
MA060–000–00–00
Doc. ver.: 1.12

TriCore v1.5

CROSS–ASSEMBLER,
LINKER/LOCATOR,
UTILITIES
USER’S GUIDE

A publication of

Altium BV

Documentation Department

Copyright  2002 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

HP and HP-UX are trademarks of Hewlett-Packard Co.

Intel is a trademark of Intel Corporation.

Motorola is a registered trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

OVERVIEW 1-1

1.1 Introduction 1-3.

1.2 An Example TriCore Program 1-5.

1.2.1 Using EDE 1-5.

1.2.2 Using the Control Program 1-12.

1.2.3 Using the Makefile 1-15.

1.3 Environment Variables 1-16.

1.4 Temporary Files 1-17.

1.5 Debugging with CrossView Pro 1-17.

1.6 File Extensions 1-18.

1.7 Preprocessing 1-19.

1.8 Assembler Listing 1-20.

1.9 Errors and Warnings 1-20.

1.10 Command Line Processing 1-20.

1.10.1 UNIX Scripts 1-20.

ASSEMBLER 2-1

2.1 Description 2-3.

2.2 Invocation 2-3.

2.3 astri Invocation 2-4.

2.4 aspcp Invocation 2-6.

2.5 Detailed Description of Assembler Options 2-8.

2.6 Environment Variables used by the Assembler 2-44.

2.7 List File 2-44.

2.7.1 Absolute List File Generation 2-45.

2.7.2 Page Header 2-45.

2.7.3 Source Listing 2-46.

Table of ContentsVI
C
O
N
T
E
N
T
S

SOFTWARE CONCEPT 3-1

3.1 Introduction 3-3.

3.2 Modules 3-3.

3.2.1 Modules and Symbols 3-3.

3.3 Sections 3-4.

3.3.1 Section Names 3-4.

3.3.2 Absolute Sections 3-6.

3.3.3 Section Examples 3-7.

ASSEMBLY LANGUAGE 4-1

4.1 Input Specification 4-3.

4.2 Assembler Significant Characters 4-4.

OPERANDS AND EXPRESSIONS 5-1

5.1 Operands 5-3.

5.1.1 TriCore Addressing Modes 5-3.

5.1.2 PCP Addressing Modes 5-5.

5.2 Expressions 5-5.

5.2.1 Number 5-6.

5.2.2 Expression String 5-7.

5.2.3 Symbol 5-7.

5.2.4 Expression Type 5-8.

5.3 Operators 5-10.

5.3.1 Addition and Subtraction 5-11.

5.3.2 Sign Operators 5-11.

5.3.3 Multiplication and Division 5-12.

5.3.4 Shift Operators 5-12.

5.3.5 Relational Operators 5-13.

5.3.6 Bitwise Operators 5-13.

5.3.7 Logical Operators 5-14.

Table of Contents VII

• • • • • • • •

5.4 Functions 5-15.

5.4.1 Mathematical Functions 5-15.

5.4.2 String Functions 5-15.

5.4.3 Macro Functions 5-16.

5.4.4 Assembler Mode Functions 5-16.

5.4.5 Address Calculation Functions 5-16.

5.4.6 Fractional Functions 5-17.

5.4.7 Detailed Description 5-17.

MACRO OPERATIONS 6-1

6.1 Introduction 6-3.

6.2 Macro Operations 6-3.

6.3 Macro Definition 6-4.

6.4 Macro Calls 6-5.

6.5 Dummy Argument Operators 6-7.

6.5.1 Dummy Argument Concatenation Operator - \ 6-7.

6.5.2 Return Value Operator - ? 6-8.

6.5.3 Return Hex Value Operator - % 6-9.

6.5.4 Dummy Argument String Operator - " 6-10.

6.5.5 Macro Local Label Operator - ^ 6-11.

6.6 .DUP, .DUPA, .DUPC, .DUPF Directives 6-11.

6.7 Conditional Assembly 6-12.

ASSEMBLER DIRECTIVES 7-1

7.1 Overview 7-3.

7.1.1 Debugging 7-3.

7.1.2 Assembly Control 7-3.

7.1.3 Symbol Definition 7-4.

7.1.4 Data Definition/Storage Allocation 7-4.

7.1.5 Macros and Conditional Assembly 7-5.

7.2 Directives 7-5.

Table of ContentsVIII
C
O
N
T
E
N
T
S

ASSEMBLER CONTROLS 8-1

8.1 Introduction 8-3.

8.2 Overview Assembler Controls 8-4.

8.3 Description of Assembler Controls 8-6.

LINKER 9-1

9.1 Overview 9-3.

9.2 Linker Invocation 9-4.

9.2.1 Detailed Description of Linker Options 9-5.

9.3 Libraries 9-25.

9.3.1 Library Search Path 9-25.

9.3.2 Linking with Libraries 9-27.

9.3.3 Library Member Search Algorithm 9-27.

9.4 Linker Output 9-28.

9.5 Type Checking 9-33.

9.5.1 Introduction 9-33.

9.5.2 Recursive Type Checking 9-34.

9.5.3 Type Checking between Functions 9-35.

9.5.4 Missing Types 9-37.

9.6 Linker Messages 9-37.

LOCATOR 10-1

10.1 Overview 10-3.

10.2 Invocation 10-4.

10.2.1 Detailed Description of Locator Options 10-5.

10.2.2 Format Suboptions 10-24.

10.3 Locating Your Application 10-25.

10.4 Calling the Locator via the Control Program 10-27.

10.5 Locator Output 10-27.

10.6 Locator Messages 10-27.

10.7 Copy Table 10-28.

10.8 Locator Labels 10-29.

10.8.1 Locator Labels Reference 10-30.

Table of Contents IX

• • • • • • • •

UTILITIES 11-1

11.1 Overview 11-3.

11.2 artri 11-4.

11.3 cctri 11-7.

11.4 mktri 11-13.

11.5 prtri 11-26.

11.5.1 Preparing the Demo Files 11-29.

11.5.2 Displaying Parts of an Object File 11-29.

11.5.2.1 Option -h, display general file info 11-29.

11.5.2.2 Option -s, display section info 11-30.

11.5.2.3 Option -c, display call graphs 11-32.

11.5.2.4 Option -e, display external part 11-34.

11.5.2.5 Option -g, display global type information 11-36.

11.5.2.6 Option -d, display debug information 11-39.

11.5.2.7 Option -i, display the section images 11-43.

11.5.3 Viewing an Object at Lower Level 11-45.

11.5.3.1 Object Layers 11-45.

11.5.3.2 The Level Option -ln 11-46.

11.5.3.3 The Verbose Option -vn 11-49.

ASSEMBLER ERROR MESSAGES A-1

1 Introduction A-3.

2 Warnings (W) A-4.

3 Errors (E) A-11.

4 Fatal Errors (F) A-22.

LINKER ERROR MESSAGES B-1

1 Introduction B-3.

2 Warnings (W) B-3.

3 Errors (E) B-6.

4 Fatal Errors (F) B-9.

5 Verbose (V) B-11.

Table of ContentsX
C
O
N
T
E
N
T
S

LOCATOR ERROR MESSAGES C-1

1 Introcuction C-3.

2 Warnings (W) C-3.

3 Errors (E) C-7.

4 Fatal Errors (F) C-11.

5 Verbose (V) C-13.

ARCHIVER ERROR MESSAGES D-1

1 Introduction D-3.

2 Warnings (W) D-3.

3 Errors (E) D-4.

4 Fatal Errors (F) D-4.

EMBEDDED ENVIRONMENT ERROR MESSAGES E-1

1 Introduction E-3.

2 Errors (E) E-3.

3 Warnings (W) E-5.

DESCRIPTIVE LANGUAGE FOR EMBEDDED

ENVIRONMENTS F-1

1 Introduction F-3.

2 Getting Started F-3.

2.1 Introduction F-3.

2.2 Basic Structure F-3.

3 CPU Part F-6.

3.1 Introduction F-6.

3.2 Address Translation: map and mem F-8.

3.3 Address Spaces F-10.

3.4 Addressing Modes F-11.

3.5 Busses F-13.

3.6 Chips F-15.

3.7 External Memory F-16.

Table of Contents XI

• • • • • • • •

4 Software Part F-17.

4.1 Introduction F-17.

4.2 Load Module F-17.

4.3 Layout Description F-17.

4.4 Space Definition F-19.

4.5 Block Definition F-20.

4.6 Selecting Sections F-21.

4.7 Cluster Definition F-23.

4.8 Amode Definition F-24.

4.9 Manipulating Sections in Amodes F-25.

4.10 Section Placing Algorithm F-26.

5 Memory Part F-27.

5.1 Introduction F-27.

6 Delfee Preprocessing F-28.

6.1 Introduction F-28.

6.2 User Defined Macros F-28.

6.3 File Inclusion F-29.

6.4 Conditional Statements F-31.

7 Delfee Keyword Reference F-32.

7.1 Abbreviation of Delfee Keywords F-73.

7.2 Delfee Keywords Summary F-73.

DELFEE SYNTAX G-1

IEEE-695 OBJECT FORMAT H-1

1 TIOF and IEEE-695 H-3.

2 Command Language Concept H-3.

3 Notational Conventions H-5.

4 Expressions H-5.

4.1 Functions without Operands H-8.

4.2 Monadic Functions H-8.

4.3 Dyadic Functions and Operators H-8.

4.4 MUFOM Variables H-9.

Table of ContentsXII
C
O
N
T
E
N
T
S

4.5 @INS and @EXT Operator H-10.

4.6 Conditional Expressions H-10.

5 MUFOM Commands H-11.

5.1 Module Level Commands H-11.

5.1.1 MB Command H-11.

5.1.2 ME Command H-11.

5.1.3 DT Command H-11.

5.1.4 AD Command H-12.

5.2 Comment and Checksum Command H-12.

5.3 Sections H-13.

5.3.1 SB Command H-13.

5.3.2 ST Command H-13.

5.3.3 SA Command H-15.

5.4 Symbolic Name Declaration and Type Definition H-15.

5.4.1 NI Command H-15.

5.4.2 NX Command H-16.

5.4.3 NN Command H-16.

5.4.4 AT Command H-16.

5.4.5 TY Command H-17.

5.5 Value Assignment H-18.

5.5.1 AS Command H-18.

5.6 Loading Commands H-18.

5.6.1 LD Command H-18.

5.6.2 IR Command H-18.

5.6.3 LR Command H-19.

5.6.4 RE Command H-20.

5.7 Linkage Commands H-20.

5.7.1 RI Command H-20.

5.7.2 WX Command H-20.

5.7.3 LI Command H-21.

5.7.4 LX Command H-21.

6 MUFOM Functions H-22.

Table of Contents XIII

• • • • • • • •

MOTOROLA S-RECORDS I-1

INTEL HEX RECORDS J-1

INDEX

Table of ContentsXIV
C
O
N
T
E
N
T
S

Manual Purpose and Structure XV

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is aimed at users of the TriCore Cross-Assembler,
Linker/Locator and Utilities. It assumes that you are conversant with
programming the TriCore.

MANUAL STRUCTURE

Related Publications

Conventions Used In This Manual

1. Overview

Makes you familiar with the assembler itself, through the use of sample

programs.

2. Software Concept

Describes the basics of modular programming and sections.

3. Assembler

Describes the actions and invocation of the TASKING TriCore

assembler (astri) and the PCP assembler (aspcp).

4. Assembly Language

Describes the formats of the possible statements for an assembly

program and describes the registers.

5. Operands and Expressions

Describes the operands and expressions to be used in the assembler

instructions and pseudos (directives).

6. Macro Operations

Describes the use of macros and conditional assembly.

7. Assembler Directives

Describes the Pseudo instructions to pass information to the assembler

program.

8. Assembler Controls

Describes the syntax and semantics of all assembler controls.

Manual Purpose and StructureXVI
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

9. Linker

Describes the action of, and options/controls applicable, to the linker.

10. Locator

Describes the action of, and options/controls applicable, to the locator.

11. Utilities

Contains descriptions of the utilities supplied with the package, which

may be useful during program development.

APPENDICES

A. Assembler Error Messages

Gives a list of error messages which can be generated by the

assembler.

B. Linker Error Messages

Gives a list of error messages which can be generated by the linker.

C. Locator Error Messages

Gives a list of error messages which can be generated by the locator.

D. Archiver Error Messages

Gives a list of error messages which can be generated by the archiver.

E. Embedded Environment Error Messages

Gives a list of error messages from the embedded environment which

can be generated by the linker/locator.

F. DEscriptive Language For Embedded Environments

Describes the Delfee description language.

G. Delfee Syntax

Contains a syntax description of the Delfee language.

H. IEEE-695 Object Format

Contains a description of the IEEE-695 object format and the TIOF

format.

I. Motorola S-Records

Contains a description of the S0, S3 and S7 Motorola S-records.

J. Intel Hex Records

Contains a description of the Intel Hex format.

Manual Purpose and Structure XVII

• • • • • • • •

INDEX

RELATED PUBLICATIONS

• TriCore C Cross-Compiler User's Guide

[TASKING, MA060-002-00-00]

• TriCore CrossView Pro Debugger User's Guide

[TASKING, MA060-043-00-00]

• TriCore Architecture Manual [Siemens]

• TriCore Architecture Manual [1999, Infineon]

• TriCore Architecture v1.3 Manual [2000, Infineon]

Manual Purpose and StructureXVIII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

Manual Purpose and Structure XIX

• • • • • • • •

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{ } Items shown inside curly braces enclose a list from which

you must choose an item.

[] Items shown inside square brackets enclose items that are

optional.

| The vertical bar separates items in a list. It can be read as

OR.

italics Items shown in italic letters mean that you have to

substitute the item. If italic items are inside square

brackets, they are optional. For example:

filename

means: type the name of your file in place of the word

filename.

... An ellipsis indicates that you can repeat the preceding

item zero or more times.

screen font Represents input examples and screen output examples.

bold font Represents a command name, an option or a complete

command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and StructureXX
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

1

OVERVIEW
C

H
A

P
T

E
R

Chapter 11–2
O
V
E
R
V
IE
W

1

C
H

A
P

T
E

R

Overview 1–3

• • • • • • • •

1.1 INTRODUCTION

TASKING offers a complete toolchain for the Siemens TriCore Family of

processors and their derivatives. This manual uses 'TriCore' as a shorthand

notation for the Siemens TriCore Family of processors and their

derivatives.

The TriCore family cross-assembler produces load files running on the

TriCore family. The assembler astri accepts programs written according to

the assembly language specification for the TriCore. The assembler aspcp

accepts programs written according to the assembly language specification

for the Peripheral Control Processor (PCP).

Both assemblers generate relocatable object files in the IEEE-695 object

format. This file format specifies code parts as well as symbol definition

and symbolic debug information parts. The locator optionally produces

absolute output files in Motorola S-file format or Intel Hex format. You can

load these formats into a PROM programmer.

The TriCore toolchain provides an environment for modular program

development and debugging. The TriCore toolchain contains the following

programs:

cctri A handy control program which activates the other programs

depending on its input files.

astri The TriCore assembler which produces a relocatable object

file from a given TriCore assembly file.

aspcp The PCP assembler which produces a relocatable object file

from a given PCP assembly file.

lktri A linker combining several objects and object libraries into

one target load file.

lctri A locator that links a number of linker output files to one

absolute load file. This program can also produce Motorola

S-file format, and Intel Hex format.

artri An IEEE archiver. This is a librarian facility, which can be

used to create and maintain object libraries.

prtri An IEEE object reader. This utility dumps the contents of

IEEE files which have been created by a tool from the

TASKING TriCore family toolchain.

Chapter 11–4
O
V
E
R
V
IE
W

The following diagram shows the structure of the package.

assembly file
.src

assembler
astri

relocatable object

incremental
linker lktri

locator
lctri

linker object
.out

High level language

CrossView xfwtri

library maintainer
artri

relocatable object
.a

module .obj

locator description

link map file

locate map file
.map

.lnl

debugger

library

object reader
prtri

TriCore

control program

C compiler
ctri

C source file
.c

C preprocessor
&

list file .lst

Motorola S–record
object file

.sre

absolute load
module
.abs

Execution

cctri

Environment

.dscfile

Intel Hex
object file

.hex

assembly file
.pcp

assembler
aspcp

list file .lst

assembly file
.asm

Figure 1-1: TriCore family development flow

Overview 1–5

• • • • • • • •

1.2 AN EXAMPLE TRICORE PROGRAM

This section illustrates the use of the TriCore toolchain by building an

example application. As a part of the installation a directory

examples\xvw (examples/xvw for UNIX) is created depending on the

place where you installed the package on your system. This example

directory contains, among others, the following source files:

addone.asm, demo.c

This program has been written for illustrative purposes only.

1.2.1 USING EDE

EDE stands for "Embedded Development Environment" and is the

Windows oriented Integrated Development Environment you can use with

your TASKING toolchain to design and develop your application.

To use EDE on the demo program in the subdirectory xvw in the

examples subdirectory of the TriCore product tree follow the steps

below.

How to Start EDE

You can launch EDE by double-clicking on the EDE shortcut on your

desktop.

The EDE screen provides you with a menu bar, a toolbar (command

buttons) and one or more windows (for example, for source files), a status

bar and numerous dialog boxes.

Chapter 11–6
O
V
E
R
V
IE
W

Output Window
Contains several tabs to display
and manipulate results of EDE
operations. For example, to view
the results of builds or compiles.

Document W indows
Used to view and edit files.

Project W indow
Contains several
tabs for viewing
information about
projects and other
files.

Compile Build Rebuild Debug On–line Manuals

How to Select a Toolchain

EDE supports all the TASKING toolchains. When you first start EDE, the

correct toolchain of the product you purchased is selected and displayed

in the title of the EDE desktop window.

If you have more than one TASKING product installed and you want to

change toolchains, do the following::

1. From the Project menu, select Select Toolchain...

The Select Toolchain dialog appears.

Overview 1–7

• • • • • • • •

2. Select the toolchain you want. You can do this by clicking on a toolchain

in the Toolchains list box and click OK.

If no toolchains are present, use the Browse... or Scan Disk...
button to search for a toolchain directory. Use the Browse... button if

you know the installation directory of another TASKING product. Use the

Scan Disk... button to search for all TASKING products present on a

specific drive. Then return to step 2.

How to Open an Existing Project

Follow these steps to open an existing project:

1. From the Project menu, select Set Current –> .

2. Select the project file to open. For the xvw demo program select the file

demo.pjt in the subdirectory xvw in the examples subdirectory of the

TriCore product tree. If you have used the defaults, the file demo.pjt is in

the directory c:\ctri\examples\xvw .

How to Load/Open Files

The next two steps are not needed for the demo program because the files

addone.asm and demo.c are already open. To load the file you want to

look at.

1. From the Project menu, select Load Files...

The Choose Project Files to Edit dialog appears.

Chapter 11–8
O
V
E
R
V
IE
W

2. Choose the file(s) you want to open by clicking on it. You can select

multiple files by pressing the <Ctrl> or <Shift> key while you click on

a file. With the <Ctrl> key you can make single selections and with the

<Shift> key you can select everything from the first selected file to the

file you click on. Then click OK.

This launches the file(s) so you can edit it (them).

Check the directory paths

1. From the Project menu, select Directories... .

The Directories dialog appears.

Overview 1–9

• • • • • • • •

2. Check the directory paths for programs, include files and libraries. You can

add your own directories here, separated by semicolons.

3. Click OK.

How to Build the Demo Application

The next step is to compile the file(s) together with its dependent files so

you can debug the application.

Steps 1 and 2 are optional. Follow these steps if you want to specify

additional build options such as to stop the build process on errors and to

keep temporary files that are generated during a build.

1. From the Build menu, select Options...

The Build Options dialog appears.

2. Make your changes and press the OK button.

3. From the Build menu, select Scan All Dependencies .

4. Click on the Execute ’Make’ command button. The following button is

the execute Make button which is located in the ribbon bar.

Chapter 11–10
O
V
E
R
V
IE
W

If there are any unsaved files, EDE will ask you in a separate dialog if you

want to save them before starting the build.

How to View the Results of a Build

Once the files have been processed you can inspect the generated

messages.

1. In the Window menu select the Output menu item.

You can see which commands (and corresponding output captured) which

have been executed by the build process in the Build tab:

TASKING program builder v x. y r z Build nnn SN 00000000
Assembling ”addone.asm”
Compiling ”demo.c”
Assembling ”demo.src”
Linking and locating to demo.out
Converting demo.out to demo.abs in IEEE–695 format
 .
 .
 .

How to Start the CrossView Pro Debugger

Once the files have been compiled, assembled, linked, located and

formatted they can be executed by CrossView Pro.

To execute CrossView Pro:

1. Click on the Debug application button. The following button is the

Debug application button which is located in the toolbar.

CrossView Pro is launched. CrossView Pro will automatically download the

compiled file for debugging.

How to Load an Application

You must tell CrossView Pro which program you want to debug:

1. From the File menu, select Load Symbolic Debug Info...

The Load Symbolic Debug Info dialog box appears.

2. Click Load .

Overview 1–11

• • • • • • • •

How to View and Execute an Application

To view your source while debugging, the Source Window must be open.

To open this window:

1. From the View menu, select Source–>Source lines .

The source window opens.

Before starting execution you have to reset the target system to its initial

state. The program counter, stack pointer and any other registers must be

set to their initial value. The easiest way to do this is:

2. From the Run menu, select Reset Target System .

To run your application step-by-step:

3. From the Run menu, select Animate .

The program demo.abs is now stepping through the high level language

statements. Using the Accelerator bar or the menu bar you can set

breakpoints, monitor data, display registers, simulate I/O and much more.

See the CrossView Pro Debugger User's Guide for more information.

How to Start a New Project

When you first use EDE you need to setup a project space and add a new

project:

1. From the File menu, select New Project Space...

The Create a New Project Space dialog appears.

2. Give your project space a name and then click OK.

The Project Properties dialog box appears.

3. Click on the Add new project to project space button.

The Add New Project to Project Space dialog appears.

4. Give your project a name and then click OK.

The Project Properties dialog box then appears for you to identify

the files to be added.

5. Add all the files you want to be part of your project. Then press the OK
button. To add files, use one of the 3 methods described below.

Chapter 11–12
O
V
E
R
V
IE
W

• If you do not have any source files yet, click on the Add new file
to project button in the Project Properties dialog. Enter a new

filename and click OK.

• To add existing files to a project by specifying a file pattern click on

the Scan existing files into project button in the Project
Properties dialog. Select the directory that contains the files you

want to add to your project. Enter one or more file patterns separated

by semicolons. The button next to the Pattern field contains some

predefined patterns. Next click OK.

• To add existing files to a project by selecting individual files click on

the Add existing files to project button in the Project
Properties dialog. Select the directory that contains the files you

want to add to your project. Add the applicable files by

double-clicking on them or by selecting them and pressing the Open
button.

The new project is now open.

6. From the Project menu, select Load Files... to open the files you

want on your EDE desktop.

EDE automatically creates a makefile for the project. EDE updates the

makefile every time you modify your project.

1.2.2 USING THE CONTROL PROGRAM

1. Instead of invoking all the individual translation phases by hand, it is

possible (and recommended) to use the control program cctri:

cctri –g demo.c addone.asm –o demo.abs

Overview 1–13

• • • • • • • •

As you can see, you may enter multiple input files on the command line.

Also, you may specify options and controls for the assembler, linker and

locator together. The control program recognizes the options and controls

and places them in the appropriate command when invoking the

assembler, linker or locator. The control program is described in detail in

Chapter 11, Utilities.

The -g option enables symbolic debug information.

The -o option specifies the name of the output file.

2. If you want to see how the control program calls the assembler, linker and

locator, you can use the -v0 option or -v option. The -v0 option only

displays the invocations without executing them. The -v option also

executes them.

cctri –g demo.c addone.asm –o demo.abs –v0

The control program shows the following command invocations without

executing them (UNIX output):

demo.c:
+ ctri –e –g –o /tmp/cc2120b.src demo.c
+ astri /tmp/cc2120b.src –e –ghl –o demo.objaddone.asm:
+ astri addone.asm –e –ghl –o addone.obj
+ lktri –e demo.obj addone.obj –lc –lfpn –Ltc1
–o/tmp/cc2120c.out
+ lctri –e –M –dtri.dsc /tmp/cc2120c.out –odemo.abs

The -e option removes output files after errors occur. The -gsl option of

the assembler specifies to pass HLL debug information and to generate

local symbols debug information. The -lc and -lfpn option of the linker

specify to link the appropriate C library and floating point library

respectively. The -O option of the linker specifies the basename of the

map file. The -d option of the locator specifies the name of the locator

description file.

3. In step 2, the tools use temporary files for intermediate results. If you want

to keep the intermediate files you can use the -tmp option. The following

command makes this clear.

cctri –g demo.c addone.asm –o demo.abs –v0 –tmp

Chapter 11–14
O
V
E
R
V
IE
W

This command produces the following output:

demo.c:
+ /usr/src/dolphin/dvl/linux/ctri/bin/ctri –e –g –o
demo.src demo.c
+ /usr/src/dolphin/dvl/linux/ctri/bin/astri demo.src –e
–ghl –o demo.obj
addone.asm:
+ /usr/src/dolphin/dvl/linux/ctri/bin/astri addone.asm
–e –ghl –o addone.obj
+ /usr/src/dolphin/dvl/linux/ctri/bin/lktri –e demo.obj
addone.obj –lc –lfpn
–L/usr/src/dolphin/dvl/linux/ctri/lib/tc1 –odemo.out
+ /usr/src/dolphin/dvl/linux/ctri/bin/lctri –e –M
–dtri.dsc demo.out –odemo.abs

As you can see, if you use the -tmp option, the assembly source files and

linker output file will be created in your current directory also. See also

section Temporary Files

Assuming the program assembles successfully, the assembler produces the

relocatable output modules, demo.obj and addone.obj .

Linking and locating the program to absolute addresses is done by two

programs: the linker combines objects into a relocatable file with the

extension .out . The locator binds the program to absolute addresses. The

linker takes a.out as the default name of the output file. If this name is

not suitable, you can specify another filename with the -O option.

Besides the output file produced by the linker, the locator can take a

so-called description file as input. This file contains a description of the

virtual and physical addresses of the program. The chapter Locator
discusses the exact contents and layout of a description file.

The result of the locator command is the absolute output file demo.abs .

The file demo.abs can be loaded into the CrossView Pro debugger.

Overview 1–15

• • • • • • • •

1.2.3 USING THE MAKEFILE

The subdirectories in the examples directory each contain a makefile
which can be processed by mktri. Also each subdirectory contains a

readme.txt file with a description of how to build the example.

To build the demo example follow the steps below. This procedure is

outlined as a guide for you to build your own executables for debugging.

1. Make the subdirectory xvw of the examples directory the current working

directory.

This directory contains a makefile for building the demo example. It uses

the default mktri rules.

2. Be sure that the directory of the binaries is present in the PATH

environment variable.

3. Compile, assemble, link and locate the modules using one call to the

program builder mktri:

mktri

This command will build the example using the file makefile .

To see which commands are invoked by mktri without actually executing

them, type:

mktri –n

This command produces the following output:

TASKING TriCore program builder v x. yr z Build nnn
Copyright 1996– year Altium BV Serial# 00000000
cctri –g –w303 –c demo.c
cctri –c –o addone.obj addone.asm
cctri –o demo.abs demo.obj addone.obj

To remove all generated files type:

mktri clean

Chapter 11–16
O
V
E
R
V
IE
W

1.3 ENVIRONMENT VARIABLES

This section contains an overview of the environment variables used by

the TriCore family toolchain.

Environment
Variable

Description

ASPCPIINC Specifies an alternative path for include files for the
assembler aspcp .

ASTRIINC Specifies an alternative path for include files for the
assembler astri .

CTRIINC Specifies an alternative path for #include files for the
C compiler.

CTRILIB Specifies a path to search for library files used by
the linker lktri . See also the section Library Search
Path in the chapter Linker.

CCTRIBIN When this variable is set, the control program, cctri ,
prepends the directory specified by this variable to
the names of the tools invoked.

CCTRIOPT Specifies extra options and/or arguments to each
invocation of cctri . The control program processes
the arguments from this variable before the
command line arguments.

LM_LICENSE_FILE Identifies the location of the license data file. Only
needed for hosts that need the FLEXlm license
manager. Not needed for MS–Windows.

PATH Specifies the search path for your executables.

TMPDIR Specifies an alternative directory where programs
can create temporary files. Used by ctri , cctri , astri ,
lktri , lctri , artri . See also next section.

Table 1-1: Environment variables

Overview 1–17

• • • • • • • •

1.4 TEMPORARY FILES

The assemblers, linker, locator and archiver may create temporary files. By

default these files will be created in the current directory. If you want the

tools to create temporary files in another directory you can enforce this by

setting the environment variable TMPDIR.

UNIX:

 Bourne shell, Korn shell:

TMPDIR=/tmp ; export TMPDIR

 csh:

setenv TMPDIR /tmp

Note that if you create your temporary files on a directory which is

accessible via the network for other users as well, conflicts in the names

chosen for the temporary files may arise. It is safer to create temporary

files in a directory that is solely accessible to yourself. Of course this does

not apply if you run the tools with several users on a multi-user system,

such as UNIX. Conflicts may arise if two different computer systems use

the same network directory for tools to create their temporary files.

1.5 DEBUGGING WITH CROSSVIEW PRO

To facilitate debugging, you can include symbolic debug information in

the load file. During compilation of a high-level-language program,

symbolic debug information must be retained that serves as input for the

symbolic debugger (-g option). The compiler passes symbolic debug

information to the astri assembler by generating SYMB assembler

directives in the assembly source file. The astri assembler translates the

SYMB directives to be included in the symbolic debug part of an IEEE-695

object file.

The CrossView Pro debugger accepts files with the IEEE-695 format. This

is the default output format of the locator. So, you can directly load the file

generated by the locator into the CrossView Pro debugger.

The simplest way to build this program ready for debugging is:

cctri–g demo.c addone.asm

Chapter 11–18
O
V
E
R
V
IE
W

The result of this command is (output of -v0 option):

demo.c:
+ ctri –e –g –o /tmp/cc28309b.src demo.c
+ astri –e –gsl –o demo.obj /tmp/cc28309b.src
addone.asm:
+ astri –e –gsl –o addone.obj addone.asm
+ lktri –e demo.obj addone.obj –lc –lfpn –odemo.out
+ lctri –e –M –odemo.abs –dtri.dsc demo.out

The control program is described in detail in Chapter 11, Utilities.

You can start the text version of the debugger for debugging the absolute

file demo.abs with:

xfwtri demo.abs

For more information on the debugger, see the TriCore CrossView Pro
Debugger User's Guide.

The debugger examples are installed in the subdirectory xvw of the

examples directory.

1.6 FILE EXTENSIONS

The extension .src or .asm is used as input file for the TriCore assembler

astri. The extension .pcp is used as input file for the PCP assembler

aspcp. Files with the extension .src are output files of a C compiler.

Actually, the assemblers accept files with any extension (or even no

extension), but by adding the extension .asm (for astri) or .pcp (for

aspcp) to assembler source files, you can distinguish them easily.

If you do not provide a filename extension the aspcp assembler will try:

1. the filename itself

2. the filename with .pcp extension

If you do not provide a filename extension the astri assembler will try:

1. the filename itself

2. the filename with .asm extension

3. the filename with .src extension

Overview 1–19

• • • • • • • •

So,

astri text

only has the same effect as

astri text.asm

if the file text is not present. In this case, both these commands assemble

the file text.asm and create a relocatable object module text.ob j.

For compatibility with future TASKING Cross-Software the following

extensions are suggested:

.asm input assembly source file for astri

.src output from the C compiler ctri / input for astri

.pcp input assembly source file for aspcp

.c C source file, input for the C compiler ctri

.cc C++ source file, input for the C++ compiler cptri

.ic temporary C source file, generated by the C++ compiler cptri

.obj relocatable object file generated by the assembler

.a object library files, output from artri

.out relocatable output files from lktri

.dsc description file, input for lctri and CrossView Pro debugger

.abs absolute locator output, object file from lctri

.hex absolute Intel Hex file

.sre absolute Motorola S-record file

.elf absolute ELF/DWARF object file

.lst assembler list file

.cal C functions call tree

.lnl linker map file

.map locator map file

1.7 PREPROCESSING

The assemblers have a built-in macro preprocessor. For a description of

the possibilities offered by the macro preprocessor see the chapter Macro
Operations.

Chapter 11–20
O
V
E
R
V
IE
W

1.8 ASSEMBLER LISTING

The assembler does not generate a listing file by default. You can generate

a listing file with the -l option. (See also the -L option, for the listing

options). As a result of the command:

astri –l text.src

the listing file text.lst is created.

1.9 ERRORS AND WARNINGS

Any errors detected by the assembler are displayed in the listing file after

the actual line containing the error is printed. If no listing file is produced,

error messages are still displayed to indicate that the assembly process did

not proceed normally.

Three classes of messages can be reported depending on the severity of

the error. Warning messages (W) are the least severe messages. Warnings

do not terminate assembly. Error messages (E) appear when a user error

situation occurs. These errors do not terminate assembly immediate. If one

or more of these errors occur, assembly stops at the end of the active pass.

Fatal error messages (F) cause the assembler to terminate immediately.

Fatal errors are usually due to user errors or memory errors.

1.10 COMMAND LINE PROCESSING

This section contains a description of the use of UNIX scripts. The use of

Makefiles is explained in the chapter Utilities.

1.10.1 UNIX SCRIPTS

Scripts are a facility within UNIX whereby one or more commands can be

executed from within a file.

Assume that the following sequence of calls is frequently used:

cctri –c ifile .asm –o outfile .obj

Overview 1–21

• • • • • • • •

The files ifile and outfile may vary from one call to the next. To reduce the

number of calls you can make a script, for example, proj . The file should

contain:

cctri –c $1.asm –o $2.obj

On invocation $1 and $2 will be replaced by the first and second

parameters after the script file name. Using the name mentioned above

(proj) and after you have set the execute bits of proj (chmod +x proj)

the call becomes:

proj ifile outfile

Chapter 11–22
O
V
E
R
V
IE
W

2

ASSEMBLER
C

H
A

P
T

E
R

Chapter 22–2
A
S
S
E
M
B
L
E
R

2

C
H

A
P

T
E

R

Assembler 2–3

• • • • • • • •

2.1 DESCRIPTION

The TriCore toolchain has two assemblers. The main assembler is astri,

which assembles sources that are either hand written in the TriCore

assembly language or generated by the compiler ctri. The other assembler

is the PCP assembler aspcp, which assembles PCP coprocessor specific

assembly files.

The TriCore assemblers astri and aspcp are optimizing assemblers.

During assembly the assembler builds an internal representation of the

program. This representation, the flow graph, is used to optimize the

program. Examples of the optimizations are choosing alternatives for

instructions. After optimization the object file and, optionally, the list file

are generated.

The following phases can be identified during assembly:

1. Preprocess, check the syntax and create the flow graph

2. Type determination of all expressions

3. Legality check of all instructions

4. Optimization

5. Address calculation, jump optimization

6. Generation of object and (when requested) list file

The assembler generates relocatable object files using the IEEE-695 object

format. This file format specifies a code part and a symbol part as well as a

symbolic debug information part.

File inclusion and macro facilities are integrated into the assembler.

See the chapter Macro Operations for more information.

2.2 INVOCATION

The compiler control program, cctri, may call the assemblers

automatically. cctri translates some of its command line options to options

of astri or aspcp depending on the filename extension. Files with

extension .asm or .src are sent to astri, files with extension .pcp are

sent to aspcp. However, the assemblers can be invoked as individual

programs also.

Chapter 22–4
A
S
S
E
M
B
L
E
R

2.3 ASTRI INVOCATION

The PC invocation of astri is:

astri [option]... source-file [map-file]
astri -V

astri -?

When you use a UNIX shell (C-shell, Bourne shell), options containing

special characters (such as '()') must be enclosed with ” ” . The

invocations for UNIX and PC are the same, except for the -? option in the

C-shell:

astri ” -?” or astri -\?

Invocation with -V only displays a version header. -? shows the

invocation syntax.

The source-file must be an assembly source file. This file is the input

source of the assembler. This file contains assembly code which is either

user written or generated by ctri. Any name is allowed for this file. If the

file is not found and the filename does not have an extension, the

extension .asm is assumed or, if the file is still not found, the extension

.src is assumed.

The optional map-file is passed to the assembler when producing an

absolute list file. The map file is produced by the locator. To produce an

absolute list file, see section 2.7.1, Absolute List File Generation.

In the default situation, an object file with extension .obj is produced.

With the -l option a list file with extension .lst is produced.

Options are preceded by a '-' (minus sign). Options can not be combined

after a single '-'. If all goes well, the assembler generates a relocatable

object module which contains the object code, with the default extension

.obj . You can specify another output filename with the -o option. Error

messages are written to the terminal, unless they are directed to an error

list file with the -err assembler option.

The following list describes the assembler options briefly. Section 2.5 gives

a more detailed description.

Assembler 2–5

• • • • • • • •

Option Description

–? Display invocation syntax

–Ccpu Include SFR definition file regcpu.def before source

–Dmacro[=def] Define preprocessor macro

–FPU Allow the use of single precision floating point
instructions.

–Hfile Include file before source

–Idirectory Look in directory for include files

–L[flag...] Remove specified source lines from list file

–MMU Allow memory management instructions in the assembly
source.

–TC2 Allow the use of TriCore2 instructions

–V Display version header only

–WAE Treat warning messages as errors

–c Switch to case insensitive mode (default case sensitive)

–e Remove object file on assembly errors

–err Redirect error messages to error file

–f file Read options from file

–g[a|h|l|s] Generate assembly level debug information

–hw_only All mnemonics are directly mapped on the corresponding
instruction, no clever substitutions allowed

–i[l|g] Default label style local or global

–l Generate listing file

–ll length Set number of lines per page in a list file

–ln file Specify a name for the list file

–lt title Specify a header title for list file pages

–lwwidth Set the number of characters per line in a list file

–o filename Specify name of output file

–t[flag...] Display section summary

–v Verbose mode. Print the filenames and numbers of the
passes while they progress

Chapter 22–6
A
S
S
E
M
B
L
E
R

DescriptionOption

–w[num] Suppress one or all warning messages

–zdefect Enable checks for CPU functional problem defect

Table 2-1: Options summary astri

2.4 ASPCP INVOCATION

The PC invocation of aspcp is:

aspcp [option]... source-file [map-file]
aspcp -V

aspcp -?

When you use a UNIX shell (C-shell, Bourne shell), options containing

special characters (such as '()') must be enclosed with ” ” . The

invocations for UNIX and PC are the same, except for the -? option in the

C-shell:

aspcp ” -?” or aspcp -\?

Invocation with -V only displays a version header. -? shows the

invocation syntax.

The source-file must be an assembly source file, either use the original

PCP syntax or the PCP2 syntax. This file is the input source of the

assembler. This file contains assembly code which is user written. Any

name is allowed for this file. If the file is not found and the filename does

not have an extension, the extension .pcp is assumed.

The optional map-file is passed to the assembler when producing an

absolute list file. The map file is produced by the locator. To produce an

absolute list file, see section 2.7.1, Absolute List File Generation.

In the default situation, an object file with extension .obj is produced.

With the -l option a list file with extension .lst is produced.

Options are preceded by a '-' (minus sign). Options can not be combined

after a single '-'. If all goes well, the assembler generates a relocatable

object module which contains the object code, with the default extension

.obj . You can specify another output filename with the -o option. Error

messages are written to the terminal, unless they are directed to an error

list file with the -err assembler option.

Assembler 2–7

• • • • • • • •

The following list describes the assembler options briefly. Section 2.5 gives

a more detailed description.

Option Description

–? Display invocation syntax

–Ccpu Include sfr definition file regcpu.def before source

–Dmacro[=def] Define preprocessor macro

–Hfile Include file before source

–Idirectory Look in directory for include files

–L[flag...] Remove specified source lines from list file

–Pprefix Add prefix to each global and external symbol (default
’_PCP_’)

–V Display version header only

–c Switch to case insensitive mode (default case sensitive)

–e Remove object file on assembly errors

–err Redirect error messages to error file

–f file Read options from file

–g[a|l] Generate assembly level debug information

–i[l|g] Default label style local or global

–l Generate listing file

–o filename Specify name of output file

–p [1|2] Select PCP version (default is 1)

–pTC1775 Generate code for PCP as found on the TC1775

–pRAPTOR Generate code for PCP as found on the Raptor

–t Display section summary

–v Verbose mode. Print the filenames and numbers of the
passes while they progress

–w[num] Suppress one or all warning messages

Table 2-2: Options summary aspcp

Chapter 22–8
A
S
S
E
M
B
L
E
R

2.5 DETAILED DESCRIPTION OF ASSEMBLER OPTIONS

All options in this section apply to both assembler astri and aspcp, unless

explicitly stated otherwise.

With options that can be set from within EDE, you will find a mouse icon

that describes the corresponding action.

-?

Option:

-?

Description:

Display an explanation of options at stdout.

Example:

astri –?

Assembler 2–9

• • • • • • • •

-C

Option:

Select the Project | Processor Options... menu item and choose

the CPU tab. Select a CPU type in the CPU type field.

If you select User defined in the CPU type field, type the name of your

TriCore derivative in the User specified CPU name field.

If you select User defined in the CPU type field and leave the User
specified CPU name field empty, the option -C is not used.

-Ccpu

Arguments:

The CPU name which identifies your TriCore derivative.

Description:

Use special function register definitions for cpu. The filename looked for is

"regcpu.def". The search algorithm for .sfr files is the same as for include

files that are enclosed in "" at the beginning of the C source. The file is

included before the source.

