object such as a variable, an array, or a structure.
FILE The symbol name represents the filename of the compilation unit.

Labels in code sections have the default type FUNC. Labels in data sections have the default type OBJECT.

Example

_PCP_Afunc: .type func

Related Information

. Sl ZE (Set symbol size)

108

Assembly Language

.UNDEF
Syntax

. UNDEF synmbol
Description

With the . UNDEF directive you can undefine a substitution string that was previously defined with the
. DEFI NE directive. The substitution string associated with symbol is released, and symbol will no longer
represent a valid . DEFI NE substitution or macro.

The assembler issues a warning if you undefine a non-existing symbol.
The assembler does not allow a label with this directive.
Example

The following example undefines the LEN substitution string that was previously defined with the . DEFI NE
directive:

. UNDEF LEN

Related Information

. DEFI NE (Define a substitution string)

109

TASKING VX-toolset for PCP User Guide

WARNING

Syntax

. WARNI NG {str|exp}[,{str]|exp}]...

Description

With the . WARNI NG directive you tell the assembler to print a warning message to st der r during the
assembling process.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated warning. If you use expressions,
the assembler outputs the result. The assembler outputs a space between each argument.

The total warning count will be incremented as with any other warning. The . WARNI NG directive is for
example useful in combination with conditional assembly to indicate which part is assembled. The
assembling process proceeds normally after the message has been printed.

This directive has no effect on the exit code of the assembler, unless you use the assembler option
--warnings-as-errors. In that case the assembler exits with exit code 1 (an error).

A label is not allowed with this directive.
Example
.WARNI NG ' Paranmeter out of range'
This results in the warning:
WL44: ["filename" |ine] Paraneter out of range
Related Information
. FAI L (Programmer generated error)

. MESSACGE (Programmer generated message)

110

Assembly Language

WEAK
Syntax

. EEAK synbol [, synbol J. ..
Description

With the . VEAK directive you mark one or more symbols as 'weak'. The symbol can be defined in the
same module with the . GLOBAL directive or the . EXTERN directive. If the symbol does not already exist,
it will be created.

A 'weak' external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference.

You can overrule a weak definition with a . GLOBAL definition in another module. The linker will not
complain about the duplicate definition, and ignore the weak definition.

Only program labels and symbols defined with . EQU can be made weak.

Example

LOOPA . EQU 1 ; definition of synbol LOOPA
.GLOBAL LOOPA ; LOOPA will be globally
; accessi bl e by other nodul es
. VEAK LOGPA ; mark synbol LOOPA as weak

Related Information
. EXTERN (Import global section symbol)

. GLOBAL (Declare global section symbol)

111

TASKING VX-toolset for PCP User Guide

.WORD, .HALF

Syntax

[label:] .WORD argument[, argunent]...
[label:] .HALF argument[, argunent]...

Description

With the . WORD or . HALF directive the assembler allocates and initializes one word (32 bits) or a halfword
(16 bits) of memory for each argument.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

An argument can be a single- or multiple-character string constant, an expression or empty.

Multiple arguments are stored in sets of four or two bytes. One or more arguments can be null (indicated
by two adjacent commas), in which case the corresponding byte location will be filled with zeros.

The value of the arguments must be in range with the size of the directive; floating-point numbers are not
allowed. If the evaluated argument is too large to be represented in a word / halfword, the assembler
issues a warning and truncates the value.

String constants

Single-character strings are stored in the least significant byte of a word / halfword, where the lower seven
bits in that byte represent the ASCII value of the character, for example:

.WORD 'R ; 0x00000052
.HALF 'R ; 0x0052

Multiple-character strings are stored in consecutive word addresses, as shown below. The standard C
language escape characters like ‘\n’ are permitted.

.WORD ' ABCD ; = 0x00000041
0x00000042
0x00000043
0x00000044

Related Information
. BYTE (Define a constant byte)

. SPACE (Define Storage)

112

Assembly Language

2.9.2. Assembler Controls

Controls start with a $ as the first character on the line. Unknown controls are ignored after a warning is
issued.

Overview of assembler listing controls

Control Description

$LI ST OV OFF Print / do not print source lines to list file

$PACE Generate form feed in list file

$PACE settings Define page layout for assembly list file

$PRCTL Send control string to printer

$STI TLE Set program subtitle in header of assembly list file
$TI TLE Set program title in header of assembly list file

Overview of miscellaneous assembler controls

Control Description

$CASE QV OFF Case sensitive user names ON/OFF

$DEBUG ON/ OFF Generation of symbolic debug ON/OFF

$DEBUG " flags" Select debug information

$HW ONLY Prevent substitution of assembly instructions by smaller or faster instructions
$1 DENT LOCAL/ GLOBAL |Assembler treats labels by default as local or global

$OBIECT Alternative name for the generated object file

$WARNI NG OFF [num] Suppress all or some warnings

113

TASKING VX-toolset for PCP User Guide

$CASE

Syntax

$CASE ON
$CASE OFF

Default
$CASE ON
Description

With the $CASE ONand $CASE OFF controls you specify wether the assembler operates in case sensitive
mode or not. By default the assembler operates in case sensitive mode. This means that all user-defined
symbols and labels are treated case sensitive, so LAB and Lab are distinct.

Note that the instruction mnemonics, register names, directives and controls are always treated case
insensitive.

Example

; begin of source
$CASE OFF ; assenbler in case insensitive node

Related Information

Assembler option --case-insensitive

114

Assembly Language

$DEBUG

Syntax

$DEBUG ON
$DEBUG COFF
$DEBUG "fl ags"

Default
$DEBUG " AhLS"
Description

With the $DEBUG ON and $DEBUG OFF controls you turn the generation of debug information on or off.
($DEBUG ONis similar to the assembler option --debug-info=+local (-gl).

If you use the $DEBUG control with flags, you can set the following flags:

a/A Assembly source line information

h/H Pass high level language debug information (HLL)
IIL Assembler local symbols debug information

s/S Smart debug information

You cannot specify $DEBUG " ah" . Either the assembler generates assembly source line information, or
it passes HLL debug information.

Debug information that is generated by the C compiler, is always passed to the object file.

Example

; begin of source
$DEBUG ON ; generate |ocal synbols debug information

Related Information

Assembler option --debug-info

115

TASKING VX-toolset for PCP User Guide

$HW_ONLY

Syntax

$HW ONLY

Description

Normally the assembler replaces instructions by other, smaller or faster instructions.

With the $HW ONLY control you instruct the assembler to encode all instruction as they are. The assembler
does not substitute instructions with other, faster or smaller instructions.

Example

; begin of source

$HWONLY ; the assenbl er does not substitute
; instructions with other, smaller or
; faster instructions.

Related Information

116

Assembly Language

$IDENT

Syntax

$1 DENT LOCAL
$1 DENT GLOBAL

Default
$I DENT LOCAL
Description

With the controls $| DENT LOCAL and $I DENT GLOBAL you tell the assembler how to treat symbols that
you have not specified explicitly as local or global with the assembler directives . LOCAL or . GLOBAL.

By default the assembler treats all symbols as local symbols unless you have defined them to be global
explicitly.

Example

; begin of source
$I DENT GLOBAL ; assenbly | abels are gl obal by default

Related Information
Assembler directive .GLOBAL
Assembler directive .LOCAL

Assembler option --symbol-scope

117

TASKING VX-toolset for PCP User Guide

$LIST ON/OFF

Syntax

$LI ST ON
$LI ST OFF

Default

$LI ST ON

Description

If you generate a list file with the assembler option --list-file, you can use the $LI ST ONand $LI ST
OFF controls to specify which source lines the assembler must write to the list file. Without the assembler
option --list-file these controls have no effect. The controls take effect starting at the next line.

The $LI ST ONcontrol actually increments a counter that is checked for a positive value and is symmetrical
with respect to the $LI ST OFF control. Note the following sequence:

; Counter value currently 1

$LI ST ON ;. Counter value = 2
$LI ST ON ;. Counter value = 3
$LI ST OFF ;. Counter value = 2
$LI ST OFF ;. Counter value =1

The listing still would not be disabled until another $L1 ST OFF control was issued.

Example

. SDECL ' . pcpt ext.code', code

.SECT '.pcptext.code'

.. : source lineinlist file

$LI ST OFF

.. : source line not inlist file

$LI ST ON
: source line alsoinlist file

Related Information
Assembler option --list-file

Assembler function @LST()

118

Assembly Language

$OBJIECT

Syntax

$OBJECT "file"
$OBJECT OFF

Default
$OBJECT
Description

With the $OBJECT control you can specify an alternative name for the generated object file. With the
$OBJECT OFF control, the assembler does not generate an object file at all.

Example

; Begin of source
$obj ect "x1.0" ; generate object file x1.0

Related Information

Assembler option --output

119

TASKING VX-toolset for PCP User Guide

$PAGE

Syntax

$PAGE [pagew dt h[, pagel engt h[, bl ankl ef t[, bl ankt op[, bl ankbt nj]]]

Default

$PACGE 132,72,0,0,0

Description

If you generate a list file with the assembler option --list-file, you can use the $PAGE control to format

the generated list file.

The arguments may be any positive absolute integer expression, and must be separated by commas.

pagewidth

Number of columns per line. The default is 132, the minimum is 40.

pagelength

Total number of lines per page. The default is 72, the minimum is 10.
As a special case, a page length of 0 turns off page breaks.

blankleft

Number of blank columns at the left of the page. The default is 0, the
minimum is 0, and the maximum must maintain the relationship: blankleft
< pagewidth.

blanktop

Number of blank lines at the top of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

blankbtm

Number of blank lines at the bottom of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

If you use the $PAGE control without arguments, it causes a 'formfeed': the next source line is printed on
the next page in the list file. The $PACE control itself is not printed.

Example

$PAGE

$PACGE 96

$PAGE ,,, 3,3

Related Information

fornfeed, the next source line is printed
on the next page in the list file.

set page width to 96. Note that you can
omit the last four argunents.

use 3 line top/bottom margins.

Assembler option --list-file

120

Assembly Language

$PRCTL

Syntax

$PRCTL exp|string[,exp|string]...

Description

If you generate a list file with the assembler option --list-file, you can use the $PRCTL control to send
control strings to the printer.

The $PRCTL control simply concatenates its arguments and sends them to the listing file (the control line
itself is not printed unless there is an error).

You can specify the following arguments:

expr A byte expression which may be used to encode non-printing control characters, such as ESC.

string An assembler string, which may be of arbitrary length, up to the maximum assembler-defined
limits.

The $PRCTL control can appear anywhere in the source file; the assembler sends out the control string
at the corresponding place in the listing file.

If a $PRCTL control is the last line in the last input file to be processed, the assembler insures that all
error summaries, symbol tables, and cross-references have been printed before sending out the control
string. In this manner, you can use a $PRCTL control to restore a printer to a previous mode after printing
is done.

Similarly, if the $PRCTL control appears as the first line in the first input file, the assembler sends out the
control string before page headings or titles.

Example

$PRCTL $1B,'FE ; Reset HP LaserJet printer

Related Information

Assembler option --list-file

121

TASKING VX-toolset for PCP User Guide

$STITLE

Syntax

$STI TLE "string"
Default

$STI TLE ""

Description

If you generate a list file with the assembler option --list-file, you can use the $STI TLE control to specify
the program subtitle which is printed at the top of all succeeding pages in the assembler list file below
the title.

The specified subtitle is valid until the assembler encounters a new $STI TLE control. By default, the
subtitle is empty.

The $STI TLE control itself will not be printed in the source listing.
If the page width is too small for the title to fit in the header, it will be truncated.
Example

$TI TLE "This is the title'
$STITLE 'This is the subtitle'

Related Information
Assembler option --list-file

Assembler control $TITLE

122

Assembly Language

$TITLE

Syntax

$TI TLE "string"
Default

$TI TLE ""
Description

If you generate a list file with the assembler option --list-file, you can use the $TI TLE control to specify
the program title which is printed at the top of each page in the assembler list file.

The specified title is valid until the assembler encounters a new $TI TLE control. By default, the title is
empty.

The $TI TLE control itself will not be printed in the source listing.

If the page width is too small for the title to fit in the header, it will be truncated.
Example

$TITLE 'This is the title'

Related Information

Assembler option --list-file

Assembler control $STITLE

123

TASKING VX-toolset for PCP User Guide

$WARNING OFF

Syntax

$WARNI NG OFF [nunber]
Default

All warnings are reported.
Description

This control allows you to disable all or individual warnings. The number argument must be a valid warning
message number.

Example

$WARNI NG OFF ; all warning messages are suppressed
$WARNI NG OFF 135 ; suppress warni ng nmessage 135

Related Information

Assembler option --no-warnings

124

Assembly Language

2.10. Macro Operations

Macros provide a shorthand method for inserting a repeated pattern of code or group of instructions. You
can define the pattern as a macro, and then call the macro at the points in the program where the pattern
would repeat.

Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly.

When a macro is called, the assembler executes the macro and replaces the call by the resulting in-line
source statements. 'In-line' means that all replacements act as if they are on the same line as the macro
call. The generated statements may contain substitutable arguments. The statements produced by a
macro can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions as any
other statements.

Macros can be nested. The assembler processes nested macros when the outer macro is expanded.

2.10.1. Defining a Macro
The first step in using a macro is to define it.
The definition of a macro consists of three parts:
» Header, which assigns a name to the macro and defines the arguments (. MACROdirective).
» Body, which contains the code or instructions to be inserted when the macro is called.
» Terminator, which indicates the end of the macro definition (. ENDMdirective).
A macro definition takes the following form:
macr o_nanme . MACRO [argunent[, argunent]...]
lm.a;:ro_defi nition_statenments
- ENDM
For more information on the definition see the description of the . MACRO directive.

The . DUP, . DUPA, . DUPC, and . DUPF directives are specialized macro forms to repeat a block of source
statements. You can think of them as a simultaneous definition and call of an unnamed macro. The source
statements between the . DUP, . DUPA, . DUPC, and . DUPF directives and the . ENDMdirective follow the
same rules as macro definitions.

2.10.2. Calling a Macro
To invoke a macro, construct a source statement with the following format:
[label] macro_nane [argunent[,argunent]...] [; conmment]

where,

125

TASKING VX-toolset for PCP User Guide

label An optional label that corresponds to the value of the location counter
at the start of the macro expansion.

macro_name The name of the macro. This may not start in the first column.

argument One or more optional, substitutable arguments. Multiple arguments

must be separated by commas.

comment An optional comment.

The following applies to macro arguments:

Each argument must correspond one-to-one with the formal arguments of the macro definition. If the
macro call does not contain the same number of arguments as the macro definition, the assembler
issues a warning.

If an argument has an embedded comma or space, you must surround the argument by single quotes
-

You can declare a macro call argument as null in three ways:

enter delimiting commas in succession with no intervening spaces

macr onane ARGL, , ARG ; the second argument is a null argunent

terminate the argument list with a comma, the arguments that normally would follow, are now
considered null

nmacr onane ARGL, ; the second and all follow ng argunments are null

declare the argument as a null string

No character is substituted in the generated statements that reference a null argument.

2.10.3. Using Operators for Macro Arguments

The assembler recognizes certain text operators within macro definitions which allow text substitution of
arguments during macro expansion. You can use these operators for text concatenation, numeric
conversion, and string handling.

Operator [Name Description

\

Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

Macro string delimiter Allows the use of macro arguments as literal strings.

Macro local label override Prevents name mangling on labels in macros.

126

Assembly Language

Example: Argument Concatenation Operator -\

Consider the following macro definition:

SWAP_MEM . MACRO REGL, RE& ;Swap nmenory contents
LD. P R4, [RRREGL], CC_UC ;use R4 as tenp
LD.P R5, [RRRER?], CC_UC ;use R5 as tenp

ST. P R5, [R REGL], CC_UC
ST. P R4, [R RE®], CC_UC
. ENDM

The macro is called as follows:
SWAP_MEM O, 1
The macro expands as follows:

LD. P R4, [RO], CC_UC
LD. P R5, [R1], CC_UC
ST.P R5, [R0], CC_UC
ST.P R4, [R1], CC_UC

The macro preprocessor substitutes the character '0' for the argument REGL, and the character '1' for the
argument REG2. The concatenation operator (\) indicates to the macro preprocessor that the substitution
characters for the arguments are to be concatenated with the character 'A'.

Without the '\' operator the macro would expand as:

LD. P R4, [RREGL], CC_UC
LD. P R5, [RREG2] , CC_UC
ST. P R5, [RREGL], CC_UC
ST. P R4, [RREG], CC_UC

which results in an assembler error (invalid operand).

Example: Decimal Value Operator - ?

Instead of substituting the formal arguments with the actual macro call arguments, you can also use the
value of the macro call arguments.

Consider the following source code that calls the macro SWAP_SYMafter the argument AREG has been
set to 0 and BREG has been set to 1.

AREG . SET 0
BREG . SET 1
SWAP_SYM AREG, BREG

If you want to replace the arguments with the value of AREG and BREG rather than with the literal strings
" AREG and' BREG , you can use the ? operator and modify the macro as follows:

SWAP_SYM . MACRO REGL, REQ2 ;swap nenory contents
LD.P R4,[R ?REGL], CC_UC yuse R4 as tenp

127

TASKING VX-toolset for PCP User Guide

LD.P R5,[R ?RER], CC_UC ;use R5 as tenp
ST.P R5,[R ?REGL], CC_UC

ST.P R4,[R ?RE®], CC_UC

. ENDM

The macro first expands as follows:

LD.P R4, [R ?AREG, CC_UC
LD.P R5, [R ?BREG, CC_UC
ST.P R5,[R ?AREG, CC_UC
ST.P R4, [R ?BREG, CC_UC

Then ?AREGis replaced by '0' and ?BREG s replaced by "1

LD.P R4,[R1],CC_UC
LD.P R5,[R2],CC_UC
ST.P R5,[R1],CC UC
ST.P R4, [R2],CC UC

Because of the concatenation operator '\' the strings are concatenated:
LD.P R4,[R1],CC UC
LD.P R5[R2],CC UC

ST.P R5,[Rl],CC UC
ST.P R4,[R2],CC_UC

Example: Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator (?) except that it returns the
hexadecimal value of a symbol.

Consider the following macro definition:

GEN_LAB . MACRO LAB, VAL, STMI
LAB\ %/AL STMI
. ENDM

The macro is called after NUMhas been set to 10:

NUM . SET 10
GEN_LAB HEX, NUM NOP

The macro expands as follows:
HEXA NOP

The W/AL argument is replaced by the character 'A" which represents the hexadecimal value 10 of the
argument VAL.

128

Assembly Language

Example: Argument String Operator - "

To generate a literal string, enclosed by single quotes ('), you must use the argument string operator (*)
in the macro definition.

Consider the following macro definition:

STR_MAC . MACRO STRI NG
. BYTE "STRI NG'
. ENDM

The macro is called as follows:
STR_MAC ABCD

The macro expands as follows:
. BYTE ' ABCD

Within double quotes . DEFI NE directive definitions can be expanded. Take care when using constructions
with single quotes and double quotes to avoid inappropriate expansions. Since . DEFI NE expansion
occurs before macro substitution, any . DEFI NE symbols are replaced first within a macro argument string:

. DEFINE LONG 'short'

STR_MAC . MACRO STRI NG
. MESSACE 'This is a LONG STRI NG
. MESSACE "This is a LONG STRI NG'
. ENDM

If the macro is called as follows:
STR_MAC sentence
it expands as:

. MESSAGE 'This is a LONG STRI NG
.MESSAGE 'This is a short sentence'

Macro Local Label Override Operator -~

If you use labels in macros, the assembler normally generates another unique name for the labels (such
as LAB__M_L000001).

The macro ~-operator prevents name mangling on macro local labels.
Consider the following macro definition:

INNT . MACRO ARG OCNT

LD. 1 R5,0x1
NLAB:

. WORD ARG

ADD. | RS5, 0x1

COWP. | R5, #CNT

129

TASKING VX-toolset for PCP User Guide

JC "LAB, CC_Nz
. ENDM
The macro is called as follows:

INNT 2,4

The macro expands as:

LD. | R5, Ox1
LAB:

. WORD 2

ADD.| RS, 0x1

COW.| R5, #4

Jc LAB, CC_NZ

If you would have omitted the * operator, the macro preprocessor would choose another name for LAB
because the label already exists. The macro would expand like:

LD. | R5, Ox1
LAB__M L000001:

. WORD 2

ADD.| RS, 0x1

COVP.| RS, #4

JC LAB__M L000001, CC_NZ

2.11. Generic Instructions

The assembler supports so-called 'generic instructions'. Generic instructions are pseudo instructions (no
instructions from the instruction set). Depending on the situation in which a generic instruction is used,
the assembler replaces the generic instruction with appropriate real assembly instruction(s).

Generic jump JG

The PCP C compiler only generates generic direct jumps. Generic jump instructions are optimized by the
PCP assembler to the real jump instructions depending on the operands. The PCP assembler supports
the following generic jump:

jg _label [,cc_X ; Junmp Ceneric to label if condition cc_Xis true
This generic jump is translated to:

» JL -> Ifthere is no condition or the condition code is cc_UCand the target address fits within the relative
range of +/- 512 instructions.

» JC -> If the target address fits within the relative range of +/- 32 instructions.
» JC.A -> If the target address does not fit within the relative range.

If a condition code is omitted, the cc_UC condition code is used.

130

Assembly Language

The indirect jumps JC.I and JC.IA are directly generated by the PCP compiler. Indirect jumps cannot be
optimized by PCP assembler.

Generic bit handling instruction
brmovn R[a] , #i mb, #i mml

This instruction moves the negated bit to a single bitin Rl a] . Ifi 1l is 0 a set single bitin R[a] is done
base oni m®b.Ifi mil is 1 aclr single bitin R a] is done based on i mb. (i nb == [8..15]).

For example:

brmovn R7, 8, @PTRBI T(1 abel) ; brmovn R7, 8, ((I abel >>6) ~0x1)

Generic load 10-bit immediate long instruction
LDL.1IL Rl a], #i nm8, # me

This instruction loads the long 10-bit immediate data following into the lower 16-bit of R[a] . The i 8

is loaded into most significant 8-bits of the lower 16-bit of R a] (R[a] . 8-R[a] . 15). The i m® is loaded
at bit offset 5 and 6 of R[a] . The bits in the lower 8-bit of R[a] are cleared. The most significant 16-bits
of R a] are unaffected. This generic instruction is translated by the assemblerto a LDL. | L PCP instruction.

Example:
[dl.iil r7, @PTR(I abel), 0x3

This loads the page number of | abel in R7. DPTRand sets R7. | EN(R7. 5) and R7. CEN(R7. 6) to 1,
bit 7 and bit 0-4 are cleared. The most significant 16-bits of R7 are unaffected.

131

TASKING VX-toolset for PCP User Guide

132

Chapter 3. Using the C Compiler

This chapter describes the compilation process and explains how to call the C compiler.

The TASKING VX-toolset for PCP under Eclipse uses the TASKING makefile generator and make utility
to build your entire embedded project, from C source till the final ELF/DWARF object file which serves
as input for the debugger.

Although in Eclipse you cannot run the C compiler separately from the other tools, this section discusses
the options that you can specify for the C compiler.

On the command line it is possible to call the C compiler separately from the other tools. However, it is
recommended to use the control program for command line invocations of the toolset (see Section 6.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line.

The C compiler takes the following files for input and output:
Csource file

~

| » compiler intermediate file

C compiler .
- .mil

assembly file
.src

This chapter first describes the compilation process which consists of a frontend and a backend part.
Next it is described how to call the C compiler and how to use its options. An extensive list of all options
and their descriptions is included in Section 8.2, C Compiler Options. Finally, a few important basic tasks
are described, such as including the C startup code and performing various optimizations.

3.1. Compilation Process

During the compilation of a C program, the C compiler runs through a number of phases that are divided
into two parts: frontend and backend.

The backend part is not called for each C statement, but starts after a complete C module or set of modules
has been processed by the frontend (in memory). This allows better optimization.

The C compiler requires only one pass over the input file which results in relative fast compilation.
Frontend phases

1. The preprocessor phase:

The preprocessor includes files and substitutes macros by C source. It uses only string manipulations
on the C source. The syntax for the preprocessor is independent of the C syntax but is also described
in the ISO/IEC 9899:1999(E) standard.

133

TASKING VX-toolset for PCP User Guide

. The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

. The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs a syntactic and semantic
analysis of the program, and generates an intermediate representation of the program. This code is
called MIL (Medium level Intermediate Language).

. The frontend optimization phase:

Target processor independent optimizations are performed by transforming the intermediate code.

Backend phases

1.

Instruction selector phase:

This phase reads the MIL input and translates it into Low level Intermediate Language (LIL). The LIL
objects correspond to a processor instruction, with an opcode, operands and information used within
the C compiler.

. Peephole optimizer/instruction scheduler/software pipelining phase:

This phase replaces instruction sequences by equivalent but faster and/or shorter sequences, rearranges
instructions and deletes unnecessary instructions.

. Register allocator phase:

This phase chooses a physical register to use for each virtual register. When there are not enough
physical registers, virtual registers are spilled to the stack. Intermediate results of any optimization can
live, for some time, on the stack or in physical registers.

. The backend optimization phase:

Performs target processor independent and dependent optimizations which operate on the Low level
Intermediate Language.

. The code generation/formatter phase:

This phase reads through the LIL operations to generate assembly language output.

3.2. Calling the C Compiler

The TASKING VX-toolset for PCP under Eclipse uses the TASKING makefile generator and make utility
to build your entire project. After you have built your project, the output files are available in a subdirectory
of your project directory, depending on the active configuration you have set in the C/C++ Build » Settings
page of the Project » Properties for dialog.

134

Using the C Compiler

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

* Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (3. This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behavior tab of the C/C++ Build page of the Project » Properties for dialog.

See also Chapter 9, Influencing the Build Time.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you need to set them for each
configuration. Based on the target processor, the compiler includes a special function register file. This
is a regular include file which enables you to use virtual registers that are located in memory.

You can specify the target processor when you create a new project with the New C Project wizard (File
» New » TASKING PCP C Project), but you can always change the processor in the project properties
dialog.

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.
3. From the Configuration list, select a configuration or select[Al l configurations].

4. From the Processor selection list, select a processor.

135

TASKING VX-toolset for PCP User Guide

To access the C compiler options
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. From the Configuration list, select a configuration or select[Al Il configurations].
4. On the Tool Settings tab, select C Compiler.
5. Select the sub-entries and set the options in the various pages.
Note that the C compiler options are used to create an object file from a C file. The options you

enter in the Assembler page are not only used for hand-coded assembly files, but also for
intermediate assembly files.

Note that when you click Restore Defaults to restore the default tool options, as a side effect the
processor is also reset to its default value on the Processor page (C/C++ Build » Processor).

You can find a detailed description of all C compiler options in Section 8.2, C Compiler Options.

Invocation syntax on the command line:

cpecp [[option]... [file]...]...

3.3.The C Startup Code

You need the startup code to build an executable application. Just as the PCP is part of the TriCore
processor, a PCP application is part of a TriCore application. However, the PCP application runs as an
interrupt service routine which is activated by the TriCore application.

The TriCore C startup initializes and clears all global data as required, initializes the PCP compiler stack
pointer, PRAM data page pointer and PCP status and control registers for each PCP interrupt function.

The PCP C startup code acts as a 'wrapper' which places the PCP mai n() application into an interrupt
service routine on interrupt channel 1.

When this interrupt is activated, it executes in parallel with the TriCore application and returns the exit
code of the PCP i n() function after finishing execution.

The PCP C startup code is part of the library and needs no further configuration.

For details on how to add or change the TriCore C startup code to your TriCore project, see the equivalent
section in the TASKING VX-toolset for TriCore User Guide.

136

Using the C Compiler

3.4. How the Compiler Searches Include Files

When you use include files (with the #i ncl ude statement), you can specify their location in several ways.
The compiler searches the specified locations in the following order:

1. If the #i ncl ude statement contains an absolute pathname, the compiler looks for this file. If no path
or a relative path is specified, the compiler looks in the same directory as the source file. This is only

possible for include files that are enclosed in ™.

This first step is not done for include files enclosed in <>.

2. When the compiler did not find the include file, it looks in the directories that are specified in the C
Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-)).

3. When the compiler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable CPCPI NC.

4. When the compiler still did not find the include file, it finally tries the default include directory relative
to the installation directory (unless you specified option --no-stdinc).

Example
Suppose that the C source file t est . ¢ contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the compiler as follows:
cpcp -lnyinclude test.c

First the compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current directory.
If it was not found, the compiler searches in the environment variable CPCPI NC and then in the default
i ncl ude directory.

The compiler now looks for the file nyi nc. h, in the directory where t est . c is located. If the file is not
there the compiler searches in the directory nyi ncl ude. If it was still not found, the compiler searches
in the environment variable CPCPI NC and then in the default i ncl ude directory.

3.5. Compiling for Debugging

Compiling your files is the first step to get your application ready to run on a target. However, during
development of your application you first may want to debug your application.

To create an object file that can be used for debugging, you must instruct the compiler to include symbolic
debug information in the source file.

137

TASKING VX-toolset for PCP User Guide

To include symbolic debug information

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select C Compiler » Debugging.

4. Select Default in the Generate symbolic debug information box.

Debug and optimizations

Due to different compiler optimizations, it might be possible that certain debug information is optimized
away. Therefore, if you encounter strange behavior during debugging it might be necessary to reduce
the optimization level, so that the source code is still suitable for debugging. For more information on
optimization see Section 3.6, Compiler Optimizations.

Invocation syntax on the command line
The invocation syntax on the command line is:

cpep -g file.c

3.6. Compiler Optimizations

The compiler has a number of optimizations which you can enable or disable.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. From the Configuration list, select a configuration or select[All configurations].
4. On the Tool Settings tab, select C Compiler » Optimization.
5. Select an optimization level in the Optimization level box.
or:

In the Optimization level box select Custom optimization and enable the optimizations you want
on the Custom optimization page.

138

Using the C Compiler

Optimization levels

The TASKING C compiler offers four optimization levels and a custom level, at each level a specific set
of optimizations is enabled.

» Level 0 - No optimization: No optimizations are performed. The compiler tries to achieve a 1-to-1
resemblance between source code and produced code. Expressions are evaluated in the order written
in the source code, associative and commutative properties are not used.

* Level 1 - Optimize: Enables optimizations that do not affect the debug-ability of the source code. Use
this level when you encounter problems during debugging your source code with optimization level 2.

* Level 2 - Optimize more (default): Enables more optimizations to reduce the memory footprint and/or
execution time. This is the default optimization level.

* Level 3 - Optimize most: This is the highest optimization level. Use this level when your
program/hardware has become too slow to meet your real-time requirements.

» Custom optimization: you can enable/disable specific optimizations on the Custom optimization page.
Optimization pragmas
If you specify a certain optimization, all code in the module is subject to that optimization. Within the C

source file you can overrule the C compiler options for optimizations with #pr agna opti m ze fl ag
and #pragma endopti m ze. Nesting is allowed:

#pragma optim ze e /* Enabl e expression
sinplification */
C source ...
#pragma optimnm ze c /* Enabl e common expression
elim nation. Expression
C source ... sinplification still enabled */

#pragma endoptinize /* Disable comopn expression

elimnation */
#pragma endoptimnize /* Disable expression
sinplification */

The compiler optimizes the code between the pragma pair as specified.

You can enable or disable the optimizations described in the following subsection. The command line
option for each optimization is given in brackets.

3.6.1. Generic Optimizations (frontend)

Common subexpression elimination (CSE) (option -Oc/-OC)
The compiler detects repeated use of the same (sub-)expression. Such a "common" expression is replaced

by a variable that is initialized with the value of the expression to avoid recomputation. This method is
called common subexpression elimination (CSE).

139

TASKING VX-toolset for PCP User Guide

A CSE can live in a register, on stack or can be recomputed when required.
Expression simplification (option -Oe/-OE)

Multiplication by 0 or 1 and additions or subtractions of O are removed. Such useless expressions may
be introduced by macros or by the compiler itself (for example, array subscripting).

Constant propagation (option -Op/-OP)
A variable with a known value is replaced by that value.
Automatic function inlining (option -Oi/-Ol)

Small functions that are not too often called, are inlined. This reduces execution time at the cost of code
size.

Control flow simplification (option -Of/-OF)

A number of techniques to simplify the flow of the program by removing unnecessary code and reducing
the number of jumps. For example:

» Switch optimization: A number of optimizations of a switch statement are performed, such as removing
redundant case labels or even removing an entire switch.

» Jump chaining: A (conditional) jump to a label which is immediately followed by an unconditional jump
may be replaced by a jump to the destination label of the second jump. This optimization speeds up
execution.

» Conditional jump reversal: A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the code size and the execution
time.

» Dead code elimination: Code that is never reached, is removed. The compiler generates a warning
messages because this may indicate a coding error.

Subscript strength reduction (option -Os/-OS)

An array or pointer subscripted with a loop iterator variable (or a simple linear function of the iterator
variable), is replaced by the dereference of a pointer that is updated whenever the iterator is updated.

Loop transformations (option -Ol/-OL)

Transform a loop with the entry point at the bottom, to a loop with the entry point at the top. This enables
constant propagation in the initial loop test and code motion of loop invariant code by the CSE optimization.

Forward store (option -Oo/-00)

A temporary variable is used to cache multiple assignments (stores) to the same non-automatic variable.

140

Using the C Compiler

MIL linking (Control program option --mil-link)

The frontend phase performs its optimizations on the MIL code. When all C modules and/or MIL modules
of an application are given to the C compiler in a single invocation, the C compiler will link MIL code of
the modules to a complete application automatically. Next, the frontend will run its optimizations again
with application scope. After this, the MIL code is passed on to the backend, which will generate a single
. sr c file for the whole application. Linking with the run-time library, floating-point library and C library is
still necessary. Linking with the C library is required because this library contains some hand-coded
assembly functions, that are not linked in at MIL level.

In the ISO C99 standard a "translation unit" is a preprocessed source file together with all the headers
and source files included via the preprocessing directive #i ncl ude. After MIL linking the compiler will
treat the linked sources files as a single translation unit, allowing global optimizations to be performed,
that otherwise would be limited to a single module.

MIL splitting (option --mil-split)

When you specify that the C compiler has to use MIL splitting, the C compiler will first link the application
at MIL level as described above. However, after rerunning the optimizations the MIL code is not passed
on to the backend. Instead the frontend writes a . s file for each input file or library. A . ns file has the
same formatasa. m | file.Only . s files that really change are updated. The advantage of this approach
is that it is possible to use the make utility to translate only those parts of the application to a . sr ¢ file
that really have changed. MIL splitting is therefore a more efficient build process than MIL linking. The
penalty for this is that the code compaction optimization in the backend does not have application scope.
As with MIL linking, it is still required to link with the normal libraries to build an ELF file.

141

TASKING VX-toolset for PCP User Guide

Cfile 1 Cfile 2 e Cfile N

MIL libs
MIL split
files

C compiler (BE C compiler (BE

asm
SOUrces

assembler assembler

object object
files libs

To read more about how MIL linking influences the build process of your application, see Section 9.2,
MIL Linking.

