
TASKING Script Debugger
User Guide

MA160-864 (v3.4) April 13, 2010

TASKING Script Debugger User Guide

Copyright © 2010 Altium Limited.

All rights reserved.You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium,
TASKING, and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All
other registered or unregistered trademarks referenced herein are the property of their respective owners and no
trademark rights to the same are claimed.

Table of Contents
1. Using the Stand-alone Script Debugger .. 1

1.1. Run the Debugger in Interactive Mode ... 1
1.1.1. Configure the Debugger ... 2
1.1.2. Run and Debug a Script ... 6

1.2. Run the Debugger from the Command Line .. 8
2. Debugger Script Language .. 9

2.1. Introduction .. 9
2.2. Identifiers ... 9
2.3. Special Identifiers .. 10
2.4. Whitespace and Comments ... 10
2.5. Include Statements .. 10
2.6. Nil, $defined(...) and $delete(...) .. 10
2.7. Types, $type(...) ... 11

2.7.1. Numbers ... 11
2.7.2. Strings .. 12
2.7.3. Indexed Arrays ... 13
2.7.4. Associative Arrays ... 13

2.8. Operators ... 14
2.9. Assignment .. 15

2.9.1. Assignment by Value or by Reference .. 15
2.9.2. Assignment of Literals .. 15
2.9.3. Assignment versus Expression .. 16

2.10. Resolving of Identifiers .. 16
2.11. Flow Control ... 17

2.11.1. if / elseif / else ... 17
2.11.2. do and while ... 17
2.11.3. for .. 18
2.11.4. foreach .. 18
2.11.5. goto .. 19
2.11.6. continue and break .. 19
2.11.7. switch ... 20

2.12. Functions ... 21
2.12.1. Local Variables .. 22
2.12.2. Accessing Global Variables .. 22
2.12.3. Return Value .. 23
2.12.4. Variable Argument List .. 23

2.13. Classes .. 24
2.13.1. Constructor and Other Member Functions .. 25
2.13.2. Class Instance Variables ... 26
2.13.3. Class Variables ... 26

2.14. Garbage Collection ... 26
2.15. Exceptions .. 27

2.15.1. Throwing Exceptions Explicitly: throw($e) ... 29
2.16. Built-in Functions ... 29

2.16.1. Functions Applicable to All Types .. 29
2.16.2. Functions Applicable to Numbers .. 30
2.16.3. Functions Applicable to Strings ... 31
2.16.4. Functions Applicable to Indexed Arrays .. 34

iii

2.16.5. Functions Applicable to Associative Arrays ... 34
2.16.6. Debugger Specific Functions ... 35
2.16.7. Miscellaneous Functions ... 39

2.17. Built-in Classes .. 40
2.17.1. Class $addr .. 40

2.18. File I/O ... 40
2.19. Multithreading ... 41

iv

TASKING Script Debugger User Guide

Chapter 1. Using the Stand-alone Script
Debugger
The TASKING VX-toolset for TriCore contains two debuggers. One debugger is integrated in the Eclipse
environment and the other is a separate program, the stand-alone script debugger.This chapter describes
the stand-alone debugger.

The stand-alone script debugger is not a complete debugger; facilities such as a register or a memory
window are not available. Instead, its primary purpose is to run scripts created by the user for testing
purposes.

The recommended way of using the program involves the following steps:

1. Create a script file in a text editor. The directory examples/dbgtc contains a few example scripts
to get you started. For details about the script language see Chapter 2, Debugger Script Language.
In particular Section 2.16.6, Debugger Specific Functions describes the script language functionality
that you can use to access and control the target.

2. Test the correctness of the script (i.e. debug the script itself) using the script debugger in interactive
(graphical user interface) mode. This also involves creating a configuration file (.dcf) for the target
to be used.

3. Once the script is correct, run it from the command line (possibly from a batch file):

dbgtc [options] name_of_script_file

1.1. Run the Debugger in Interactive Mode

To start the script debugger select Script Debugger from the Start menu. The program starts with an
empty window except for a menu bar at the top. The area below that is used for so-called panes.You
can resize a pane by dragging one of its four corners and you can move a pane by dragging its title.

1

1.1.1. Configure the Debugger

When the script debugger is started, it creates a default configuration, called "Untitled", that uses the
simulator and the TC1165 CPU. If this default is not suitable, you need to change the configuration.

1. From the File menu, select Edit configuration...

The Configuration dialog appears.

2

TASKING Script Debugger User Guide

The dialog consists of several panes, which you can select on the left-hand side.

2. Select Target and click on the Copy from predefined...

The Copy from Predefined dialog appears.This dialog shows all the predefined target configurations
that come with the toolset.

The information in this dialog is based on Debug Target Configuration (DTC) files. DTC files define
all possible configurations for a debug target.The files are located in the etc directory of the installed
product and use .dtc as filename suffix. For more information on DTC files, see the TASKING
VX-toolset for TriCore User Guide.

3. Select a predefined configuration and click OK.

The settings will be copied to your configuration.

3

Using the Stand-alone Script Debugger

4. Optionally, adapt the settings in the other panes. For example, in the Registers pane you can add
register settings that may depend on your particular hardware situation and application program.

5. Click OK.

6. From the File menu, select Save configuration as...

The Save Configuration dialog appears.

7. Give your configuration file a name with extension .dcf.

Global program settings

A few settings that are not expected to be different for different configurations are stored separately in a
"global" file settings.dst. For example, you can extend the list of processors.

1. From the File menu, select Settings...

The Settings dialog appears.

2. Click Add...

The Add Processor Definition File dialog appears.

3. Select the file that contains additional processor definitions and click Open.

The new file will be added to the list of processor definition files.

4. Click OK.

The new settings will be saved automatically when you exit the program.

1.1.1.1. Setup a Flash Device

In the Flash pane you can setup a flash device. With the TASKING script debugger you can download
an application file to flash memory. Before you download the file, you must specify the type of flash devices
you use in your system and the address range(s) used by these devices.

To program a flash device the debugger needs to download a flash programming monitor to the target
to execute the flash programming algorithm (target-target communication). This method uses temporary
target memory to store the flash programming monitor and you have to specify a temporary data workspace
for interaction between the debugger and the flash programming monitor.

4

TASKING Script Debugger User Guide

Setup a flash device

1. From the File menu, select Edit configuration...

The Configuration dialog appears.

2. In the left pane, select Flash.

The Flash pane appears.

3. Click Add... to specify a flash device.

The Add Flash Device dialog appears.

4. In the Device type box, expand the name of the manufacturer of the device and select a device.

5

Using the Stand-alone Script Debugger

Based on your selection the other fields are filled in, but you can adapt them manually.

5. In the Base address(es) field enter the start address of the memory range that will be covered by
the flash device. Any following addresses separated by commas are considered mirror addresses.
This allows the flash device to be programmed through its mirror address before switching the flash
to its base address.

6. In the Chip width field, select the width of the flash device.

7. In the Number of chips field, enter the number of flash devices that are located in parallel. For
example, if you have two 8-bit devices in parallel attached to a 16-bit data bus, enter 2.

8. Fill in the Number of unused address lines field, if necessary.

9. Click Add.

The new flash device is added to the Flash pane.

10. In the Monitor file field, specify the filename of the flash programming monitor, usually an Intel Hex
or S-Record file.

11. In the Sector buffer size field, specify the buffer size for buffering a flash sector.

12. Specify the data Workspace address used by the flash programming monitor. This address may
not conflict with the addresses of the flash devices.

To program a flash device

To program a flash device during downloading, put a $download command in your script file with the
flash option enabled.

Example:

$failed = $download("myprogram.elf", {"flash" : 1});

1.1.2. Run and Debug a Script

Debugger scripts use a proprietary language described in Chapter 2, Debugger Script Language. The
program itself does not provide script editing facilities, but you can use any text editor to create a script
file. The recommended extension is .dscr.

Once you have created a script, you can run a script.

1. From the File menu, select Run script...

The Run Script dialog appears.