Example:

To use SFR definitions from the file regtc10gp.def , enter:

astri –Ctc10gp test.src

Chapter 22–10
A
S
S
E
M
B
L
E
R

-c

Option:

Select the Project | Assembler Options | Project Options...
menu item. Disable the Assemble case sensitive check box in the

Misc tab.

-c

Default:

Case sensitive

Description:

Switch to case insensitive mode. By default, the assembler operates in case

sensitive mode.

Example:

To switch to case insensitive mode, enter:

astri –c test.src

Assembler 2–11

• • • • • • • •

-D

Option:

Select the Project | Assembler Options | Project Options...
menu item. Define a macro (syntax: macro[=def]) in the Define user
macros field of the Files tab. You can define more macros by separating

them with commas.

-Dmacro[=def]

Arguments:

The macro you want to define and optionally its definition.

Description:

Define macro as in 'define'. If def is not given ('=' is absent), '1' is

assumed. Any number of symbols can be defined.

Example:

astri –DTWO=2 test.src

Chapter 22–12
A
S
S
E
M
B
L
E
R

-e

Option:

EDE always removes the output file on errors.

-e

Description:

Use this option if you do not want an object file when the assembler

generates errors. With this option the 'make' utility always does the proper

productions.

Example:

astri –e test.src

Assembler 2–13

• • • • • • • •

-err

Option:

In EDE this option is not so useful. If you would use this option you

would not see the error messages in the Build tab.

-err

Description:

The assembler redirects error messages to a file with the same basename

as the output file and the extension .ers . The assembler uses the

basename of the output file instead of the input file.

Example:

To write errors to the file test.ers instead of stderr, enter:

astri –err test.src

Chapter 22–14
A
S
S
E
M
B
L
E
R

-f

Option:

-f file

Arguments:

A filename for command line processing. The filename "-" may be used to

denote standard input.

Description:

Use file for command line processing. To get around the limits on the size

of the command line, it is possible to use command files. These command

files contain the options that could not be part of the real command line.

Command files can also be generated on the fly, for example by the make

utility.

More than one -f option is allowed.

Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command

file.

2. To include whitespace in the argument, surround the argument with either

single or double quotes.

3. If single or double quotes are to be used inside a quoted argument, we

have to go by the following rules:

a. If the embedded quotes are only single or double quotes, use the

opposite quote around the argument. Thus, if a argument should

contain a double quote, surround the argument with single quotes.

b. If both types of quotes are used, we have to split the argument in such

a way that each embedded quote is surrounded by the opposite type

of quote.

Example:

”This has a single quote ’ embedded”

Assembler 2–15

• • • • • • • •

or

’This has a double quote ” embedded’

or

’This has a double quote ” and \
a single quote ’”’ embedded”

4. Some operating systems impose limits on the length of lines within a text

file. To circumvent this limitation it is possible to use continuation lines.

These lines end with a backslash and newline. In a quoted argument,

continuation lines will be appended without stripping any whitespace on

the next line. For non-quoted arguments, all whitespace on the next line

will be stripped.

Example:

”This is a continuation \
line”
 –> ”This is a continuation line”

control(file1(mode,type),\
 file2(type))
 –>
control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Example:

Suppose the file mycmds contains the following line:

–err
test.src

The command line can now be:

astri –f mycmds

Chapter 22–16
A
S
S
E
M
B
L
E
R

-FPU

Option:

Select the Project | Assembler Options | Project Options...
menu item. Enable the Use hardware single precision floating
point instructions check box in the Misc tab.

This option is only available (and relevant) when you enable the

presence of a floating point unit (FPU) check box on the CPU
tab in the Project | Processor Options... menu item.

-FPU

Default:

(none) The use of fpu instructions is not allowed.

Description:

The -FPU option allows the use of single precision floating point

instructions in the assembly code. When you select this option, the define

_FPU is set to 1 allowing you to use single precision floating point

instructions. Default the define _FPU is set to 0.

For a more detailed description about the floating point arithmetic see

section Floating Point Arithmetic in Chapter Runtime of the C Cross
Compiler Users Manual.

Example:

To allow the use of floating point unit (FPU) instructions in the assembly

code, enter:

astri –FPU test.src

Assembler 2–17

• • • • • • • •

-g (aspcp)

Option:

Select the Project | PCP Assembler Options | Project
Options... menu item. Choose a Debug information option in the

Debug tab.

-g[a|l]...

Default:

-gAL (no debug)

Description:

Specify to generate debug information. If you do not use this option or if

you specify -g without a flag, the default is -gAL (no debug information).

Flags can be switched on with the lower case letter and switched off with

the uppercase letter.

An overview of the flags is given below.

a - assembler source line information

l - local symbols debug information

With -ga you enable assembler source line information. With -gl you

enable the generation of local symbols debug information. You can use

this option independent of the setting of option -ga.

Examples:

To generate local symbols debug information, enter:

aspcp –gl test.pcp

To generate assembler source line information, enter:

aspcp –ga test.pcp

Chapter 22–18
A
S
S
E
M
B
L
E
R

-g (astri)

Option:

Select the Project | Assembler Options | Project Options...
menu item. Choose a Debug information option in the Debug tab.

-g[a|h|l|s]...

Default:

-gAhLS (only HLL debug)

Description:

Specify to generate debug information. If you do not use this option or if

you specify -g without a flag, the default is -gAhLS, which only passes

the high level language debug information.

Flags can be switched on with the lower case letter and switched off with

the uppercase letter.

An overview of the flags is given below.

a - assembler source line information

h - pass HLL debug information

l - local symbols debug information

s - always debug; either "AhL" or "aHl"

With -ga you enable assembler source line information. With -gh the

assembler passes the high level language debug information from the

compiler to the object file. These two types of debug information cannot

be used both. So, -gah is not allowed.

With -gl you enable the generation of local symbols debug information.

You can use this option independent of the setting of the -ga and -gh

options.

With -gs you instruct the assembler to always generate debug information.

If HLL debug information is present in the source file, the assembler

passes this information (same as -gAhL). If no HLL debug information is

present, the assembler generates assembler source line information and

local symbols debug information (same as -gaHl).

Assembler 2–19

• • • • • • • •

Examples:

To pass high level symbolic debug information to the output files and

generate local symbols debug information, enter:

astri –ghl test.src

To generate assembler source line information, enter:

astri –ga test.src

To always generate debug information, depending on the debug

information in the source file, enter:

astri –gs test.src

Chapter 22–20
A
S
S
E
M
B
L
E
R

-H

Option:

Select the Project | Assembler Options | Project Options...
menu item. Add the name of an include file to the Include file
before source field in the Files tab.

-Hfile

Arguments:

The name of an include file.

Description:

Include file before assembling the source.

Example:

To include the file tri.inc before any other include file, enter:

astri –Htri.inc test.src

Assembler 2–21

• • • • • • • •

-hw_only

Option:

-hw_only

Default:

none Substitutions by faster or smaller instructions is allowed.

Description:

Normally the assembler may replace instructions by other, smaller or faster

instructions. For example, the instruction jeq d0,#0,label1 is replaced

by jz d0,label1 .

With the option -hw_only you instruct the assembler to encode all

instruction as they are. The assembler does not substitute instructions with

other, faster or smaller instructions. When you use this option, the define

_HW_ONLY is set to 1 (no substition of instructions).

Example:

To prevent the assembler from substituting instructions with other, smaller

or faster instructions:

astri –hw_only test.src

Chapter 22–22
A
S
S
E
M
B
L
E
R

-I

Option:

Select the Project | Assembler Options | Project Options...
menu item. Add one or more directory paths to the Include search
path field in the Files tab. You can specify more directories by

separating them with commas.

-Idirectory

Arguments:

The name of the directory to search for include file(s).

Description:

Change the algorithm for searching include files whose names do not have

an absolute pathname to look in directory. Thus, include files whose

names are enclosed in "" are searched for first in the directory of the file

containing the include line, then in the current directory, then in

directories named in -I options in left-to-right order. If the include file is

still not found, the assembler searches in a directory specified with the

environment variable ASTRIINC for astri or ASPCPINC for aspcp. This

environment variable can contain more than one directory. Separate

multiple directories with ';' for PC (':' for UNIX). Finally, the directory

../include relative to the directory where the assembler binary is

located is searched.

For include files whose names are in <>, the directory of the file

containing the include line and the current directory are not searched.

However, the directories named in -I options (and the one in ASTRIINC or

ASPCPINC and the relative path) are still searched.

Example:

astri –I/proj/include test.src

Assembler 2–23

• • • • • • • •

-i

Option:

Select the Project | Assembler Options | Project Options...
menu item. Choose one of the Labels are by default
Local/Global options in the Misc tab.

-i[l|g]

Default:

-il (local labels)

Description:

Select default handling for label identifiers. -il specifies that data and code

assembly labels are by default treated as LOCAL labels, unless overruled

by the .global directive. With -ig data and code assembly labels are by

default treated as GLOBAL labels, unless overruled by the .local directive.

Example:

To specify that assembly label identifiers are treated as GLOBAL labels by

default, enter:

astri –ig test.src

Chapter 22–24
A
S
S
E
M
B
L
E
R

-L

Option:

Select the Project | Assembler Options | Project Options...
menu item. Enable or disable one or more Include lines contaning
check boxes in the Adv. List File tab.

-L[flag...]

Arguments:

Optionally one or more flags specifying which source lines are to be

removed from the list file.

Default:

-LcDElMNPQsWX (for astri)

-LcDElMNPQWX (for aspcp)

Description:

Specify which source lines are to be removed from the list file. A list file is

generated when the -l option is specified. If you do not specify the -L

option the assembler removes source lines containing #line directives or

symbolic debug information, empty source lines and puts wrapped source

lines on one line. -L without any flags, is equivalent to -Lcdelmnpqswx,

which removes all specified source lines form the list file.

Flags can be switched on with the lower case letter and switched off with

the uppercase letter. The following flags are allowed:

c Default. Remove source lines containing assembler controls ($page).

C Keep source lines containing assembler controls.

d Remove source lines containing section directives (the .sdecl, .sect

directives).

D Default. Keep source lines containing section directives.

e Remove source lines containing one of the symbol definition directives

.extern, .global, .local or .calls.

E Default. Keep source lines containing symbol definition directives.

Assembler 2–25

• • • • • • • •

l Default. Remove source lines containing C preprocessor line

information (lines with #line).

L Keep source lines containing C preprocessor line information.

m Remove source lines containing .macro/.dup directives (lines with

.macro or .dup).

M Default. Keep source lines containing .macro/.dup directives.

n Remove empty source lines (newlines).

N Default. Keep empty source lines.

p Remove source lines containing conditional assembly (lines with .if,

.elif, .else, .endif). Only the valid condition is shown.

P Default. Keep source lines containing conditional assembly.

q Remove source lines containing assembler equates (lines with .equ).

Q Default. Keep source lines containing assembler equates.

s Default. This option is for astri only. Remove source lines containing

high level language symbolic debug information (lines with .symb).

S This option is for astri only. Keep source lines containing HLL

symbolic debug information.

w Remove wrapped part of source lines.

W Default. Keep wrapped source lines.

x Remove source lines containing .macro/.dup expansions.

X Default. Keep source lines containing .macro/.dup expansions.

Example:

To remove source lines with assembler controls from the resulting list file

and to remove wrapped source lines, enter:

astri –l –Lcw test.src

-l (generate list file)

Chapter 22–26
A
S
S
E
M
B
L
E
R

-l

Option:

Select the Project | Assembler Options | Project Options...
menu item. Enable the Generate list file check box in the

List File tab.

-l

Description:

Generate listing file. The listing file has the same basename as the output

file. The extension is .lst .

Example:

To generate a list file with the name test.lst , enter:

astri –l test.src

-L (remove source lines from list file)

-ll (set number of lines per page in a list file)

-ln (specify a name for the list file)

-lt (specify a header title for list file pages)

-lw (set the number of characters per line in a list file)

Assembler 2–27

• • • • • • • •

-ll

Option:

Select the Project | Assembler Options | Project Options...
menu item. Select the List File tab and enter the page length in the

Lines per page field.

-lllength

Description:

Sets the maximum number of lines on one page of the listing file. This

number includes the lines used by the page header (4) and the lines with

error messages. The default page length is 80. The minimum page length

is 10.

Example:

To set the page length to 50 lines per page:

astri –l –ll50 test.src

-l (generate list file)

Chapter 22–28
A
S
S
E
M
B
L
E
R

-ln

Option:

Select the Project | Assembler Options | Project Options...
menu item. Select the List File tab and enter a name in the Name of
list file field.

-lnfile

Description:

When you use the option -l to generate a list file, the default name for the

list file is source .lst . With this option you can specify another name for

the list file.

Example:

To generate a list file with the name mylist.lst :

astri –l –lnmylist.lst test.src

-l (generate list file)

Assembler 2–29

• • • • • • • •

-lt

Option:

Select the Project | Assembler Options | Project Options...
menu item. Select the List File tab and enter a title in the Title of
list file field.

-lttitle

Description:

This control specifies the title to be used in the page header of each page

of the list file. The page number and date are automatically included in the

page header.

Example:

To specify the title "MYTITLE" for the headers in the list file:

astri –l –ltMYTITLE test.src

-l (generate list file)

Chapter 22–30
A
S
S
E
M
B
L
E
R

-lw

Option:

Select the Project | Assembler Options | Project Options...
menu item. Select the List File tab and enter the page length in the

Characters per line field.

-lwwidth

Description:

Sets the maximum number of characters on one line in the list file. Lines

that exceed this width are wrapped on the next lines. The default page

width is 66. The minimum page width is 40.

Example:

To set the page width to 50 characters per page:

astri –l –lw50 test.src

-l (generate list file)

Assembler 2–31

• • • • • • • •

-MMU

Option:

Select the Project | Assembler Options | Project Options...
menu item. Enable the Allow memory management instructions
check box in the Misc tab.

This option is only available (and relevant) when you enable the MMU
Present check box on the CPU tab in the Project | Processor
Options... menu item.

-MMU

Default:

-MMU The use of memory management instructions is allowed.

Description:

The -MMU option allows the use of memory management instructions in

the assembly source. When you select this option, the define _MMU is set

to 1 allowing you to use memory management instructions.

Example:

To allow the use of memory management instructions in the assembly

source, enter:

astri –MMU test.src

Chapter 22–32
A
S
S
E
M
B
L
E
R

-TC2

Option:

Select the Project | Processor Options... menu item. Select the

CPU tab. Select TC2 in the CPU type box.

-TC2

Default:

(none) The use of TriCore2 instructions is not allowed.

Description:

The -TC2 option allows the use TriCore2 instructions in the assembly

code. When you select this option, the define _TC2 is set to 1 allowing

you to use single precision floating point instructions. Default the define

_TC2 is set to 0.

Example:

To allow the use of TriCore2 instructions in the assembly code, enter:

astri –TC2 test.src

Assembler 2–33

• • • • • • • •

-o

Option:

-o filename

Arguments:

An output filename. The filename may not start immediately after the

option. There must be a tab or space in between.

Default:

Basename of assembly file with .obj suffix.

Description:

Use filename as output filename of the assembler, instead of the basename

of the assembly file with the .obj extension.

Example:

To create the object file myfile.obj instead of test.obj , enter:

astri test.src –o myfile.obj

Chapter 22–34
A
S
S
E
M
B
L
E
R

-P (aspcp only)

Option:

Select the Project | PCP Assembler Options | Project
Options... menu item. Enter a prefix (or no prefix) in the Prefix for
global symbols field in the Misc tab.

-P[prefix]

Default:

-P_PCP_

Description:

With this option you can specify a prefix to use for global and external

symbols. The default prefix is _PCP_. The prefix is useful to disinguish

these symbols from symbols generated by the astri assembler.

Example:

To use no prefix for global and external symbols (same as astri

assembler), enter:

aspcp –P test.pcp

Assembler 2–35

• • • • • • • •

-p (aspcp only)

Option:

Select the Project | PCP Assembler Options | Project
Options... menu item. Select either PCP or PCP2 in the misc. tab.

-p[1|2]

Default:

-p1

Description:

Choose the syntax for the PCP assembler, either the original syntax (-p1,

the default), or the PCP2 syntax (-p2)

Example:

To use PCP syntax, enter:

aspcp less.PCP
aspcp –p less.PCP
aspcp –p1 less.PCP

To use PCP2 syntax, enter:

aspcp –p2less2.PCP

Chapter 22–36
A
S
S
E
M
B
L
E
R

-pRAPTOR (aspcp only)

Option:

Select the Project | Processor Options... menu item. Select the

CPU tab. Select either the Raptor in the CPU type box.

-pRAPTOR

Description:

With this option you tell the assembler to generate code for the Raptor.

Example:

To assemble the file test.src for the Raptor:

aspcp –pRAPTOR test.src

Assembler 2–37

• • • • • • • •

-pTC1775 (aspcp only)

Option:

Select the Project | Processor Options... menu item. Select the

CPU tab. Select either the TC1775A or the TC1775B in the CPU type box.

-pTC1775

Description:

With this option you tell the assembler to generate code for the TC1775A

or TC1775B.

Example:

To assemble the file test.src for the TC1775A or TC1775B:

aspcp –pTC1775 test.src

Chapter 22–38
A
S
S
E
M
B
L
E
R

-t

Option:

Select the Project | Assembler Options | Project Options...
menu item. Select the List File tab. Enable the Section Summary
checkbox. (Only available if the Generate List File checkbox is

enabled.)

-t[flag]

Description:

With this option you tell the assembler to display section information. For

each section its memory address, size, number of cycles and name is listed

on stdout or in the list file.

You can set the following flags. Use a lowercase letter to switch the flag

'on' and an uppercase letter to switch the flag 'off'.

c/C Display section information on stdout

l/L Write section information to the list file

With -tl, the assembler writes the section information to the list file. You

must specify this option in combination with the option -l (generate listing

file). If you specify -t without flags, both flags are enabled (-tcl).

Example:

astri –tcL test.src

The following section information is displayed on stdout:

Section summary:

 NR ADDR SIZE CYCLE NAME
 1 0007 5 .text
 2 021234 000e 0 .data
 3 0001 0 .tiny

-l

Assembler 2–39

• • • • • • • •

-V

Option:

-V

Description:

With this option you can display the version header of the assembler. This

option must be the only argument of of the assembler. Other options are

ignored. The assembler exits after displaying the version header.

Example:

astri –V

TASKING TriCore assembler v x. yr z Build nnn
Copyright 1996– year Altium BV Serial# 00000000

aspcp –V

TASKING PCP assembler v x. yr z Build nnn
Copyright 1998– year Altium BV Serial# 00000000

Chapter 22–40
A
S
S
E
M
B
L
E
R

-v

Option:

-v

Description:

Verbose mode. With this option specified, the assembler prints the

filenames and the assembly passes while they progress. So you can see the

current status of the assembler.

Example:

astri –v test.src

Parsing ”test.src”
 30 lines (total now 31)
Optimizing
Evaluating absolute ORG addresses
Parsing symbolic debug information
Creating object file ”test.obj”
Closing object file

Assembler 2–41

• • • • • • • •

-w

Option:

Select the Project | Assembler Options | Project Options...
menu item. Select the Suppress all warnings check box in the Misc
tab.

-w[num]

Arguments:

Optionally the warning number to suppress.

Description:

-w suppress all warning messages. -wnum suppresses warning messages

with number num. More than one -wnum option is allowed.

Example:

The following example suppresses warnings 113 and 114:

astri –w113 –w114 file.src

Chapter 22–42
A
S
S
E
M
B
L
E
R

-WAE

Option:

-WAE

Description:

Treat warning messages as errors. This also affects the return value of the

application when only warnings occur. A build process will now stop

when warnings occur.

Example:

astri –WAE test.src

Assembler 2–43

• • • • • • • •

-z

Option:

Select the Project | Processor Options... menu and chooose the

Bypasses TC1 v1.2 tab or the Bypasses TC1 v1.3 tab. Then select

the bypasses you want to enable.

-zdefect

Arguments:

The name of a particular CPU functional problem that you want to be

checked. The syntax used by Infineon to identify a CPU functional

problems is:

TC<architecture_nr><version>_<module_name><problem_nr>

For example: TC113_CPU5 (TC1, version 1.3, module �CPU", problem #5)

Description:

With the option -z you can enable or disable specific CPU functional

problem checks. You can specify more than one defect.

To enable the assembler checks for all TriCore CPU TC112 problems

(respectively TC113 problems) at once, use the command line option

-zTC112_DEFECTS (respectively -zTC113_DEFECTS).

Example:

The following example enables the checks for CPU functional problem

TC112_COR1:

astri –zTC112_COR1

Appendix CPU Functional Problems in the C Cross-Compiler User's Guide

for a complete overview of all CPU functional problems that are supported

by the assembler.

Chapter 22–44
A
S
S
E
M
B
L
E
R

2.6 ENVIRONMENT VARIABLES USED BY THE

ASSEMBLER

ASTRIINC With this environment variable you can specify directories

where the astri assembler will search for include files. You

can overrule this search path with the -I command line

option. Multiple pathnames can be separated with

semicolons.

ASPCPINC With this environment variable you can specify directories

where the aspcp assembler will search for include files. You

can overrule this search path with the -I command line

option. Multiple pathnames can be separated with

semicolons.

TMPDIR With the TMPDIR environment symbol you can specify the

directory where the assembler can generate temporary files.

If the assembler terminates normally, the temporary file will

be removed automatically.

If you do not set TMPDIR, the temporary file will be created

in the current working directory.

2.7 LIST FILE

The list file is the output file of the assembler which contains information

about the generated code. The amount and form of information depends

on the use of the -L option. The name is the basename of the output file

with the extension .lst . The list file is only generated when the -l option

is supplied. When -l is supplied, a list file is also generated when

assembly errors/warnings occur. In this case the error/warning is given just

below the source line containing the error/warning.

From EDE you can control the list file generation in the Listing tab of

the Project | Assembler Options | Project Options... menu

item.

Assembler 2–45

• • • • • • • •

2.7.1 ABSOLUTE LIST FILE GENERATION

After locating the whole application, an absolute list file can be generated

for all assembly source input files with the assembler. To generate an

absolute list file from an assembly source file the source code needs to be

assembled again with use of the locator map file of the application the

assembly source belongs to. See section 10.5, Locator Output, how to

produce a locator map file.

An absolute list file contains absolute addresses whereas a standard list file

contains relocatable addresses.

When a map file is specified as input for the assembler, only the absolute

list file is generated when list file generation is enabled with the list file

option -l. The previously generated object file is not overwritten when

absolute list file generation is enabled. Absolute list file generation is only

enabled when a map file is specified on the input which contains the

filename extension .map .

When you want to generate an absolute list file, you have to specify the

same options as you did when generating the object file. If the options are

not the same you might get an incorrect absolute list file.

Example:

Suppose your first invocation was:

astri –ig test.src

then when you want to generate an absolute list file you have to specify

the same option (-ig) and the -l option:

astri –ig –l test.src test.map

With this command he absolute list file "test.lst" is created.

2.7.2 PAGE HEADER

The page header consists of four lines.

The first line contains the following information:

- information about assembler name

- version and serial number

- copyright notice

Chapter 22–46
A
S
S
E
M
B
L
E
R

The second line contains a title specified by the TITLE (first page) or

STITLE (succeeding pages) control and a page number.

The third line contains the name of the file (first page) or is empty

(succeeding pages).

The fourth line contains the header of the source listing as described in

the next section.

Example:

TriCore assembler v a. b r c SN zzzzzzzz –zzz (c) year TASKING, Inc.

Title for demo use only page 1

/tmp/hello.asm

ADDR CODE CYCLES LINE SOURCELINE

2.7.3 SOURCE LISTING

The following line appears in the page header:

ADDR CODE LINE SOURCELINE

The different columns are discussed below.

ADDR This is the memory address. The address is a (8 digit)

hexadecimal number that represents the offset from the

beginning of a relocatable section or the absolute address for

an absolute section.

In lines that generate object code, the value is at the

beginning of the line. For any other line there is no display.

Assembler 2–47

• • • • • • • •

Example:

ADDR CODE LINE SOURCELINE
00000000 1 .sdecl ”code.add”,CODE,ABS24
00000000 2 .sect ”code.add”
00000000 3 add:
00000000 85r5rrrr 4 ld.w d5,incr
00000004 0B540020 5 add d2,d4,d5
00000008 0090 6 ret
00000000 8 .sdecl ”data.add”,DATA,ABS18
00000000 9 .sect ”data.add”
00000000 34120000 10 incr: .word 0x1234
00000000 12 .sdecl ”bss.add”,DATA,ABS18
00000000 13 .sect ”bss.add”
00000000 14 buf: .space 4
 | RESERVED
00000003

CODE This is the object code generated by the assembler for this

source line, displayed in hexadecimal format. The displayed

code need not be the same as the generated code that is

entered in the object module. The code can also be

relocatable code or a relocatable part and external part. In

this case the letter 'r' is printed for the relocatable code part

in the listing.

For lines that allocate space (.SPACE) the code field contains

the text "RESERVED".

Example:

ADDR CODE LINE SOURCELINE
 .
 .
00000000 85r5 rrrr 4 ld.w d5,incr
00000004 0B540020 5 add d2,d4,d5
00000008 0090 6 ret
 .
 .
00000000 34120000 10 incr: .word 0x1234
00000000 12 .sdecl ”bss.add”,DATA,ABS18
00000000 13 .sect ”bss.add”
00000000 14 buf: .space 4
 | RESERVED
00000003

In this example the word "RESERVED" marks the space

reserved for the .space directive.

Chapter 22–48
A
S
S
E
M
B
L
E
R

LINE This column contains the line number. This is a decimal

number indicating each input line, starting from 1 and

incrementing with each source line. If listing of the line is

suppressed (i.e. by $LIST OFF), the number increases by one

anyway.

Example:

The following source part,

 ;Line 12
 $LIST OFF
 ;Line 14
 $LIST ON
 ;Line 16

results in the following list file part:

ADDR CODE CYCLES LINE SOURCELINE
 .
 .
 12 ;Line 12
 16 ;Line 16

SOURCELINE

This column contains the source text. This is a copy of the

source line from the source module. For ease of reading the

list file, tabs are expanded with sufficient numbers of blank

spaces.

If the source column in the listing is too narrow to show the

whole source line, the source line is continued in the next

listing line.

Errors and warnings are included in the list file following the

line in which they occurred.

Example:

ADDR CODE LINE SOURCELINE

00000000 1 .sdecl ”code.error”,CODE,ABS24

00000000 2 .sect ”code.error”

00000000 3 error:

00000000 C202 4 add d2,16

astri W140: error.asm line 4 : expression must be between –8 and 7

00000002 0090 5 ret

3

SOFTWARE
CONCEPT

C
H

A
P

T
E

R

Chapter 33–2
C
O
N
C
E
P
T

3

C
H

A
P

T
E

R

Software Concept 3–3

• • • • • • • •

3.1 INTRODUCTION

Complex software projects often are divided into smaller program units.

These subprograms may be written by a team of programmers in parallel,

or they may be programs written for a precious development effort that

are going to be reused. The TASKING assembler provides directives to

subdivide a program into smaller parts, modules. Symbols can be defined

local to a module, so that symbol names can be used without regard to the

symbols in other modules. Code and data can be organized in separate

sections. These sections can be named in such a way that different

modules can implement different parts of these sections. These sections

can be located in memory by the locator so that concerns about memory

placement are postponed until after the assembly process. By using

separate modules, a module can be changed without re-assembling the

other modules. This speeds up the turnaround time during the

development process.

3.2 MODULES

Modules are the separate implementation parts of a project. Each module

is defined in a separate file. A module is assembled separately from other

modules. By using the .INCLUDE directive common definitions and

macros can be included in each module. Using the mktri utility the

module file and include file dependencies can be specified so only the

correct modules are re-assembled after changes to one of the files the

modules depend upon.

3.2.1 MODULES AND SYMBOLS

A module can use symbols defined in other modules and in the module

itself. Symbols defined in a module can be local (other modules cannot

access it) or global (other modules have access to it). Symbols outside of a

module can be defined with the .EXTERN directive. Local symbols are

symbols defined by the .LOCAL directive or symbols defined with an .SET

or .EQU directive. Global symbols are either labels, or symbols explicitly

defined global with the .GLOBAL directive.

Chapter 33–4
C
O
N
C
E
P
T

3.3 SECTIONS

Sections are relocatable blocks of code and data. Sections are defined with

the .SDECL directive and have a name. A section may have attributes to

instruct the locator to place it on a predefined starting address, in short or

non-short memory or that it may be overlaid with another section. See

the .SDECL directive discussion for a complete description of all possible

attributes. Sections are defined once and are activated with the .SECT

directive. The linker will check between different modules and emits an

error message if the section attributes do not match. The linker will also

concatenate all matching section definitions into one section. So, all ".text"

sections generated by the compiler will be linked into one big ".text"

chunk which will be located in one piece. By using this naming scheme it

is possible to collect all pieces of code or data belonging together into one

bigger section during the linking phase. A .SECT directive referring to an

earlier defined section is called a continuation. Only the name can be

specified.

3.3.1 SECTION NAMES

The assembler generates object files in relocatable IEEE-695 object format.

The assembler groups units of code and data in the object file using

sections. All relocatable information is related to the start address of a

section. The locator assigns absolute addresses to sections. A section is the

smallest unit of code or data that can be moved to a specific address in

memory after assembling a source file. The compiler requires that the

assembler supports several different sections with appropriate attributes to

assign specific characteristics to those sections. (section with read only

data, sections with code etc.)

.SDECL sect_name, sect_type [, attrib]... [AT address]

A section must be declared before it can be used. The .SDECL directive

declares a section with its attributes. A section name can be any identifier.

The '@' character is not allowed in regular section names. The assembler

and linker use this character to create overlayable sections. This is

explained below.

The section type can be:

sect_type : CODE | DATA

This defines in what memory (CODE or DATA) the section is located.

Software Concept 3–5

• • • • • • • •

The section attributes can be:

attrib : ABS24 direct addressable code memory (astri only)

ABS18 direct addressable data memory (astri only)

FPI addressable through FPI bus (aspcp only)

CLEAR clear section during program startup

NOCLEAR section is not cleared during startup

INIT initialization data copied from ROM

to RAM at startup

MAX common, overlay with other parts with

the same name, is implicit a type of

'noclear'

ROMDATA section contains data instead of

executable code

The ABS24 and ABS18 attributes specify direct addressable CODE or

DATA memory for the astri assembler. FPI is only valid for the aspcp

assembler; this attribute specifies that a section must be accessed through

the FPI bus. This section will not be located in PCP internal memory, but

in TriCore memory.

Unless disabled, the startup code in the toolchain has to clear data sections

with the CLEAR attribute. These sections contain data space allocations for

which no initializers have been specified. CLEAR sections are zeroed

(cleared) at program startup. Sections can be excluded from this

initialization with the NOCLEAR attribute. This is also the default situation

for all sections.

The MAX attribute changes the way the linker determines the section size.

Normally the linker determines the section size by accumulating the

contents and the sizes of sections with the same name in different object

modules. When sections with the same name occur in different object

modules with the MAX attribute, the linker generates a section of which

the size is the maximum of the sizes in the individual object modules.

It is also possible to control the size of MAX sections on a module basis,

with the section activation attribute RESET. The assembler starts

recounting storage allocation for MAX sections with the same name, when

they are re-activated with the RESET section activation attribute. For these

sections the assembler generates the maximum size they occupy in the

object file. The section activation attribute RESET applies to MAX sections

only. Example:

Chapter 33–6
C
O
N
C
E
P
T

.SDECL ”.newdat”, DATA, MAX ;section declaration

.SECT ”.newdat” ;section activation
 ...
.SECT ”.newdat”, RESET ;section re–activation

Sections become absolute when an address has been specified in the

declaration using the AT keyword. The assembler generates information in

the object file which instructs the locator to put the section contents at the

specified address. It is not allowed to make an overlayable section

absolute. The assembler reports an error if the AT keyword is used in

combination with the OVERLAY section attribute.

After a section has been declared, it can be activated and re-activated with

the .SECT directive:

 .SDECL ”.STRING”, CODE, ROMDATA
 .SECT ”.STRING”
_l001: .ASCII ”hello world”

All instructions and pseudos which generate data or code must be within

an active section. The assembler emits a warning if code or data starts

without a section definition and activation.

3.3.2 ABSOLUTE SECTIONS

Absolute sections (i.e. .SDECL directives with a start address) may only be

continued in the defining module (continuation). When such a section is

defined in the same manner in another module, the locator will try to

place the two sections at the same address. This results in a locator error.

When an absolute section is defined in more than one module, the section

must be defined relocatable and its starting address must be defined in the

locator description (.dsc) file. Overlay sections may not be defined

absolute.

Software Concept 3–7

• • • • • • • •

3.3.3 SECTION EXAMPLES

Some examples of the .SDECL and .SECT directives are as follows:

.SDECL ”.CONST”, CODE AT 0x1000

.SECT ”.CONST”

Defines and activates a section named .CONST starting on address

0x1000. Other parts of the same section, and in the same module, must

be defined with:

.SECT ”.CONST”

.SDECL ”.text”, CODE

.SECT ”.text”

Defines and activates a relocatable section in CODE memory. Other

parts of this section, with the same name, may be defined in the same

module or any other module. Other modules should use the same

.SDECL statement. When necessary, it is possible to give the section an

absolute starting address with the locator description file.

.SDECL ”.fardata”, DATA, CLEAR

.SECT ”.fardata”

Defines a relocatable named section in DATA memory. The CLEAR

attribute instructs the locator to clear the memory located to this

section. When this section is used in another module it must be

defined identically. Continuations of this section in the same module

are as follows:

.SECT ”.fardata”

Chapter 33–8
C
O
N
C
E
P
T

4

ASSEMBLY
LANGUAGE

C
H

A
P

T
E

R

Chapter 44–2
L
A
N
G
U
A
G
E

4

C
H

A
P

T
E

R

Assembly Language 4–3

• • • • • • • •

4.1 INPUT SPECIFICATION

An assembly program consists of zero or more statements, one statement

per line. A statement may optionally be followed by a comment, which is

introduced by a semicolon character (;) and terminated by the end of the

input line. Any source statement can be extended to one or more lines by

including the line continuation character (\) as the last character on the

line to be continued. The length of a source statement (first line and any

continuation lines) is only limited by the amount of available memory.

Upper and lower case letters are considered equivalent for assembler

mnemonics and directives, but are considered distinct for labels, symbols,

directive arguments, and literal strings.

A statement can be defined as:

[label:] [instruction | directive | macro_call] [;comment]

where,

label is an identifier or number. A label does not have to start on

the first position of a line, but a label must always be

followed by a colon.

identifier can be made up of letters, digits and/or underscore

characters (_). The first character may not be a digit. The size

of an identifier is only limited by the amount of available

memory.

number is a number ranging from 1 to 255. This type of label

is called a numeric label or local label To refer to a

numeric label, you must put an n (next) or p (previous)

immediately after the label. This is required because the same

label number may be used repeatedly.

Example:

LAB1: ;This is a label
1: j 1p ;This is an endless loop
 ;using numeric labels

instruction is any valid TriCore assembly language instruction consisting

of a mnemonic and operands. Operands are described in the

chapter Operands and Expressions.

Chapter 44–4
L
A
N
G
U
A
G
E

Examples:

ret ; No operand
call label ; One operand
mov D0,#1 ; Two operands
jne D0,#0,loop ; Three operands
madd D2,D3,D0,D1 ; Four operands
insert D1,D2,#3,#16,#2 ; Five operands

directive any one of the assembler directives; described separately in

the chapter Assembler Directives.

macro_call a call to a previously defined macro. See the chapter Macro
Operations.

A statement may be empty.

4.2 ASSEMBLER SIGNIFICANT CHARACTERS

There are several one character sequences that are significant to the

assembler. Some have multiple meanings depending on the context in

which they are used. Special characters associated with expression

evaluation are described in Chapter 5, Operands and Expressions. Other

assembler-significant characters are:

; - Comment delimiter

\ - Line continuation character or

Macro dummy argument concatenation operator

? - Macro value substitution operator

% - Macro hex value substitution operator

^ - Macro local label operator

" - Macro string delimiter or

Quoted string DEFINE expansion character

@ - Function delimiter

* - Location counter substitution

Individual descriptions of each of the assembler special characters follow.

They include usage guidelines, functional descriptions, and examples.

Assembly Language 4–5

• • • • • • • •

;

Comment Delimiter Character

Any number or characters preceded by a semicolon (;), but not part of a

literal string, is considered a comment. Comments are not significant to the

assembler, but they can be used to document the source program.

Comments will be reproduced in the assembler output listing. Comments

are preserved in macro definitions.

Comments can occupy an entire line, or can be placed after the last

assembler-significant field in a source statement. The comment is literally

reproduced in the listing file.

Examples:

; This comment begins in column 1 of the source file

Loop: CALL COMPUTE ; This is a trailing comment
 ; These two comments are preceded
 ; by a tab in the source file

Chapter 44–6
L
A
N
G
U
A
G
E

\

Line Continuation Character or

Macro Dummy Argument Concatenation Operator

Line Continuation

The backslash character (\), if used as the last character on a line,

indicates to the assembler that the source statement is continued on the

following line. The continuation line will be concatenated to the previous

line of the source statement, and the result will be processed by the

assembler as if it were a single line source statement. The maximum

source statement length (the first line and any continuation lines) is 512

characters.

Example:

; THIS COMMENT \
EXTENDS OVER \
THREE LINES

Macro Argument Concatenation

The backslash (\) is also used to cause the concatenation of a macro

dummy argument with other adjacent alphanumeric characters. For the

macro processor to recognize dummy arguments, they must normally be

separated from other alphanumeric characters by a non-symbol character.

However, sometimes it is desirable to concatenate the argument characters

with other characters. If an argument is to be concatenated in front of or

behind some other symbol characters, then it must be followed by or

preceded by the backslash, respectively.

See also section 6.5.1.

Example:

Suppose the source input file contained the following macro definition:

SWAP_MEM .macro REG1,REG2 ;swap memory contents
 LD.W D0,[A\REG1] ;using D0 as temp
 LD.W D1,[A\REG2] ;using D1 as temp
 ST.W [A\REG1],D1
 ST.W [A\REG2],D0
 .endm

Assembly Language 4–7

• • • • • • • •

The concatenation operator (\) indicates to the macro processor that the

substitution characters for the dummy arguments are to be concatenated in

both cases with the character A. If this macro were called with the

following statement,

 SWAP_MEM 0,1

the resulting expansion would be:

 LD.W D0,[A0]
 LD.W D1,[A1]
 ST.W [A0],D1
 ST.W [A1],D0

Chapter 44–8
L
A
N
G
U
A
G
E

?

Return Value of Symbol Character

The ?symbol sequence, when used in macro definitions, will be replaced

by an ASCII string representing the value of symbol. This operator may be

used in association with the backslash (\) operator. The value of symbol
must be an integer.

See also section 6.5.2.

Example:

Consider the following macro definition:

SWAP_MEM .macro REG1,REG2 ;swap memory contents
 LD.W D0,_lab\ ?REG1 ;using D0 as temp
 LD.W D1,_lab\ ?REG2 ;using D1 as temp
 ST.W _lab\ ?REG1,D1
 ST.W _lab\ ?REG2,D0
 .endm

If the source file contained the following .SET statements and macro call,

AREG .set 1
BREG .set 2
 SWAP_MEM AREG,BREG

the resulting expansion as it would appear on the source listing would be:

 LD.W D0,_lab1
 LD.W D1,_lab2
 ST.W _lab1,D1
 ST.W _lab2,D0

Assembly Language 4–9

• • • • • • • •

%

Return Hex Value of Symbol Character

The %symbol sequence, when used in macro definitions, will be replaced

by an ASCII string representing the hexadecimal value of symbol. This

operator may be used in associations with the backslash (\) operator. The

value of symbol must be an integer.

See also section 6.5.3.

Example:

Consider the following macro definition:

GEN_LAB .macro LAB,VAL,STMT
LAB\ %VAL: STMT
 .endm

If this macro were called as follows,

NUM .set 10
 GEN_LAB HEX,NUM,’NOP’

The resulting expansion as it would appear in the listing file would be:

HEXA: NOP

Chapter 44–10
L
A
N
G
U
A
G
E

^

Macro Local Label Character

The circumflex (^), when used as a unary operator in a macro expansion,

will cause name mangling of any associated local label. Normally, the

macro preprocessor will leave any local label inside a macro expansion to

a normal label in the current module. By using the Local Label character

(^), the label is made a unique label. This is done by removing the leading

underscore and appending a unique string "__M_Lxxxxxx" where

"xxxxxx" is a unique sequence number. The ^-operator has no effect

outside of a macro expansion. The ^-operator is useful for passing label

names as macro arguments to be used as local label names in the macro.

Note that the circumflex is also used as the binary exclusive or operator.

See also section 6.5.5.

Example:

Consider the following macro definition:

LOAD .macro ADDR
 ADDR:
 LD.W D0,ADDR
 ^ADDR:
 LD.W D0, ^ADDR
 .endm

If this macro were called as follows,

 LOAD _LOCAL

the resulting expansion as it would appear in the listing file would be:

_LOCAL:
 LD.W D0,_LOCAL
_LOCAL__M_L000001:
 LD.W D0,_LOCAL__M_L000001

Assembly Language 4–11

• • • • • • • •

"

Macro String Delimiter or

Quoted String .DEFINE Expansion Character

Macro String

The double quote ("), when used in macro definitions, is transformed by

the macro processor into the string delimiter, the single quote ('). The

macro processor examines the characters between the double quotes for

any macro arguments. This mechanism allows the use of macro arguments

as literal strings.

See also section 6.5.4.

