
Using the TASKING Software
Platform for AURIX

MA160-869 (v1.0rb3) June 19, 2015

Copyright © 2015 Altium BV.

All rights reserved.You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of Altium BV. Unauthorized duplication of this work may also be prohibited by local statute.
Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, TASKING,
and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other
registered or unregistered trademarks referenced herein are the property of their respective owners and no trademark
rights to the same are claimed.

Table of Contents
1. Introduction .. 1
2. Organization of the Software Platform Repositories ... 3

2.1. Device Stacks ... 3
2.1.1. Peripherals .. 4
2.1.2. Drivers .. 4

2.2. Software Services ... 5
3. Getting Started with the Software Platform Builder .. 7

3.1. Creating a Software Platform Document ... 7
3.2. Working with Device Stacks ... 8
3.3. Configuring the Software Platform Plug-ins ... 12
3.4. Generating and Using the Source Code ... 14
3.5. Using the Sample Projects .. 16
3.6. API Reference .. 17
3.7. Software Platform Builder Preferences ... 18

4. Glossary .. 21

iii

iv

Using the TASKING Software Platform for AURIX

Chapter 1. Introduction
With TASKING Software Platform you can quickly create full-featured applications. A Software Platform
is made up of software blocks, pieces of functionality that you can use in your application, like RTOS
facilities, peripheral access or software protocols. The exact contents of a Software Platform depend on
the need of your application.

The Software Platform Builder is used to manage your Software Platform. It is both a graphical editor and
a code generator. Collections of software modules are delivered as Software Platform repositories.

The following figure shows the process to create your own Software Platform:

A Software Platform repository may contain any kind of software, but typical modules include interrupt
services, timers, peripherals (hardware wrappers), drivers, kernel services (such as POSIX multithreading),
device I/O, file system (FatFs), networking (TCP/IP), graphical user interface, etc.

The main reasons for having software modules are:

• Integration. Modules do not live isolated. Quite the contrary, they need to relate and interact with other
modules. For instance, they often define interfaces which are implemented by other modules.

• Software reuse. Software reuse means effectively to be capable of encapsulating all the information
of a component (hardware and/or software) in a consistent manner. Once this information is made

1

available, higher abstraction layers can use it to customize or configure the system after little (or none)
user intervention.

• Hide complexity. Writing software from scratch is a time-consuming activity. To write software that
accesses or controls a peripheral, you need a thorough knowledge of how the peripheral works: which
registers you need, which device specific commands to use, which communication protocols to use,
and which interrupts to handle.

The modules of the Software Platform repository take care of all these laborious lower level routines
and instead provide you with an easy to use Application Programming Interface (API) for each peripheral
that your application needs to control.

• Configurability. Embedded systems require very precise (compile-time) configuration mechanisms to
manage their intrinsic complexity. A typical module may show different possible configurations that
have direct impact on the final behavior of the software.The main idea behind compile-time configurations
in embedded systems is to remove unnecessary functionality in order to enhance memory costs and
real-time performance.

• Expandability. Altium, but also other parties, can adapt the modules and create their own modules.

For information how to use the Software Platform Builder, see Chapter 3, Getting Started with the Software
Platform Builder.

2

Using the TASKING Software Platform for AURIX

Chapter 2. Organization of the Software
Platform Repositories
Software Platform repositories can contain numerous software modules that take care of lower level
software routines as well as modules that offer extra functionality by providing you with a convenient API.

The Software Platform consists of device stacks and software services.This chapter describes both parts
and how they are related.

2.1. Device Stacks

Device stacks are all about making hardware peripherals available to application code through abstract
and generic software interfaces. By placing more or less modules on a stack, you can choose the
abstraction level you want to use in your application.The lowest level modules are specific for a particular
hardware device. On top of that, you can stack higher level modules that provide more generic functionality
to access the device. For example, at the higher, abstract level, you could choose to use a module to
access a file system in your application. At the lower levels you still can select modules to decide which
specific storage device you want to access (a hard drive, SD card, RAM drive, ...) Thus, the lower level
modules are more specific for a particular peripheral while the higher level modules are less hardware
specific and can even be used in combination with multiple peripheral devices.

You can use the Software Platform Builder editor to build device stacks.

Example

The following figure contains an ASCLIN ASC device stack and an ETH device stack.

Each colored stack item represents a software module. In this example the ASCLIN stack consists of two
modules, for each abstraction level one. In general, your application interfaces only to the highest level
modules.