2. Select the script file (with extension .dscr) you want to run and click Open.

The script file opens in a separate pane. We used download.dscr as an example.

6

TASKING Script Debugger User Guide

Unless this has already happened, a connection with the target will be established first. Then, provided
the script contains no syntax errors, the script itself will run. Output of the script is printed in a separate
pane (Script IO in the example above).

Debugging a script

If you suspect your script contains an error, you can debug it by inserting $printnl calls or by placing
breakpoints. To place a breakpoint, click in the left-hand margin of the script pane. A breakpoint is
represented by a yellow dot when it has not actually been placed yet, for example before a connection
to the target has been made, and a red one thereafter.

Once your script halts on the breakpoint, you can examine the program state by selecting Variables or
Expressions from the Pane menu. If you want to examine a higher stack level, select Threads and
double click on the relevant stack frame. With the commands in the Debug menu, you can control the
execution of a script thread.

7

Using the Stand-alone Script Debugger

1.2. Run the Debugger from the Command Line

Once your script is correct, you can run it non-interactively as well. Enter the following command:

dbgtc [options] script_file

The following options are available:

DescriptionOption

This option causes the program to display an overview of all command
line options.

-? / --help

This option allows you to pass arguments to a script. In the script you can
use the $getargs() function to access the string.You can use the option
more than once, in which case the successive strings will appear in the
array returned by $getargs() in the original order.

--arg=string

This option allows you to specify a configuration file (.dcf). If this option
is omitted, the default (simulator) configuration is used.

-c=configuration_file

This option allows you to specify the initial directory for file system
simulation. If the directory is omitted, the current directory is used. If this
option is omitted, the path from the configuration is used.

--fss-initial-dir[=directory]

This option causes the program to display version information and then
exit.

-V / --version

Once the script has finished executing, the debugger will terminate automatically.

8

TASKING Script Debugger User Guide

Chapter 2. Debugger Script Language
The debugger features a proprietary script language that you can use to automate various tasks, for
example to regularly perform a set of tests.This chapter discusses the syntax and semantics of the script
language. Section 2.16.6, Debugger Specific Functions describes the script language functionality that
you can use to access and control the target. Chapter 1, Using the Stand-alone Script Debugger describes
how you can use the debugger script to control the debugger.

2.1. Introduction

The debugger script language is powerful, but relatively simple, borrowing concepts from various existing
languages such as C/C++, Python and Java.

For the convenience of readers who are familiar with most of these languages and who want to make a
quick start, the language's key properties are listed below:

• Partly object-oriented (OO): has classes, but no access control, no inheritance and no overloaded
operators.

• Garbage-collected: objects are automatically deleted when they have become unreferenced.

• Strings are Unicode, not ASCII.

• Weakly typed: type compatibility is checked at run-time, not at compile-time.

• Features indexed arrays (any dimension, "jagged") and associative ("hash") arrays (in which the keys
can be numbers and / or strings).

• Exceptions are thrown when certain run-time errors occur.

• Objects are passed by value or by reference.

• Control flow statements similar to those of C, plus a foreach statement.

• Operators similar to those of C, plus =ref.

• Script identifiers must begin with a dollar sign ($), which helps distinguish them from target language
identifiers. Script identifiers are case-sensitive.

• Built-in regular expression pattern matching functionality.

2.2. Identifiers

The names of user-defined variables, functions, etc. must begin with a dollar sign ($), which must be
followed by at least one alphabetic character ([A-Za-z]), optionally followed by one or more alpha-numeric
characters or underscore characters ([A-Za-z0-9_]).

Examples of a few valid and invalid identifiers:

valid: $a, $AbC, $a_4.

9

invalid: abc, $0, $_abc.

There is no maximum length for identifiers and they are case-sensitive.

Identifiers beginning with $_ are used or reserved for internal purposes. With the exception of those
mentioned in this document, they are not accessible.

2.3. Special Identifiers

The following table lists identifiers that have a special meaning.

DescriptionIdentifier

evaluates to a string equal to the name of the script file, for example
"myscript.dscr"

$__FILE__

evaluates to a number equal to the (one-based) line number where this
identifier appears

$__LINE__

see Section 2.12.4, Variable Argument List$args and $_args

global scope prefix; (see Section 2.12.2, Accessing Global Variables)$global

class instance (see Section 2.13, Classes)$this

2.4. Whitespace and Comments

Whitespace is significant in essentially the same situations as it is in C.You can include C++ style source
comments or use the number sign (#), which extends to (but does not include) the next line break.
Comments of the form /* … */ can be nested. Here are some examples:

$c =
$a + $b; // Same as $c = $a + $b;

/* Following /* code */ will be executed. */ $printnl("Hello");

$printnl("world."); # This is a comment.

2.5. Include Statements

Using include "file name", a script can include another script. This inclusion takes place only once,
when the including script is compiled.

2.6. Nil, $defined(...) and $delete(...)

Internally, every variable and expression is represented by a so-called "handle". This handle can refer to
an existing object, but may also be nil, which is comparable to NULL in C/C++. Note however that nil is
not a keyword.

In many cases, if you try to use a nil handle, an error occurs and the script will cause an exception of type
"#NIL_OBJECT".

10

TASKING Script Debugger User Guide

With $defined(variable) you can check whether a variable exists. It will yield 0 if the specified variable
represents either a nil handle or does not exist at all, and 1 otherwise.

With $delete(variable) you delete the specified variable. After this, $defined(…) on the same variable
will return zero.

You can use $defined(…) and $delete(…) with single identifiers, but also with arrays, as will be
explained later.

2.7.Types, $type(...)

The types supported by the script language are shown in the following table. With $type(variable) you
can retrieve the type of the specified variable. Unlike C/C++, but like Python, the language is weakly
typed, meaning that the type of a variable is not fixed and not known at compile time. This means that if
you try to execute "$c = $a + $b;", you have to make sure that the current types of $a and $b are
compatible and support the addition operator; the script language compiler cannot check this when it
compiles a script. In the case above, it will throw an exception if it cannot perform the addition (see
Section 2.15, Exceptions) .

SeeCorresponding $type(…) valueType

Section 2.7.1, Numbers"NUMBER"number

Section 2.7.2, Strings"STRING"string

Section 2.7.3, Indexed Arrays"INDEXARRAY"indexed array

Section 2.7.4, Associative Arrays"ASSOCARRAY"associative array

Section 2.13, Classes and
$instance_type

"CLASS"class instance

Section 2.12, Functions"FUNCTIONREF"reference to function

There is no separate Boolean type: operators such as && yield a number equal to 0 or 1.

2.7.1. Numbers

All numbers in the debugger script language are floating-point numbers, i.e. there are no separate types
for signed and unsigned integers, for example.

Literal numbers can be specified in three forms, as shown in the following table. Neither digits nor special
characters such as e and x are case-sensitive.

ExamplesOptional exponent indicatorForm

-1234

+1234.5

-1.1e+03

e or Edecimal

-0172

+0411

(none)octal

11

Debugger Script Language

ExamplesOptional exponent indicatorForm

-0x1234abc

+0xa.8p1 (equal to 10.5 × 2 = 21)

p or P, indicating a power of twohexadecimal

Division by zero will cause an exception of type "#DIV_BY_ZERO".

See Section 2.16.2, Functions Applicable to Numbers for a list of built-in functions that can be used with
numbers.

2.7.2. Strings

Script language strings can have an arbitrary length and can be manipulated using a wide range of built-in
functionality. Strings consist of Unicode characters, although the debugger only reads ASCII input files.

Literal strings have a syntax similar to that of C. Special characters can be specified using the backslash
character as an escape, as shown in the following table.

ResultInput

single backslash character\\

single quote character\'

double quote character\"

bell character\a

backspace character\b

escape character\e

form feed\f

line feed\n

carriage return\r

horizontal tab\t

vertical tab\v

the character implied by the octal value, e.g.
"\0103" for "C"

\0 plus zero or more octal characters

the character implied by the hexadecimal value, e.g.
"\x20ac" for "€"

\x plus one or more hexadecimal characters (lower-
or uppercase)

line continuation, see below\ followed by a newline in the source

that character\ followed by any other character

Strings can be concatenated with the + operator:

$a = "app";
$b = "le";
$printnl($a + $b); // Prints "apple".