Example:

Using the following macro definition,

CSTR .macro STRING
 .ascii ”STRING”
 .endm

and a macro call,

 CSTR ABCD

the resulting macro expansion would be:

 .ascii ’ABCD’

Chapter 44–12
L
A
N
G
U
A
G
E

Quoted String DEFINE Expansion

A sequence of characters which matches a symbol created with a .DEFINE

directive will not be expanded if the character sequence is contained

within a quoted string. Assembler strings generally are enclosed in single

quotes ('). If the string is enclosed in double quotes (") then .DEFINE

symbols will be expanded within the string. In all other respects usage of

double quotes is equivalent to that of single quotes.

Example:

Consider the source fragment below:

 .define LONG ’short’
STR_MAC .macro STRING
 .message ’This is a LONG STRING’
 .message ”This is a LONG STRING”
 .endm

If this macro were invoked as follows,

 STR_MAC sentence

then the resulting expansion would be:

 .message ’This is a LONG STRING’
 .message ’This is a short sentence’

Assembly Language 4–13

• • • • • • • •

@

Function Delimiter

All assembler built-in functions start with the @ symbol. See section 5.4 for

a full discussion of these functions.

Example:

SVAL .equ @ABS(VAL) ; Obtain absolute value

Chapter 44–14
L
A
N
G
U
A
G
E

*

Location Counter Substitution

When used as an operand in an expression, the asterisk represents the

current integer value of the run-time location counter.

Example:

 .sdecL ”.CODE”, CODE AT 0x100
 .sect ”.CODE”
XBASE .equ * +0x20 ; XBASE = 0x120

5

OPERANDS AND
EXPRESSIONS

C
H

A
P

T
E

R

Chapter 55–2
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

5

C
H

A
P

T
E

R

Operands and Expressions 5–3

• • • • • • • •

5.1 OPERANDS

An operand is the part of the instruction that follows the instruction

opcode. There can be one or two or even no operands in an instruction.

An operand of an assembly instruction has one of the following types:

Operands Description

expr any valid expression as described in the section 5.2,

Expressions.

reg any valid register.

symbol a symbolic name as created by an equate. A symbol can be

an expression or a register name.

address a combination of expr, reg and symbol.

label a label reference as described in the section 4.1, Input
Specification.

If an expression can be completely evaluated at assembly time, it is called

an absolute expression; if it is not, it is called a relocatable expression.

See the section 5.2, Expressions, for more details.

5.1.1 TRICORE ADDRESSING MODES

The TriCore assembly language has several addressing modes. These are

listed below with a short description. For details see the TriCore CPU

Manual.

Absolute

The instruction uses an 18-bit constant as the memory address. The full

32-bit address results from moving the most significant 4 bits of the 18-bit

constant to the most significant bits of the 32-bit address. The other bits

are zero filled.

Syntax:

constant18

Chapter 55–4
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

Base+offset

The effective address is the sum of an address register and the

sign-extended 10-bit or 16-bit offset.

Syntax:

[An]offset10
[An]offset16

Pre-increment

This addressing mode uses the sum of the address register and the offset

both as the effective address and as the value written back into the

address register.

Syntax:

[+An]offset10

Post-increment

This addressing mode uses the value of the address register as the

effective address, and then updates this register by adding the

sign-extended 10-bit offset to its previous value. Post-decrement is

obtained by using a negative offset.

Syntax:

[An+]offset10

Circular

This addressing mode is used for accessing data values in circular buffers.

It uses an address register pair to hold the state it requires. The even

register is always a base address (B). The most-significant half of the odd

register is the buffer size (L). The least significant half holds the index into

the buffer (I). The effective address is (B+I). The buffer occupies memory

from addresses B to B+L-1. The 10-bit offset is specified in the instruction

word and is a byte-offset that can be either positive or negative.

Syntax:

[An+c]offset10

Operands and Expressions 5–5

• • • • • • • •

Bit-reverse

Bit reverse addressing is used to access arrays used in FFT algorithms.

Bit-reverse addressing uses an address register pair to hold the required

state. The even register is the base address of the array (B), the

least-significant half of the odd register is the index into the array (I), and

the most-significant half is the modifier (M) which is added to I after every

access. The effective address is B+reverse(I). The reverse() function

exchanges bit n with bit (15-n) for n = 0, ..., 7. The index, I, is

post-incremented and its new value is (I + M), where M is the most

significant half of the odd register.

Syntax:

[An+r]

5.1.2 PCP ADDRESSING MODES

The PCP assembly language has several addressing modes. These

addressing modes are used for FPI addressing, PRAM data indirect

addressing or flow control destination addressing. For details see the

PCP/DMA Architecture manual from Siemens.

5.2 EXPRESSIONS

An operand of an assembler instruction or directive is either an assembler

symbol, a register name or an expression. An expression is a sequence of

symbols that denotes an address in a particular memory space or a

number.

Expressions that can be evaluated at assembly time are called absolute

expressions. Expressions where the result is unknown until all sections

have been combined and located are called relocatable expressions.

When any operand of an expression is relocatable the entire expression is

relocatable. Relocatable expressions are emitted in the object file and

evaluated by the linker or the locator. Relocatable expressions may only

contain integral functions. An error is emitted when during object creation

non-IEEE relocatable expressions are found.

An expression has a type which depends on the type of the identifiers in

the expression. See section 5.2.4, Expression Type, for details.

Chapter 55–6
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

The assembler evaluates expressions with 64-bit precision in two's

complement.

The syntax of an expression can be any of the following:

- number

- expression_string

- symbol

- expression binary_operator expression

- unary_operator expression

- (expression)

- function

All types of expressions are explained below and in the following sections.

() You can use parentheses to control the evaluation order of the

operators. What is between parentheses is evaluated first.

Examples:

(3+4)*5 ; Result is 35.
 ; 3 + 4 is evaluated first.
3+(4*5) ; Result is 23.
 ; 4 * 5 is evaluated first.
 ; parentheses are superfluous
 ; here

5.2.1 NUMBER

Numeric constants can be used in expressions. If there is no prefix, the

assembler assumes the number is decimal.

number can be one of the following:

- 0Bbin_num
- dec_num
- 0Xhex_num

Lowercase equivalences are allowed: 0b, 0x.

bin_num is a binary number formed of '0'-'1' starting with '0B' or '0b'.

Examples: 0B1001; 0B1011; 0b01100100;

dec_num is a decimal number formed of '0'-'9'.

Operands and Expressions 5–7

• • • • • • • •

Examples: 12; 5978;

hex_num is a hexadecimal number formed of the characters '0'-'9' and

'a'-'f' or 'A'-'F' starting with a '0X' or '0x'.

Examples: 0x45; 0xFFD4; 0x9abc

5.2.2 EXPRESSION STRING

An expression_string is a string with an arbitrary length evaluating to a

number. The value of the string is calculated by taking the first 4

characters padded with 0 to the left.

string is a string of ASCII characters, enclosed in single (’) or

double (″) quotes. The starting and closing quote must be the

same. To include the enclosing quote in the string, double it.

E.g. the string containing both quotes can be denoted as:

″ ′ ″″ ″ or ′ ′ ′ ″ ′ .

See the chapter Macro Operations for the differences

between single and double quoted strings.

Examples:

’A’+1 ; a 1–character ASCII string,
 ; result 0x42
″9C″+1 ; a 2–character ASCII string,
 ; result 0x3944

5.2.3 SYMBOL

A symbol is an identifier. A symbol represents the value of an identifier
which is already defined, or will be defined in the current source module

by means of a label declaration or an equate directive.

Examples:

CON1 .EQU 3 ; The variable CON1 represents
 ; the value of 3

LD.W D0,CON1+20 ; Load D0 with contents of
 ; address 23

Chapter 55–8
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

When you invoke the assembler, one of the following predefined symbol

exists:

_ASPCP contains a string with the name of the assembler ("aspcp")

_ASTRI contains a string with the name of the assembler ("astri")

5.2.4 EXPRESSION TYPE

The type of an expression is either a number (integral) or an address. The

result type of an expression depends on the operator and its operands.

The tables below summarize all available operators.

Please note:

1. a label is of type 'address'; an equate symbol has the type of the equate

expression; see section 4.1, Input Specification, for a description of labels.

2. the type of an untyped symbol can be an address or a number, depending

on the context; the result of the operation can be determined using the

tables;

3. the binary logical and relational operators (||, &&, ==, !=, <, <=, >, >=)

accept any combination of operands, the result is always the integral

number 0 or 1;

4. the binary shift and bitwise operators <<, >>, |, & and ^ only accept

integral operands.

The following table shows the result type of expressions with unary

operators (a '*' indicates an illegal combination).

Operator integer addr

~ integer *

! integer *

– integer *

+ integer integer

Table 5-1: Expression type, unary operators

The following table shows the result type of expressions with binary

numerical operators.

Operands and Expressions 5–9

• • • • • • • •

Operator integer,
integer

addr,
integer

integer,
addr

addr,addr

– integer addr * integer

+ integer addr addr *

* integer * * *

/ integer * * *

% integer * * *

Table 5-2: Expression type, binary numerical operators

a string operand will be converted to an integral number

The following table shows the result type of functions. A '-' in the column

Operands means that the function has no operands.

Function Operands Result

@ABS() integer integer

@ARG() symbol
integer

integer
integer

@ASPCP() – string

@ASTRI() – string

@CAT() string,string string

@CNT() – integer

@DEF() symbol integer

@HI() integer integer

@HIS() integer integer

@LEN() string integer

@LO() integer integer

@LOS() integer integer

@LST() – integer

@MAC() symbol integer

@MAX() integer,integer,... integer

@MIN() integer,integer,... integer

@MXP() – integer

@POS() string,string
string,string,integer

integer
integer

@SCP() string,string integer

Chapter 55–10
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

ResultOperandsFunction

@SGN() integer integer

@SUB() string,integer,integer string

Table 5-3: Expression type, functions

5.3 OPERATORS

There are two types of operators:

- unary operators

- binary operators

Operators can be arithmetic operators, shift operators, relational operators,

bitwise operators, or logical operators. All operators are described in the

following sections.

If the grouping of the operators is not specified with parentheses, the

operator precedence is used to determine evaluation order. Every operator

has a precedence level associated with it. The following table lists the

operators and their order of precedence (in descending order).

Operators Type

+, –, ~, ! unary

*, /, % binary

+, – binary

<<, >> binary

<, <=, >, >= unary

==, != binary

& binary

^ binary

 | binary

&& binary

|| binary

Table 5-4: Operators Precedence List

Operands and Expressions 5–11

• • • • • • • •

Except for the unary operators, the assembler evaluates expressions with

operators of the same precedence level left-to-right. The unary operators

are evaluated right-to-left . So, –4 + 3 * 2 evaluates to (–4) + (3 *
2) .

5.3.1 ADDITION AND SUBTRACTION

Synopsis:

Addition: operand +operand

Subtraction: operand - operand

The + operator adds its two operands and the - operator subtracts them.

The operands can be any expression evaluating to an absolute number or

a relocatable operand, with the restrictions of Table 5-2.

Examples:

0xA342 + 23 ; addition of absolute numbers
0xFF1A – AVAR ; subtraction with the value of
 ; symbol AVAR

5.3.2 SIGN OPERATORS

Synopsis:

Plus: +operand
Minus: -operand

The + operator does not modify its operand. The - operator subtracts its

operand from zero. See also the restrictions in Table 5-1.

Example:

5+–3 ; result is 2

Chapter 55–12
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

5.3.3 MULTIPLICATION AND DIVISION

Synopsis:

Multiplication: operand * operand
Division: operand / operand
Modulo: operand % operand

The * operator multiplies its two operands, the / operator performs an

integer division, discarding any remainder. The % operator also performs

an integer division, but discards the quotient and returns the remainder.

The operands can be any expression evaluating to an absolute number or

a relocatable operand, with the restrictions of Table 5-2. Note that the

right operands of the / and % operator may not be zero.

Examples:

AVAR*2 ; multiplication
0xFF3C/COUNT ; division
23%4 ; modulo, result is 3

5.3.4 SHIFT OPERATORS

Synopsis:

Shift left: operand << count
Shift right: operand >> count

These operators shift their left operand (operand) either left (<<) or right

(>>) by the number of bits (absolute number) specified with the right

operand (count). The operands can be any expression evaluating to an

(integer) number.

Examples:

AVAR>>4 ; shift right variable AVAR, 4 times

Operands and Expressions 5–13

• • • • • • • •

5.3.5 RELATIONAL OPERATORS

Synopsis:

Equal: operand == operand
Not equal: operand != operand
Less than: operand < operand
Less than or equal: operand <= operand
Greater than: operand > operand
Greater than or equal: operand >= operand

These operators compare their operands and return an absolute number

(an integer) of 1 for `true' and 0 for `false'. The operands can be any

expression evaluating to an absolute number or a relocatable operand.

Examples:

3>=4 ; result is 0 (false)
4==COUNT ; 1 (true), if COUNT is 4.
 ; 0 otherwise.
9<10 ; result is 1 (true)

5.3.6 BITWISE OPERATORS

Synopsis:

Bitwise AND: operand & operand
Bitwise OR: operand | operand
Bitwise XOR: operand ^ operand
One's complement ~ operand

The AND, OR and XOR operators take the bitwise AND, OR respectively

XOR of the left and right operand. The one's complement (bitwise NOT)

operator performs a bitwise complement on its operand. The operands

can be any expression evaluating to an (integer) number.

Chapter 55–14
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

Examples:

0BH&3 ; result is 3
 0B1011
 0B0011 &
 0B0011

~0xA ; result is 0xFFF5
 ~ 0B00000000 00001010
 = 0B11111111 11110101

5.3.7 LOGICAL OPERATORS

Synopsis:

Logical AND: operand && operand
Logical OR: operand || operand
Logical NOT: ! operand

The logical AND operator returns an integer 1 if both operands are

non-zero; otherwise it returns an integer 0. The logical OR operator

returns an integer 1 if either of its operands is non-zero; otherwise it

returns an integer 0. The ! operator performs a logical not on its operand. !

returns an integer 1 (`true) if the operand is 0; otherwise, ! returns 0

(`false'). The operands can be can be any expression evaluating to an

integer.

Examples:

0xB&&3 ; result is 1 (true)

!0xA ; result is 0 (false)
!(4<3) ; result is 1 (true)
 ; 4 < 3 result is 0 (false)

Operands and Expressions 5–15

• • • • • • • •

5.4 FUNCTIONS

The assembler has several built-in functions to support data conversion,

string comparison, and math computations. Functions can be used as

terms in any arbitrary expression. Functions have the following syntax:

@function_name(argument[,argument]...)

Functions start with the '@' sign and have zero or more arguments, and are

always followed by opening and closing parentheses. There must be no

intervening spaces between the function name and the opening

parenthesis and between the (comma-separated) arguments.

Assembler functions can be grouped into four types:

1. Mathematical functions

2. String functions

3. Macro functions

4. Assembler mode functions

5. Address calculation functions

6. Fractional functions

5.4.1 MATHEMATICAL FUNCTIONS

The mathematical functions comprise min/max functions, among others:

ABS - Absolute value

MAX - Maximum value

MIN - Minimum value

SGN - Return sign

5.4.2 STRING FUNCTIONS

String functions compare strings, return the length of a string, and return

the position of a substring within a string:

CAT - Catenate strings

Chapter 55–16
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

LEN - Length of string

POS - Position of substring in string

SCP - Compare strings

SUB - Substring from a string

5.4.3 MACRO FUNCTIONS

Macro functions return information about macros:

ARG - Macro argument function

CNT - Macro argument count

MAC - Macro definition function

MXP - Macro expansion function

5.4.4 ASSEMBLER MODE FUNCTIONS

Miscellaneous functions having to do with assembler operation:

ASPCP - Assembler executable name (aspcp only)

ASTRI - Assembler executable name (astri only)

DEF - Symbol definition function

LST - LIST control flag value

5.4.5 ADDRESS CALCULATION FUNCTIONS

Functions that are used to calculate the high and low parts of an address:

LO - Lower 16 bits of an address

HI - Upper 16 bits of an address

LOS - Lower 16 bits of an address with adjustment for signed addition

HIS - Upper 16 bits of an address with adjustment for signed addition

Operands and Expressions 5–17

• • • • • • • •

5.4.6 FRACTIONAL FUNCTIONS

Functions that are used to return the fractional representation of an

expression:

FRACT - Return 32-bit fract

SFRACT - Return 16-bit fract

5.4.7 DETAILED DESCRIPTION

Individual descriptions of each of the assembler functions follow. They

include usage guidelines, functional descriptions, and examples.

@ABS(expression)

Returns the absolute value of expression as an integer value.

Example:

LD A,#@ ABS(VAL) ;load absolute value

@ARG(symbol | expression)

Returns integer 1 if the macro argument represented by symbol or

expression is present, 0 otherwise. If the argument is a symbol it must be

single-quoted and refer to a dummy argument name. If the argument is an

expression it refers to the ordinal position of the argument in the macro

dummy argument list. A warning will be issued if this function is used

when no macro expansion is active.

Example:

.IF @ ARG(’ TWIDDLE’) ;twiddle factor provided?

@ASPCP()

Returns the name of the assembler executable. This is aspcp for the PCP

assembler.

Example:

ANAME: .byte @ ASPCP() ;ANAME = ’aspcp’

Chapter 55–18
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

@ASTRI()

Returns the name of the assembler executable. This is astri for the TriCore

assembler.

Example:

ANAME: .byte @ ASTRI() ;ANAME = ’astri’

@CAT(str1,str2)

Concatenates the two strings into one string. The two strings must be

enclosed with single or double quotes.

Example:

.DEFINE ID ”@ CAT(’Tri’,’Core’) ” ;ID = ’TriCore’

@CNT()

Returns the count of the current macro expansion arguments as an integer.

A warning will be issued if this function is used when no macro expansion

is active.

Example:

ARGCNT .SET @ CNT() ;squirrel away arg count

@DEF(symbol)

Returns an integer 1 if symbol has been defined, 0 otherwise. symbol may

be any label not associated with a .MACRO directive. If symbol is quoted it

is looked up as a .DEFINE symbol; if it is not quoted it is looked up as an

ordinary label.

Example:

.IF @ DEF(’ ANGLE’) ;assemble if ANGLE defined

@FRACT(expression)

This function returns the 32-bit fractional representation (Q31) of the

floating point expression. The expression must be in the range [-1,+1>.

Example:

.word @fract(0.1), @fract(–1.0)

Operands and Expressions 5–19

• • • • • • • •

@HI(expression)

Returns the upper 16 bits of a value. @HI(expr) is equivalent to ((expr >>

16) & 0xffff).

Example:

mov.u d2,#@lo(COUNT)
addih d2,d2,# @hi(COUNT) ;upper 16 bits

@HIS(expression)

Returns the upper 16 bits of a value, adjusted for a signed addition of the

lower 16 bits. @HIS(expr) is equivalent to (((expr + 0x800) >> 16) &

0xffff).

Example:

movh.a a3,# @his (label)
lea a3,[a3]@los(label)

@LEN(string)

Returns the length of string as an integer.

Example:

SLEN .SET @ LEN(’string’) ;SLEN = 6

@LO(expression)

Returns the lower 16 bits of a value. @LO(expr) is equivalent to (expr &
0xffff).

Example:

mov.u d2,# @lo(COUNT) ;lower 16 bits
addih d2,d2,#@hi(COUNT)

@LOS(expression)

Returns the lower 16 bits of a value, adjusted for a signed addition.

@LOS(expr) is equivalent to (((expr + 0x8000) & 0xffff) - 0x8000).

Example:

movh.a a3,#@his(label)
lea a3,[a3] @los (label)

Chapter 55–20
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

@LST()

Returns the value of the LIST control flag as an integer. Whenever a LIST

ON control is encountered in the assembler source, the flag is

incremented; when a LIST OFF control is encountered, the flag is

decremented.

Example:

.DUP @ABS(@LST()) ;list unconditionally

@MAC(symbol)

Returns an integer 1 if symbol has been defined as a macro name, 0

otherwise.

Example:

.IF @ MAC(DOMUL) ;expand macro

@MAX(expr1[,exprN]...)

Returns the greatest of expr1,...,exprN as an integer.

Example:

MAX: .byte @ MAX(1,5,–3) ;MAX = 5

@MIN(expr1[,exprN]...)

Returns the least of expr1,...,exprN as an integer.

Example:

MIN: .byte @ MIN(1,5,–3) ;Min = –3

@MXP()

Returns an integer 1 if the assembler is expanding a macro, 0 otherwise.

Example:

.IF @ MXP() ;macro expansion active?

@POS(str1,str2[,start])

Returns the position str2 in str1 as an integer, starting at position start. If
start is not given the search begins at the beginning of str1. If the start
argument is specified it must be a positive integer and cannot exceed the

length of the source string.

Operands and Expressions 5–21

• • • • • • • •

Example:

ID .EQU @ POS(’TriCore’,’Core’) ;ID = 3

@SCP(str1,str2)

Returns an integer 1 if the two strings compare, 0 otherwise. The two

strings must be separated by a comma.

Example:

.IF @ SCP(STR,’MAIN’) ;does STR equal MAIN?

@SFRACT(expression)

This function returns the 16-bit fractional representation (Q15) of the

floating point expression. The expression must be in the range [-1,+1>.

Example:

.word @sfract(0.1), @sfract(–1.0)

@SGN(expression)

Returns the sign of expression as an integer: -1 if the argument is negative,

0 if zero, 1 if positive. The expression may be relative or absolute.

Example:

.IF @ SGN(INPUT) == 1 ;is sign positive?

@SUB(str,expr1,expr2)

Returns the substring from str as a string. expr1 is the starting position

within str and expr2 is the length of the desired string. The assembler

issues an error if either expr1 or expr2 exceeds the length of str.

Example:

.DEFINE ID ”@SUB (’TriCore’,3,4) ” ;ID = ’Core’

Chapter 55–22
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

6

MACRO
OPERATIONS

C
H

A
P

T
E

R

Chapter 66–2
M
A
C
R
O
S

6

C
H

A
P

T
E

R

Macro Operations 6–3

• • • • • • • •

6.1 INTRODUCTION

This chapter describes the macro operations and conditional assembly.

The macro preprocessor is implemented in the assembler.

6.2 MACRO OPERATIONS

Programming applications frequently involve the coding of a repeated

pattern or group of instructions. Some patterns contain variable entries

which change for each repetition of the pattern. Others are subject to

conditional assembly for a given occurrence of the instruction group. In

either case, macros provide a shorthand notation for handling these

instruction patterns. Having determined the iterated pattern, the

programmer can, within the macro, designate selected fields of any

statement as variable. Thereafter by invoking a macro the programmer can

use the entire pattern as many times as needed, substituting different

parameters for the designated variable portions of the statements.

When the pattern is defined it is given a name. This name becomes the

mnemonic by which the macro is subsequently invoked (called). If the

name of the macro is the same as an existing assembler directive or

mnemonic opcode, the macro will replace the directive or mnemonic

opcode, and a warning will be issued.

The macro call causes source statements to be generated. The generated

statements may contain substitutable arguments. The statements produced

by a macro call are relatively unrestricted as to type. They can be any

processor instruction, almost any assembler directive, or any

previously-defined macro. Source statements resulting from a macro call

are subject to the same conditions and restrictions that are applied to

statements written by the programmer.

To invoke a macro, the macro name must appear in the operation code

field of a source statement. Any arguments are placed in the operand field.

By suitably selecting the arguments in relation to their use as indicated by

the macro definition, the programmer causes the assembler to produce

in-line coding variations of the macro definition.

The effect of a macro call is to produce in-line code to perform a

predefined function. The code is inserted in the normal flow of the

program so that the generated instructions are executed with the rest of

the program each time the macro is called.

Chapter 66–4
M
A
C
R
O
S

An important feature in defining a macro is the use of macro calls within

the macro definition. The assembler processes such nested macro calls at

expansion time only. The nesting of one macro definition within another

definition is permitted. However, the nested macro definition will not be

processed until the primary macro is expanded. The macro must be

defined before its appearance in a source statement operation field.

6.3 MACRO DEFINITION

The definition of a macro consists of three parts: the header, which assigns

a name to the macro and defines the dummy arguments; the body, which

consists of prototype or skeleton source statements; and the terminator.

The header is the .MACRO directive, its name, and the dummy argument

list. The body contains the pattern of standard source statements. The

terminator is the .ENDM directive.

The header of a macro definition has the form:

macro_name .MACRO [dummy argument list] [comment]

The required name is the symbol by which the macro will be called. The

dummy argument list has the form:

[dumarg[,dumarg]...]

The dummy arguments are symbolic names that the macro processor will

replace with arguments when the macro is expanded (called). Each

dummy argument must obey the same rules as global symbol names.

Dummy arguments are separated by commas.

When a macro call is executed, the dummy arguments within the macro

definition (reg ,value in the example below) are replaced with the

corresponding argument as defined by the macro call.

All local label definitions within a macro which use the local label operator

are made unique for this macro call. This is done by appending a unique

postfix to every local label, making the scope of the label local to the

module. This mechanism allows the programmer to freely use local labels

within a macro definition without regard to the number of times that the

macro is expanded. Labels without the local label operator are considered

to be normal labels and thus cannot occur more than once unless used

with the .SET directive (see Chapter 7, Assembler Directives).

Macro Operations 6–5

• • • • • • • •

Example

The macro:

 .sdecl ”data”, DATA
 .sect ”data”

CONSTD .MACRO reg,value
 mov.u reg,#@lo(value)
 addih reg,reg,#@hi(value)
 .ENDM

 CONSTD d4,0x12345678

expands to:

 mov.u d4,#@lo(0x12345678)
 addih d4,d4,#@hi(0x12345678)

6.4 MACRO CALLS

When a macro is invoked the statement causing the action is termed a

macro call. The syntax of a macro call consists of the following fields:

[label:] macro_name [arguments] [comment]

The argument field can have the form:

[arg[,arg]...]

The macro call statement is made up of three besides the comment field:

the label, if any, will correspond to the value of the location counter at the

start of the macro expansion; the operation field which contains the macro

name; and the operand field which contains substitutable arguments.

Within the operand field each calling argument of a macro call

corresponds one-to-one with a dummy argument of the macro definition.

For example, the 'load' macro defined earlier could be invoked for

expansion (called) by the statement:

load d4,VAL1

where the operand field arguments, separated by commas and taken left to

right, correspond to the dummy arguments reg and value , respectively.

These arguments are then substituted in their corresponding positions of

the definition to produce a sequence of instructions.

Chapter 66–6
M
A
C
R
O
S

Macro arguments consist of sequences of characters separated by commas.

Although these can be specified as quoted strings, to simplify coding the

assembler does not require single quotes around macro argument strings.

However, if an argument has an embedded comma or space, that

argument must be surrounded by single quotes ('). An argument can be

declared null when calling a macro. However, if must be declared

explicitly null. Null arguments can be specified in four ways:

- by writing the delimiting commas in succession with no intervening

spaces;

- by terminating the argument list with a comma and omitting the rest

of the argument list;

- by declaring the argument as a null string;

- by simply omitting some or all of the arguments.

A null argument will cause no character to be substituted in the generated

statements that reference the argument. If more arguments are supplied in

the macro call than appear in the macro definition, a warning will be

issued by the assembler.

Macro Operations 6–7

• • • • • • • •

6.5 DUMMY ARGUMENT OPERATORS

The assembler macro processor provides for text substitution of arguments

during macro expansion. In order to make the argument substitution

facility more flexible, the assembler also recognizes certain text operators

within macro definitions which allow for transformations of the argument

text. These operators can be used for text concatenation, numeric

conversion, and string handling.

6.5.1 DUMMY ARGUMENT CONCATENATION

OPERATOR - \

Dummy arguments that are intended to be concatenated with other

characters must be preceded by the concatenation operator, '\' to separate

them from the rest of the characters. The argument may precede or follow

the adjoining text, but there must be no intervening blanks between the

concatenation operator and the rest of the characters. To position an

argument between two alphanumeric characters, place a backslash both

before and after the argument name. For example, consider the following

macro definition:

SWAP_MEM .macro REG1,REG2 ;swap memory contents
 LD.W D0,[A\REG1] ;using D0 as temp
 LD.W D1,[A\REG2] ;using D1 as temp
 ST.W [A\REG1],D1
 ST.W [A\REG2],D0
 .endm

If this macro were called with the following statement,

 SWAP_MEM 0,1

then for the macro expansion, the macro processor would substitute the

character '0' for the dummy argument REG1, and the character '1' for the

dummy argument REG2. The concatenation operator (\) indicates to the

macro processor that the substitution characters for the dummy arguments

are to be concatenated in both cases with the character A. The resulting

expansion of this macro call would be:

 LD.W D0,[A0]
 LD.W D1,[A1]
 ST.W [A0],D1
 ST.W [A1],D0

Chapter 66–8
M
A
C
R
O
S

6.5.2 RETURN VALUE OPERATOR - ?

Another macro definition operator is the question mark (?) that returns the

value of a symbol. When the macro processor encounters this operator,

the ?symbol sequence is converted to a character string representing the

decimal value of the symbol. For example, consider the following

modification of the SWAP_MEM macro described above:

SWAP_MEM .macro REG1,REG2 ;swap memory contents
 LD.W D0,_lab\ ?REG1 ;using D0 as temp
 LD.W D1,_lab\ ?REG2 ;using D1 as temp
 ST.W _lab\ ?REG1,D1
 ST.W _lab\ ?REG2,D0
 .endm

If the source file contained the following SET statements and macro call,

AREG SET 1
BREG SET 2
 SWAP_MEM AREG,BREG

then the sequence of events would be as follows: the macro processor

would first substitute the characters AREG for each occurrence of REG1

and BREG for each occurrence of REG2. For discussion purposes (this

would never appear on the source listing), the intermediate macro

expansion would be:

 LD.W D0,_lab\ ?AREG
 LD.W D1,_lab\ ?BREG
 ST.W _lab\ ?AREG,D1
 ST.W _lab\ ?BREG,D0

The macro processor would then replace ?AREG with the character X and

?BREG with the character Y, since X is the value of the symbol AREG and

Y is the value of BREG. The resulting intermediate expansion would be:

 LD.W D0,_lab\1
 LD.W D1,_lab\2
 ST.W _lab\1,D1
 ST.W _lab\2,D0

Macro Operations 6–9

• • • • • • • •

Next, the macro processor would apply the concatenation operator (\),

and the resulting expansion as it would appear on the source listing would

be:

 LD.W D0,_lab1
 LD.W D1,_lab2
 ST.W _lab1,D1
 ST.W _lab2,D0

6.5.3 RETURN HEX VALUE OPERATOR - %

The percent sign (%) is similar to the standard return value operator

except that it returns the hexadecimal value of a symbol. When the macro

processor encounters this operator, the %symbol sequence is converted to

a character string representing the hexadecimal value of the symbol.
Consider the following macro definition:

GEN_LAB .macro LAB,VAL,STMT
LAB\ %VAL: STMT
 .endm

This macro generates a label consisting of the concatenation of the label

prefix argument and a value that is interpreted as hexadecimal. If this

macro were called as follows,

NUM .SET 10
 GEN_LAB HEX,NUM,’NOP’

the macro processor would first substitute the characters HEX for LAB,

then it would replace %VAL with the character A, since A is the

hexadecimal representation for the decimal integer 10. Next, the macro

processor would apply the concatenation operator (\). Finally, the string

'NOP' would be substituted for the STMT argument. The resulting

expansion as it would appear in the listing file would be:

HEXA: NOP

The percent sign is also the character used to indicate a binary constant. If

a binary constant is required inside a macro it may be necessary to enclose

the constant in parentheses or escape the constant by following the

percent sign by a backslash (\).

Chapter 66–10
M
A
C
R
O
S

6.5.4 DUMMY ARGUMENT STRING OPERATOR - "

Another dummy argument operator is the double quote ("). This character

is replaced with a single quote by the macro processor, but following

characters are still examined for dummy argument names. The effect in the

macro call is to transform any enclosed dummy arguments into literal

strings. For example, consider the following macro definition:

STR_MAC .macro STRING
 .ascii ” STRING”
 .endm

If this macro were called with the following macro expansion line,

 STR_MAC ABCD

then the resulting macro expansion would be:

 .ascii ’ABCD’

Double quotes also make possible .DEFINE directive expansion within

quoted strings. Because of this overloading of the double quotes, care

must be taken to insure against inappropriate expansions in macro

definitions. Since .DEFINE expansion occurs before macro substitution,

any .DEFINE symbols are replaced first within a macro dummy argument

string:

 .define LONG ’short’
STR_MAC .macro STRING
 .message ’This is a LONG STRING’
 .message ” This is a LONG STRING ”
 .endm

If this macro were invoked as follows,

 STR_MAC sentence

then the resulting expansion would be:

 .message ’This is a LONG STRING’
 .message ’This is a short sentence’

Macro Operations 6–11

• • • • • • • •

6.5.5 MACRO LOCAL LABEL OPERATOR - ^

It may be desirable to pass a name as a macro argument to be used as a

local address reference within the macro body. If a circumflex (^)

precedes an identifier then the macro preprocessor will perform name

mangling on that label so the label is used literally in the resulting macro

expansion. Here is an example:

LOAD .macro ADDR
 LD.W D0, ^ADDR
 .endm

The macro ^-operator performs name mangling on the ADDR argument.

Consider the following macro call:

_LOCAL: LOAD _LOCAL

With the local label in the macro definition the macro LOAD would

expand to the something like this:

_LOCAL:
 LD.W D0,_LOCAL__M_L000001

This would result in an assembly error as the label LOCAL__M_L000001 is

nowhere defined. Without the local label operator in the macro definition

(as shown above) the macro LOAD would expand, as expected, to this:

_LOCAL:
 LD.W D0,_LOCAL

This will assemble correctly.

6.6 .DUP, .DUPA, .DUPC, .DUPF DIRECTIVES

The .DUP, .DUPA, .DUPC, and .DUPF directives are specialized macro

forms. They can be thought of as a simultaneous definition and call of an

unnamed macro. The source statements between the .DUP, .DUPA,

.DUPC, and .DUPF directives and the ENDM directive follow the same

rules as macro definitions, including (in the case of .DUPA, .DUPC, and

.DUPF) the dummy operator characters described previously. For a

detailed description of these directives, refer to Chapter 7, Assembler
Directives.

Chapter 66–12
M
A
C
R
O
S

6.7 CONDITIONAL ASSEMBLY

Conditional assembly facilitates the writing of comprehensive source

programs that can cover many conditions. Assembly conditions may be

specified through the use of arguments in the case of macros, and through

definition of symbols via the .DEFINE, .SET, and .EQU directives.

Variations of parameters can then cause assembly of only those parts

necessary for the given conditions. The built-in functions of the assembler

provide a versatile means of testing many conditions of the assembly

environment (see section 5.4 for more information on the assembler

built-in functions).

Conditional directives can also be used within a macro definition to ensure

at expansion time that arguments fall within a range of allowable values.

In this way macros become self-checking and can generate error messages

to any desired level of detail.

The conditional assembly directive .IF has the following form:

 .IF expression
 .
 .
 [. ELIF expression]
 . ;(the .ELIF directive is optional and
 . ; can be read as ’else if’)
 .
 [.ELSE] ;(the .ELSE directive is optional)
 .
 .
 .ENDIF

A section of a program that is to be conditionally assembled must be

bounded by an IF-ENDIF directive pair. If the optional .ELSE or .ELIF

directive is not present, then the source statements following the .IF

directive and up to the next .ENDIF directive will be included as part of

the source file being assembled only if the expression had a nonzero

result. If the expression has a value of zero, the source file will be

assembled as if those statements between the .IF and the .ENDIF

directives were never encountered. If the .ELSE directive is present and

expression has a nonzero result, then the statements between the .IF and

.ELSE directives will be assembled, and the statement between the .ELSE

and .ENDIF directives will be skipped. Alternatively, if expression has a

value of zero, then the statements between the .IF and .ELSE directives

will be skipped, and the statements between the .ELSE and .ENDIF

directives will be assembled.

7

ASSEMBLER
DIRECTIVES

C
H

A
P

T
E

R

Chapter 77–2
D
IR
E
C
T
IV
E
S

7

C
H

A
P

T
E

R

Assembler Directives 7–3

• • • • • • • •

7.1 OVERVIEW

Assembler directives, or pseudo instructions, are used to control the

assembly process. Rather than being translated into a TriCore or PCP

machine instruction, assembler directives are interpreted by the assembler.

The directives perform actions such as assembly control, listing control,

defining symbols or changing the location counter. Upper and lower case

letters are considered equivalent for assembler directives.

All directives valid for the TriCore assembler astri also apply to the PCP

assembler aspcp, unless explicitly stated otherwise.

Assembler directives can be grouped by function into five types:

1. Debugging

2. Assembly control

3. Symbol definition

4. Data definition/storage allocation

5. Macros and conditional assembly

7.1.1 DEBUGGING

The compiler generates the following directives to pass high level

language symbolic debug information via the assembler into the object

file:

.CALLS - Pass call information to object file. Used to build a call
tree at link time.

.SYMB - Pass symbolic debug information

7.1.2 ASSEMBLY CONTROL

The directives used for assembly control are:

.ALIGN - Specify alignment

.COMMENT - Start comment lines. This directive is not permitted in
.IF/.ELIF/.ELSE/.ENDIF constructs and .MACRO/.DUP
definitions.

Chapter 77–4
D
IR
E
C
T
IV
E
S

.DEFINE - Define substitution string

.END - End of source program

.FAIL - Programmer generated error message

.INCLUDE - Include secondary file

.MESSAGE - Programmer generated message

.NAME - Identification name for object file

.ORG - Define a nameless section

.SDECL - Define section name and attributes

.SECT - Activate section

.UNDEF - Undefine .DEFINE symbol

.WARNING - Programmer generated warning

7.1.3 SYMBOL DEFINITION

The directives used to control symbol definition are:

.EQU - Equate symbol to a value;
accepts forward references

.EXTERN - External symbol declaration;
also permitted in module body

.GLOBAL - Global symbol declaration;
also permitted in module body

.LOCAL - Local symbol declaration

.SET - Set symbol to a value;
accepts forward references

7.1.4 DATA DEFINITION/STORAGE ALLOCATION

The directives used to control constant data definition and storage

allocation are:

.ACCUM - Define 64-bit constant of 17Q46 format

.ASCII - Define ASCII string

.ASCIIZ - Define NULL padded ASCII string

Assembler Directives 7–5

• • • • • • • •

.BYTE - Define constant byte

.DOUBLE - Define 64-bit floating-point constant

.FLOAT - Define 32-bit floating-point constant

.FRACT - Define 32-bit constant fraction

.HALF - Define constant half word

.SFRACT - Define 16-bit constant fraction

.SPACE - Define storage

.WORD - Define constant word

7.1.5 MACROS AND CONDITIONAL ASSEMBLY

The directives used for macros and conditional assembly are:

.DUP - Duplicate sequence of source lines

.DUPA - Duplicate sequence with arguments

.DUPC - Duplicate sequence with characters

.DUPF - Duplicate sequence in loop

.ENDIF - End of conditional assembly

.ENDM - End of macro definition

.EXITM - Exit macro

.IF - Conditional assembly directive

.MACRO - Macro definition

.PMACRO - Purge macro definition

7.2 DIRECTIVES

The rest of this chapter contains an alphabetical list of the assembler

directives.

Chapter 77–6
D
IR
E
C
T
IV
E
S

.ACCUM

Syntax:

[label:] .ACCUM arg[,arg]...

Description:

Define 64-bit constant(s) of 17Q46 format. The .ACCUM directive allocates

and initializes two words (64-bits) of memory for each arg argument. arg
can be a constant, a symbol, or an expression.The .ACCUM directive may

have one or more arguments separated by commas. Multiple arguments

are stored in successive address locations. If multiple arguments are

present, one or more of them can be null (two adjacent commas), in

which case the corresponding address location will be filled with zeros. An

error will occur if the evaluated argument value is out of the range [-217,

217>.

label, if present, will be assigned the value of the run-time location

counter at the start of the directive processing.

Examples:

ACC: .accum 0.1,0.2,0.3

.fract, .sfract

Assembler Directives 7–7

• • • • • • • •

.ALIGN

Syntax:

.ALIGN expression

Description:

Align the location counter. The expression must be represented by a value

of 2k. The default alignment is on a multiple of 1 byte. expression must be

greater than 0. If expression is not a value of 2k, a warning is issued and

the alignment will be set to the next 2k value. Alignment will be

performed once at the place where you write the .align pseudo. The start

of a section is aligned automatically to the largest alignment value

occurring in that section.

Depending on the section type the assembler has two cases for this

directive.

- Relocatable sections

The section will be aligned on the calculated alignment boundary. A

gap is generated depending on the current relative location counter

for this section.

- Absolute sections

The section location is not changed.

A gap is generated according to the current absolute address.

Examples:

.align 4 ;align at 4 bytes
lab1: .align 6 ;not a 2 k value.
 ;a warning is issued
 ;lab1 is aligned on 8 bytes

Chapter 77–8
D
IR
E
C
T
IV
E
S

.ASCII

Syntax:

[label:] .ASCII string [, string]...

Description:

Define list of ASCII characters. The .ASCII directive allocates and initializes

an array of memory for each string argument. No NULL byte is added to

the end of the array. Therefore, the behavior is identical to the .BYTE

directive with a string argument.

Examples:

HELLO: .ascii ”Hello world”
 ;Is the same as .byte ”Hello world”

.asciiz, .byte

Assembler Directives 7–9

• • • • • • • •

.ASCIIZ

Syntax:

[label:] .ASCIIZ string [, string]...

Description:

Define list of ASCII characters. The .ASCIIZ directive allocates and

initializes an array of memory for each string argument. A NULL byte is

added to the end of each array.