MIL split
file 1

C compiler (BE

assembler

Note that with both options some extra strict type checking is done that can cause building to fail in a way
that is unforeseen and difficult to understand. For example, when you use one of these options in
combination with option --uchar and you link the MIL library, you might get the following error:

cpcp E289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
cpcp 1802: ["installation-dir\cpcp\include\string.h" 44/17]

previ ous decl aration of "strlen"
1 errors, O warnings

This is caused by the fact that the MIL library is built without --uchar. You can workaround this problem
by rebuilding the MIL libraries.

3.6.2. Core Specific Optimizations (backend)

Coalescer (option -Oa/-OA)

The coalescer seeks for possibilities to reduce the number of moves (MOV instruction) by smart use of
registers. This optimizes both speed and code size.

Interprocedural register optimization (option -Ob/-OB)
Register allocation is improved by taking note of register usage in functions called by a given function.
Peephole optimizations (option -Oy/-QY)

The generated assembly code is improved by replacing instruction sequences by equivalent but faster
and/or shorter sequences, or by deleting unnecessary instructions.

142

Using the C Compiler

Code compaction (reverse inlining) (option -Or/-OR)

Compaction is the opposite of inlining functions: chunks of code that occur more than once, are transformed
into a function. This reduces code size at the cost of execution speed. The size of the chunks of code to
be inlined depends on the setting of the C compiler option --tradeoff (-t). See the subsection Code
Compaction in Section 3.6.3, Optimize for Code Size or Execution Speed.

Note that if you use section renaming, by default, the compiler only performs code compaction on sections
that have the same section type prefix, and name given by the section renaming pragma or option. When
you use C compiler option --relax-compact-name-check, the compiler does not perform this section
name check, but performs code compaction whenever possible.

Generic assembly optimizations (option -Og/-OG)
A set of target independent optimizations that increase speed and decrease code size.
Automatic memory partitioning (option --no-partition)

The PCP has 256 pages of memory. Global variables are accessed by means of a page pointer (DPTR).
With this optimization the compiler tries to allocate the global variables together in a page to reduce the
loading of the page pointer. So, this optimization reduces code size. This optimization is enabled by
default.

3.6.3. Optimize for Code Size or Execution Speed

You can tell the compiler to focus on execution speed or code size during optimizations. You can do this
by specifying a size/speed trade-off level from O (speed) to 4 (size). This trade-off does not turn optimization
phases on or off. Instead, its level is a weight factor that is used in the different optimization phases to
influence the heuristics. The higher the level, the more the compiler focusses on code size optimization.
To choose a trade-off value read the description below about which optimizations are affected and the
impact of the different trade-off values.

Note that the trade-off settings are directions and there is no guarantee that these are followed. The
compiler may decide to generate different code if it assessed that this would improve the result.

To specify the size/speed trade-off optimization level:
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » Optimization.
4. Select a trade-off level in the Trade-off between speed and size box.

See also C compiler option --tradeoff (-t)

143

TASKING VX-toolset for PCP User Guide

Instruction Selection
Trade-off levels 0, 1 and 2: the compiler selects the instructions with the smallest number of cycles.

Trade-off levels 3 and 4: the compiler selects the instructions with the smallest number of bytes.

Switch Jump Chain versus Jump Table

Instruction selection for the swi t ch statements follows different trade-off rules. A swi t ch statement can
result in a jump chain or a jump table. The compiler makes the decision between those by measuring
and weighing bytes and cycles. This weigh is controlled with the trade-off values:

Trade-off value Time Size
0 100% 0%

1 75% 25%
2 50% 50%
3 25% 75%
4 0% 100%

Subscript Strength Reduction

Subscript strength reduction is turned off by default, because it is not possible for the PCP to automatically
determine if it improves the generated code.

The total number of additional pointers of a particular type in a particular loop is limited to 4 for the PCP.

The performance increases when more subscript pointers can be allocated for an ideal situation. Ideal is
when no registers are needed for other objects than subscripts. This is rarely the case, therefore the
maximum number of registers is set to 4 GPRs.

Loop Optimization

For a top-loop, the loop is entered at the top of the loop. A bottom-loop is entered at the bottom. Every
loop has a test and a jump at the bottom of the loop, otherwise it is not possible to create a loop. Some
top-loops also have a conditional jump before the loop. This is only necessary when the number of loop
iterations is unknown. The number of iterations might be zero, in this case the conditional jump jumps
over the loop.

Bottom loops always have an unconditional jump to the loop test at the bottom of the loop.

Trade-off value Try to rewrite top-loops to [Optimize loops for
bottom-loops size/speed

0 no speed

1 yes speed

2 yes speed

3 yes size

4 yes size

144

Using the C Compiler

Example:
int a;
voidi(int I, int m)
{
int i;
for (I =m i <|1; i++)
{
a++;
}
return;
}
Coded as a bottom loop (compiled with --tradeoff=4) is:
jg 2 ;; unconditional junmp to |oop test at bottom
3
I d.i r5, Ox1
Idl.il r7, @PTR(_PCP_a)
add. pi r5,[_PCP_a]
st. pi r5,[_PCP_a]
add. i r3, 0x1
_2: ;; loop entry point
conmp r3,rl1,cc_uc
ig _3,cc_slt

Coded as a top loop (compiled with --tradeoff=0) is:

Idl.il r7, @PTR(_PCP_a)
I d. pi r5,[_PCP_a]
conp r3,rl,cc_uc ;; test for at |least one loop iteration
jg _2,cc_sge ;; can be onmitted when nunber of iterations is known
_3: ;; loop entry point
add. i r5, Ox1
add. i r3, 0x1
conmp r3,rl1,cc_uc
jg _3,cc_slt
2:

Automatic Function Inlining

You can enable automatic function inlining with the option --optimize=+inline (-Oi) or by using #pr agrma
optim ze +inline.This option is also part of the -O3 predefined option set.

When automatic inlining is enabled, you can use the options --inline-max-incr and --inline-max-size (or
their corresponding pragmas i nl i ne_max_i ncr / inline_nmax_si ze) to control automatic inlining.
By default their values are set to -1. This means that the compiler will select a value depending upon the
selected trade-off level. The defaults are:

145

TASKING VX-toolset for PCP User Guide

Trade-off value inline-max-incr inline-max-size
0 999 50

1 50 25

2 20 20

3 10 10

4 0 0

For example with trade-off value 1, the compiler inlines all functions that are smaller or equal to 25 internal
compiler units. After that the compiler tries to inline even more functions as long as the function will not
grow more than 50%.

When these options/pragmas are set to a value >= 0, the specified value is used instead of the values
from the table above.

Static functions that are called only once, are always inlined, independent of the values chosen for
inline-max-incr and inline-max-size.

Code Compaction
Trade-off levels 0 and 1: code compaction is disabled.
Trade-off level 2: only code compaction of matches outside loops.

Trade-off level 3: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 10.

Trade-off level 4: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 100.

For loops where the iteration count is unknown an iteration count of 10 is assumed.
For the execution frequency the compiler also accounts nested loops.

See C compiler option --compact-max-size

3.6.4. Static Stack Alignment Optimizations

The compiler aligns static stack sections so that they are not located over a PRAM page boundary. The
linker locates the begin of the static stack at a PRAM page boundary to ensure that all aligned static stack
sections are not located over a page boundary. This alignment restriction saves code by not having to
reload the DPTR pointer when it already contains the correct page. The compiler can optimize DPTR
updates for static stack accesses to static stack objects that are located in the same page.

The disadvantage is that data space is spilled for the alignment restriction. With the C compiler option
--align-stack you can prevent or reduce the alignment gaps on the static stack. Of course less or no
page pointer updates can then be optimized by the compiler which increasing the code size. This is a
typical data size versus code size optimization.

By default all static stack sections are aligned on a power of 2 depending on its size. The static stack
maximum alignment value must be a power of two in the range [1..64].

146

Using the C Compiler

--align-stack=val ue

A value of 1 equals to no alignment optimizations. The default value is 64, which aligns all static stack
sections. Also static stack sections that are larger than 64 get an alignment of 64.

3.7. Static Code Analysis

Static code analysis (SCA) is a relatively new feature in compilers. Various approaches and algorithms
exist to perform SCA, each having specific pros and cons.

SCA Implementation Design Philosophy
SCA is implemented in the TASKING compiler based on the following design criteria:

* An SCA phase does not take up an excessive amount of execution time. Therefore, the SCA can be
performed during a normal edit-compile-debug cycle.

» SCA is implemented in the compiler front-end. Therefore, no new makefiles or work procedures have
to be developed to perform SCA.

» The number of emitted false positives is kept to a minimum. A false positive is a message that indicates
that a correct code fragment contains a violation of a rule/recommendation. A number of warnings is
issued in two variants, one variant when it is guaranteed that the rule is violated when the code is
executed, and the other variant when the rules is potentially violated, as indicated by a preceding
warning message.

For example see the following code fragment:

extern int some_condition(int);
void f(void)
{

char buf[10];

int i;

for (i =0; i <= 10; i++4)
{

if (sonme_condition(i))

buf[i] = 0; /* subscript may be out of bounds */

}

As you can see in this example, if i =10 the array buf [] might be accessed beyond its upper boundary,
depending on the result of sone_condi ti on(i).If the compiler cannot determine the result of this
function at run-time, the compiler issues the warning "subscript is possibly out of bounds" preceding
the CERT warning "ARR35: do not allow loops to iterate beyond the end of an array”. If the compiler
can determine the result, or if the i f statement is omitted, the compiler can guarantee that the "subscript
is out of bounds".

147

TASKING VX-toolset for PCP User Guide

» The SCA implementation has real practical value in embedded system development. There are no real
objective criteria to measure this claim. Therefore, the TASKING compilers support well known standards
for safety critical software development such as the MISRA guidelines for creating software for safety
critical automotive systems and secure "CERT C Secure Coding Standard" released by CERT. CERT
is founded by the US government and studies internet and networked systems security vulnerabilities,
and develops information to improve security.

Effect of optimization level on SCA results
The SCA implementation in the TASKING compilers has the following limitations:

» Some violations of rules will only be detected when a particular optimization is enabled, because they
rely on the analysis done for that optimization, or on the transformations performed by that optimization.
In particular, the constant propagation and the CSE/PRE optimizations are required for some checks.
It is preferred that you enable these optimizations. These optimizations are enabled with the default
setting of the optimization level (-02).

» Some checks require cross-module inspections and violations will only be detected when multiple
source files are compiled and linked together by the compiler in a single invocation.

3.7.1. C Code Checking: CERT C

The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities. The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

For details about the standard, see the CERT C Secure Coding Standard web site. For general information
about CERT secure coding, see www.cert.org/secure-coding.

Versions of the CERT C standard

Version 1.0 of the CERT C Secure Coding Standard is available as a book by Robert C. Seacord
[Addison-Wesley]. Whereas the web site is a wiki and reflects the latest information, the book serves as
a fixed point of reference for the development of compliant applications and source code analysis tools.

The rules and recommendations supported by the TASKING compiler reflect the version of the CERT
web site as of June 1 2009.

The following rules/recommendations implemented by the TASKING compiler, are not part of the book:
PRE11-C, FLP35-C, FLP36-C, MSC32-C

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 15, CERT C Secure Coding Standard.

Priority and Levels of CERT C

Each CERT C rule and recommendation has an assigned priority. Three values are assigned for each
rule on a scale of 1 to 3 for

* severity - how serious are the consequences of the rule being ignored

148

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
http://www.cert.org/secure-coding
http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html
http://doc.tasking.com/cert/msc32.html

Using the C Compiler

1. low (denial-of-service attack, abnormal termination)
2. medium (data integrity violation, unintentional information disclosure)
3. high (run arbitrary code)

« likelihood - how likely is it that a flaw introduced by ignoring the rule could lead to an exploitable
vulnerability

1. unlikely
2. probable
3. likely
» remediation cost - how expensive is it to comply with the rule
1. high (manual detection and correction)
2. medium (automatic detection and manual correction)
3. low (automatic detection and correction)

The three values are then multiplied together for each rule. This product provides a measure that can be
used in prioritizing the application of the rules. These products range from 1 to 27. Rules and
recommendations with a priority in the range of 1-4 are level 3 rules (low severity, unlikely, expensive to
repair flaws), 6-9 are level 2 (medium severity, probable, medium cost to repair flaws), and 12-27 are
level 1 (high severity, likely, inexpensive to repair flaws).

The TASKING compiler checks most of the level 1 and some of the level 2 CERT C recommendations/rules.

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 15, CERT C Secure Coding Standard.

To apply CERT C code checking to your application
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » CERT C Secure Coding.
4. Make a selection from the CERT C secure code checking list.

5. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

On the command line you can use the option --cert.

cpcp --cert={all | name [-nane],...]

149

TASKING VX-toolset for PCP User Guide

With --diag=cert you can see a list of the available checks, or you can use a three-letter mnemonic to
list only the checks in a particular category. For example, --diag=pre lists all supported checks in the
preprocessor category.

3.7.2. C Code Checking: MISRA C

The C programming language is a standard for high level language programming in embedded systems,
yetitis considered somewhat unsuitable for programming safety-related applications. Through enhanced
code checking and strict enforcement of best practice programming rules, TASKING MISRA C code
checking helps you to produce more robust code.

MISRA C specifies a subset of the C programming language which is intended to be suitable for embedded
automotive systems. It consists of a set of rules, defined in MISRA-C:2004, Guidelines for the Use of the
C Language in Critical Systems (Motor Industry Research Association (MIRA), 2004).

The compiler also supports MISRA C:1998, the first version of MISRA C and MISRA C: 2012, the latest
version of MISRA C. You can select the version with the following C compiler option:

--m srac-versi on=1998
--m srac-versi on=2004
--m srac-versi on=2012

In your C source files you can check against the MISRA C version used. For example:

#if _ M SRAC VERSION__ == 1998
#elif __ M SRAC_VERSION__ == 2004
#elif _ M SRAC_VERSION__ == 2012
#endi f

For a complete overview of all MISRA C rules, see Chapter 16, MISRA C Rules.

Implementation issues

The MISRA C implementation in the compiler supports nearly all rules. Only a few rules are not supported
because they address documentation, run-time behavior, or other issues that cannot be checked by static
source code inspection, or because they require an application-wide overview.

During compilation of the code, violations of the enabled MISRA C rules are indicated with error messages
and the build process is halted.

MISRA C rules are divided in mandatory rules, required rules and advisory rules. If rules are violated,
errors are generated causing the compiler to stop. With the following options warnings, instead of errors,
are generated:

--m srac- mandat or y- war ni ngs

--m srac-required-warni ngs
--m srac-advi sory-war ni ngs

150

Using the C Compiler

Note that not all MISRA C violations will be reported when other errors are detected in the input
source. For instance, when there is a syntax error, all semantic checks will be skipped, including
some of the MISRA C checks. Also note that some checks cannot be performed when the
optimizations are switched off.

Quality Assurance report

To ensure compliance to the MISRA C rules throughout the entire project, the TASKING linker can
generate a MISRA C Quality Assurance report. This report lists the various modules in the project with
the respective MISRA C settings at the time of compilation. You can use this in your company's quality
assurance system to provide proof that company rules for best practice programming have been applied
in the particular project.

To apply MISRA C code checking to your application
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » MISRA C.
4. Select the MISRA C version (1998, 2004 or 2012).

5. Inthe MISRA C checking box select a MISRA C configuration. Select a predefined configuration
for conformance with the required rules in the MISRA C guidelines.

6. (Optional) In the Custom 1998, Custom 2004 or Custom 2012 entry, specify the individual rules.
On the command line you can use the option --misrac.

cpcp --msrac={all | nunber [-nunber],...]

3.8. C Compiler Error Messages
The C compiler reports the following types of error messages in the Problems view of Eclipse.
F (Fatal errors)

After a fatal error the compiler immediately aborts compilation.

E (Errors)

Errors are reported, but the compiler continues compilation. No output files are produced unless you have
set the C compiler option --keep-output-files (the resulting output file may be incomplete).

151

TASKING VX-toolset for PCP User Guide

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the compiler for a situation which may not be correct. You can control warnings
in the C/C++ Build » Settings » Tool Settings » C Compiler » Diagnostics page of the Project »
Properties for menu (C compiler option --no-warnings).

| (Information)

Information messages are always preceded by an error message. Information messages give extra
information about the error.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

SO##: internal consistency check failed - please report

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the C compiler option --diag to see an explanation of a diagnostic
message:

cpcp --diag=[format:]{all | nunber,...]

152

Chapter 4. Using the Assembler

This chapter describes the assembly process and explains how to call the assembler.

The assembler converts hand-written or compiler-generated assembly language programs into machine
language, resulting in object files in the ELF/DWARF object format.

The assembler takes the following files for input and output:

assembly file (hand coded)

assembly file
. 8¥C

assembler

relocatable object file
.0

. asm

list file . 1st

————% error messages .ers

The following information is described:

The assembly process.

How to call the assembler and how to use its options. An extensive list of all options and their descriptions
is included in Section 8.3, Assembler Options.

The various assembler optimizations.
How to generate a list file.

Types of assembler messages.

4.1. Assembly Process

The assembler generates relocatable output files with the extension . 0. These files serve as input for
the linker.

Phases of the assembly process

Parsing of the source file: preprocessing of assembler directives and checking of the syntax of
instructions

Instruction grouping and reordering
Optimization (instruction size)

Generation of the relocatable object file and optionally a list file

The assembler integrates file inclusion and macro facilities. See Section 2.10, Macro Operations for more
information.

153

TASKING VX-toolset for PCP User Guide

4.2. Calling the Assembler

The TASKING VX-toolset for PCP under Eclipse uses the TASKING makefile generator and make utility
to build your entire project. After you have built your project, the output files are available in a subdirectory
of your project directory, depending on the active configuration you have set in the C/C++ Build » Settings
page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

* Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (“), This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behavior tab of the C/C++ Build page of the Project » Properties for dialog.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you need to set them for each
configuration.

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

3. From the Configuration list, select a configuration or select[All configurations].

154

Using the Assembler

4. From the Processor selection list, select a processor.

To access the assembler options
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. From the Configuration list, select a configuration or select[All configurations].
4. On the Tool Settings tab, select Assembler.
5. Select the sub-entries and set the options in the various pages.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

Note that when you click Restore Defaults to restore the default tool options, as a side effect the
processor is also reset to its default value on the Processor page (C/C++ Build » Processor).

You can find a detailed description of all assembler options in Section 8.3, Assembler Options.

Invocation syntax on the command line:
aspcp [[option]... [file]...]...

The input file must be an assembly source file (. asmor . src).

4.3. How the Assembler Searches Include Files

When you use include files (with the . | NCLUDE directive), you can specify their location in several ways.
The assembler searches the specified locations in the following order:

1. If the . | NCLUDE directive contains an absolute path name, the assembler looks for this file. If no path
or a relative path is specified, the assembler looks in the same directory as the source file.

2. When the assembler did not find the include file, it looks in the directories that are specified in the
Assembler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-I)).

3. When the assembler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable ASPCPI NC.

155

TASKING VX-toolset for PCP User Guide

4. When the assembiler still did not find the include file, it finally tries the default include directory relative
to the installation directory.

Example

Suppose that the assembly source file t est . asmcontains the following lines:
. I NCLUDE ' nyi nc. i nc'

You can call the assembler as follows:

aspcp -l nyinclude test.asm

First the assembler looks for the file myi nc. asm in the directory where t est . asmis located. If the file
is not there the assembler searches in the directory nyi ncl ude. If it was still not found, the assembler
searches in the environment variable ASPCPI NC and then in the default i ncl ude directory.

4.4. Assembler Optimizations

The assembler can perform various optimizations that you can enable or disable.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. From the Configuration list, select a configuration or select[Al configurations].
4. On the Tool Settings tab, select Assembler » Optimization.
5. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Optimize instruction size (option -Os/-0OS)

When this option is enabled, the assembler tries to find the shortest possible operand encoding for
instructions. By default this option is enabled.

4.5. Generating a List File

The list file is an additional output file that contains information about the generated code. You can
customize the amount and form of information.

If the assembler generates errors or warnings, these are reported in the list file just below the source line
that caused the error or warning.

156

Using the Assembler

To generate alist file

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler » List File.

4. Enable the option Generate list file.

5. (Optional) Enable the options to include that information in the list file.

Example on the command line

The following command generates the list file t est . | st :
aspcp -1 test.asm

See Section 11.1, Assembler List File Format, for an explanation of the format of the list file.

4.6. Assembler Error Messages

The assembler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the assembler immediately aborts the assembly process.

E (Errors)

Errors are reported, but the assembler continues assembling. No output files are produced unless you
have set the assembler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)
Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the assembler for a situation which may not be correct. You can control

warnings in the C/C++ Build » Settings » Tool Settings » Assembler » Diagnostics page of the Project
» Properties for menu (assembler option --no-warnings).

Display detailed information on diagnostics
1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

157

TASKING VX-toolset for PCP User Guide

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the assembler option --diag to see an explanation of a diagnostic
message:

aspcp --diag=[format:]{all | nunber,...]

158

Chapter 5. Using the Linker

This chapter describes the linking process, how to call the linker and how to control the linker with a script
file.

The TASKING linker is a combined linker/locator. The linker phase combines relocatable object files (. 0
files, generated by the assembler), and libraries into a single relocatable linker object file (. out). The

locator phase assigns absolute addresses to the linker object file and creates an absolute object file which
you can load into a target processor. From this point the term linker is used for the combined linker/locator.

The linker can simultaneously link and locate all programs for all cores available on a target board. The

target board may be of arbitrary complexity. A simple target board may contain one standard processor

with some external memory that executes one task. A complex target board may contain multiple standard
processors and DSPs combined with configurable IP-cores loaded in an FPGA. Each core may execute
a different program, and external memory may be shared by multiple cores.

The linker takes the following files for input and output:

relocatable object files
el

relocatable linker object file
.out

relocatable object library
.a

linker script file

sl linker map file .map

linker
———-» error messages .elk

relocatable linker object file
.out

memory definition file . mdf

v v '

Intel Hex ELF/DWARF Motorola S-record
absolute object file absolute object file absolute object file
.hex .elf .sre

This chapter first describes the linking process. Then it describes how to call the linker and how to use
its options. An extensive list of all options and their descriptions is included in Section 8.4, Linker Options.

To control the link process, you can write a script for the linker. This chapter shortly describes the purpose
and basic principles of the Linker Script Language (LSL) on the basis of an example. A complete description
of the LSL is included in Linker Script Language.

5.1. Linking Process

The linker combines and transforms relocatable object files (. 0) into a single absolute object file. This
process consists of two phases: the linking phase and the locating phase.

In the first phase the linker combines the supplied relocatable object files and libraries into a single
relocatable object file. In the second phase, the linker assigns absolute addresses to the object file so it
can actually be loaded into a target.

159

TASKING VX-toolset for PCP User Guide

Terms used in the linking process

Term

Definition

Absolute object file

Address
Address space

Architecture

Copy table

Core
Derivative

Library

Logical address

LSL file
MAU

Object code
Physical address
Processor

Relocatable object
file

Relocation

160

Object code in which addresses have fixed absolute values, ready to load into a
target.

A specification of a location in an address space.

The set of possible addresses. A core can support multiple spaces, for example in
a Harvard architecture the addresses that identify the location of an instruction
refer to code space, whereas addresses that identify the location of a data object
refer to a data space.

A description of the characteristics of a core that are of interest for the linker. This
encompasses the address space(s) and the internal bus structure. Given this
information the linker can convert logical addresses into physical addresses.

A section created by the linker. This section contains data that specifies how the
startup code initializes the data and BSS sections. For each section the copy table
contains the following fields:

« action: defines whether a section is copied or zeroed
» destination: defines the section's address in RAM
* source: defines the sections address in ROM, zero for BSS sections

« length: defines the size of the section in MAUs of the destination space

An instance of an architecture.

The design of a processor. A description of one or more cores including internal
memory and any number of buses.

Collection of relocatable object files. Usually each object file in a library contains
one symbol definition (for example, a function).

An address as encoded in an instruction word, an address generated by a core
(CPU).

The set of linker script files that are passed to the linker.

Minimum Addressable Unit. For a given processor the number of bits between an
address and the next address. This is not necessarily a byte or a word.

The binary machine language representation of the C source.
An address generated by the memory system.

An instance of a derivative. Usually implemented as a (custom) chip, but can also
be implemented in an FPGA, in which case the derivative can be designed by the
developer.

Object code in which addresses are represented by symbols and thus relocatable.

The process of assigning absolute addresses.

Using the Linker

Term Definition

Relocation Information about how the linker must modify the machine code instructions when

information it relocates addresses.

Section A group of instructions and/or data objects that occupy a contiguous range of
addresses.

Section attributes Attributes that define how the section should be linked or located.

Target The hardware board on which an application is executing. A board contains at least
one processor. However, a complex target may contain multiple processors and
external memory and may be shared between processors.

Unresolved A reference to a symbol for which the linker did not find a definition yet.

reference

5.1.1. Phase 1: Linking

The linker takes one or more relocatable object files and/or libraries as input. A relocatable object file, as
generated by the assembler, contains the following information:

» Header information: Overall information about the file, such as the code size, name of the source file
it was assembled from, and creation date.

» Object code: Binary code and data, divided into various named sections. Sections are contiguous
chunks of code that have to be placed in specific parts of the memory. The program addresses start
at zero for each section in the object file.

» Symbols: Some symbols are exported - defined within the file for use in other files. Other symbols are
imported - used in the file but not defined (external symbols). Generally these symbols are names of
routines or names of data objects.

» Relocation information: A list of places with symbolic references that the linker has to replace with
actual addresses. When in the code an external symbol (a symbol defined in another file or in a library)
is referenced, the assembler does not know the symbol's size and address. Instead, the assembler
generates a call to a preliminary relocatable address (usually 0000), while stating the symbol name.

» Debug information: Other information about the object code that is used by a debugger. The assembler
optionally generates this information and can consist of line numbers, C source code, local symbols
and descriptions of data structures.

The linker resolves the external references between the supplied relocatable object files and/or libraries
and combines the files into a single relocatable linker object file.

The linker starts its task by scanning all specified relocatable object files and libraries. If the linker
encounters an unresolved symbol, it remembers its name and continues scanning. The symbol may be
defined elsewhere in the same file, or in one of the other files or libraries that you specified to the linker.
If the symbol is defined in a library, the linker extracts the object file with the symbol definition from the
library. This way the linker collects all definitions and references of all of the symbols.

Next, the linker combines sections with the same section name and attributes into single sections. The
linker also substitutes (external) symbol references by (relocatable) numerical addresses where possible.

161

TASKING VX-toolset for PCP User Guide

At the end of the linking phase, the linker either writes the results to a file (a single relocatable object file)
or keeps the results in memory for further processing during the locating phase.

The resulting file of the linking phase is a single relocatable object file (. out). If this file contains unresolved
references, you can link this file with other relocatable object files (. 0) or libraries (. a) to resolve the
remaining unresolved references.

With the linker command line option --link-only, you can tell the linker to only perform this linking phase
and skip the locating phase. The linker complains if any unresolved references are left.

5.1.2. Phase 2: Locating

In the locating phase, the linker assigns absolute addresses to the object code, placing each section in
a specific part of the target memory. The linker also replaces references to symbols by the actual address
of those symbols. The resulting file is an absolute object file which you can actually load into a target
memory. Optionally, when the resulting file should be loaded into a ROM device the linker creates a
so-called copy table section which is used by the startup code to initialize the data and BSS sections.

Code modification

When the linker assigns absolute addresses to the object code, it needs to modify this code according
to certain rules or relocation expressions to reflect the new addresses. These relocation expressions are
stored in the relocatable object file. Consider the following snippet of x86 code that moves the contents
of variable a to variable b via the eax register:

Al 3412 0000 nov a, %eax (a defined at 0x1234, byte reversed)
A3 0000 0000 rmov %ax, b (b is inported so the instruction refers to
0x0000 since its |location is unknown)

Now assume that the linker links this code so that the section in which a is located is relocated by 0x10000
bytes, and b turns out to be at 0x9A12. The linker modifies the code to be:

Al 3412 0100 nov a, %eax (0x10000 added to the address)
A3 129A 0000 nov %ax, b (0x9A12 patched in for b)

These adjustments affect instructions, but keep in mind that any pointers in the data part of a relocatable
object file have to be modified as well.

Output formats

The linker can produce its output in different file formats. The default ELF/DWARF format (. el f) contains
an image of the executable code and data, and can contain additional debug information. The Intel-Hex
format (. hex) and Motorola S-record format (. sr €) only contain an image of the executable code and
data. You can specify a format with the options --output (-0) and --chip-output (-c).

Controlling the linker

Via a so-called linker script file you can gain complete control over the linker. The script language is called
the Linker Script Language (LSL). Using LSL you can define:

» The memory installed in the embedded target system:

162

Using the Linker

To assign locations to code and data sections, the linker must know what memory devices are actually
installed in the embedded target system. For each physical memory device the linker must know its
start-address, its size, and whether the memory is read-write accessible (RAM) or read-only accessible
(ROM).

» How and where code and data should be placed in the physical memory:

Embedded systems can have complex memory systems. If for example on-chip and off-chip memory
devices are available, the code and data located in internal memory is typically accessed faster and
with dissipating less power. To improve the performance of an application, specific code and data
sections should be located in on-chip memory. By writing your own LSL file, you gain full control over
the locating process.

» The underlying hardware architecture of the target processor.

To perform its task the linker must have a model of the underlying hardware architecture of the processor
you are using. For example the linker must know how to translate an address used within the object
file (a logical address) into an offset in a particular memory device (a physical address). In most linkers
this model is hard coded in the executable and can not be modified. For the TASKING linker this
hardware model is described in the linker script file. This solution is chosen to support configurable
cores that are used in system-on-chip designs.

When you want to write your own linker script file, you can use the standard linker script files with
architecture descriptions delivered with the product.

See also Section 5.7, Controlling the Linker with a Script.

5.2. Calling the Linker

In Eclipse you can set options specific for the linker. After you have built your project, the output files are
available in a subdirectory of your project directory, depending on the active configuration you have set
in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

* Build Individual Project (&T),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (“). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...

2. Enable the option Start a build immediately and click OK.

163

TASKING VX-toolset for PCP User Guide
 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended, but to enable this feature select Project » Build Automatically
and ensure there is a check mark beside the Build Automatically menu item. In order for this option
to work, you must also enable option Build on resource save (Auto build) on the Behavior tab of
the C/C++ Build page of the Project » Properties for dialog.

To access the linker options
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. From the Configuration list, select a configuration or select[Al configurations].
4. On the Tool Settings tab, select Linker.
5. Select the sub-entries and set the options in the various pages.

Note that when you click Restore Defaults to restore the default tool options, as a side effect the
processor is also reset to its default value on the Processor page (C/C++ Build » Processor).

You can find a detailed description of all linker options in Section 8.4, Linker Options.

Invocation syntax on the command line:

Ipcp [[option]... [file]l... 1...

When you are linking multiple files, either relocatable object files (. 0) or libraries (. a), it is important to
specify the files in the right order. This is explained in Section 5.3, Linking with Libraries.

Example:
| pcp -dtcl796b.1sl test.o

This links and locates the file t est . 0 and generates the filet est . el f.

5.3. Linking with Libraries

There are two kinds of libraries: system libraries and user libraries.

System library

System libraries are stored in the directories:

164

Using the Linker

<PCP installation path>\Iib\pcp2 (PCP 2 libraries)

An overview of the system libraries is given in the following table:

Libraries Description
libc.a C library
libfp[t].a Floating-point libraries

Optional letter:
t = trapping (control program option --fp-model=+trap)

To link the default C (system) libraries

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Enable the option Link default libraries.

When you want to link system libraries from the command line, you must specify this with the option
--library (-1). For example, to specify the system library | i bc. a, type:

| pcp --library=c test.o

User library

You can create your own libraries. Section 6.4, Archiver describes how you can use the archiver to create
your own library with object modules.

To link user libraries

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Add your libraries to the Libraries box.

When you want to link user libraries from the command line, you must specify their filenames on the
command line:

165

TASKING VX-toolset for PCP User Guide

| pcp start.o nylib.a
If the library resides in a sub-directory, specify that directory with the library name:
| pcp start.o nylibs\nylib.a

If you do not specify a directory, the linker searches the library in the current directory only.

Library order

The order in which libraries appear on the command line is important. By default the linker processes
object files and libraries in the order in which they appear at the command line. Therefore, when you use
a weak symbol construction, like pri nt f, in an object file or your own library, you must position this
object/library before the C library.

With the option --first-library-first you can tell the linker to scan the libraries from left to right, and extract
symbols from the first library where the linker finds it. This can be useful when you want to use newer
versions of a library routine:

Ipcp --first-library-first a.a test.o b.a

If the file t est . o calls a function which is both presentin a. a and b. a, normally the functionin b. a
would be extracted. With this option the linker first tries to extract the symbol from the first library a. a.

Note that routines in b. a that call other routines that are present in both a. a and b. a are now also
resolved from a. a.

5.3.1. How the Linker Searches Libraries

System libraries

You can specify the location of system libraries in several ways. The linker searches the specified locations
in the following order:

1. The linker first looks in the Library search path that are specified in the Linker » Libraries page in
the C/C++ Build » Settings » Tool Settings tab of the Project Properties dialog (equivalent to the
option --library-directory (-L)). If you specify the -L option without a pathname, the linker stops
searching after this step.

2. When the linker did not find the library (because it is not in the specified library directory or because
no directory is specified), it looks in the path(s) specified in the environment variables LI BTC1V1_3
/ LIBTC1V1_3_1 / LIBTClV1l_6.

3. When the linker did not find the library, it tries the default | i b directory relative to the installation
directory (or a processor specific sub-directory).

User library

If you use your own library, the linker searches the library in the current directory only.

166

Using the Linker

5.3.2. How the Linker Extracts Objects from Libraries

A library built with the TASKING archiver arpcp always contains an index part at the beginning of the
library. The linker scans this index while searching for unresolved externals. However, to keep the index
as small as possible, only the defined symbols of the library members are recorded in this area.

When the linker finds a symbol that matches an unresolved external, the corresponding object file is
extracted from the library and is processed. After processing the object file, the remaining library index
is searched. If after a complete search of the library unresolved externals are introduced, the library index
will be scanned again. After all files and libraries are processed, and there are still unresolved externals
and you did not specify the linker option --no-rescan, all libraries are rescanned again. This way you do
not have to worry about the library order on the command line and the order of the object files in the
libraries. However, this rescanning does not work for ‘weak symbols'. If you use a weak symbol construction,
like pri nt f, in an object file or your own library, you must position this object/library before the C library.

The option --verbose (-v) shows how libraries have been searched and which objects have been extracted.

Resolving symbols

If you are linking from libraries, only the objects that contain symbols to which you refer, are extracted
from the library. This implies that if you invoke the linker like:

| pcp nylib.a

nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through nyl i b. a.

It is possible to force a symbol as external (unresolved symbol) with the option --extern (-e):
| pcp --extern=main nylib.a

In this case the linker searches for the symbol rrai n in the library and (if found) extracts the object that
contains rmai n.

If this module contains new unresolved symbols, the linker looks again in myl i b. a. This process repeats
until no new unresolved symbols are found.

5.4. Incremental Linking

With the TASKING linker it is possible to link incrementally. Incremental linking means that you link some,
but not all . 0 modules to a relocatable object file . out . In this case the linker does not perform the locating
phase. With the second invocation, you specify both new . o files as the . out file you had created with
the first invocation.