Device stacks may be composed of the following types of plug-ins: peripherals and drivers.

3

2.1.1. Peripherals

Peripherals (the green stack items) are the lowest level modules. They provide information for the higher
layers of the stack to access the peripherals. Information such as the base address, interrupt assignment
and any soft peripheral configuration is all stored in the peripheral.

Peripheral modules are meant to be instantiated. Each instance then corresponds to one device of the
given kind. Instances of peripherals do not normally require other instances.

In most situations, your application does not access the peripherals directly, because the application
accesses them through the driver's interface on top of it.

For most peripherals you need to use the TASKING Pin Mapper to configure the connections between
peripherals and port pins. For information about the TASKING Pin Mapper see Using the TASKING Pin
Mapper for AURIX.

2.1.2. Drivers

Drivers (the yellow stack items) provide the next level of abstraction. They provide low-level access to
specific hardware either via a peripheral or via another driver.

The difference between a driver and a peripheral is well defined. The peripheral only defines basic
information about the hardware but provides no further functionality. This basic information can be used
by a driver which you can place on top of the peripheral.

Driver modules are meant to be instantiated. Each instance then corresponds to one device of the given
kind. A driver instance requires one instance of the corresponding peripheral.

Drivers are hardware specific and so are the interfaces they offer. Hence, if your application contains
code that accesses a driver's API, your application will be hardware dependent. Drivers still operate at a
low abstraction level, and using a device at the driver level requires knowledge of that particular driver's
interface.

The driver provides the initialization for the peripheral and pins. See Section 3.3, Configuring the Software
Platform Plug-ins how you can set some initialization options. To interface with the peripheral use the
low-level driver routines from the iLLD API.

4

Using the TASKING Software Platform for AURIX

2.2. Software Services

Some services are static and not meant to be instantiated. They have no (direct) relationship with
peripherals or other services. They facilitate common functionality, like iLLD TC27xC support. They are
shown in your editor at the left side of the Device Stacks.Those services may also be added automatically
if required by other services.

When you click on the iLLD software service you can set some options. After you have generated the
Software Platform sources (Section 3.4, Generating and Using the Source Code) you can use the low-level
driver routines from the iLLD API.

5

Organization of the Software Platform Repositories

6

Using the TASKING Software Platform for AURIX

Chapter 3. Getting Started with the Software
Platform Builder
The Software Platform Builder is the graphical interface to manage the plug-ins of the Software Platform
repositories. The Software Platform Builder enables you to:

• add peripherals

• build device stacks

• add software services

• configure all software services and stack items

• generate code for your Software Platform

3.1. Creating a Software Platform Document

To use the Software Platform Builder you need a project.The Software Platform Builder becomes available
when you add a special Software Platform document to your project.

Add a Software Platform document to an existing project

1. First make sure you have an existing project. This is explained in the Getting Started manual of the
toolset. In this example we assume you have a project called myproject.

2. From the File menu, select New » TASKING Software Platform Document.

The New Software Platform Document wizard appears.

3. Select the Project folder for the Software Platform document: type the name of your project
(myproject) or click the Browse button to select a project.

4. In the File name field, enter a name for the Software Platform document, for example
myproject.swpxmi and click Finish.

A new Software Platform document is added to the project with extension .swpxmi.

TASKING Software Platform Builder editor

Double-click on the Software Platform document to open it. The editor consists of two sections: the
Software Services and the Device Stacks.

7

The following toolbar icons are available:

DescriptionActionIcon

Generates the source code and adds it to your project.Generate Code

Adds software services and/or device stacks.Add

Imports Pin Mapper settings. If you already have configured peripherals
in the Pin Mapper, the settings are synchronized with the Software
Platform.

Synchronize with Pin
Mapper output

Reloads the repository. This can be necessary when you have updated
the repository or when you changed the contents of a local repository.

Reload Repository

3.2. Working with Device Stacks

In the Device Stacks section you can build device stacks by adding modules from one or more Software
Platform repositories. To build a device stack, you can start bottom-up by choosing a peripheral or you
can start top-down by choosing a high-level stack service.

Add a software service or device stack

1. From the Software Platform menu, select Add... or click .

The Add Software Services and Device Stacks dialog appears.The left side shows the stack services,
software services and drivers. For AURIX no services or drivers are available. The right side shows
all peripherals for the selected device.