Examples:

HELLO: .asciiz ”Hello world”
 ;Is the same as .byte ”Hello world”,0

.ascii, .byte

Chapter 77–10
D
IR
E
C
T
IV
E
S

.BYTE

Syntax:

[label:] .BYTE arg[,arg]...

Description:

Define Constant Byte. The .BYTE directive allocates and initializes a byte

of memory for each arg argument. arg can be a numeric constant, a single

or multiple character string constant, a symbol, or an expression. The

.BYTE directive may have one or more arguments separated by commas.

Multiple arguments are stored in successive address locations. If multiple

arguments are present, one or more of them can be null (two adjacent

commas), in which case the corresponding address location will be filled

with zeros. An error will occur if the evaluated argument value is too large

to represent in a single byte.

label, if present, will be assigned the value of the run-time location

counter at the start of the directive processing.

Integer arguments are stored as is, but must be byte values (e.g. within the

range 0-255). Single and multiple character strings are handled in the

following manner:

1. Single character strings are stored in a byte whose bits represent the ASCII

value of the character.

Example: ’R’ = 0x52

2. Multiple character strings represent bytes composed of the ASCII

representation of the characters in the string.

Example:

’ABCD’ = 0x41, 0x42, 0x43, 0x44

Examples:

TABLE: .byte 14,253,0x62,’ABCD’
CHARS: .byte ’A’,’B’,’C’,’D’

.space, .half, .word

Assembler Directives 7–11

• • • • • • • •

.CALLS

Syntax:

.CALLS 'caller', 'callee'

Description:

Create a flow graph reference between caller and callees. The linker needs

this information to build a flow graph. caller and callee are names of

functions.

Examples:

.calls ’main’, ’nfunc’

See also the section Linker Output in the chapter Linker.

Chapter 77–12
D
IR
E
C
T
IV
E
S

.COMMENT

Syntax:

.COMMENT delimiter

.

.

delimiter

Description:

Start Comment Lines. The .COMMENT directive is used to define one or

more lines as comments. The first non-blank character after the

.COMMENT directive is the comment delimiter. The two delimiters are

used to define the comment text. The line containing the second comment

delimiter will be considered the last line of the comment. The comment

text can include any printable characters and the comment text will be

produced in the source listing as it appears in the source file.

A label is not allowed with this directive.

This directive is not permitted in .IF/.ELIF/.ELSE/.ENDIF constructs and

.MACRO/.DUP definitions.

Examples:

.comment + This is a one line comment +

.comment * This is a multiple line
 comment. Any number of lines
 can be placed between the two
 delimiters.
 *

Assembler Directives 7–13

• • • • • • • •

.DEFINE

Syntax:

.DEFINE symbol string

Description:

Define Substitution String. The .DEFINE directive is used to define

substitution strings that will be used on all following source lines. All

succeeding lines will be searched for an occurrence of symbol, which will

be replaced by string. This directive is useful for providing better

documentation in the source program. symbol must adhere to the

restrictions for labels. That is, the first character must be alphabetic or the

underscore (_), and the remainder of which must be either alphanumeric

or the underscore (_). A warning will result if a new definition of a

previously defined symbol is attempted.

Macros represent a special case. .DEFINE directive translations will be

applied to the macro definition as it is encountered. When the macro is

expanded any active .DEFINE directive translations will again be applied.

A label is not allowed with this directive.

Examples:

If the following .DEFINE directive occurred in the first part of the source

program:

 .define ARRAYSIZ ’10 * SAMPLSIZ’

then the source line below:

 .space ARRAYSIZ

would be transformed by the assembler to the following:

 .space 10 * SAMPLSIZ

.undef

Chapter 77–14
D
IR
E
C
T
IV
E
S

.DOUBLE

Syntax:

[label:] .DOUBLE arg[,arg]...

Description:

Define 64-bit floating-point constant(s) in IEEE-754 double precision

format. The .DOUBLE directive allocates and initializes a double-word

(64-bits) of memory for each arg argument. arg can be a constant, a

symbol, or an expression. The constant can be expressed as a signed

whole number with fraction or the "e" format as that in the C language.

12.457 and +0.27E–13 are legal floating-point constants.

The .DOUBLE directive may have one or more arguments separated by

commas. Multiple arguments are stored in successive address locations. If

multiple arguments are present, one or more of them can be null (two

adjacent commas), in which case the corresponding address location will

be filled with zeros. An error will occur if the evaluated argument value is

too large to represent in a single word.

label, if present, will be assigned the value of the run-time location

counter at the start of the directive processing.

Examples:

DBL: .double 0.1,0.2,0.3

.float

Assembler Directives 7–15

• • • • • • • •

.DUP

Syntax:

[label:] .DUP expression
.

.

.ENDM

Description:

Duplicate Sequence of Source Lines. The sequence of source lines

between the .DUP and .ENDM directives will be duplicated by the

number specified by the integer expression. If the expression evaluates to

a number less than or equal to 0, the sequence of lines will not be

included in the assembler output. The expression result must be an

absolute integer and cannot contain any forward references to address

labels (labels that have not already been defined). The .DUP directive may

be nested to any level.

label, if present, will be assigned the value of the run-time location

counter at the start of the .DUP directive processing.

Examples:

The sequence of source input statements,

 COUNT .set 3
 .dup COUNT ; NOP BY COUNT
 NOP
 .endm

would generate the following in the source listing:

 COUNT .set 3
 .dup COUNT ; NOP BY COUNT
 NOP
 .endm

 ; NOP
 ; NOP
 ; NOP

.dupa, .dupc, .dupf, .endm, .macro

Chapter 77–16
D
IR
E
C
T
IV
E
S

.DUPA

Syntax:

[label:] .DUPA dummy,arg[,arg]...

.

.

.ENDM

Description:

Duplicate Sequence With Arguments. The block of source statements

defined by the .DUPA and .ENDM directives will be repeated for each

argument. For each repetition, every occurrence of the dummy parameter

within the block is replaced with each succeeding argument string. If the

argument string is a null, then the block is repeated with each occurrence

of the dummy parameter removed. If an argument includes an embedded

blank or other assembler-significant character, it must be enclosed with

single quotes.

label, if present, will be assigned the value of the run-time location

counter at the start of the .DUPA directive processing.

Examples:

If the input source file contained the following statements,

 .dupa VALUE,12,32,34
 .byte VALUE
 .endm

then the assembler source listing would show

 .dupa VALUE,12,32,34
 .byte VALUE
 .endm

 ; .byte 12
 ; .byte 32
 ; .byte 34

.dup, .dupc, .dupf, .endm, .macro

Assembler Directives 7–17

• • • • • • • •

.DUPC

Syntax:

[label:] .DUPC dummy,string

.

.

.ENDM

Description:

Duplicate Sequence With Characters. The block of source statements

defined by the .DUPC and .ENDM directives will be repeated for each

character of string. For each repetition, every occurrence of the dummy

parameter within the block is replaced with each succeeding character in

the string. If the string is null, then the block is skipped.

label, if present, will be assigned the value of the run-time location

counter at the start of the .DUPC directive processing.

Examples:

If the input source file contained the following statements,

 .dupc VALUE,’123’
 .byte VALUE
 .endm

then the assembler source listing would show

 .dupc VALUE,’123’
 .byte VALUE
 .endm

 ; .byte 1
 ; .byte 2
 ; .byte 3

.dup, .dupa, .dupf, .endm, .macro

Chapter 77–18
D
IR
E
C
T
IV
E
S

.DUPF

Syntax:

[label:] .DUPF dummy,[start],end[,increment]
.

.

.ENDM

Description:

Duplicate Sequence In Loop. The block of source statements defined by

the .DUPF and .ENDM directives will be repeated in general (end - start)
+ 1 times when increment is 1. start is the starting value for the loop

index; end represents the final value. increment is the increment for the

loop index; it defaults to 1 if omitted (as does the start value). The dummy
parameter holds the loop index value and may be used within the body of

instructions.

label, if present, will be assigned the value of the run-time location

counter at the start of the .DUPF directive processing.

Examples:

If the input source file contained the following statements,

 .dupf NUM,0,3
 .WORD NUM
 .endm

then the assembler source listing would show

 .dupf NUM,0,3
 .WORD NUM
 .endm

 ; .WORD 0
 ; .WORD 1
 ; .WORD 2
 ; .WORD 3

.dup, .dupa, .dupc, .endm, .macro

Assembler Directives 7–19

• • • • • • • •

.END

Syntax:

.END

Description:

End of Source Program. The optional .END directive indicates that the

logical end of the source program has been encountered. The .END

directive cannot be used in a macro expansion.

A label is not allowed with this directive.

Examples:

.end ;End of source program

Chapter 77–20
D
IR
E
C
T
IV
E
S

.ENDIF

Syntax:

.ENDIF

Description:

End Of Conditional Assembly. The .ENDIF directive is used to signify the

end of the current level of conditional assembly. Conditional assembly

directives can be nested to any level, but the .ENDIF directive always

refers to the most previous .IF directive.

A label is not allowed with this directive.

Examples:

.if DEB
; Report building of the debug version
.message ’Debug Version’
.endif

.if

Assembler Directives 7–21

• • • • • • • •

.ENDM

Syntax:

.ENDM

Description:

End of Macro Definition. Every .MACRO, .DUP, .DUPA, and .DUPC

directive must be terminated by an .ENDM directive.

A label is not allowed with this directive.

Examples:

SWAP_MEM .macro REG1,REG2 ;swap memory contents
 LD.W D0,[A\REG1] ;using D0 as temp
 LD.W D1,[A\REG2] ;using D1 as temp
 ST.W [A\REG1],D1
 ST.W [A\REG2],D0
 .endm

.dup, .dupa, .dupc, .macro

Chapter 77–22
D
IR
E
C
T
IV
E
S

.EQU

Syntax:

name .EQU expression

Description:

Equate Symbol to a Value. The .EQU directive assigns the value of

expression to the symbol name.

The .EQU directive is one of the directives that assigns a value other than

the program counter to the name. The symbol name cannot be redefined

anywhere else in the program. The expression may be relative or absolute,

and forward references are allowed.

An .EQU symbol can be made global.

Examples:

 A_D_PORT .equ 0x4000

This would assign the value 0x4000 to the symbol A_D_PORT.

.set

Assembler Directives 7–23

• • • • • • • •

.EXITM

Syntax:

.EXITM

Description:

Exit Macro. The .EXITM directive will cause immediate termination of a

macro expansion. It is useful when used with the conditional assembly

directive .IF to terminate macro expansion when error conditions are

detected.

A label is not allowed with this directive.

Examples:

CALC .macro XVAL,YVAL
 .if XVAL<0
 .message ’Macro parameter value out of range’
 .exitm ;Exit macro
 .endif
 .
 .
 .
 .endm

.dup, .dupa, .dupc, .macro

Chapter 77–24
D
IR
E
C
T
IV
E
S

.EXTERN

Syntax:

.EXTERN [(attrib[,attrib]...)] symbol[,symbol]...

Description:

External Symbol Declaration. The .EXTERN directive is used to specify

that the list of symbols is referenced in the current module, but is not

defined within the current module. These symbols must either have been

defined outside of any module or declared as globally accessible within

another module using the .GLOBAL directive.

The optional argument attrib can be one of the following symbol

attributes:

CODE symbol is in ROM

DATA symbol is in RAM

ABS24 symbol is in direct addressable code memory (astri only)

ABS18 symbol is in direct addressable data memory (astri only)

FPI symbol is in TriCore code or data memory (aspcp only)

If the .EXTERN directive is not used to specify that a symbol is defined

externally and the symbol is not defined within the current module, a

warning is generated, and an .EXTERN symbol is inserted.

A label is not allowed with this directive.

Examples:

.extern AA,CC,DD ;defined elsewhere

.extern (ABS24) EE ;within direct addr.
 ;code memory (astri)

.extern (CODE,FPI) FF ;within TriCore
 ;code memory (aspcp)

.global

Assembler Directives 7–25

• • • • • • • •

.FAIL

Syntax:

.FAIL [{str | exp}[,{str | exp}]...]

Description:

Programmer Generated Error. The .FAIL directive will cause an error

message to be output by the assembler. The total error count will be

incremented as with any other error. The .FAIL directive is normally used

in conjunction with conditional assembly directives for exceptional

condition checking. The assembly proceeds normally after the error has

been printed. An arbitrary number or strings and expressions, in any order

but separated by commas, can be specified optionally to describe the

nature of the generated error.

A label is not allowed with this directive.

Examples:

.fail ’Parameter out of range’

.message, .warning

Chapter 77–26
D
IR
E
C
T
IV
E
S

.FLOAT

Syntax:

[label:] .FLOAT arg[,arg]...

Description:

Define 32-bit floating-point constant(s) in IEEE-754 single precision

format. The .FLOAT directive allocates and initializes a word (32-bits) of

memory for each arg argument. arg can be a constant, a symbol, or an

expression. The constant can be expressed as signed whole number with

fraction or the "e" format as that in the C language. 12.457 and

+0.27E–13 are legal floating-point constants.

The .FLOAT directive may have one or more arguments separated by

commas. Multiple arguments are stored in successive address locations. If

multiple arguments are present, one or more of them can be null (two

adjacent commas), in which case the corresponding address location will

be filled with zeros. An error will occur if the evaluated argument value is

too large to represent in a single word.

label, if present, will be assigned the value of the run-time location

counter at the start of the directive processing.

Examples:

flt: .float 0.1,0.2,0.3

.double

Assembler Directives 7–27

• • • • • • • •

.FRACT

Syntax:

[label:] .FRACT arg[,arg]...

Description:

Define 32-bit constant fraction of Q31. The .FRACT directive allocates and

initializes a word (32-bits) of memory for each arg argument. arg can be a

constant, a symbol, or an expression.

The .FRACT directive may have one or more arguments separated by

commas. Multiple arguments are stored in successive address locations. If

multiple arguments are present, one or more of them can be null (two

adjacent commas), in which case the corresponding address location will

be filled with zeros. An error will occur if the evaluated argument value is

out the range of [-1,1>.

label, if present, will be assigned the value of the run-time location

counter at the start of the directive processing.

Examples:

FRCT: .fract 0.1,0.2,0.3

.accum, .sfract

Chapter 77–28
D
IR
E
C
T
IV
E
S

.GLOBAL

Syntax:

.GLOBAL symbol[,symbol]...

Description:

Global Section Symbol Declaration. The .GLOBAL directive is used to

specify that the list of symbols is defined within the current section or

module, and that those definitions should be accessible by all modules. If

the symbols that appear in the operand field are not defined in the

module, an error will be generated. Symbols that are defined "global" are

accessible from other modules using the .EXTERN directive.

A label is not allowed with this directive.

Only program labels and .EQU labels can be made global.

Examples:

.global LOOPA ;LOOPA will be globally
 ;accessible by other modules

.extern, .local

Assembler Directives 7–29

• • • • • • • •

.HALF

Syntax:

[label:] .HALFarg[,arg]...

Description:

Define Constant Half Word. The .HALF directive allocates and initializes a

half-word of memory for each arg argument. arg can be a numeric

constant, a single or double character string constant, a symbol, or an

expression. The .HALF directive may have one or more arguments

separated by commas. Multiple arguments are stored in successive address

locations. If multiple arguments are present, one or more of them can be

null (two adjacent commas), in which case the corresponding address

location will be filled with zeros. An error will occur if the evaluated

argument value is too large to represent in a single half-word.

label, if present, will be assigned the value of the run-time location

counter at the start of the directive processing.

Half-word values are stored in memory with the least segnificant 8 bits on

the lowest address (little endian).

Integer arguments are stored as is. Single and multiple character strings are

handled in the following manner:

1. Single character strings are stored in a half-word whose lower seven bits

represent the ASCII value of the character.

Example: ’R’ = 0x52

2. Multiple character strings consisting of more than two characters are not

allowed. Two-character strings are stored as if the ASCII value of the first

character is the high byte value of the half-word. The second character is

used as the low byte.

Example:

’AB’ = 0x4142

Chapter 77–30
D
IR
E
C
T
IV
E
S

Examples:

TABLE: .half 14,1635,0x2662,’AB’

is equal to

TABLE: .byte 14,0,1635%256,6,0x62,0x26,’B’,’A’

.byte, .space, .word

Assembler Directives 7–31

• • • • • • • •

.IF

Syntax:

.IF expression
 .

 .

[.ELIF expression] (the .ELIF directive is optional)

 .

 .

[.ELSE] (the .ELSE directive is optional)

 .

 .

.ENDIF

Description:

Conditional Assembly Directive. Part of a program that is to be

conditionally assembled must be bounded by an IF-ENDIF directive pair.

If the optional .ELSE or .ELIF (can be read as 'else if') directive is not

present, then the source statements following the .IF directive and up to

the next .ENDIF directive will be included as part of the source file being

assembled only if the expression has a nonzero result. If the expression has

a value of zero, the source file will be assembled as if those statements

between the .IF and the .ENDIF directives were never encountered. If the

.ELSE directive is present and expression has a nonzero result, then the

statements between the .IF and .ELSE directives will be assembled, and

the statements between the .ELSE and .ENDIF directives will be skipped.

Alternatively, if expression has a value of zero, then the statements

between the .IF and .ELSE directives will be skipped, and the statements

between the .ELSE and .ENDIF directives will be assembled.

The expression must have an absolute integer result and is considered true

if it has a nonzero result. The expression is false only if it has a result of 0.

Because of the nature of the directive, expression must be known on pass

one (no forward references allowed). .IF directives can be nested to any

level. The .ELSE directive will always refer to the nearest previous .IF

directive as will the .ENDIF directive.

A label is not allowed with this directive.

Chapter 77–32
D
IR
E
C
T
IV
E
S

Examples:

.if XVAL<0

.message ’Please select larger value for XVAL’

.endif

.endif

Assembler Directives 7–33

• • • • • • • •

.INCLUDE

Syntax:

.INCLUDE string | <string>

Description:

Include Secondary File. This directive is inserted into the source program

at any point where a secondary file is to be included in the source input

stream. The string specifies the filename of the secondary file. The

filename must be compatible with the operating system and can include a

directory specification.

The file is searched for first in the current directory, unless the <string>

syntax is used, or in the directory specified in string. If the file is not

found, and the -I option was used on the command line that invoked the

assembler, then the string specified with the -I option is prefixed to string
and that directory is searched. If the <string> syntax is given, the file is

searched for only in the directories specified with the -I option.

A label is not allowed with this directive.

Examples:

.include ’headers/io.asm’

.include <data.asm> ; Do not look in
 ; current directory

Chapter 77–34
D
IR
E
C
T
IV
E
S

.LOCAL

Syntax:

.LOCAL symbol[,symbol]...

Description:

Local Section Symbol Declaration. The .LOCAL directive is used to specify

that the list of symbols is defined within the current module, and that

those definitions are explicitly local to that section or module. It is useful

in cases where a symbol may not be exported outside of the module (as

labels in a module are defined "global" by default). If the symbols that

appear in the operand field are not defined in the module, an error will be

generated.

A label is not allowed with this directive.

Examples:

.local LOOPA ;LOOPA local to this module

.global

Assembler Directives 7–35

• • • • • • • •

.MACRO

Syntax:

name .MACRO [dummy argument list]
.

macro definition statements
.

.

.endm

Description:

Macro Definition. The dummy argument list has the form:

[dumarg[,dumarg]...]

The required name is the symbol by which the macro will be called.

The definition of a macro consists of three parts: the header, which assigns

a name to the macro and defines the dummy arguments; the body, which

consists of prototype or skeleton source statements; and the terminator.

The header is the .MACRO directive, its name, and the dummy argument

list. The body contains the pattern of standard source statements. The

terminator is the .ENDM directive.

The dummy arguments are symbolic names that the macro processor will

replace with arguments when the macro is expanded (called). Each

dummy argument must obey the same rules as symbol names. Within each

of the three dummy argument field, the dummy arguments are separated

by commas. The dummy argument fields are separated by one or more

blanks.

Macro definitions may be nested but the nested macro will not be defined

until the primary macro is expanded.

Chapter 6, Macro Operations, contains a complete description of macros.

Chapter 77–36
D
IR
E
C
T
IV
E
S

Examples:

SWAP_MEM .macro REG1,REG2 ;swap memory contents
 LD.W D0,[A\REG1] ;using D0 as temp
 LD.W D1,[A\REG2] ;using D1 as temp
 ST.W [A\REG1],D1
 ST.W [A\REG2],D0
 .endm

.dup, .dupa, .dupc, .dupf, .endm

Assembler Directives 7–37

• • • • • • • •

.MESSAGE

Syntax:

.MESSAGE [{str | exp}[,{str | exp}]...]

Description:

Programmer Generated Message. The .MESSAGE directive will cause a

message to be output by the assembler. The error and warning counts will

not be affected. The .MESSAGE directive is normally used in conjunction

with conditional assembly directives for informational purposes. The

assembly proceeds normally after the message has been printed. An

arbitrary number of strings and expressions, in any order but separated by

commas, can be specified optionally to describe the nature of the message.

A label is not allowed with this directive.

Examples:

.message ’Generating tables’

.fail, .warning

Chapter 77–38
D
IR
E
C
T
IV
E
S

.NAME

Syntax:

.NAME "str"

Description:

The .NAME directive is used by the assembler to give an identification to

the produced object file. The linker and locator can then use this

information to identify the source within the map files. Also a debugger

may display the value as a 'module' name.

When this directive is omitted, the assembler will use the module's source

name as an identification. When using the control program, this name

might become a 'random' name.

Examples:

.name ”strcat” ;object is identified by the
 ;name ”strcat”

Assembler Directives 7–39

• • • • • • • •

.ORG

Syntax:

.ORG [abs-loc][,sect_type][,attrib]...

Description:

The .ORG directive is used to define a nameless section. This is the same

as a .SDECL/.SECT without a section name. The absolute location of the

section in memory can be set using this directive.

abs-loc Initial value to assign to the runtime location counter. abs-loc
must be an absolute expression.

sect_type An optional section type:

code a code section

data a data section

attrib An optional section attribute:

abs24 direct addressable code (astri only)

abs18 direct addressable data (astri only)

fpi addressable through FPI bus (aspcp only)

clear clear section during program startup

noclear section is not cleared during startup

init initialization data copied from ROM

to RAM at startup

max common, overlay with other parts

with the same name, is implicit a

type of 'noclear'

romdata section contains data instead of

executable code

Chapter 77–40
D
IR
E
C
T
IV
E
S

Examples:

; define a section on location 100 decimal
.org 100

; define a relocatable nameless section
.org

; define a relocatable data section
.org ,data

; define a data section on 0x8000
.org 0x8000,data

.sdecl

Assembler Directives 7–41

• • • • • • • •

.PMACRO

Syntax:

.PMACRO symbol[,symbol]...

Description:

Purge Macro Definition. The specified macro definition will be purged

from the macro table, allowing the macro table space to be reclaimed.

A label is not allowed with this directive.

Examples:

.pmacro MAC1,MAC2

This statement would cause the macros named MAC1 and MAC2 to be

purged.

.macro

Chapter 77–42
D
IR
E
C
T
IV
E
S

.SDECL

Syntax:

.SDECL section, type [, attr]... [AT address]

Description:

Use this directive to define section names and declaration attributes.

Before any code or data can be placed in a section, you must use the

.SECT directive to activate the section. The definition can have declaration

attributes and must have a section type (type).

The section type can be:

type: DATA | CODE

The section declaration attribute can be:

attr:

Group1: ABS24 | ABS18 (astri only)

FPI (aspcp only)

Group2: ROMDATA | NOCLEAR | CLEAR |
INIT | MAX

For each group one attribute can be specified at the most. The ABS24 and

ABS18 attributes specify direct addressable CODE or DATA memory for

the astri assembler. FPI is only valid for the aspcp assembler; this

attribute specifies that a section must be accessed through the FPI bus.

This section will not be located in PCP internal memory, but in TriCore

memory.

CLEAR sections are zeroed at startup. This attribute can only be used on a

DATA type section.

Sections with the NOCLEAR attribute are not zeroed at startup. This is a

default attribute for DATA sections. The attribute can only be used for

DATA sections.

The INIT attribute defines that the DATA section contains initialization

data, which is copied from ROM to RAM at program startup.

ROMDATA sections (allowed on DATA and CODE sections) contain data

to be placed in ROM. This ROM area is not executable.

Assembler Directives 7–43

• • • • • • • •

When DATA sections with the same name occur in different object

modules with the MAX attribute, the linker generates a section of which

the size is the maximum of the sizes in the individual object modules. The

MAX attribute only applies to DATA sections.

Examples:

.sdecl ”.text”, DATA ;declare section
 ;.text
.sect ”.text”
 ;switch to section
 ;.text

.sect, .org

See the paragraph Section Names in the chapter Software Concept for

detailed information about sections, section types and section attributes.

Chapter 77–44
D
IR
E
C
T
IV
E
S

.SECT

Syntax:

.SECT "str" [, RESET]

Description:

The .SECT directive flags the assembler that another section, with name

str, becomes active. Before a section can be activated for the first time, it

must be defined first, by the .SDECL directive. Subsequent activations can

be done by the .SECT directive only.

You can use the section attribute RESET to reset counting storage

allocation in DATA sections with section attribute MAX.

Examples:

.sdecl ”.text”, DATA ;declare section
 ;.text
.sect ”.text”
 ;switch to section
 ;.text

.sdecl

See the paragraph Section Names in the chapter Software Concept for

detailed information about sections.

Assembler Directives 7–45

• • • • • • • •

.SET

Syntax:

name .SET expression

Description:

Set Symbol to a Value. The .SET directive is used to assign the value of the

expression in the operand field to the symbol name. The .SET directive

functions somewhat like the .EQU directive. However, symbols defined via

the .SET directive can have their values redefined in another part of the

program (but only through the use of another .SET directive). The .SET

directive is useful in establishing temporary or reusable counters within

macros. The expression in the operand field of a .SET may have forward

references.

.SET symbols cannot be made global.

Examples:

COUNT .set 0 ; Initialize COUNT

.equ

Chapter 77–46
D
IR
E
C
T
IV
E
S

.SFRACT

Syntax:

[label:] .SFRACT arg[,arg]...

Description:

Define 16-bit constant fraction of Q15 format. The .SFRACT directive

allocates and initializes a half word (16-bits) of memory for each arg
argument. arg can be a constant, a symbol, or an expression.

The .SFRACT directive may have one or more arguments separated by

commas. Multiple arguments are stored in successive address locations. If

multiple arguments are present, one or more of them can be null (two

adjacent commas), in which case the corresponding address location will

be filled with zeros. An error will occur if the evaluated argument value is

out the range of [-1,1>.

label, if present, will be assigned the value of the run-time location

counter at the start of the directive processing.

Examples:

SFRCT: .sfract 0.1,0.2,0.3

.accum, .fract

Assembler Directives 7–47

• • • • • • • •

.SPACE

Syntax:

[label:] .SPACE expression

Description:

Define Storage. The .SPACE directive reserves a block of memory the

length of which in bytes is equal to the value of expression. This directive

causes the run-time location counter to be advanced by the value of the

absolute integer expression in the operand field. The block of memory

reserved is not initialized to any value. The expression must be an integer

greater than zero and cannot contain any forward references to address

labels (labels that have not yet been defined).

label, if present, will be assigned the value of the run-time location

counter at the start of the directive processing.

Examples:

S_BUF: .space 12 ; Sample buffer

.byte, .half, .word

Chapter 77–48
D
IR
E
C
T
IV
E
S

.SYMB

Syntax:

.SYMB string, expression [, abs_expr] [, abs_expr]

Description:

The .SYMB directive is used for passing high-level language symbolic

debug information via the assembler (and linker/locator) to the debugger.

expression can be any expression. abs_expr can be any expression

resulting in an absolute value.

The .SYMB directive is not meant for 'hand coded' assembly files. It is

documented for completeness only and is supposed to be 'internal' to the

tool chain.

Assembler Directives 7–49

• • • • • • • •

.UNDEF

Syntax:

.UNDEF symbol

Description:

Undefine .DEFINE Symbol. The .UNDEF directive causes the substitution

string associated with symbol to be released, and symbol will no longer

represent a valid .DEFINE substitution. See the .DEFINE directive for

more information.

A label is not allowed with this directive.

Examples:

.undef DEBUG ; Undefines the DEBUG
 ; substitution string

.define

Chapter 77–50
D
IR
E
C
T
IV
E
S

.WARNING

Syntax:

.WARNING [{str | exp}[,{str | exp}]...]

Description:

Programmer Generated Warning. The .WARNING directive will cause a

warning message to be output by the assembler. The total warning count

will be incremented as with any other warning. The .WARNING directive

is normally used in conjunction with conditional assembly directives for

exceptional condition checking. The assembly proceeds normally after the

warning has been printed. An arbitrary number of strings and expressions,

in any order but separated by commas, can be specified optionally to

describe the nature of the generated warning.

A label is not allowed with this directive.

Examples:

.warning ’parameter too large’

.fail, .message

Assembler Directives 7–51

• • • • • • • •

.WORD

Syntax:

[label:] .WORD arg[,arg]...

Description:

Define Constant Word. The .WORD directive allocates and initializes a

word of memory for each arg argument. arg can be a numeric constant, a

single or double character string constant, a symbol, or an expression. The

.WORD directive may have one or more arguments separated by commas.

Multiple arguments are stored in successive address locations. If multiple

arguments are present, one or more of them can be null (two adjacent

commas), in which case the corresponding address location will be filled

with zeros. An error will occur if the evaluated argument value is too large

to represent in a single word.

label, if present, will be assigned the value of the run-time location

counter at the start of the directive processing.

Word values are stored in memory with the least significant 8 bits on the

lowest address (little endian).

Integer arguments are stored as is. Single and multiple character strings are

handled in the following manner:

1. Single character strings are stored in a word whose lower seven bits

represent the ASCII value of the character.

Example: ’R’ = 0x52

2. Multiple character strings consisting of more than four characters are not

allowed. Four-character strings are stored as if the ASCII value of the first

character is the high byte value of the word. The last character is used as

the low byte.

Example:

’ABCD’ = 0x41424344

Chapter 77–52
D
IR
E
C
T
IV
E
S

Examples:

TABLE: .word 14,1635,0x34266243,’ABCD’

is equal to

TABLE: .byte 14,0,0,0,1635%256,6,0,0,
 0x43,0x62,0x26,0x34,’D’,’C’,’B’,’A’

.byte, .half, .space

8

ASSEMBLER
CONTROLS

C
H

A
P

T
E

R

Chapter 88–2
C
O
N
T
R
O
L
S

8

C
H

A
P

T
E

R

Assembler Controls 8–3

• • • • • • • •

8.1 INTRODUCTION

Assembler controls are provided to alter the default behavior of the

assembler. They can be specified on 'control lines', embedded in the

source file. A control line is a line starting with a dollar sign ($). Such a

line is not processed like a normal assembly source line, but as an

assembler control line. One control per source line is allowed. An

assembler control line may contain comments. Upper and lower case

letters are considered equivalent for assembler directives.

The controls are classified as: primary or general.

Primary controls

Primary controls effect the overall behavior of the assembler and remain in

effect throughout the assembly. For this reason, you must use primary

controls only at the beginning of a source file, before the assembly starts.

If you use a primary control after the beginning of the source file, a

warning is given and the control is ignored. If you specify a primary

control more than once, a warning is given and the last definition is used.

When you use a corresponding command line option to specify a control,

this overrides the control specified in the source file.

General controls

General controls are used to control the assembler during assembly.

General controls may appear anywhere in a source file. When you use a

corresponding command line option to specify a general control, the

general controls in the source file are ignored.

In the following sections the available assembler controls are listed in

alphabetic order. Some controls are set by default, and some controls have

a default value.

Chapter 88–4
C
O
N
T
R
O
L
S

8.2 OVERVIEW ASSEMBLER CONTROLS

Control Type Def. Description

$CASE ON
$CASE OFF

pri ON All user names are case sensitive.
User names are not case sensitive.

$DEBUG ON
$DEBUG OFF
$DEBUG ”flags”

pri

AhLS

Produce local symbolic debug info.
Do not produce local symbols
Produce symbolic debug info.

$HW_ONLY pri Map mnemonics literally on the in-
structions.

$FPU pri Allow single precision FPU instruc-
tions in the assembly source.

$IDENT LOCAL
$IDENT GLOBAL

pri LOCAL Default local labels.
Default global labels.

$LIST ON
$LIST OFF

gen Resume listing.
Stop listing.

$LIST ”flags” pri cDElMnPQ-
sWXy

Define what to include in/exclude
from the list file.

$MMU pri Allow memory management –
instructions in the assembly source

$OBJECT ”file ”
$OBJECT OFF

pri
pri

src.obj Alternative name for object file.
Do not produce an object file.

$PAGE gen Generate formfeed in list file.

$PAGE width[,length, top,
bottom, left]

gen 80,66,
0,0,0

Change list file page settings.

$PAGELENGTH (length) pri 66 Sets page length of list file

$PAGEWIDTH (width) pri 80 Sets width of list file

$PAGING
$NOPAGING

pri PAGING Format print file into pages
Do not format print file into pages

$PRCTL exp|”string” gen Output string to the list file.

$PRINT(print–file)
$NOPRINT

pri src.lst Define print file name
Do not create print file

$TCdefect ON

$TCdefect OFF

gen OFF Enable checks for CPU functional
problem defect
Enable checks for CPU functional
problem defect

Type: Type of control: pri for primary controls, gen for general controls.
Def.: Default.

Assembler Controls 8–5

• • • • • • • •

DescriptionDef.TypeControl

$STITLE ”title” gen Set list page header title for next
pages.

$TITLE ”title” pri spaces Set list page header title for first
page.

$WARNING OFF
$WARNING OFF num

pri Suppress all warnings.
Suppress one warning.

Type: Type of control: pri for primary controls, gen for general controls.
Def.: Default.

Table 8-1: Assembler controls

Chapter 88–6
C
O
N
T
R
O
L
S

8.3 DESCRIPTION OF ASSEMBLER CONTROLS

CASE

Control:

$CASE ON

$CASE OFF

Related option:

-c Set case sensitivity off; overrules the control.

Class:

Primary

Default:

$CASE ON

Description:

Selects whether the assembler operates in case sensitive mode or not. In

case insensitive mode the assembler maps characters on input to

uppercase. (literal strings excluded).

Example:

;Begin of source
$case off ;assembler in case insensitive mode

Assembler Controls 8–7

• • • • • • • •

DEBUG

Control:

$DEBUG ON

$DEBUG OFF

$DEBUG "flags"

Related option:

-g[a|h|l|s]... Produce assembly debug information

Class:

Primary

Default:

$DEBUG "AhLS" (only HLL debug)

Description:

Controls the generation of debugging information in the object file.

$DEBUG ON enables the generation of local (assembler) debugging

information (same as -gl) and $DEBUG OFF disables it.

With $DEBUG "flags" you have more control over the generation of

debugging information. Flags can be switched on with the lower case

letter and switched off with the uppercase letter. The following flags are

available:

a - assembler source line information

h - pass HLL debug information

l - local symbols debug information

s - always debug; either "AhL" or "aHl"

Flags a and h cannot be combined.

The debugging information generated by the C compiler is always passed

on to the object file.

Example:

;Begin of source
$debug on ; generate local assembly
 ; debug information

Chapter 88–8
C
O
N
T
R
O
L
S

FPU

Control:

$FPU

Related option:

-FPU

Class:

Primary

Default:

(none) No fpu instructions allowed.

Description:

When you use the $FPU control you allow the assembler to accept single

precision FPU instructions in the assembl y source file and encode them

properly. When you use this control, the define _FPU is set to 1 allowing

you to use single precision floating point instructions. Default the define

_FPU is set to 0 which tells the assembler not to accept single precision

floating point instructions.

For a more detailed description about the floating point arithmetic see

section Floating Point Arithmetic in Chapter Runtime of the C Cross
Compiler Users Manual.

Example:

;Begin of source
$FPU ; the use of single precision FPU instructions
 ; in this source are allowed.

Assembler Controls 8–9

• • • • • • • •

HW_ONLY

Control:

$HW_ONLY

Related option:

-hw_only

Class:

Primary

Default:

none Substitutions by faster or smaller instructions is allowed.

Description:

Normally the assembler may replace instructions by other, smaller or faster

instructions. For example, the instruction jeq d0,#0,label1 is replaced

by jz d0,label1 .

With the $HW_ONLY control you instruct the assembler to encode all

instruction as they are. The assembler does not substitute instructions with

other, faster or smaller instructions. When you use this control, the define

_HW_ONLY is set to 1 (no substition of instructions).

Example:

To prevent the assembler from substituting instructions with other, smaller

or faster instructions:

;Begin of source
$HW_ONLY ; the assembler does not substitute
 ; instructions with other, smaller or
 ; faster instructions.

Chapter 88–10
C
O
N
T
R
O
L
S

IDENT

Control:

$IDENT LOCAL

$IDENT GLOBAL

Related option:

-i[l|g] Default labels are local or global.

Class:

Primary

Default:

$IDENT LOCAL

Description:

With the $IDENT control you specify how a label is to be treated by the

assembler. This is for code and data labels only. $IDENT LOCAL specifies

that labels are local by default, with $IDENT GLOBAL labels are global by

default.

.SET identifiers are always treated as local symbols.

You can always overrule the default settings with the .LOCAL or .GLOBAL

directives for a specific label.

Example:

;Begin of source
$ident global ; assembly labels are global
 ; by default

Assembler Controls 8–11

• • • • • • • •

LIST ON/OFF

Control:

$LIST ON

$LIST OFF

Related option:

-l Produce an assembler list file

Class:

General

Default:

$LIST ON

Description:

Switch the listing generation on or off. These controls take effect starting at

the next line. Actual list file generation is selected on the command line.

Without the command line option -l, no list file is produced.

Example:

$list off ; Turn listing off. These lines are
 ; not present in the list file
.
.
$list on ; Turn listing back on. These lines
 ; are present in the list file
.
.

Chapter 88–12
C
O
N
T
R
O
L
S

LIST

Control:

$LIST "flags"

Related option:

-L[flag...] Remove specified source lines from list file

Class:

Primary

Default:

$LIST "cDElMnPQsWXy"

Description:

Specify which source lines are to be removed from the list file. The flags

defined within the string are the same as for the -L command line option.

Example:

;Begin of source
$list ”cw” ; Remove source lines with assembler
 ; controls from the resulting list
 ; file and remove wrapped source lines
.
.

See the -L option for an explanation of each flag available.

Assembler Controls 8–13

• • • • • • • •

MMU

Control:

$MMU

Related option:

-MMU

Class:

Primary

Default:

$MMU The use of memory management instructions is allowed.

Description:

The $MMU control allows the use of memory management instructions in

the assembly source. When you use this control, the define _MMU is set to

1 allowing you to use memory management instructions.

Example:

To allow the use of memory management instructions in the assembly

source, enter:

;Begin of source
$MMU ; Allow the use of memory management
 ; instructions in the assembly source.

Chapter 88–14
C
O
N
T
R
O
L
S

OBJECT

Control:

$OBJECT "file"
$OBJECT OFF

Related option:

-o file Specify name of output file

Class:

Primary

Default:

$OBJECT "sourcefile.obj"

Description:

The $OBJECT "file" control specifies an alternative name for the object file.

The $OBJECT OFF control causes no object file to be generated.

Examples:

;Begin of source
$object ”x1.obj” ; generate object file x1.obj

Assembler Controls 8–15

• • • • • • • •

PAGE

Control:

$PAGE

Class:

General

Default:

New page started when page length is reached.

Description:

The current page is terminated with a formfeed after the current (control)

line, the page number is incremented and a new page is started. Ignored if

LIST OFF is in effect.

Example:

. ; assembler source lines

.
$page ; generate a formfeed
.
. ; more source lines
$page ; generate a formfeed
.
.

Chapter 88–16
C
O
N
T
R
O
L
S

PAGE Settings

Control:

$PAGE exp1[,exp2,...,exp5]

Related option:

-l Produce an assembler list file

Class:

General

Default:

$PAGE 80,66,0,0,0

Description:

Change page settings. The $PAGE control with arguments can be used to

specify the printed format of the output listing. Arguments may be any

positive absolute integer expression. The arguments in the operand field

(as explained below) are separated by commas. Any argument can be left

as the default or last set value by omitting the argument and using two

adjacent commas. The $PAGE control with arguments will not cause a

page eject and will be printed in the source listing.

The arguments in order are:

PAGE_WIDTH exp1

Page width in terms of number of output columns per line (default 80,

min 1, max 255).

PAGE_LENGTH exp2

Page length in terms of total number of lines per page (default 66, min

10, max 255). As a special case a page length of 0 (zero) turns off all

headers, titles, subtitles, and page breaks.

BLANK_TOP exp3

Blank lines at top of page. (default 0, min 0, max see below).

Assembler Controls 8–17

• • • • • • • •

BLANK_BOTTOM exp4

Blank lines at bottom of page. (default 0, min 0, max see below).

BLANK_LEFTexp5

Blank left margin. Number of blank columns at the left of the page.

(default 0, min 0, max see below).

The following relationship must be maintained:

BLANK_TOP + BLANK_BOTTOM <= PAGE_LENGTH - 10

BLANK_LEFT < PAGE_WIDTH

Examples:

$PAGE 132,,3,3 ;Set width to 132,
 ;default 66 lines
 ;3 line top/bottom margins

Chapter 88–18
C
O
N
T
R
O
L
S

PAGELENGTH

Control:

$PAGELENGTH(length)

Related option:

-ll Set listing page length

Class:

Primary

Default:

$PAGELENGTH(66)

Description:

Sets the maximum number of lines on one page of the listing file. This

number includes the lines used by the page header (4) and the lines with

error messages. The default page length is 80. The minimum page length

is 10.