Incremental linking is only possible on the command line.

I pcp --incremental testl.o -otest. out
| pcp test2.0 test. out

167

TASKING VX-toolset for PCP User Guide

This links the file t est 1. 0 and generates the file t est . out . This file is used again and linked together
with t est 2. o to create the file t est . el f (the default name if no output filename is given in the default
ELF/DWARF format).

With incremental linking it is normal to have unresolved references in the output file until all . o files are
linked and the final . out or . el f file has been reached. The option --incremental (-r) for incremental
linking also suppresses warnings and errors because of unresolved symbols.

5.5. Importing Binary Files

With the TASKING linker it is possible to add a binary file to your absolute output file. In an embedded
application you usually do not have a file system where you can get your data from.

Add a data object in Eclipse
1. SelectLinker » Data Objects.
The Data objects box shows the list of object files that are imported.
2. To add a data object, click on the Add button in the Data objects box.
3. Type or select a binary file (including its path).
On the command line you can add raw data to your application with the linker option --import-object.

This makes it possible for example to display images on a device or play audio. The linker puts the raw
data from the binary file in a section. The section is aligned on a 4-byte boundary. The section name is
derived from the filename, in which dots are replaced by an underscore. So, when importing a file called
ny. np3, a section with the name my_np3 is created. In your application you can refer to the created
section by using linker labels.

For example:

#i ncl ude <stdio. h>

__far extern char _lc_ub_ny_mp3; /* linker |abels */
__far extern char _lc_ue_ny_np3;

char* mp3 = & | c_ub_ny_np3;

voi d mai n(voi d)
{
int size = &lc_ue_my_m3 - & Ilc_ub_ny_np3;
int i;
for (i=0;i<size;i++)
put char (mp3[i]);

168

Using the Linker

Because the compiler does not know in which space the linker will locate the imported binary, you
have to make sure the symbols refer to the same space in which the linker will place the imported
binary. You do this by using the memory qualifier __f ar, otherwise the linker cannot bind your
linker symbols.

Also note that if you want to use the export functionality of Eclipse, the binary file has to be part
of your project.

5.6. Linker Optimizations

During the linking and locating phase, the linker looks for opportunities to optimize the object code. Both
code size and execution speed can be optimized.

To enable or disable optimizations

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Optimization.

4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Delete unreferenced sections (option -Oc/-OC)
This optimization removes unreferenced sections from the resulting object file.
This optimization considers a section referenced if either of the following two conditions is true:
1. The section is protected from unreferenced section removal, which can be one of:
« the section is assigned an absolute address, either in the object file or in LSL
* the section is selected by exact name in LSL (no wildcard pattern) .
» asymbol defined in the section is referenced in LSL
« the section has the 'protected' section flag set, either in the object file or in LSL
2. The section is referenced via a relocation by another section that is considered referenced.

If multiple sections of a specific name are created by using section renaming, all of these sections are
protected against unreferenced section removal. With a selection using wildcards, matching sections are

169

TASKING VX-toolset for PCP User Guide

selected, but matching sections that are unreferenced may be removed. See Selecting sections for a
group in Section 12.8.2, Creating and Locating Groups of Sections.

First fit decreasing (option -OI/-OL)

When the physical memory is fragmented or when address spaces are nested it may be possible that a
given application cannot be located although the size of the available physical memory is larger than the
sum of the section sizes. Enable the first-fit-decreasing optimization when this occurs and re-link your
application.

The linker's default behavior is to place sections in the order that is specified in the LSL file (that is, working
from low to high memory addresses or vice versa). This also applies to sections within an unrestricted
group. If a memory range is partially filled and a section must be located that is larger than the remainder
of this range, then the section and all subsequent sections are placed in a next memory range. As a result
of this gaps occur at the end of a memory range.

When the first-fit-decreasing optimization is enabled the linker will first place the largest sections in the
smallest memory ranges that can contain the section. Small sections are located last and can likely fit in
the remaining gaps.

Compress copy table (option -Ot/-OT)

The startup code initializes the application's data areas. The information about which memory addresses
should be zeroed and which memory ranges should be copied from ROM to RAM is stored in the copy
table.

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

Note that this optimization only affects unrestricted sections that require an initialization action in
the copy table. The affected sections get a clustered restriction. Unrestricted sections are sections
that do not have their absolute location or their relative location to other sections restricted. See
also Define the mutual order of sections in an LSL group in Section 12.8.2, Creating and Locating
Groups of Sections.

Delete duplicate code (option -Ox/-OX)

Delete duplicate constant data (option -Oy/-QY)

These two optimizations remove code and constant data that is defined more than once, from the resulting
object file.

5.7. Controlling the Linker with a Script

With the options on the command line you can control the linker's behavior to a certain degree. From
Eclipse itis also possible to determine where your sections will be located, how much memory is available,

170

Using the Linker
which sorts of memory are available, and so on. Eclipse passes these locating directions to the linker via
a script file. If you want even more control over the locating process you can supply your own script.

The language for the script is called the Linker Script Language, or shortly LSL. You can specify the script
file to the linker, which reads it and locates your application exactly as defined in the script. If you do not
specify your own script file, the linker always reads a standard script file which is supplied with the toolset.

5.7.1. Purpose of the Linker Script Language
The Linker Script Language (LSL) serves three purposes:

1. It provides the linker with a definition of the target's core architecture. This definition is supplied with
the toolset.

2. It provides the linker with a specification of the memory attached to the target processor.

3. It provides the linker with information on how your application should be located in memory. This gives
you, for example, the possibility to create overlaying sections.

The linker accepts multiple LSL files. You can use the specifications of the core architectures that Altium
has supplied in the i ncl ude. | sl directory. Do not change these files.

If you use a different memory layout than described in the LSL file supplied for the target core, you must
specify this in a separate LSL file and pass both the LSL file that describes the core architecture and your
LSL file that contains the memory specification to the linker. Next you may want to specify how sections
should be located and overlaid. You can do this in the same file or in another LSL file.

LSL has its own syntax. In addition, you can use the standard C preprocessor keywords, such as #i ncl ude
and #def i ne, because the linker sends the script file first to the C preprocessor before it starts interpreting
the script.

The complete LSL syntax is described in Chapter 12, Linker Script Language (LSL).

5.7.2. Eclipse and LSL

In Eclipse you can specify the size of the stack and heap; the physical memory attached to the processor;
identify that particular address ranges are reserved; and specify which sections are located where in
memory. Eclipse translates your input into an LSL file that is stored in the project directory under the
name project_name. | s| and passes this file to the linker. If you want to learn more about LSL you can
inspect the generated file project_name. | sl .

Because a PCP project is part of a TriCore project you only need to specify an LSL file to the TriCore
project.

To add a generated Linker Script File to your project
1. From the File menu, select File » New » TASKING TriCore C/C++ Project.
The New C/C++ Project wizard appears.

2. Fillin the project settings in each dialog and click Next > until the following dialog appears.

171

TASKING VX-toolset for PCP User Guide

thew C/C++ Project ?@

TriCore Project Settings f—

@ Select a processor to continue

Processor selection

> [Infineon TriCore 1 Family Expand All
Expand Selected
Collapse All

Multi-core configuration

Actions

Add startup file(s) to the project

[¥] Add linker script file to the project
Include debugger synchronization utility

I

3. Enable the option Add linker script file to the project and click Finish.
Eclipse creates your project and the file "project_name. | sl " in the project directory.

If you do not add the linker script file here, you can always add it later with File » New » Linker Script
File (LSL).

To change the Linker Script File in Eclipse
There are two ways of changing the LSL file in Eclipse.
» You can change the LSL file directly in an editor.

1. Double-click on the file project_name. | sl .

The project LSL file opens in the editor area.

172

Using the Linker

il myproject.lsl i = 8

/ TASKING VX-toolset for TriCore -
// Eclipse project linker script file

m

#if defined(_ PROC_TC1796B_)
#define _ REDEFINE_ON_CHIP_ITEMS
#include "tcl796k.1s1"
processor spe

{

}
derivative my_ tcl796b extends tcl796b

derivative = my_tcl796b;

1
memory pflash (tag="cn-chip™)
mau = 3;
type = rom;
size = 2M;
priority = 2;
map cached(dest=bus:tc:fpi_bus, dest_offset=8x30000008, size=
map not_cached(dest=bus:tc:fpi_bus, dest_offset=@xadeepess, s
} -
‘ m +

2. You can edit the LSL file directly in the project_name. | sl editor.
A * appears in front of the name of the LSL file to indicate that the file has changes.

3. click [=] or select File » Save to save the changes.

» You can also make changes to the property pages Memory and Stack/Heap.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Memory or Stack/Heap.
In the right pane the corresponding property page appears.
3. Make changes to memory and/or stack/heap and click OK.

The project LSL file is updated automatically according to the changes you make in the pages.

You can quickly navigate through the LSL file by using the Outline view (Window » Show View » Outline).
5.7.3. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into

physical addresses for a given type of core. If the core supports multiple address spaces, then for each
space the linker must know how to perform this conversion. In this context a physical address is an offset

173

TASKING VX-toolset for PCP User Guide

on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the interrupt vector table.

This specification is normally written by Altium. Altium supplies LSL files in the i ncl ude. | s| directory.
The file t c_ar ch. | sl defines the base architecture for all cores and includes an interrupt vector table
(inttab. | sl)andan trap vector table (t rapt ab. I sl). The filestclvl_3.1sl,tclvl_3 1.1 sl
andtclvl 6.1 sl extend the base architecture for each TriCore core.

The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

The linker uses the architecture name in the LSL file to identify the target. For example, the default library
search path can be different for each core architecture.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

Altium supplies LSL files for each derivative (deri vati ve. | sl), along with "SFR files", which provide
easy access to registers in /O sub-systems from C and assembly programs. When you build an ASIC
or use a derivative that is not (yet) supported by the TASKING tools, you may have to write a derivative
definition.

The processor definition

The processor definition describes an instance of a derivative. A processor definition is only needed in a
multi-processor embedded system. It allows you to define multiple processors of the same type.

If for a derivative 'A' no processor is defined in the LSL file, the linker automatically creates a processor
named ‘A’ of derivative 'A'. This is why for single-processor applications it is enough to specify the derivative
in the LSL file.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

The board specification
The processor definition and memory and bus definitions together form a board specification. LSL provides

language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems. The board specification describes all characteristics of your target board's system buses, memory

174

Using the Linker
devices, 1/0 sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

» convert a logical address to an offset within a memory device
* locate sections in physical memory

* maintain an overall view of the used and free physical memory within the whole system while locating
The section layout definition (optional)
The optional section layout definition enables you to exactly control where input sections are located.

Features are provided such as: the ability to place sections at a given address, to place sections in a
given order, and to overlay code and/or data sections.

Example: Skeleton of a Linker Script File

A linker script file that defines a derivative "X" based on the TC1V1.3 architecture, its external memory
and how sections are located in memory, may have the following skeleton:

architecture TC1V1. 3

/1 Specification of the TClV1.3 core architecture.
/1 Witten by Altium

}
derivative X // derivative nane is arbitrary
{
/1 Specification of the derivative.
/1 Witten by Altium
core tc /1 always specify the core
{
architecture = TC1VL. 3;
}
bus fpi _bus /'l internal bus
{
/1 maps to bus "fpi_bus" in "tc" core
}
/'l internal menory
}
processor spe /1 processor nane is arbitrary
{
derivative = X;
/1l You can omt this part, except if you use a
/1l multi-core system
}

175

TASKING VX-toolset for PCP User Guide

menory ext_name

section_|l ayout spe:tc:linear

nmenory definition

/1 section |ayout

/1 section placenent statenments

/] sections are located in address space 'linear'

{
/] external
}
{
// of core 'tc'
}

of processor 'spe'

Overview of LSL files delivered by Altium

Altium supplies the following LSL files in the directory i ncl ude. | si .

LSL file

Description

tc_arch.|sl

Defines the base architecture (TC) for all generic TriCore cores. It includes the
filesinttab. sl andtraptab.|sl.

tc_nc_arch. sl

Defines the base architecture (TC) for all multi-core TriCore cores.

inttab. | sl Defines the interrupt vector table. It is included in the file t c_arch. | sl .
traptab. | sl Defines the trap vector table. It is included in the filet c_arch. | sl .
tclvl 3.1sl Extends the base architecture for cores TC1V1.3, TC1V1.3.1, TC1V1.6 or
tclvl 3 1.1sl TC1V1.6.X.Itincludes the fletc_arch. | sl ortc_nt_arch. | sl and
tclvl_6. | sl ncs_arch.Isl.

tclvl 6_x.Isl

derivative.|l sl

Defines the derivative and defines a single processor. Contains a memory
definition and section layout. It includes one of the filest cver si on. | sl .The
selection of the derivative is based on your CPU selection (control program
option --cpu).

userdef 13. 1 sl
userdef 131. | sl
userdef 16. | sl
user def 16x. | sl

Defines a user defined derivative for cores TC1V1.3, TC1V1.3.1, TC1V1.6 or
TC1V1.6.X and defines a single processor for TC1V1.3, TC1V1.3.1 and
TC1V1.6 and a multi-core processor for TC1V1.6.X.

tenpl ate. | sl

This file is used by Eclipse as a template for the project LSL file. It includes
the file deri vati ve. | sl based onyour CPU selection. The CPU is specified
by the __ CPU__ macro.

default.| sl

Contains a default memory definition and section layout based on the tc1796b
derivative. This file is used on a command line invocation of the tools, when
no CPU is selected (no option --cpu). It includes the file ext mem | sl .

extmem | sl

Template file with a specification of the external memory attached to the target
processor.

176

Using the Linker

When you select to add a linker script file when you create a project in Eclipse, Eclipse makes a copy of
the filet enpl at e. | sI and names it “project_name. | sl ". On the command line, the linker uses the file
def aul t . | sl , unless you specify another file with the linker option --Isl-file (-d).

5.7.4.The Architecture Definition

Although you will probably not need to write an architecture definition (unless you are building your own
processor core) it helps to understand the Linker Script Language and how the definitions are interrelated.

Within an architecture definition the characteristics of a target processor core that are important for the
linking process are defined. These include:

» space definitions: the logical address spaces and their properties
 bus definitions: the 1/0 buses of the core architecture

* mappings: the address translations between logical address spaces, the connections between logical
address spaces and buses and the address translations between buses

Address spaces

A logical address space is a memory range for which the core has a separate way to encode an address
into instructions. Most microcontrollers and DSPs support multiple address spaces. For example, the
PCP has separate spaces for code and data. Normally, the size of an address space is 2V with N the
number of bits used to encode the addresses.

The relation of an address space with another address space can be one of the following:
» one space is a subset of the other. These are often used for "small" absolute or relative addressing.

« the addresses in the two address spaces represent different locations so they do not overlap. This
means the core must have separate sets of address lines for the address spaces. For example, in
Harvard architectures we can identify at least a code and a data memory space.

Address spaces (even nested) can have different minimal addressable units (MAU), alignment restrictions,
and page sizes. All address spaces have a number that identifies the logical space (id). The following
table lists the different address spaces for the architecture TC as defined intc_arch. | sl .

Space Id [MAU |Description ELF sections

linear 1|1 Linear address space. text*, .data*, .sdata*, .Idata*, .rodata*, .bss*,
.sbss*, table, istack, ustack

abs24 2 Absolute 24-bit addressable space

abs18 3 Absolute 18-bit addressable space. |.zdata, .zbss

csa 4|8 Context Save Area csa.*

pcp_code |8 |16 |PCP code .pcptext

pcp_data |9 |32 |PCP data .pcpdata

177

TASKING VX-toolset for PCP User Guide

The TriCore architecture in LSL notation

The best way to write the architecture definition, is to start with a drawing. The following figure shows a
part of the TriCore architecture:

space linear bus fai_tus
———— ————
|rspace ahs18-i_" man = 8
| g=g | width =32
I rnaw =5 |
Lyl
L1
256k
i =1 s
M EE i ——
SpAcE pop_tode ks pop_code_kus
L
i =38 ran = 8
tmau = 16
————— -

004000000

The figure shows three address spaces called | i near , abs18 and pcp_code. The address space abs18
is a subset of the address space | i near . All address spaces have attributes like a number that identifies
the logical space (id), a MAU and an alignment. In LSL notation the definition of these address spaces
looks as follows:

space |inear

{
id = 1;
mau = 8;
map (src_of fset =0x00000000, dest _of f set =0x00000000,
si ze=4G, dest =bus: f pi _bus);
}
space absl18
{
id = 3;
mau = 8;
map (src_of fset =0x00000000, dest _of f set =0x00000000,
si ze=16k, dest=space:linear);
map (src_of fset =0x10000000, dest _of f set =0x10000000,
si ze=16k, dest=space:linear);
map (src_of fset =0x20000000, dest _of f set =0x20000000,
si ze=16k, dest=space:linear);
...
}

space pcp_code

178

Using the Linker

mau = 16;
map (src_of fset =0x00000000, dest of fset =0,
si ze=0x04000000, dest =bus: pcp_code_bus);
}

The keyword map corresponds with the arrows in the drawing. You can map:
 address space => address space

» address space => bus

e memory => bus (not shown in the drawing)

* bus => bus (not shown in the drawing)

Next the two internal buses, named f pi _bus and pcp_code_bus must be defined in LSL:

bus fpi _bus
{
mau = 8;
width = 32; // there are 32 data lines on the bus
}
bus pcp_code_bus
{
mau = 8;
width = 8;
}

This completes the LSL code in the architecture definition. Note that all code above goes into the
architecture definition, thus between:

architecture TC1V1. 3
{

}

/1 Al code above goes here.

5.7.5.The Derivative Definition

Although you will probably not need to write a derivative definition (unless you are using multiple cores
that both access the same memory device) it helps to understand the Linker Script Language and how
the definitions are interrelated.

A derivative is the design of a processor, as implemented on a chip (or FPGA). It comprises one or more
cores and on-chip memory. The derivative definition includes:

» core definition: an instance of a core architecture
* bus definition: the 1/0O buses of the core architecture

* memory definitions: internal (or on-chip) memory

179

TASKING VX-toolset for PCP User Guide

Core

Each derivative must have at least one core and each core must have a specification of its core architecture.
This core architecture must be defined somewhere in the LSL file(s).

core tc

{
}

In a multi-core environment you can combine multiple cores with the same architecture into a single link
task. This is done by importing one or more cores into a root core. The imported cores share a single
symbol namespace. The address spaces in each imported core must have a unique ID in the link task.
For each imported core is specified that the space IDs of the imported core start at a specific offset. If
writable sections for a core must be initialized by using the copy table of a different core, this is specified
by a copyt abl e_space. The following example is part of t c27x. | sl delivered with the product.

architecture = TC1V1. 3;

core tcO // core O

{
architecture = TC1V1. 6. X;
space_i d_offset = 100; // add 100 to all space IDs in
/1l the architecture definition
copytabl e_space = vtc:linear; // use copytable fromcore vtc
}
core tcl // core 1
{
architecture = TCL1V1. 6. X;
space_i d_offset = 200; // add 200 to all space IDs in
/1l the architecture definition
copytabl e_space = vtc:linear; // use copytable fromcore vtc
}
core tc2 // core 2
{
architecture = TCL1V1. 6. X;
space_id_offset = 300; // add 300 to all space IDs in
/1l the architecture definition
copytabl e_space = vtc:linear; // use copytable fromcore vtc
}
core vtc
{
architecture = TC1V1. 6. X;
inmport tcO; // add all address spaces of tcO for |inking
inmport tcl; // add all address spaces of tcl for |inking
inmport tc2; // add all address spaces of tc2 for |inking
}

180

Using the Linker

Bus

Each derivative can contain a bus definition for connecting external memory. In this example, the bus
f pi _bus maps to the bus f pi _bus defined in the architecture definition of core t c:

bus fpi _bus
{

mau = 8§;

wi dth = 32;

map (dest=bus:tc:fpi_bus, dest_offset=0, size=40;
}

Memory

External memory is usually described in a separate memory definition, but you can specify on-chip memory
for a derivative. For example:

OxFO020000

hY

A

AS
\ .,
K

\\ \\ peode

P, o
| omaw =8
-——

Ox04000

According to the drawing, the TriCore contains internal memory called pcode with a size 0x04000 (16
kB). This is physical memory which is mapped to the internal bus pcp_code_bus and to the f pi _bus,
so both the t ¢ unit and the PCP can access the memory:

nmenory pcode

{
mau = 8;
size = 16k;
type = ram
map (dest=bus:tc:fpi_bus, dest_offset=0xF0020000,
si ze=16k) ;
map (dest=bus:tc: pcp_code_bus, size=16k);
}

This completes the LSL code in the derivative definition. Note that all code above goes into the derivative
definition, thus between:

derivative X // nanme of derivative

{

181

TASKING VX-toolset for PCP User Guide

/1 Al code above goes here

}

5.7.6.The Processor Definition

The processor definition is only needed when you write an LSL file for a multi-processor embedded
system. The processor definition explicitly instantiates a derivative, allowing multiple processors of the
same type.

processor nane

{
}

If no processor definition is available that instantiates a derivative, a processor is created with the same
name as the derivative.

derivative = derivative_nang;

Altium defines a “single processor environment” (spe) in each deri vati ve. | sl file. For example:

processor spe

{
}

derivative = tcl796b;

5.7.7.The Memory Definition

Once the core architecture is defined in LSL, you may want to extend the processor with external (or
off-chip) memory. You need to specify the location and size of the physical external memory devices in
the target system.

The principle is the same as defining the core's architecture but now you need to fill the memory definition:

nenory nane

/1 menory definitions
FrIBfrOry Code_Forn
-y—— — —] 0
ran = 8
-y —— —]
16k
‘._L_"_‘"‘——..
~ T Tem=ep,

FIEMNORY Y _Hustarm

182

Using the Linker

Suppose your embedded system has 16 kB of external ROM, named code_r omand 2 kB of external
NVRAM, named nmy _nvsr am Both memories are connected to the bus f pi _bus. In LSL this looks like:

menory code_rom

{

mau = 8;

size = 16k;

type = rom

map(dest =bus: spe: fpi _bus, dest_offset =0xa0000000, size=16k);
}
Menory ny_nvsram
{

mau = 8;

size = 2k;

type = nvram

map(dest =bus: spe: fpi _bus, dest_offset=0xc0000000, size=2k);
}

If you use a different memory layout than described in the LSL file supplied for the target core, you can
specify this in Eclipse or you can specify this in a separate LSL file and pass both the LSL file that describes
the core architecture and your LSL file that contains the memory specification to the linker.

To add memory using Eclipse
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Memory.
In the right pane the Memory page appears.
3. Open the Memory tab and click on the Add... button.
The Add new memory dialog appears.
4. Enter the memory name (for example my_nvsr am, type (for example nvr am and size.
5. Click on the Add... button.
The Add new mapping dialog appears.

6. You have to specify at least one mapping. Enter the mapping name (optional), address, size and
destination and click OK.

The new mapping is added to the list of mappings.
7. Click OK.
The new memory is added to the list of memories (user memory).

8. Click OK to close the Properties dialog.

183

TASKING VX-toolset for PCP User Guide

The updated settings are stored in the project LSL file.

If you make changes to the on-chip memory as defined in the architecture LSL file, the memory is copied
to your project LSL file and the line #defi ne __ REDEFI NE_ON_CHI P_I TEMS is added. If you remove
all the on-chip memory from your project LSL file, also make sure you remove this define.

5.7.8.The Section Layout Definition: Locating Sections

Once you have defined the internal core architecture and optional memory, you can actually define where
your application must be located in the physical memory.

During compilation, the compiler divides the application into sections. Sections have a name, an indication
(section type) in which address space it should be located and attributes like writable or read-only.

In the section layout definition you can exactly define how input sections are placed in address spaces,
relative to each other, and what their absolute run-time and load-time addresses will be.

Example: section propagation through the toolset

To illustrate section placement, the following example of a C program (bat . ¢) is used. The program
saves the number of times it has been executed in battery back-upped memory, and prints the number.

#def i ne BATTERY_BACKUP_TAG O0xa5f0
#i ncl ude <stdi o. h>

int wuninitialized data;

int initialized data = 1;

#pragma section data="non_vol atil e"
#pragma nocl ear

int battery_backup_tag;

int battery_backup_i nvok;

#pragma cl ear

#pragma endsection

void main (void)

if (battery_backup_tag != BATTERY_BACKUP_TAG)

{
/1 battery back-upped nenory area contains invalid data
[/l initialize the nenory
battery_backup_tag = BATTERY_BACKUP_TAG
battery_backup_i nvok = 0;

printf("This application has been invoked % tinmes\n",
battery_backup_i nvok++) ;

}

The compiler assigns names and attributes to sections. With the #pr agna secti on
dat a=non_vol at i | e the compiler's default section naming convention is overruled and a section with
the name . pcpdat a. non_vol at i | e is defined. In this section the battery back-upped data is stored.

184

Using the Linker

By default the compiler creates a section with the name ". pcpdat a. dat a" of section type dat a to store
uninitialized data objects. The attribute cl ear tells the linker that the section content should be filled with
zeros at startup.

As aresult of the #pragma secti on dat a=non_vol ati | e, the data objects between the pragma
pair are placed in a section with the name ”. pcpdat a. non_vol ati | e". Note that uninitialized data
sections are cleared at startup. However, battery back-upped sections should not be cleared and therefore
we used #pr agma nocl ear.

Section placement

The number of invocations of the example program should be saved in non-volatile (battery back-upped)
memory. This is the memory nmy_nvsr amfrom the example in Section 5.7.7, The Memory Definition.

To control the locating of sections, you need to write one or more section definitions in the LSL file. At
least one for each address space where you want to change the default behavior of the linker. In our
example, we need to locate sections in the address space pcp_dat a:

section_layout ::pcp_data
{
sel ect "ELF sections";
/1 Section placenent statenments

}

The space, in this case pcp_dat a, and the ELF sections must be a valid combination from the table in
Section 5.7.4, The Architecture Definition.

To locate sections, you must create a group in which you select sections from your program. For the
battery back-up example, we need to define one group, which contains the section

. pcpdat a. non_vol at i | e.All other sections are located using the defaults specified in the architecture
definition. Section . pcpdat a. non_vol at i | e should be placed in non-volatile ram. To achieve this, the
run address refers to our non-volatile memory called ny_nvsr am

group (run_addr = mem ny_nvsram)

{
}

This completes the LSL file for the sample architecture and sample program. You can now invoke the
linker with this file and the sample program to obtain an application that works for this architecture.

sel ect ".pcpdata.non_volatile";

For a complete description of the Linker Script Language, refer to Chapter 12, Linker Script Language
(LSL).

5.8. Linker Labels

The linker creates labels that you can use to refer to from within the application software. Some of these
labels are real labels at the beginning or the end of a section. Other labels have a second function, these
labels are used to address generated data in the locating phase. The data is only generated if the label
is used.

185

TASKING VX-toolset for PCP User Guide

Linker labels are labels starting with _| c¢_. The linker assigns addresses to the following labels when

they are referenced:

Label Description

_lc_ub_nane Begin of section name. Also used to mark the begin of the stack or heap or
copy table.

_lc_b_nane

_lc_ue_nane End of section name. Also used to mark the end of the stack or heap.

_lc_e_nane

_lc_cb_nane Start address of an overlay section in ROM.

_lc_ce_nane End address of an overlay section in ROM.

_lc_gb_nane Begin of group name. This label appears in the output file even if no reference
to the label exists in the input file.

_lc_ge_nane End of group name. This label appears in the output file even if no reference
to the label exists in the input file.

_lc_s_nane Variable name is mapped through memory in shared memory situations.

The linker only allocates space for the stack and/or heap when a reference to either of the section labels
exists in one of the input object files.

At C level, all linker labels start with _| ¢_ (the PCP C compiler adds the label prefix _PCP and

an extra underscore).

If you want to use linker labels in your C source for sections that have a dot (.) in the name, you
have to replace all dots by underscores.

Additionally, the linker script file defines the following symbols:

Symbol Description

_lc_cp Start of copy table. Same as _| c_ub_t abl e.The copy table gives the source
and destination addresses of sections to be copied. This table will be generated
by the linker only if this label is used.

_lc_bh Begin of heap. Same as _| c_ub_heap.

_lc_eh End of heap. Same as _| c_ue_heap.

_PCP_lc_ub_heap far

Begin of PCP heap in TriCore address space linear. Same as
_lc_ub_pcp_heap_far.

_PCP_lc_ue_heap far

End of PCP heap in TriCore address space linear. Same as
_lc_ue_pcp_heap_far.

_PCP__l c_ub_heap

Begin of PCP heap in address space pcp_data. Same as _| ¢_ub_pcp_heap.

_PCP__| c_ue_heap

End of PCP heap in address space pcp_data. Same as _| ¢c_ue_pcp_heap.

186

Using the Linker

Example: refer to a label with section name with dots from C
Suppose the C source file f 00. ¢ contains the following:

#pragma section nynane
int myfunc(int a)
{

/* sone source |lines */
return 1;

}

#pragma endsection
This results in a section with the name . pcpt ext . mynane.
In the following source file mai n. c all dots of the section name are replaced by underscores:

#i ncl ude <stdio. h>
extern char _lc_ub__pcptext_nmynane[];

voi d mai n(voi d)

{

printf("The function nyfunc is |located at %\n",
& | c_ub__pcptext _nynane);
}

To prevent the linker error EL06: unresol ved external : _PCP__| c_ub__pcpt ext _nmynane, you
must define this symbol in the LSL file as follows:

section_| ayout ::pcp_code

{
}

If there is no LSL file in your project, select File » New » Linker Script File (LSL), add the lines that
define the symbol. Add the LSL file to the linker options (Tool Options » Linker » Script File » Linker
script file (.Isl)).

" _PCP__lc_ub__pcptext_nyname" := "_|c_ub__pcptext_mynanme";

When the PCP linked project (. out) is linked with a TriCore project, then the TriCore LSL file also needs
this addition.

Example: refer to a PCP variable from TriCore C source

When memory is shared between two or more cores, for instance TriCore and PCP, the addresses of
variables (or functions) on that memory may be different for the cores. For the TriCore the variable will
be defined and you can access it in the usual way. For the PCP, when you would use the variable directly
in your TriCore source, this would use an incorrect address (PCP address). The linker can map the
address of the variable from one space to another, if you prefix the variable name with _| ¢c_s_.

When a symbol f oo is defined in a PCP assembly source file, by default it gets the symbol name f 0o.
To use this symbol from a TriCore C source file, write:

187

TASKING VX-toolset for PCP User Guide

extern long _lc_s_foo;

void main(int argc, char **argv)

{
}

lc_s foo = 7;

Example: refer to the heap

The heap is only needed when you use one or more of the dynamic memory management library functions:
mal | oc(),cal loc(),free() andreal |l oc().The heap is a reserved area in memory. Only if you
use one of the memory allocation functions listed above, the linker automatically allocates a heap. In the
LSL filet c_arch. | sl aheap section is defined with the name "pcp_heap" (with the keyword heap).
Symbol _PCP__| c_ub_heap is mapped to _| c_ub_pcp_heap. You can refer to the begin and end of
the heap from your C source as follows:

#i ncl ude <stdio. h>

extern char _lc_ub_heap[]; /* the conpiler prefixes the |abel with _PCP_ */
extern char _lc_ue_heap[];

voi d main()

{
printf("Size of heap is %\ n",
_lc_ue_heap - _lc_ub_heap);

}

In the C library the linker labels _| c_ub_heap and _I c_ue_heap are used in the function _sbr k()
which is called by mal | oc() when memory is needed from the heap.

The special pcp_heap section is only allocated when its linker labels are used in the program.
From assembly you can refer to the end of the heap with:

.extern _PCP__| c_ue_heap ; end of pcp_heap

5.9. Generating a Map File

The map file is an additional output file that contains information about the location of sections and symbols.
You can customize the type of information that should be included in the map file.

To generate a map file

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Map File.

188

Using the Linker

4. Enable the option Generate XML map file format (.mapxml) for map file viewer.
5. (Optional) Enable the option Generate map file (.map).

6. (Optional) Enable the options to include that information in the map file.

Example on the command line

The following command generates the map file t est . map:
| pcp --map-file test.o

With this command the map file t est . map is created.

See Section 11.2, Linker Map File Format, for an explanation of the format of the map file.

5.10. Linker Error Messages

The linker reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the linker immediately aborts the link/locate process.

E (Errors)

Errors are reported, but the linker continues linking and locating. No output files are produced unless you
have set the linker option --keep-output-files.

W (Warnings)
Warning messages do not result into an erroneous output file. They are meant to draw your attention to
assumptions of the linker for a situation which may not be correct. You can control warnings in the C/C++

Build » Settings » Tool Settings » Linker » Diagnostics page of the Project » Properties for menu
(linker option --no-warnings).

| (Information)

Verbose information messages do not indicate an error but tell something about a process or the state
of the linker. To see verbose information, use the linker option --verbose.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

S6##. nmessage

189

TASKING VX-toolset for PCP User Guide

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics
1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.
2. Inthe Problems view right-click on a message.
A popup menu appears.
3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.
On the command line you can use the linker option --diag to see an explanation of a diagnostic message:

I pcp --diag=[format:]{all | nunber,...]

190

Chapter 6. Using the Utilities

The TASKING VX-toolset for PCP comes with a number of utilities:

ccpep A control program. The control program invokes all tools in the toolset and lets you quickly
generate an absolute object file from C and/or assembly source input files. Eclipse uses
the control program to call the compiler, assembler and linker.

amk A make utility to maintain, update, and reconstruct groups of programs. The make utility
looks whether files are out of date, rebuilds them and determines which other files as a
consequence also need to be rebuilt. It supports parallelism which utilizes the multiple
cores found on modern host hardware.

mkpcp A make utility for backwards compatibility with older versions of the toolset. Not
recommended for new projects.

arpcp An archiver. With this utility you create and maintain library files with relocatable object
modules (. 0) generated by the assembler.

expirepcp A utility to limit the size of the cache by removing all files older than a few days or by
removing older files until the total size of the cache is smaller than a specified size.

6.1. Control Program

The control program is a tool that invokes all tools in the toolset for you. It provides a quick and easy way
to generate the final absolute object file out of your C sources without the need to invoke the compiler,
assembler and linker manually.

Eclipse uses the control program to call the C compiler, assembler and linker, but you can call the control
program from the command line. The invocation syntax is:

ccpecp [[option]... [file]l...]...

Recognized input files
» Files with a . ¢ suffix are interpreted as C source programs and are passed to the compiler.

» Files with a . asmsuffix are interpreted as hand-written assembly source files which have to be passed
to the assembiler.

» Files with a . sr ¢ suffix are interpreted as compiled assembly source files. They are directly passed to
the assembler.

» Files with a . a suffix are interpreted as library files and are passed to the linker.
» Files with a . o suffix are interpreted as object files and are passed to the linker.

» Files with a . out suffix are interpreted as linked object files and are passed to the locating phase of
the linker. The linker accepts only one . out file in the invocation.

» Fileswith a . | sl suffix are interpreted as linker script files and are passed to the linker.