8

Using the TASKING Software Platform for AURIX

2. Select the peripherals you want and click OK.

The new device stacks and software services appear in the TASKING Software Platform editor.
Some software services appear automatically because they are required by other services or stack
items.

If you do not see any peripheral, you probably selected an unsupported device or a generic
architecture.

9

Getting Started with the Software Platform Builder

Growing stacks

Once you have added one or more stack items, you can use Grow Stack Up or Grow Stack Down from
the context menu to complete your device stack.

The Grow Stack Up and Grow Stack Down menu items only become available if possibilities exist to
extend the stack from the point of the selected stack item. Once you have partial device stacks on the
document, you can extend them with other stack items to grow them to the abstraction level you wish to
use in your application. For an interface description of a module select API Reference.

To grow a stack up:

1. Right-click on a plug-in of the existing stack and select Grow Stack Up.

The Grow Stack dialog appears. The dialog shows all possible combinations of sub-stacks that you
can place on top of the selected module.

10

Using the TASKING Software Platform for AURIX

2. Select any module in any of the possible sub-stacks to extend the selected stack upwards and click
OK.

To grow a stack down:

1. Right-click on a plug-in of the existing stack and select Grow Stack Down.

The Grow Stack dialog appears. The dialog shows all possible combinations of sub-stacks that you
can place below the selected module.

2. Select any module in any of the possible sub-stacks to extend the selected stack downwards and
click OK.

Note that when you click on a Missing Requirement, the Grow Stack dialog appears automatically.

The Grow Stack dialog contains two tabs, one to form a new stack and one to link two existing stacks. If
your document contains partial stacks which potentially can be combined into a single stack, it will be
visible in the Link to Existing tab.You can link them together to form a complete stack. Otherwise select
the New Stacks tab.

Example

The following figure shows some device stacks.

11

Getting Started with the Software Platform Builder

3.3. Configuring the Software Platform Plug-ins

You can configure peripherals, drivers, stack services and software services. Stack items can have
individual options and/or global options. Individual options are only valid for a specific stack item, global
options are valid for all stack items of the same type. When you click on an item in the Software Platform
Builder, configuration options appear in the Properties view.

For example, when you click ASCLIN ASC Interface, a view similar to the following appears:

Here you can set the initialization options that are needed for your application.

A plug-in option may automatically set other plug-in options.

12

Using the TASKING Software Platform for AURIX

Connecting peripherals to pins

For most peripherals you need to specify which pins are used.You can do this with the TASKING Pin
Mapper.

1. Add a TASKING Pin Mapper Document (File » New » TASKING Pin Mapper Document) and
configure the pins as explained in Using the TASKING Pin Mapper for AURIX.

This results in a file called myproject.pincfg.

2. From the Pin Mapper menu, select Generate Code or click .

The Pin Mapper sources are generated and are added to your project in the folder PinMapper.

3. Go back to the TASKING Software Platform document.

4. From the Software Platform menu, select Synchronize with Pin Mapper Output or click .

The Synchronize dialog appears.

13

Getting Started with the Software Platform Builder

5. Select the peripherals you want to add to or remove from the Software Platform document and click
OK.

The Software Platform uses the output of the TASKING Pin Mapper to configure the peripherals. The pin
configurations are used in the initialization routines. See Section 3.4, Generating and Using the Source
Code for more information.

3.4. Generating and Using the Source Code

When you have added, configured and/or updated the Software Platform plug-ins you are ready to add
the Software Platform sources to your project.

Generate source code

• From the Software Platform menu, select Generate Code or click .

The Software Platform sources are retrieved from the repositories and are added to your project in the
folder SoftwarePlatform.Tool options such as defines and include paths are added to the Generated
options field in your project properties. Options can also be set on the SoftwarePlatform folder
and/or sub-folders.

14

Using the TASKING Software Platform for AURIX

Also, every time you save the changes you have made to your Software Platform document, a dialog
appears asking if you want to generate the code.You can change this behavior in the Preferences dialog
as explained in Section 3.7, Software Platform Builder Preferences.

Using the Software Platform sources

A plug-in defines a set of functionality - that is, types, defines, structures and functions. This functionality
is accessible from your application.You can find the generated files in the SoftwarePlatform folder
of your project.To use the generated files, you must add a #include statement into your top-level source
file (typically main.c):

#include "swplatform.h"

All other required header files needed to access the devices in the stack are included (made available)
as a result of including this file.