Example:

$pagelength(50) ; set page length to 50 lines per page

Assembler Controls 8–19

• • • • • • • •

PAGEWIDTH

Control:

$PAGEWIDTH(width)

Related option:

-lw Set listing page width

Class:

Primary

Default:

$PAGEWIDTH(80)

Description:

Sets the maximum number of characters on one line in the list file. Lines

that exceed this width are wrapped on the next lines. The default page

width is 66. The minimum page width is 40.

Example:

$pagelength(50) ; set page width to 50 chars per line

Chapter 88–20
C
O
N
T
R
O
L
S

PAGING

Control:

$PAGING

$NOPAGING

Related option:

-nopiDisable format listing file into pages

Class:

Primary

Default:

Paging is turned on.

Description:

Turn the generation of formfeeds and page headers on or off.

Example:

$nopaging ; turn paging off

Assembler Controls 8–21

• • • • • • • •

PRCTL

Control:

$PRCTL exp|string[,exp|string]...

Related option:

-l Produce an assembler list file

Class:

General

Default:

-

Description:

Send Control String to Printer. $PRCTL simply concatenates its arguments

and ships them to the listing file (the control line itself is not printed

unless there is an error). exp is a byte expression and string is an

assembler string. A byte expression would be used to encode non-printing

control characters, such as ESC. The string may be of arbitrary length, up

to the maximum assembler-defined limits.

$PRCTL may appear anywhere in the source file and the control string will

be output at the corresponding place in the listing file. However, if a

$PRCTL directive is the last line in the last input file to be processed, the

assembler insures that all error summaries, symbol tables, and

cross-references have been printed before sending out the control string.

This is so a $PRCTL control can be used to restore a printer to a previous

mode after printing is done. Similarly, if the $PRCTL control appears as the

first line in the first input file, the control string will be output before page

headings or titles.

The $PRCTL control only works if the -l command line option is given;

otherwise it is ignored.

Examples:

$PRCTL $1B,’E’ ;Reset HP LaserJet printer

Chapter 88–22
C
O
N
T
R
O
L
S

PRINT

Control:

$PRINT(file)
$NOPRINT

Related option:

-l Produce an assembler list file

-ln Define an assembler list file name

Class:

Primary

Default:

$PRINT(sourcefile.lst)

Description:

The $PRINT control specifies an alternative name for the listing file.

The $NOPRINT control causes no listing file to be generated.

Examples:

$PRINT(mylist.lst) ; generate an assembler list file
 with the name ’mylist.lst’.

Assembler Controls 8–23

• • • • • • • •

STITLE

Control:

$STITLE "title"

Related option:

-l Produce an assembler list file

Class:

General

Default:

$STITLE ""

Description:

Initialize Program Sub-Title. The $STITLE control initializes the program

subtitle to the title in the operand field. The subtitle will be printed on the

top of all succeeding pages until another $STITLE control is encountered.

The subtitle is initially blank. The $STITLE control will not be printed in

the source listing. An $STITLE control with no string argument will cause

the current subtitle to be blank.

If the page width is too small for the title to fit in the header, it will be

truncated.

Example:

$stitle ”Demo title ”

; title in page header on succeeding pages
; is Demo title

TITLE

Chapter 88–24
C
O
N
T
R
O
L
S

TC

Control:

$TCdefect ON

$TCdefect OFF

Related option:

-zdefect Set checking for CPU functional problem defect on

Class:

General

Default:

$TCdefect OFF

Description:

With this control you can enable or disable specific CPU functional

problem checks.

To enable the assembler checks for all TriCore CPU TC112 problems

(respectively TC113 problems) at once, use the control $TC112_DEFECTS

($TC113_DEFECTS).

Example:

$TC112_COR1 ON ; enables assembler checks for CPU
 ; functional problem TC112_COR1

Appendix CPU Functional Problems in the C Cross-Compiler User's Guide

for a complete overview of all CPU functional problems that are supported

by the assembler.

Assembler Controls 8–25

• • • • • • • •

TITLE

Control:

$TITLE "title"

Related option:

-lt Set listing page header title

Class:

Primary

Default:

spaces

Description:

This control specifies the title to be used in the page heading of the first

page of the list file.

If the page width is too small for the title to fit in the header, it will be

truncated.

Example:

;Begin of source
$title ”NEWTITLE ”

; title in page header on first page is NEWTITLE

STITLE

Chapter 88–26
C
O
N
T
R
O
L
S

WARNING

Control:

$WARNING OFF

$WARNING OFF num

Related option:

-w[num] Suppress one or all warning messages

Class:

Primary

Default:

- (All warnings enabled)

Description:

$WARNING suppresses all warnings. This is the same as -w. $WARNING

OFF num suppresses one warning message, where num is the warning

message number (same as the -wnum option).

Example:

;Begin of source
$warning off ; switch all warnings off

9

LINKER
C

H
A

P
T

E
R

Chapter 99–2
L
IN
K
E
R

9

C
H

A
P

T
E

R

Linker 9–3

• • • • • • • •

9.1 OVERVIEW

This section gives a global overview of the process of linking programs for

the TriCore and its derivatives. The linker executable name for the TriCore

is lktri.

The linker combines relocatable object files, generated by the assembler,

into one new relocatable object file (preferred extension .out). This file

may be used as input in subsequent linker calls: the linkage process may

be incremental. Normally the linker complains about unresolved external

references. With incremental linking it is normal to have unresolved

references in the output file. Incremental linking must be selected

separately.

The linker can read normal object files and libraries of object modules.

Modules in a library are included only when they are referenced. At the

end of the linkage process the generated object, without unresolved

references, will be called: a load module.

The TriCore linker is an overlaying linker. The compiler generates

overlayable sections. An overlayable section contains space reservations

for variables which, at C level, are local to a function. If functions do not

call each other, their local variables can be overlayed in memory. It is a

task of the linker to combine function call information into a call graph

and to determine upon the structure of this call graph how sections can be

overlayed, using the smallest amount of RAM.

Incremental linkage disables overlaying, so the last link phase should not

be incremental, even if the incremental phase resolves all externals.

The following diagram shows the input files and output files of the linker:

object library .a

.obj

.lnl

.out

map file

object files

load module

linker

lktri

Figure 9-1: TriCore Linker

Chapter 99–4
L
IN
K
E
R

9.2 LINKER INVOCATION

The invocation of the TriCore linker is:

lktri [option]... file�...

When you use a UNIX shell (C-shell, Bourne shell), options containing

special characters (such as '()') must be enclosed with ” ” . The

invocations for UNIX and PC are the same, except for the -? option in the

C-shell:

lktri ”–?” or lktri –\?

Options may appear in any order. Options start with a '-'. Only the -lx
option is position dependent. Option may be combined: -rM is equal to

-r -M. Options that require a filename or a string may be separated by a

space or not: -oname is equal to -o name.

file can be any object file (.obj), or object library (.a) or incrementally

linker (.out) files. The files are linked in the same order as they appear

on the command line.

The linker recognizes the following options:

Option Description

–C Link case insensitive (default case sensitive)

–H or –? Display invocation syntax

–L directory Additional search path for system libraries

–L Skip system library search

–M Produce a link map (.lnl)

–N Turn off overlaying

–O name Specify basename of the resulting map files

–V Display version header only

–WAE Treat warning messages as errors

–c Produce a separate call graph file (.cal)

–d file Read description file information from file,
’–’ means stdin

–e Clean up if erroneous result

–err Redirect error messages to error file (.elk)

Linker 9–5

• • • • • • • •

DescriptionOption

–f file Read command line information from file,
’–’ means stdin

–l x Search also in system library lib x.a

–o filename Specify name of output file

–r Suppress undefined symbol diagnostics

–u symbol Enter symbol as undefined in the symbol table

–v or –t Verbose option. Print name of each file as it is processed

–w n Suppress messages above warning level n.

Table 9-1: Options summary

9.2.1 DETAILED DESCRIPTION OF LINKER OPTIONS

With options that can be set from within EDE, you will find a mouse icon

that describes the corresponding action.

-?/-H

Option:

-?

-H

Description:

Display an explanation of the invocation syntax at stdout .

Example:

lktri –H

Chapter 99–6
L
IN
K
E
R

-C

Option:

Select the | Linker/Locator Options... menu item. Disable the

Link case sensitive check box in the Linker tab.

-C

Default:

Case sensitive

Description:

With this option the linker links case insensitive. The default is case

sensitive linking.

Example:

To switch to case insensitive mode, enter:

lktri –C test.obj

Using the control program:

cctri –Wlk–C test.obj

Linker 9–7

• • • • • • • •

-c

Option:

Select the | Linker/Locator Options... menu item. Enable the

Make a separate function call graph file (.cal) check box

in the Linker tab.

-c

Description:

Generate separate call graph file (.cal).

Example:

To create a call graph file (test.cal), enter:

lktri –c test.obj

Using the control program:

cctri –Wlk–c test.obj

Section Linker Output.

Chapter 99–8
L
IN
K
E
R

-d

Option:

Select the | Linker/Locator Options... menu item. Add the

option to the Additional options field in the Linker tab.

-d file

Arguments:

A filename to read description file information from. If file is a '-', the

information is read from standard input.

Description:

Read description file information from file instead of a .dsc file.

Example:

To read description file information from file tri.dsc , enter:

lktri –dtri.dsc test.obj

Linker 9–9

• • • • • • • •

-e

Option:

EDE always removes the output files when errors occur.

-e

Description:

Remove all link products such as temporary files, the resulting output file

and the map file, in case an error occurred.

Example:

lktri –e test.obj

Chapter 99–10
L
IN
K
E
R

-err

Option:

In EDE this option is not so useful. If you would use this option you

would not see the error messages in the Build tab.

-err

Description:

The linker redirects error messages to a file with the same basename as the

output file and the extension .elk . The default filename is a.elk .

Example:

To write errors to the file a.elk instead of stderr , enter:

lktri –err test.obj

To write errors to the file test.elk instead of stderr , enter:

lktri –err test.obj –otest.out

Linker 9–11

• • • • • • • •

-f

Option:

-f file

Arguments:

A filename for command line processing. If file is a '-', the information is

read from standard input. You need to provide the EOF code to close

stdin (usually Ctrl-Z or Ctrl-D on UNIX).

Description:

Use file for command line processing. To get around the limits on the size

of the command line, it is possible to use command files. These command

files contain the options that could not be part of the real command line.

Command files can also be generated on the fly, for example by the make

utility.

More than one -f option is allowed.

Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command

file.

2. To include whitespace in the argument, surround the argument with either

single or double quotes.

3. If single or double quotes are to be used inside a quoted argument, we

have to go by the following rules:

a. If the embedded quotes are only single or double quotes, use the

opposite quote around the argument. Thus, if a argument should

contain a double quote, surround the argument with single quotes.

b. If both types of quotes are used, we have to split the argument in such

a way that each embedded quote is surrounded by the opposite type

of quote.

Example:

”This has a single quote ’ embedded”

Chapter 99–12
L
IN
K
E
R

or

’This has a double quote ” embedded’

or

’This has a double quote ” and \
a single quote ’”’ embedded”

4. Some operating systems impose limits on the length of lines within a text

file. To circumvent this limitation it is possible to use continuation lines.

These lines end with a backslash and newline. In a quoted argument,

continuation lines will be appended without stripping any whitespace on

the next line. For non-quoted arguments, all whitespace on the next line

will be stripped.

Example:

”This is a continuation \
line”
 –> ”This is a continuation line”

control(file1(mode,type),\
 file2(type))
 –>
control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Example:

Suppose the file mycmds contains the following line:

–err
test.obj

The command line can now be:

lktri –f mycmds

Linker 9–13

• • • • • • • •

-L

Option:

Select the | Directories... menu item. Add one or more directory

paths to the Library Files Path field.

-L�[directory]

Arguments:

The name of the directory to search for system libraries.

Description:

Add directory to the list of directories that are searched for system

libraries. Directories specified with -L are searched before the standard

directories specified by the environment variable CTRILIB. If you specify

-L without a directory, the environment variable CTRILIB is not searched

for system libraries. You can use the -L option more than once to add

several directories to the search path for system libraries. The search path

is created in the same order as in which the directories are specified on

the command line.

Example:

lktri –Lc:\ctri\lib test.obj

Chapter 99–14
L
IN
K
E
R

-l

Option:

Select the | Linker/Locator Options... menu item. Enable the

Link default C libraries check box in the Linker tab. Optionally,

select a floating point library.

-l�x

Arguments:

A string to form the name of the system library lib x.a .

Description:

Search also in system library lib x.a , where x is a string. The linker first

searches for system libraries in any directories specified with -Ldirectory,

then in the standard directories specified with the environment variable

CTRILIB, unless the -L option is used without a directory specified.

This option is position dependent (see section Linking with Libraries).

Example:

To search in the system library libc.a after the user object and library are

linked, enter:

lktri myobj.obj mylib.a –lc

Linker 9–15

• • • • • • • •

-M

Option:

Select the | Linker/Locator Options... menu item. Enable the

Generate a linker listing file (.lnl) check box in the

Linker tab.

-M

Description:

Produce a link map (.lnl). If no output filename is specified the default

name is a.lnl .

Example:

To create the map file a.lnl , enter:

lktri –M test.obj

Section Linker Output,
-O.

Chapter 99–16
L
IN
K
E
R

-N

Option:

Select the | Linker/Locator Options... menu item. Add the

option to the Additional options field in the Linker tab.

-N

Description:

Turn off overlaying. This can be useful for debugging.

Linker 9–17

• • • • • • • •

-O

Option:

Select the | Linker/Locator Options... menu item. Add the

option to the Additional options field in the Linker tab.

-O�name

Arguments:

The basename to be used for map files.

Description:

Use name as the default basename for the resulting map files.

Example:

To create the map file test.lnl using the linker, enter:

lktri –M –Otest test.obj

Using the control program:

cctri –Wlk–M –Wlk–Otest test.obj

Section Linker Output,
-M.

Chapter 99–18
L
IN
K
E
R

-o

Option:

-o filename

Arguments:

An output filename.

Default:

a.out

Description:

Use filename as output filename of the linker. If this option is omitted, the

default filename is a.out .

Example:

To create the output file test.out instead of a.out , enter:

lktri test.obj –otest.out

Linker 9–19

• • • • • • • •

-r

Option:

Select the | Linker/Locator Options... menu item. Add the

option to the Additional options field in the Linker tab.

-r

Description:

Specify incremental linking. No report is made for unresolved symbols,

and the function overlaying is disabled.

Section Linker Output.

Chapter 99–20
L
IN
K
E
R

-u

Option:

Select the | Linker/Locator Options... menu item. Add the

option to the Additional options field in the Linker tab.

-u�symbol

Arguments:

The name of a symbol to undefine.

Description:

Enter symbol as undefined in the symbol table. This is useful for linking

from a library.

Example:

To force symbol main as undefined, enter:

lktri –u main mylib.a

Section Linking with Libraries.

Linker 9–21

• • • • • • • •

-V

Option:

-V

Description:

With this option you can display the version header of the linker. This

option must be the only argument of lktri. Other options are ignored. The

linker exits after displaying the version header.

Example:

lktri –V

TASKING TriCore object linker v x. yr z Build nnn
Copyright 1996– year Altium BV Serial# 00000000

Chapter 99–22
L
IN
K
E
R

-v

Option:

Select the | Linker/Locator Options... menu item. Enable the

Print the name of each file as it is processed check box in

the Linker tab.

-v

-t

Description:

Verbose option. Print the name of each file as it is processed.

Example:

lktri –v test.obj

lktri V008 (1): Embedded environment \ctri\etc\tri.dsc
 read, relaxed addressing mode check enabled
lktri V003 (1): Starting pass 1
lktri V002 (1): File currently in progress:
 test.obj
lktri E208 (0): Found unresolved external(s):
 _printf – (test.obj)
 __START – (test.obj)
lktri V003 (1): Starting pass 2
lktri V002 (1): File currently in progress:
 test.obj
lktri V005 (1): Removing file .\CD5668a.tld

Using the control program:

cctri –Wlk–v test.obj

Linker 9–23

• • • • • • • •

-w

Option:

Select the | Linker/Locator Options... menu item. Select a

warning level from the Suppress warning messages above list box

in the Linker tab.

-w level

Arguments:

A warning level between 0 and 9 (inclusive).

Default:

-w8

Description:

Give a warning level between 0 and 9 (inclusive). All warnings with a

level above level are suppressed. The level of a message is printed

between parentheses after the warning number. If you do not use the -w

option, the default warning level is 8.

Example:

To suppresses warnings above level 5, enter:

lktri –w5 test.obj

Using the control program:

cctri –Wlk–w5 test.obj

Section Type Checking.

Chapter 99–24
L
IN
K
E
R

-WAE

Option:

Select the | Linker/Locator Options... menu item. Enable the

Treat warnings as if they were errors check box in the

Linker tab.

-WAE

Description:

Treat warning messages as errors. This also affects the return value of the

application when only errors occur. A build process will now stop when

warnings occur.

Example:

lktri –WAE test.obj

Linker 9–25

• • • • • • • •

9.3 LIBRARIES

There are two kinds of libraries. One of them is the user library. If you

make your own library of object modules, this library must be specified as

an ordinary filename. The linker will not use any search path to find such

a library. The file must have the extension .a . Example:

lktri start.obj –fobj.lnk mylib.a

or, if the library resides in a sub directory:

lktri start.obj –fobj.lnk libs\mylib.a (PC)
lktri start.obj –fobj.lnk libs/mylib.a (UNIX)

The other kind of library is the system library. You must define system

libraries with the -l option. With the option -lc you specify the system

library libc.a .

In EDE you can specify the system libraries in the Linker tab of the |
Linker/Locator Options... menu item.

9.3.1 LIBRARY SEARCH PATH

The linker searches for system library files according to the following

algorithm:

1. Use the directories specified with the -Ldirectory options, in a left-to-right

order. For example:

PC:

lktri –L..\lib –L\usr\local\lib start.obj –fobj.lnk
–lc

UNIX:

lktri –L../lib –L/usr/local/lib start.obj –fobj.lnk
–lc

2. If the -L option is not specified without a directory, check if the

environment variable CTRILIB exists. If it does, use the contents as a

directory specifier for library files. It is possible to specify more than one

directory in the environment variable CTRILIB by separating the directories

with a directory separator. Valid directory separators are:

Chapter 99–26
L
IN
K
E
R

PC: ;

UNIX: : ;

Instead of using -L as in the example above, the same directory can be

specified using CTRILIB:

PC:

set CTRILIB=..\lib;\usr\local\lib
lktri start.obj –fobj.lnk –lc

UNIX:

if using the Bourne shell (sh), or korn shell (ksh)

CTRILIB=../lib:/usr/local/lib
export CTRILIB
lktri start.obj –fobj.lnk –lc

or if using the C-shell (csh)

setenv CTRILIB ../lib:/usr/local/lib
lktri start.obj –fobj.lnk –lc

3. Search in the lib/tc1 directory relative to the installation directory of

lktri for library files.

PC:

lktri.exe is installed in the directory C:\CTRI\BIN
The directory searched for the library file is C:\CTRI\LIB\TC1

UNIX:

lktri is installed in the directory /usr/local/ctri/bin
The directory searched for the library file is

/usr/local/ctri/lib/tc1

The linker determines run-time which directory the binary is executed

from to find this lib directory.

A directory name specified with the -Ldirectory option or in CTRILIB may

or may not be terminated with a directory separator, because lktri inserts

this separator, if omitted.

Linker 9–27

• • • • • • • •

9.3.2 LINKING WITH LIBRARIES

If you are linking from libraries, only those objects you need are extracted

from the library. This implies that if you invoke the linker like:

lktri mylib.a

nothing is linked and no output file will be produced, because there are

no unresolved symbols when the linker searches through mylib.a .

It is possible to force a symbol as undefined with the option -u:

lktri –u main mylib.a (space between -u and main is

 optional)

In this case the symbol main will be searched for in the library and (if

found) the object containing main will be extracted. If this module

contains new unresolved symbols, the linker looks again in mylib.a . This

process repeats until no new unresolved symbols are found. See also the

library member search algorithm in the next section.

The position of the library is important, if you specify:

lktri –lc myobj.obj mylib.a

the linker starts with searching the system library libc.a without

unresolved symbols, thus no module will be extracted. After that, the user

object and library are linked. When finished, all symbols from the C library

remain unresolved. So, the correct invocation is:

lktri myobj.obj mylib.a –lc

All symbols which remain unresolved after linking myobj.obj and

mylib.a will be searched for in the system library libc.a . Note that the

link order for objects, user libraries and system libraries is the order in

which they appear at the command line. Objects are always linked, object

modules in libraries are only linked if they are needed.

9.3.3 LIBRARY MEMBER SEARCH ALGORITHM

A library built with artri always contains an index part at the beginning of

the library. The linker scans this index while searching for unresolved

externals. However, to keep the index as small as possible, only the

defined symbols of the library members are recorded in this area.

Chapter 99–28
L
IN
K
E
R

When the linker finds a symbol that matches an unresolved external, the

corresponding object file is extracted from the library and is processed.

After processing the object file, the remaining library index is searched. If

after a complete search unresolved externals are introduced, the library

will be scanned again.

Using the -v option, you can follow the linker actions in respect to the

libraries.

9.4 LINKER OUTPUT

The linker produces an IEEE-695 object output file and, if requested, a

map file, and/or a call graph file.

The linker output object is still relocatable. It is the task of the locator to

determine the absolute addresses of the sections. The linker combines

sections with the same name to one (bigger) output section.

The linker produces a map file if the option -M is specified. The name of

the map file is the same as the name of the output file. The extension is

.lnl . If no output filename is specified the default name is a.lnl . The

map file is organized per linked object. Each object is divided in sections

and symbols per section. The map file shows the relative position of each

linked object from the start of the section.

The generated call graph will also be printed in the map file. The call

graph contains an overview of which function calls are present. The call

graph also contains information about the stack usage of the call graph.

When a function is called, the stack usage before entering the function is

written in front of the function name. The total stack usage of the function

(including its calls) is written behind the function. The maximum stack

usage of a function itself is written below the function. The number

indicates the size of the stack usage (in bytes for the TriCore). See also the

example.

Linker 9–29

• • • • • • • •

The call graph can generate a message for the detection of a recursive

function call, which is displayed as:

Call graph(s)
=============

Call graph 1:

 function
 |
 +–– function1 !! RECURSIVE !!

The command line option -c forces the linker to generate a separate call

graph file with a compressed call graph. The filename extension of this file

is .cal .

If the linker is used for incremental linking, the -r option must be used.

The effect is, that unresolved symbol diagnostics will not be generated,

and overlaying is not done. In this case, the output of the linker can be

used again as input object. A call graph will always be generated.

A sample map file (.lnl):

Call graph(s)
=============

Call graph 1:

 _start (14)
 |
 +–(4)– _exit (2)
 | |
 | +–(2)
 |
 +–(2)– main (12)
 | |
 | +–(2)– puts (10)
 | | |
 | | +–(2)– fputc (8)
 | | | |
 | | | +–(2)– _flsbuf (6)
 | | | | |
 | | | | +–(2)– _iowrite (2)
 | | | | | |
 | | | | | +–(2)
 | | | | |

Chapter 99–30
L
IN
K
E
R

 | | | | +–(2)– _write (4)
 | | | | | |
 | | | | | +–(2)– _iowrite (2)
 | | | | | | |
 | | | | | | +–(2)
 | | | | | |
 | | | | | +–(2)
 | | | | |
 | | | | +–(2)
 | | | |
 | | | +–(2)
 | | |
 | | +–(2)
 | |
 | +–(2)
 |
 +–(4)

Maximum stack usage: 14

Pool offsets
============

Pool #1: zp_ovln (Total of 39 bytes)

 Pool: zp_ovln
 off siz
 puts() 0 6
 fputc() 6 7
 _flsbuf() 13 12
 _write() 25 10
 _iowrite() 35 4

Object: cstart.obj
==================

Section:abs_65534 (Start = 0x0)

Section:.text (Start = 0x0)
0x0000001c E __exit
0x00000000 E __START

Linker 9–31

• • • • • • • •

Object: hello.obj
=================

Section:.text (Start = 0x1f)
0x0000001f E _main

Section:.string (Start = 0x0)

Object: _puts.obj
=================

Section:.text (Start = 0x28)
0x00000028 E _puts

Object: _fputc.obj
==================

Section:.text (Start = 0x78)
0x00000078 E _fputc

Object: _iob.obj
================

Section:.near_data (Start = 0x0)
0x00000000 E __iob

Section:.near_bss (Start = 0x0)
0x00000000 E __ungetc

Object: _flsbuf.obj
===================

Section:.text (Start = 0x0102)
0x00000102 E __flsbuf

Object: _iowrite.obj
====================

Section:.text (Start = 0x0314)
0x00000314 E __iowrite

Chapter 99–32
L
IN
K
E
R

Object: _write.obj
==================

Section:.text (Start = 0x0318)
0x00000318 E __write

The addresses in the map file are offsets relative to the start of the section

in the output file. For instance, section .text of the object module

hello.obj starts at offset 0x1f from the output .text section. Function

main also starts at offset 0x1f from the start of the resulting .text
section. The E after the address indicates the label is external.

When we take the following part of the call graph,

+––––– _write (4)
 |
 +–(2)– _iowrite (2)
 | |
 | +–(2)
 |
 +–(2)

we can see from the indentation in the structure of the tree that function

_write calls function _iowrite . The total stack usage of function

_write (including its calls) is given behind the function name:

 _write (4)

To determine the total stack usage we take the maximum of the following:

1. local usage before calling a function (the first value), added to the total

usage of that function (the last value):

 +–(2)– _iowrite (2)

2. the usage of the function itself:

 |
 +–(2)

Linker 9–33

• • • • • • • •

9.5 TYPE CHECKING

9.5.1 INTRODUCTION

By default the compiler and the assembler generate high-level type

information. Unless you disable generation of type information (-gn), each

object contains type information of high-level types. The linker compares

this type information and warns you if there are conflicts. The linker

distinguishes four types of conflicts:

1. Type not completely specified (W109). Occurs if you do not specify the

depth of an array, or if you do not specify arguments in one of the

function prototypes. The linker does not report this type of conflicts unless

you specify a warning level 9 (-w9), default is warning level 8.

2. Compatible types, different definitions (W110). Occurs if for instance you

link a long with an int. The TriCore takes both as 32 bits, so there will not

be a problem. However, the code is not portable. Also structures or types

with different names produce this warning. The warning level for this

message is 8, so you can switch off this kind of message by specifying

warning level 7 or less (-w7).

3. Signed/unsigned conflict (W111). If you link a signed int with an unsigned

int, you get this message. In many cases there will be no problem, but the

unsigned version can hold a bigger integer. The warning level of this

warning is 6 and can be suppressed by specifying a warning level of 5 or

less (-w5).

4. All other type conflicts (W112). If you get warning 112, there is probably a

more serious type conflict. This can be a conflict in a function return type,

a conflict in length between two built in types (short/long) or a completely

different type. This warning has a level of 4, and can be switched off with

warning level 3 or less (-w3).

Chapter 99–34
L
IN
K
E
R

9.5.2 RECURSIVE TYPE CHECKING

The linker compares type recursively. For instance, the type of foo :

struct s1 {
 struct s2 *s2_ptr;
};

struct s2 {
 int count;
} sample;

struct s1 foo = { &sample };

If you compile this source and link it with another compiled source with

only struct s2 different:

struct s1 {
 struct s2 *s2_ptr;
};

struct s2 {
 short count;
};

extern struct s1 foo;

message W112 (type conflict) will be generated. Although struct s1 is

the same in both cases, this is a real type conflict: For instance, the code

"foo.s2_ptr–>count++ " produces different code in both objects.

If you have several conflicts in one symbol, the linker reports only the one

with the lowest warning level. (The most serious one.)

Linker 9–35

• • • • • • • •

9.5.3 TYPE CHECKING BETWEEN FUNCTIONS

If you use K&R style functions and disabled type checking for these

functions with the -K option of ctri, it is not possible to check the type of

the arguments and the number of arguments. Return types are 'int' if not

specified. Prototypes are only needed if a function has a non-integer

return type:

test2(par)
int par;
{
 test1(par);
 return test3(1, 2);
}

In this case, test1 (defined in another source) has a return type void ,

and test3 has a return type int , which is the default. At the default

warning level, the linker does not report any conflict. If you should specify

warning level 9 (-w9), the linker reports a 'not completely specified' type,

because the linker is not able to check the arguments. Conflicts in return

types cause real type conflicts at warning level 4.

If the source is ANSI style (which is recommended), the linker checks the

types of all parameters, and the number of parameters. In this case the

source of the example above looks like:

void test1(int); /* ANSI style prototypes */
int test3(int, int);

test2(int par) /* ANSI style function definition*/
{
 test1(par);
 return test3(1, 2);
}

Chapter 99–36
L
IN
K
E
R

Another source, containing the definition of test1 and test3 may look

like:

void test1(int one)
{
 /*
 ** code for function test1
 */
 .
 .
 .
}

int test3(int one, int two)
{
 /*
 ** Code for function test3
 */
 .
 .
 .
}

Prototypes are only needed for functions which are referenced before they

are defined within one source. However, it is a good practice to include a

prototype file with prototypes of all the functions in a file. If you do so,

type checking for functions is done by the compiler. Nevertheless, if you

do not compile all sources after you have changed the prototype file, the

linker will report the type conflict.

It is possible to add ANSI style prototypes to K&R style C-code. In this

case full type checking for functions becomes available. To accomplish

this, make a new header file with all prototypes for all functions in your

application. Include this file in each source, or tell the compiler to include

it for you by means of the option -H:

cctri –c –Hproto.h *.c

Linker 9–37

• • • • • • • •

9.5.4 MISSING TYPES

In C you are allowed to define pointers to unspecified objects. The linker

is not able to check such types. For instance:

struct s1 {
 struct s2 *s2_ptr;
};

struct s1 foo;

The structure s2 is not specified. Because the linker is not able to check

whether struct s2 is the same in all sources, a warning at level 9 will be

generated:

lktri W102 (9) <name>: Incomplete type specification, type index = T101

It is possible that the struct s2 is known in an other source. If this source

uses variable foo, a second message is generated, reporting a level 9 type

conflict:

lktri W109 (9) <f1>: Type not completely specified for symbol <foo> in <f2>

Because the type definition is not complete, the first warning reports that

the linker cannot check the type, although this is allowed in C. This

message is given once for each object for each incomplete type. The

second warning reports a difference in types, an incomplete type versus a

complete type. Note that al these warnings are only generated if you

specify warning level 9 (-w9).

9.6 LINKER MESSAGES

There are four kinds of messages: fatal messages, error messages, warning

messages and verbose messages. Fatal messages are generated if the linker

is not able to perform its task due to the severity of the error. In those

situations, the exit code will be 2. Error messages will be reported if an

error occurred which is not fatal for the linker. However, the output of the

linker is not usable. The exit code in case of one or more error messages

will be 1. Warning messages are generated if the linker detects potential

errors, but the linker is unable to judge those errors. The exit code will be

0 in this case, indicating a usable .out file. Of course, if the linker reports

no messages at all, the exit code is 0 also.

Chapter 99–38
L
IN
K
E
R

Each linker message has a built-in warning level. With option -wx it is

possible to suppress messages with a warning level above x.

Verbose messages are generated only if the verbose option (-v) is on.

They report the progress of the link process.

Linker messages have the following layout:

TASKING TriCore object linker v x. yr z Build nnn
Copyright 1996– year Altium BV Serial# 00000000
lktri W112 (4) a.obj: Type conflict for symbol <f> in b.obj

The first line shows the banner of the TriCore linker. The second line

reports a type conflict in the file a.obj . Apparently there is a conflicting

type definition of the function f in module b.obj . The number between

parentheses after the warning number, '(4)', shows the warning level.

There are four message groups:

1. Fatal (always level 0):

- Write error

- Out of memory

- Illegal input object

2. Error (always level 0):

- Unresolved symbols (and no incremental linking)

- Can't open input file

- Illegal recursive use of an non reentrant function

3. Warning (levels from 1 to 9):

- Type conflict between two symbols

- Illegal option (Ignored)

- No system library search path, and system library requested

4. Verbose (level not relevant, only given with option -v):

- Extracting files from a library

- Current file/library name

- Pass one or pass two

- Rescanning library for new unresolved symbols

- Cleaning up temp files

- warning level

10

LOCATOR
C

H
A

P
T

E
R

Chapter 1010–2
L
O
C
A
T
O
R

10

C
H

A
P

T
E

R

Locator 10–3

• • • • • • • •

10.1 OVERVIEW

This chapter describes the TriCore locator.

The task of the locator is to locate a .out file, made by lktri, to absolute

addresses. In an embedded environment an accurate description of

available memory and information about controlling the behavior of the

locator is crucial for a successful application. For example, it may be

necessary to port applications to processors with different memory

configurations, or it may be necessary to tune the location of sections to

take full advantage of fast memory chips. To perform its task the locator

needs a description of the derivative of the TriCore used. The locator uses

a special language for this description: DELFEE, which stands for

DEscriptive Language For Embedded Environments. This steering language

is used in a special file, which is called the description file. See Appendix

F DEscriptive Language For Embedded Environments for detailed

information.

The description file is an optional parameter in the locator invocation.

Without a description file name on the command line, or without the -d

option, the locator searches the file tri.dsc in the current directory or in

directory etc in the TriCore product tree.

.out

.mapmap file

linker object files

absolute

locator
lctri

description file

.dsc

Intel Hex

object file

Motorola S

Figure 10-1: Locator

Chapter 1010–4
L
O
C
A
T
O
R

10.2 INVOCATION

The invocation of the locator is:

lctri [option]... [file]...

When you use a UNIX shell (C-shell, Bourne shell), options containing

special characters (such as '()') must be enclosed with ” ” . The

invocations for UNIX and DOS are the same, except for the -? option in

the C-shell:

lctri ” -?” or lctri -\?

Options may appear in any order. Options start with a '-'. They may be

combined: -eM is equal to -e -M. Options that require a filename or a

string may be separated by a space or not: -oname is equal to -o name.
file may be any file with a .out or .dsc extension.

The locator recognizes the following options:

Option Description

–H or –? Display invocation syntax

–M[n] Produce a locate map file (.map) with maximum width n (n
> 132)

–N Generate external part

–S space Generate specific space

–V Display version header only

–WAE Treat warning messages as errors

–c Don’t generate ROM copy for re–initializing data memory

–d file Read description file information from file, ’–’ means stdin

–e Clean up if erroneous result

–emmacro[=def] Define preprocessor macro

–err Redirect error messages (.elc)

–f file Read command line information from file, ’–’ means stdin

–f format Specify output format

–o filename Specify name of output file

–p Make a proposal for a software part on stdout

–s Strip debug info from the input

Locator 10–5

• • • • • • • •

DescriptionOption

–v Verbose option. Print name of each file as it is processed

–w n Suppress messages above warning level n.

Table 10-1: Options summary

10.2.1 DETAILED DESCRIPTION OF LOCATOR OPTIONS

With options that can be set from within EDE, you will find a mouse icon

that describes the corresponding action.

-?/-H

Option:

-?

-H

Description:

Display an explanation of options at stdout .

Example:

lctri –?

Chapter 1010–6
L
O
C
A
T
O
R

-c

Option:

Select the | Configure Selected CPU... menu item. Disable the

Initialized and cleared C variables check box in the Startup
tab.

-c

Description:

Do not generate ROM-copy for re-initializing data memory.

Normally, when running an application from an EPROM, the startup code

will take care of clearing and initializing RAM data memory by keeping a

copy of the initialized data variables in ROM. During program startup this

ROM-copy is copied from program memory to data memory, thus assuring

the program will have the same initial values on every program restart.

In some special situations you can save target memory usage by not

generating a ROM copy of the initialized data variables in program

memory. When you use the -c option, the program will be initialized with

all required data values directly (this also includes the clearing and filling

of data sections). The program initialization is done during downloading

of the program. So, when loading the program, no additional copy action

is required.

The draw back of using this option is that when you want to restart the

program with the same initial values you have to download the whole

program again, because a ROM-copy with the initial values is not

available. Also, when the program runs from an EPROM, on program

restart no attempt is made to clear or fill data sections, which was normally

done at startup. So, a program depending on cleared or initialized RAM

variables will fail then.

The -c option is of great use when loading the progam from a host

processor, because the program code and data can be loaded into a target

system with the exact required memory space to run correctly (no extra

space for copies in ROM is required).

Locator 10–7

• • • • • • • •

-d

Option:

Select the | Linker/Locator Options... menu item. Enter the

basename of the description file in the Locator control file (.dsc)
field in the Locator tab.

-d file

Arguments:

A filename to read description file information from. If file is a '-', the

information is read from standard input.

Description:

Read description file information from file instead of a .dsc file.

Example:

To read description file information from file tri.dsc , enter:

lctri –dtri.dsc test.out

Chapter 1010–8
L
O
C
A
T
O
R

-e

Option:

EDE always removes the output files on errors.

-e

Description:

Remove all locate products such as temporary files, the resulting output

file and the map file, in case an error occurred.

Example:

lctri –e test.out

Locator 10–9

• • • • • • • •

-em

Option:

-emmacro[=def]

Arguments:

The macro you want to define and optionally its definition.

Description:

Define macro to the preprocessor, as in #define. If def is not given ('=' is

absent), '1' is assumed. Any number of symbols can be defined. The

definition can be tested by the preprocessor with #if, #ifdef and #ifndef,

for conditional locating. If the command line is getting longer than the

limit of the operating system used, the -f option is needed.

Example:
lctri myproject.out –o myproject.abs –emEDE=\”myproject.i\” –M

Chapter 1010–10
L
O
C
A
T
O
R

-err

Option:

In EDE this option is not so useful. If you would use this option you

would not see the error messages in the Build tab.

-err

Description:

The locator redirects error messages to a file with the same basename as

the output file and the extension .elc . The default filename is a.elc .

Example:

To write errors to the file a.elc instead of stderr , enter:

lctri –err test.out

To write errors to the file test.elc instead of stderr , enter:

lctri –err test.out –otest.abs

Locator 10–11

• • • • • • • •

-f

Option:

-f file

Arguments:

A filename for command line processing. If file is a '-', the information is

read from standard input. You need to provide the EOF code to close

stdin (usually Ctrl-Z or Ctrl-D on UNIX).

file must not be a number in the range 0-4, because these numbers are

used to specify an output format.

Description:

Use file for command line processing. To get around the limits on the size

of the command line, it is possible to use command files. These command

files contain the options that could not be part of the real command line.

Command files can also be generated on the fly, for example by the make

utility.

More than one -f option is allowed.

Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command

file.

2. To include whitespace in the argument, surround the argument with either

single or double quotes.

3. If single or double quotes are to be used inside a quoted argument, we

have to go by the following rules:

a. If the embedded quotes are only single or double quotes, use the

opposite quote around the argument. Thus, if a argument should

contain a double quote, surround the argument with single quotes.

b. If both types of quotes are used, we have to split the argument in such

a way that each embedded quote is surrounded by the opposite type

of quote.

Chapter 1010–12
L
O
C
A
T
O
R

Example:

”This has a single quote ’ embedded”

or

’This has a double quote ” embedded’

or

’This has a double quote ” and \
a single quote ’”’ embedded”

4. Some operating systems impose limits on the length of lines within a text

file. To circumvent this limitation it is possible to use continuation lines.

These lines end with a backslash and newline. In a quoted argument,

continuation lines will be appended without stripping any whitespace on

the next line. For non-quoted arguments, all whitespace on the next line

will be stripped.

Example:

”This is a continuation \
line”
 –> ”This is a continuation line”

control(file1(mode,type),\
 file2(type))
 –>
control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Example:

Suppose the file mycmds contains the following line:

–err
test.out

The command line can now be:

lctri –f mycmds

Locator 10–13

• • • • • • • •

-f format

Option:

Select the | Linker/Locator Options... menu item. Choose an

Output Format option from the Format tab.

-f�format

Arguments:

format can be one of the following output formats:

0 = TIOF 695

1 = IEEE Std. 695 (Default)

2 = Motorola S records

3 = Intel Hex

4 = ELF/DWARF1.1

Description:

Specify an output format. The default output format is IEEE Std. 695 (-f1),

which can directly be used by the CrossView Pro debugger. The other

output formats can be used for loading into a PROM-programmer.

Section Format Suboptions.,
Appendix H, IEEE-695 Object Format,
Appendix I, Motorola S-Records,
Appendix J, Intel Hex Records.

Chapter 1010–14
L
O
C
A
T
O
R

-M

Option:

Select the | Linker/Locator Options... menu item. Enable the

Produce a memory map file (.map) check box in the Locator tab.

-M[n]

Arguments:

Optionally the maximum line width (n > 132). If you omit the width, the

default is 132 characters.

Description:

Produce a locate map (.map). If no output filename is specified the default

name is a.map . The map file shows the absolute position of each section.

External symbols are listed with their absolute address, both sorted on

address and sorted on symbol.

Example:

To create the map file a.map , enter:

lctri –M test.out

Locator 10–15

• • • • • • • •

-N

Option:

Select the | Linker/Locator Options... menu item. Add the

option to the Additional options field in the Locator tab.

-N

Description:

Generate external part. The external part contains all global symbol

references.

Chapter 1010–16
L
O
C
A
T
O
R

-o

Option:

Select the | Linker/Locator Options... menu item. Add the

option to the Additional options field in the Locator tab.

-o�filename

Arguments:

An output filename.

Default:

The default filename depends on the output format specified:

Format Default output name

0 a.abs
1 a.abs
2 a.sre
3 a.hex
4 a.elf

Description:

Use filename as output filename of the locator.

Example:

To create the output file test.abs instead of a.abs , enter:

lctri test.out –otest.abs

Locator 10–17

• • • • • • • •

-p

Option:

Select the | Linker/Locator Options... menu item. Add the

option to the Additional options field in the Locator tab.