191

TASKING VX-toolset for PCP User Guide

Options

The control program accepts several command line options. If you specify an unknown option to the
control program, the control program looks if it is an option for a specific tool. If so, it passes the option
directly to the tool. However, it is recommended to use the control program options --pass-* (-Wc, -Wa,
-WI) to pass arguments directly to tools.

For a complete list and description of all control program options, see Section 8.5, Control Program
Options.

Example with verbose output
ccpep --verbose --cpu=tcl796b test.c

The control program calls all tools in the toolset and generates the absolute object file t est . el f . With
option --verbose (-v) you can see how the control program calls the tools:

+ "path\cpcp” -D__CPU_=tcl796b -D__CPU TCl1796B _ -0 cc3248a.src test.c

+ "path\aspcp"” -D_CPU_=tcl796b -D_CPU TC1796B__ -0 cc3248b. 0 cc3248a.src

+ "path\l pcp" -o test.elf -dtcl796b.lsl -dextnemlIsl -D_CPU_=tcl796b
--map-file cc3248b. o "-Lpath\lib\pcp2" -lc -Ifp

The control program produces unigue filenames for intermediate steps in the compilation process (such
as cc3248a. src and cc3248b. o in the example above) which are removed afterwards, unless you
specify command line option --keep-temporary-files (-t).

Example with argument passing to a tool

ccpecp --pass-c=-Cc test.c

The option -Oc is directly passed to the compiler.

192

Using the Utilities

6.2. Make Utility amk

amk is a make utility that you can use to maintain, update, and reconstruct groups of programs. amk
features parallelism which utilizes the multiple cores found on modern host hardware, hardening for path
names with embedded white space and it has an (internal) interface to provide progress information for
updating a progress bar. It does not use an external command shell (/ bi n/ sh, cnd. exe) but executes
commands directly.

The primary purpose of any make utility is to speed up the edit-build-test cycle. To avoid having to build
everything from scratch even when only one source file changes, it is necessary to describe dependencies
between source files and output files and the commands needed for updating the output files. This is
done in a so called "makefile”.

6.2.1. Makefile Rules

A makefile dependency rule is a single line of the form:
[target ...] : [prerequisite ...]

where target and prerequisite are path names to files. Example:
test.o : test.c

This states that target t est . o depends on prerequisite t est . ¢. So, whenever the latter is modified the
first must be updated. Dependencies accumulate: prerequisites and targets can be mentioned in multiple
dependency rules (circular dependencies are not allowed however). The command(s) for updating a
target when any of its prerequisites have been modified must be specified with leading white space after
any of the dependency rule(s) for the target in question. Example:

test.o :
ccpep test.c # | eadi ng white space

Command rules may contain dependencies too. Combining the above for example yields:

test.o : test.c
ccpep test.c

White space around the colon is not required. When a path name contains special characters such as
"', '#' (start of comment), '=" (macro assignment) or any white space, then the path name must be enclosed
in single or double quotes. Quoted strings can contain anything except the quote character itself and a
newline. Two strings without white space in between are interpreted as one, so it is possible to embed
single and double quotes themselves by switching the quote character.

When a target does not exist, its modification time is assumed to be very old. So, amk will try to make it.
When a prerequisite does not exist possibly after having tried to make it, it is assumed to be very new.
So, the update commands for the current target will be executed in that case. amk will only try to make
targets which are specified on the command line. The default target is the first target in the makefile which
does not start with a dot.

193

TASKING VX-toolset for PCP User Guide

Static pattern rules

Static pattern rules are rules which specify multiple targets and construct the prerequisite names for each
target based on the target name.

[target ...] : target-pattern : [prerequisite-patterns ...]

The target specifies the targets the rules applies to. The target-pattern and prerequisite-patterns specify
how to compute the prerequisites of each target. Each target is matched against the target-pattern to
extract a part of the target name, called the stem. This stem is substituted into each of the
prerequisite-patterns to make the prerequisite names (one from each prerequisite-pattern).

Each pattern normally contains the character '%' just once. When the target-pattern matches a target,
the '%' can match any part of the target name; this part is called the stem. The rest of the pattern must
match exactly. For example, the target f 00. 0 matches the pattern '% o', with 'f 00" as the stem. The
targets f 00. ¢ and f 0o. el f do not match that pattern.

The prerequisite names for each target are made by substituting the stem for the '%' in each prerequisite
pattern.

Example:

objects =test.o filter.o

all: $(objects)

$(objects): %o %c
ccpep -c $< -0 $@

echo the stemis $*

Here '$<' is the automatic variable that holds the name of the prerequisite, '$@is the automatic variable
that holds the name of the target and '$*' is the stem that matches the pattern. Internally this translates
to the following two rules:

test.o: test.c
ccpcp -c test.c -0 test.o
echo the stemis test

filter.o: filter.c
ccpep -c filter.c -o filter.o
echo the stemis filter

Each target specified must match the target pattern; a warning is issued for each target that does not.

Special targets

There are a number of special targets. Their names begin with a period.

Target Description

. DONE When the make utility has finished building the specified targets, it continues with
the rules following this target.

194

Using the Utilities

Target Description
ANT The rules following this target are executed before any other targets are built.
. PHONY The prerequisites of this target are considered to be phony targets. A phony target

is a target that is not really the name of a file. The rules following a phony target are
executed unconditionally, regardless of whether a file with that name exists or what
its last-modification time is.

For example:

. PHONY: cl ean

cl ean:
rm*.o

With ank cl ean, the command is executed regardless of whether there is a file
named cl ean.

6.2.2. Makefile Directives

Directives inside makefiles are executed while reading the makefile. When a line starts with the word

"i ncl ude" or "-i ncl ude" then the remaining arguments on that line are considered filenames whose
contents are to be inserted at the current line. "- i ncl ude" will silently skip files which are not present.
You can include several files. Include files may be nested.

Example:
i ncl ude nakefil e2 nakefile3

White spaces (tabs or spaces) in front of the directive are allowed.

6.2.3. Macro Definitions

A macro is a symbol hame that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lowercase or uppercase characters, uppercase is an accepted convention.
When a line does not start with white space and contains the assignment operator '=', ":=' or '+=' then the
line is interpreted as a macro definition. White space around the assignment operator and white space
at the end of the line is discarded. Single character macro evaluation happens by prefixing the name with
'$". To evaluate macros with names longer than one character put the name between parentheses '()' or
curly braces '{}'. Macro names may contain anything, even white space or other macro evaluations.
Example:

DI NNER = $(FOOD) and $(BEVERAGE)
FOOD = pi zza

BEVERAGE = sparkling water

FOOD += with cheese

With the += operator you can add a string to an existing macro. An extra space is inserted before the
added string automatically.

195

TASKING VX-toolset for PCP User Guide

Macros are evaluated recursively. Whenever $(DI NNER) or ${ DI NNER} is mentioned after the above,

it will be replaced by the text "pi zza wi th cheese and sparkling wat er". The left hand side in

a macro definition is evaluated before the definition takes place. Right hand side evaluation depends on
the assignment operator:

= Evaluate the macro at the moment it is used.
1= Evaluate the replacement text before defining the macro.

Subsequent '+=' assignments will inherit the evaluation behavior from the previous assignment. If there
is none, then '+='is the same as '=". The default value for any macro is taken from the environment. Macro
definitions inside the makefile overrule environment variables. Macro definitions on the amk command
line will be evaluated first and overrule definitions inside the makefile.

196

Using the Utilities

Predefined macros

Macro Description

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent
a single "$".

@ The name of the current target. When a rule has multiple targets, then it is the name

of the target that caused the rule commands to be run.

* The basename (or stem) of the current target. The stem is either provided via a static
pattern rule or is calculated by removing all characters found after and including the
last dot in the current target name. If the target name is 't est . ¢' then the stem is

't est ' (if the target was not created via a static pattern rule).

< The name of the first prerequisite.

MAKE The amk path name (quoted if necessary). Optionally followed by the options -n and
-S.

ORIG N The name of the directory where amk is installed (quoted if necessary).

SUBDI R The argument of option -G. If you have nested makes with -G options, the paths are

combined. This macro is defined in the environment (i.e. default macro value).

The @, * and < macros may be suffixed by 'D' to specify the directory component or by 'F' to specify the
filename component. $(@) evaluates to the directory name holding the file$(@) . $(@) / $(@) is
equivalent to $@ Note that on MS-Windows most programs accept forward slashes, even for UNC path
names.

The result of the predefined macros @, * and < and 'D' and 'F' variants is not quoted, so it may be necessary
to put quotes around it.

Note that stem calculation can cause unexpected values. For example:

$@ $*

/ home/ . wi ne/ t est / home/

/ home/ test/. proj ect / home/ test/
/.. /file /.

Macro string substitution
When the macro name in an evaluation is followed by a colon and equal sign as in
$(MACRO stringl=string2)

then amk will replace stringl at the end of every word in $(MACRO) by string2 during evaluation. When
$(MACRO) contains quoted path names, the quote character must be mentioned in both the original string
and the replacement stringl. For example:

$(MACRO. . 0" =. d")

1Intemally, amk tokenizes the evaluated text, but performs substitution on the original input text to preserve compatibility here with
existing make implementations and POSIX.

197

TASKING VX-toolset for PCP User Guide

6.2.4. Makefile Functions
A function not only expands but also performs a certain operation. The following functions are available:

$(filter pattern ...,item ...)

The filt er function filters a list of items using a pattern. It returns items that do match any of the pattern
words, removing any items that do not match. The patterns are written using '%,

${filter %c %h, test.c test.h test.o readne.txt .project output.c}
results in:

test.c test.h output.c

$(filter-out pattern ...,item ...)

Thefilter-out function returns all items that do not match any of the pattern words, removing the
items that do match one or more. This is the exact opposite of the fi | t er function.

${filter-out %c %h, test.c test.h test.o readne.txt .project output.c}
results in:

test.o readne.txt .project

$(foreach var-name, item ..., action)

The f or each function runs through a list of items and performs the same action for each item. The
var-name is the name of the macro which gets dynamically filled with an item while iterating through the
item list. In the action you can refer to this macro. For example:

${foreach T, test filter output, ${T}.c ${T}.h}
results in:

test.c test.h filter.c filter.h output.c output.h

6.2.5. Conditional Processing

Lines containing i f def , i f ndef, el se or endi f are used for conditional processing of the makefile.
They are used in the following way:

i fdef macro-nane

if-lines
el se

el se-1ines
endi f

The if-lines and else-lines may contain any number of lines or text of any kind, even otheri f def ,i f ndef,
el se and endi f lines, or no lines at all. The el se line may be omitted, along with the else-lines following
it. White spaces (tabs or spaces) in front of preprocessing directives are allowed.

198

Using the Utilities

First the macro-name after the i f def command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an el se line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the i f ndef line instead of i f def , the macro is tested for not being defined. These
conditional lines can be nested to any level.

You can also add tests based on strings. With i f eq the result is true if the two strings match, with i f neq
the result is true if the two strings do not match. They are used in the following way:

i feq(stringl, string2)

if-lines
el se

el se-1ines
endi f

6.2.6. Makefile Parsing

amk reads and interprets a makefile in the following order:

1. When the last character on a line is a backslash (\) (i.e. without trailing white space) then that line and
the next line will be concatenated, removing the backslash and newline.

2. The unquoted '#' character indicates start of comment and may be placed anywhere on a line. It will
be removed in this phase.

this cooment |ine is continued\
on the next line
3. Trailing white space is removed.

4. When a line starts with white space and it is not followed by a directive or preprocessing directive, then
it is interpreted as a command for updating a target.

5. Otherwise, when a line contains the unquoted text '=', '+="' or ':=' operator, then it will be interpreted as
a macro definition.

6. Otherwise, all macros on the line are evaluated before considering the next steps.
7. When the resulting line contains an unquoted ":' the line is interpreted as a dependency rule.

8. When the first token on the line is "i ncl ude" or "-i ncl ude" (which by now must start on the first
column of the line), amk will execute the directive.

9. Otherwise, the line must be empty.

Macros in commands for updating a target are evaluated right before the actual execution takes place
(or would take place when you use the -n option).

199

TASKING VX-toolset for PCP User Guide

6.2.7. Makefile Command Processing

A line with leading white space (tabs or spaces) without a (preprocessing) directive is considered as a
command for updating a target. When you use the option -j or -J, amk will execute the commands for
updating different targets in parallel. In that case standard input will not be available and standard output

and error output will be merged and displayed on standard output only after the commands have finished
for a target.

You can precede a command by one or more of the following characters:

@ Do not show the command. By default, commands are shown prior to their output.
- Continue upon error. This means that amk ignores a non-zero exit code of the command.
+ Execute the command, even when you use option -n (dry run).

Execute the command on the foreground with standard input, standard output and error
output available.

Built-in commands

Command Description

true This command does nothing. Arguments are ignored.

fal se This command does nothing, except failing with exit code 1. Arguments are
ignored.

echo arg... Display a line of text.

exit code Exit with defined code. Depending on the program arguments and/or the extra

rule options '-' this will cause amk to exit with the provided code. Please note
that 'exi t 0" has currently no result.

argfil e file arg... Create an argument file suitable for the --option-file (-f) option of all the other
tools. The first ar gf i | e argument is the name of the file to be created.
Subsequent arguments specify the contents. An existing argument file is not
modified unless necessary. So, the argument file itself can be used to create
a dependency to options of the command for updating a target.

r m[option]... file... Remove the specified file(s). The following options are available:
-r, --recursive Remove directories and their contents recursively.
-f, --force Force deletion. Ignore non-existent files, never prompt.
-i, --interactive Interactive. Prompt before every removal.
-v, --verbose Verbose mode. Explain what is being done.
-m file Read options from file..
-?, --help Show usage.

200

Using the Utilities

6.2.8. Calling the amk Make Utility

The invocation syntax of amk is:

ank [option]... [target]... [macro=def]...
For example:

ank test.elf

target You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

macro=def Macro definition. This definition remains fixed for the amk invocation. It overrides any
regular definitions for the specified macro within the makefiles and from the
environment. It is not inherited by subordinate amk's

option For a complete list and description of all amk make utility options, see Section 8.7,
Parallel Make Utility Options.

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

201

TASKING VX-toolset for PCP User Guide

6.3. Make Utility mkpcp

This make utility is for backwards compatibility with older versions of the toolset. It is not recommended
for new projects. Use amk instead.

If you are working with large quantities of files, or if you need to build several targets, it is rather
time-consuming to call the individual tools to compile, assemble, link and locate all your files.

You save already a lot of typing if you use the control program and define an options file. You can even
create a batch file or script that invokes the control program for each target you want to create. But with
these methods all files are completely compiled, assembled and linked to obtain the target file, even if
you changed just one C source. This may demand a lot of (CPU) time on your host.

The make utility mkpcp is a tool to maintain, update, and reconstruct groups of programs. The make
utility looks which files are out-of-date and only recreates these files to obtain the updated target.

Make process
In order to build a target, the make utility needs the following input:
« the target it should build, specified as argument on the command line

« the rules to build the target, stored in a file usually called makefi | e

In addition, the make utility also reads the file nkpcp. nk which contains predefined rules and
macros. See Section 6.3.2, Writing a Makefile.

The makef i | e contains the relationships among your files (called dependencies) and the commands
that are necessary to create each of the files (called rules). Typically, the absolute object file (. el f) is
updated when one of its dependencies has changed. The absolute file depends on . o files and libraries
that must be linked together. The . o files on their turn depend on . sr c files that must be assembled and
finally, . sr c files depend on the C source files (. ¢) that must be compiled. In the makef i | e this looks
like:

test.src : test.c # dependency
cpcp test.c # rule
test.o : test.src

aspcp test.src

test.elf : test.o
| pcp test.o -o test.elf --map-file -1c -1fp

You can use any command that is valid on the command line as a rule in the makefi | e. So, rules are
not restricted to invocation of the toolset.

Example

To build the target t est . el f, call mkpcp with one of the following lines:

202

Using the Utilities

nkpcp test.elf

nkpcp -fnynmake. mak test.elf

By default the make utility reads the file nakef i | e so you do not need to specify it on the command line.
If you want to use another name for the makefile, use the option -f.

If you do not specify a target, mkpcp uses the first target defined in the makefile. In this example it would
build t est . src instead of t est . el f.

Based on the sample invocation, the make utility now tries to build t est . el f based on the makefile and
performs the following steps:

1. From the makefile the make utility reads thatt est . el f depends ontest. o.

2. Ift est . o does not exist or is out-of-date, the make utility first tries to build this file and reads from the
makefile thatt est . 0 depends ontest. src.

3. Ift est . src does exist, the make utility now creates t est . o by executing the rule for it: aspcp
test.src.

4. There are no other files necessary to create t est . el f so the make utility now can use t est. o to
create t est. el f by executing the rule: | pcp test.o -0 test.elf

The make utility has now builtt est . el f butit only used the assembler to update t est . o0 and the linker
tocreatetest. el f.

If you compare this to the control program:
ccpecp test.c

This invocation has the same effect but now all files are recompiled (assembled, linked and located).

6.3.1. Calling the Make Utility

You can only call the make utility from the command line. The invocation syntax is:
nmkpcp [[option]... [target]... [macro=def]...]
For example:

nkpcp test.elf

target You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

macro=def Macro definition. This definition remains fixed for the mkpcp invocation. It overrides
any regular definitions for the specified macro within the makefiles and from the
environment. It is inherited by subordinate mkpcp's but act as an environment variable
for these. That is, depending on the -e setting, it may be overridden by a makefile
definition.

203

TASKING VX-toolset for PCP User Guide

option For a complete list and description of all make utility options, see Section 8.6, Make
Utility Options.

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

6.3.2. Writing a Makefile

In addition to the standard makefile makefi | e, the make utility always reads the makefile mkpcp. nk
before other inputs. This system makefile contains implicit rules and predefined macros that you can use
in the makefile makefil e.

With the option -r (Do not read the nkpcp. nk file) you can prevent the make utility from reading nkpcp. nk.

The default name of the makefile is makef i | e in the current directory. If you want to use another makefile,
use the option -f.

The makefile can contain a mixture of:

* targets and dependencies

* rules

» macro definitions or functions

* conditional processing

e comment lines

* include lines

» export lines

To continue a line on the next line, terminate it with a backslash (\):

this cooment |line is continued\
on the next line

If a line must end with a backslash, add an empty macro:

this coment line ends with a backsl ash \ $(EMPTY)
this is a new line

6.3.2.1. Targets and Dependencies

The basis of the makefile is a set of targets, dependencies and rules. A target entry in the makefile has
the following format:

204

Using the Utilities

target ... : [dependency ...] [; rule]
[rule]

Target lines must always start at the beginning of a line, leading white spaces (tabs or spaces) are not
allowed. A target line consists of one or more targets, a semicolon and a set of files which are required
to build the target (dependencies). The target itself can be one or more filenames or symbolic names:

all: deno.elf final.elf

deno.elf final.elf: test.o demp.o final.o

You can now can specify the target you want to build to the make utility. The following three invocations
all have the same effect:

nkpep
nkpcp all
nkpcp denp.elf final.elf

If you do not specify a target, the first target in the makefile (in this example al |) is built. The target al |
depends on denp. el f and fi nal . el f so the second and third invocation have the same effect and
the files deno. el f and fi nal . el f are built.

You can normally use colons to denote drive letters. The following works as intended:
c:foo.o : a:foo.c

If a target is defined in more than one target line, the dependencies are added to form the target's complete
dependency list:

all: deno.elf # These two lines are equivalent wth:
all: final.elf # all: deno.elf final.elf

Special targets

There are a number of special targets. Their names begin with a period.

Target Description

. DEFAULT If you call the make utility with a target that has no definition in the makefile, this
target is built.

. DONE When the make utility has finished building the specified targets, it continues with
the rules following this target.

. | GNORE Non-zero error codes returned from commands are ignored. Encountering this in a
makefile is the same as specifying the option -i on the command line.

JANT The rules following this target are executed before any other targets are built.

. PRECI QUS Dependency files mentioned for this target are never removed. Normally, if a

command in a rule returns an error or when the target construction is interrupted,
the make utility removes that target file. You can use the option -p on the command
line to make all targets precious.

205

TASKING VX-toolset for PCP User Guide

Target Description

. SI LENT Commands are not echoed before executing them. Encountering this in a makefile
is the same as specifying the option -s on the command line.

. SUFFI XES This target specifies a list of file extensions. Instead of building a completely specified
target, you now can build a target that has a certain file extension. Implicit rules to
build files with a number of extensions are included in the system makefile mkpcp. k.

If you specify this target with dependencies, these are added to the existing
. SUFFI XES target in mkpcp. nk. If you specify this target without dependencies,
the existing list is cleared.

6.3.2.2. Makefile Rules

A line with leading white space (tabs or spaces) is considered as a rule and associated with the most
recently preceding dependency line. A rule is a line with commands that are executed to build the
associated target. A target-dependency line can be followed by one or more rules.

final.src : final.c # target and dependency
nove test.c final.c # rulel
cpcp final.c # rul e2

You can precede a rule with one or more of the following characters:

@ does not echo the command line, except if -n is used.

- the make utility ignores the exit code of the command. Normally the make utility stops if a
non-zero exit code is returned. This is the same as specifying the option -i on the command
line or specifying the special . | GNORE target.

+ The make utility uses a shell or Windows command prompt (cnd. exe) to execute the
command. If the '+' is not followed by a shell line, but the command is an MS-DOS command
or if redirection is used (<, |, >), the shell line is passed to cnd. exe anyway.

You can force mkpcp to execute multiple command lines in one shell environment. This is accomplished
with the token combination ";\'. For example:

cd c:\Tasking\bin ;\
nkpcp -V

Note that the ;' must always directly be followed by the '\' token. Whitespace is not removed when it is at
the end of the previous command line or when it is in front of the next command line. The use of the '}’
as an operator for a command (like a semicolon ';' separated list with each item on one line) and the '\'
as a layout tool is not supported, unless they are separated with whitespace.

Inline temporary files

The make utility can generate inline temporary files. If a line contains <<LABEL (no whitespaces!) then
all subsequent lines are placed in a temporary file until the line LABEL is encountered. Next, <<LABEL
is replaced by the name of the temporary file. For example:

206

Using the Utilities

I pcp -0 $@-f <<EOF
$(separate "\n" $(match .o
$(separate "\n" $(match .a
$(LKFLAGS)

$1))
$))
EOF

The three lines between <<EOF and EOF are written to a temporary file (for example nkce4cOa. t np),
and the rule is rewritten as: | pcp -0 $@-f nkce4cOa. t np.

Suffix targets

Instead of specifying a specific target, you can also define a general target. A general target specifies the
rules to generate a file with extension . ex1 to a file with extension . ex2. For example:

. SUFFI XES: .c
.C.0
ccpep -c $<

Read this as: to build a file with extension . o out of a file with extension . c, call the control program with
-c $<. $< is a predefined macro that is replaced with the name of the current dependency file. The special
target . SUFFI XES: is followed by a list of file extensions of the files that are required to build the target.

Implicit rules

Implicit rules are stored in the system makefile nkpcp. nk and are intimately tied to the . SUFFI XES
special target. Each dependency that follows the . SUFFI XES target, defines an extension to a filename
which must be used to build another file. The implicit rules then define how to actually build one file from
another. These files share a common basename, but have different extensions.

If the specified target on the command line is not defined in the makefile or has not rules in the makefile,
the make utility looks if there is an implicit rule to build the target.

Example:
LIB = -lc -Ifp # macro

prog.elf: prog.o sub.o
| pcp prog.o sub.o $(LIB) -0 prog.elf

pr og. o: prog.c inc.h
cpcp prog.c
aspcp prog.src
sub. o: sub.c inc.h
cpcp sub.c
aspcp sub.src

This makefile says that pr og. el f depends on two files pr og. o and sub. o, and that they in turn depend
on their corresponding source files (pr og. ¢ and sub. ¢) along with the common file i nc. h.

The following makefile uses implicit rules (from nmkpcp. nk) to perform the same job.

207

TASKING VX-toolset for PCP User Guide

LDFLAGS = -lc -Ifp
prog.elf: prog.o sub.o
prog.o: prog.c inc.h
sub.o: sub.c inc.h

macro used by inplicit rules
inmplicit rule used
inmplicit rule used
inmplicit rule used

HH R R

6.3.2.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lowercase or uppercase characters, uppercase is an accepted convention.
The general form of a macro definition is:

MACRO = t ext
MACRO += and nore text

Spaces around the equal sign are not significant. With the += operator you can add a string to an existing
macro. An extra space is inserted before the added string automatically.

To use a macro, you must access its contents:

$(MACRO) # you can read this as
${ MACRC} # the contents of macro MACRO

If the macro name is a single character, the parentheses are optional. Note that the expansion is done
recursively, so the body of a macro may contain other macros. These macros are expanded when the
macro is actually used, not at the point of definition:

FOOD = $(EAT) and $(DRI NK)
EAT = neat and/or vegetabl es
DRI NK = wat er

export FOOD

The macro FOOD is expanded as neat and/ or veget abl es and wat er atthe moment itis used in
the export line, and the environment variable FOOD is set accordingly.

Predefined macros

Macro Description

MAKE Holds the value mkpcp. Any line which uses MAKE, temporarily overrides the option
-n (Show commands without executing), just for the duration of the one line. This way
you can test nested calls to MAKE with the option -n.

MAKEFLAGS Holds the set of options provided to mkpcp (except for the options -f and -d). If this
macro is exported to set the environment variable MAKEFLAGS, the set of options is
processed before any command line options. You can pass this macro explicitly to
nested mkpcp's, but it is also available to these invocations as an environment variable.

208

Using the Utilities

Macro Description

PRODDI R Holds the name of the directory where mkpcp is installed. You can use this macro to
refer to files belonging to the product, for example a library source file.

DOPRI NT = $(PRODDIR)/ i b/src/_doprint.c
When mkpcp is installed in the directory c: / Taski ng/ bi n this line expands to:

DOPRI NT = c:/ Tasking/lib/src/_doprint.c

SHELLCMD Holds the default list of commands which are local to the SHELL. If a rule is an
invocation of one of these commands, a SHELL is automatically spawned to handle
it.

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent
a single "$".

Dynamically maintained macros

There are several dynamically maintained macros that are useful as abbreviations within rules. It is best
not to define them explicitly.

Macro Description

$* The basename of the current target.

$< The name of the current dependency file.

$@ The name of the current target.

$? The names of dependents which are younger than the target.
$! The names of all dependents.

The $< and $* macros are normally used for implicit rules. They may be unreliable when used within
explicit target command lines. All macros may be suffixed with F to specify the Filename components
(e.g. ${*F}, ${ @}). Likewise, the macros $*, $< and $@ may be suffixed by D to specify the Directory
component.

The result of the $* macro is always without double quotes ("), regardless of the original target having
double quotes (") around it or not.

The result of using the suffix F (Filename component) or D (Directory component) is also always without
double quotes ("), regardless of the original contents having double quotes () around it or not.

6.3.2.4. Makefile Functions
A function not only expands but also performs a certain operation. Functions syntactically look like macros

but have embedded spaces in the macro name, e.g. '$(match argl arg2 arg3)'. All functions are built-in
and currently these are: mat ch, separ at e, pr ot ect, exi st ,nexi st and addpr ef i x.

$(match suffix filename ...)

The mat ch function yields all arguments which match a certain suffix:

209

TASKING VX-toolset for PCP User Guide

$(match .o prog.o sub.o nylib.a)
yields:

prog.o sub.o

$(separate separator argument ...)

The separ at e function concatenates its arguments using the first argument as the separator. If the first
argument is enclosed in double quotes then \n' is interpreted as a newline character, \t' is interpreted as
atab, "\ooo'is interpreted as an octal value (where, 000 is one to three octal digits), and spaces are taken
literally. For example:

$(separate "\n" prog.o sub. o)
results in:

prog. o
sub. o

Function arguments may be macros or functions themselves. So,
$(separate "\n" $(match .o $!))

yields all object files the current target depends on, separated by a newline string.

$(protect argument)

The pr ot ect function adds one level of quoting. This function has one argument which can contain white
space. If the argument contains any white space, single quotes, double quotes, or backslashes, it is
enclosed in double quotes. In addition, any double quote or backslash is escaped with a backslash.

Example:

echo $(protect 1'Il show you the "protect" function)
yields:

echo "I'lIl show you the \"protect\" function”

$(exist file | directory argument)

The exi st function expands to its second argument if the first argument is an existing file or directory.
Example:

$(exist test.c ccpcp test.c)

When the file t est . c exists, it yields:

ccpep test.c

When the file t est . ¢ does not exist nothing is expanded.

210

Using the Utilities

$(nexist file|directory argument)

The nexi st function is the opposite of the exi st function. It expands to its second argument if the first
argument is not an existing file or directory.

Example:

$(nexi st test.src ccpcp test.c)

$(addprefix prefix, argument ...)

The addpr ef i x function adds a prefix to its arguments. It is used in nkpcp. nk for invocation of the
control program to pass arguments directly to a tool.

Example:

ccpcp $(addprefix -W, -gl -Q2) test.c
yields:

ccpep -W-gl -W-Q2 test.c

6.3.2.5. Conditional Processing

Lines containing i f def , i f ndef, el se or endi f are used for conditional processing of the makefile.
They are used in the following way:

i fdef macro-nane

if-lines
el se

el se-1ines
endi f

The if-lines and else-lines may contain any number of lines or text of any kind, even otheri f def ,i f ndef,
el se and endi f lines, or no lines at all. The el se line may be omitted, along with the else-lines following
it.

First the macro-name after the i f def command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an el se line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the i f ndef line instead of i f def , the macro is tested for not being defined. These
conditional lines can be nested up to 6 levels deep.

You can also add tests based on strings. With i f eq the result is true if the two strings match, with i f neq
the result is true if the two strings do not match. They are used in the following way:

i feq(stringl, string2)

if-lines
el se

211

TASKING VX-toolset for PCP User Guide

el se-1ines
endi f

6.3.2.6. Comment, Include and Export Lines

Comment lines

Anything after a "#" is considered as a comment, and is ignored. If the "#" is inside a quoted string, it is
not treated as a comment. Completely blank lines are ignored.

test.src : test.c # this is conmment and is
ccpcp test.c # ignored by the nake utility

Include lines

An include line is used to include the text of another makefile (like including a . h file in a C source).
Macros in the name of the included file are expanded before the file is included. You can include several
files. Include files may be nested.

i ncl ude nakefil e2 nmakefile3

Export lines

An export line is used to export a macro definition to the environment of any command executed by the
make utility.

GREETING = Hel | o
export GREETI NG

This example creates the environment variable GREETI NG with the value Hel | 0. The macro is exported
at the moment the export line is read so the macro definition has to precede the export line.

212

Using the Utilities

6.4. Archiver

The archiver arpcp is a program to build and maintain your own library files. A library file is a file with
extension . a and contains one or more object files (. 0) that may be used by the linker.

The archiver has five main functions:

Deleting an object module from the library

Moving an object module to another position in the library file

» Replacing an object module in the library or add a new object module
» Showing a table of contents of the library file

» Extracting an object module from the library

The archiver takes the following files for input and output:

relocatable object library
.a

relocatable object file N

[s]
linker

The linker optionally includes object modules from a library if that module resolves an external symbol
definition in one of the modules that are read before.

archiver

relocatable object library
.a

6.4.1. Calling the Archiver

You can create a library in Eclipse, which calls the archiver or you can call the archiver on the command
line.

To create a library in Eclipse

Instead of creating a PCP absolute ELF file, you can choose to create a library. You do this when you
create a new project with the New C Project wizard.

1. From the File menu, select New » TASKING PCP C Project.
The New C Project wizard appears.
2. Enter a project name.
3. Inthe Project type box, select TASKING PCP Library and click Next >.

4. Follow the rest of the wizard and click Finish.

213

TASKING VX-toolset for PCP User Guide

5. Add the files to your project.

6. Build the project as usual. For example, select Project » Build Project (),

Eclipse builds the library. Instead of calling the linker, Eclipse now calls the archiver.

Command line invocation

You can call the archiver from the command line. The invocation syntax is:

arpcp key option [sub _option...] library [object file]

key_option With a key option you specify the main task which the archiver should perform. You

must always specify a key option.

sub_option Sub-options specify into more detail how the archiver should perform the task that is
specified with the key option. It is not obligatory to specify sub-options.

library The name of the library file on which the archiver performs the specified action. You
must always specify a library name, except for the options -? and -V. When the library
is not in the current directory, specify the complete path (either absolute or relative) to
the library.

object_file The name of an object file. You must always specify an object file name when you
add, extract, replace or remove an object file from the library.

Options of the archiver utility

The following archiver options are available:

Description Option Sub-option
Main functions (key options)

Replace or add an object module -r -a-b-c-n-u-v
Extract an object module from the library -X -0 -v
Delete object module from library -d -v

Move object module to another position -m -a-b-v
Print a table of contents of the library -t -s0-s1
Print object module to standard output -p

Sub-options

Append or move new modules after existing module name -a name

Append or move new modules before existing module name -b name

Suppress the message that is displayed when a new library is -C

created

Create a new library from scratch -n

Preserve last-modified date from the library -0

Print symbols in library modules -s{0|1}

214

Using the Utilities

Description Option Sub-option
Replace only newer modules -u
Verbose -v

Miscellaneous

Display options -?
Display description of one or more diagnostic messages --diag
Display version header -V
Read options from file -f file
Suppress warnings above level n -wn

For a complete list and description of all archiver options, see Section 8.8, Archiver Options.
6.4.2. Archiver Examples

Create a new library

If you add modules to a library that does not yet exist, the library is created. To create a new library with
the name nyl i b. a and add the object modules cstart. o and cal c. o toit:

arpcp -r nylib.a cstart.o calc.o

Add a new module to an existing library

If you add a new module to an existing library, the module is added at the end of the module. (If the
module already exists in the library, it is replaced.)

arpcp -r nylib.a nod3.o

Print a list of object modules in the library
To inspect the contents of the library:

arpcp -t nylib.a

The library has the following contents:

cstart.o

calc.o
nod3. o

Move an object module to another position
To move nod3. o to the beginning of the library, position it just before cstart . o:

arpcp -nmb cstart.o nylib.a npbd3.o0

215

TASKING VX-toolset for PCP User Guide

Delete an object module from the library

To delete the object module cst ar t . o from the library nyl i b. a:
arpcp -d nylib.a cstart.o

Extract all modules from the library

Extract all modules from the library nmyl i b. a:

arpcp -x nylib.a

216

Using the Utilities

6.5. Expire Cache Utility

With the utility expirepcp you can limit the size of the cache (C compiler option --cache) by removing all
files older than a few days or by removing older files until the total size of the cache is smaller than a
specified size. See also Section 9.6, Compiler Cache.

The invocation syntax is:
expirepcp [option]... cache-directory
The compiler cache is present in the directory cpcpcache under the specified cache-directory.

For a complete list and description of all options, see Section 8.9, Expire Cache Utility Options. With
expi repcp --hel p you will see the options on st dout .

Examples

To remove all files older than seven days, enter:

expi repcp --days=7 "installation-dir\nproject\.cache"

To reduce the compiler cache size to 4 MB, enter:

expi repcp --negabytes=4 "installation-dir\nproject\.cache"
Older files are removed until the total size of the cache is smaller than 4 MB.
To clear the compiler cache, enter:

expi repcp --negabytes=0 "installation-dir\nproject\.cache"

217

TASKING VX-toolset for PCP User Guide

218

Chapter 7. Using the Debugger

This chapter describes the debugger and how you can run and debug a C application. This chapter only
describes the TASKING specific parts.