12

TASKING Script Debugger User Guide

This can be useful when constructing very long literal strings.You can achieve the same effect by using
the backslash character as a line continuation indicator:

$a = "app\
le";
// $a equals "apple".

Without the backslash, the above example has a different meaning:

$a = "app
le";
// $a equals "app\nle".

Besides the + operator, the only operators that apply to strings are: =, +=, == and !=.

See Section 2.16.3, Functions Applicable to Strings for a list of built-in functions that can be used with
strings.

2.7.3. Indexed Arrays

The script language supports indexed arrays which are zero-based and can have a variable length. A
single array can contain elements of different types. An array element can even be an array itself, resulting
in a multi-dimensional array. If an array consists of elements of different dimensions, this is sometimes
referred to as a "jagged array".

You can create an array with an initializer of the form [element 0, element 1, …]:

$a = []; // Empty array.
$b = [1, "hello"]; // Mixed-type array.
$c = [[0, 1], 2]; // Jagged array.

Array elements can be accessed using the [index] operator. If the specified element does not exist, an
"#INVALID_INDEX" exception is thrown. With the function $defined(…) you can check the existence
of an array element.

Array elements do not necessarily have consecutive indices:

$a[2] = 3.5;
$a[4] = "hello";
$printnl($a); // Prints [<NIL>, <NIL>, 3.5, <NIL>, "hello"].
$printnl($defined($a[2]); // Prints 1.
$printnl($defined($a[3]); // Prints 0.

See also Section 2.16.4, Functions Applicable to Indexed Arrays.

2.7.4. Associative Arrays

Associative or hash arrays are data structures tying a "key" (a number or a string) to a "value" (any type).
The value can be of any type (including an array or associative array). Associative arrays are unordered.

You can create an associative array with an initializer of the form { key 0: value 0, key 1: value 1,
…}. Individual elements can be accessed using the {key} operator. If the specified element does not

13

Debugger Script Language

exist, a "#KEY_NOT_FOUND" exception is thrown. With the function $defined(…) you can check the
existence of an array element.

$a = {}; // Empty associative array.
$b = 5;
$c = {0 : $a, "key" : "value"}; // Mixed-key associative array.
$printnl($c{"key"}); // Prints "value".
$printnl($defined($c{"non-existent key"}); // Prints 0.
$printnl($c{"non-existent key"}); // Gives exception.

See also Section 2.16.5, Functions Applicable to Associative Arrays.

2.8. Operators

The operators provided by the script language are listed in the following table. Except where noted
otherwise, they have the same meaning as in C and their precedence and associativity is an in C.

DescriptionOperator

function call(…)

selection of indexed array element[…]

selection of associative array element (precedence
and associativity as […])

{…}

selection of class member or scope resolution.

post-increment/decrement and
pre-increment/decrement

++, --

unary plus and minus+, -

logical negation (yields 1 or 0)!

addition, subtraction, multiplication, division and
modulus

+, -, *, /, %

bitwise shift left and right<<, >>

bitwise AND, OR and XOR&, |, ^

comparison operators that apply to both numbers
and strings

==, !=

number-only comparison operators<, <=, >, >=

logical AND and OR&&, ||

assignment by value and assignment variants of
several of the above operators

=, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=

assignment by reference (precedence and
associativity as =) ; see Section 2.9.1, Assignment
by Value or by Reference

=ref

14

TASKING Script Debugger User Guide

2.9. Assignment

The following sections describe the details about assigning a value to a variable.

2.9.1. Assignment by Value or by Reference

When you assign an expression to a variable using the = operator, the script performs an assignment
"by value". This means that a "deep copy" of the expression is made. After $b = $a; modifying $a will
not affect $b. If $a is an array, all its elements will have been copied (deep copy), so modifying those will
not affect the elements of $b.

Note that the source object of a deep copy can contain duplicate objects and even "cycles" (objects that
directly or indirectly refer back to themselves). The deep copy will reflect this all.

The =ref operator behaves differently: the effect of $b =ref $a is to make the two variables point to
the same object. If $a is an array, modifying any of its elements will affect $b.

The difference is illustrated in the following example:

$arr = [1, 2, 3];
$num = 5;

$arr_v = $arr; // deep copy
$num_v = $num;

$arr_r =ref $arr; // reference
$num_r =ref $num;

$arr[3] = 4; // change source object
$num++;

$printnl($arr_v); // Prints [1, 2, 3];
$printnl($num_v); // Prints 5;

$printnl($arr_r); // Prints [1, 2, 3, 4];
$printnl($num_r); // Prints 6;

2.9.2. Assignment of Literals

For performance reasons, literal numbers and strings are treated as constants, so they cannot be modified.
This is not a problem in code such as $a = 3 because, as discussed above, a (modifiable) copy will be
made.You can also assign by reference to a constant value but only if you do not try to modify the object
constant afterwards:

$a =ref "hello";
$printnl($a); // Allowed
$a = "world"; // Throws "#MODIFIYING_CONSTANT" exception
$a =ref "world"; // Allowed

To use $a again for a mutable object, you either have to delete and recreate the variable $a, or you
should let it refer to a mutable object:

15

Debugger Script Language

$a =ref "hello";
$a = $length($a) // Throws "#MODIFIYING_CONSTANT" exception

$a =ref $length($a); // Reference a mutable object
$a++; // Allowed

OR:
$a =ref "hello";
$delete($a); // Delete $a
$a = "world" // Allowed

In general, it is recommended to use =ref if performance matters.

2.9.3. Assignment versus Expression

In C/C++, the result of an assignment is an expression, but in the script language this is not the case.
Consequently, code such as:

if (($a = $length($b)) > 0)
{
…
}

$c = $b = $a;

gives a syntax error. The first example needs to be written as:

$a = $length($b);
if ($a > 0)
{
…
}

The second example needs to be rewritten as:

$a = $c;
$b = $c; // or: $b = $a

Elsewhere in this document, the syntactical elements expression and assignment are used to make the
difference more explicit.

2.10. Resolving of Identifiers

The script language differs from C in that identifiers are resolved at run-time. One consequence of this
is that the lexical order of definitions is often irrelevant. The following example will work, even though
$bar refers to $foo and $x before they are defined (in the lexical sense).

func $bar($a)
{
 $f = $foo($a * 2);
 return $f + $global.$x;

16

TASKING Script Debugger User Guide

}

func $foo($b)
{
 $global.$x = 3;
 return $b + 1;
}

Another consequence is that if you load a second script that also defines a function $foo, this overrides
the existing definition. All later invocations of $bar will use the new version. Invocations that are still
pending keep using the old definition.

2.11. Flow Control

The following sections describe the flow control mechanisms supported by the debugger script language.
The return statement is discussed in Section 2.12.3, Return Value.

2.11.1. if / elseif / else

Conditionally executing one or more statements can be done using an if statement, optionally with one
or more elseif statements and at most one else.

Note that unlike in C/C++, the associated clauses must always be surrounded by curly braces.

if ($a > $b)
{
 if ($a > $b + 1000)
 {
 $print("much ");
 }
 $printnl("larger");
}
elseif ($a == $b)
{
 $printnl("equal");
}
else
{
 $printnl("smaller");
}

if ($a & 1)
 $printnl("odd"); // Syntax error: missing curly braces.

The operand of an if or elseif must be an expression.

2.11.2. do and while

The script language's do and while loops are the same as in C/C++. An example is shown below. Note
the use of a labeled break statement.