-p

Description:

Make a proposal for a software part in a description file on standard

output.

Chapter 1010–18
L
O
C
A
T
O
R

-S

Option:

Select the | Linker/Locator Options... menu item. Add the

option to the Additional options field in the Locator tab.

-S�space

Arguments:

The name of a space from a .dsc file.

Description:

With this option you can generate a specific output file for a specified

space instead of generating an output file containing all spaces.

Locator 10–19

• • • • • • • •

-s

Option:

Select the | Linker/Locator Options... menu item. Disable the

Include symbolic debug information check box in the Locator
tab.

-s

Description:

Strip debug information from the input file.

Chapter 1010–20
L
O
C
A
T
O
R

-V

Option:

-V

Description:

With this option you can display the version header of the locator. This

option must be the only argument of lctri. Other options are ignored. The

locator exits after displaying the version header.

Example:

lctri –V

TASKING TriCore locator v x. yr z Build nnn
Copyright 1996– year Altium BV Serial# 00000000

Locator 10–21

• • • • • • • •

-v

Option:

Select the | Linker/Locator Options... menu item. Add the

option to the Additional options field in the Locator tab.

-v

Description:

Verbose option. Print the name of each file as it is processed.

Example:

lctri –v test.out

lctri V001 (1): Output format: IEEE 695
lctri V004 (1): Warning level 8
lctri V007 (1): Found file <tri.dsc> via path
 \ctri\etc\tri.dsc
lctri V002 (1): Starting pass 1
lctri V000 (1): File currently in progress:
 test.out

Chapter 1010–22
L
O
C
A
T
O
R

-w

Option:

Select the | Linker/Locator Options... menu item. Select a

warning level from the Suppress warning messages above list box

in the Locator tab.

-w level

Arguments:

A warning level between 0 and 9 (inclusive).

Default:

-w8

Description:

Give a warning level between 0 and 9 (inclusive). All warnings with a

level above level are suppressed. The level of a message is printed

between parentheses after the warning number. If you do not use the -w

option, the default warning level is 8.

Example:

To suppresses warnings above level 5, enter:

lctri –w5 test.out

Using the control program:

cctri –Wlc–w5 test.out

Locator 10–23

• • • • • • • •

-WAE

Option:

Select the | Linker/Locator Options... menu item. Enable the

Treat warnings as if they were errors check box in the

Locator tab.

-WAE

Description:

Treat warning messages as errors. This also affects the return value of the

application when only errors occur. A build process will now stop when

warnings occur.

Example:

lctri –WAE test.out

Chapter 1010–24
L
O
C
A
T
O
R

10.2.2 FORMAT SUBOPTIONS

The layout of the -fformat switch as shown in the previous section has

some extra capabilities. The general form of format is:

format_number[format_option]...

The first character is a single digit known as the format specifier. This

format specifier can be followed by one or more format_options. These

format_options are in principle output format dependent. Currently the

following format_options are known:

Suboption Description Valid Formats

a Sort addresses in ascending order 2

bsize Specify the output buffer size 1, 2, 3

c Generate file for each chip 3

s Emit start address record 3

S1, S2, S3 Force Motorola S1, S2 or S3 records 2

u Unsorted addresses (default) 2

Table 10-2: Format suboptions

For format 2 and 3 the buffer size sets the length of an output record

exclusive record code, address and checksum. The following Intel Hex

record has a buffer size of 32 bytes:

:20004000 (Record code and address)
000028A101002925FBFF6015FFFF6B25DDFF001000000000000020A101002925
 (32 data bytes)
8F (Checksum)

For format 1, size is the maximum number of bytes in one LD command.

Examples:

Format 2 with buffer size 64: -f2b64

Format 1 with buffer size 128: -f1b128

Format 2 with ascending addresses: -f2a

Format 2 with unsorted addresses: -f2u

Format 3 with separate hex files for each chip: -f3c

Format 3 including start address record: -f3s

Format 2 with S2 records: -f2S2

Locator 10–25

• • • • • • • •

10.3 LOCATING YOUR APPLICATION

To ease the locating process a set of locator controls has been developed.

Instead of manually adapting the DELFEE files (tri.cpu , tri.def and

tri.dsc), you can now write a simple and quite straightforward locator

control file. The locator control file is passed to the locator on the

command line.

When using EDE, the locating process is even simpler, since EDE

generates a locator control file for you. This control file, project.i , is the

result of your (graphical) selections in the | Linker/Locator
options... tabs.

The locator still uses the DELFEE files. However, the contents of the

DELFEE files are now controlled by the new locator control file (tri.i).

You can, of course, still inspect (and even edit) the files tri.cpu ,

tri.def and tri.dsc , but it is recommended not to touch them. You

can specify the locating behavior and your memory configuration (such as

ROM and RAM areas) using EDE.

The locator supports the following controls (which are implemented as C

language macros):

Locator control Default Description

RESET 0x30000000 Reset start address

USTACK 12K User stack size

ISTACK 4K Interrupt stack size

HEAP 32K Heap size

CSA 256 Number of context blocks

XVWBUF 32 CrossView Pro buffer size

RAM(name,start,end) –– Define RAM memory area

ROM(name,start,end) –– Define ROM memory area

RESERVED(start,end) –– Exclude memory range from section
allocation

ROM_LINEAR(name
[addr=address])

–– Specify section with name must be
located at address addr or before/after
another ROM_LINEAR control.

ROM_ABS24(name
[addr=address])

–– Specify section with name must be
located at address addr or before/after
another ROM_ABS24 control.

Chapter 1010–26
L
O
C
A
T
O
R

DescriptionDefaultLocator control

ROM_ABS18(name
[addr=address])

–– Specify section with name must be
located at address addr or before/after
another ROM_ABS18 control.

RAM_LINEAR(name
[addr=address])

–– Specify section with name must be
located at address addr or before/after
another RAM_LINEAR control.

RAM_ABS18(name
[addr=address])

–– Specify section with name must be
located at address addr or before/after
another RAM_ABS18 control.

Table 10-3: Locator controls

Below is an example locator control file.

#define RESET 0x30000000 /* reset start address */
#define USTACK 12k /* user stack size */
#define ISTACK 4k /* interrupt stack size */
#define HEAP 32k /* heap size */
#define CSA 256 /* number of context blocks */
#define XVWBUF 32 /* size of CrossView Pro buffer */

RAM(sdata , 0x00000000 , 0x000007ff) // 2k
RAM(ddata , 0x10000000 , 0x1000ffff) // 64k
ROM(dcode , 0x20000000 , 0x2001ffff) // 128k
ROM(scode , 0x28000000 , 0x280003ff) // 1k
ROM(boot , 0xd0000000 , 0xdfffffff)
ROM(fpi1 , 0x2ffeff00 , 0x7fffffff)
RAM(fpi2 , 0x80000000 , 0xcfffffff)

// RESERVED(0x28000000, 0x280003ff)

// ROM_ABS24(code.cstart)

EDE generates the locator control file and the proper invocation for you.

If you do not use EDE, you must create a locator control file yourself (for

example, myproject.i) and specify it on the command line. The default

name is tri.i . For example:

lctri myproject.out –o myproject.abs –emEDE=\”myproject.i\” –M

Locator 10–27

• • • • • • • •

10.4 CALLING THE LOCATOR VIA THE CONTROL

PROGRAM

It is recommended to call the locator via the control program cctri. The

control program translates certain options for the locator (e.g., -srec to

-f2). Other options (such as -M) are passed directly to the locator.

Typical, you can use the control program to get an .abs file directly from

.c , .src , .asm or .obj files. The invocation:

cctri –M –g addone.src demo.c –o demo.abs tri.dsc

builds an absolute demo file called demo.abs ready for running via the

CrossView Pro debugger.

10.5 LOCATOR OUTPUT

The locator produces an absolute file and, if requested, a map file and/or

an error file. The output file is absolute and in Intel Hex format, Motorola

S-record format or in IEEE-695 format, depending on the usage of the -f

option. The default output name is a.hex , a.sre or a.abs , respectively.

The map file (-M option) always has the same basename as the output

object file, with an extension .map . The map file shows the absolute

position of each section. External symbols are listed with their absolute

address, both sorted on address and sorted on symbol.

The error output file (-err option) has the same name as the object output

file, but with extension .elc . Errors occurred before the -err option is

evaluated are printed on stderr.

10.6 LOCATOR MESSAGES

There are four kinds of messages: fatal messages, error messages, warning

messages and verbose messages. Fatal messages are generated if the

locator is not able to continue with its task due to the severity of the error.

In those situations, the exit code will be 2. Error messages will be reported

if an error occurred, not fatal for the locator. However, the output of the

locator is not usable. The exit code in case of one or more error messages

will be 1. Warning messages are generated if the locator detects potential

errors, but the locator is unable to judge those errors. The exit code will

be 0 in this case, indicating a usable .abs file. Of course, if the locator

reports no messages, the exit code is also 0.

Chapter 1010–28
L
O
C
A
T
O
R

Each locator message has a built-in warning level. With option -wx it is

possible to suppress messages with a warning level above x.

Verbose messages are generated only if the verbose option (-v) is on.

They report the progress of the locate process.

Locator messages have the following layout:

TASKING TriCore locator v x. yr z Build nnn
Copyright 1996– year Altium BV Serial# 00000000
lctri W112 (3) calc.out: Copy table not referenced, initial data is
not copied

The first line shows the locator banner. (Suppressed if the locator

invocation is done by the control program.) The second line shows the

warning. The number after the warning number shows the warning level.

10.7 COPY TABLE

One of the actions with the process initialization is copy data from ROM to

RAM, and initialize memory with the CLEAR attribute. The locator

generates a copy table for each process. The copy table can be referenced

by label _lc_cp . One entry in the copy table has the following layout:

typedef struct cp_entry {
 int cp_actions; /* 4 bytes */
 unsigned char *cp_destin; /* 4 byte address */
 unsigned char *cp_source; /* 4 byte address */
 int cp_length; /* 4 byte length */
} cp_entry_t;

The first member, cp_actions , defines what action you must perform

with the current entry. Actions are organized as a bit per action:

value 0 Reached end of the table.

CP_COPY (value 1) Copy from cp_source to cp_destin over

cp_length bytes.

CP_BSS (value 2) Clear memory from cp_destin over

cp_length bytes.

Locator 10–29

• • • • • • • •

Table entries are generated as follows:

• one entry for each section with the CLEAR attribute

• one entry for each section with the INIT attribute

• one 'zero' entry to indicate the end-of-table.

If there is nothing to do (no sections to clear and no data to copy) the

copy table has only one action entry with value zero.

At C level, the copy table can be declared as:

cpt_t _lc_cp;

And accessing a member of entry X becomes:

_lc_cp[X].cp_actions;

If label _lc_cp is not used, the table is not generated.

10.8 LOCATOR LABELS

The locator assigns addresses to the following labels when they are

referenced:

_lc_cp : Start of copy table The copy table gives the

source and destination addresses of sections to

be copied. This table will be generated by the

locator only if this label is used.

_lc_bs : Begin of stack space (using keyword stack).

_lc_es : End of stack space.

_lc_b_ name : Begin of section name.

_lc_e_ name : End of section name.

_lc_u_ name : User defined label. The label must be defined in

the description file. For example:

 label mylab;

_lc_ub_ name : Begin of user defined label. The label must be

defined in the description file. For example:

 label mybuffer length=100;

Chapter 1010–30
L
O
C
A
T
O
R

_lc_ue_ name : End of user defined label.

10.8.1 LOCATOR LABELS REFERENCE

This section contains a description of all locator labels. Locator labels are

labels starting with _lc_. They are ignored by the linker and resolved at

locate time. Some of these labels are real labels at the beginning or the

end of a section. Other labels have a second function, these labels are

used to address locator generated data. The data is only generated if the

label is used.

Because labels that start with _lc_ are treated differently in both the linker

and the locator, you can only use this type of labels as references, not as

definitions.

Locator 10–31

• • • • • • • •

_lc_b_section,

_lc_e_section

Syntax:

extern unsigned char _lc_b_section[];

extern unsigned char _lc_e_section[];

Description:

You can use the general locator labels _lc_b_section and _lc_e_section to

obtain the addresses of section section in a program. The b version points

to the start of the section, while the e version points to its end.

You can replace the dot before a section name by an underscore (_),

making it possible to access these labels from 'C'. This convention

introduces a possible name conflict. If, for example, both sections .text

and _text exist, the general label _lc_b__text is set to the start of

_text . The label for section .text is only usable at assembly level with its

real name. Of course, you should avoid such a conflict by not using

section names with a leading underscore.

Example:

printf(”Text size is 0x%x\n”,
 _lc_e__text – _lc_b__text);

Chapter 1010–32
L
O
C
A
T
O
R

_lc_bh, _lc_eh

Syntax:

extern unsigned char _lc_bh[];

extern unsigned char _lc_eh[];

Description:

All locator h labels are related to the heap. You can allocate a heap by

defining it in a cluster description. See also the Delfee keyword heap.

_lc_bh is a label at the begin of the heap. At 'C' level _lc_bh represent

the heap. The label is defined as a char array, but an array of any basic

type will do. _lc_eh represents the end of the heap.

Example:

Heap definition:

block total_range {
 .
 .
 cluster ram {
 amode data {
 heap length = 200;
 .
 }
 }
 .
}

Sbrk code:

extern unsigned char _lc_bh[];
extern unsigned char _lc_eh[];

static char *
sbrk(long length) {
 .
 .

if ((lastmem + length) > _lc_eh) {
 return (char *) –1; /* overflow */
}

Locator 10–33

• • • • • • • •

_lc_bs, _lc_es

Syntax:

extern unsigned char _lc_bs[];

extern unsigned char _lc_es[];

Description:

All locator s labels are related to the stack. You can allocate a stack by

defining it in a cluster description. See also the Delfee keyword stack.

_lc_bs is a label at the begin of the stack. At 'C' level _lc_bs represent the

stack. The label is defined as a char array, but an array of any basic type

will do. _lc_es represents the end of the stack. Because _lc_es is on a

higher address than _lc_bs and because the stack for the TriCore grows to

lower addresses, the stack actually starts at the label _lc_es and ends at

_lc_bs.

Example:

Stack definition:

block total_range {
 cluster ram {
 amode data {
 stack length = 100;
 .
 }
 }
}

Stack initialization:

_START:
 LD SP,#_lc_es ; set stack pointer to
 ; begin of stack space

Chapter 1010–34
L
O
C
A
T
O
R

_lc_cp

Syntax:

extern char *_lc_cp;

Description:

The copy table is generated per process. Each entry in this table represents

a copy or clearing action. Entries for the table are automatically generated

by the locator for:

- All sections with attribute b, which must be cleared at startup time :

a clearing action.

- All sections with attribute i, which must be copied from rom to ram

at program startup: a copy action

The layout of the copy table is described in 10.7, Copy Table. Type cpt_t
is defined in locate.h .

Locator 10–35

• • • • • • • •

_lc_u_identifier

Syntax:

extern int _lc_u_identifier[];

Description:

This locator label can be defined by the user by means of the Delfee

keyword label. This label must be defined in the Delfee file without the

prefix _lc_u_. From assembly the label can be referenced with the prefix

_lc_u_,.

Example:

In description file:

block total_range {
 cluster ram {
 amode data {
 label bstart;
 section text;
 label bend;
 }
 }
 .
 .
 .
}

From C:

#include <stdio.h>
extern int _lc_u_bstart[];
extern int _lc_u_bend[];
int main()
{
 printf(”Size of cluster ram is %d\n”,
 (long)_lc_u_bend –
 (long)_lc_u_bstart);
}

Chapter 1010–36
L
O
C
A
T
O
R

_lc_ub_identifier,

_lc_ue_identifier

Syntax:

extern int _lc_ub_identifier[];
extern int _lc_ue_identifier[];

Description:

These locator labels can be defined by the user by means of the Delfee

keywords reserved label=. The locator labels specify the begin and end

of a reserved area. The identifier is the name for the reserved area and

must be defined in the Delfee file without the prefix _lc_ub_ or _lc_ue_.

From assembly the labels can be referenced with the prefix _lc_ub_ and

_lc_ue_,.

Example:

In description file:

block total_range {
 cluster ram {
 attribute w;
 amode data {
 section selection=w;
 reserved label= xvwbuffer length=0x10;
 // Start address of reserved area is
 // label _lc_ub_xvwbuffer
 // End address of reserved area is
 // label _lc_ue_xvwbuffer
 }
 }
}

Locator 10–37

• • • • • • • •

From C:

#include <stdio.h>
extern int _lc_ub_xvwbuffer[];
extern int _lc_ue_xvwbuffer[];
int main()
{
 printf(”Size of reserved area xvwbuffer is %d\n”,
 (long)_lc_ue_xvwbuffer –
 (long)_lc_ub_xvwbuffer);
}

Chapter 1010–38
L
O
C
A
T
O
R

11

UTILITIES
C

H
A

P
T

E
R

Chapter 1111–2
U
T
IL
IT
IE
S

11

C
H

A
P

T
E

R

Utilities 11–3

• • • • • • • •

11.1 OVERVIEW

The following utilities are supplied with the Cross-Assembler for the

TriCore processor family which can be useful at various stages during

program development.

artri An IEEE archiver. This is a librarian facility, which can be

used to create and maintain object libraries.

cctri A control program for the TriCore tool chain.

mktri A utility program to maintain, update, and reconstruct groups

of programs.

prtri An IEEE object reader that views the contents of files which

have been created by a tool from the TASKING TriCore

toolchain.

When you use a UNIX shell (Bourne shell, C-shell), arguments containing

special characters (such as '()' and '?') must be enclosed with ” ” or

escaped. The -? option (in the C-shell) becomes: ” -?” or -\?.

The utilities are explained on the following pages.

Chapter 1111–4
U
T
IL
IT
IE
S

11.2 ARTRI

Name

artri IEEE archiver and library maintainer

Synopsis

artri key_option [option]... library [object_file]...
artri -V

artri -? (UNIX C-shell : "-?" or -\?)

Description

With artri you can combine separate object modules in a library file. The

linker optionally includes modules from a library when a specific module

resolves an external symbol definition in one of the modules that has been

read before. The library maintainer artri is a program to build library files

and it offers the possibility to replace, extract or remove modules from an

existing library.

key_option one of the main options indicating the action artri has to

take. Key options may appear in any order, at any place.

option optional sub-options as explained on the next pages.

library is the library file.

object_file is an object module to be added, extracted, replaced or

removed from the library.

Options

You may specify options with or without a leading '-'. Options may occur

in random order. You may also combine options. So -xv is allowed. -V

and -? however, must be the only option on the command line.

Key options:

-d Delete the named object modules from the library.

-m Move the named object modules to the end of the library, or

to another position as specified by one of the positioning

options.

-p Print the named object modules in the library on standard

output.

Utilities 11–5

• • • • • • • •

The object is in binary format. The -p option is normally used with a

redirection:

artri –p lib.a object.obj > t.obj

-r Replace the named object modules in the library if they exist.

If they are not in the library, add them. If no names are

given, only those object modules are replaced for which a

file with the same name is found in the current directory.

New modules are placed at the end.

-t Print a table of contents of the library. If no names are given,

all object modules in the library are printed. If names are

given, only those object modules are tabled.

-x Extract the named object modules from the library. If no

names are given, all modules are extracted from the library.

In neither case does x alter the library.

Other options:

-? Display an explanation of options at stdout .

-V Display version information at stderr .

-a posname
Append or move new object modules after existing module

posname. This option can only be used in combination with

the m or r option.

-b posname
Insert or move new object modules before existing module

posname. This option can only be used in combination with

the m or r option.

-c Create the library file without notification if the library does

not exist.

-f file Read options from file file. '-' means stdin . You need to

provide the EOF code to close stdin (usually Ctrl-Z or

Ctrl-D on UNIX).

-o Reset the last-modified date to the date recorded in the

library. It can only be used in combination with the x option.

-s Print a list of symbols. This option must be combined with

-t.

Chapter 1111–6
U
T
IL
IT
IE
S

-s1 Print a list of symbols. Each symbol is preceded by the library

name and the name of the object file. This option must be

combined with -t.

-u Replace only those object modules with the last-modified

date later than the library file. It can only be used in

combination with the r option.

-v Verbose. Under the verbose option, artri gives a module-

by-module description of the making of a new library file

from the old library and the constituent modules. It can only

be used in combination with the d, m, r, or x option.

-wn Set warning level n.

Examples

1. Create library clib.a consisting of the modules cstart.obj, and demo.obj :

artri cr clib.a cstart.obj demo.obj

2. Extract all modules form library clib.a :

artri x clib.a

3. Print a list of symbols from library clib.a :

artri ts clib.a

cstart.obj
 symbols:
 _start
 _copytable
demo.obj
 symbols:
 _entry

4. Print a list of symbols from library clib.a in a different form:

artri ts1 clib.a

clib.a:cstart.obj:_start
clib.a:cstart.obj:_copytable
clib.a:demo.obj:_entry

5. Delete module demo.obj from library clib.lib :

artri d clib.a demo.obj

Utilities 11–7

• • • • • • • •

11.3 CCTRI

Name

cctri control program for the TriCore tool chain

Synopsis

cctri [[option]... [control] ... [file]...]...
cctri -V

cctri -? (UNIX C-shell : "-?" or -\?)

Description

The control program cctri facilitates the invocation of the various

components of the TriCore family tool chain from a single command line.

The control program accepts source files and options on the command

line in random order.

Options are preceded by a '-' (minus sign). The input file can have one of

the extensions explained below.

The control program recognizes the following argument types:

• Arguments starting with a '-' character are options. Some options

are interpreted by the control program itself; the remaining options

are passed to those programs in the tool chain that accept the

option.

• Arguments with a .c suffix are interpreted as C source programs

and are passed to the compiler.

• Arguments with a .asm or .src suffix are interpreted as assembly

source files. They are directly passed to the assembler.

• Arguments with a .a suffix are interpreted as library files and are

passed to the linker.

• Arguments with a .obj suffix are interpreted as object files and are

passed to the linker.

• Arguments with a .out suffix are interpreted as linked object files

and are passed to the locator. The locator accepts only one .out
file in the invocation.

• Arguments with a .dsc suffix are treated as locator command files.

If there is a file with extension .dsc on the command line, the

control program assumes a locate phase has to be added. If there is

no file with extension .dsc , the control program stops after linking

(unless it has been directed to stop in an earlier phase)

Chapter 1111–8
U
T
IL
IT
IE
S

• If other arguments are found, an error message is given.

Normally, a control program tries to compile and assemble all source files

to object files, followed by a link and locate phase which produces an

absolute output file. There are however, options to suppress the assembler,

linker or locator stage. The control program produces unique filenames for

intermediate steps in the compilation process, which are removed

afterwards.

Options

-? Display a short explanation of options at stdout .

-V The copyright header containing the version number is

displayed, after which the control program terminates.

-Wa�arg
-Wc�arg
-Wcp�arg
-Wpl�arg
-Wlk�arg
-Wlc�arg With these options you can pass a command line argument

directly to the assembler (-Wa), C compiler (-Wc), C++

compiler (-Wcp), C++ pre-linker (-Wpl), linker (-Wlk) or

locator (-Wlc). These options may be used to pass some

options that are not recognized by the control program, to

the appropriate program. The argument may be either

directly appended to the option, or follow the option as a

separate argument of the control program.

-c++ Specify that files with the extension .c are considered to be

C++ files instead of C files. So, the C++ compiler is called

prior to the C compiler. This option also forces the linker to

link C++ libraries.

Utilities 11–9

• • • • • • • •

-cc

-cs

-c

-cl

-cm

-cp Normally the control program invokes all stages to build an

absolute file from the given input files. With these options it

is possible to stop after one of the stages or to skip the linker

stage.

With the -cc option the control program stops after

compilation of the C++ files and retains the resulting .c files.

With the -cs option the control program stops after the C

compiler or macro preprocessor, with as output file the

assembly source file (.src).

With -c option the control program stops after the assembler,

with as output an object file (.obj).

With the -cl option the control program stops after the link

stage, with as output a linker object file (.lno).

With the -cm option the control program always also

invokes the C++ muncher.

With the -cp option the control program always also invokes

the C++ pre-linker.

-f file Read command line arguments from file. The filename "-"

may be used to denote standard input. To get around the

limits on the size of the command line, it is possible to use

command files. These command files contain the options that

could not be part of the real command line. Command files

can also be generated on the fly, for example by the make

utility.

Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line

in the command file.

2. To include whitespace in the argument, surround the

argument with either single or double quotes.

3. If single or double quotes are to be used inside a quoted

argument, we have to go by the following rules:

Chapter 1111–10
U
T
IL
IT
IE
S

a. If the embedded quotes are only single or double

quotes, use the opposite quote around the

argument. Thus, if a argument should contain a

double quote, surround the argument with single

quotes.

b. If both types of quotes are used, we have to split

the argument in such a way that each embedded

quote is surrounded by the opposite type of quote.

Example:

 ”This has a single quote ’ embedded”

or

 ’This has a double quote ” embedded’

or

 ’This has a double quote ” and \
 a single quote ’”’ embedded”

4. Some operating systems impose limits on the length of

lines within a text file. To circumvent this limitation it is

possible to use continuation lines. These lines end with a

backslash and newline. In a quoted argument,

continuation lines will be appended without stripping any

whitespace on the next line. For non-quoted arguments,

all whitespace on the next line will be stripped.

Example:

 ”This is a continuation \
 line”
 –> ”This is a continuation line”

 control(file1(mode,type),\
 file2(type))
 –>
 control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Utilities 11–11

• • • • • • • •

-elf

-ieee

-ihex

-srec

-tiof With these options you can specify the locator output format

of the absolute file. The output file can be an ELF/DWARF1.1

(.elf), IEEE-695 file (.abs), Intel Hex file (.hex), Motorola

S-record file (.sre) or TIOF-695 file (.abs). The default

output is IEEE-695 (.abs).

-fptrap Use floating point library with trap handling (libfpt.a).

Without this option a floating point library is selected which

uses no trapping.

-nolib With this option the control program does not supply the

standard libraries to the linker. Normally the control program

supplies the default C and run-time libraries to the linker.

Which libraries are needed is derived from the compiler

options.

-o file Normally, this option is passed to the locator to specify the

output file name. When you use the -cl option to suppress

the locating phase, the -o option is passed to the linker.

When you use the -c option to suppress the linking phase,

the -o option is passed to the assembler, provided that only

one source file is specified. When you use the -cs option to

suppress the assembly phase, the -o option is passed to the

compiler. The argument may be either directly appended to

the option, or follow the option as a separate argument of

the control program.

-tmp With this option the control program creates intermediate

files in the current directory. They are not removed

automatically. Normally, the control program generates

temporary files for intermediate translation results, such as

compiler generated assembly files, object files and the linker

output file. If the next phase in the translation process

completes successfully, these intermediate files will be

removed.

-v When you use the -v option, the invocations of the

individual programs are displayed on standard output,

preceded by a '+' character.

Chapter 1111–12
U
T
IL
IT
IE
S

-v0 This option has the same effect as the -v option, with the

exception that only the invocations are displayed, but the

programs are not started.

-wc++ Enable C and assembler warnings for C++ files. The

assembler and C compiler may generate warnings on C

output of the C++ compiler. By default these warnings are

suppressed.

Environment Variables used by cctri

The control program uses the following environment variables:

TMPDIR This variable may be used to specify a directory, which the

control programs should use to create temporary files. When

this environment variable is not set, temporary files are

created in the directory "/tmp" on UNIX systems, and in the

current directory on other operating systems.

CCTRIOPT This environment variable may be used to pass extra options

and/or arguments to each invocation of the control program.

The control program processes the arguments from this

variable before the command line arguments.

CCTRIBIN When this variable is set, the control program prepends the

directory specified by this variable to the names of the tools

invoked.

Utilities 11–13

• • • • • • • •

11.4 MKTRI

Name

mktri maintain, update, and reconstruct groups of programs

Syntax

mktri [option]... [target]... [macro=value]...
mktri -V

mktri -? (UNIX C-shell: "-?" or -\?)

Description

mktri takes a file of dependencies (a 'makefile') and decides what

commands have to be executed to bring the files up-to-date. These

commands are either executed directly from mktri or written to the

standard output without executing them.

If no target is specified on the command line, mktri uses the first target

defined in the first makefile.

Long filenames are supported when they are surrounded by double quotes

("). It is also allowed to use spaces in directory names and file names.

Options

-? Show invocation syntax.

-D Display the text of the makefiles as read in.

-DD Display the text of the makefiles and 'mktri.mk'.

-G dirname
Change to the directory specified with dirname before

reading a makefile. This makes it possible to build an

application in another directory than the current working

directory.

-K Do not remove temporary files.

-S Undo the effect of the -k option. Stop processing when a

non-zero exit status is returned by a command.

-V Display version information at stderr.

-W target Execute as if this target has a modification time of "right

now". This is the "What If" option.

Chapter 1111–14
U
T
IL
IT
IE
S

-d Display the reasons why mktri chooses to rebuild a target.

All dependencies which are newer are displayed.

-dd Display the dependency checks in more detail. Dependencies

which are older are displayed as well as newer.

-e Let environment variables override macro definitions from

makefiles. Normally, makefile macros override environment

variables. Command line macro definitions always override

both environment variables and makefile macros definitions.

-f file Use the specified file instead of 'makefile'. A - as the

makefile argument denotes the standard input.

-i Ignore error codes returned by commands. This is equivalent

to the special target .IGNORE:.

-k When a nonzero error status is returned by a command,

abandon work on the current target, but continue with other

branches that do not depend on this target.

-m file Read command line information from file. If file is a '-', the

information is read from standard input.

-n Perform a dry run. Print commands, but do not execute

them. Even lines beginning with an @ are printed. However,

if a command line is an invocation of mktri, that line is

always executed.

-q Question mode. mktri returns a zero or non-zero status

code, depending on whether or not the target file is up to

date.

-r Do not read in the default file 'mktri.mk'.

-s Silent mode. Do not print command lines before executing

them. This is equivalent to the special target .SILENT:.

-t Touch the target files, bringing them up to date, rather than

performing the rules to reconstruct them.

-w Redirect warnings and errors to standard output. Without,

mktri and the commands it executes use standard error for

this purpose.

Utilities 11–15

• • • • • • • •

macro=value
Macro definition. This definition remains fixed for the mktri

invocation. It overrides any regular definitions for the

specified macro within the makefiles and from the

environment. It is inherited by subordinate mktri's but act as

an environment variable for these. That is, depending on the

-e setting, it may be overridden by a makefile definition.

Usage

Makefiles

The first makefile read is 'mktri.mk', which is looked for at the following

places (in this order):

- in the current working directory

- in the directory pointed to by the HOME environment variable

- in the etc directory relative to the directory where mktri is located

Example (PC):

when mktri is installed in \CTRI\BIN the directory \CTRI\ETC is

searched for makefiles.

Example (UNIX):

when mktri is installed in /usr/local/ctri/bin the directory

/usr/local/ctri/etc is searched for makefiles.

It typically contains predefined macros and implicit rules.

The default name of the makefile is 'makefile' in the current directory. If

this file is not found on a UNIX system, the file 'Makefile' is then used as

the default. Alternate makefiles can be specified using one or more -f

options on the command line. Multiple -f options act as if all the makefiles

were concatenated in a left-to-right order.

The makefile(s) may contain a mixture of comment lines, macro

definitions, include lines, and target lines. Lines may be continued across

input lines by escaping the NEWLINE with a backslash (\). If a line must

end with a backslash then an empty macro should be appended. Anything

after a "#" is considered to be a comment, and is stripped from the line,

including spaces immediately before the "#". If the "#" is inside a quoted

string, it is not treated as a comment. Completely blank lines are ignored.

Chapter 1111–16
U
T
IL
IT
IE
S

An include line is used to include the text of another makefile. It consists

of the word "include" left justified, followed by spaces, and followed by

the name of the file that is to be included at this line. Macros in the name

of the included file are expanded before the file is included. Include files

may be nested.

An export line is used for exporting a macro definition to the environment

of any command executed by mktri. Such a line starts with the word

"export", followed by one or more spaces and the name of the macro to

be exported. Macros are exported at the moment an export line is read.

This implies that references to forward macro definitions are equivalent to

undefined macros.

Conditional Processing

Lines containing ifdef , ifndef , else or endif are used for conditional

processing of the makefile. They are used in the following way:

ifdef macroname
if–lines
else
else–lines
endif

The if-lines and else-lines may contain any number of lines or text of any

kind, even other ifdef , ifndef , else and endif lines, or no lines at all.

The else line may be omitted, along with the else-lines following it.

First the macroname after the if command is checked for definition. If

the macro is defined then the if-lines are interpreted and the else-lines are

discarded (if present). Otherwise the if-lines are discarded; and if there is

an else line, the else-lines are interpreted; but if there is no else line,

then no lines are interpreted.

When using the ifndef line instead of ifdef , the macro is tested for not

being defined. These conditional lines can be nested up to 6 levels deep.

Utilities 11–17

• • • • • • • •

Macros

Macros have the form `WORD = text and more text'. The WORD need not

be uppercase, but this is an accepted standard. Spaces around the equal

sign are not significant. Later lines which contain $(WORD) or ${WORD}

will have this replaced by `text and more text'. If the macro name is a

single character, the parentheses are optional. Note that the expansion is

done recursively, so the body of a macro may contain other macro

invocations. The right side of a macro definition is expanded when the

macro is actually used, not at the point of definition.

Example:

FOOD = $(EAT) and $(DRINK)
EAT = meat and/or vegetables
DRINK = water
export FOOD

`$(FOOD)' becomes `meat and/or vegetables and water' and the

environment variable FOOD is set accordingly by the export line.

However, when a macro definition contains a direct reference to the

macro being defined then those instances are expanded at the point of

definition. This is the only case when the right side of a macro definition is

(partially) expanded. For example, the line

DRINK = $(DRINK) or beer

after the export line affects `$(FOOD)' just as the line

DRINK = water or beer

would do. However, the environment variable FOOD will only be updated

when it is exported again.

You are advised not to use the double quotes (") for long filename support

in macros, otherwise this might result in a concatination of two macros

with double quotes (") in between.

Special Macros

MAKE This normally has the value mktri. Any line which invokes

MAKE temporarily overrides the -n option, just for the

duration of the one line. This allows nested invocations of

MAKE to be tested with the -n option.

Chapter 1111–18
U
T
IL
IT
IE
S

MAKEFLAGS

This macro has the set of options provided to mktri as its

value. If this is set as an environment variable, the set of

options is processed before any command line options. This

macro may be explicitly passed to nested mktri's, but it is

also available to these invocations as an environment

variable. The -f and -d flags are not recorded in this macro.

PRODDIR This macro expands the name of the directory where mktri

is installed without the last path component. The resulting

directory name will be the root directory of the installed

TriCore package, unless mktri is installed somewhere else.

This macro can be used to refer to files belonging to the

product, for example a library source file.

Example:

DOPRINT = $(PRODDIR)/lib/src/_doprint.c

When mktri is installed in the directory /ctri/bin this line expands to:

DOPRINT = /ctri/lib/src/_doprint.c

SHELLCMD

This contains the default list of commands which are local to

the SHELL. If a rule is an invocation of one of these

commands, a SHELL is automatically spawned to handle it.

TMP_CCPROG

This macro contains the name of the control program. If this

macro and the TMP_CCOPT macro are set and the command

line argument list for the control program exceeds 127

characters then mktri will create a temporary file filled with

the command line arguments. mktri will call the control

program with the temporary file as command input file. This

macro is only known by the PC version of mktri.

TMP_CCOPT

This macro contains the option for the control program

which tells the control program to read a file as command

arguments. This macro is only known by the PC version of

mktri.

Utilities 11–19

• • • • • • • •

Example:

TMP_CCPROG = cctri
TMP_CCOPT = –f

$ This macro translates to a dollar sign. Thus you can use "$$"

in the makefile to represent a single "$".

There are several dynamically maintained macros that are useful as

abbreviations within rules. It is best not to define them explicitly.

$* The basename of the current target.

$< The name of the current dependency file.

$@ The name of the current target.

$? The names of dependents which are younger than the target.

$! The names of all dependents.

The $< and $* macros are normally used for implicit rules. They may be

unreliable when used within explicit target command lines. All macros

may be suffixed with F to specify the Filename components (e.g. ${*F},

${@F}). Likewise, the macros $*, $< and $@ may be suffixed by D to

specify the directory component.

The result of the $* macro is always without double quotes ("), regardless

of the original target having double quotes (") around it or not.

The result of using the suffix F (Filename component) or D (Directory

component) is also always without double quotes ("), regardless of the

original contents having double quotes (") around it or not.

Functions

A function not only expands but also performs a certain operation.

Functions syntactically look like macros but have embedded spaces in the

macro name, e.g. '$(match arg1 arg2 arg3)'. All functions are built-in and

currently there are five of them: match , separate , protect , exist and

nexist .

The match function yields all arguments which match a certain suffix:

$(match .obj prog.obj sub.obj mylib.a)

Chapter 1111–20
U
T
IL
IT
IE
S

will yield

prog.obj sub.obj

The separate function concatenates its arguments using the first

argument as the separator. If the first argument is enclosed in double

quotes then '\n' is interpreted as a newline character, '\t' is interpreted as

a tab, '\ooo' is interpreted as an octal value (where, ooo is one to three

octal digits), and spaces are taken literally. For example:

$(separate ”\n” prog.obj sub.obj)

will result in

prog.obj
sub.obj

Function arguments may be macros or functions themselves. So,

$(separate ”\n” $(match .obj $!))

will yield all object files the current target depends on, separated by a

newline string.

The protect function adds one level of quoting. This function has one

argument which can contain white space. If the argument contains any

white space, single quotes, double quotes, or backslashes, it is enclosed in

double quotes. In addition, any double quote or backslash is escaped with

a backslash.

Example:

echo $(protect I’ll show you the ”protect” function)

will yield

echo ”I’ll show you the \”protect\” function”

The exist function expands to its second argument if the first argument is

an existing file or directory.

Example:

$(exist test.c cctri test.c)

When the file test.c exists it will yield:

cctri test.c

Utilities 11–21

• • • • • • • •

When the file test.c does not exist nothing is expanded.

The nexist function is the opposite of the exist function. It expands to its

second argument if the first argument is not an existing file or directory.

Example:

$(nexist test.src cctri test.c)

Targets

A target entry in the makefile has the following format:

target ... : [dependency ...] [; rule]
 [rule]
 ...

Any line which does not have leading white space (other than macro

definitions) is a 'target' line. Target lines consist of one or more filenames

(or macros which expand into same) called targets, followed by a colon

(:). The ':' is followed by a list of dependent files. The dependency list

may be terminated with a semicolon (;) which may be followed by a rule

or shell command.

Special allowance is made on MS-DOS for the colons which are needed to

specify files on other drives, so for example, the following will work as

intended:

c:foo.obj : a:foo.c

If a target is named in more than one target line, the dependencies are

added to form the target's complete dependency list.

The dependents are the ones from which a target is constructed. They in

turn may be targets of other dependents. In general, for a particular target

file, each of its dependent files is 'made', to make sure that each is up to

date with respect to it's dependents.

The modification time of the target is compared to the modification times

of each dependent file. If the target is older, one or more of the

dependents have changed, so the target must be constructed. Of course,

this checking is done recursively, so that all dependents of dependents of

dependents of ... are up-to-date.

To reconstruct a target, mktri expands macros and functions, strips off

initial white space, and either executes the rules directly, or passes each to

a shell or COMMAND.COM for execution.

Chapter 1111–22
U
T
IL
IT
IE
S

For target lines, macros and functions are expanded on input. All other

lines have expansion delayed until absolutely required (i.e. macros and

functions in rules are dynamic).

Special Targets

.DEFAULT:

The rule for this target is used to process a target when there

is no other entry for it, and no implicit rule for building it.

mktri ignores all dependencies for this target.

.DONE: This target and its dependencies are processed after all other

targets are built.

.IGNORE: Non-zero error codes returned from commands are ignored.

Encountering this in a makefile is the same as specifying -i

on the command line.

.INIT: This target and its dependencies are processed before any

other targets are processed.

.SILENT: Commands are not echoed before executing them.

Encountering this in a makefile is the same as specifying -s

on the command line.

.SUFFIXES:

The suffixes list for selecting implicit rules. Specifying this

target with dependents adds these to the end of the suffixes

list. Specifying it with no dependents clears the list.

.PRECIOUS:

Dependency files mentioned for this target are not removed.

Normally, mktri removes a target file if a command in its

construction rule returned an error or when target

construction is interrupted.

Rules

A line in a makefile that starts with a TAB or SPACE is a shell line or rule.

This line is associated with the most recently preceding dependency line.

A sequence of these may be associated with a single dependency line.

When a target is out of date with respect to a dependent, the sequence of

commands is executed. Shell lines may have any combination of the

following characters to the left of the command:

@ will not echo the command line, except if -n is used.

Utilities 11–23

• • • • • • • •

- mktri will ignore the exit code of the command, i.e. the ERRORLEVEL

of MS-DOS. Without this, mktri terminates when a non-zero exit code

is returned.

+ mktri will use a shell or COMMAND.COM to execute the command.

If the '+' is not attached to a shell line, but the command is a DOS

command or if redirection is used (<, |, >), the shell line is passed to

COMMAND.COM anyway. For UNIX, redirection, backquote (`)

parentheses and variables force the use of a shell.

You can force mktri to execute multiple command lines in one shell

environment. This is accomplished with the token combination ';\'.