7.1. Reading the Eclipse Documentation

Before you start with this chapter, it is recommended to read the Eclipse documentation first. It provides
general information about the debugging process. This chapter guides you through a number of examples
using the TASKING debugger with simulation as target.

You can find the Eclipse documentation as follows:
1. Start Eclipse.
2. From the Help menu, select Help Contents.
The help screen overlays the Eclipse Workbench.
3. Inthe left pane, select C/C++ Development User Guide.
4. Open the Getting Started entry and select Debugging projects.

This Eclipse tutorial provides an overview of the debugging process. Be aware that the Eclipse
example does not use the TASKING tools and TASKING debugger.

7.2. Debugging a PCP Project

A PCP project is always part of a TriCore project. The TriCore project must have a project reference to
the PCP project. In order to debug the PCP project part, you need to disable debug for the TriCore project,
because we want to debug the PCP project.

In order to debug a PCP project, follow the steps below.

1. Create a PCP project (for example, nypr oj ect), as explained in the Getting Started with the
TASKING VX-toolset for TriCore. Enable at least the Debug configuration.

2. (Optional) Build the PCP project. This step is optional because the . out file is built automatically
when the project is referenced and built from a TriCore project. See step 5.

This results in a linked output file (. out).
3. Create aTriCore project, as explained in the Getting Started with the TASKING VX-toolset for TriCore.
4. Inthe TriCore project, make a project reference to the PCP project.
5. In the active TriCore project, select Project » Properties for » C/C++ Build » Settings.

6. Inthe Tool Settings tab, expand the C/C++ Compiler entry and select Debugging.

219

TASKING VX-toolset for PCP User Guide

7. Setthe option Generate symbolic debug information to None .
8. Build the TriCore project.

This builds the referenced PCP project and creates the . out file in the Debug directory of the PCP
project. Furthermore this creates a TriCore/PCP ELF file in the Debug directory of the TriCore project.

9. Create a debug configuration for the TriCore project, as explained in Section 7.3, Creating a
Customized Debug Configuration.

10. start the debugger. From the Debug menu select Debug project. Alternatively you can click the #
button in the main toolbar.

When you use the simulator, the Debug view shows the TriCore core and PCP as separate threads.
When you select a thread this changes the context in the Disassembly view.

#5 Debug &2 |]'.'=5> = = 8
4 1% pcp-hello-start [TASKING C/C++ Debugger]
a {2 TriCore 1.3 Instruction Set Simulator - TC1796E
4 o Thread [TriCore] (Suspended]
= 10x80000728() 0x20000728
4 o Thread [PCP] (Suspended)
= 1 0xf0060022() cstart.c:23 00060022

Example

A PCP Hello World example (pcp- hel | o- chl) is delivered with the product for the simulator and is
referenced by the TriCore project pcp- hel | o- st art . Use the Import wizard (File » Import » TASKING
C/C++ » TASKING PCP Example Projects) to import the projects into the workspace.

7.3. Creating a Customized Debug Configuration

Before you can debug a project, you need a Debug launch configuration. Such a configuration, identified
by a name, contains all information about the debug project: which debugger is used, which project is
used, which binary debug file is used, which perspective is used, ... and so forth.

If you want to debug on a target board, you have to create a custom debug configuration for your target
board, otherwise you have to create a debug launch configuration for the TASKING simulator.

To debug a project, you need at least one opened and active project in your workbench. In this
chapter, it is assumed that the nypr oj ect is opened and active in your workbench.

220

Create or customize your debug con

Using the Debugger

figuration

To create or change a debug configuration follow the steps below.

want to change, for example, TASKING C/C++

In the Name field enter the name of the configuration. By default, this is the name of the project, but

you can give your configuration any name you want to distinguish it from the project name. For

1. From the Debug menu, select Debug Configurations...
The Debug Configurations dialog appears.
2. Select TASKING C/C++ Debugger and click the New launch configuration button (.
) to add a new configuration.
Or: In the left pane, select the configuration you
Debugger » myproject.
3.
example enter mypr oj ect . si mul at or to identify the simulator debug configuration.
4,

The dialog shows several tabs.

Target tab

On the Target tab, select the TriCore 1.3 Instruction Set Simulator or any of the target boards.

On the Target tab you can select on which target the application should be debugged. An application
can run on an external evaluation board, or on a simulator using your own PC. On this tab you can also
select the connection settings. The information in this tab is based on the Debug Target Configuration
(DTC) files as explained in Chapter 13, Debug Target Configuration Files.

{} Debug Configurations

Create, manage, and run configurations
TASKING C/C++ Debugger

»

==

TEX| B3 Name: | myproject

type filter text Target . := Initialization | 5] Project| 69= Arguments| B Source| £ Miscellancous
4 B TASKING C/C++ Debugger

Target settings
s myproject

7 Show all targets ©) Show targets for TC1796B

Target: Infineon TriBoard TC17968
Phytec Phycore TC17068
TriCore1 Instruction Set Simulator (KSM)

TriCore 1.3 Instruction Set Simulator

Configuration:

Connection settings

Connection: | TSIML Simulater

SEIg= Field Value

Filter matched 2 of 2 items

Initialization tab

On the Initialization tab enable one or more of the following options:

221

TASKING VX-toolset for PCP User Guide

(23 Debug Cenfigurations (===
Create, manage, and run configurations - 4
TASKING C/C++ Debugger E
=
EIEE R Neme: myproject
type filter tedt Target | &= Initialization " [5] Project| (- Arguments| i Source [Miscellaneous

a ¥ TASKING C/C++ Debugger

V|Initial download of pregram
£ myproject L

] Verify download of program
] Reset target
] Goto main
] Break on exit
Reduce target state polling

Use default flash settings (recommended)

Filter matched 2 of 2 items.

® e

Initial download of program

If enabled, the target application is downloaded onto the target. If disabled, only the debug information
in the file is loaded, which may be useful when the application has already been downloaded (or flashed)
earlier. If downloading fails, the debugger will shut down.

Verify download of program

If enabled, the debugger verifies whether the code and data has been downloaded successfully. This
takes some extra time but may be useful if the connection to the target is unreliable.

Reset target

If enabled, the target is immediately reset after downloading has completed. Registers that have the
i nit resource setin the . dt c file, are reset to their default value. Execution stops at the reset vector.

Goto main

If enabled, only the C startup code is processed when the debugger is launched. The application stops
executing when it reaches the first C instruction in the function mai n() . Usually you enable this option
in combination with the option Reset Target.

Break on exit
If enabled, the target halts automatically when the exi t () function is called.
Reduce target state polling

If you have set a breakpoint, the debugger checks the status of the target every number of seconds to
find out if the breakpoint is hit. In this field you can change the polling frequency.

222

Initialization tab: Flash settings

» Use default flash settings (recommended)

Using the Debugger

By default, the flash settings are derived from the . dt c file for the chosen target processor. So, when
you change processors the flash settings change automatically. If you do not want that, you can specify
your own flash settings. You can click Restore Defaults to restore the default flash settings.

* Monitor file

Filename of the monitor, usually an Intel Hex or S-Record file.

» Sector buffer size

Specifies the buffer size for buffering a flash sector.

» Workspace address

The address of the workspace of the flash programming monitor.

Project tab

On the Project tab, you can set the properties for the debug configuration such as a name for the project
and the application binary file(s) which are used when you choose this configuration.

{2} Debug Configurations

TASKING C/Ca+ Debugger

TEX[B 3~
type filter text

%5 TASKING C/C++ Debugger
#5 myproject

Filter matched 2 of 2 items

@
&

Create, manage, and run configurations

Name: mypreject
Target | £ Initialization | [£] Project . 69+ Arguments| &5 Source| [Miscellaneous

Project

myproject

Binary files

File Add.

${build_confighmyproject.eff

The start address will be taken from the first file that defines one

»

Browse...

==

« In the Project field, you can choose the project for which you want to make a debug configuration.
Because the project mypr oj ect is the active project, this project is filled in automatically. Click the
Browse... button to select a different project. Only the opened projects in your workbench are listed.

* Inthe Binary files group box, you can choose one or more binary files to debug. The file
mypr oj ect . el f is automatically selected from the active project.

223

TASKING VX-toolset for PCP User Guide

The order of the binary files matters. Use the Up and Down buttons to change the order. If there are

multiple files, the application start address is taken from the first file that defines one. An ELF file always
defines one, whereas Hex files may not.

Note that conflicts between symbols could arise, for example when you download two ELF files that
both contain the function mai n() . When you download multiple files, we recommend that the first
binary file is an ELF file that contains the startup code and mai n() and that the other files are auxiliary
Hex files.

To add a binary file

1. Click Add... to add a binary file.

The Add Binary File dialog appears.

{1} Add Binary File (=3
(D Specify a binary file and optionally an offset

File:

S{build_confighmyproject.elf Search... | | Browse...
Offset:
Affects only code and data, not debug information

'/?j' [QK I | Cancel |

2. Specify the binary file, use the Search... button to select one from the active project, or use the
Browse... button to search the file system.

3. Optionally, specify an address offset. The value will be added to all target addresses in the binary
file.

Note that the address offset will be applied only to code, data and the start address, not to debug
information. Specifying a non-zero offset is not recommended for an ELF/DWARF file. If the offset
causes an address to underflow or overflow an error occurs.

Arguments tab

If your application's mai n() function takes arguments, you can pass them in this tab. Arguments are
conventionally passed in the ar gv[] array. Because this array is allocated in target memory, make sure
you have allocated sufficient memory space for it.

* Inthe C/C++ perspective select Project » Properties for to open the Properties dialog. Expand C/C++

Build » Startup Configuration. Enable the option Enable passing argc/argv to main() and specify
a Buffer size for argv.

224

(.} Debug Configurations

YR X|E 3

type filter text

2 {5 TASKING C/C
&5 myproject

Filter matched 2 of 2 items.

®@

Target | := Initialization | || Project [£9: Arguments . %/ Source|] Miscellaneous
++ Debugger

Create, manage, and run configurations
TASKING C/C++ Debugger

Name: myproject

C/C++ program arguments
argl arg2
arg3 argd

Working directory
Use default working directory
S{workspace loc:myproject}
Workspace.. | | File System... Variables...
Apply Revert

Source tab

for debug data.

(.} Debug Configurations

TASKING C/C++ Debugger

YR X|E 3
type filter text

2 {5 TASKING C/C++ Debugger
&5 myproject

Create, manage, and run configurations

=

Name: myproject

Target | := Initialization | [] Project | 9: Arguments [Source
Source Lookup Path:

13 Default

] Miscellaneous

Add...

Edit..
Up

Down

Restore Default

[Se:

arch for duplicate source files on the path

Filter matched 2 of 2 items.

Revert
@

Apply

» Usually, the default source code location is correct.

Miscellaneous

On the Miscellaneou

tab

s tab you can specify several file locations.

Using the Debugger

On the Source tab, you can add additional source code locations in which the debugger should search

225

TASKING VX-toolset for PCP User Guide

(23 Debug Cenfigurations (===
Create, manage, and run configurations - 4
TASKING C/C++ Debugger J

R =
Il Name: | myproject

type filter text

a ¥ TASKING C/C++ Debugger
myproject

Target | i= Initialization | [] Project | 9= Arguments | s Source |] Miscellaneous
Debugger location: C:\Program Files\TASKING\TriCore viyrz\cte\eclipse\pl.

FSS root directory: S{project_loc)\${build_config}
ORTIile:

KSM module:

GOl log file:

Debug instrument log file (if applicable)

Cache target access
Launch in background

Use linkerflocator memery map file (mdf) for memory map

Filter matched 2 of 2 items.

» Debugger location

The location of the debugger itself. This should not be changed.

FSS root directory

The initial directory used by file system simulation (FSS) calls. See the description of the FSS view.

ORTI file and KSM module

If you wish to use the debugger's special facilities for kernel-aware debugging, specify the name of a
Kernel Debug Interface (KDI) compatible KSM module (shared library) in the appropriate edit box. See
also the description of the RTOS view.

GDl log file and Debug instrument log file

You can use the options GDI log file and Debug instrument log file (if applicable) to control the generation
of internal log files. These are primarily intended for use by or at the request of Altium support personnel.

+ Cache target access

Except when using a simulator, the debugger's performance is generally strongly dependent on the
throughput and latency of the connection to the target. Depending on the situation, enabling this option
may result in a noticeable improvement, as the debugger will then avoid re-reading registers and
memory while the target remains halted. However, be aware that this may cause the debugger to show
the wrong data if tasks with a higher priority or external sources can influence the halted target's state.

e Launch in background
When this option is disabled you will see a progress bar when the debugger starts. If you do not want

to see the progress bar and want that the debugger launches in the background you can enable this
option.

226

Using the Debugger

» Use linker/locator memory map file (.mdf) for memory map

You can use this option to find errors in your application that cause access to non-existent memory or
cause an attempt to write to read-only memory. When building your project, the linker/locator creates
a memory description file (. ndf) file which describes the memory regions of the target you selected
in your project properties. The debugger uses this file to initialize the debugging target.

This option is only useful in combination with a simulator as debug target. The debugger may fail to
start if you use this option in combination with other debugging targets than a simulator.

7.4.Troubleshooting

If the debugger does not launch properly, this is likely due to mistakes in the settings of the execution
environment or to an improper connection between the host computer and the execution environment.
Always read the notes for your particular execution environment.

Some common problems you may check for, are:

Problem Solution

Wrong device name in the launch |Make sure the specified device name is correct.
configuration

Invalid baud rate Specify baud rate that matches the baud rate the execution
environment is configured to expect.

No power to the execution Make sure the execution environment or attached probe is powered.
environment.

Cable connected to the wrong port |Some target machines and hosts have several ports. Make sure
on the execution environment or host. |you connect the cable to the correct port.

Conflict between communication A device driver or background application may use the same
ports. communications port on the host system as the debugger. Disable
any service that uses the same port-number or choose a different
port-number if possible.

Port already in use by another user. | The port may already be in use by another user on some UNIX
hosts, or being allocated by a login process. Some target machines
and hosts have several ports. Make sure you connect the cable to
the correct port.

If the program state shown by the debugger appears to deviate from the true state, check that the linker
option ‘Include debugger synchronization utility' is enabled.

7.5. TASKING Debug Perspective

After you have launched the debugger, you are either asked if the TASKING Debug perspective should
be opened or it is opened automatically. The Debug perspective consists of several views.

To open views in the Debug perspective:

227

TASKING VX-toolset for PCP User Guide

1. Make sure the Debug perspective is opened

2. From the Window menu, select Show View »

3. Select a view from the menu or choose Other... for more views.

By default, the Debug perspective is opened with the following views:

{3 TASKING Debug - myproject/myproject.c - TriCore Eclipse IDE vicyrz =N BN =<
File Edit Source Refoctor Navigate Search Project Debug Window Help
[l @i - @ M S E S EY DR SR B
- v ¥o ow - Quick Access | ® ‘ [7] TASKING C/C++ | %% TASKING Debug
45 Debug 2 | 3% = = 8 |t Varisbles 2 . % Breakpoints = B |/ Registers 2 & = 8
4 ¥ myproject [TASKING C/C++ Debugger] 5B & | o3 = || eroup:
4 {F TriCore 13 Instruction Set Simulater - TC1796E (3
Name Value
4 f® Thread [TriCore] (Suspended) — p— Name Value Usage
= 1 main{) myproject.c:3 0xB0000dza EEll <Error. Cannot read variahl..._ || 00 global address =
= 2 _start() cstart.c:1250 0:30000cc6 A 00 global address
+ o Thread [PCP] (Suspended) n 0x800000d4
a3 00
o || A4 00
v || & 0 2
« m N I , b f
myproject.c § Disassem| = Outline
2 myproject.c 22 =0 |[@o bly 52 3= Outl =5
#include <stdio.h>
Address:
Irnate (i) int main(void) .
int i 80008d2a ©320 sub.a sp,#8x8
for (i=1; i<=3; i++) for (i=1; i<=3; i++)
L seeead2c @lda mov d15,#8x1
printf("%d\n",1); 3 se@sadze 2fa@ mov.a als,#8x2
1 printf("%d\n",i);
printf("Helle world, "); 8@@ead3e afva st.w [sp],d1s
printf("this is \n"); 38@88d32 BAB334cS lea a4, 8x588800038
printf("a small ¥dst\n",i-3); se@80d36 8A28886d call printf (@x8ee80d76)
printf("debugging example.\n" }; for (i=15 i¢=3; irv)
- B@@8ad3a 1fc2 El 15, #8x1 i
H d3a 1f dd d
€ » Zl [
2 Console 52 & Tasks % BIE| B~ 8 (0 Memory 3] B EE %~ ~= 8
Debug [myproject] Monitors
Communication: TSIM1 Simulator -
Debug Instrument Module: tsim
starting Debugger...
TASKING VX-toolset for TriCore: debugger, Build 16898263 <47d5675583
Copyright 28@6-2816 Altium BV il
‘ n L3

7.5.1. Debug View

The Debug view shows the target information in a tree hierarchy shown below with a sample of the

possible icons:

Icon Session item Description
5. Launch instance |Launch configuration name and launch type
Debugger instance | Debugger name and state

P @ & |Thread instance

Thread number and state

E = Stack frame
instance

Stack frame number, function, file name, and file line number

228

Using the Debugger

Stack display

During debugging (running) the actual stack is displayed as it increases or decreases during program
execution. By default, all views present information that is related to the current stack item (variables,
memory, source code etc.). To obtain the information from other stack items, click on the item you want.

The Debug view displays stack frames as child elements. It displays the reason for the suspension beside
the thread, (such as end of stepping range, breakpoint hit, and signal received). When a program exits,
the exit code is displayed.

The Debug view contains numerous functions for controlling the individual stepping of your programs and
controlling the debug session. You can perform actions such as terminating the session and stopping the
program. All functions are available from the right-click menu, though commonly used functions are also
available from the toolbar.

Controlling debug sessions

Icon Action Description
% Remove all Removes all terminated launches.
€ Reset target Resets the target system. Registers that have the i ni t resource set in the
system . dt c file, are reset to their default value. Execution stops at the reset vector.
. Restart Resets the target system and restarts the application. The application stops
© executing when it reaches the first C instruction in the function mai n() .
b Resume Resumes the application after it was suspended (manually, breakpoint,
signal).
oo Suspend Suspends the application (pause). Use the Resume button to continue.
) Right-click menu. Restarts the selected debug session when it was
: elaunc erminated. e debug session is still running, a new debug session is
Q, Rel h t ted. If the deb till deb
launched.
4 Reload current Reloads the current application without restarting the debug session. The
: application application does restart of course.
- Terminate Ends the selected debug session and/or process. Use Relaunch to restart
this debug session, or start another debug session.
[| Terminate all Right-click menu. As terminate. Ends all debug sessions.
@ |Terminate and Right-click menu. Ends the debug session and removes it from the Debug
*lremove view.
@ |Terminate and Right-click menu. Ends the debug session and relaunches it. This is the
Relaunch same as choosing Terminate and then Relaunch.
. Detaches the debugger from the selected process (useful for debugging
Disconnect attached processes).

229

TASKING VX-toolset for PCP User Guide

Stepping through the application

Icon Action Description
= Step into Steps to the next source line or instruction.
_ Steps over a called function. The function is executed and the application
Ly Step over . .
suspends at the next instruction after the call.
Executes the current function. The application suspends at the next
- Step return . ; X
instruction after the return of the function.
i Instruction Toggle. If enabled, the stepping functions are performed on instruction level
stepping instead of on C source line level.

Toggle. If an interrupt source continues generating interrupts while the
target is stopped (either manually or by hitting a breakpoint), a following
Interrupt aware |single step will always enter the Interrupt Service Routine (ISR). This can
stepping lead to some problems during single stepping. With interrupt aware stepping
enabled, interrupts are temporarily disabled after the target has stopped.
When execution resumes the interrupts are restored.

Miscellaneous

Icon Action Description
Right-click menu. Copies the stack as text to the windows clipboard. You
Copy Stack .) . .
can paste the copied selection as text in, for example, a text editor.
5 Edit project... Right-click menu. O‘pens.the debug configuration dialog to let you edit the
current debug configuration.
B Edit Source Right-click menu. Opens the Edit Source Lookup Path window to let you
Lookup... edit the search path for locating source files.

7.5.2. Breakpoints View

You can add, disable and remove breakpoints by clicking in the marker bar (left margin) of the Editor
view. This is explained in the Getting Started manual.

Description

The Breakpoints view shows a list of breakpoints that are currently set. The button bar in the Breakpoints
view gives access to several common functions. The right-most button — opens the Breakpoints menu.

Types of breakpoints
To access the breakpoints dialog, add a breakpoint as follows:
1. Click the Add TASKING Breakpoint button (&).

The Breakpoints dialog appears.

Each tab lets you set a breakpoint of a specific type. You can set the following types of breakpoints:

230

Using the Debugger

» File breakpoint

t:] Breakpoints @

Select breakpoint type
(1) Create file breakpoint

File |Fur|ction | CodeAddressl Data | Data Addressl Stack |Instruction | Cycle |Timer |

File: queens.c - Browse...

Line: 58

Method

_) Hardware breakpoint
_) Software breakpoint

@ Mo preference

Condition:

Ignore count:

® .

If a debug session is active, the File drop-down box is filled with all source files as present in the debug
information in the ELF file. This can include files not present in the Eclipse project (for example from
libraries). If a file could be matched to a file in the active Eclipse project it will show as an Eclipse project
relative filename.

The target halts when it reaches the specified line of the specified source file. Note that it is possible
that a source line corresponds to multiple addresses, for example when a header file has been included
into two different source files or when inlining has occurred. If so, the breakpoint will be associated with
all those addresses. It is also possible that on some files no line breakpoints can be set because the
debugger lacks line information.

231

TASKING VX-toolset for PCP User Guide

* Function

t:] Breakpoints @
Select breakpoint type
(1) Create function breakpoint

| File | Function |CodeAddress | Data | Data Addressl Stack |In§truction | Cycle ITimer |

Function: ’main VI
File: ’queens.c v]
Method

() Hardware breakpoint
(©) Software breakpoint

@ Mo preference

Condition:

Ignore count:

@ .

The Function drop-down box is filled with all functions from the debug information and the symbol
table (if not already in the debug information). You can use the File drop-down box to filter the list of
functions. If you select <all> you will see the filenames (between parentheses) behind each entry in
the Function drop-down box. Functions marked with function_name [section] originate from the symbol
table. These functions are normally not associated with a filename and will therefore be included if

<unknown> is selected in the File drop-down box. Functions marked ‘filename"::function_name are
static functions.

The target halts when it reaches the first line of the specified function. Note that function breakpoints
generally will not work on inlined instances of a function.

232

» Code Address

Select breakpoint type
3 Mo address specified.

File | Function | Code Address | Data | Data Addressl Stack |Instruction | Cycle |Timer |

t:] Breakpoints @

Address:
Method
() Hardware breakpoint
() Software breakpoint

@ Mo preference

Condition:

Ignore count:

®

The target halts when it reaches the specified instruction address.

» Data

Select breakpoint type
(1) Create data breakpoint

| File | Function | CodeAddress| Data |Data Addressl Stack |Instruction | Cycle |Timer |

tj Breakpoints @

Variable: 'queens.c':chess_board -
File: ’queens.c v]
Type

(") Break on read access
() Break on write access

(@ Break on read or write access

Condition:

Ignore count:

(?3' [oK] [Cancel]

Using the Debugger

The Variable drop-down box is filled with all variables from the debug information and the symbol table
(if not already in the debug information), but you can also enter text yourself. If a label is filled in, the
size will be 1 MAU. You can use the File drop-down box to filter the list of variables. If you select <all>
you will see the filenames (between parentheses) behind each entry in the Variables drop-down box.
Variables marked with variable_name [section] originate from the symbol table. These variables are

233

TASKING VX-toolset for PCP User Guide
normally not associated with a flename and will therefore be included if <unknown> is selected in the
File drop-down box. Variables marked ‘filename'::variable_name are static.
The target halts when the given variable is read or written to, as specified.

» Data Address

tj Breakpoints IEI
Select breakpoint type
€ Mo address specified.

| File | Function | Code Address | Data | Data Address | Stack |In§truction | Cycle ITimer |
Address:

Length: 1
Type
() Break on read access
() Break on write access

(@ Break on read or write access

Condition:

Ignore count:

The target halts when the given memory range (specified in terms of an absolute Address and a Length
in MAUSs) is read or written to, as specified.

» Stack

tj Breakpoints @
Select breakpoint type
3 Mo stack frame selected.

| File | Function | Code Address | Data | Data Address| Stack |Instruction | Cycle ITimer |
Level: [v]
Method

() Hardware breakpoint

() Software breakpoint

@ Mo preference

Condition:

Ignore count:

®

234

The target halts when it reaches the specified stack level.

e Instruction

Select breakpoint type
3 No count specified.

| File | Function | CodeAddressl Data | Data Addressl Stack | Instruction | Cycle |Timer

Count:

ﬁj Breakpoints @

Condition:

Ignore count:

Using the Debugger

The target halts when the given number of instructions (Count) has been executed.

e Cycle

Select breakpoint type
3 Mo count specified.

| File | Function | CodeAddressl Data | Data Addressl Stack |Instruction| Cycle |Timer |

Count:

Condition:

Ignore count:

ﬁj Breakpoints @

The target halts when the given number of clock cycles (Count) has elapsed.

235

TASKING VX-toolset for PCP User Guide

* Timer

t:] Breakpoints @

Select breakpoint type
£ Mo time specified.

| File | Function | Code Address | Data | Data Addressl Stack |Instructi0n | Cycle | Timer L

Time:

Condition:

Ignore count:

'/?3' Q0K Cancel

The target halts when the given amount of Time elapsed. The value entered is interpreted by the debug
instrument.

In addition to the type of the breakpoint, you can specify the condition that must be met to halt the program.

In the Condition field, type a condition. The condition is an expression which evaluates to ‘true' (non-zero)
or ‘false' (zero). The program only halts on the breakpoint if the condition evaluates to 'true'.

In the Ignore count field, you can specify the number of times the breakpoint is ignored before the program
halts. For example, if you want the program to halt only in the fifth iteration of a while-loop, type '4": the
first four iterations are ignored.

7.5.3. File System Simulation (FSS) View

Description

The File System Simulation (FSS) view is automatically opened when the target requests FSS input or
generates FSS output. The virtual terminal that the FSS view represents, follows the VT100 standard. If
you right-click in the view area of the FSS view, a menu is presented which gives access to some
self-explanatory functions.

VT100 characteristics

The queens example demonstrates some of the VT100 features. (You can find the queens example in
the <Tri Core installation path>\exanpl es directory from where you can import it into your
workspace.) Per debugging session, you can have more than one FSS view, each of which is associated
with a positive integer. By default, the view "FSS #1" is associated with the standard streams st di n,

st dout, st derr and st daux. Other views can be accessed by opening a file named "terminal window
<number>", as shown in the example below.

236

Using the Debugger

FILE * f3 = fopen("term nal w ndow 3", "rw');
fprintf(f3, "Hello, w ndow 3.\n");
fcl ose(f3);

You can set the initial working directory of the target application in the Debug configuration dialog (see
also Section 7.3, Creating a Customized Debug Configuration):

1. On the Debugger tab, select the Miscellaneous sub-tab.
2. Inthe FSS root directory field, specify the FSS root directory.

The FSS implementation is designed to work without user intervention. Nevertheless, there are some
aspects that you need to be aware of.

First, the interaction between the C library code (in the files dbg*. ¢ and dbg*. h; see Section 10.1.5,
dbg.h) and the debugger takes place via a breakpoint, which incidentally is not shown in the Breakpoints
view. Depending on the situation this may be a hardware breakpoint, which may be in short supply.

Secondly, proper operation requires certain code in the C library to have debug information. This debug
information should normally be present but might get lost when this information is stripped later in the
development process.

7.5.4. Disassembly View

The Disassembly view shows target memory disassembled into instructions and / or data. If possible, the
associated C / C++ source code is shown as well. The Address field shows the address of the current
selected line of code.

To view the contents of a specific memory location, type the address in the Address field. If the address
is invalid, the field turns red.

7.5.5. Expressions View

The Expressions view allows you to evaluate and watch regular C expressions.

To add an expression:

Click OK to add the expression.

1. Right-click in the Expressions View and select Add Watch Expression.
The Add Watch Expression dialog appears.

2. Enter an expression you want to watch during debugging, for example, the variable name "i

If you have added one or more expressions to watch, the right-click menu provides options to Remove
and Edit or Enable and Disable added expressions.

» You can access target registers directly using #NAME. For example "ar r [#R0 << 3] " or "#Tl MER3
= m++". If a register is memory-mapped, you can also take its address, for example, "&#ADCI N'.

237

TASKING VX-toolset for PCP User Guide

» Expressions may contain target function calls like for example "g1 + i nvert (&g2)". Be aware that
this will not work if the compiler has optimized the code in such a way that the original function code
does not actually exist anymore. This may be the case, for example, as a result of inlining. Also, be
aware that the function and its callees use the same stack(s) as your application, which may cause
problems if there is too little stack space. Finally, any breakpoints present affect the invoked code in
the normal way.

7.5.6. Memory View

Use the Memory view to inspect and change process memory. The Memory view supports the same
addressing as the C language. You can address memory using expressions such as:

* 0x0847d3c

. (&) +1024

e *ptr

Monitors

To monitor process memory, you need to add a monitor:

1. Inthe Debug view, select a debug session. Selecting a thread or stack frame automatically selects
the associated session.

2. Click the Add Memory Monitor button in the Memory Monitors pane.
The Monitor Memory dialog appears.
3. Type the address or expression that specifies the memory section you want to monitor and click OK.

The monitor appears in the monitor list and the Memory Renderings pane displays the contents of
memory locations beginning at the specified address.

To remove a monitor:
1. Inthe Monitors pane, right-click on a monitor.

2. From the popup menu, select Remove Memory Monitor.

Renderings

You can inspect the memory in so-called renderings. A rendering specifies how the output is displayed:
hexadecimal, ASCII, signed integer, unsigned integer or traditional. You can add or remove renderings
per monitor. Though you cannot change a rendering, you can add or remove them:

1. Click the New Renderings... tab in the Memory Renderings pane.
The Add Memory Rendering dialog appears.

2. Select the rendering you want (Traditional, Hex, ASCII, Signed Integer, Unsigned Integer or Hex
Integer) and click Add Rendering(s).

238

Using the Debugger

To remove a rendering:
1. Right-click on a memory address in the rendering.

2. From the popup menu, select Remove Rendering.

Changing memory contents

In a rendering you can change the memory contents. Simply type a new value.

Warning: Changing process memory can cause a program to crash.

The right-click popup menu gives some more options for changing the memory contents or to change the
layout of the memory representation.

7.5.7. Compare Application View

You can use the Compare Application view to check if the downloaded application matches the application
in memory. Differences may occur, for example, if you changed memory addresses in the Memory view.

» To check for differences, click the Compare button.

7.5.8. Heap View

With the Heap view you can inspect the status of the heap memory. This can be illustrated with the
following example:

string = (char *) malloc(100);
strcpy (string, "abcdefgh");
free (string);

If you step through these lines during debugging, the Heap view shows the situation after each line has
been executed. Before any of these lines has been executed, there is no memory allocated and the Heap
view is empty.

« After the first line the Heap view shows that memory is occupied, the description tells where the block
starts, how large it is (100 MAUs) and what its content is (0x0, 0x0, ...).

 After the second line, "abcdef gh" has been copied to the allocated block of memory. The description
field of the Heap view again shows the actual contents of the memory block (0x61, 0x62,...).

» The third line frees the memory. The Heap view is empty again because after this line no memory is
allocated anymore.

7.5.9. Logging View

Use the Logging view to control the generation of internal log files. This view is intended mainly for use
by or at the request of Altium support personnel.

239

TASKING VX-toolset for PCP User Guide

7.5.10. RTOS View

The debugger has special support for debugging real-time operating systems (RTOSs). This support is

implemented in an RTOS-specific shared library called a kernel support module (KSM) or RTOS-aware
debugging module (RADM). Specifically, the TASKING VX-toolset for TriCore ships with a KSM supporting
the 1ISO 17356 standard. You have to create your own Run Time Interface (ORTI) and specify this file on
the Miscellaneous tab while configuring a customized debug configuration (see also Section 7.3, Creating
a Customized Debug Configuration):

1. From the Debug menu, select Debug Configurations...
The Debug Configurations dialog appears.

2. Inthe left pane, select the configuration you want to change, for example, TASKING C/C++ Debugger
» myproject.

Or: click the New launch configuration button (L) to add a new configuration.
3. Open the Miscellaneous tab
4. Inthe ORTI file field, specify the name of your own ORTI file.

5. If you want to use the supplied KSM suitable for RTOS kernels, in the KSM module field browse for
the fileorti _radm dl | (Windows) ororti _radm so (UNIX) in the ct c\ bi n directory of the
toolset.

The debugger supports ORTI specifications v2.0 and v2.1.

7.5.11. Registers View

In the Registers view you can examine the value of registers while stepping through your application. The
registers are organized in a number of register groups, which together contain all known registers. You
can select a group to see which registers it contains. This view has a number of features:

» While you step through the application, the registers involved in the step turn yellow. If you scroll in the
view or switch groups, some registers may appear on a lighter yellow background, indicating that the
debugger does not know whether the registers have changed because the debugger did not read the
registers before the step began.

240

Using the Debugger

il Registers &7 v W = 0
Group: |GPR -
MName Value Usage
A3 0D -
Ad (8000008
AS (7 0008fed
Ab (7 0008fF8
AT 0D
AR 00 global address 3
Ag 00 global address 1
Al0 0x7000BFFE stack pointer
All (xE0000d92 return address
Al2 0D

4 [

* You can change each register's value.

» For some registers the menu entry Symbolic Representation is available in their right-click popup
menu. This opens a new view which shows the internal fields of the register. (Alternatively, you can
double-click on a register). For example, the SBCU_CON register from the SBCU group may be shown
as follows:

i SCU_CCUCOND 22 = g
Value: 0:dd | | Write
Bit# Description Value -

m

0-3 BAUD1DIY: Baudl Divider Relead Value fBAUDL is stopped
4-7 BAUDZDIV: Baud?2 Divider Reload Value fBAUDZ is stopped
8-11 SRIDIV: SRI Divider Relead Value f5RI is stopped

12-15 LPDIV: Low Power Divider Reload Value fMAX, fSRI, fSPB, and fBEE are controlled... -

In this view you can set the individual values in the register, either by selecting a value from a drop-down
box or by simply entering a value depending on the chosen field. To update the register with the new
values, click the Write button.

» You can search for a specific register: right-click on a register and from the popup menu select Find
Register.... Enter a group or register name filter, click the register you want to see and click OK. The
register of your interest will be shown in the view.

7.5.12. Trace View

If tracing is enabled, the Trace view shows the code was most recently executed. For example, while you
step through the application, the Trace view shows the executed code of each step. To enable tracing:

* Right-click in the Trace view and select Trace.

241

TASKING VX-toolset for PCP User Guide

A check mark appears when tracing is enabled.