The following is an example of swplatform.h generated as a 'wrapper' around the active project's
Software Platform:

15

Getting Started with the Software Platform Builder

If you have set pin configurations in a Pin Mapper document, those settings are used in the initialization
routines. For example, the file IfxAsclin_Asc_ActInit.h contains, amongst others, the line:

#include <PinMapper/aurix_pin_mappings.h>

You can now use the functions of the Software Platform in your sources. For example,

IfxAsclin_Asc *asclin;

int main(void)
{

 /* Initialize the Asclin module and initialize
 the pins as specified in the Pin Mapper document */

 asclin = IfxAsclin_Asc_ActInit(IFXASCLIN_ASC_1);
 ...
 return 0;
}

3.5. Using the Sample Projects

A Software Platform repository may contain a number of sample projects.These examples can be a good
starting point for your own project.

You can import Software Platform repository examples via the Import wizard in Eclipse.

Import an existing Software Platform project

1. From the File menu, select Import.

The Import dialog appears.

2. Select TASKING Software Platform » Example Projects and click Next.

The Import Software Platform Examples dialog appears.

16

Using the TASKING Software Platform for AURIX

3. Select the Software Platform examples you want to import into the current workspace and click
Finish.

The original examples are copied into the current workspace and the Software Platform sources and
Pin Mapper sources are generated.

Once the examples are in your workspace you can build the projects.

3.6. API Reference

Each repository contains detailed descriptions of its contents.You can access this documentation from
the Help menu (Help » Help Contents » Software Platform Repository Reference).

Accessing help on individual drivers or services

• Right-click on a stack item or a software service and select API Reference.

17

Getting Started with the Software Platform Builder

Help appears on the individual stack item.

3.7. Software Platform Builder Preferences

You can use the Preferences dialog in Eclipse to specify how the Software Platform Builder should operate.

To set preferences

1. From the Window menu, select Preferences.

The Preferences dialog appears.

2. Select TASKING » Software Platform Builder.

The Software Platform Builder page appears.

3. Set your preferences and click OK.

You can set the following preferences:

Generate code on save

By default the Software Platform Builders asks if you want to generate code when you save a document
(Prompt).You can choose to do this automatically (Always) or Never.

Software Platform Editor

• Show adaptors and internal items. By default, internal items are not visible in the device stacks. This
option can be useful when you need support from Altium or when you develop your own plug-ins.
Normally, you do not need this option.

Properties View

• Show resource info. By default, information about the resource is not visible in the Properties view.

You can use the Show Resource Info button () in the Properties view to toggle the resource
information on or off, or you can use this preference option to turn resource information on by default.

18

Using the TASKING Software Platform for AURIX

• Show hidden options. By default, several plug-in options are not visible in the Properties view. This
option can be useful when you need support from Altium or when you develop your own plug-ins.
Normally, you do not need this option.

19

Getting Started with the Software Platform Builder

20

Using the TASKING Software Platform for AURIX

Chapter 4. Glossary
The following terminology is used to describe the TASKING Software Platform concepts (in alphabetical
order).

Software Platform

The source code generated by the Software Platform Builder. The source code becomes part of your
project. A graphical representation of the Software Platform is present in the Software Platform Builder.

Software Platform Builder

The graphical editor where you can edit a Software Platform document and where you can generate the
source code for your Software Platform. The editor shows a graphical representation of your Software
Platform.

Software Platform document

A file with extension .swpxmi which is part of your project. It contains the configuration of your Software
Platform and is managed by the Software Platform Builder.

Software Platform plug-in or module

Software Platform definition files, source code and other resources. Plug-ins are bundled in a Software
Platform repository.

Software Platform repository

The collection of Software Platform plug-ins. It provides the contents for a generated Software Platform.

TASKING Software Platform

The main software framework delivered by Altium, consisting of Software Platform repositories and the
Software Platform Builder.

21

22

Using the TASKING Software Platform for AURIX

	Using the TASKING Software Platform for AURIX
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Organization of the Software Platform Repositories
	2.1. Device Stacks
	2.1.1. Peripherals
	2.1.2. Drivers

	2.2. Software Services

	Chapter 3. Getting Started with the Software Platform Builder
	3.1. Creating a Software Platform Document
	3.2. Working with Device Stacks
	3.3. Configuring the Software Platform Plug-ins
	3.4. Generating and Using the Source Code
	3.5. Using the Sample Projects
	3.6. API Reference
	3.7. Software Platform Builder Preferences

	Chapter 4. Glossary