Example:

cd c:\ctri\bin ;\
ctri –V

The ';' must always directly be followed by the '\' token. Whitespace is not

removed when it is at the end of the previous command line or when it is

in front of the next command line. The use of the ';' as an operator for a

command (like a semicolon ';' separated list with each item on one line)

and the '\' as a layout tool is not supported, unless they are separated with

whitespace.

mktri can generate inline temporary files. If a line contains '<<WORD'

then all subsequent lines up to a line starting with WORD, are placed in a

temporary file. Next, '<<WORD' is replaced with the name of the

temporary file.

No whitespace is allowed between '<<' and 'WORD'.

Example:

lktri –o $@ –f <<EOF
 $(separate ”\n” $(match .obj $!))
 $(separate ”\n” $(match .a $!))
 $(LKFLAGS)
EOF

The three lines between the tags (EOF) are written to a temporary file (e.g.

"\tmp\mk2"), and the command line is rewritten as "lktri -o $@ -f

\tmp\mk2".

Chapter 1111–24
U
T
IL
IT
IE
S

Implicit Rules

Implicit rules are intimately tied to the .SUFFIXES: special target. Each

entry in the .SUFFIXES: list defines an extension to a filename which may

be used to build another file. The implicit rules then define how to

actually build one file from another. These files are related, in that they

must share a common basename, but have different extensions.

If a file that is being made does not have an explicit target line, an implicit

rule is looked for. Each entry in the .SUFFIXES: list is combined with the

extension of the target, to get the name of an implicit target. If this target

exists, it gives the rules used to transform a file with the dependent

extension to the target file. Any dependents of the implicit target are

ignored.

If a file that is being made has an explicit target, but no rules, a similar

search is made for implicit rules. Each entry in the .SUFFIXES: list is

combined with the extension of the target, to get the name of an implicit

target. If such a target exists, then the list of dependents is searched for a

file with the correct extension, and the implicit rules are invoked to create

the target.

Examples

This makefile says that prog.out depends on two files prog.obj and

sub.obj , and that they in turn depend on their corresponding source files

(prog.c and sub.c) along with the common file inc.h .

LIB = –ls

prog.out: prog.obj sub.obj
 lktri prog.obj sub.obj $(LIB) –o prog.out

prog.obj: prog.c inc.h
 ctri prog.c
 astri prog.src

sub.obj: sub.c inc.h
 ctri sub.c
 astri sub.src

The following makefile uses implicit rules (from mktri.mk) to perform

the same job.

Utilities 11–25

• • • • • • • •

LDFLAGS = –ls
prog.out: prog.obj sub.obj
prog.obj: prog.c inc.h
sub.obj: sub.c inc.h

Files

makefile Description of dependencies and rules.

Makefile Alternative to makefile, for UNIX.

mktri.mk Default dependencies and rules.

Diagnostics

mktri returns an exit status of 1 when it halts as a result of an error.

Otherwise it returns an exit status of 0.

Chapter 1111–26
U
T
IL
IT
IE
S

11.5 PRTRI

Name

prtri IEEE object reader

Displays the contents of a relocatable object file or an

absolute file

Synopsis

prtri [option]... file
prtri -V

prtri -? (UNIX C-shell: "-?" or -\?)

Description

prtri gives you a high level view of an object file which has been created

by a tool from the TASKING TriCore toolchain. Note that prtri is not a

disassembler.

Options

Options start with a '-' sign and can be combined after a single '-'. There

are options to print a specific part of an object file. For example, with

option -h you can display the header part, the environment part and the

AD/extension part as a whole. These parts are small, and you cannot

display these parts separately. If you do not specify a part, the default is

-hscegd0i0 (all parts, the debug part and the image part displayed as a

table of contents).

Furthermore, there are some additional options by which you can control

the output.

Input Control Option

-f�file Read command line information from file. If file is a '-', the

information is read from standard input.

Use file for command line processing. To get around the

limits on the size of the command line, it is possible to use

command files. These command files contain the options that

could not be part of the real command line. Command files

can also be generated on the fly, for example by the make

utility.

More than one -f option is allowed.

Utilities 11–27

• • • • • • • •

Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line

in the command file.

2. To include whitespace in the argument, surround the

argument with either single or double quotes.

3. If single or double quotes are to be used inside a quoted

argument, we have to go by the following rules:

a. If the embedded quotes are only single or double

quotes, use the opposite quote around the

argument. Thus, if a argument should contain a

double quote, surround the argument with single

quotes.

b. If both types of quotes are used, we have to split

the argument in such a way that each embedded

quote is surrounded by the opposite type of quote.

Example:

 ”This has a single quote ’ embedded”

or

 ’This has a double quote ” embedded’

or

 ’This has a double quote ” and \
 a single quote ’”’ embedded”

4. Some operating systems impose limits on the length of

lines within a text file. To circumvent this limitation it is

possible to use continuation lines. These lines end with a

backslash and newline. In a quoted argument,

continuation lines will be appended without stripping any

whitespace on the next line. For non-quoted arguments,

all whitespace on the next line will be stripped.

Chapter 1111–28
U
T
IL
IT
IE
S

Example:

 ”This is a continuation \
 line”
 –> ”This is a continuation line”

 control(file1(mode,type),\
 file2(type))
 –>
 control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Output Control Options

-H or -? Display an explanation of options at stdout .

-V Display version information at stderr .

-Wn Set output width to n columns. Default 128, minimum 78.

-ln Level control, see paragraph 11.5.3.

-ofile Name of the output file, default stdout .

-v Print the selected parts in a verbose form.

-vn Print level n verbose, see paragraph 11.5.3.

-wn Suppress messages above warning level n.

Display Options

-c Print call graphs.

-d Print all debug info except for the global types.

-d0 Print table of contents for the debug part.

-dn Print debug info from file number n.

-e Print variables with external scope.

-e1 Print variables with external scope and precede symbol name

with name of the object file.

-g Print global types.

-h Print general file info.

Utilities 11–29

• • • • • • • •

-i Print all section images.

-i0 Print table of contents for the image part.

-in Print image of section n.

-s Print section info.

11.5.1 PREPARING THE DEMO FILES

There are three files which are used in this chapter to show how you can

use prtri. These files are:

calc.obj

calc.out

calc.abs

If you want to try the examples yourself, prepare these files by copying

the calc example files to a working directory. Be sure that the TriCore

tools can be found via a search path. Make the files with the following

command:

cctri –M –Ms –Wa–gl –tiof –nolib startup.asm _copytbl.asm
calc.asm –o calc.abs tri.dsc –tmp

11.5.2 DISPLAYING PARTS OF AN OBJECT FILE

11.5.2.1 OPTION -H, DISPLAY GENERAL FILE INFO

The -h option gives you general information of the file. The invocation:

prtri –h calc.out

Gives the following information:

File name = calc.out:
Format = Relocatable
Produced by = TriCore object linker
Date = mar 23, 1998 16:35:40h

Chapter 1111–30
U
T
IL
IT
IE
S

This output speaks for itself. You may combine the -h switch with the

verbose option:

prtri –hv calc.out

The output is extended with more general information of less importance:

File name = calc.out:
Format = Relocatable
Produced by = TriCore object linker
Date = mar 23, 1998 16:35:40h
Obj version = 1.1
Processor = TriCore
Address size = 24 bits
Byte order = Least significant byte at lowest address
Host = Sun

Part File offset Length
––
Header part 0x00000000 0x00000055
AD Extension part 0x00000055 0x00000033
Environment part 0x00000088 0x0000002b
Section part 0x000000b3 0x0000009b
External part 0x0000014e 0x00000098
Debug/type part 0x000001e6 0x000002b8
Data part 0x0000049e 0x000002b8
Module end 0x00000756

The table gives you the file offsets and the length of the main object parts.

11.5.2.2 OPTION -S, DISPLAY SECTION INFO

With the -s option, you can obtain the section information from an object

module. The section contents can be obtained with the -i option, see

11.5.2.7.

prtri –s calc.out

Utilities 11–31

• • • • • • • •

Section Size
––––––––––––––––––––––––––––––
.startup_vector 0x000002
.startup 0x000063
.watchdog_vector 0x000002
.watchdog 0x000001
.text 0x00002d
.data 0x000003
.zdata 0x000001

Note that the section information is not available any more in a located

file. Once located, the separate sections are combined to new clusters. For

an absolute file 'prtri -s' will give the cluster information:

prtri –s calc.abs

Section Size
––––––––––––––––––––––
rom 0x0000b9
ram 0x00f800

The locate map shows you which section is located in which cluster. Of

course, you can also use the verbose option to see all section information

available:

prtri –sv calc.out

Section Size Address Align PgSize Mau Attributes

––

.startup_vector 0x000002 0x000000 0x001 – – ReadOnly Execute ZeroPage Space 1

 Abs Separate

.startup 0x000063 – 0x001 – – ReadOnly Execute ZeroPage Space 1

 Cumulate

.watchdog_vector 0x000002 0x000004 0x001 – – ReadOnly Execute ZeroPage Space 1

 Abs Separate

.watchdog 0x000001 – 0x001 – – ReadOnly Execute ZeroPage Space 1

 Cumulate

.text 0x00002d – 0x001 – – ReadOnly Execute ZeroPage Space 1

 Cumulate

.data 0x000003 – 0x001 – – Write Space 2 Initialized Cumulate

.zdata 0x000001 – 0x001 – – Write Space 2 Cleared Cumulate

The first two columns give you the section name and the section size. The
column ’Address’ gives you the section address, or a ’–’ if the section is
still relocatable. The section alignment is always 1 for the TriCore. The
page size is valid only for the short sections. MAU is the minimum
addressable unit of an address space (in bits). There are two main groups of
section attributes, the allocation attributes, used by the locator and the
overlap attributes, used by the linker:

Chapter 1111–32
U
T
IL
IT
IE
S

Allocation attributes

Write Must be located in ram

ReadOnly May be located in rom

Execute May be located in rom

Space num Must be located in addressing mode num

Abs Already located by the assembler

Cleared Section must be initialized to ’0’

Initialized Section must be copied from ram to rom

Scratch Section is not filled or cleared

Table 11-1: Allocation attributes

Overlap attributes

MaxSize Use largest length encountered

Unique Only one section with this name allowed

Cumulate Concatenate sections with the same name to
one bigger section

Overlay Sections with the name name@func must be
combined to one section name, according to
the rules for func obtained from the call graph.

Separate Sections are not linked.

Table 11-2: Overlap attributes

11.5.2.3 OPTION -C, DISPLAY CALL GRAPHS

The call graph is used by the linker overlaying algorithm. Once a file is

linked and overlaying is done, the call graph information is removed from

the object file. If you try to see the call graph in calc.out you will get

the message 'No call graph found'.

The file calc.ob j is not yet linked. You can use this file to see what a call

graph looks like:

prtri –c calc.obj

Utilities 11–33

• • • • • • • •

Because the calc example does not contain any sections which need to

be overlaid you will again get the message 'No call graph found'. The

following is just an example of what a call graph could look like:

Call graph(s)
=============

Call graph 0:

main()
 –>See call graph 1
 –>See call graph 4
 –>See call graph 2
 _exit()
 print_str()
 clear_screen()

Call graph 1:

queens?find_legal_row()
 –>See call graph 1
 –>See call graph 2
 abs()
 –>See call graph 3

Each call graph consists of a function (main in graph 0), followed by a list

of functions and/or other graphs, which are called by the first function.

The functions and call graphs called by this function are indented by two

spaces. If a function calls other functions, those functions are listed again

with another indentation of two spaces.

As you can see, there are references from one call graph to another. Call

graph 1 even calls itself!! This means that function find_legal_row() is

a recursive function. If you use the verbose switch the output is somewhat

nicer:

Chapter 1111–34
U
T
IL
IT
IE
S

main()
 |
 +–––>See call graph 1
 |
 +–––>See call graph 4
 |
 +–––>See call graph 2
 |
 +––exit()
 |
 +––print_str()
 |
 +––clear_screen()

The function find_legal_row from call graph 1 is a static function. In

order to avoid name conflicts, the source name is added to this function

name.

If you want a call graph with resolved call graph references, you can use

the linker to generate one:

lktri –o call.out –Mcr calc.obj

Option -M tells the linker to generate a .lnl file. This file contains the

call graph in the verbose layout. Option -c causes the linker to generate a

.cal file. This file contains also the (same) call graph, but in the compact

(non verbose) layout. Option -r tells the linker that this is an incremental

link.

11.5.2.4 OPTION -E, DISPLAY EXTERNAL PART

In the external part of an object file, you can find all symbols used at link

time. These symbols have an external scope. With the -e option (or -e0)

prtri displays the external symbols:

prtri –e calc.out

Utilities 11–35

• • • • • • • •

Variable S Address/Size
––––––––––––––––––––––––––––
_start_cpt I .startup + 0x00
_START I .startup + 0x00
_exit I .startup + 0x20
_copytable I .startup + 0x22
_main I .text + 0x20
_lc_es X –
_lc_cp X –

With option -e1 also the name of the output object file is displayed.

prtri –e1 calc.out

Variable S Address/Size
–––––––––––––––––––––––––––––––––––––
calc.out:_start_cpt I .startup + 0x00
calc.out:_START I .startup + 0x00
calc.out:_exit I .startup + 0x20
calc.out:_copytable I .startup + 0x22
calc.out:_main I .text + 0x20
calc.out:_lc_es X –
calc.out:_lc_cp X –

The first column contains the name of the symbol. In general, this symbol

is a high level symbol with an 'F' added at the front. The next column

gives you the symbol status. This can be I for a defined symbol, and X for

a symbol which is referred to, but which is not yet defined. In the last

column you can find the symbols address. If this address is still

relocatable, the section offsets are printed in the form 'section + offset'. If a

symbol has already received an absolute address, this address is printed.

Symbols that are not yet defined (marked with a X) have a dash printed as

address, indicating unknown.

You can add the verbose option as usual. With verbose on more

information is printed:

prtri –ev calc.out

Chapter 1111–36
U
T
IL
IT
IE
S

Variable S Type Attrib MAU Amod Address/Size
––
_start_cpt I – – 8 1 .startup + 0x00
_START I – – 8 1 .startup + 0x00
_exit I – – 8 1 .startup + 0x20
_copytable I – – 8 1 .startup + 0x22
_main I – – 8 1 .text + 0x20
_lc_es X – – 8 2 –
_lc_cp X – – 8 2 –

Four additional columns appear. The Type column gives you the symbol

type, if available. You can find the meaning of the types in the global type

part, section 11.5.2.5. The global types are used to type check the symbols

during linking. The Attribute column specifies the attribute of the symbol,

if available. For example, the attribute value 0x0020 indicates that the

symbol is generated by the assembler. The MAU colomn indicates the

minimum addressable unit in bits. So, MAU 8 means the symbol is 8-bit

addressable. The Amod column lists the addressing mode of the symbol.

11.5.2.5 OPTION -G, DISPLAY GLOBAL TYPE

INFORMATION

The linker uses the global type information to check on type mismatches

of the symbols in the external part. This information is always available,

unless you explicitly suppress the generation of these types with option

-gn at compile time. Of course, type checking can only be done if the

types are available. The global types in calc.out :

prtri –g calc.out

In this example you will get the message 'No global types available'. The

following is just an example of what the global type information could

look like:

Utilities 11–37

• • • • • • • •

Tp# Mnem Name Entry
–––––––––––––––––––––––––––
101 X – 0, T10, 0, 0
102 X – 0, T1, 0, 0
103 X – 0, T1, 0, 1, T104
104 P – T105
105 n – T2, 1
106 X – 0, T1, 0, 1, T10
107 X – 0, T10, 0, 1, T10
108 X – 0, T1, 0, 2, T109, T109
109 T Byte T3
10a X – 0, T1, 0, 1, T109
...
10f X – 0, T1, 0, 3, T12, T110, T12
110 O – T111
111 n – T2, 0
112 Z – T2, 13
113 Z – T2, 7

In the first column you find the type index. This is the number by which

the type is referred to. This number is always a hexadecimal number.

Numbering starts at 0x101, because the indices less than 0x100 are

reserved for, so-called, 'basic types'. The second column contains the type

mnemonic. This mnemonic defines the new 'high level' type. In the Name

column you will find the name for the type, if any.

The last column contains type parameters. They tell you which (basic)

types a high level type is based on and give other parameters such as

modes and sizes. Types are preceded by a T. So, in the example above,

type 105 is based upon type 2 (T2 in the parameter list) and type 103 is

based upon type 1 and type 104.

In the next table you can find an overview of the basic types:

Type index Type Meaning

1 void –

2 char 8 bits signed

3 unsigned char 8 bits unsigned

4 short 16 bits signed

5 unsigned short 16 bits unsigned

6 long 32 bits signed

7 unsigned long 32 bits unsigned

Chapter 1111–38
U
T
IL
IT
IE
S

MeaningTypeType index

10 float 32 bit floating point

11 double 64 bit floating point

16 int 16 bits signed

17 unsigned int 16 bits unsigned

Table 11-3: Basic types

The type mnemonics define the class of the newly created type. The next

table shows the type mnemonics with a short description:

Mnemonic Description Parameters

G generalized
structure

size, [member, Tindex, offset, size]...

N enumerated type [name, value]...

n pointer qualifier Tindex, memspace

O small pointer Tindex

P large pointer Tindex

Q type qualifier q–bits, Tindex

S structure size, [member, Tindex, offset]...

T typedef Tindex

t compiler generated
type

Tindex

U union size, [member, Tindex, offset]...

X function x–bits, Tindex, 0, nbr–arg, [Tindex]...

Z array Tindex, upper–bound

g bit type sign, nbr–of–bits

Table 11-4: Type mnemonics

Utilities 11–39

• • • • • • • •

The Tindex for mnemonic n, O, P, Q, T, t and Z are the types upon which

the new type is built. The Tindex for the union and the structures are the

type indices for the members. For the function type, the first Tindex is the

return type of the function. The second Tindex is repeated for each

parameter, and gives the type of each parameter. The value -1 (0xffffffff)

always means 'unknown'. This can occur with a function type if the

number of parameters is unknown, or with an array if the upper bound in

unknown. The sizes and offset for the generalized structure are in bits.

The first size is the size of the structure, the second size is the size for the

member.

The type information obtained with the -g switch has no verbose

equivalent.

11.5.2.6 OPTION -D, DISPLAY DEBUG INFORMATION

The -d switch has two variants. With -d0 you get a table of contents:

prtri –d0 calc.out

Choose option –d with the number of the file:
 1 – startup
 2 – _copytbl
 3 – calc

Now, you can use -dn to examine a single (linked) file. For instance, -d3

shows you only the debug info of calc.obj . It is also possible to see all

debug info, by using option -d without a value.

The -d switch without the verbose option -v shows you only local

variables and procedure information. If you combine the -d switch with

the verbose switch -v, also local type info, line numbers, stack update

information and more procedure information is displayed.

In the example you are using the verbose switch. Where required, the

remark 'Only with verbose on' will be given.

prtri –d3v calc.out

The object reader starts with a header, followed by the local type

information:

Chapter 1111–40
U
T
IL
IT
IE
S

* O b j e c t c a l c *

M o d u l e i n f o
=====================

Type info calc:
===============

No local types available

This type info is only printed if you use the verbose option -v. The

information found in this table is exactly the same as the information

explained for the global type information, see 11.5.2.5.

After the local types, you will find the local symbols.

Symbols calc:
=============

Variable S Type Attrib MAU Amod Address/Size
––
_factorial N – 0x0020 8 1 –
_compute N – 0x0020 8 1 –
_val N – 0x0020 8 2 –
_zero N – 0x0020 8 2 –
_cll N – 0x0020 8 2 –

The value for the symbol status in the external part was an I or an X.

Here, you can see a new letter. The N stands for a local symbol. Other

possible entires can have the letter G or S. They are no symbols, but

procedures. These procedures are printed at this place in order to define

their relative position. The actual procedure information is given in the

next block of information. Here you can find the additional procedure

information. The procedure block is printed only if you use the verbose

switch:

Procedures calc:
================

No procedures

The following is an example of some procedures:

Utilities 11–41

• • • • • • • •

Name S Additional information
–––
main G 0x00, 0x00, T101, QUEENS_PR + 0x00,
 (QUEENS_PR + 0x49) – 0x01
find_legal_row S 0x00, 0x00, T120, QUEENS_PR + 0x49,
 (QUEENS_PR + 0x156) – 0x01
display_board S 0x00, 0x00, T10a, QUEENS_PR + 0x156,
 (QUEENS_PR + 0x2a4) – 0x01
display_field S 0x00, 0x00, T121, QUEENS_PR + 0x2a4,
 (QUEENS_PR + 0x302) – 0x01
display_status S 0x00, 0x00, T103, QUEENS_PR + 0x302,
 (QUEENS_PR + 0x31d) – 0x01

The first two columns are the same as those in the local variable table. The

G stands for an external (global) function, the S for a static (local)

function.

Each function has 5 parameters with the following meaning:

param #1 Frame type, not used

param #2 Frame size, the distance from the stack pointer before the

function call to the stack position just after the local variables.

param #3 The type of the function

param #4 The start address of the function. In a relocatable object the

syntax 'section + offset' is used.

param #5 The last function address. See also param #4.

Next in the debug info is the line number information and the stack

information. Both items are only printed if you had turned the verbose

switch on:

Lines include/stdarg.h:
=======================
No line info available

Lines include/stdio.h:
======================
No line info available

Chapter 1111–42
U
T
IL
IT
IE
S

Lines queens.c:
===============

Address | Line Address | Line Address ...
––––––––––––––––––––––––––– ––––––––––––––––––––––––––– –––––––––––––––
QUEENS_PR + 0x000000 | 52 QUEENS_PR + 0x0000c2 | 90 QUEENS_PR + ...
QUEENS_PR + 0x000000 | 53 QUEENS_PR + 0x0000d9 | 101 QUEENS_PR + ...
QUEENS_PR + 0x000006 | 55 QUEENS_PR + 0x0000d9 | 103 QUEENS_PR + ...
 . . .
 . . .
 . . .
QUEENS_PR + 0x0000bd | 98 QUEENS_PR + 0x00018e | 133 QUEENS_PR + ...
QUEENS_PR + 0x0000c0 | 99 QUEENS_PR + 0x000190 | 136 QUEENS_PR + ...
QUEENS_PR + 0x0000c2 | 100 QUEENS_PR + 0x00019f | 137

Stack info include/stdarg.h:
============================
No stack info available

Stack info include/stdio.h:
===========================
No stack info available

Stack info queens.c:
====================
No stack info available

The stack info gives the actual stack position for each executable address.

This value is measured from the start position, just after the functions local

variables to the actual stack position. If you push one byte on stack, the

delta will be increased by one.

The debug info per module ends with a block for each function. Within

this block the local variables per function are displayed:

P r o c e d u r e i n f o
===========================

Procedure find_legal_row:
=========================

Symbols find_legal_row:
=======================

Variable S Type Attrib Mau Amod Address/Size
–––
accepted N 0x0109 0x0004 0 0 QUEENS_DA +
0x09
row N 0x0109 0x0805 0 0 0x02
col N 0x0109 0x0805 0 0 0x03
chk_row N 0x0109 0x0005 0 0 0x01
chk_col N 0x0109 0x0005 0 0 0x00

Utilities 11–43

• • • • • • • •

E n d o f p r o c e d u r e i n f o
===

11.5.2.7 OPTION -I, DISPLAY THE SECTION IMAGES

As with the -d option, you can ask a table with available section images

by specifying option -i0:

prtri –i0 calc.out

Choose option –i with the number of the section:
 1 – .startup_vector
 2 – .startup
 3 – .watchdog_vector
 4 – .watchdog
 5 – .text
 6 – .data
 7 – .zdata

You can select the image to display by specifying the image number:

prtri –i5 calc.out

Section .text:
==============

02 32 05 e3 ce 00 01 c4 f8 b0 cf 88 f3 f0 50 b4
cf d8 ce a1 51 d8 ce e1 cf 00 b1 cc a9 01 cf f8
rr rr rr rr rr rr rr rr rr rr rr rr rr

It is also possible to get the section offsets or absolute addresses by

specifying the verbose flag:

prtri –i5v calc.out

Section .text:
==============

000000 02 32 05 e3 ce 00 01 c4 f8 b0 cf 88 f3 f0 50 b4 .2............P.
000010 cf d8 ce a1 51 d8 ce e1 cf 00 b1 cc a9 01 cf f8 Q...........
000020 rr rr rr rr rr rr rr rr rr rr rr rr rr

Chapter 1111–44
U
T
IL
IT
IE
S

The dump always shows the hexadecimal byte value per address.

Sometimes however, this is not possible. First of all, it is possible that a

certain byte cannot be determined because it is not yet relocated. In this

case the byte is represented as rr.

Secondly, it is possible that there is no section image allowed. This is for

instance the case for sections that are cleared during startup. After the

invocation (verbose on) the reader prints:

prtri –i7v calc.out

Section .zdata:
===============

No image allowed, cleared during startup

It is possible that you read an absolute file. In the absolute file it is

possible to combine different sections to new clusters. These clusters do

not have the same attributes as the sections and the reader does no longer

know where the overlay area is positioned:

prtri –v –i1 calc.abs

Section rom:
============

000000 00 53 f9 ss 00 02 02 00 f0 00 00 00 00 00 00 00 .S..............
000010 01 01 00 f0 01 00 00 b6 00 00 00 03 00 ss ss ss 2........
000020 ss ss ss ss ss ss 02 32 05 e3 ce 00 01 c4 f8 b0 P.....Q.....
000030 cf 88 f3 f0 50 b4 cf d8 ce a1 51 d8 ce e1 cf 00
....

As you see, the reader only prints bytes that it actually can read from the

object file. The ss in the dump means scratch memory. It may or may not

be initialized by the start-up code. This information is not available

anymore to the reader. The start-up code can use a locator generated table

to get the information. See the Locator chapter.

Utilities 11–45

• • • • • • • •

11.5.3 VIEWING AN OBJECT AT LOWER LEVEL

11.5.3.1 OBJECT LAYERS

As with the well known OSI layer model for communication, you can also

distinguish layers in an object file. The object file is a medium for the

compiler which lets the compiler communicate with the debugger or the

target board. The lowest level can be classified as mass storage, mostly the

disc. The lowest viewable level for the readers concern are the raw bytes.

prtri knows this layer as level 0.

Of course, the bytes in level 0 have a meaning. Because the object format

is a format according to IEEE 695, the object file is a collection of MUFOM

commands. The general idea is, that an object producing tool sends

commands to a object consuming tool. These commands are described in

detail by the official IEEE standard1. The raw bytes from level 0 appear to

be encoded MUFOM commands. The MUFOM commands are interpreted

in a layer just above the raw bytes layer.

prtri knows this layer as level 1.

The next layer is the MUFOM environment, the type and section tables are

built, values are assigned, attributes are set just by performing the MUFOM

commands. The IEEE document describes also some predefined meanings

about scope, section attributes naming conventions for MUFOM variables.

This knowledge is available in the highest MUFOM layer.

prtri knows this layer as level 2.

With these first layers, the compiler and debugger/target board have a

perfect communication channel. The next layers (not supported by the

reader at this moment) define a protocol between compiler and debugger

about target and language specific information.

In the next sections you can find some examples about the use of the

reader at lower levels. Until now, you used the default level of the reader,

level 2.

1 IEEE Trial Use Standard for Microprocessor Universal Format for Object Modules (IEEE std. 695),
IEEE Technical Committee on Microcomputers and Microprocessors of the IEEE Computer Society,
1990.

Chapter 1111–46
U
T
IL
IT
IE
S

11.5.3.2 THE LEVEL OPTION -LN

Level 1

Switching to another level is simple. You can use the -l option with the

level you want to see. As an example, the section part of calc.out at

level 1:

prtri –l1 –s calc.out

ST: 1, RXAZS, .startup_vector
AS: L1, 0x0
AS: S1, 0x2
ST: 2, RXZC, .startup
AS: S2, 0x63
ST: 3, RXAZS, .watchdog_vector
AS: L3, 0x4
AS: S3, 0x2
ST: 4, RXZC, .watchdog
AS: S4, 0x1
ST: 5, RXZC, .text
AS: S5, 0x2d
ST: 6, WIY2C, .data
AS: S6, 0x3
ST: 7, WBY2C, .zdata
AS: S7, 0x1

If you are not familiar with the MUFOM commands, you can use the

verbose switch. The abbreviated commands such as AS, SA or ST are

expanded to Assignment, Section alignment and Section type:

prtri –v –l1 –s calc.out

ST: Section type:
 Nbr = 1, type = RXAZS, name = .startup_vector
AS: Assignment:
 Variable = L1, expression = 0x0
AS: Assignment:
 Variable = S1, expression = 0x2
.
.
ST: Section type:
 Nbr = 7, type = WBY2C, name = .zdata
AS: Assignment:
 Variable = S7, expression = 0x1

Utilities 11–47

• • • • • • • •

The Ln and Sn MUFOM variables are defined as the address and the size

of section n. At level 2 you saw (refer to section 11.5.2.2) that the level 2

view did not mention the L and S variables, because at level 2 the meaning

of the L and S variables are known!

Level 0

Switching to level 0 is accomplished by using -l0 (as you expected):

prtri –l0s calc.out

e6 01 d2 d8 c1 da d3 0f 2e 73 74 61 72 74 75 70 5f
76 65 63 74 6f 72
e2 cc 01 81 00
e2 d3 01 02
...
e6 07 d7 c2 d9 02 c3 06 2e 7a 64 61 74 61
e2 d3 07 01

The bytes are printed in the MUFOM command structure. It should be easy

to find the encoding for the used MUFOM commands. You can use the

verbose switch if you want to see file offsets:

prtri –l0vs calc.out

0000b3 e6 01 d2 d8 c1 da d3 0f 2e 73 74 61 72 74 75 70 5f startup_
 76 65 63 74 6f 72 vector
0000ca e2 cc 01 81 00
0000cf e2 d3 01 02
....
00013c e6 07 d7 c2 d9 02 c3 06 2e 7a 64 61 74 61 zdata
00014a e2 d3 07 01

Viewing Mixed Levels

You can also mix the levels. It is for instance possible to see level 0 and 1

together by specifying option -l01 (equivalent to -l10 or -l0 -l1):

prtri –sl01 calc.out

Chapter 1111–48
U
T
IL
IT
IE
S

ST: 1, RXAZS, .startup_vector
 e6 01 d2 d8 c1 da d3 0f 2e 73 74 61 72 74 75 70 5f

 76 65 63 74 6f 72
AS: L1, 0x0
 e2 cc 01 81 00
AS: S1, 0x2
 e2 d3 01 02
.
.
.
ST: 7, WBY2C, .zdata
 e6 07 d7 c2 d9 02 c3 06 2e 7a 64 61 74 61
AS: S7, 0x1
 e2 d3 07 01

And of course, you can turn on the verbose switch. The switch between

level 0 and level 1 is done per MUFOM command. This is because a

MUFOM command is the smallest unit at level 1.

If you should display level 1 and 2, the switch is made per object part,

because the object parts are the smallest units at level 2. It is not possible

to show the results of all section related commands before all these

commands are executed:

prtri –s –l1 –l2 calc.out

ST: 1, RXAZS, .startup_vector
AS: L1, 0x0
AS: S1, 0x2
.
.
.
ST: 7, WBY2C, .zdata
AS: S7, 0x1

Section Size
––––––––––––––––––––––––––––––
.startup_vector 0x000002
.startup 0x000063
.watchdog_vector 0x000002
.watchdog 0x000001
.text 0x00002d
.data 0x000003
.zdata 0x000001

Utilities 11–49

• • • • • • • •

11.5.3.3 THE VERBOSE OPTION -VN

As you have read in section 11.5.3.2, you can switch to a lower level with

the level switch -ln. If you want a verbose printout, you can use the -v

option.

It is also possible to specify -v0 to see a verbose output of level 0, option

-vn is a shorthand for options -v -ln (or -vln). The new notation has the

advantage that if you want a mixed level output, you are able to choose

the verbose option per level. You may specify -l0 -v1, and you get a non

verbose level 0 and a verbose level 1:

prtri –sl0v1 calc.out

ST: Section type:
 Nbr = 1, type = RXAZS, name = .startup_vector
 e6 01 d2 d8 c1 da d3 0f 2e 73 74 61 72 74 75 70 5f

 76 65 63 74 6f 72
AS: Assignment:
 Variable = L1, expression = 0x0
 e2 cc 01 81 00
AS: Assignment:
 Variable = S1, expression = 0x2
 e2 d3 01 02
.
.
.
ST: Section type:
 Nbr = 7, type = WBY2C, name = .zdata
 e6 07 d7 c2 d9 02 c3 06 2e 7a 64 61 74 61
AS: Assignment:
 Variable = S7, expression = 0x1
 e2 d3 07 01

The general verbose switch -v (without a number) makes all selected

levels verbose. The verbose switch -vn selects level n and makes only

level n verbose.

Chapter 1111–50
U
T
IL
IT
IE
S

A

ASSEMBLER ERROR
MESSAGES

A
P

P
E

N
D

I
X

Appendix AA–2
A

S
T

R
I
E

R
R

O
R

S

A

A
P

P
E

N
D

I
X

Assembler Error Messages A–3

• • • • • • • •

1 INTRODUCTION

The assembler produces error messages on standard error output. If the list

option of the assembler is effective, error messages will be included in the

list file as well, when the assembler has started list file generation. Error

messages have the following layout:

[E|F|W] error_number: filename line number : error_message

Example:

astri E214: /tmp/tst.src line 17 : illegal addressing mode

The example reports the error, starting with the severity (E: error, F: fatal

error, W: warning) and the error number followed by the source filename

and the line number. The last part of the line shows the error message

text.

All warnings (W), errors (E), and fatal errors (F) of astri are described

below.

Appendix AA–4
A

S
T

R
I
E

R
R

O
R

S

2 WARNINGS (W)

The assembler may generate the following warnings:

W 101: use option at the start of the source; ignored

Primary options must be used at the start of the source.

W 102: duplicate attribute "attribute" found

An attribute of an .EXTERN directive is used twice or more. Remove

one of the duplicate attributes.

W 103: section offset can cause overlap of code or data

W 104: expected an attribute but got attribute; ignored

W 105: section activation expected, use name directive

Use the .SECT directive to activate a section.

W 106: conflicting attributes specified "attributes"

You used two conflicting attributes in an .EXTERN statement directive.

For example CODE and DATA or CLEAR and NOCLEAR. Choose which

one you want to use and remove the other.

W 107: memory conflict on object "name"

A label or other object is explicit or implicit defined using incompatible

memory types. Check all usages and definitions of the object name to
remove this conflict.

W 108: object attributes redefinition "attributes"

A label or other object is explicit or implicit defined using incompatible

attributes. For example CODE and DATA. Check all usages and

definitions of the object to remove the conflict.

W 109: label "label" not used

The label label is defined with the .GLOBAL directive and neither

defined nor referred, or the label is defined with the .LOCAL directive

and not referenced. You can remove this label and its definitions (in

the case of a .LOCAL label).

W 110: extern label "label" defined in module, made global

The label label is defined with an .EXTERN directive and defined as a

label in the source. The label will be handled as a global label. Change

the .EXTERN definition into .GLOBAL or one of the identifiers.

Assembler Error Messages A–5

• • • • • • • •

W 111: unknown name control flag "flag"

You supplied an unknown flag to the $LIST or $DEBUG control. See

the description of the $LIST or $DEBUG control for the possible

arguments.

W 112: text found after END; ignored

An .END directive designates the end of the source file. All text after

the .END directive will be ignored. Remove the text.

W 115: use ON or OFF after control name

The control you specified must have either ON or OFF after the control

name. See the description of the control for details.

W 116: unkown parameter "parameter" for control-name control

See the description of the control for the allowed parameters.

W 118: inserted "extern name"

The symbol name is used inside an expression, but not defined with

an .EXTERN directive. The assembler inserts an .EXTERN definition of

the offending symbol. Add an .EXTERN definition.

W 119: "name" section has not the MAX attribute; ignoring RESET

W 120: assembler debug information: cannot emit non-tiof expression

for label

The .SYMB record contains an expression with operations that are not

supported by the IEEE-695 object format. When the .SYMB record is

generated by the TASKING C compiler, please fill out the error report

and send it to TASKING.

W 121: changed alignment size to size

W 122: fractional has been saturated because it is outside the fractional

domain

A fract must be in the range [-1,1>.

W 123: expression: type-error

The expression performs an illegal operation on an address or

combines incompatible memory spaces. Check the expression, and

change it.

Appendix AA–6
A

S
T

R
I
E

R
R

O
R

S

W 124: cannot purge macro during its own definition

W 125: "symbol" is not a defined symbol

You tried to .UNDEF a symbol that was not previously .DEFINEd or

was already undefined. Check all .DEFINE/.UNDEF combinations of

the offending symbol.

W 126: redefinition of "define-symbol"

The symbol is already .DEFINEd in the current scope. The symbol is

redefined according to this .DEFINE. .UNDEF any symbol before

redefining it.

W 127: redefinition of macro "macro"

The macro is already defined. The macro is redefined according to this

macro definition. Purge any macro using .PMACRO before redefining it.

W 128: number of macro arguments is less than definition

You supplied less arguments to the macro than when defining it. Check

your macro definition with this macro call. The undefined macro

arguments are left empty (as in .DEFINE def ’’).

W 129: number of macro arguments is greater than definition

You supplied more arguments to the macro than when defining it.

Check your macro definition with this macro call. The superfluous

macro arguments are ignored.

W 130: DUPA needs at least one value argument

The .DUPA directive needs at least two arguments, the dummy

parameter and a value parameter. Add one or more value-parameters.

W 131: DUPF increment value gives empty macro

The step value supplied with the .DUPF macro will skip the .DUPF

macro body. Check the step value.

W 132: .IF started in previous file "file", line line

The .ENDIF or .ELSE pre-processor directive matches with an .IF

directive in another file. Check on any missing .ENDIF or .ELSE

directives in that file.

W 133: currently no macro expansion active

The @CNT() and @ARG() functions can only be used inside a macro

expansion. Check your macro definitions or expression.

Assembler Error Messages A–7

• • • • • • • •

W 134: "directive" is not supported, skipped

The supplied directive is not supported by the TASKING assembler.

Remove all uses of this directive.

W 135: define symbol of "define-symbol" is not an identifier; skipped

definition

You supplied an illegal identifier with the -D option on the command

line. An identifier should start with a letter, followed by any number of

letters, digits or underscores.

W 137: label "label" defined attribute and attribute

The label is defined with an .EXTERN and a .GLOBAL directive. The

.EXTERN directive is removed, leaving the label global.

W 138: warning: .WARNING-directive-arguments

Output from the .WARNING directive.

W 139: expression must be between hex-value and hex-value

W 140: expression must be between value and value

W 141: gobal/local label "name" not defined in this module; made

extern

The label is declared and used but not defined in the source file. Check

the current scope of the label and its usage, change the declaration to

EXTRN or add a label definition.

W 142: redefinition of `name' macro

The macro was defined before. The new macro definition is used.

W 170: duplicate controle used: control_name

A primary assembly control was defined twice.

W 171: suspicious instruction concerning CPU functional defect

TC112_COR1

The preceding instruction of a LOOP, LOOP16 or LOOPU instruction is

not an ISYNC instruction.

See section TC112_COR1 in Appendix CPU Functional Problems of the

Cross-Compiler Users Guide for more details.

Appendix AA–8
A

S
T

R
I
E

R
R

O
R

S

W 172: suspicious instruction concerning CPU functional defect

TC112_COR4

An instruction uses an An register for either an effective address

calculation or as the target of an indirect branch that is located directly

after a (target) label.

See section TC112_COR4 in Appendix CPU Functional Problems of the

Cross-Compiler Users Guide for more details.

W 173: suspicious instruction concerning CPU functional defect

TC112_COR10

A store operation is encountered that uses a circular addressing mode

with an offset not equal to zero.

See section TC112_COR10 in Appendix CPU Functional Problems of

the Cross-Compiler Users Guide for more details.

W 174: suspicious instruction concerning CPU functional defect

TC112_COR13

A loop was encountered that contains a single integer instruction which

is a DVSTEP or a DVSTEP.U.

See section TC112_COR13 in Appendix CPU Functional Problems of

the Cross-Compiler Users Guide for more details.

W 175: suspicious instruction concerning CPU functional defect

TC112_COR17

A DSYNC is not followed by a NOP instruction.

See section TC112_COR17 in Appendix CPU Functional Problems of

the Cross-Compiler Users Guide for more details.

W 176: suspicious instruction concerning CPU functional defect

TC113_CPU9

A DSYNC is not followed by two NOP instructions.

See section TC113_CPU9 in Appendix CPU Functional Problems of the

Cross-Compiler Users Guide for more details.

Assembler Error Messages A–9

• • • • • • • •

W 177: suspicious instruction concerning CPU functional defect

TC113_CPU11

• An LDA, LDDA, or LD16A instruction is directly followed by a JI

instruction.

• There is no or just one instruction (not a NOP instruction) between

label and RET or RET16.

See section TC113_CPU11 in Appendix CPU Functional Problems of

the Cross-Compiler Users Guide for more details.

W 178: suspicious instruction concerning CPU functional defect

TC113_CPU14

The first label in a code section is not followed by a DSYNC

instruction.

See section TC113_CPU14 in Appendix CPU Functional Problems of

the Cross-Compiler Users Guide for more details.

W 179: suspicious instruction concerning CPU functional defect

TC113_CPU15

An ST.T, SWAP or LDMST instruction was encountered.

See section TC113_CPU15 in Appendix CPU Functional Problems of

the Cross-Compiler Users Guide for more details.

W 180: suspicious instruction concerning CPU functional defect

TC113_CPU16

An LDA, LDDA or LD16A instruction is directly followed by a JI or

CALLI instruction with the same address register as parameter.

See section TC113_CPU16 in Appendix CPU Functional Problems of

the Cross-Compiler Users Guide for more details.

W 181: suspicious instruction concerning CPU functional defect

TC113_DMU1

A SWAP, LDMST or ST.T instruction was encountered.