17

Debugger Script Language

$outer_loop: do // label: do statement
{
 while ($x--)
 {
 $a += $arr[$x];
 if ($a == 1000)
 {
 break $outer_loop;
 }
 }
} while ($a < 100);

2.11.3. for

The script language's for loops are similar to those in C/C++. The required syntax is:

for (assignment; expression [; assignment|expression])

where the three operands have the standard meaning.

for ($x = 0; $x <= 10; $x++)
{
 $a += $arr[$x];
}

2.11.4. foreach

You can use foreach to iterate over all elements of either an indexed array or an associative array, as
well as all characters of a string. The required syntax is:

foreach (value (identifier) [, key (identifier)] (expression)

• For strings, iteration takes place from left to right.

• Elements of an indexed array are visited from lowest to highest index. Undefined elements are skipped.

• For associative arrays, the order of iteration is undefined as associative arrays are unordered.

For both types of arrays, the object assigned to value is the element itself, not a copy!

If the optional key argument is provided, foreach assigns the "key" to the specified variable. For an
associative array, this is the element's key (a string or a number), whereas for indexed arrays and strings
this is the index, a non-negative number.

$a[5] = "hello";
$a[7] = "there";

foreach $v, $k ($a)
{
 if (($a[$k] != $v) || (($k != 5) && ($k != 7)))
 {
 $printnl("Cannot happen.");

18

TASKING Script Debugger User Guide

 }
 if ($a[$k] == "there")
 {
 $v = "world"; // Remember: $v is not a copy but the element itself!
 }
}

$printnl($a); // Prints [hello, world].

2.11.5. goto

A goto statement causes execution to continue at the labeled statement.This statement must be located
within the current function. In addition, it is not allowed to jump into a catch statement.

A label is an identifier and must therefore begin with a dollar sign. Following it must be a colon and,
optionally, a statement.

if ($a < $b)
{
 goto $label3;
}

$calculate($a);

$label3: $process($a);

2.11.6. continue and break

A continue or break statement can only appear in the iteration statements: for, foreach, while
and do.

A continue statement without a label causes a jump to right after the last statement of the smallest
enclosing loop.This means that the next iteration will start straight away, provided the controlling condition
holds.

A break without a label causes execution to resume right after the end of the smallest enclosing loop.

Unlike in C or Python, a continue or break statement can have an associated label.This can be useful
when you want to break out of a nested loop. The label must be attached to an enclosing iteration
statement, as shown in the following example.

$outer_while: while ($a < 10)
{
 while ($b < 10)
 {
 $a--;
 $b--;
 if ($a + $b == 7)
 {
 break $outer_while;
 }

19

Debugger Script Language

 }
}

2.11.7. switch

The switch statement has similar semantics to that in C. However, there are some significant differences:

• Both strings and numbers can be used for the switch argument and the case expressions. (Mixing types
will not throw an exception, unless you compare a string and a number explicitly using for example
"str" == 4 .)

• A case or default must be followed by a single statement or a block of statements enclosed by curly
braces { }.

• With case match regular expression, comparison against a regular expression can take place.

• Case expressions do not need to be compile-time constants.

• There is no "fall through" behavior: once a matching case has been found, no other cases are considered.

Because of this, the case statement block should not include a break statement (unless of course it
belongs to an enclosing loop).

Examples:

$a = "hello";
switch ($a)
{
 case 10: /* Does not match. No exception, even though
 * executing $a == 10 would have thrown an exception. */
 $a++;

 case $a: // Not a constant, but valid (and true by definition)

 // Syntax error: curly braces must be used.
 $print($a);
 $printnl(" world");

 case match "^h": // Matches.
 {
 $a += " world";
 $printnl($a);
 }

 default:
 { } // Not reached: there is no fall through from the preceding case.
}

20

TASKING Script Debugger User Guide

2.12. Functions

Functions are defined using the keyword func, which must be followed by a valid identifier and an
argument list of the form (argument 0, argument 1, …). Arguments are not declared with a specific
type and the actual type at run-time may even vary from invocation to invocation. The compiler does not
check type compatibility. An example is shown below.

$v = 3;
$a = $multiply($v, 2); /* Will yield 6 */
$b = $multiply("hello", 2); /* Will cause exception because "hello" * 2
 * cannot be performed */

func $multiply($x, $y)
{
 $x *= $y;
 return $x;
}

In the above example, $v is passed to $multiply by value, meaning that the statement $x *= $y;
does not affect $v, because $x is initialized with a copy of $v.

If the argument identifier is prefixed with the ref keyword, it will be passed by reference, meaning that
the function does not use a copy, but the actual argument object itself, as illustrated below.

$a = "Hello";
$append_period($a);
$printnl($a); // Prints "Hello."

func $append_period(ref $s)
{
 $s += "."; // $s refers to the same variable as $a
}

Using ref can be useful to implement, as above, "in / out" arguments, but can also help script performance.
In the following example, the function $check_array_length() operates on a copy of $arr, which
may require significant resources if the array is long. Because the function does not modify the array,
declaring its argument as ref $a gives exactly the same behavior.

$arr = $create_very_long_array();
$is_long_enough = $check_array_length($arr);

func $check_array_length($a)
{
 return ($length($a) > 10); // $a is a copy of $arr
}

If $x is the name of a function or a variable holding a reference to one, $type($x) will return
"FUNCTIONREF".

21

Debugger Script Language

2.12.1. Local Variables

Local variables are not explicitly declared. Rather, the script language compiler constructs a local variable
whenever an assignment is made to an identifier that does not match one of the argument identifiers.
Note that it does not matter where in the function body the first assignment takes place. Also, within a
function there is only one scope, thus inner blocks do not define a separate scope, as illustrated below.

func $foo($x, $y)
{
 $y = $defined($a); // Gives 0, but is allowed.

 $a = 0; // Defines local.
 $b = 0; // Defines local.
 $x = 0; // Modifies argument, does not define local.

 if ($x > $y)
 {
 // This is not a separate scope.
 $c = $y * 5;
 }
 if ($x > $y)
 {
 if ($c > 3) // Allowed; $c is visible within whole function.
 {
 ...
 }
 }
}

2.12.2. Accessing Global Variables

Normally, you can access a global variable just by its identifier. However, if the function scope already
contains a variable with the same name (for example, an argument), the scope prefix $global. should
be used to access the global variable.

If you want to modify a global variable from within a function body, you should always use $global. ,
otherwise there would be no way to distinguish this from the definition of a local variable, as illustrated
below.

// Globals.
$g = 3;
$h = 4;
$i = 5;

func $foo($g) // $g is defined within the function scope
{
 $printnl($g); // Prints local argument
 $printnl($global.$g); // Prints global
 $printnl($i); // Prints global

22

TASKING Script Debugger User Guide

 $h = 5; // Defines new local
 $global.$h = 1; // Modifies global
}

2.12.3. Return Value

Whether or not a function returns a value is not declared explicitly. In fact, you can conditionally just return
from the function (return;) or return a specific value (return $x[5];). Like function arguments, the
return type is not declared explicitly.

If a value is returned, it is passed by reference. Thus, in the following example, $x[1] is modified.

$x = [1, 2, 3];
($get_second_element($x))++; // the returned element is a reference to $x[1]

func $get_second_element(ref $arr)
{
 return $arr[1];
}

2.12.4. Variable Argument List

Like C and C++, the script language supports functions with variable arguments specified with an ellipsis
(...). This must always appear at the end of the argument list, but unlike in C and C++, it may be the
only argument. Like for named arguments, you can use the ref keyword. The function itself can access
the arguments via the special array $args, which contains the arguments in the same order as they were
passed to the function.

$printnl($count_above_limit(3, 1, 2, 3, 4, 5)); // Prints 2.

func $count_above_limit($limit, ...) // Or $limit, ref ...
{
 $c = 0;
 for ($k = 0; $k < $length($args); $k++)
 {
 if ($args[$k] > $limit)
 {
 $c++;
 }
 }
 return $c;
}

Passing an array of arguments: $_args

Instead of passing a variable number of arguments individually, you can also pass the arguments in an
array.