The view has three tabs, Source, Instruction and Raw, each of which represents the trace in a different
way. However, not all target environments will support all three of these. The view is updated automatically
each time the target halts.

7.6. PCP Simulator Configuration

To simulate the Peripheral Control Processor (PCP), the standard TriCore Instruction Set Simulator (ISS)
starts a PCP plugin simulator (pcp). This is set up in a configuration file named DConf i g that is located
in the et c directory. This file tells the TriCore ISS to start up the PCP plugin with the specified options.

The available command line options for the PCP plugin simulator are:

Option Description Default
-cmem_base address|Code memory address configuration 0xf0020000
-cmem_size size Code memory size configuration 0x4000
-pram_base address |Parameter memory address configuration 0xf0010000
-pram_size size Parameter memory size configuration 0x1000
-preg_base address |PCP register memory address configuration 0xf0003f00
-preg_size size PCP register memory size configuration Oxcd
-psrn_base address |PCP service register node memory address configuration | 0xf0003fd0
-psrn_size size PCP service register node memory size configuration 0x30

If a non default derivative is used, it might be necessary to change the options in this file. The default
derivative for the simulator is the TC1796B.

242

Chapter 8. Tool Options

This chapter provides a detailed description of the options for the compiler, assembler, linker, control
program, make utility and the archiver.

Tool options in Eclipse (Menu entry)

For each tool option that you can set from within Eclipse, a Menu entry description is available. In Eclipse
you can customize the tools and tool options in the following dialog:

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. Open the Tool Settings tab.
You can set all tool options here.

Unless stated otherwise, all Menu entry descriptions expect that you have this Tool Settings tab
open.

The following tables give an overview of all tool options on the Tool Settings tab in Eclipse with hyperlinks
to the corresponding command line options (if available).

Global Options

Eclipse option Description or option

Use global 'product directory' preference Directory where the TASKING toolset is
installed

Treat warnings as errors Control program option --warnings-as-errors

Keep temporary files Control program option
--keep-temporary-files (-t)

Verbose mode of control program Control program option --verbose (-v)

Channel Configuration

Prefix for global symbols C compiler option --symbol-prefix

Allow channel to be interruptible C compiler option --interrupt-enable

Preserve R7 flags 0..7 C compiler option --preserve-r7-flags

243

TASKING VX-toolset for PCP User Guide

C Compiler

Eclipse option

Description or option

Preprocessing

Automatic inclusion of '.sfr' file

C compiler option --include-file

Store preprocessor output in <file>.pre

Control program option --preprocess (-E) /
--no-preprocessing-only

Keep comments in preprocessor output

Control program option
--preprocess=+comments

Keep #line info in preprocessor output

Control program option
--preprocess=-noline

Defined symbols

C compiler option --define

Pre-include files

C compiler option --include-file

Include Paths

Include paths

C compiler option --include-directory

Language

Comply to C standard

C compiler option --iso

Allow GNU C extensions

C compiler option --language=+gcc

Allow // comments in ISO C90 mode

C compiler option --language=+comments

Check assignment of string literal to non-const string pointer

C compiler option --language=-strings

Treat 'char' variables as unsigned

C compiler option --uchar

Treat 'int' bit-fields as signed

C compiler option --signed-bitfields

Allow optimization across volatile access

C compiler option --language=-volatile

Allow Shift JIS Kanji in strings

C compiler option --language=+kanji

Floating-Point

Floating-point model

Control program option --fp-model

Code Generation

Maximum size for stack sections to align

C compiler option --align-stack

Generate channel entry table

C compiler option --no-channel-entry-table

Generate channel vectors

C compiler option --no-vector

Allocation

Clear uninitialized global and static variables

C compiler option --no-clear

Optimization

Optimization level

C compiler option --optimize

Trade-off between speed and size

C compiler option --tradeoff

Maximum size for code compaction

C compiler option --compact-max-size

Always inline function calls

C compiler option --inline

244

Tool Options

Eclipse option

Description or option

Maximum size increment when inlining (in %)

C compiler option --inline-max-incr

Maximum size for functions to always inline

C compiler option --inline-max-size

Automatic memory partitioning

C compiler option --no-partition

Build for application wide optimizations (MIL linking)

Control program option --mil-link / --mil-split

Custom Optimization

C compiler option --optimize

Compilation Speed

C compiler option --cache

Debugging

Generate symbolic debug information

C compiler option --debug-info

Generate control flow information

C compiler option --control-flow-info

MISRA C

MISRA C checking

C compiler option --misrac

MISRA C version

C compiler option --misrac-version

Warnings instead of errors for mandatory rules

C compiler option
--misrac-mandatory-warnings

Warnings instead of errors for required rules

C compiler option
--misrac-required-warnings

Warnings instead of errors for advisory rules

C compiler option
--misrac-advisory-warnings

Custom 1998 / Custom 2004 / Custom 2012

C compiler option --misrac

CERT C Secure Coding

CERT C secure code checking

C compiler option --cert

Warnings instead of errors

C compiler option --warnings-as-errors

Custom CERT C

C compiler option --cert

Diagnostics

Suppress C compiler warnings

C compiler option --no-warnings=num

Suppress all warnings

C compiler option --no-warnings

Maximum number of emitted errors

C compiler option --error-limit

Miscellaneous

Merge C source code with generated assembly

C compiler option --source

Additional options

C compiler options, Control program options

Assembler

Eclipse option

‘Description or option

Preprocessing

Use TASKING preprocessor

|Assembler option --preprocessor-type

245

TASKING VX-toolset for PCP User Guide

Eclipse option

Description or option

Automatic inclusion of '.def' file

Assembler option --include-file

Defined symbols

Assembler option --define

Pre-include files

Assembler option --include-file

Include Paths

Include paths

Assembler option --include-directory

Symbols

Generate symbolic debug

Assembler option --debug-info

Case insensitive identifiers

Assembler option --case-insensitive

Emit local EQU symbols

Assembler option --emit-locals=+equ

Emit local non-EQU symbols

Assembler option --emit-locals=+symbols

Set default symbol scope to global

Assembler option --symbol-scope

Optimization

Optimize instruction size

Assembler option --optimize=+instr-size

List File
Generate list file Control program option --list-files
List ... Assembler option --list-format

List section summary

Assembler option --section-info=+list

Diagnostics

Suppress warnings

Assembler option --no-warnings=num

Suppress all warnings

Assembler option --no-warnings

Display section summary

Assembler option --section-info=+console

Maximum number of emitted errors

Assembler option --error-limit

Miscellaneous

Allow Shift JIS Kanji in strings

Assembler option --kanji

Additional options

Assembler options

Linker

Eclipse option

Description or option

Libraries

Link default libraries

Control program option --no-default-libraries

Rescan libraries to solve unresolved externals

Linker option --no-rescan

Libraries

The libraries are added as files on the
command line.

Library search path

Linker option --library-directory

Data Objects

246

Tool Options

Eclipse option

Description or option

Data objects

Linker option --import-object

Script File

Defined symbols

Linker option --define

Linker script file (.Isl)

Linker option --Isl-file

Optimization

Delete unreferenced sections

Linker option --optimize=c

Use a 'first-fit decreasing' algorithm

Linker option --optimize=|

Compress copy table

Linker option --optimize=t

Delete duplicate code

Linker option --optimize=x

Delete duplicate data

Linker option --optimize=y

Map File

Generate map file (.map)

Control program option --no-map-file

Generate XML map file format (.mapxml) for map file viewer

Linker option --map-file=file.mapxml: XML

Include ...

Linker option --map-file-format

Diagnostics

Suppress warnings

Linker option --no-warnings=num

Suppress all warnings

Linker option --no-warnings

Maximum number of emitted errors

Linker option --error-limit

Miscellaneous

Strip symbolic debug information

Linker option --strip-debug

Link case insensitive

Linker option --case-insensitive

Do not use standard copy table for initialization

Linker option
--user-provided-initialization-code

Include debugger synchronization utility

Linker option --extern=_PCP_sync_on_halt

Additional options

Linker options

8.1. Configuring the Command Line Environment

If you want to use the tools on the command line (either using a Windows command prompt or using

Solaris), you can set environment variables.

You can set the following environment variables:

Environment variable |Description

ASPCPINC

Include Files.

With this variable you specify one or more additional directories in which the
assembler looks for include files. See Section 4.3, How the Assembler Searches

247

TASKING VX-toolset for PCP User Guide

Environment variable [Description

CPCPCACHE With this variable you specify a cache directory in which the C compiler can
store intermediate results. See C compiler option: --cache.

CPCPINC With this variable you specify one or more additional directories in which the
C compiler looks for include files. See Section 3.4, How the Compiler Searches
Include Files.

CCPCPBIN When this variable is set, the control program prepends the directory specified
by this variable to the names of the tools invoked.

LIBTC1V1_3/ With these variables you specify one or more additional directories in which

LIBTC1V1_3 1/ the linker looks for libraries. See Section 5.3.1, How the Linker Searches

LIBTC1V1_6 Libraries.

PATH With this variable you specify the directory in which the executables reside.
This allows you to call the executables when you are not in the bi n directory.
Usually your system already uses the PATH variable for other purposes. To
keep these settings, you need to add (rather than replace) the path. Use a
semicolon (;) to separate path names.

TMPDIR With this variable you specify the location where programs can create temporary
files. Usually your system already uses this variable. In this case you do not
need to change it.

See the documentation of your operating system on how to set environment variables.

248

Tool Options

8.2. C Compiler Options

This section lists all C compiler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the compiler via the control program. Therefore, it uses the syntax of
the control program to pass options and files to the C compiler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, you have to precede the option with -Wc to pass the
option via the control program directly to the C compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -n sends output to stdout instead of a file and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

cpcp -Cac test.c
cpcp --optinm ze=+coal esce, +cse test.c

When you do not specify an option, a default value may become active.

249

TASKING VX-toolset for PCP User Guide

C compiler option: --align-stack

Menu entry
1. Select C Compiler » Code Generation.

2. Enter a value in the Maximum size for stack sections to align field.

Command line syntax
--align-stack=val ue

Default: --align-stack=64

Description

Align static stack sections with size smaller than or equal to value so that these sections are not located
over a page boundary. This optimization saves code because the DPTR does not have to be reloaded
when it already contains the right page number.

The disadvantage is that data space is spilled for the alignment. The alignment must be a power of two
in the range [1..64]. 1 equals to no alignment optimizations. The default value 64 turns on alignment
optimization for all static sections.

Example

To align static stack sections with a size smaller than or equal to 32, enter:
cpcp --align-stack=32 test.c

The following invocation is not allowed, value is not a power of 2:

cpcp --align-stack=20 test.c // not allowed

Related information

250

Tool Options

C compiler option: --atomic-divide-multiply

Menu entry

Command line syntax

--atomc-divide-multiply

Description

With this option atomic divide and multiply operations are generated. This option only has effect when
the channel is interruptible. This is when option --interrupt-enable is specified. Special care must be
taken when using multiply and divide sequences when a channel program is interruptible. In this case
the compiler makes sure that a sequence cannot be corrupted by the execution of multiply or divide
instructions executed by a higher priority channel. The compiler uses bit R7.IEN to ensure that a sequence
is not interruptible.

Example

cpcp --atomc-divide-multiply --interrupt-enable test.c

The compiler adds CLR and SET instructions around the atomic divide and multiply operations:

clr
dinit
dstep
dstep
dstep
dstep
set

r7,5

rs,rl
rsrl
rs,rl
rsrl
rs,rl
r7,5

; this part is uninterruptible

Related information

C compiler option --interrupt-enable (Enable interrupts)

251

TASKING VX-toolset for PCP User Guide

C compiler option: --cache

Menu entry
1. Select C Compiler » Optimization » Compilation Speed.
2. Enable the option Cache generated code to improve the compilation speed.

3. Inthe Directory for cached files field, enter the name for the location of the cache.

Command line syntax
--cache[=di rectory]
Default on command line: . (current directory)

Default in Eclipse: . cache directory under project directory

Description

This option enables a cache for output files in the specified directory. When the source code after
preprocessing and relevant compiler options and the compiler version are the same as in a previous
invocation, the previous result is copied to the output file. The cache only works when there is a single C
input file and a single output file (no --mil-split).

You can also enable the cache and specify the cache directory with the environment variable CPCPCACHE.
This option takes precedence over the environment variable.

The cache directory may be shared, for instance by placing it on a network drive.

The compiler creates a directory cpcpcache in the directory specified with the option --cache or the
environment variable CPCPCACHE. The directory is only created when it does not yet exist. The cache
files are stored in this directory.

Example

To improve the compilation speed and put cached files in directory . cache, enter:
cpcp --cache=.cache test.c

Related information

Section 9.6, Compiler Cache

Section 6.5, Expire Cache Utility

252

Tool Options

C compiler option: --cert

Menu entry
1. Select C Compiler » CERT C Secure Coding.
2. Make a selection from the CERT C secure code checking list.

3. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

Command line syntax
--cert={all | nane[-nane],...}
Default format: all

Description

With this option you can enable one or more checks for CERT C Secure Coding Standard
recommendations/rules. When you omit the argument, all checks are enabled. name is the name of a
CERT recommendation/rule, consisting of three letters and two digits. Specify only the three-letter
mnemonic to select a whole category. For the list of names you can use, see Chapter 15, CERT C Secure
Coding Standard.

On the command line you can use --diag=cert to see a list of the available checks, or you can use a

three-letter mnemonic to list only the checks in a particular category. For example, --diag=pre lists all
supported preprocessor checks.

Example

To enable the check for CERT rule STR30-C, enter:
cpcp --cert=str30 test.c

Related information

Chapter 15, CERT C Secure Coding Standard

C compiler option --diag (Explanation of diagnostic messages)

253

TASKING VX-toolset for PCP User Guide

C compiler option: --check

Menu entry

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler reports any warnings and/or errors.
This option is available on the command line only.
Related information

Assembler option --check (Check syntax)

254

Tool Options

C compiler option: --compact-max-size
Menu entry

1. Select C Compiler » Optimization.

2. Inthe Maximum size for code compaction field, enter the maximum size of a match.

Command line syntax

- - conpact - max- si ze=val ue
Default: 200

Description

This option is related to the compiler optimization --optimize=+compact (Code compaction or reverse
inlining). Code compaction is the opposite of inlining functions: large sequences of code that occur more
than once, are transformed into a function. This reduces code size (possibly at the cost of execution
speed).

However, in the process of finding sequences of matching instructions, compile time and compiler memory

usage increase quadratically with the number of instructions considered for code compaction. With this
option you tell the compiler to limit the number of matching instructions it considers for code compaction.

Example

To limit the maximum number of instructions in functions that the compiler generates during code
compaction:

cpcp --optim ze=+conpact --conpact-nmax-size=100 test.c
Related information

C compiler option --optimize=+compact (Optimization: code compaction)

255

TASKING VX-toolset for PCP User Guide

C compiler option: --control-flow-info

Menu entry

1. Select C Compiler » Debugging.

2. Select Generate control flow information.
Command line syntax

--control -flowinfo

Description

Control flow information
With this option the compiler adds control flow information to the output file. The compiler generates a

. debug_control _f | owsection which describes the basic blocks and their relations. This information
can be used for code coverage analysis on optimized code.

Example

cpcp --control-flowinfo test.c

Related information

C compiler option --debug-info (Debug information)

256

Tool Options

C compiler option: --debug-info (-g)
Menu entry

1. Select C Compiler » Debugging.

2. Togenerate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax
- -debug-i nf o[=subopt i on]
- g[subopti on]

You can set the following suboptions:

small l|c Emit small set of debug information.
default 2|d Emit default symbolic debug information.
all 3]a Emit full symbolic debug information.

Default: - - debug- i nf o (same as - - debug- i nf o=def aul t)

Description

With this option you tell the compiler to add directives to the output file for including symbolic information.
This facilitates high level debugging but increases the size of the resulting assembler file (and thus the
size of the object file). For the final application, compile your C files without debug information.

The DWARF debug format allows for a flexible approach as to how much symbolic information is included,
as long as the structure is valid. Adding all possible DWARF data for a program is not practical. The
amount of DWARF information per compilation unit can be huge. And for large projects, with many object
modules the link time can grow unacceptably long. That is why the compiler has several debug information
levels. In general terms one can say, the higher the level the more DWARF information is produced.

The DWARF data in an object module is not only used for debugging. The toolset can also do "type
checking" of the whole application. In that case the linker will use the DWARF information of all object
modules to determine if every use of a symbol is done with the same type. In other words, if the application
is built with type checking enabled then the compiler will add DWARF information too.

Small set of debug information

With this suboption only DWARF call frame information and type information are generated. This enables
you to inspect parameters of nested functions. The type information improves debugging. You can perform
a stack trace, but stepping is not possible because debug information on function bodies is not generated.
You can use this suboption, for example, to compact libraries.

257

TASKING VX-toolset for PCP User Guide

Default debug information

This provides all debug information you need to debug your application. It meets the debugging
requirements in most cases without resulting in oversized assembler/object files.

Full debug information

With this suboption extra debug information is generated about unused typedefs and DWARF "lookup
table sections". Under normal circumstances this extra debug information is not needed to debug the
program. Information about unused typedefs concerns all typedefs, even the ones that are not used for
any variable in the program. (Possibly, these unused typedefs are listed in the standard include files.)
With this suboption, the resulting assembler/object file will increase significantly.

In the following table you see in more detail what DWARF information is included for the debug option

levels.

Feature -g1 |[-g2 |[-g3 |[type check Remarks

basic info + + + + info such as symbol name and type

call frame + + + + this is information for a debugger to compute
a stack trace when a program has stopped
at a breakpoint

symbol lifetime + + this is information about where symbols live
(e.g. on stack at offset so and so, when the
program counter is in this range)

line number info + + + file name, line number, column number

"lookup tables" + DWAREF sections ... this is an optimization
for the DWARF data, it is not essential

unused typedefs + in the C code of the program there can be
(many) typedefs that are not used for any
variable. Sometimes this can cause
enormous expansion of the DWARF data and
thus it is only included in -g3.

Related information

258

Tool Options

C compiler option: --define (-D)
Menu entry
1. Select C Compiler » Preprocessing.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)
Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax
- -defi ne=macr o_name[=macr o_defi ni tion]

- Dmacr o_name[=nacr o_defini tion]

Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1".

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, you can use the option --define (-D) multiple times. If the command line exceeds
the limit of the operating system, you can define the macros in an option file which you then must specify
to the compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

Consider the following C program with conditional code to compile a demo program and a real program:

void main(void)

{
#i f DEMO

deno_func(); /* conpile for the demo program */
#el se

real _func(); /* conpile for the real program*/
#endi f
}

259

TASKING VX-toolset for PCP User Guide

You can now use a macro definition to set the DEMO flag:

cpcp --define=DEMO test.c
cpcp --define=DEMO=1 test.c

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

cpcp --define="MAX(A B)=((A) > (B) ? (A : (B))" test.c
Related information
C compiler option --undefine (Remove preprocessor macro)

C compiler option --option-file (Specify an option file)

260

Tool Options

C compiler option: --dep-file

Menu entry

Eclipse uses this option in the background to create a file with extension . d (one for every input file).
Command line syntax

--dep-file[=file]

Description

With this option you tell the compiler to generate dependency lines that can be used in a Makefile. In
contrast to the option --preprocess=+make, the dependency information will be generated in addition to
the normal output file.

By default, the information is written to a file with extension . d (one for every input file). When you specify
a filename, all dependencies will be combined in the specified file.

Example
cpcp --dep-file=test.dep test.c

The compiler compiles the file t est . ¢, which results in the output file t est . sr ¢, and generates
dependency lines in the file t est . dep.

Related information

C compiler option --preprocess=+make (Generate dependencies for make)

261

TASKING VX-toolset for PCP User Guide

C compiler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.
Command line syntax
--diag=[format:]{all | nmsg[-nBQg],...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The compiler does
not compile any files. You can specify the following formats: html, rtf or text (default). To create a file
with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given (except for the CERT checks). If
you want the description of one or more selected error messages, you can specify the error message
numbers, separated by commas, or you can specify a range.

With --diag=cert you can see a list of the available CERT checks, or you can use a three-letter mnemonic
to list only the checks in a particular category. For example, --diag=pre lists all supported preprocessor
checks.

Example
To display an explanation of message number 282, enter:
cpcp --di ag=282

This results in the following message and explanation:

262

Tool Options

E282: unterm nated conment

Make sure that every comment starting with /* has a matching */.
Nest ed coments are not possible.

To write an explanation of all errors and warnings in HTML format to file cer r or s. ht m , use redirection
and enter:

cpcp --diag=htm:all > cerrors.htm

Related information
Section 3.8, C Compiler Error Messages

C compiler option --cert (Enable individual CERT checks)

263

TASKING VX-toolset for PCP User Guide

C compiler option: --error-file

Menu entry
Command line syntax
--error-file[=file]
Description

With this option the compiler redirects diagnostic messages to a file. If you do not specify a filename, the
error file will be named after the output file with extension . err .

Example
To write diagnostic messages to error s. err instead of st der r, enter:

cpcp --error-file=errors.err test.c

Related information

264

Tool Options

C compiler option: --error-limit
Menu entry

1. Select C Compiler » Diagnostics.

2. Enter avalue in the Maximum number of emitted errors field.

Command line syntax

--error-1limt=nunber

Default: 42

Description

With this option you limit the number of error messages in one compiler run to the specified number.
When the limit is exceeded, the compiler aborts with fatal error message F105. Warnings and informational

messages are not included in the count. When 0 (zero) or a negative number is specified, the compiler
emits all errors. Without this option the maximum number of errors is 42.

Related information

Section 3.8, C Compiler Error Messages

265

TASKING VX-toolset for PCP User Guide

C compiler option: --fp-model

Menu entry
1. Select C Compiler » Floating-Point.
2. Make a selection from the Floating-point model list.

3. If you selected Custom, enable one or more individual options.
Command line syntax
- -f p-nodel =f | ags

You can set the following flags:

+/-contract c/C allow expression contraction
+/-fastlib I/L allow less precise library functions
+/-nonan n/N allow optimizations to ignore NaN/Inf
+/-rewrite r’R allow expression rewriting
+/-trap tT support trapping on exceptions
+/-negzero z/Z ignore sign of -0.0

0 alias for --fp-model=CLNStZ (strict)

alias for --fp-model=cLNSTZ (precise)
2 alias for --fp-model=cInrTz (fast)

Default: - - f p- nodel =cl nr Tz

Description
With this option you select the floating-point execution model.

With --fp-model=+contract you allow the compiler to contract multiple float operations into a single
operation, with different rounding results. A possible example is fused multiply-add.

With --fp-model=+fastlib you allow the compiler to select faster but less accurate library functions for
certain floating-point operations.

With --fp-model=+nonan you allow the compiler to ignore NaN or Inf input values. An example is to
replace multiply by zero with zero.

With --fp-model=+rewrite you allow the compiler to rewrite expressions by reassociating. This might
result in rounding differences and possibly different exceptions. An example is to rewrite (a*c)+(b*c) as
(a+b)*c.

With --fp-model=+trap operations trap on floating-point exceptions. Make sure you specify the
corresponding trapping floating-point library to the linker.

266

Tool Options

With --fp-model=+negzero you allow the compiler to ignore the sign of -0.0 values. An example is to
replace (a-a) by zero.

Related information

Pragmas STDC FP_CONTRACT, f p_negzer o,fp_nonanandf p_rew it e in Section 1.6, Pragmas to
Control the Compiler.

267

TASKING VX-toolset for PCP User Guide

C compiler option: --help (-?)
Menu entry
Command line syntax

--help[=item

-?

You can specify the following arguments:

intrinsics i Show the list of intrinsic functions

options o] Show extended option descriptions

pragmas p Show the list of supported pragmas

typedefs t Show the list of predefined typedefs
Description

Displays an overview of all command line options. With an argument you can specify which extended
information is shown.

Example

The following invocations all display a list of the available command line options:
cpcp -?

cpcp --help

cpcp

The following invocation displays a list of the available pragmas:

cpcp - - hel p=pragnas

Related information

268

Tool Options

C compiler option: --include-directory (-I)

Menu entry
1. Select C Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...

-lpath, ...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the compiler searches for include files is:

1. The pathname in the C source file and the directory of the C source (only for #include files that are
enclosed in ")

2. The path that is specified with this option.
3. The path that is specified in the environment variable CPCPI NC when the product was installed.

4. The default directory $(PRODDI R) \ i ncl ude (unless you specified option --no-stdinc).

Example
Suppose that the C source file t est . ¢ contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the compiler as follows:
cpcp --include-directory=nyinclude test.c

First the compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

269

TASKING VX-toolset for PCP User Guide

The compiler now looks for the file myi nc. h in the directory where t est . ¢ is located. If the file is not
there the compiler searches in the directory myi ncl ude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information

C compiler option --include-file (Include file at the start of a compilation)

C compiler option --no-stdinc (Skip standard include files directory)

270

Tool Options

C compiler option: --include-file (-H)
Menu entry
1. Select C Compiler » Preprocessing.
The Pre-include files box shows the files that are currently included before the compilation starts.
2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax
--include-file=file,...
-Hile,...

Description

With this option you include one or more extra files at the beginning of each C source file, before other
includes. This is the same as specifying #i ncl ude "fil e" atthe beginning of each of your C sources.

Example

cpcp --include-file=stdio.h testl.c test2.c

The file st di 0. h is included at the beginning of both t est 1. ¢ and t est 2. c.
Related information

C compiler option --include-directory (Add directory to include file search path)

271

TASKING VX-toolset for PCP User Guide

C compiler option: --inline
Menu entry

1. Select C Compiler » Optimization.

2. Enable the option Always inline function calls.
Command line syntax

--inline

Description

With this option you instruct the compiler to inline calls to functions without the __noi nl i ne function
qualifier whenever possible. This option has the same effect as a #pr agrma i nl i ne at the start of the
source file.

This option can be useful to increase the possibilities for code compaction (C compiler option
--optimize=+compact).

Example

To always inline function calls:

cpcp --optimze=+conpact --inline test.c

Related information

C compiler option --optimize=+compact (Optimization: code compaction)

Section 1.9.3, Inlining Functions: inline

272

Tool Options

C compiler option: --inline-max-incr / --inline-max-size
Menu entry

1. Select C Compiler » Optimization.

2. Inthe Maximum size increment when inlining field, enter a value (default -1).

3. Inthe Maximum size for functions to always inline field, enter a value (default -1).

Command line syntax

--inline-max-incr=percentage (default: -1)
--inline-nmax-si ze=threshol d (default: -1)

Description

With these options you can control the automatic function inlining optimization process of the compiler.
These options only have effect when you have enabled the inlining optimization (option --optimize=+inline
or Optimize most).

Regardless of the optimization process, the compiler always inlines all functions that have the
function qualifier i nl i ne.

With the option --inline-max-size you can specify the maximum size of functions that the compiler inlines
as part of the optimization process. The compiler always inlines all functions that are smaller than the
specified threshold. The threshold is measured in compiler internal units and the compiler uses this
measure to decide which functions are small enough to inline. The default threshold is -1, which means
that the threshold depends on the option --tradeoff.

After the compiler has inlined all functions that have the function qualifier i nl i ne and all functions that
are smaller than the specified threshold, the compiler looks whether it can inline more functions without
increasing the code size too much. With the option --inline-max-incr you can specify how much the code
size is allowed to increase. The default value is -1, which means that the value depends on the option
--tradeoff.

Example
cpcp --optim ze=+inline --inline-max-incr=40 --inline-max-size=15 test.c

The compiler first inlines all functions with the function qualifier i nl i ne and all functions that are smaller
than the specified threshold of 15. If the code size has still not increased with 40%, the compiler decides
which other functions it can inline.

Related information
C compiler option --optimize=+inline (Optimization: automatic function inlining)

Section 1.9.3, Inlining Functions: inline
Section 3.6.3, Optimize for Code Size or Execution Speed

273

TASKING VX-toolset for PCP User Guide

C compiler option: --interrupt-enable

Menu entry
1. Select Global Options » Channel Configuration.

2. Enable the option Allow channel to be interruptible.

Command line syntax

--interrupt-enabl e

Description

With this option the interrupt flag of a channel is enabled. The code generated is interruptible for channels
that do not have common functions using static stack. The R7.IEN flag is enabled in the register context
table of a channel. The IEN flag and CEN flag are set for each PRAM access or they are preserved when
you specify C compiler option --preserve-r7-flags.

Channels that have interrupts enabled must be linked separately. See linker option --link-only or C
compiler option --mil.

Related information
Section 1.9.4.1, Defining an Interrupt Service Routine: __interrupt()

Section 1.10.2, Interruptible Code Generation

274

Tool Options

C compiler option: --iso (-c)
Menu entry

1. Select C Compiler » Language.

2. From the Comply to C standard list, select ISO C99, ISO C11, or ISO C90.

Command line syntax

--is0={90]| 99| 11}

-c{90]| 99| 11}

Default: - -i so=11

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99

refers to the ISO/IEC 9899:1999 (E) standard. C11 refers to the ISO/IEC 9899:2011 (E) standard. C11
is the default.

Example

To select the ISO C99 standard on the command line:
cpcp --iso0=99 test.c

Related information

C compiler option --language (Language extensions)

275

TASKING VX-toolset for PCP User Guide

C compiler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the . sr ¢ file when errors occur during compilation.

Command line syntax
--keep-output-files
-k

Description

If an error occurs during compilation, the resulting . sr ¢ file may be incomplete or incorrect. With this
option you keep the generated output file (. sr ¢) when an error occurs.

By default the compiler removes the generated output file (. sr ¢c) when an error occurs. This is useful
when you use the make utility. If the erroneous files are not removed, the make utility may process corrupt
files on a subsequent invocation.

Use this option when you still want to inspect the generated assembly source. Even if it is incomplete or
incorrect.

Example

cpcp --keep-output-files test.c

When an error occurs during compilation, the generated output file t est . sr ¢ will not be removed.
Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

276

Tool Options

C compiler option: --language (-A)
Menu entry
1. Select C Compiler » Language.
2. Enable or disable one or more of the following options:
» Allow GNU C extensions
* Allow // comments in ISO C90 mode
» Check assignment of string literal to non-'const’ string pointer

* Allow optimization across volatile access

Command line syntax
- -l anguage=[f | ags]
- Al fl ags]

You can set the following flags:

+/-gcc g/G enable a number of gcc extensions
+/-kanji k/K support for Shift JIS Kanji in strings
+/-comments p/P /I comments in ISO C90 mode
+/-volatile viV don't optimize across volatile access
+/-strings x/X relaxed const check for string literals

Default: - AGKpVx

Default (without flags): - AGKPVX

Description

With this option you control the language extensions the compiler can accept. By default the PCP C
compiler allows all language extensions, except for gcc extensions.

The option --language (-A) without flags disables all language extensions.

GNU C extensions

The --language=+gcc (-Ag) option enables the following gcc language extensions:
» The identifier __ FUNCTION__ expands to the current function name.
 Alternative syntax for variadic macros.

« Alternative syntax for designated initializers.

277

TASKING VX-toolset for PCP User Guide

 Allow zero sized arrays.

 Allow empty struct/union.

 Allow unnamed struct/union fields.

» Allow empty initializer list.

« Allow initialization of static objects by compound literals.

» The middle operand of a ? : operator may be omitted.

» Allow a compound statement inside braces as expression.

« Allow arithmetic on void pointers and function pointers.

» Allow a range of values after a single case label.

» Additional preprocessor directive #war ni ng.

» Allow comma operator, conditional operator and cast as Ivalue.
» Aninline function without "st at i c" or "ext er n" will be global.
* An"extern inline"function will not be compiled on its own.

For a more complete description of these extensions, you can refer to the UNIX gcc info pages (info
gcce).

Shift JIS Kanji support

With --language=+kaniji (-Ak) you tell the compiler to support Shift JIS encoded Kanji multi-byte characters
in strings, (wide) character constants and / / comments. Without this option, encodings with Ox5c as the
second byte conflict with the use of the backslash as an escape character. Shift JISin/ *. . . */ comments
is supported regardless of this option. Note that Shift JIS also includes Katakana and Hiragana.

Comments in ISO C90 mode

With --language=+comments (-Ap) you tell the compiler to allow C++ style comments (/) in ISO C90
mode (option --is0=90). In ISO C99 mode this style of comments is always accepted.

Check assignment of string literal to non-const string pointer

With --language=+strings (-Ax) you disable warnings about discarded const qualifiers when a string
literal is assigned to a non-const pointer.

char *p;

int main(void)

{
p ="hello"; // with -AX the conpiler issues warning W25
return O;

278

Tool Options

Optimization across volatile access

With the --language=+volatile (-Av) option, the compiler will block optimizations when reading or writing
a volatile object, by executing all memory and (SFR) register accesses before the access of the volatile
object. The volatile access acts as a memory barrier. With this option you can prevent for example that
code below the volatile object is optimized away to somewhere above the volatile object.

Example:

extern unsigned int variable;
extern volatile unsigned int access;

voi d Test Func(unsigned int flag)

{
access = 0;
variable | = flag;
if(variable == 3)
{

variable = 0;

}
vari abl e | = 0x8000;
access = 1;

}

Result with --language=-volatile (default):

_PCP_TestFunc: .type func

I d.i r5, 0x0

Idl.il r7, @PTR(_PCP_access)

st. pi r5,[_PCP_access] ; <== Vol atile access
Idl.il r7, @PTR(_PCP_vari abl e)

or. pi ri, [_PCP_vari abl e]
conp.i r1,0x3

mv ri,r5,cc_z

set r1, oxf

I d.i r5, Ox1

Idl.il r7, @PTR(_PCP_access)

st. pi r5,[_PCP_access] ; <== Vol atile access

Idl.il r7, @PTR(_PCP_vari abl e)

st. pi ri, [_PCP_vari abl e] ; <== Mbved across volatile access

jc.ia r2,cc_uc
Result with --language=+volatile:

_PCP_TestFunc: .type func

I d.i r5, 0x0

Idl.il r7, @PTR(_PCP_access)

st. pi r5,[_PCP_access] ; <== Vol atile access
Idl.il r7, @PTR(_PCP_vari abl e)

or. pi ri, [_PCP_vari abl e]
conp.i r1,0x3

279

TASKING VX-toolset for PCP User Guide

nmov ri,r5,cc_z

set rl1, oxf

Idl.il r7, @PTR(_PCP_vari abl e)

st. pi rl,[_PCP_vari abl e] ; <== Not noved

Id.i r5, 0x1

Idl.il r7, @PTR(_PCP_access)

st. pi r5,[_PCP_access] ; <== Vol atile access

jc.ia r2,cc_uc

Note that the volatile behavior of the compiler with option --language=-volatile or --language=+volatile
is ISO C compliant in both cases.

Related information
C compiler option --iso (ISO C standard)

Section 1.3, Shift JIS Kanji Support

280

Tool Options

C compiler option: --make-target

Menu entry

Command line syntax

- -make-t ar get =nane

Description

With this option you can overrule the default target name in the make dependencies generated by the

options --preprocess=+make (-Em) and --dep-file. The default target name is the basename of the input
file, with extension . o.