This might be useful if arguments are conditionally constructed before they are passed. For that, you
must initialize the special array $_args and pass it to the function as its last argument. A special case

23

Debugger Script Language

is when a variable argument function needs to pass some or all of these arguments to another function
with variable arguments. In the following example, this is the function itself.

if ($b > 0)
{
 $_args = [$a, $b];
}
else
{
 $_args = [$a];
}

// This has the same effect as either
// $count_odd_or_even(1, [$a, $b]);
// or
// $count_odd_or_even(1, [$a]);

$count_odd_or_even(1, $_args);

func $count_odd_or_even($odd, ...) /* Counts number of odd/even integers in
 * possibly multi-dimensional array. */
{
 $c = 0;

 for ($k = 0; $k < $length($args); $k++)
 {
 if ($type($args[$k]) == "ARRAY")
 {
 $_args = $args[$k];
 $c += $count_odd_or_even($odd, $_args); // Recursion.
 }
 elseif (($args[$k] & 1) == $odd)
 {
 $c++;
 }
 }
 return $c;
}

2.13. Classes

Classes are the only types in the language that you can define yourself.

You can define a class with the class keyword followed by a valid identifier, an opening curly brace, the
definitions of the data members and member functions of the class and a closing brace. An example is
shown below. In the following sections several details are explained in more detail.

Note that the script language also has a number of built-in classes. See Section 2.17, Built-in Classes.

class $myclass
{

24

TASKING Script Debugger User Guide

 // Constructor (always required).
 func $myclass($a, $b)
 {
 $this.$x = $a * $b; // Defines class instance variable.
 return;
 }

 // Member function.
 func $set_y($d)
 {
 $this.$y = $d / 2; // Defines class instance variable.
 }

 // Member function.
 func $multiply_x_by_c()
 {
 $this.$x *= $myclass.$c;

 $printnl($x); // Run-time error: no local $x, use $this.$x.
 $printnl($c); // Run-time error. no local $c, use $myclass.$c.
 }

 $c = 5; // Defines class variable.
}

Unlike C++, the script language provides neither member access restriction (private, etc.), nor
inheritance, nor operator overloading.

2.13.1. Constructor and Other Member Functions

All member functions operate on a specific instance of the class.You can refer to the instance with the
special variable $this. For example, $instance_type($this) returns a string containing the name
of the class.

A class must contain at least one member function, the so-called constructor, which must have the same
name as the class. Besides the constructor, a class can have zero or more other member functions.You
create an instance of the class by calling the constructor:

$myclass_instance = $myclass(1, 2);

Note that although semantically the constructor returns an instance of the class, it must be defined with
a simple return; (or no return statement at all). So, do not try to return a value.

Because the language is garbage-collected, there is no destructor function.

For other, non-constructor member functions, the syntax and semantics are the same as for functions
not associated with a class.

25

Debugger Script Language

2.13.2. Class Instance Variables

A class may have zero or more instance variables. Similar to local variables, these are not declared
explicitly. Instead, the compiler constructs an instance variable whenever you assign an expression to a
variable of the form $this.identifier in any of the class member functions. In the example in Section 2.13,
Classes, each instance of $myclass has two instance variables, $x and $y.

Instance variables of a class instance can be accessed anywhere via <expression yielding class
instance>.identifier. For example:

$arr[3].$x

if $arr is an array of instances of $myclass.

Within a member function, you must access the variables of the instance with $this.identifier, even
when you access it within the same function as where you defined the variable. Without $this., it is
assumed that you try to access a local or global variable.

2.13.3. Class Variables

The third and final kind of class member is the class variable. Assignments done within a class body, but
outside any member functions define a class variable (such as $c in the example in Section 2.13, Classes).

There is only one copy of each class variable, which is not associated with any instance of the class.
Modifying $c will affect any invocation of $multiply_x_by_c() regardless of which instance it is
invoked on.You must access a class variables with class name.identifier, even when you access it within
the same class as where you defined the variable.

2.14. Garbage Collection

Script language data that is no longer used is deleted (deallocated) automatically. Data is considered
used when it is referred to (directly or indirectly) from a global or local variable. Local variables disappear
when the function they belong to exits.

func $get_data()
{
 $t =ref [1, 2, 3];
 $global.$d =ref $t;
 return $t;
}

$v =ref $get_data();

// At this point, the array is referred to by both
// $v and the global $d.

$v =ref [];
$global.$d =ref [];

// Array [1, 2, 3] is unreferenced now and will be deleted.

26

TASKING Script Debugger User Guide

2.15. Exceptions

Errors, such as attempting to read a non-existing array element or to divide by zero, cause exceptions,
in a way similar to Java. In your own script, you can also throw an exception deliberately with the keyword
throw.

An exception is represented by an instance of the predefined class $exception. It has the following
member variables.

• $type: A string. If the exception was thrown by the system, this will be one of the strings listed in the
table below. For your own exceptions you can define any string.

• $description: String describing the exception, for example "Exception: Global variable
not found, $a".

• $user: User-caused exceptions can assign any object of any type to this, for example for parametrized
exceptions. For exceptions reported by the system, this will always be nil.

• $stack_trace: Stack trace (in the form of a string) indicating the context of the location where the
exception was thrown.

You can create an instance of the $exception class by calling its constructor. It has the following form:

func $exception(type, description [, user object])

Try-catch

A try-catch statement has the following form:

try
{
statement(s)
}
catch (variable [, regular expression (string)])
{
statement(s)
}

If there is a relevant try-catch statement in the function where the error occurred or one of its callers,
the stack will be unwound to that point and the exception will be delivered there. Execution will continue
at the first statement of the catch clause. The $exception object will be passed to the variable that is
the first argument of catch.

The second, optional argument of the catch statement is a regular expression or string that is compared
to member $type of the caught exception and determines whether the caught exception should be
passed to this clause or not. This way it is possible to handle several types of exceptions that may occur
in the try clause differently.

If no matching catch clause is found, an error message is shown and the script is terminated.

The next list shows the built-in exception types.

27

Debugger Script Language

CauseException type (literal string)

Type or value of operand is invalid."#INVALID_OPERAND"

Occurs, for example, when trying to access element
-1 of an array.

"#INVALID_INDEX"

Occurs when attempting to divide by zero using the
operator / /=, % or %=.

"#DIV_BY_ZERO"

The host computer has too little memory available
to perform the operation.

"#OUT_OF_MEMORY"

An internal error has occurred."#FATAL_INTERNAL_ERROR"

The calling function is attempting to access its
callee's return value, but the callee did not return
anything.

"#FUNCTION_RETURNED_NO_VALUE"

See Section 2.18, File I/O"#IO_ERROR"

It was attempted to read a non-existent element of
an associative array.

"#KEY_NOT_FOUND"

Can be used for custom purposes. Exceptions of
this type are never thrown by the system itself.

"#USER_DEFINED"

See Section 2.6, Nil, $defined(...) and $delete(...)."#NIL_OBJECT"

See Section 2.19, Multithreading."#THREAD_NOT_STARTED"

An object that is not a number or a string was used
as an associative array key.

"#OBJ_NOT_HASHABLE"

The requested operation cannot be performed on
instances of the given type.

"#OPERATION_NOT_ON_THIS_TYPE"

It was attempted to access a specific member of a
class, but it has no member with that name.

"#MEMBER_NOT_FOUND"

An error related to an associative array key occurred."#INVALID_KEY"

The number of arguments specified in a function
call is larger than the number expected by the
function.

"#TOO_MANY_PARAMETERS"

The number of arguments specified in a function
call is smaller than the number expected by the
function.

"#TOO_FEW_PARAMETERS"

Section 2.9.2, Assignment of Literals."#MODIFIYING_CONSTANT"

An empty array was unused in an inappropriate
situation.

"#EMPTY_ARRAY"

Here is an example of how to catch a system generated exception:

func $divide($x, $y)
{
 return $x / $y;
}

28

TASKING Script Debugger User Guide

func $foo()
{
 $x = 5;
 $y = 0;

 try
 {
 // This division by zero error will be caught.
 $printnl($divide($x, $y));
 }
 catch ($e, "#DIV_BY_ZERO")
 {
 $printnl("Caught exception: " + $e.$type);
 }

 // This division by zero error will not be caught,
 // assuming none of the callers of $foo() catch it.
 // The script thread will be terminated.
 $printnl($divide($x, $y));
}

$foo();

2.15.1.Throwing Exceptions Explicitly: throw($e)

You can use the throw statement in your script to explicitly throw an exception. It takes a single argument,
which must be an instance of class $exception.

2.16. Built-in Functions

This section provides an overview of the built-in functions that are available in the debugger script language.
The functions are grouped per data type for which you can use them. Debugger specific functions are
described separately.

2.16.1. Functions Applicable to All Types

DescriptionFunction

See Section 2.6, Nil, $defined(...) and $delete(...).$defined(expression)

Prints the provided expressions, with no whitespace in between.
The variant $printnl(…) appends a newline character.

$print([expression, [expression
...]])

$printnl([expression, [
expression ...]])

See Section 2.6, Nil, $defined(...) and $delete(...).$delete(variable)

Returns a reference to a "deep copy" of the expression, i.e. $b
=ref $copy($a) is equivalent to $b = $a.

$copy(expression)

29

Debugger Script Language

DescriptionFunction

Returns the type of the specified expression as a string. See
Section 2.7, Types, $type(...).

$type(expression)

Returns the name of the class that expression is an instance of, e.g.
"$myclass". If it does not evaluate to a class instance, "" is
returned.

$instance_type(expression)

2.16.2. Functions Applicable to Numbers

DescriptionFunction

Returns a string containing the character associated with the
specified character code. For example, $chr(65) returns "A" and
$chr(0x20ac) returns "€". Numbers outside the allowed range
yield "?".

$chr(number)

Converts a number to a string with the specified formatting. format
must be one of the following one-character strings:

• "d": signed decimal

• "e": exponential floating-point format

• "f": non-exponential floating-point format

• "g": as "f" for numbers with a small exponent and as "e"
otherwise

• "o": octal

• "u": unsigned decimal (32-bit wrap-around)

• "x": lowercase hexadecimal

• "X": uppercase hexadecimal

The optional argument precision applies only to "e", "f" and "g"
and specifies the number of digits following the decimal point, the
default being 6.

All other formats are integral.The input number will be automatically
rounded if necessary.

$string(number [,format
[,precision]])

Returns 1 when the number is -INF or +INF and 0 otherwise.$isinf(number)

Returns 1 when the number is -NaN or +NaN and 0 otherwise.$isnan(number)

Returns 1 if the value is finite, 0 if it is +INF, -INF or NaN.$isfinite(number)

Extracts signed integral and fractional values from number. The
results are returned in an indexed array: [integral part, fraction]. For
example, $modf(-1.7) returns [-1.0, -0.7].

$modf(number)

Rounds number up to the nearest integer.$ceil(number)

30

TASKING Script Debugger User Guide

DescriptionFunction

Rounds number down to the nearest integer.$floor(number)

Returns the absolute value of number.$abs(number)

Returns number times (10 to the power exp)$pow10(number, exp)

Splits the number in its normalized fraction in the range [0.5, 1.0>
and its power of 2 exponent. The result is an indexed array:
[mantissa, exponent].

If number is zero, mantissa and exp are zero. If number is NaN or
INF, mantiss will assume number, exp will be zero.

$frexp(number)

Returns number times (2 to the power exp)$ldexp(number, exp)

Returns a value that has the sign of signvalue and the absolute
value of number.

$copysign(number, signvalue)

Returns a random floating-point value, possibly +Inf, -Inf or 0, but
not NaN.

$random_bigflt()

2.16.3. Functions Applicable to Strings

DescriptionFunction

Searches for a substring - from left to right - that matches the regular
expression.

The substring is returned when a match is found, otherwise the
empty string is returned.

Argument start indicates the start index of the substring search.
With argument all set to 1, all matching strings will be found. In this
case the return value is an array containing all matching strings.

The compiler also interprets the '\' character in strings, so matching
a backslash character requires using "\\".

$match(string, pattern [, start [, all]
])

Concatenates string1 to string.The return value is not a new object,
but the same as string, i.e. string itself will be modified.

$concat(string, string1)

Returns the number of characters in string.$length(string)

31

Debugger Script Language

DescriptionFunction

Converts the string to a number. If radix is not provided, the prefix
of the string determines the radix. 0x and 0X cause hexadecimal
interpretation, 0 causes octal interpretation and a decimal
interpretation is used otherwise. If radix is provided, it must equal
8, 10 or 16. INF, INFINITY and NaN are recognized
case-insensitively. More information on the allowed notation can be
found in Section 2.7.1, Numbers.

By default, characters that do not belong to the number string are
filtered from the string, but with strict set to 1 all characters are used
in the conversion.

When provided, argument last is set to the index of the last character
read by $number.

$number(string [,strict [, radix] [,
last]])

Returns a number representing the character code corresponding
to the first letter in string. For example, $ord("A") returns 65.
$ord("") returns zero.

$ord(string)

Prefixes or suffixes a string string to reach the desired string length
newlength.

Prepending occurs when the second argument is positive, appending
occurs when it is negative. If the last argument is not provided, a
single space character is used. Note that the padding string can
contain more than one character.

When prefixing a multi-character padding string, the prefixing is
done such that the last char of the prefix string is always the last
char being prefixed at all.

If the new length is smaller than the input string, truncation occurs.

$pad(string, newlength [, padding])

Returns a slice (substring) of string starting at the zero-based index
start (inclusive). If length is provided, the slice will have that length,
otherwise it will run from start to the end of the string.

$slice(string, start [, length])

As above, but here the start index (inclusive) and end index
(exclusive) are specified via the two-element array range. For
example, $slice("abcde", [2, 4]) returns "cd".

$slice(string, range)

Returns the start index in the string where regular expression pattern
is first found, or -1 if the pattern is not found. If argument last is
provided the index of the end of the first occurrence of the pattern
in the string is returned. Argument start indicates the start index of
the search. The search is from left to right

$search(string, pattern [, last,
[start]])

As $search(…), except that the search is performed from right to
left.

$rsearch(string, pattern[, last,
[start]])

32

TASKING Script Debugger User Guide

DescriptionFunction

Returns a copy of string in which the first (if all is absent or equal
to 0) or all occurrences of regular expression pattern has / have
been replaced by the string replacement. The search can be
restricted to a part of string via the optional index arguments start
(inclusive) and end (exclusive).

$replace(string, pattern,
replacement [, all [, start [, end]]])

As $replace(…), but the search is performed from right to left.$rreplace(string, pattern,
replacement [, start [, end]])

Returns a string of length 1 that contains the character at zero-based
index number of the string. For example, $at("abcdef", 2)
returns "c".

$at(string, number)

Replaces the character at the specified zero-based index by char,
which must be a string of length 1. Note that this function operates
directly on string; it does not return a value.

$set_at(string, index, char)

Partitions string using the regular expression separator pattern,
returning an indexed array of strings. If the optional argument
include_pattern is equal to 1, the separator characters are included
in the strings in the output arrays.

If the optional argument return_assoc is equal to 1, the result is an
associative array.

Examples:

$indxd =ref $separate("abc#def", "#");
 // Returns ["abc", "def"].
$indxd =ref $separate("abc#def", "#", 1);
 // Returns ["abc#", "def"].
$assoc =ref $separate("abc#def", "#", 0, 1);
 // Returns {"abc" : "abc", "def" : "def"}.

$separate(string, pattern
include_pattern [, return_assoc]])

Returns a copy of string in which all lowercase / uppercase
characters have been substituted by the corresponding uppercase
/ lowercase characters.

$upper(string)

$lower(string)

$strip(string) returns a copy of string from which all leading
and trailing whitespace characters have been removed.

The variants $lstrip(…) and $rstrip(…) only remove leading
and trailing whitespace, respectively.

$strip(string)

$lstrip(string)

$rstrip(string)

Returns a copy of string in which all sequences of multiple
consecutive whitespace characters have been reduced to a single
whitespace character.