Example

cpcp --preprocess=+make --neke-target=nytarget.o test.c

The compiler generates dependency lines with the default target name nyt ar get . o instead of t est . 0.
Related information

C compiler option --preprocess=+make (Generate dependencies for make)

C compiler option --dep-file (Generate dependencies in a file)

281

TASKING VX-toolset for PCP User Guide

C compiler option: --mil / --mil-split
Menu entry

1. Select C Compiler » Optimization.

2. Enable the option Build for application wide optimizations (MIL linking).

Command line syntax

il
—-mil-split[=file,...]

Description

With option --mil the C compiler skips the code generator phase and writes the optimized intermediate
representation (MIL) to a file with the suffix . mi | . The C compiler accepts . mi | files as input files on the
command line.

Option --mil-split does the same as option --mil, but in addition, the C compiler splits the MIL representation
and writes it to separate files with suffix . ns. One file is written for each input file or MIL library specified
on the command line. The . ns files are only updated on a change. The C compiler accepts . ns files as
input files on the command line.

With option --mil-split you can perform application-wide optimizations during the frontend phase by
specifying all modules at once, and still invoke the backend phase one module at a time to reduce the
total compilation time.

Optionally, you can specify another filename for the . ns file the C compiler generates. Without an
argument, the basename of the C source file is used to create the . s filename. Note that if you specify
a filename, you have to specify one filename for every input file.

Note that with both options some extra strict type checking is done that can cause building to fail in a way
that is unforeseen and difficult to understand. For example, when you use one of these options in
combination with option --uchar and you link the MIL library, you might get the following error:

cpcp E289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
cpcp 1802: ["installation-dir\cpcp\include\string.h" 44/17]

previ ous declaration of "strlen"
1 errors, 0 warnings

This is caused by the fact that the MIL library is built without --uchar. You can workaround this problem
by rebuilding the MIL libraries.

Related information
Section 3.1, Compilation Process

Control program option --mil-link / --mil-split

282

Tool Options

C compiler option: --misrac

Menu entry
1. Select C Compiler » MISRA C.
2. Make a selection from the MISRA C checking list.

3. Ifyou selected Custom, expand the Custom 1998, Custom 2004 or Custom 2012 entry and enable
one or more individual rules.

Command line syntax
--misrac={all | nr[-nr]},...
Description

With this option you specify to the compiler which MISRA C rules must be checked. With the option
--misrac=all the compiler checks for all supported MISRA C rules.

Example

cpcp --msrac=9-13 test.c

The compiler generates an error for each MISRA C rule 9, 10, 11, 12 or 13 violation in file t est . c.
Related information

Section 3.7.2, C Code Checking: MISRA C

C compiler option --misrac-mandatory-warnings

C compiler option --misrac-advisory-warnings

C compiler option --misrac-required-warnings

Linker option --misrac-report

283

TASKING VX-toolset for PCP User Guide

C compiler option: --misrac-advisory-warnings / --misrac-required-warnings
/ --misrac-mandatory-warnings

Menu entry

1. Select C Compiler » MISRA C.

2. Make a selection from the MISRA C checking list.

3. Enable one or more of the options:
Warnings instead of errors for mandatory rules
Warnings instead of errors for required rules
Warnings instead of errors for advisory rules.

Command line syntax
--m srac-advi sory-war ni ngs

--m srac-required-warni ngs
--m srac- mandat or y- war ni ngs

Description
Normally, if an advisory rule, required rule or mandatory rule is violated, the compiler generates an error.

As a consequence, no output file is generated. With this option, the compiler generates a warning instead
of an error.

Related information
Section 3.7.2, C Code Checking: MISRA C
C compiler option --misrac

Linker option --misrac-report

284

C compiler option: --misrac-version

Menu entry

1. Select C Compiler » MISRA C.

2. Select the MISRA C version: 1998, 2004 or 2012.

Command line syntax
--m srac-version={1998| 2004| 2012}

Default: 2004

Description

Tool Options

MISRA C rules exist in three versions: MISRA C:1998, MISRA C:2004 and MISRA C:2012. By default,
the C source is checked against the MISRA C:2004 rules. With this option you can select which version

to use.

Related information
Section 3.7.2, C Code Checking: MISRA C

C compiler option --misrac

285

TASKING VX-toolset for PCP User Guide

C compiler option: --no-channel-entry-table

Menu entry

1. Select C Compiler » Code Generation.

2. Disable the option Generate channel entry table.

Command line syntax

--no-channel -entry-tabl e

Description

When you use this option no channel start instruction is generated in the Channel Entry Table for an

interrupt function. You can use this option when "Channel Start at Context PC" is used (CS.RCB=False)
and no EXIT instruction resets the PC to the Channel Entry Table location of that interrupt channel (EP=0).

Related information

Section 1.9.4.1, Defining an Interrupt Service Routine: __interrupt()

286

Tool Options

C compiler option: --no-clear

Menu entry

1. Select C Compiler » Allocation.

2. Disable the option Clear uninitialized global and static variables.

Command line syntax

--no-cl ear

Description

Normally uninitialized global/static variables are cleared at program startup. With this option you tell the
compiler to generate code to prevent uninitialized global/static variables from being cleared at program
startup.

This option applies to constant as well as non-constant variables.

Related information

Pragmas cl ear/ nocl ear

287

TASKING VX-toolset for PCP User Guide

C compiler option: --no-partition

Menu entry

1. Select C Compiler » Optimization.

2. Disable the option Automatic memory partitioning.

Command line syntax

--no-partition

Description

With this option you tell the compiler to disable automatic memory partitioning.
Related information

C compiler option --optimize (Specify optimization level)

Section 3.6.2, Core Specific Optimizations (backend)

288

Tool Options

C compiler option: --no-stdinc

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --no-stdinc to the Additional options field.

Command line syntax

--no-stdinc

Description

With this option you tell the compiler not to look in the defaulti ncl ude directory relative to the installation

directory, when searching for include files. This way the compiler only searches in the include file search
paths you specified.

Related information
C compiler option --include-directory (Add directory to include file search path)

Section 3.4, How the Compiler Searches Include Files

289

TASKING VX-toolset for PCP User Guide

C compiler option: --no-vector

Menu entry
1. Select C Compiler » Code Generation.

2. Disable the option Generate channel vectors.

Command line syntax

--no-vect or

Description

With this option you tell the compiler not to generate code for channel vectors and channel context.

Related information

290

Tool Options

C compiler option: --no-warnings (-w)
Menu entry
1. Select C Compiler » Diagnostics.
The Suppress C compiler warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas or as a range, of the warnings you want to suppress (for
example 537, 538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.
Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- - no-war ni ngs[=nunber [- nunber],...]

-w nunber [- nunber], ...]

Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

« If you specify this option but without numbers, all warnings are suppressed.

* If you specify this option with a number or a range, only the specified warnings are suppressed. You
can specify the option --no-warnings=number multiple times.

Example

To suppress warnings 537 and 538, enter:

cpcp test.c --no-warni ngs=537, 538

Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

Pragma war ni ng

201

TASKING VX-toolset for PCP User Guide

C compiler option: --optimize (-O)

Menu entry

1. Select C Compiler » Optimization.

2. Select an optimization level in the Optimization level box.
Command line syntax

--optin ze[=fl ags]

-Ofl ags

You can set the following flags:

+/-coalesce alA Coalescer: remove unnecessary moves
+/-ipro b/B Interprocedural register optimizations
+/-cse c/C Common subexpression elimination
+/-expression elE Expression simplification

+/-flow fIF Control flow simplification

+/-glo g/G Generic assembly code optimizations
+/-inline il Automatic function inlining

+/-loop I/L Loop transformations

+/-forward 0/O Forward store

+/-propagate p/P Constant propagation

+/-compact r'R Code compaction (reverse inlining)
+/-subscript s/S Subscript strength reduction
+/-peephole ylIY Peephole optimizations

Use the following options for predefined sets of flags:

--optimize=0 -O0 No optimization
Alias for -OaBCEFGILOPRSY

No optimizations are performed except for the coalescer (to allow better debug information). The compiler
tries to achieve an optimal resemblance between source code and produced code. Expressions are
evaluated in the same order as written in the source code, associative and commutative properties are
not used.

--optimize=1 -O1 Optimize
Alias for -OabcefgILOPRSy

Enables optimizations that do not affect the debug ability of the source code. Use this level when you
encounter problems during debugging your source code with optimization level 2.

292

Tool Options

--optimize=2 -02 Optimize more (default)
Alias for -OabcefgllopRSy

Enables more optimizations to reduce code size and/or execution time. This is the default optimization
level.

--optimize=3 -0O3 Optimize most
Alias for -OabcefgiloprSy

This is the highest optimization level. Use this level to decrease execution time to meet your real-time
requirements.

Default: - - opti mi ze=2
Description

With this option you can control the level of optimization. If you do not use this option, the default
optimization level is Optimize more (option --optimize=2 or --optimize).

When you use this option to specify a set of optimizations, you can overrule these settings in your C
source file with #pr agma opti m ze fl ag/#pragna endoptin ze.

In addition to the option --optimize, you can specify the option --tradeoff (-t). With this option you specify
whether the used optimizations should optimize for more speed (regardless of code size) or for smaller
code size (regardless of speed).

Example
The following invocations are equivalent and result all in the default optimization set:

cpcp test.c

cpcp --optimze=2 test.c
cpcp -2 test.c

cpcp --optimze test.c
cpcp -Otest.c

cpcp -Cabcefgll opRSy test.c
cpcp --optim ze=+coal esce, +i pro, +cse, +texpr essi on, +f | ow,

+gl 0, -i nli ne, +l oop, +f orwar d, +pr opagat e,
+compact, +subscri pt, +peephol e test.c

Related information
C compiler option --tradeoff (Trade off between speed and size)
Pragma opti m ze/ endopti mi ze

Section 3.6, Compiler Optimizations

293

TASKING VX-toolset for PCP User Guide

C compiler option: --option-file (-f)

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the C compiler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the compiler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

» Multiple arguments on one line in the option file are allowed.

» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
'This has a doubl e quote " enbedded
"This has a double quote " and a single quote '"' enbedded"
» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
l'i ne"

-> "This is a continuation |ine"

294

* Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myopt i ons contains the following lines:

--debug-info
- - def i ne=DEMO=1
test.c

Specify the option file to the compiler:
cpcp --option-fil e=myoptions
This is equivalent to the following command line:

cpcp —debug-info --define=DEMO=1 test.c

Related information

Tool Options

295

TASKING VX-toolset for PCP User Guide

C compiler option: --output (-0)

Menu entry

Eclipse names the output file always after the C source file.
Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the compiler. Without this option
the basename of the C source file is used with extension . sr c.

Example
To create the file out put . sr ¢ instead of t est . src, enter:

cpcp --output=output.src test.c

Related information

296

Tool Options

C compiler option: --preprocess (-E)

Menu entry

1. Select C Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.
4. (Optional) Enable the option Keep #line info in preprocessor output.
Command line syntax

- - preprocess[=fl ags]

-E[fl ags]

You can set the following flags:

+/-comments c/C keep comments

+/-includes il generate a list of included source files
+/-list I/L generate a list of macro definitions
+/-make m/M generate dependencies for make
+/-noline p/P strip #line source position information

Default: - ECI LMP

Description

With this option you tell the compiler to preprocess the C source. Under Eclipse the compiler sends the
preprocessed output to the file nane. pr e (where name is the name of the C source file to compile).
Eclipse also compiles the C source.

On the command line, the compiler sends the preprocessed file to stdout. To capture the information in
a file, specify an output file with the option --output.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+includes the compiler will generate a list of all included source files. The preprocessor
output is discarded.

With --preprocess=+list the compiler will generate a list of all macro definitions. The preprocessor output
is discarded.

With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The preprocessor output is discarded. The default target name is the basename of the input file, with the
extension . 0. With the option --make-target you can specify a target name which overrules the default

target name.

297

TASKING VX-toolset for PCP User Guide

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #l i ne). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example
cpcp --preprocess=+coments, +i ncl udes, -1ist, -nmake,-noline test.c --output=test.pre
The compiler preprocesses the file t est . ¢ and sends the output to the file t est . pr e. Comments and

a list of all included source files are included but no list of macro definitions and no dependencies are
generated and the line source position information is not stripped from the output file.

Related information
C compiler option --dep-file (Generate dependencies in a file)

C compiler option --make-target (Specify target name for -Em output)

298

Tool Options

C compiler option: --preserve-r7-flags

Menu entry

1. Select Global Options » Channel Configuration.

2. Enable the option Preserve R7 flags 0..7.

Command line syntax

--preserve-r7-flags

Description

With this option the R7 flags are preserved for PRAM access. When accessing the PRAM, which requires

loading of R7.DPTR, the IEN and CEN flags in register R7 are preserved. By default the R7 flag registers
are not preserved, all flags are cleared for each PRAM access.

Related information

C compiler option --interrupt-enable (enable interrupts)

299

TASKING VX-toolset for PCP User Guide

C compiler option: --relax-compact-name-check

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --relax-compact-name-check to the Additional options field.

Command line syntax

- -rel ax- conpact - nanme- check

Description

With code compaction (reverse inlining), chunks of code that can occur more than once in different
functions, are transformed into another function. Chunks of code that are part of functions with a different

section rename suffix are not taken into account. With this option the compiler does not perform this
section name check, but performs code compaction whenever possible.

Related information

Section 3.6.2, Core Specific Optimizations (backend)

300

Tool Options

C compiler option: --relax-overlay-name-check

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --relax-overlay-name-check to the Additional options field.
Command line syntax

--rel ax- over| ay- name- check

Description

This option relaxes the overlaying of romdata for internal constants, string literals and compound literals.
Romdata for internals are overlaid when equal. By default, the compiler only performs overlaying on equal
romdata for internals that have the same memory space and section rename suffix. With this option the
compiler does not perform this overlay name check, but performs overlaying whenever possible.

Related information

301

TASKING VX-toolset for PCP User Guide

C compiler option: --rename-sections (-R)

Menu entry
1. Select C Compiler » Miscellaneous.

2. Add the option --rename-sections to the Additional options field.

Command line syntax
--renane-sections=[type=]format_string[,[type=]format_string]...
-R[type=]format_string[,[type=]format_string]...

Description

In case a module must be loaded at a fixed address, or a data section needs a special place in memory,
you can use this option to generate different section names. You can then use this unique section name
in the linker script file for locating.

With the memory type you select which sections are renamed. The matching sections will get the specified
format_string for the section name. The types you can use are: data and code. The format string can
contain characters and may contain the following format specifiers:

{attrib} section attributes, separated by underscores
{nodul e} module name

{nane} object name, name of variable or function
{type} section type

Instead of this option you can also uses the pragmas sect i on/endsect i on in the C source.
Example

To rename sections of memory type dat a to . pcpdat a. cpcp_t est _variable_name:

cpcp --renane-secti ons=dat a=cpcp_{nodul e} _{nane} test.c

Related information

See assembler directive . SDECL for a list of section types and attributes.

Pragmas sect i on/endsecti on

Section 1.11, Compiler Generated Sections

302

Tool Options

C compiler option: --signed-bitfields

Menu entry

1. Select C Compiler » Language.

2. Enable the option Treat 'int' bit-fields as signed.

Command line syntax

--signed-bitfields

Description

For bit-fields it depends on the implementation whether a plaini nt istreated as si gned i nt orunsi gned
i nt.Bydefault ani nt bit-field is treated as unsi gned i nt . This offers the best performance. With this

option you tell the compiler to treat i nt bit-fields as si gned i nt . In this case, you can still add the
keyword unsi gned to treat a particular i nt bit-field as unsi gned.

Related information

Section 1.1, Data Types

303

TASKING VX-toolset for PCP User Guide

C compiler option: --silicon-bug
Menu entry
1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor.

The CPU Problem Bypasses and Checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.

4. Click Select All or select one or more individual options.

Command line syntax
--silicon-bug=arg,...
You can give the following argument:

pcp-tc038 Workaround for CPU_TC.038

Description

With this option you specify for which hardware problems the compiler should generate workarounds.
Please refer to Chapter 14, CPU Problem Bypasses and Checks for more information about the individual
problems and workarounds.

Example

To enable workarounds for problem PCP_TC.038, enter:
cpcp --silicon-bug=pcp-tc038 test.c
Related information

Chapter 14, CPU Problem Bypasses and Checks

Assembler option --silicon-bug

304

Tool Options

C compiler option: --source (-s)

Menu entry

1. Select C Compiler » Miscellaneous.

2. Enable the option Merge C source code with generated assembly.
Command line syntax

--source

-s

Description

With this option you tell the compiler to merge C source code with generated assembly code in the output
file. The C source lines are included as comments.

Related information

Pragmas sour ce/ nosour ce

305

TASKING VX-toolset for PCP User Guide

C compiler option: --static

Menu entry

Command line syntax

--static

Description

With this option, the compiler treats external definitions at file scope (except for mai n) as if they were
declared st at i c. As a result, unused functions will be eliminated, and the alias checking algorithm
assumes that objects with static storage cannot be referenced from functions outside the current module.

This option only makes sense when you specify all modules of an application on the command line.

To overrule this option for a specific function or variable, you can use the expor t attribute. For example,
when a variable is accessed from assembly:

int i __attribute__((export)); /* '"i' has external |inkage */

With the export attribute the compiler will not perform optimizations that affect the unknown code.

Example

cpcp --static nodul el.c nodul e2.c nodule3.c ...

Related information

306

Tool Options

C compiler option: --stdout (-n)

Menu entry

Command line syntax

- -stdout

-n

Description

With this option you tell the compiler to send the output to st dout (usually your screen). No files are

created. This option is for example useful to quickly inspect the output or to redirect the output to other
tools.

Related information

307

TASKING VX-toolset for PCP User Guide

C compiler option: --symbol-prefix
Menu entry

1. Select Global Options » Channel Configuration.
2. Enter a Prefix for global symbols.

Command line syntax

- -synbol - pr ef i x=nane

Default: --symbol-prefix=_PCP

Description

With this option you can define what prefix is used for global symbols. When you link a TriCore application
with a PCP application it is required to prefix the PCP global symbols to avoid duplicate name conflicts
between the TriCore and PCP application parts. By default global symbols are prefixed with _PCP. When
you link multiple PCP channels separately it is required that each channel uses its own global symbol

prefix.

Note that the compiler adds an extra underscore to this prefix. For example, the function mai n will get

the symbol name _PCP_nai n.

Related information

Assembler option --symbol-prefix

308

Tool Options

C compiler option: --tradeoff (-t)

Menu entry
1. Select C Compiler » Optimization.

2. Select a trade-off level in the Trade-off between speed and size box.

Command line syntax
--tradeof f ={ 0] 1| 2| 3| 4}
-t{0] 1| 2] 3| 4}

Default: - - t r adeof f =4
Description

If the compiler uses certain optimizations (option --optimize), you can use this option to specify whether
the used optimizations should optimize for more speed (regardless of code size) or for smaller code size
(regardless of speed).

By default the compiler optimizes for code size (--tradeoff=4).

If you have not specified the option --optimize, the compiler uses the default Optimize more
optimization. In this case it is still useful to specify a trade-off level.

Example
To set the trade-off level for the used optimizations:
cpcp --tradeoff=2 test.c

The compiler uses the default Optimize more optimization level and balances speed and size while
optimizing.

Related information
C compiler option --optimize (Specify optimization level)

Section 3.6.3, Optimize for Code Size or Execution Speed

309

TASKING VX-toolset for PCP User Guide

C compiler option: --uchar (-u)
Menu entry

1. Select C Compiler » Language.

2. Enable the option Treat 'char’ variables as unsigned.

Command line syntax
- -uchar

-u

Description

By default char is the same as specifying si gned char . With this option char is the same as unsi gned
char.

Note that this option can cause conflicts when you use it in combination with MIL linking. With MIL linking
some extra strict type checking is done that can cause building to fail in a way that is unforeseen and
difficult to understand. For example, when you use option --mil in combination with option --uchar and
you link the MIL library, you might get the following error:

cpcp E289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type
cpcp 1802: ["installation-dir\cpcp\include\string.h" 44/17]

previ ous decl aration of "strlen"
1 errors, O warnings

This is caused by the fact that the MIL library is built without --uchar. You can workaround this problem
by rebuilding the MIL libraries.

Related information

Section 1.1, Data Types

310

Tool Options

C compiler option: --undefine (-U)

Menu entry
1. Select C Compiler » Preprocessing
The Defined symbols box shows the symbols that are currently defined.

2. Toremove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax
--undefi ne=nmacr o_nane

- Uracr o_nane

Description

With this option you can undefine an earlier defined macro as with #undef . This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

__FILE__ current source filename

__LINE__ current source line number (int type)
_TIME__ hh:mm:ss

__DATE__ Mmm dd yyyy

__STDC__ level of ANSI standard

Example

To undefine the predefined macro __ TASKI NG__:

cpcp --undefine=__TASKING _ test.c

Related information
C compiler option --define (Define preprocessor macro)

Section 1.7, Predefined Preprocessor Macros

311

TASKING VX-toolset for PCP User Guide

C compiler option: --verbose (-v)

Menu entry

Command line syntax
--verbose

-V

Description

With this option you put the C compiler in verbose mode. The C compiler performs its tasks while it prints
the steps it performs to st dout .

Related information

312

Tool Options

C compiler option: --version (-V)

Menu entry

Command line syntax

--version
-V
Description

Display version information. The compiler ignores all other options or input files.

Related information

313

TASKING VX-toolset for PCP User Guide

C compiler option: --warnings-as-errors

Menu entry
1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber[-nunber],...]

Description

If the compiler encounters an error, it stops compiling. When you use this option without arguments, you
tell the compiler to treat all warnings not suppressed by option --no-warnings (or #pr agna war ni ng)
as errors. This means that the exit status of the compiler will be non-zero after one or more compiler
warnings. As a consequence, the compiler now also stops after encountering a warning.

You can limit this option to specific warnings by specifying a comma-separated list of warning numbers
or ranges. In this case, this option takes precedence over option --no-warnings (and #pr agma war ni ng).

Related information
C compiler option --no-warnings (Suppress some or all warnings)

Pragma war ni ng

314

Tool Options

8.3. Assembler Options

This section lists all assembler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the assembler via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the assembler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.
Because Eclipse uses the control program, Eclipse automatically precedes the option with -Wa to

pass the option via the control program directly to the assembler.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -V displays version header information and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

aspcp -gal test.src
aspcp --debug-info=+asm +l ocal test.src

When you do not specify an option, a default value may become active.

315

TASKING VX-toolset for PCP User Guide

Assembler option: --case-insensitive (-¢)

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.
Command line syntax

--case-insensitive

-C

Default: case sensitive

Description

With this option you tell the assembler not to distinguish between uppercase and lowercase characters.
By default the assembler considers uppercase and lowercase characters as different characters.

Assembly source files that are generated by the compiler must always be assembled case sensitive.
When you are writing your own assembly code, you may want to specify the case insensitive mode.

Example

When assembling case insensitive, the label Label Nane is the same label as | abel nane.
aspcp --case-insensitive test.src

Related information

Assembler control $CASE

316

Tool Options

Assembler option: --check

Menu entry

Command line syntax
- -check
Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application.

The assembler reports any warnings and/or errors.
This option is available on the command line only.
Related information

C compiler option --check (Check syntax)

317

TASKING VX-toolset for PCP User Guide

Assembler option: --concatenate-sections

Menu entry

Command line syntax
--concat enat e- secti ons
Description

By default the linker does not merge sections with the same name into one section. With this option the
assembler uses the section attribute concat , instructing the linker to merge sections with the same name.

The advantage of section concatenation is faster locating, because there are less sections to locate.

The disadvantage of section concatenation is less efficient memory use, because of alignment gaps
between (sequentially concatenated) sections.

Related information

318

Tool Options

Assembler option: --debug-info (-g)

Menu entry
1. Select Assembler » Symbols.

2. Select an option from the Generate symbolic debug list.
Command line syntax

- -debug-i nf o[=f | ags]

-g[flags]

You can set the following flags:

+/-asm a/lA Assembly source line information

+/-hll h/H Pass high level language debug information (HLL)
+/-local I/L Assembler local symbols debug information
+/-smart s/S Smart debug information

Default: - - debug- i nf o=+hl |

Default (without flags): - - debug- i nf o=+smart

Description
With this option you tell the assembler which kind of debug information to emit in the object file.

You cannot specify --debug-info=+asm,+hll. Either the assembler generates assembly source line
information, or it passes HLL debug information.

When you specify --debug-info=+smart, the assembler selects which flags to use. If high level language
information is available in the source file, the assembler passes this information (same as
--debug-info=-asm,+hll,-local). If not, the assembler generates assembly source line information (same
as --debug-info=+asm,-hll,+local).

With --debug-info=AHLS the assembler does not generate any debug information.

Related information

Assembler control $DEBUG

319

TASKING VX-toolset for PCP User Guide

Assembler option: --define (-D)

Menu entry
1. Select Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_nane[=macr o_defi ni ti on]
- Dmacr o_name[=nacr o_defini tion]
Description

With this option you can define a macro and specify it to the assembler preprocessor. If you only specify
a macro name (no macro definition), the macro expands as '1'".

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
assembler with the option --option-file (-f) file.

Defining macros with this option (instead of in the assembly source) is, for example, useful in combination
with conditional assembly as shown in the example below.

This option has the same effect as defining symbols via the . DEFI NE, . SET, and . EQU directives
(similar to #def i ne in the C language). With the . MACROdirective you can define more complex
macros.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

320

Tool Options

Example

Consider the following assembly program with conditional code to assemble a demo program and a real
program:

.1 F DEMO ==

; instructions for deno application

. ELSE

; instructions for the real application
. ENDI F

You can now use a macro definition to set the DEMO flag:

aspcp --define=DEMO test.src
aspcp --define=DEMO=1 test.src

Note that both invocations have the same effect.

Related information

Assembler option --option-file (Specify an option file)

321

TASKING VX-toolset for PCP User Guide

Assembler option: --dep-file

Menu entry
Command line syntax
--dep-file[=file]
Description

With this option you tell the assembler to generate dependency lines that can be used in a Makefile. The
dependency information will be generated in addition to the normal output file.

By default, the information is written to a file with extension . d. When you specify a filename, all
dependencies will be combined in the specified file.

Example
aspcp --dep-file=test.dep test.src

The assembler assembles the file t est . sr c, which results in the output file t est . 0, and generates
dependency lines in the file t est . dep.

Related information

Assembler option --make-target (Specify target name for --dep-file output)

322

Tool Options

Assembler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.
Command line syntax
--diag=[format:]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 244, enter:
aspcp --diag=244

This results in the following message and explanation:

W244: additional input files will be ignored

The assenbl er supports only a single input file. Al other input files are ignored.

323

TASKING VX-toolset for PCP User Guide

To write an explanation of all errors and warnings in HTML format to file aser r or s. ht m , use redirection
and enter:

aspcp --diag=htm:all > aserrors.htnl

Related information

Section 4.6, Assembler Error Messages

324

Tool Options

Assembler option: --emit-locals

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable one or both of the following options:
* Emit local EQU symbols

» Emit local non-EQU symbols

Command line syntax
--emt-locals[=flag,...]
You can set the following flags:

+/-equs e/lE emit local EQU symbols
+/-symbols s/S emit local non-EQU symbols

Default: - - eni t -1 ocal s=ES
Default (without flags): - - eni t - | ocal s=+synbol s

Description

With the option --emit-locals=+equs the assembler also emits local EQU symbols to the object file.
Normally, only global symbols and non-EQU local symbols are emitted. Having local symbols in the object
file can be useful for debugging.

Related information

Assembler directive .EQU

325

TASKING VX-toolset for PCP User Guide

Assembler option: --error-file

Menu entry
Command line syntax
--error-file[=file]
Description

With this option the assembler redirects diagnostic messages to a file. If you do not specify a filename,
the error file will be named after the output file with extension . er s.

Example

To write diagnostic messages to err or s. er s instead of st der r, enter:
aspcp --error-file=errors.ers test.src

Related information

Section 4.6, Assembler Error Messages

326

Assembler option: --error-limit

Menu entry

1. Select Assembler » Diagnostics.

2. Enter a value in the Maximum number of emitted errors field.

Command line syntax
--error-limnt=nunber

Default: 42

Description

Tool Options

With this option you tell the assembler to only emit the specified maximum number of errors. When 0
(null) is specified, the assembler emits all errors. Without this option the maximum number of errors is

42.

Related information

Section 4.6, Assembler Error Messages

327

TASKING VX-toolset for PCP User Guide

Assembler option: --help (-?)

Menu entry

Command line syntax
--help[=item

-2

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
aspcp -?

aspcp --help

aspcp

To see a detailed description of the available options, enter:

aspcp --hel p=options

Related information

328

Tool Options

Assembler option: --include-directory (-)

Menu entry
1. Select Assembler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...
-lpath, ...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the assembler searches for include files is:

1. The pathname in the assembly file and the directory of the assembly source.

2. The path that is specified with this option.

3. The path that is specified in the environment variable ASPCPI NC when the product was installed.

4. The default directory $(PRODDI R) \ i ncl ude.

Example

Suppose that the assembly source file t est . sr ¢ contains the following lines:
. I NCLUDE ' nyi nc. i nc'

You can call the assembler as follows:

aspcp --include-directory=c:\proj\include test.src

First the assembler looks for the file nyi nc. i nc in the directory where t est . sr c is located. If it does
not find the file, it looks in the directory c: \ pr oj \ i ncl ude (this option). If the file is still not found, the
assembler searches in the environment variable and then in the default include directory.

329

TASKING VX-toolset for PCP User Guide

Related information

Assembler option --include-file (Include file at the start of the input file)

330

Tool Options

Assembler option: --include-file (-H)

Menu entry
1. Select Assembler » Preprocessing.

The Pre-include files box shows the files that are currently included before the assembling starts.
2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.
Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax
--include-file=file,...
-Hile,...

Description

With this option (set at project level) you include one extra file at the beginning of the assembly source
file. The specified include file is included before all other includes. This is the same as specifying . | NCLUDE
"file' atthe beginning of your assembly source.

Example
aspcp --include-file=sfr/regtcl796b. def test.src

Thefiler egt c1796b. def inthe sfr subdirectory of the i ncl ude directory is included at the beginning
of t est . src before it is assembled.

Related information

Assembler option --include-directory (Add directory to include file search path)

331

TASKING VX-toolset for PCP User Guide

Assembler option: --kaniji

Menu entry

1. Select Assembler » Miscellaneous.

2. Enable the option Allow Shift JIS Kanji in strings.

Command line syntax

--kanj i

Description

With this option you tell the assembler to support Shift JIS encoded Kanji multi-byte characters in strings.
Without this option, encodings with Ox5c¢ as the second byte conflict with the use of the backslash as an
escape character. Shift JIS in comments is supported regardless of this option.

Note that Shift JIS also includes Katakana and Hiragana.

Related information

C compiler option --language=+kanji (Allow Shift JIS Kanji in strings)

332

Tool Options

Assembler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the object file when errors occur during assembling.
Command line syntax

--keep-output-files

-k

Description

If an error occurs during assembling, the resulting object file (. 0) may be incomplete or incorrect. With
this option you keep the generated object file when an error occurs.

By default the assembler removes the generated object file when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated object. For example when you know that a
particular error does not result in a corrupt object file.

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

333

TASKING VX-toolset for PCP User Guide

Assembler option: --list-file (-I)

Menu entry
1. Select Assembler » List File.
2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.

Command line syntax
--list-file[=file]

I [file]

Default: no list file is generated
Description

With this option you tell the assembler to generate a list file. A list file shows the generated object code
and the relative addresses. Note that the assembler generates a relocatable object file with relative
addresses.

With the optional file you can specify an alternative name for the list file. By default, the name of the list
file is the basename of the output file with the extension . | st .

Related information

Assembler option --list-format (Format list file)

334

Tool Options

Assembler option: --list-format (-L)

Menu entry
1. Select Assembler » List File.
2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.

Command line syntax
--list-format=flag,...
-Lfl ags

You can set the following flags:

+/-section d/D List section directives (. SDECL, . SECT)
+/-symbol e/E List symbol definition directives

+/-macro m/M List macro definitions

+/-empty-line n/N List empty source lines and comment lines (hewline)
+/-conditional p/P List conditional assembly

+/-equate g/Q List equate and set directives (. EQU, . SET)
+/-relocations r/R List relocations characters ('r")
+/-equate-values v/V List equate and set values

+/-wrap-lines w/W Wrap source lines

+/-macro-expansion x/X List macro expansions

+/-cycle-count y/Y List cycle counts

+/-define-expansion z/Z List define expansions

Use the following options for predefined sets of flags:

--list-format=0 -LO All options disabled
Alias for --list-format=DEMNPQRVWXYZ
--list-format=1 -L1 All options enabled

Alias for --list-format=demnpqrvwxyz
Default: - - | i st - f or mat =dEMhPqr Vnixy Z

Description
With this option you specify which information you want to include in the list file.

On the command line you must use this option in combination with the option --list-file (-1).

335

TASKING VX-toolset for PCP User Guide

Related information
Assembler option --list-file (Generate list file)

Assembler option --section-info=+list (Display section information in list file)

336

Tool Options

Assembler option: --make-target

Menu entry

Command line syntax
- -make-t ar get =nane
Description

With this option you can overrule the default target name in the make dependencies generated by the
option --dep-file. The default target name is the basename of the input file, with extension . o.

Example

aspcp --dep-file --nmake-target=../nytarget.o test.src

The assembler generates dependency lines with the default target name . . / nyt ar get . o instead of
test.o.

Related information

Assembler option --dep-file (Generate dependencies in a file)

337

TASKING VX-toolset for PCP User Guide

Assembler option: --no-notes

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --no-notes to the Additional options field.
Command line syntax

--no-not es

Description

By default, the assembler generates a note section in the object file. The note section contains compiler
version and invocation information, if supplied in the input file, and version and invocation information of
the assembler. With this option you can suppress the generation of a note section in the output object
file.

Related information

338

Tool Options

Assembler option: --no-warnings (-w)

Menu entry
1. Select Assembler » Diagnostics.

The Suppress warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
201, 202). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.
Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- - no-war ni ngs[=nunber, .. .]
-w nunber, ...]
Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

« If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 201 and 202, enter:
aspcp test.src --no-warni ngs=201, 202
Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

339

TASKING VX-toolset for PCP User Guide

Assembler option: --optimize (-O)
Menu entry
1. Select Assembler » Optimization.
2. Select Optimize instruction size
Command line syntax
--optimze=flag, ...
-Ofl ags
You can set the following flags:

+/-instr-size sIS Optimize instruction size
Default: - - opti m ze=s
Description

With this option you can control the level of optimization. For details see Section 4.4, Assembler
Optimizations.

Related information

Section 4.4, Assembler Optimizations

340

Tool Options

Assembler option: --option-file (-f)

Menu entry
1. Select Assembler » Miscellaneous.
2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the assembler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the assembler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility. You can specify the option
--option-file multiple times.

Format of an option file
* Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a double quote " enbedded’
'"This has a double quote " and a single quote '"' enbedded"
* When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
l'i ne"

-> "This is a continuation |ine"

341

TASKING VX-toolset for PCP User Guide

* Itis possible to nest command line files up to 25 levels.

Example
Suppose the file myopt i ons contains the following lines:

- -debug-i nfo=+asm - | ocal
test.src

Specify the option file to the assembler:
aspcp --option-fil e=nyoptions
This is equivalent to the following command line:

aspcp --debug-info=+tasm-1local test.src

Related information

342

Tool Options

Assembler option: --output (-0)

Menu entry

Eclipse names the output file always after the input file.
Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the assembler. Without this option,
the basename of the assembly source file is used with extension . o.