$strip1(string)

33

Debugger Script Language

2.16.4. Functions Applicable to Indexed Arrays

DescriptionFunction

Returns a slice of array starting at the zero-based index start
(inclusive). If length is provided, the slice will have that length,
otherwise it will run from start to the end of the array.

$slice(array, start [, length])

As above, but here the start index (inclusive) and end index
(exclusive) are specified via the two-element array range. For
example, $array([51, 52, 53, 54], [1, 3]) returns [52,
53].

$slice(array, range)

Inserts the specified element (by reference) into array. The return
value is array itself. Argument pos may be any non-negative integer.
If there already is an element at this index, that and any following
elements are shifted one place.

$insert(array, pos, elem)

Appends the specified element (by reference) into array.The return
value is array itself. Equivalent to array[$length(array)] =ref
elem.

$append(array, elem)

Appends array1 to array. All elements are copied by reference. The
return value is array itself.

$append(array, array1)

Returns the index of the highest ever defined element plus 1. This
is not necessarily equal to the number of currently defined elements,
as explained by the following example.

$a[2] = 3.5;
$printnl($length($a)); // Prints 3.
$a[4] = "hello";
$printnl($length($a)); // Prints 5.
$delete($a[4]); // Deletes element 4.
$printnl($length($a)); // Still prints 5.

$length(array)

Returns the lowest / highest index ever used in array, returning -1
if the array has always been empty. Like $length(array), deleting
elements does not affect these values.

$lbound(array)

$ubound(array)

Returns a string representation of the array. If present, the string
separator will be used between each element. The individual
elements will be printed as appropriate for their types, with format
and precision applying for numbers, as described for $string(…).
Undefined elements will be skipped.

$string(array [, separator [,
format [, precision]]])

2.16.5. Functions Applicable to Associative Arrays

DescriptionFunction

Returns the number of elements in array.$length(array)

34

TASKING Script Debugger User Guide

2.16.6. Debugger Specific Functions

This section describes the debugger specific functions that you can use to access and control the target.

Many of the functions listed in the following subsections have an optional argument called options.This
should always be an associative array. For example, a valid argument for $bp_code_add(...) is
{"enabled" : 0, "expression" : "a->b == 0"}.

2.16.6.1. Data Related Functions

Expression evaluation

DescriptionFunction

Tries to evaluates a target expression. expression must be a string.

Returns the value of the expression, always in the form of a string,
or "" if failed.

If the argument error_var is present, "" is assigned to it if evaluation
succeeds, or an explanatory string otherwise.

$evaluate(expression[,options
[,error_var]])

DescriptionValueOption

Specifies the stack level at which evaluation should take
place, with 0 being the current function, 1 its caller, etc.

Non-negative integer (default
zero).

stack_level

Example of accessing registers:

$val = $evaluate("#PCXI & 0x1234");

You can modify the target state by evaluating an expression that contains an assignment, for example:

$evaluate("#PCXI = 0x" + $string($val, "x"));

2.16.6.2. Breakpoint Related Functions

Set a code breakpoint

DescriptionFunction

Tries to set a code breakpoint at the specified address. address
must be an instance of class $addr.

Returns the new breakpoint's ID (positive integer), or 0 if failed. If
0, an explanatory string is assigned to error_var, if present.

$bp_code_add(address[,options
[,error_var]])

Tries to set a code breakpoint at the specified source line. source
must be a string. line must be an integer in the range [0, 232 - 1] (but
note that line numbers are one-based).

Returns the new breakpoint's ID (positive integer), or 0 if failed. If
0, an explanatory string is assigned to error_var, if present.

$bp_code_add_src(source, line
[,options [,error_var]])

35

Debugger Script Language

DescriptionValueOption

Defines whether or not the breakpoint should initially
be enabled.

0 or 1 (default)enabled

If not equal to "", the breakpoint hit is reported if this
expression is true (and certain other conditions are true).

string (default "")expression

Defines the intended form of the breakpoint."hardware", "software" or
"any" (default)

method

Defines how many times the breakpoint hit must be
ignored before it is reported.

integer in the range [0, 264 - 1]
(default 0)

skip

If 1, the breakpoint is deleted once it has been reported
hit.

0 (default) or 1temporary

Remove, enable or disable breakpoints

DescriptionFunction

Tries to remove, enable or disable a breakpoint. Enabling / disabling a breakpoint
that already is enabled or disabled is allowed.

id must be a positive integer (as returned by e.g. $bp_code_add()). Returns "" if
successful, otherwise an explanatory string.

$bp_remove(id)

$bp_enable(id)

$bp_diable(id)

Example:

$a =ref $addr("", 0x100);

$bp_id=$bp_code_add($a, {"enabled" : 0, "expression" : "a->b == 0"});

$err = $bp_remove($bp_id);

2.16.6.3. Execution Control Related Functions

DescriptionFunction

Resumes execution.$continue([bp_var])

Halts the target.$halt([bp_var])

Steps through a program one source line at a time. Steps into
functions.

$step_into_src([bp_var])

Steps through a program. Functions are seen as one source line.$step_over_src([bp_var])

Steps out of a function. Execution stops at the source line following
a function call.

$step_out_src([bp_var])

Steps through a program one assembly instruction at a time.$step_into_instr([bp_var])

Steps through a program using instruction steps. Functions are
seen as one instruction.

$step_over_instr([bp_var])

Steps out of a function using instruction steps. For example,
execution stops at the instruction following a function call.

$step_out_instr([bp_var])

36

TASKING Script Debugger User Guide

DescriptionFunction

Tries to perform a source-level run to the specified source line.
source must be a string. line must be an integer in the range [0,
232 - 1] (but note that line numbers are one-based).

$run_to_src(source, line
[,bp_var])

Tries to perform a source-level continue from the specified source
line. source must be a string. line must be an integer in the range
[0, 232 - 1] (but note that line numbers are one-based).

$continue_from_src(source, line
[,bp_var])

Tries to perform an instruction-level run to the specified address.
address must be an instance of class $addr.

$run_to_instr(address [,bp_var])

Tries to perform an instruction-level continue from the specified
address. address must be an instance of class $addr.

$continue_from_instr(address
[,bp_var])

All commands above return "" if the command succeeds or a non-empty error string otherwise. If a bp_var
argument is provided, the IDs of the breakpoints causing the target to halt are assigned to this (in the
form of an array) if "" is returned.

In general it is good practice to begin your script with an invocation of $halt() to ensure that the target
is properly halted so that the debugger can access it.

Example:

$a =ref $addr("", 0x100);
$bp_ids = 0;

$bp_id = $bp_code_add($a, {"enabled" : 0, "expression" : "a->b == 0"});

$step_into_src($bp_ids);
// at this point, $bp_ids equals [$bp_id]

2.16.6.4. Miscellaneous Debugger Functions

DescriptionFunction

Tries to perform a download. Returns "" if successful, otherwise a
description of the failure.

Note that there is no way for a user script to prematurely stop the
downloading. Also, progress is not reported in any way.

$download(filename [,
options])

DescriptionValueOptions of $download

If 1, code and data sections are downloaded into the
target, but no symbolic debug info is loaded.

0 (default) or 1image_only

If 1, symbolic debug info is loaded, but nothing is
downloaded into the target. Must not be 1 if
image_only is 1.

0 (default) or 1symbols_only

37

Debugger Script Language

DescriptionValueOptions of $download

If present, these strings are passed to the target
program's main() function via its arguments argc
and argv.

Note that this normally requires building the program
in a special way; defining main(...) with said
arguments is not enough.

Indexed array of zero
or more strings

main_arguments

If 1, the target will run to the start of function main()
after downloading.

0 (default) or 1run_to_main

If 1, the writing (and possibly flashing) into target
memory is verified after downloading. Must not be 1 if
symbols_only is 1.

0 (default) or 1verify

If not equal to "", the specified file (normally with
extension .mdf) will be used to configure target
memory.

string (default "")map_file

If 1, downloading will involve flashing if appropriate.
Must not be 1 if symbols_only is 1.