Example
To create the file r el obj . o instead of asm o, enter:

aspcp --output=relobj.o asmsrc

Related information

343

TASKING VX-toolset for PCP User Guide

Assembler option: --page-length

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-length to the Additional options field.

Command line syntax

- - page- | engt h=nunber

Default: 72

Description

If you generate a list file with the assembler option --list-file, this option sets the number of lines in a page

in the list file. The default is 72, the minimum is 10. As a special case, a page length of 0 turns off page
breaks.

Related information
Assembler option --list-file (Generate list file)

Assembler control $PAGE

344

Tool Options

Assembler option: --page-width

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-width to the Additional options field.
Command line syntax

- - page-w dt h=nunber

Default: 132

Description

If you generate a list file with the assembler option --list-file, this option sets the number of columns per
line on a page in the list file. The default is 132, the minimum is 40.

Related information
Assembler option --list-file (Generate list file)

Assembler control $PAGE

345

TASKING VX-toolset for PCP User Guide

Assembler option: --preprocess (-E)

Menu entry
Command line syntax
- - preprocess

-E

Description

With this option the assembler will only preprocess the assembly source file. The assembler sends the
preprocessed file to stdout.

Related information

346

Assembler option: --preprocessor-type (-m)

Menu entry

1. Select Assembler » Preprocessing.

2. Enable or disable the option Use TASKING preprocessor.

Command line syntax

- - preprocessor-type=type

-ntype

You can set the following preprocessor types:

none n No preprocessor
tasking t TASKING preprocessor

Default: - - pr epr ocessor - t ype=t aski ng

Description

Tool Options

With this option you select the preprocessor that the assembler will use. By default, the assembler uses

the TASKING preprocessor.

When the assembly source file does not contain any preprocessor symbols, you can specify to the

assembler not to use a preprocessor.

Related information

347

TASKING VX-toolset for PCP User Guide

Assembler option: --section-info (-t)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable the option List section summary.
and/or

1. Select Assembler » Diagnostics.

2. Enable the option Display section summary.
Command line syntax
--section-info[=flag,...]

-t[flags]

You can set the following flags:

+/-console c/C Display section summary on console
+/-list I/L List section summary in list file

Default: - - sect i on-i nf o=CL

Default (without flags): - - sect i on-i nf o=cl

Description

With this option you tell the assembler to display section information. For each section its memory space,

size, total cycle counts and name is listed on stdout and/or in the list file.

The cycle count consists of two parts: the total accumulated count for the section and the total accumulated
count for all repeated instructions. In the case of nested loops it is possible that the total supersedes the

section total.

Example

To writes the section information to the list file and also display the section information on stdout, enter:

aspcp --list-file --section-info asmsrc

Related information

Assembler option --list-file (Generate list file)

348

Tool Options

Assembler option: --silicon-bug

Menu entry
1. Expand C/C++ Build and select Processor.
2. From the Processor Selection list, select a processor.

The CPU Problem Bypasses and Checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.

4. Click Select All or select one or more individual options.
Command line syntax
--silicon-bug=arg,...

You can give one or more of the following arguments:

pcp-tc034 Check for PCP_TC.034
pcp-tc038 Check for PCP_TC.038
Description

With this option you specify for which hardware problems the assembler should check or generate
workarounds. Please refer to Chapter 14, CPU Problem Bypasses and Checks for more information about
the individual problems and workarounds.

Example

To check for problems PCP_TC.034 and PCP_TC.038, enter:
aspcp --silicon-bug=pcp-tc034, pcp-tc038 test.src
Related information

Chapter 14, CPU Problem Bypasses and Checks

C compiler option --silicon-bug

349

TASKING VX-toolset for PCP User Guide

Assembler option: --symbol-prefix

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --symbol-prefix to the Additional options field.

Command line syntax

--synbol - prefi x=prefix

Description

With this option you can specify a prefix to use for global and external symbols. When you link a TriCore
application with a PCP application it is required to prefix the PCP global symbols to avoid duplicate name
conflicts between the TriCore and PCP application parts. When you link multiple PCP channels separately
it is required that each channel uses its own global symbol prefix.

Note that the C compiler by default adds the prefix _PCP_.

Example

To add the prefix _PCP_ to global/external symbols, enter:

aspcp --synbol -prefix=_PCP_ test.asm

Related information

C compiler option --symbol-prefix

350

Tool Options

Assembler option: --symbol-scope (-i)

Menu entry
1. Select Assembler » Symbols.

2. Enable or disable the option Set default symbol scope to global.

Command line syntax

- -synbol - scope=scope

-i scope

You can set the following scope:

global g Default symbol scope is global
local | Default symbol scope is local

Default: - - synbol - scope=I ocal

Description

With this option you tell the assembler how to treat symbols that you have not specified explicitly as global
or local. By default the assembler treats all symbols as local symbols unless you have defined them
explicitly as global.

Related information
Assembler directive .GLOBAL
Assembler directive .LOCAL

Assembler control $IDENT

351

TASKING VX-toolset for PCP User Guide

Assembler option: --version (-V)

Menu entry

Command line syntax

--version

-V

Description

Display version information. The assembler ignores all other options or input files.

Related information

352

Tool Options

Assembler option: --warnings-as-errors

Menu entry
1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber, ...]

Description

If the assembler encounters an error, it stops assembling. When you use this option without arguments,
you tell the assembler to treat all warnings as errors. This means that the exit status of the assembler will
be non-zero after one or more assembler warnings. As a consequence, the assembler now also stops
after encountering a warning.

You can limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Assembler option --no-warnings (Suppress some or all warnings)

353

TASKING VX-toolset for PCP User Guide

8.4. Linker Options

This section lists all linker options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the linker via the control program. Therefore, it uses the syntax of the
control program to pass options and files to the linker. If there is no equivalent option in Eclipse, you can
specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, Eclipse automatically precedes the option with -WI to
pass the option via the control program directly to the linker.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option --keep-output-files keeps files after an error occurred. When you specify this option
in Eclipse, it will have no effect because Eclipse always removes the output file after an error had occurred.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

| pcp -nfkl test.o
| pcp --map-file-format=+files, +link, +locate test.o

When you do not specify an option, a default value may become active.

354

Tool Options

Linker option: Include debugger synchronization utility

Menu entry
1. Select Linker » Miscellaneous.

2. Enable the option Include debugger synchronization utility.

Command line syntax

--extern=_PCP_sync_on_hal t

Description

When the debugger stops the TriCore, this does not automatically flush all the states in the CPU's pipeline
and caches. In order to be able to correctly show the program state, the debugger therefore needs to
execute special flushing code every time the CPU halts. When you enable the option Include debugger

synchronization utility this causes extra code (_PCP_sync_on_hal t and other symbols) to be linked
in. If you are not going to use the debugger, you can save a few tens of bytes by disabling this option.

Related information

Linker option --extern

355

TASKING VX-toolset for PCP User Guide

Linker option: --case-insensitive

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Link case insensitive.
Command line syntax
--case-insensitive

Default: case sensitive

Description

With this option you tell the linker not to distinguish between uppercase and lowercase characters in
symbols. By default the linker considers uppercase and lowercase characters as different characters.

Assembly source files that are generated by the compiler must always be assembled and thus linked
case sensitive. When you have written your own assembly code and specified to assemble it case
insensitive, you must also link the . o file case insensitive.

Related information

Assembler option --case-insensitive

356

Tool Options

Linker option: --chip-output (-c)

Menu entry

Command line syntax

--chi p-out put =[basenane] : f or mat [: addr _si ze], ...
-c[basenane] : format [: addr _si ze], . ..

You can specify the following formats:

IHEX Intel Hex
SREC Motorola S-records

The addr_size specifies the size of the addresses in bytes (record length). For Intel Hex you can use the
values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records) or 4 bytes
(S3 records, default).

Description

With this option you specify the Intel Hex or Motorola S-record output format for loading into a
PROM-programmer. The linker generates a file for each ROM memory defined in the LSL file, where
sections are located:

nenory nmemane
{ type=rom }

The name of the file is the name of the Eclipse project or, on the command line, the name of the memory
device that was emitted with extension . hex or . sr e. Optionally, you can specify a basename which
prepends the generated file name.

The linker always outputs a debugging file in ELF/DWARF format and optionally an absolute
object file in Intel Hex-format and/or Motorola S-record format.

Example

To generate Intel Hex output files for each defined memory, enter the following on the command line:
| pcp --chip-output=nmyfile:lHEX testl.o0

In this case, this generates the file myfi | e_memname. hex.

Related information

Linker option --output (Output file)

357

TASKING VX-toolset for PCP User Guide

Linker option: --define (-D)
Menu entry
1. Select Linker » Script File.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)
Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_nane[=macr o_defi ni ti on]
- Dmacr o_name[=nacr o_defini tion]
Description

With this option you can define a macro and specify it to the linker LSL file preprocessor. If you only
specify a macro name (no macro definition), the macro expands as '1'".

You can specify as many macros as you like; just use the option --define (-D) multiple times. If the
command line exceeds the limit of the operating system, you can define the macros in an option file which
you then must specify to the linker with the option --option-file (-f) file.

The definition can be tested by the preprocessor with #i f , #i f def and #i f ndef , for conditional locating.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

To define the RESET vector, which is used in the linker script filet c1vl_3. | sl , enter:

| pcp test.o -otest.elf --Isl-file=tclvl 3.Isl --defi ne=RESET=0xa0000000
Related information

Linker option --option-file (Specify an option file)

358

Tool Options

Linker option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

With this option the linker does not link/locate any files.
Example

To display an explanation of message number 106, enter:
| pcp --di ag=106

This results in the following message and explanation:
E106: unresol ved external: <nessage>

The linker could not resolve all external synbols.

359

TASKING VX-toolset for PCP User Guide

This is an error when the increnmental |inking option is disabled.
The <nessage> indicates the synbol that is unresol ved.

To write an explanation of all errors and warnings in HTML format to file | kerr or s. ht ml , use redirection
and enter:

I pcp --diag=htm:all > | kerrors. htm

Related information

Section 5.10, Linker Error Messages

360

Tool Options

Linker option: --error-file

Menu entry
Command line syntax
--error-file[=file]
Description

With this option the linker redirects diagnostic messages to a file. If you do not specify a filename, the
error file is | pcp. el k.

Example

To write diagnostic messages to err or s. el k instead of st der r, enter:
| pcp --error-file=errors.elk test.o

Related information

Section 5.10, Linker Error Messages

361

TASKING VX-toolset for PCP User Guide

Linker option: --error-limit

Menu entry
1. Select Linker » Diagnostics.

2. Enter avalue in the Maximum number of emitted errors field.
Command line syntax

--error-1limt=nunber

Default: 42

Description

With this option you tell the linker to only emit the specified maximum number of errors. When 0 (null) is
specified, the linker emits all errors. Without this option the maximum number of errors is 42.

Related information

Section 5.10, Linker Error Messages

362

Tool Options

Linker option: --extern (-e)

Menu entry

Command line syntax
--extern=synbol , ...

-esynbol , . ..

Description

With this option you force the linker to consider the given symbol as an undefined reference. The linker
tries to resolve this symbol, either the symbol is defined in an object file or the linker extracts the
corresponding symbol definition from a library.

This option is, for example, useful if the startup code is part of a library. Because your own application
does not refer to the startup code, you can force the startup code to be extracted by specifying the symbol
__START as an unresolved external.

Example
Consider the following invocation:
| pcp nylib.a

Nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through nyl i b. a.

| pcp --extern=_START nylib.a

In this case the linker searches for the symbol _START in the library and (if found) extracts the object that
contains _START, the startup code. If this module contains new unresolved symbols, the linker looks
again in nyl i b. a. This process repeats until no new unresolved symbols are found.

Related information

Section 5.3, Linking with Libraries

363

TASKING VX-toolset for PCP User Guide

Linker option: --first-library-first

Menu entry

Command line syntax
--first-library-first
Description

When the linker processes a library it searches for symbols that are referenced by the objects and libraries
processed so far. If the library contains a definition for an unresolved reference the linker extracts the
object that contains the definition from the library.

By default the linker processes object files and libraries in the order in which they appear on the command
line. If you specify the option --first-library-first the linker always tries to take the symbol definition from
the library that appears first on the command line before scanning subsequent libraries.

This is for example useful when you are working with a newer version of a library that partially overlaps
the older version. Because they do not contain exactly the same functions, you have to link them both.
However, when a function is present in both libraries, you may want the linker to extract the most recent
function.

Example

Consider the following example:

I pcp --first-library-first a.a test.o b.a

If the file t est . o calls a function which is both present in a. a and b. a, normally the function in b. a

would be extracted. With this option the linker first tries to extract the symbol from the first library a. a.

Note that routines in b. a that call other routines that are present in both a. a and b. a are now
also resolved from a. a.

Related information

Linker option --no-rescan (Rescan libraries to solve unresolved externals)

364

Tool Options

Linker option: --help (-?)

Menu entry

Command line syntax
--help[=item

-2

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

| pcp -7

| pcp --help

I pcp

To see a detailed description of the available options, enter:
| pcp --hel p=options

Related information

365

TASKING VX-toolset for PCP User Guide

Linker option: --hex-format

Menu entry
1. Select Linker » Miscellaneous.

2. Add the option --hex-format to the Additional options field.

Command line syntax
--hex-format=flag, ...

You can set the following flag:
+/-start-address s/S Emit start address record
Default: - - hex- f or mat =s
Description
With this option you can specify to emit or omit the start address record from the hex file.

Related information

Linker option --output (Output file)

366

Linker option: --hex-record-size

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --hex-record-size to the Additional options field.
Command line syntax

--hex-record-si ze=si ze

Default: 32

Description

With this option you can set the size (width) of the Intel Hex data records.

Related information

Linker option --output (Output file)

Tool Options

367

TASKING VX-toolset for PCP User Guide

Linker option: --import-object
Menu entry
1. Select Linker » Data Objects.
The Data objects box shows the list of object files that are imported.
2. To add a data object, click on the Add button in the Data objects box.

3. Type or select a binary file (including its path).
Use the Edit and Delete button to change a filename or to remove a data object from the list.

Command line syntax

--inmport-object=file,...

Description

With this option the linker imports a binary file containing raw data and places it in a section. The section
name is derived from the filename, in which dots are replaced by an underscore. So, when importing a

file called ny. j pg, a section with the name nmy_j pg is created. In your application you can refer to the
created section by using linker labels.

Related information

Section 5.5, Importing Binary Files

368

Tool Options

Linker option: --include-directory (-1)

Menu entry

Command line syntax
--include-directory=path,...

-lpath, ...

Description

With this option you can specify the path where your LSL include files are located. A relative path will be
relative to the current directory.

The order in which the linker searches for LSL include files is:

1. The pathname in the LSL file and the directory where the LSL file is located (only for #include files that
are enclosed in ")

2. The path that is specified with this option.

3. The default directory $(PRODDI R) \'i ncl ude. | sl .

Example

Suppose that your linker script file nyl sl . | sl contains the following line:

#i ncl ude "nyinc.inc"

You can call the linker as follows:

| pcp --include-directory=c:\proj\include --Isl-file=nylsl.lsl test.o

First the linker looks for the file myi nc. i nc in the directory where nyl sl . | sl is located. If it does not
find the file, it looks in the directory c: \ pr oj \ i ncl ude (this option). Finally it looks in the directory
$(PRODDI R)\i ncl ude. | sl .

Related information

Linker option --Isl-file (Specify linker script file)

369

TASKING VX-toolset for PCP User Guide

Linker option: --incremental (-r)

Menu entry

Command line syntax
--incremnental

-r

Description

Normally the linker links and locates the specified object files. With this option you tell the linker only to
link the specified files. The linker creates a linker output file . out . You then can link this file again with
other object files until you have reached the final linker output file that is ready for locating.

In the last pass, you call the linker without this option with the final linker output file . out . The linker will
now locate the file.

Example
In this example, the filest est 1. o, t est 2. 0 and t est 3. o are incrementally linked:
1.l pcp --increnental testl.o test2.0 --output=test.out
testl.o and test2.0 are linked
2. lpcp --incremental test3.o0 test.out
test3.0 and test.out are linked, taskl.out is created
3.1 pcp taskl. out

taskl.out is located

Related information

Section 5.4, Incremental Linking

370

Tool Options

Linker option: --keep-output-files (-k)

Menu entry

Eclipse always removes the output files when errors occurred.

Command line syntax
--keep-output-files
-k

Description

If an error occurs during linking, the resulting output file may be incomplete or incorrect. With this option
you keep the generated output files when an error occurs.

By default the linker removes the generated output file when an error occurs. This is useful when you use
the make utility. If the erroneous files are not removed, the make utility may process corrupt files on a
subsequent invocation.

Use this option when you still want to use the generated file. For example when you know that a particular
error does not result in a corrupt object file, or when you want to inspect the output file, or send it to Altium
support.

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

371

TASKING VX-toolset for PCP User Guide

Linker option: --library (-1)
Menu entry
1. Select Linker » Libraries.
The Libraries box shows the list of libraries that are linked with the project.
2. To add a library, click on the Add button in the Libraries box.
3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.

Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax

--library=nane

-l nane

Description

With this option you tell the linker to use system library | i bname. a, where name is a string. The linker
first searches for system libraries in any directories specified with --library-directory, then in the directories

specified with the environment variables LI BTC1V1_3 / LIBTC1V1_3_1 / LI BTC1V1_6, unlessyou
used the option --ignore-default-library-path.

Example
To search in the system library | i bc. a (C library):
| pcp test.o nylib.a --library=c

The linker links the file t est . o and first looks in library myl i b. a (in the current directory only), then in
the system library | i bc. a to resolve unresolved symbols.

Related information
Linker option --library-directory (Additional search path for system libraries)

Section 5.3, Linking with Libraries

372

Tool Options

Linker option: --library-directory (-L) / --ignore-default-library-path

Menu entry
1. SelectLinker » Libraries.
The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.
Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path,...
-Lpath, ...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-1), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is $(PRODDI R)\ | i b\ pcp2.

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variables
LI BTC1V1_ 3 / LIBTC1V1_3 1 / LIBTC1V1_6. So, the linker ignores steps 2 and 3 as listed below.

The priority order in which the linker searches for system libraries specified with the option --library (-1)
is:

1. The path that is specified with the option --library-directory.

2. The path that is specified in the environment variables LI BTC1V1_3 / LIBTC1V1_3_1 /
LI BTC1V1_6.

3. The default directory $(PRODDI R)\ | i b\ pcp2.

Example
Suppose you call the linker as follows:

| pcp test.o --library-directory=c:\nylibs --library=c

373

TASKING VX-toolset for PCP User Guide

First the linker looks in the directory c: \ nmyl i bs for library | i bc. a (this option). If it does not find the
requested libraries, it looks in the directory that is set with the environment variables LI BTC1V1_3 /

LI BTC1V1_3_1 / LI BTC1V1_6.Then the linker looks in the default directory $(PRODDI R) \ | i b\ pcp2
for libraries.

Related information
Linker option --library (Link system library)

Section 5.3.1, How the Linker Searches Libraries

374

Tool Options

Linker option: --link-only
Menu entry

Command line syntax
--link-only

Description

With this option you suppress the locating phase. The linker stops after linking and informs you about
unresolved references.

Related information

Control program option --create=relocatable (-cl) (Stop after linking)

375

TASKING VX-toolset for PCP User Guide

Linker option: --Isl-check

Menu entry

Command line syntax

--1sl-check

Description

With this option the linker just checks the syntax of the LSL file(s) and exits. No linking or locating is
performed. Use the option --Isl-file to specify the name of the Linker Script File you want to test.

Related information
Linker option --Isl-file (Linker script file)
Linker option --Isl-dump (Dump LSL info)

Section 5.7, Controlling the Linker with a Script

376

Tool Options

Linker option: --Isl-dump

Menu entry

Command line syntax
--1'sl -dunp[=fil €]
Description

With this option you tell the linker to dump the LSL part of the map file in a separate file, independent of
the option --map-file (generate map file). If you do not specify a filename, the file | pcp. | df is used.

Related information

Linker option --map-file-format (Map file formatting)

377

TASKING VX-toolset for PCP User Guide

Linker option: --Isl-file (-d)
Menu entry
An LSL file can be generated when you create your TriCore project in Eclipse:
1. From the File menu, select File » New » TASKING TriCore C/C++ Project.
The New C/C++ Project wizard appears.
2. Fillin the project settings in each dialog and click Next > until the TriCore Project Settings appear.
3. Enable the option Add linker script file to the project and click Finish.
Eclipse creates your project and the file project. | sl in the project directory.
The LSL file can be specified in the Properties dialog:
1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.Isl) field.

Command line syntax
--Isl-file=file
-dfile

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

« the architecture definition describes the core's hardware architecture.
» the memory definition describes the physical memory available in the system.
« the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file to the linker. If you do not specify this option, the linker uses
a default script file. You can specify the existing file target. | sl or the name of a manually written linker
script file. You can use this option multiple times. The linker processes the LSL files in the order in which
they appear on the command line.

Related information
Linker option --Isl-check (Check LSL file(s) and exit)

Section 5.7, Controlling the Linker with a Script

378

Tool Options

Linker option: --map-file (-M)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.
3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax
--map-file[=file][:XM]
-Mfile]l[:XM]

Default (Eclipse): XML map file is generated

Default (linker): no map file is generated

Description

With this option you tell the linker to generate a linker map file. If you do not specify a filename and you
specified the option --output, the linker uses the same basename as the output file with the extension
. map. If you did not specify the option --output, the linker uses the file t ask1. map. Eclipse names the
. map file after the project.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (. 0) to the linked object file. A locate part shows the absolute position of each section.
External symbols are listed per space with their absolute address, both sorted on symbol and sorted on
address.

Related information
Linker option --map-file-format (Format map file)

Section 11.2, Linker Map File Format

379

TASKING VX-toolset for PCP User Guide

Linker option: --map-file-format (-m)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.
3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax
--map-file-format=flag, ...
-nfl ags

You can set the following flags:

+/-callgraph c/C Include call graph information

+/-removed d/D Include information on removed sections
+/-files fIF Include processed files information
+/-invocation i/l Include information on invocation and tools
+/-link k/K Include link result information

+/-locate IIL Include locate result information
+/-memory m/M Include memory usage information
+/-nonalloc n/N Include information of non-alloc sections
+/-overlay 0/0O Include overlay information

+/-statics g/Q Include module local symbols information
+/-crossref r'R Include cross references information

+/-Isl s/S Include processor and memory information
+/-rules u/U Include locate rules

Use the following options for predefined sets of flags:

--map-file-format=0 -mO0 Link information

Alias for -mcDfikLMNoQrSU
--map-file-format=1 -m1 Locate information

Alias for -mCDfiKIMNoQRSU
--map-file-format=2 -m2 Most information

Alias for -mcdfikimNoQrSu

Default: - - map-fi |l e- f or mat =2

380

Tool Options

Description
With this option you specify which information you want to include in the map file.

On the command line you must use this option in combination with the option --map-file (-M).

Related information
Linker option --map-file (Generate map file)

Section 11.2, Linker Map File Format

381

TASKING VX-toolset for PCP User Guide

Linker option: --misra-c-report

Menu entry

Command line syntax

--msra-c-report[=file]

Description

With this option you tell the linker to create a MISRA C Quality Assurance report. This report lists the
various modules in the project with the respective MISRA C settings at the time of compilation. If you do

not specify a filename, the file basename. ntr is used.

Related information

C compiler option --misrac (MISRA C checking)

382

Tool Options

Linker option: --non-romable

Menu entry

Command line syntax

--non-ronabl e

Description

With this option you tell the linker that the application must not be located in ROM. The linker will locate
all ROM sections, including a copy table if present, in RAM. When the application is started, the data
sections are re-initialized and the BSS sections are cleared as usual.

This option is, for example, useful when you want to test the application in RAM before you put the final
application in ROM. This saves you the time of flashing the application in ROM over and over again.

If you want to locate your application in RAM only, without using ROM/flash resources of the chip, for
example when you run the debugger in RAM only, also specify the options --no-rom-copy and
--user-provided-initialization-code.

Related information
Linker option --no-rom-copy (Do not generate ROM copy)

Linker option --user-provided-initialization-code (Own initialization code, no standard copy table)

383

TASKING VX-toolset for PCP User Guide

Linker option: --no-rescan

Menu entry
1. SelectLinker » Libraries.

2. Disable the option Rescan libraries to solve unresolved externals.

Command line syntax

--Nno-rescan

Description

When the linker processes a library it searches for symbol definitions that are referenced by the objects
and libraries processed so far. If the library contains a definition for an unresolved reference the linker
extracts the object that contains the definition from the library. The linker processes object files and
libraries in the order in which they appear on the command line.

When all objects and libraries are processed the linker checks if there are unresolved symbols left. If so,
the default behavior of the linker is to rescan all libraries in the order given at the command line. The
linker stops rescanning the libraries when all symbols are resolved, or when the linker could not resolve
any symbol(s) during the rescan of all libraries. Notice that resolving one symbol may introduce new
unresolved symbols.

With this option, you tell the linker to scan the object files and libraries only once. When the linker has
not resolved all symbols after the first scan, it reports which symbols are still unresolved. This option is
useful if you are building your own libraries. The libraries are most efficiently organized if the linker needs
only one pass to resolve all symbols.

Related information

Linker option --first-library-first (Scan libraries in given order)

384

Tool Options

Linker option: --no-rom-copy (-N)

Menu entry

Command line syntax
--no-rom copy

-N

Description

With this option the linker will not generate a ROM copy for data sections. A copy table is generated and
contains entries to clear BSS sections. However, no entries to copy data sections from ROM to RAM are
placed in the copy table.

The data sections are initialized when the application is downloaded. The data sections are not re-initialized
when the application is restarted.

Related information
Linker option --non-romable (Application is not romable)

Linker option --user-provided-initialization-code (Own initialization code, no standard copy table)

385

TASKING VX-toolset for PCP User Guide

Linker option: --no-warnings (-w)
Menu entry
1. Select Linker » Diagnostics.
The Suppress warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
135, 136). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- - no-war ni ngs[=nunber, .. .]
-w nunber, .. .]
Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

* If you do not specify this option, all warnings are reported.

« If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 135 and 136, enter:

| pcp --no-warnings=135,136 test.o
Related information

Linker option --warnings-as-errors (Treat warnings as errors)

386

Tool Options

Linker option: --optimize (-O)
Menu entry
1. Select Linker » Optimization.
2. Select one or more of the following options:
» Delete unreferenced sections
» Use a 'first-fit decreasing' algorithm
« Compress copy table
» Delete duplicate code

* Delete duplicate data

Command line syntax
--optinze=flag, ...
-Ofl ags

You can set the following flags:

+/-delete-unreferenced-sections c/C Delete unreferenced sections from the output
file

+/-first-fit-decreasing I/IL Use a 'first-fit decreasing' algorithm to locate
unrestricted sections in memory

+/-copytable-compression t/T Emit smart restrictions to reduce copy table size

+/-delete-duplicate-code x/X Delete duplicate code sections from the output
file

+/-delete-duplicate-data y/Y Delete duplicate constant data from the output
file

Use the following options for predefined sets of flags:

--optimize=0 -O0 No optimization
Alias for -OCLTXY
--optimize=1 -O1 Default optimization

Alias for -OcLtxy

--optimize=2 -02 All optimizations
Alias for -Ocltxy

Default: - - opti m ze=1

387

TASKING VX-toolset for PCP User Guide

Description

With this option you can control the level of optimization.

Note that when you use the flag +copytable-compression, sections affected by the copy table
are located as if they were in a clustered LSL group, if they do not have a locate restriction yet.

Related information
For details about each optimization see Section 5.6, Linker Optimizations.

Define the mutual order of sections in an LSL group in Section 12.8.2, Creating and Locating Groups of
Sections.

388

Tool Options

Linker option: --option-file (-f)

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the linker options you have set in the other
pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the linker.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility. You can specify the option
--option-file multiple times.

Format of an option file
* Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a double quote " enbedded’
'"This has a double quote " and a single quote '"' enbedded"
* When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
l'i ne"

-> "This is a continuation |ine"

389

TASKING VX-toolset for PCP User Guide

* Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myopt i ons contains the following lines:

--map-fil e=ny. map (generate a map file)

test.o (input file)

--library-directory=c:\nylibs (additional search path for systemlibraries)
Specify the option file to the linker:

| pcp --option-file=nmyoptions

This is equivalent to the following command line:

| pcp --map-file=my.map test.o --library-directory=c:\nylibs

Related information

390

Tool Options

Linker option: --output (-0)

Menu entry

Command line syntax
--output=[filenane][:format[:addr_size][, space_name]]...
-o[filenane] [:format[:addr_size][, space_nane]]...

You can specify the following formats:

ELF ELF/DWARF

IHEX Intel Hex

SREC Motorola S-records
Description

By default, the linker generates an output file in ELF/DWARF format, with the name t askl1. el f .

With this option you can specify an alternative filename, and an alternative output format. The default
output format is the format of the first input file.

You can use the --output option multiple times. This is useful to generate multiple output formats. With
the first occurrence of the --output option you specify the basename (the filename without extension),
which is used for subsequent --output options with no filename specified. If you do not specify a filename,
or you do not specify the --output option at all, the linker uses the default basename t askn.

IHEX and SREC formats

If you specify the Intel Hex format or the Motorola S-records format, you can use the argument addr_size
to specify the size of addresses in bytes (record length). For Intel Hex you can use the values: 1, 2, and
4 (default). For Motorola S-records you can specify: 2 (S1 records), 3 (S2 records, default) or 4 bytes (S3
records). Note that if you make the addr_size too small, the linker might give a fatal object writer error
indicating an address overflow.

With the argument space_name you can specify the name of the address space. The name of the output
file will be filename with the extension . hex or . sr e and contains the code and data allocated in the
specified space. If they exist, any other address spaces are also emitted whereas their output files are
named filename_spacename with the extension . hex or. sre.

If you do not specify space_name, or you specify a non-existing space, the default address space is filled
in.

Use option --chip-output (-c) to create Intel Hex or Motorola S-record output files for each chip defined
in the LSL file (suitable for loading into a PROM-programmer).

391

TASKING VX-toolset for PCP User Guide

Example

To create the output file myf i | e. hex of the address space named | i near , enter:

| pcp test.o --output=nyfile.hex:|HEX 2,1inear

If they exist, any other address spaces are emitted as well and are named nyf i | e_spacename. hex.
Related information

Linker option --chip-output (Generate an output file for each chip)

Linker option --hex-format (Specify Hex file format settings)

392

Tool Options

Linker option: --strip-debug (-S)

Menu entry
1. Select Linker » Miscellaneous.

2. Enable the option Strip symbolic debug information.

Command line syntax
--strip-debug

-S

Description

With this option you specify not to include symbolic debug information in the resulting output file.

Related information

393

TASKING VX-toolset for PCP User Guide

Linker option: --user-provided-initialization-code (-i)
Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Do not use standard copy table for initialization.

Command line syntax
--user-provided-initialization-code
-

Description

It is possible to use your own initialization code, for example, to save ROM space. With this option you
tell the linker not to generate a copy table for initialize/clear sections. Use linker labels in your source
code to access the positions of the sections when located.

If the linker detects references to the TASKING initialization code, an error is emitted: it is either the
TASKING initialization routine or your own, not both.

Note that the options --no-rom-copy and --non-romable, may vary independently. The
‘copytable-compression’ optimization (--optimize=t) is automatically disabled when you enable this option.

Related information
Linker option --no-rom-copy (Do not generate ROM copy)
Linker option --non-romable (Application is not romable)

Linker option --optimize (Specify optimization)

394

Tool Options

Linker option: --verbose (-v)

Menu entry

Command line syntax
--verbose

-V

Description

With this option you put the linker in verbose mode. The linker prints the link phases while it processes
the files. The linker prints one entry for each action it executes for a task. When you use this option twice
(- vv) you put the linker in extra verbose mode. In this mode the linker also prints the filenames and it
shows which objects are extracted from libraries and it shows verbose information that would normally
be hidden when you use the normal verbose mode or when you run without verbose. With this option you
can monitor the current status of the linker.

Related information

395

TASKING VX-toolset for PCP User Guide

Linker option: --version (-V)

Menu entry

Command line syntax

--version
-V
Description

Display version information. The linker ignores all other options or input files.

Related information

396

Tool Options

Linker option: --warnings-as-errors

Menu entry
1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber, ...]

Description

When the linker detects an error or warning, it tries to continue the link process and reports other errors
and warnings. When you use this option without arguments, you tell the linker to treat all warnings as
errors. This means that the exit status of the linker will be non-zero after the detection of one or more
linker warnings. As a consequence, the linker will not produce any output files.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Linker option --no-warnings (Suppress some or all warnings)

397

TASKING VX-toolset for PCP User Guide

8.5. Control Program Options

The control program ccpcp facilitates the invocation of the various components of the PCP toolset from
a single command line.

Options in Eclipse versus options on the command line

Eclipse invokes the compiler, assembler and linker via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the tools. The control program processes command
line options either by itself, or, when the option is unknown to the control program, it looks whether it can
pass the option to one of the other tools. However, for directly passing an option to the C compiler,
assembler or linker, it is recommended to use the control program options --pass-c, --pass-assembler,
--pass-linker.

See the previous sections for details on the options of the tools.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

ccpcp -W-Cac test.c
ccpcp --pass-c=--optim ze=+coal esce, +cse test.c

When you do not specify an option, a default value may become active.

398

Tool Options

Control program option: --address-size

Menu entry

Command line syntax

- -address-si ze=addr _si ze

Description

If you specify IHEX or SREC with the control option --format, you can additionally specify the record
length to be emitted in the output files.

With this option you can specify the size of the addresses in bytes (record length). For Intel Hex you can
use the values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records)
or 4 bytes (S3 records, default).

If you do not specify addr_size, the default address size is generated.
Example

To create the SREC file t est . sr e with S1 records, type:

ccpep --format =SREC - - address-size=2 test.c

Related information

Control program option --format (Set linker output format)

Control program option --output (Output file)

399

TASKING VX-toolset for PCP User Guide

Control program option: --case-insensitive

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.
Command line syntax

--case-insensitive

Default: case sensitive

Description

With this option you tell the assembler not to distinguish between uppercase and lowercase characters.
By default the assembler considers uppercase and lowercase characters as different characters.

Assembly source files that are generated by the compiler must always be assembled case sensitive.
When you are writing your own assembly code, you may want to specify the case insensitive mode.

Example

When assembling case insensitive, the label Label Nane is the same label as | abel namne.
ccpecp --case-insensitive test.src

Related information

Assembler option --case-insensitive

Assembler control $CASE

400

Tool Options

Control program option: --check

Menu entry

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler/assembler reports any warnings and/or errors.

This option is available on the command line only.

Related information
C compiler option --check (Check syntax)

Assembler option --check (Check syntax)

401

TASKING VX-toolset for PCP User Guide

Control program option: --cpu (-C)

Menu entry
1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, select a processor or select User defined TriCore

Command line syntax
--cpu=id | nane | cpu
-Cd | name | cpu
Description

With this option you define the target processor for which you create your application. You can specify a
full processor name, like TC