0 (default) or 1flash

If 1, flashing will be done using direct access, instead
of a monitor program. Must not be 1 if flash is not
equal to 1.

0 (default) or 1flash_direct_access

If 1, a reset will be done as part of the downloading.0 or 1 (default)reset

Example:

$failed = $download("myprogram.elf", {"run_to_main" : 1});

DescriptionFunction

Returns an array containing the strings passed via the --arg option.
For example, after

dbgtc --arg=hello --arg=world myscript.dscr

$getargs() will return the array ["hello", "world"]. This
array is a copy. Modifying it will not affect later invocations.

$getargs()

38

TASKING Script Debugger User Guide

DescriptionFunction

Changes the rate at which the debugger polls the target execution
state, e.g. when waiting for it to hit a breakpoint.The function returns
"" if successful, otherwise a description of the failure.

The argument must be a non-negative integer. If it equals zero, the
debugger will poll the target at its own discretion. If the argument
is positive, it will poll the target at most once per interval
microseconds.This functionality is intended for performance testing,
where polling by the debugger could affect the measured cycle
count or time, giving unexpected variations.

Note that specifying a very large value for the argument will reduce
the responsiveness of the debugger. If a test run is expected to last,
say, approximately 5 seconds, a good value to call this function with
would be 6000000 (6 seconds). Note also that the accuracy is
subject to that of the host PC. Therefore, using arguments below
about 500000 (0.5 second) is not recommended.

If this function is called while the debugger is polling, i.e. when the
target is running, the new polling behavior may not take effect
immediately. It is therefore recommended to only call this function
while the target is halted.

$set_target_state_polling(
interval)

2.16.7. Miscellaneous Functions

DescriptionFunction

Returns the ID (a number) of the invoking thread.$get_current_thread_id()

Returns the value (as a string) of the specified
environment variable, or an empty string if the
variable does not exist.The optional argument found
is set to 0 if the variable does not exist, 1 if is does.

$getenv(name [, found])

Returns the current time in milliseconds.$get_millitime()

Returns a unique whole number.The first invocation
returns 0, the second 1 and so on.

$unique_id()

Returns a string representation of the calling thread's
current call stack.

$dump_stack_trace()

See Section 2.19, Multithreading.

$thread_start(…)

$mutex_create(…)

$mutex_destroy(…)

$mutex_lock(…)

$mutex_trylock(…)

$mutex_unlock(…)

39

Debugger Script Language

2.17. Built-in Classes

The following table lists the built-in classes.

DescriptionName

Represents a target address. See Section 2.17.1,
Class $addr.

$addr

Represents an exception object. See Section 2.15,
Exceptions.

$exception

See Section 2.18, File I/O.$stream

2.17.1. Class $addr

Target addresses are represented as instances of class $addr. Member space is a string that, for the
TriCore, should always equal "" and member offset is a non-negative integer indicating the absolute
address, in bytes.

Example:

$a =ref $addr("", 0x100);

2.18. File I/O

All file I/O must be done via an instance of built-in class $stream

This class has the following class variables:

DescriptionClass variable

end of file marker$EOF

open mode: read file$R_FILE

open mode: write to file$W_FILE

open mode: append to file$A_FILE

The class constructor has the following form.

func $stream(stream name (string), open mode)

When you call the this constructor, the file specified by the first argument is, depending on the second
argument, opened or created.

The member functions of the $stream class are listed below.

DescriptionFunction

Reads one character, which is returned as a string.$getc()

40

TASKING Script Debugger User Guide

DescriptionFunction

Reads characters until a newline or the end of the
file is encountered. If the argument is provided, at
most that many characters are read. If a newline
was encountered, the returned string will include it.

Returns a string equal to $stream.$EOF if all
characters have been read already.

$gets([number])

Writes the specified string to the stream.$puts([string])

Forces writing any pending data to disk.$flush()

Returns the content of the entire file as an array,
with each array element containing a single line
(including newline character).

$readlines()

Returns the content of the entire file as a string.$readfile()

Closes the stream.$close()

This example reads all lines in a file and prints them unless an "#IO_ERROR" exception is thrown.

try
{
 $s =ref $stream("myfile.txt", $stream.$R_FILE);

 while (1)
 {
 $t =ref $s.$gets();
 if ($t == $stream.$EOF)
 {
 break;
 }
 $printnl("Read " + $t);
 }
 $s.$close();
}
catch ($e, "#IO_ERROR")
{
 $printnl("Error reading file.");
}

2.19. Multithreading

A script thread can start a new thread via the function $thread_start(function , argument array), as
shown in the following example.

func $ts($a, $b, $c)
{
 …
}

41

Debugger Script Language

$thread_start($ts, [1, 2, 3]);

An exception of type "#THREAD_NOT_STARTED" is thrown upon failure.

Protecting data from simultaneous access by multiple threads can be done using a mutex. The following
table lists the mutex support functions.

DescriptionFunction

Creates a mutex.The return value is a mutexhandle,
which is effectively a (unique) number.

$mutex_create()

Deletes the specified mutex (*).$mutex_destroy(mutexhandle)

Locks the specified mutex (*). If the mutex is already
locked, the calling thread is suspended until that is
no longer the case. Note that a mutex is not
recursive, meaning that a thread will deadlock itself
by trying to lock a mutex it has locked already.

$mutex_lock(mutexhandle)

As $mutex_lock(…) (*), but always returns
immediately. The return value equals 1 if locking
succeeded and 0 otherwise.

$mutex_trylock(mutexhandle)

Unlocks the specified mutex (*). If the mutex is not
currently locked by the calling thread, an exception
is thrown.

$mutex_unlock(mutexhandle)

(*) If the argument does not correspond to an existing mutex, an exception is thrown.

42

TASKING Script Debugger User Guide

	TASKING Script Debugger User Guide
	Table of Contents
	Chapter 1. Using the Stand-alone Script Debugger
	1.1. Run the Debugger in Interactive Mode
	1.1.1. Configure the Debugger
	1.1.1.1. Setup a Flash Device

	1.1.2. Run and Debug a Script

	1.2. Run the Debugger from the Command Line

	Chapter 2. Debugger Script Language
	2.1. Introduction
	2.2. Identifiers
	2.3. Special Identifiers
	2.4. Whitespace and Comments
	2.5. Include Statements
	2.6. Nil, $defined(...) and $delete(...)
	2.7. Types, $type(...)
	2.7.1. Numbers
	2.7.2. Strings
	2.7.3. Indexed Arrays
	2.7.4. Associative Arrays

	2.8. Operators
	2.9. Assignment
	2.9.1. Assignment by Value or by Reference
	2.9.2. Assignment of Literals
	2.9.3. Assignment versus Expression

	2.10. Resolving of Identifiers
	2.11. Flow Control
	2.11.1. if / elseif / else
	2.11.2. do and while
	2.11.3. for
	2.11.4. foreach
	2.11.5. goto
	2.11.6. continue and break
	2.11.7. switch

	2.12. Functions
	2.12.1. Local Variables
	2.12.2. Accessing Global Variables
	2.12.3. Return Value
	2.12.4. Variable Argument List

	2.13. Classes
	2.13.1. Constructor and Other Member Functions
	2.13.2. Class Instance Variables
	2.13.3. Class Variables

	2.14. Garbage Collection
	2.15. Exceptions
	2.15.1. Throwing Exceptions Explicitly: throw($e)

	2.16. Built-in Functions
	2.16.1. Functions Applicable to All Types
	2.16.2. Functions Applicable to Numbers
	2.16.3. Functions Applicable to Strings
	2.16.4. Functions Applicable to Indexed Arrays
	2.16.5. Functions Applicable to Associative Arrays
	2.16.6. Debugger Specific Functions
	2.16.6.1. Data Related Functions
	2.16.6.2. Breakpoint Related Functions
	2.16.6.3. Execution Control Related Functions
	2.16.6.4. Miscellaneous Debugger Functions

	2.16.7. Miscellaneous Functions

	2.17. Built-in Classes
	2.17.1. Class $addr

	2.18. File I/O
	2.19. Multithreading