See section TC113_DMU1 in Appendix CPU Functional Problems of the

Cross-Compiler Users Guide for more details.

Appendix AA–10
A

S
T

R
I
E

R
R

O
R

S

W 182: suspicious instruction concerning CPU functional defect

TC113_LF12

A SWAP, LDMST or ST.T instruction was encountered.

See section TC113_LF12 in Appendix CPU Functional Problems of the

Cross-Compiler Users Guide for more details.

W 183: suspicious instruction concerning CPU functional defect

TC113_LF13

A SWAP, LDMST or ST.T instruction was encountered.

See section TC113_LF13 in Appendix CPU Functional Problems of the

Cross-Compiler Users Guide for more details.

W 184: error in $PAGELENGTH control: message

The page length must be larger than 10 lines. Now the default of 66

lines is assumed.

W 185: error in $PAGEWIDTH control: message

The page width must be larger than 40 columns. Now the default of 80

columns is assumed.

Assembler Error Messages A–11

• • • • • • • •

3 ERRORS (E)

The assembler generates the following error messages when a user error

situation occurs. These errors do not terminate assembly immediate. If one

or more of these errors occur, assembly stops at the end of the active pass.

E 200: message; halting assembly

The assembler stops the further processing of your source file. This is

only an informative message. Remove all errors reported earlier and try

again.

E 201: unexpected newline or line delimiter

The syntax checker found a newline or line delimiter that does not

confirm to the assembler grammar. Check the line for syntax errors or

remove the offending newline or line delimiter.

E 202: unexpected character: 'character'

The syntax checker found a character that does not confirm to the

assembler grammar. Check the line for syntax errors or remove the

offending character.

E 203: illegal escape character in string constant

The syntax checker found an illegal escape character in the string

constant that does not confirm to the assembler grammar. Check the

line for syntax errors or remove the offending escape character.

E 204: I/O error: open intermediate file failed (file)

The assembler opens an intermediate file to optimize the lexical

scanning phase. The assembler cannot open this file. The assembler

checks if the environment symbol TMPDIR is set. If so, this directory is

used for opening the file. Otherwise the file is opened in the current

directory.

E 205: syntax error: expected token instead of token

The syntax checker expected to find a token but found another token.

The expected token is inserted instead of the found token. Check the

line for syntax errors.

E 206: syntax error: token unexpected

The syntax checker found an unexpected token. The offending token

is removed from the input and assembling continues. Check the line

for syntax errors.

Appendix AA–12
A

S
T

R
I
E

R
R

O
R

S

E 207: syntax error: missing ':'

The syntax checker found a label definition or memory space modifier

but missed the appended semi-colon. Check the line for syntax errors,

for example misspelled mnemonics.

E 208: syntax error: missing ')'

The syntax checker expected to find a closing parentheses. Check the

expression syntax for missing operators and nesting of parentheses.

E 209: invalid radix value, should be 2, 8, 10 or 16

The .RADIX directive accepts only 2, 8, 10 or 16.

E 210: syntax error

The syntax checker found an error. Check the line for syntax errors.

E 211: unknown model

Substitute the correct model.

E 212: syntax error: expected token

The syntax checker expected to find a token but found nothing. The

expected token is inserted. Check the line for syntax errors.

E 213: label "label" defined attribute and attribute

The label is defined with a .LOCAL and a .GLOBAL or .EXTERN

directive. Check your label scoping or change the label declarations.

E 214: illegal addressing mode

The mnemonic used an illegal addressing mode. Check the register

usage of address constructs.

E 215: not enough operands

The mnemonic needs more operands. Check the source line and

change the instruction.

E 216: too many operands

The mnemonic needs less operands. Check the source line and change

the instruction.

E 217: description

There was an error found during assembly of the mnemonic. Check the

instruction.

Assembler Error Messages A–13

• • • • • • • •

E 218: unknown mnemonic: "name"

The assembler found an unknown mnemonic. Check the instruction.

E 220: not within CODE section; instruction is removed

Instructions are not allowed in a DATA section.

E 223: unknown section "name"

The section name specified with a .SECT directive has not (yet) been

defined with a .SDECL directive. Check the .SECT name and the

corresponding .SDECL name.

E 224: unknown label "name"

A label was used which was not defined. Check that the label and its

definition have the same name.

E 225: invalid memory type

You supplied an invalid memory modifier.

E 226: unknown symbol attribute: sect_type

You specified an invalid section type.

E 227: invalid memory attribute

The assembler found an unknown location counter or memory

mapping attribute.

E 228: name attribute needs a number

The attribute attr needs an extra parameter. For example, the FIT

attribute.

E 229: only one of the name attributes may be specified

E 230: invalid section attribute: name

The assembler found an unknown section attribute.

E 231: absolute section, expected "AT" expression

An absolute section must be specified using an 'AT address' expression.

E 232: MAX/OVERLAY sections need to be named sections

Sections with the MAX or OVERLAY attribute must have a name,

otherwise the locator cannot overlay the sections.

Appendix AA–14
A

S
T

R
I
E

R
R

O
R

S

E 233: type section cannot have attribute attribute

Code sections may not have the CLEAR or OVERLAY attribute.

E 234: section attributes do not match earlier declaration

In an previous definition of the same section other attributes were

used. Check all section definitions with the same name.

E 235: redefinition of section

An absolute section of the same name can only be located once.

E 236: cannot evaluate expression of descriptor

Some functions and directives must evaluate their arguments during

assembly. Change the expression so that it can be evaluated.

E 237: descriptor directive must have positive value

Some directives need to have a positive argument. Check the

expression so that is evaluates to a positive number.

E 238: Floating point numbers not allowed with .BYTE directive

The .BYTE directive does not accept floating point numbers. Convert

the expressions or use the .HALF directive instead.

E 239: byte constant out of range

The .BYTE directive stores expressions in bytes. A byte can only hold

numbers between 0 and 255.

E 240: word constant out of range

The .HALF directive stores expressions in words. A word can hold 16

bit numbers. Check the range of the expression.

E 241: Cannot emit non tiof functions, replaced with integral value '0'

Floating point expressions and some functions can not be represented

in the IEEE-695 object format. When an expression contains unknown

symbols it cannot be evaluated and not emitted to the object file.

Change these expressions to integral expressions, or make sure they

can be evaluated during assembly.

E 242: the name attribute must be specified

A section must have the CODE or DATA attribute.

Assembler Error Messages A–15

• • • • • • • •

E 243: use $OBJECT OFF or $OBJECT "object-file"

E 244: unknown control "name"

The specified control does not exist. See chapter 8 for a description of

all available controls.

E 245: error in expression: expression

Check the expression. The expression might not be a constant value.

E 246: .ENDM within .IF/.ENDIF

The assembler found an .ENDM directive within an .IF/.ENDIF pair.

Check the macro and dup definitions or remove this directive.

E 247: illegal condition code

The assembler encountered an illegal condition code within an

instruction. Check your input line.

E 248: cannot evaluate origin expression of org "name: address"

All origins of absolute sections must be evaluated before creation of the

object file. Check the address expression on the usage of undefined or

location dependant symbols.

E 249: incorrect argument types for function "function"

The supplied argument(s) evaluated to a different type than expected.

Change the argument expressions to the correct type.

E 250: tiof function not yet implemented: "function"

The supplied tiof function is not yet implemented.

E 251: @POS(,,start) start argument past end of string

The start argument is larger than the length of the string in the first

parameter. Change start to the correct range.

E 252: second definition of label "label"

The label is defined twice in the same scope. Check the label

definitions and rename of remove duplicate definitions.

E 253: recursive definition of symbol "symbol"

The evaluation of the symbol depends on its own value. Change the

symbol value exclude this cyclic definition.

Appendix AA–16
A

S
T

R
I
E

R
R

O
R

S

E 254: missing closing '>' in include directive

The syntax checker missed the closing '>' bracket in the include

directive. Add a closing '>'.

E 255: could not open include file include-file

The assembler could not open the given include-file. Check the current

search path for the presence of the include file and if it may be read.

E 256: integral divide by zero

The expression contains an divide by zero. This is not defined. Change

the expression to exclude a division by zero.

E 257: unterminated string

All strings must end on the same line as they are started. Check for a

missing ending quot.

E 258: unexpected characters after macro parameters, possible illegal

white space

Spaces are not permitted between macro parameters. Check the syntax

of the macro call.

E 259: .COMMENT directive not permitted within a macro definition

and conditional assembly

The TASKING assembler does not permit the usage of the .COMMENT

directive within .MACRO/.DUP definitions or .IF/.ELSE/.ENDIF

constructs. Replace the offending .COMMENTs with comments starting

with a semicolon.

E 260: definition of "macro" unterminated, missing "endm"

The macro definition is not terminated with an .ENDM directive. Check

the macro definition.

E 261: macro argument name may not start with an '_'

.MACRO and .DUP arguments may not start with an underscore.

Replace the offending parameter names with non-underscore names.

E 262: cannot find "symbol"

Could not find a definition of the argument of a '%' or '?' operator

within a macro expansion. Check for a definition of the offending

symbol.

Assembler Error Messages A–17

• • • • • • • •

E 263: cannot evaluate: "symbol", value is unknown at this point

The symbol used with a '%' or '?' operator within a macro expansion

has not been defined. Insert a definition of the offending identifier.

E 264: cannot evaluate: "symbol", value depends on an unknown

symbol

Could not evaluate the argument of a '%' or '?' operator within a macro

expansion. Check the definition of the offending symbol.

E 265: cannot evaluate argument of dup (unknown or location

dependant symbols)

The arguments of the .DUP directive could not be evaluated. Check the

argument expressions on forward references or unknown symbols.

E 266: dup argument must be integral

The argument of the .DUP directive must be integral. Change the

expression so that it evaluates to an integral number.

E 267: dup needs a parameter

Check the syntax of the .DUP directive.

E 268: ENDM without a corresponding .MACRO or D.UP definition

The assembler found an .ENDM directive without an corresponding

.MACRO or .DUP definition. Check the macro and dup definitions or

remove this directive.

E 269: .ELSE without a corresponding .IF

The assembler found an .ELSE directive without an corresponding .IF

directive. Check the .IF/.ELSE/.ENDIF nesting or remove this directive.

E 270: .ENDIF without a corresponding .IF

The assembler found an ENDIF directive without an corresponding .IF

directive. Check the .IF/.ELSE/.ENDIF nesting or remove this directive.

E 271: missing corresponding .ENDIF

The assembler found an .IF or .ELSE directive without an

corresponding .ENDIF directive. Check the .IF/.ELSE/.ENDIF nesting or

remove this directive.

E 272: label not permitted with this directive

Some directives do not accept labels. Move the label to a line before or

after this line.

Appendix AA–18
A

S
T

R
I
E

R
R

O
R

S

E 273: wrong number of arguments for function

The function needs more or less arguments. Check the function

definition and add or remove arguments.

E 274: illegal argument for function

An argument has the wrong type. Check the function definition and

change the arguments accordingly.

E 275: expression not properly aligned

E 276: immediate value must be between value and value

The immediate operand of the instruction does only accept values in

the given range. Use the '&' operator to force a value within the

needed range or use '#>' to force a long immediate operand.

E 277: address must be between $address and $address

The address operand is not in the range mentioned. Change the

address expression.

E 278: operand must be an address

The operand must be an address but has no address attributes. Use an

address modifier or change the address expression.

E 279: address must be short

E 280: address must be short

The operand must be an address in the short range. The expression

evaluated to a long address or an address in an unknown range.

E 281: illegal option "option"

The assembler found an unknown or misspelled command line option.

The option will be ignored. Use the -? option to see a list of all

possible options.

E 282: "Symbols:" part not found in map file "name"

The map file may be incomplete. Check if it is correctly produced by

the locator.

E 283: "Sections:" part not found in map file "name"

The map file may be incomplete. Check if it is correctly produced by

the locator.

Assembler Error Messages A–19

• • • • • • • •

E 284: module "name" not found in map file "name"

The map file may be incomplete. Check if it is correctly produced by

the locator.

E 285: file-kind file will overwrite file-kind file

The assembler warns when one of its output files will overwrite the

source file you gave on the command line or another output file.

Change the name of the source file, use the -o option to change the

name of the output file or remove the -err option to suppress the

generation of the error file.

E 286: $CASE options must be given before any symbol definition

The $CASE options may only be given before any symbol is defined.

Move the options to the start of the first source file.

E 287: symbolic debug error: message

The assembler found an error in a symbolic debug (.SYMB) instruction.

When the SYMB instruction is generated by the TASKING C compiler,

please fill out the error report form and send it to TASKING. As a work

around you could disable the symbolic debug information of this

module (remove the -g option).

E 288: error in PAGE directive: message

The arguments supplied to the PAGE directive do not conform to the

restrictions. Check the PAGE directive restrictions in the manual and

change the arguments accordingly.

E 290: fail: message

Output of the .FAIL directive. This is an user generated error. Check the

source code to see why this .FAIL directive is executed.

E 291: generated check: message

Integrity check for the coupling between the TASKING C compiler and

TASKING assembler. You should not see this error message, unless

there are error in user inserted assembly (using the "#pragma asm"

construct).

E 293: expression out of range

An instruction operand must be in a specified address range. Check the

address expression, change it.

Appendix AA–20
A

S
T

R
I
E

R
R

O
R

S

E 294: expression must be between hexvalue and hexvalue

E 295: expression must be between value and value

E 296: optimizer error: message

The optimizer found an error. Try to change the instruction or turn off

the the optimizer.

E 297: jump address must be a code address

Jumps and jump-subroutines must have a target address in code

memory. Check the address expression or use a memory modifier to

force the expression into code memory.

E 298: size depends on location, cannot evaluate

The size of some constructions (notably the align directives) depend on

the memory address. Change the offending construction.

E 299: absolute expression expected for section offset

The expression must result in an absolute expression, to be used as a

section offset.

E 301: #error: line

A C preprocessor error occurred.

E 302: illegal C preprocessor `#define'-name

A '#define' name must be a legal identifier.

E 303: error in parameter list of `#define' symbol definition

Another parameter or the ')' character was expected.

E 304: missing `#define'-name for `defined(...)' function

E 305: `name' is an unknown or non-constant symbol

E 306: duplicate macro parameter `name'

Each macro parameter must have a unique name.

E 307: wrong number of arguments for `name'

Check the definition of the macro for the correct number of arguments.

Assembler Error Messages A–21

• • • • • • • •

E 308: message

E 350: SFR include file regcpu.def not found

The assembler tries to open the file "regcpu.def" to add the predefined

special function registers to the symbol table. Check if you have

entered the correct cpu type and/or check if the file is present in the

include directory of the installed product.

E 351: error in control: message

The argument of the control may need enclosing parentheses or there

is an invalid character in the control name.

Appendix AA–22
A

S
T

R
I
E

R
R

O
R

S

4 FATAL ERRORS (F)

The following errors cause the assembler to terminate immediately. Fatal

errors are usually due to user errors.

F 401: memory allocation error

A request for free memory is denied by the system. All memory has

been used. You may have to break your program down into smaller

pieces.

F 402: duplicate input filename "file" and "file"

The assembler requires one input filename on the command line. Two

or more filenames is erroneous.

F 403: error opening file-kind file : "file-name"

The assembler could not open the given file. When this is a source file,

check if the file you specified at the command line exists and if it is

readable. When the file is a temporary file, check if the environment

symbol TMPDIR has been set correctly.

F 404: protection error : message

No protection key or not a IBM compatible PC.

F 405: I/O error

The assembler cannot write its output to a file. Check if you have

enough free disk space.

F 406: parser stack overflow

F 407: symbolic debug output error

The symbolic debug information is incorrectly written in the object file.

Please fill out the error report form and send it to TASKING.

F 408: illegal operator precedence

The operator priority table is corrupt. Please fill out the error report

form and send it to TASKING.

F 409: Assembler internal error

The assembler encountered internal inconsistencies. Please fill out the

error report form and send it to TASKING.

Assembler Error Messages A–23

• • • • • • • •

F 410: Assembler internal error: duplicate mufom "symbol" during

rename

The assembler renames all symbols local to a scope to unique symbols.

In this case the assembler did not succeed into making an unique

name. Please fill out the error report form and send it to TASKING.

F 411: symbolic debug error: "message"

An error occurred during the parsing of the .SYMB directive. When this

SYMB directive is generated by the TASKING C compiler, please fill out

the error report form and send it to TASKING.

F 412: macro calls nested too deep (possible endless recursive call)

There is a limit to the number of nested macro expansions. Currently

this limit is set to 1000. Check for recursive definitions or try to simplify

your source when you encounter this restriction.

F 413: cannot evaluate "function"

A function call is encountered although it should have been processed.

As a work-around, try to locate the offending function call and remove

it from your source. Please fill out the error report form and send it to

TASKING.

F 414: cannot recover from previous errors, stopped

Due to earlier errors the assembler internal state got corrupted and

stops assembling your program. Remove the errors reported earlier and

retry.

F 415: error opening temporary file

The assembler uses temporary files for the debug information and list

file generation. It could not open or create one of those temporary

files. Check if the environment symbol TMPDIR has been set correctly.

F 416: internal error in optimizer

The optimizer found a deadlock situation. Try to assemble without any

optimization options. Please fill out the error report form and send it to

TASKING.

Appendix AA–24
A

S
T

R
I
E

R
R

O
R

S

B

LINKER ERROR
MESSAGES

A
P

P
E

N
D

I
X

Appendix BB–2
L

K
T

R
I
E

R
R

O
R

S

B

A
P

P
E

N
D

I
X

Linker Error Messages B–3

• • • • • • • •

1 INTRODUCTION

Error and warning messages of the linker start with a letter followed by a

number and an informational text. The error letter indicates the error type:

W warning

E error

F fatal error

V verbose message

2 WARNINGS (W)

W 100: Cannot create map file filename, turned off -M option

The given file could not be created.

W 101: Illegal filename (filename) detected

A filename with an illegal extension was detected.

W 102: Incomplete type specification, type index = Thexnumber

An unknown type reference. Arises if a pointer to an unspecified

structure is defined.

W 103: Object name (name) differs from filename

Internal name of object file not the same as the filename. The file was

probably renamed.

W 104: '-o filename' option overwrites previous '-o filename'

Second -o option encountered, previous name is lost.

W 105: No object files found

No files where specified at the invocation.

W 106: No search path for system libraries. Use -L or env "variable"

System library files (those given with the -l option) must have a search

path, either supplied by means of the environment, or by means of the

option -L.

W 108: Illegal option: option (-H or -\? for help)

An illegal option was detected.

Appendix BB–4
L

K
T

R
I
E

R
R

O
R

S

W 109: Type not completely specified for symbol <symbol> in file

Not a complete type specification in either the current file or the

mentioned file. This could be an array with unknown depth, or a

function with unknown parameters.

W 110: Compatible types, different definitions for symbol <symbol> in

file

Name conflict between compatible types. This could be a member

name, tag name for a struct, or a different type name for equal sized

basic types (int, long). Note that a basic type conflict is a non portable

construct.

W 111: Signed/unsigned conflict for symbol <symbol> in file

Size of both types is correct, but one of the types contains an unsigned

where the other uses a signed type.

W 112: Type conflict for symbol <symbol> in file

A real type conflict.

W 113: Table of contents of file out of date, not searched. (Use ar ts

<name>)

The ar library has a symbol table which is not up to date. Generate a

new one with 'ar ts'.

W 114: No table of contents in file, not searched. (Use ar ts <name>)

The ar library has no symbol table. Generate one with 'ar ts'.

W 115: Library library contains ucode which is not supported

Ucode is not supported by the linker.

W 116: Not all modules are translated with the same threshold (-G

value)

The library file has an unknown format, or is corrupted.

W 117: No type found for <symbol>. No type check performed

No type has been generated for the symbol

W 118: Variable <name>, has incompatible external addressing modes

with file <filename>

A variable is not yet allocated but two external references are made by

non overlapping addressing modes. This is always an error.

Linker Error Messages B–5

• • • • • • • •

W 119: error from the Embedded Environment: message, switched off

relaxed addressing mode check

If the embedded environment is readable for the linker, the addressing

mode check is relaxed. For instance, a variable defined as data may be

accessed as huge. For an overview of the embedded environment error

messages, see appendix E, Embedded Environment Error Messages.

W 120: Cannot find target description file name, relaxed addressing

mode check disabled

The linker cannot find the description file (.dsc), this means that the

linker cannot verify if addressing modes are compatible. For instance,

the linker will now generate an error when far data is accessed as

huge.

Appendix BB–6
L

K
T

R
I
E

R
R

O
R

S

3 ERRORS (E)

E 200: Illegal object, assignment of non existing var var

The MUFOM variable did not exist. Corrupted object file.

E 201: Bad magic number

The magic number of a supplied library file was not ok.

E 202: Section name does not have the same attributes as already

linked files

Named section with different attributes encountered. Use -t flag to see

which files are already linked. It is possible that a previously linked

file started a .out section with wrong attributes.

E 203: Cannot open filename

A given file was not found.

E 204: Illegal reference in address of name

Illegal MUFOM variable used in value expression of a variable.

Corrupted object file.

E 205: Symbol 'name' already defined in <name>

A symbol was defined twice. The message gives the files involved.

E 206: Illegal object, multi assignment on var

The MUFOM variable was assigned more than once probably due to a

previous error 'already defined', E205.

E 207: Object for different processor characteristics

Bits per MAU, MAU per address or endian for this object differs with

the first linked object.

E 208: Found unresolved external(s):

There were some symbols not found. If -r is not set, this is an error.

E 209: Object format in file not supported

The object file has an unknown format, or is corrupted.

E 210: Library format in file not supported

The library file has an unknown format, or is corrupted.

Linker Error Messages B–7

• • • • • • • •

E 211: Function <function> cannot be added to the already built

overlay pool <name>

The overlay pool has already been built in a previous linker action. Use

option -r to prevent this.

E 212: Duplicate absolute section name <name>

Absolute sections begin on a fixed address. They cannot be linked.

E 213: Section <name> does not have the same size as the already

linked one

A section with the EQUAL attribute does not have the same size as

other, already linked, sections.

E 214: Missing section address for absolute section <name>

Each absolute section must have a section address command in the

object. Corrupted object file.

E 215: Section <name> has a different address from the already linked

one

Two absolute sections may be linked (overlaid) on some conditions.

They must have the same address.

E 216: Variable <name>, name <name> has incompatible external

addressing modes

A variable is allocated outside a referencing addressing space. For

instance, the variable was not allocated in the zero page and this

variable was referenced with the zero page addressing mode. This is

always an error.

E 217: Variable <name>, has incompatible external addressing modes

with file <filename>

A variable is not yet allocated but two external references are made by

non overlapping addressing modes. This is always an error.

E 218: Variable <name>, also referenced in <name> has an

incompatible address format

Addresses are often expressed in bytes. In some special cases, the

address is expressed in bits. This is necessary for bit variables. An

attempt was made to link different address formats between the current

file and the mentioned file.

Appendix BB–8
L

K
T

R
I
E

R
R

O
R

S

E 219: Not supported/illegal feature in object format format

An option/feature is not supported or illegal in given object format.

E 220: page size (0xhexvalue) overflow for section <name> with size

0xhexvalue

Section is too big to fit into the page.

E 221: message

Error generated by the object. These errors are in fact generated by the

assembler. It has been caused by a jump instruction which is out of

range.

E 222: Address of <name> not defined

No address was assigned to the variable. Corrupted object file.

E 223: Illegal object, empty name assignment on variable name

An empty name assignment of a MUFOM variable (type N, X or I).

Linker Error Messages B–9

• • • • • • • •

4 FATAL ERRORS (F)

F 400: Cannot create file filename

The given file could not be created.

F 401: Illegal object: Unknown command at offset offset

An unknown command was detected in the object file. Corrupted

object file.

F 402: Illegal object: Corrupted hex number at offset offset

Wrong byte count in hex number. Corrupted object file.

F 403: Illegal section index

A section index out of range was detected. Corrupted object file.

F 404: Illegal object: Unknown hex value at offset offset

An unknown variable was detected in the object file. Corrupted object

file.

F 405: Internal error number

Internal fatal error. Passed number will give more information!

F 406: message

No key no IBM compatible PC

F 407: Missing section size for section <name>

Each section must have a section size command in the object.

Corrupted object file.

F 408: Out of memory.

An attempt to allocate more memory failed.

F 409: Illegal object, offset offset

Inconsistency found in the object module.

F 410: Illegal object

Inconsistency found in the object module at unknown offset.

F 413: Only name object can be linked

It is not possible to link object for other processors.

Appendix BB–10
L

K
T

R
I
E

R
R

O
R

S

F 414: Input file file same as output file

Input file and output file cannot be the same.

F 415: Demonstration package limits exceeded

One of the limits in this demo version was exceeded.

F 416: Only one description file allowed

The linker accepts only one description file.

Linker Error Messages B–11

• • • • • • • •

5 VERBOSE (V)

V 000: Abort !

The program was aborted by the user.

V 001: Extracting files

Verbose message extracting file from library.

V 002: File currently in progress:

Verbose message file currently processed.

V 003: Starting pass number

Verbose message, start of given pass.

V 004: Rescanning....

Verbose message rescanning library. Rescanning is done if there were

new unsatisfied externals during the last scan.

V 005: Removing file file

Verbose message cleaning up. Temp files are always removed, map file

and .out file are removed if switch -e is on and the exit code is

unequal to zero.

V 006: Object file file format format

Named object file does not have the standard toolchain object format

TIOF-695.

V 007: Library file format format

Named library file does not have the standard toolchain archiver format

V 8: Embedded environment name read, relaxed addressing mode

check enabled

Embedded environment successfully read.

Appendix BB–12
L

K
T

R
I
E

R
R

O
R

S

C

LOCATOR ERROR
MESSAGES

A
P

P
E

N
D

I
X

Appendix CC–2
L

C
T

R
I
E

R
R

O
R

S

C

A
P

P
E

N
D

I
X

Locator Error Messages C–3

• • • • • • • •

1 INTROCUCTION

Error and warning messages of the locator start with a letter followed by a

number and an informational text. The error letter indicates the error type:

W warning

E error

F fatal error

V verbose message

2 WARNINGS (W)

W 100: Maximum buffer size for name is size (Adjusted)

For the given format, a maximum buffer size is defined.

W 101: Cannot create map file filename, turned off -M option

The given file could not be created.

W 102: Only one -g switch allowed, ignored -g before name

Only one .out file can be debugged.

W 104: Found a negative length for section name, made it positive

Only stack sections can have a negative length.

W 107: Inserted 'name' keyword at line line

A missing keyword in the description file was inserted.

W 108: Object name (name) differs from filename

Internal name of object file not the same as the filename. Maybe

renamed?

W 110: Redefinition of system start point

Usually only one load module will access the system table (_lc_pm).

W 111: Two -o options, output name will be name

Second -o option, the message gives the effective name.

W 112: Copy table not referenced, initial data is not copied

If you use a copy statement in the layout part, the initial data is located

in rom. Your start-up code should copy this data to their ram location.

Appendix CC–4
L

C
T

R
I
E

R
R

O
R

S

W 113: No .out files found to locate

No files where specified at the invocation.

W 114: Cannot find start label label

No start point found.

W 116: Redefinition of name at line line

Identifier was defined twice.

W 119: File filename not found in the argument list

All files to be located must be given as an argument.

W 120: unrecognized name option <name> at line line (inserted 'name')

Wrong option assignment. Check the manual for possibilities.

W 121: Ignored illegal sub-option 'name' for name

An illegal format sub option was detected. See the format description

for this format in the manual.

W 122: Illegal option: option (-H or -\? for help)

An illegal option was detected.

W 123: Inserted character at line line

The given character was missing in the description file.

W 124: Attribute attribute at line line unknown

An unknown attribute was specified in the description file.

W 125: Copy table not referenced, blank sections are not cleared

Sections with attribute blank are detected, but the copy table is not

referenced. The locator generates info for the startup module in the

copy table for clearing blank sections at startup. See _lc_cp in the

manual.

W 127: Layout name not found

The used layout in the named file must be defined in the layout part.

W 130: Physical block name assigned for the second time to a layout

It is not possible to assign a block more than once to a layout block.

Locator Error Messages C–5

• • • • • • • •

W 136: Removed character at line line

The character is not needed here.

W 137: Cluster name declared twice (layout part)

The named cluster is declared twice. Duplicate cluster names are

allowed in the layout part under conditions, because the clusters are

referred only. In the layout part the cluster is declared, which may be

done only once.

W 138: Absolute section name at non-existing memory address

0xhexnumber

Absolute section with an address outside physical memory. Either the

address is not correct, or the memory description for your target is not

consistent.

W 139: message

Warning message from the embedded environment. For an overview of

the embedded environment error messages, see appendix E, Embedded
Environment Error Messages.

W 140: File filename not found as a parameter

All processes defined in the locator description file (software part) must

be specified on the invocation line.

W 141: Unknown space <name> in -S option

An unknown space name was specified with a -S option.

W 142: No room for name in read-only memory, trying writable

memory ...

A section with attribute read-only could not be placed in read-only

memory, the section will be placed in writable memory.

W 143: Section name has different page size than previous group

members

Section has a different page size then other sections in the same group.

W 144: Filename name is too long, truncated to name

Filename is too long and is truncated.

Appendix CC–6
L

C
T

R
I
E

R
R

O
R

S

W 145: Conflicting output options c (chip level) and s (start record), s

ignored

Output sub-options 's' and 'c' are conflicting sub-options. The s option

is ignored.

W 146: Address width in output format (number bytes) is too small for

address address(hex). Only first occurrence reported.

The width of the address format is too small to contain the complete

address.

Locator Error Messages C–7

• • • • • • • •

3 ERRORS (E)

E 200: Absolute address 0xhexnumber occupied

An absolute address was requested, but the address was already

occupied by another section.

E 201: No physical memory available for section name

An absolute address was requested, but there is no physical memory at

this address.

E 202: Section name with mau size size cannot be located in an

addressing mode with mau size size

A bit section cannot be located in a byte oriented addressing mode.

E 203: Illegal object, assignment of non existing var var

The MUFOM variable did not exist. For some variables this is an error.

E 204: Cannot duplicate section 'name' due to hardware limitations

The process must be located more than once, but the section is

mapped to a virtual space without memory management possibilities.

E 205: Cannot find section for name

Found a variable without a section, should not be possible.

E 206: Size limit for the section group containing section name
exceeded by 0xhexnumber bytes

Small sections do not fit in a page any more.

E 207: Cannot open filename

A given file was not found.

E 208: Cannot find a cluster for section name

No writable memory available, or unknown addressing mode. Often

this error occurs due to an error in the description file.

E 210: Unrecognized keyword <name> at line line

An unknown keyword was used in the description file.

E 211: Cannot find 0xhexnumber bytes for section name (fixed

mapping)

One of virtual or physical memory was occupied, or there was no

physical memory at all!

Appendix CC–8
L

C
T

R
I
E

R
R

O
R

S

E 213: The physical memory of name cannot be addressed in space

name

A mapping failed. There was no virtual address space left.

E 214: Cannot map section name, virtual memory address occupied

An absolute mapping failed. The memory on the virtual target address

was already occupied.

E 215: Available space within name exceeded by number bytes for

name

The available addressing space for an addressing mode has been

exceeded.

E 217: No room for name in cluster name

The size of the cluster as defined in the .dsc file is too small.

E 218: Missing identifier at line line

This identifier must be specified.

E 219: Missing ')' at line line

Matching bracket missing.

E 220: Symbol 'symbol' already defined in <name>

A symbol was defined twice.

E 221: Illegal object, multi assignment on var

The MUFOM variable was assigned more than once, probably due to

an error of the object producer.

E 223: No software description found

Each input file must be described in the software description in the

.dsc file.

E 224: Missing <length> keyword in block 'name' at line line

No length definition found in hardware description.

E 225: Missing <keyword> keyword in space 'name' at line line

For the given mapping, the keyword must be specified.

E 227: Missing <start> keyword in block 'name' at line line

No start definition found in hardware description.

Locator Error Messages C–9

• • • • • • • •

E 230: Cannot locate section name, requested address occupied

An absolute address was requested, but the address was already

occupied by another process or section.

E 232: Found file filename not defined in the description file

All files to be located need a definition record in the description file.

E 233: Environment variable too long in line line

Found environment variable in the dsc file contains too many

characters.

E 235: Unknown section size for section name

No section size found in this .out file. In fact a corrupted .out file.

E 236: Unrecoverable specification at line line

An unrecoverable error was made in the description file.

E 238: Found unresolved external(s):

At locate time all externals should be satisfied.

E 239: Absolute address addr.addr not found

In the given space the absolute address was not found.

E 240: Virtual memory space name not found

In the description files software part for the given file, a non existing

memory space was mentioned.

E 241: Object for different processor characteristics

Bits per MAU, MAU per address or endian for this object differs with

the first linked object.

E 242: message

Error generated by the object. These errors are in fact generated by the

assembler. It has been caused by a jump instruction which is out of

range.

E 244: Missing name part

The given part was not found in the description file, possibly due to a

previous error.

Appendix CC–10
L

C
T

R
I
E

R
R

O
R

S

E 245: Illegal namevalue at line line

A non valid value was found in the description file

E 246: Identifier cannot be a number at line line

A non valid identifier was found in the description file

E 247: Incomplete type specification, type index = Thexnumber

An unknown type was referenced by the given file. Corrupted object

file.

E 250: Address conflict between block block1 and block2 (memory

part)

Overlapping addresses in the memory part of the description file.

E 251: Cannot find 0xhexnumber bytes for section section in block

block

No room in the physical block in which the section must be located.

E 255: Section 'name' defined more than once at line line

Sections cannot be declared more than once in one layout/loadmod

part.

E 258: Cannot allocate reserved space for process number

The memory for a reserved piece of space was occupied.

E 261: User assert: message

User-programmed assertion failed. These assertions can be

programmed in the layout part of the description file.

E 262: Label 'name' defined more than once in the software part

Labels defined in the description file must be unique.

E 264: message

Error from the embedded environment. For an overview of the

embedded environment error messages, see appendix E, Embedded
Environment Error Messages.

E 265: Unknown section address for absolute section name

No section address found in this .out file. In fact a corrupted .out file.

Locator Error Messages C–11

• • • • • • • •

E 266: functionality not (yet) supported

The requested functionallity is not (yet) supported in this release.

4 FATAL ERRORS (F)

F 400: Cannot create file filename

The given file could not be created.

F 401: Cannot open filename

A given file was not found.

F 402: Illegal object: Unknown command at offset offset

An unknown command was detected in the object file. Corrupted

object file.

F 403: Illegal filename (name) detected

A filename with an illegal extension was detected on the command

line.

F 404: Illegal object: Corrupted hex number at offset offset

Wrong byte count in hex number. Corrupted object file.

F 405: Illegal section index

A section index out of range was detected. This could be a corrupted

object file, but also a previous error like E231 (Missing section) is

responsible for this message.

F 406: Illegal object: Unknown hex value at offset offset

An unknown variable was detected in the object file. Corrupted object

file.

F 407: No description file found

The locator must have a description file with the description of the

hardware and the software of your system.

F 408: message

No protection key or not an IBM compatible PC.

F 410: Only one description file allowed

The locator accepts only one description file.

Appendix CC–12
L

C
T

R
I
E

R
R

O
R

S

F 411: Out of memory.

An attempt to allocate more memory failed.

F 412: Illegal object, offset offset

Inconsistency found in the object module.

F 413: Illegal object

Inconsistency found in the object module at unknown offset.

F 415: Only name .out files can be located

It is not possible to locate object for other processors.

F 416: Unrecoverable error at line line, name

An unrecoverable error was made in the description file in the given

part.

F 417: Overlaying not yet done

Overlaying is not yet done for this .out file, link it first without -r flag!

F 418: No layout found, or layout not consistent

If there are syntax errors in the layout, it may occur that the layout is

not usable for the locator. Syntax errors in the description file must be

resolved!

F 419: message

Fatal from the embedded environment. For an overview of the

embedded environment error messages, see appendix E, Embedded
Environment Error Messages.

F 420: Demonstration package limits exceeded

One of the limits in this demo version was exceeded.

F 421: Error writing file name

An error occurred when writing to the file.

F 422: Input file name same as output file

Input file and output file cannot be the same.

Locator Error Messages C–13

• • • • • • • •

5 VERBOSE (V)

V 000: File currently in progress:

Verbose message. On the next lines single filenames are printed as they

are processed.

V 001: Output format: name

Verbose message for the generated output format.

V 002: Starting pass number

Verbose message, start of given pass.

V 003: Abort !

The program was aborted by the user.

V 004: Warning level number

Verbose message, report the used warning level.

V 005: Removing file file

Verbose message cleaning up. Temporary files are always removed,

map file and .out file are removed if switch -e is on and the exit code

is unequal zero.

V 006: Found file <filename> via path pathname

The description (include) file was not found in the standard directory.

The locator searches also in the install directory etc , in which the file

was found.

V 007: message

Verbose message from the embedded environment. For an overview of

the embedded environment error messages, see appendix E, Embedded
Environment Error Messages.

Appendix CC–14
L

C
T

R
I
E

R
R

O
R

S

D

ARCHIVER ERROR
MESSAGES

A
P

P
E

N
D

I
X

Appendix DD–2
A

R
T

R
I
E

R
R

O
R

S

D

A
P

P
E

N
D

I
X

Archiver Error Messages D–3

• • • • • • • •

1 INTRODUCTION

This appendix contains all warnings (W), errors (E) and fatal errors (F) of

the archiver artri.

2 WARNINGS (W)

W 100: Illegal warning level: level

Warning level is a single digit.

W 101: Member name not found

Library member not found, warning only.

W 102: Can't modify modification time for name

The archiver cannot access the file name to change the modification

time.

W 103: creating archive name

The q option was used while archive file did not exist (r option would

be more appropriate).

W 104: Option -a or -b only allowed with key option 'r' or 'm'. Ignored!

Option a or b, which specifies a position in the archive can only be

applied with replace or move actions.

W 105: Only one position specification allowed, ignored '-a or -b�
file_offset'

It is not possible to specify more than one position in the archive. The

options -a and -b are both used to specify a position.

W 106: Option -o only allowed with key option 'x'. Ignored!

Library date can only be preserved with extraction of a library member.

W 107: Option -u only allowed with key option 'r'. Ignored!

Objects newer than the archive are only replaced with key option r.

W 108: Option -z only allowed with key option 'r'. Ignored!

Only objects which are moved to the archive can be checked.

W 109: Option -v has no meaning with key option 'p' or 't'. Ignored!

For options p and t the verbose switch is meaningless.

Appendix DD–4
A

R
T

R
I
E

R
R

O
R

S

W 110: Option -s may be combined with -t only.

W 111: Illegal symbol level: level

Symbol level is a single digit.

W 112: Name name is too long, truncated to name

The name exceeded the limit, and is truncated.

3 ERRORS (E)

E 200: filename too long

The filename was too long to fit into the internal buffer.

E 201: Member name not found

Library member not found.

E 204: Can't obtain file-status information filename

Cannot access filename to obtain file status information.

E 207: illegal option: option

An illegal option was detected.

E 209: Can't rename file: name to: name

Renaming the library file to a tempfile failed.

4 FATAL ERRORS (F)

F 300: user abort

The library manager is aborted by the user.

F 301: too much errors

The maximum number of errors is exceeded.

F 302: protection error: error

error message received from ky_init.

F 303: can't create "filename"

Cannot create the file with the mentioned name.

Archiver Error Messages D–5

• • • • • • • •

F 304: can't open "filename"

Cannot open the file with the mentioned name.

F 305: can't reopen 'filename'

The file filename could not be reopened.

F 306: read error while reading "filename"

A read error occurred while reading named file.

F 307: write error

A write error occurred while writing to the output file.

F 308: out of memory

An attempt to allocate memory failed.

F 309: illegal character

A character which is not allowed was found.

F 310: filename not in archive format

the archive file given is not in the proper format.

F 311: specification of more than one key {rxdmpt} is not permitted

More than one key was given.

F 312: no one of the keys {rxdmpt} was specified

No key was given.

F 313: error in the invocation. Use option -? or -H to get help.

Show usage. For more help, use option -?.

F 314: name does not exist

Library will only be created in case the r key-option is specified.

F 315: IEEE violation for object module name at address address

IEEE violation detected (z option enabled).

F 316: corrupted object module name

The object module name does not conform to the IEEE object

specification.

Appendix DD–6
A

R
T

R
I
E

R
R

O
R

S

F 317: name: illegal byte count in hex number, offset = offset

Illegal byte count in hex number (IEEE violation).

F 318: evaluation date expired !!

F 319: message

No protection key or not an IBM compatible PC.

E

EMBEDDED
ENVIRONMENT
ERROR MESSAGES

A
P

P
E

N
D

I
X

Appendix EE–2
E

E
L

 E
R

R
O

R
S

E

A
P

P
E

N
D

I
X

Embedded Environment Error Messages E–3

• • • • • • • •

1 INTRODUCTION

Error and warning messages from the embedded environment are part of

the linker and/or locator error messages. The error numbers mentioned

below are not part of the message.

E error

W warning

2 ERRORS (E)

E 1: Conflicting attributes attributes at line number

Conflicting attributes.

E 2: Unknown attribute 'character' at line number

Unknown attribute.

E 3: Unknown keyword 'name' at line number

Unknown keyword.

E 4: Illegal character 'character' at line number

Illegal character.

E 5: Page size only allowed in a space definition at line number

Page size only allowed in space definition.

E 6: Page size must be a power of 2 at line number

Page size must be a power of 2.

E 7: Mau size must be a power of 2 at line name

Mau size must be a power of 2.

E 8: Cannot synchronize any more line number

Cannot synchronize any more.

E 9: Illegal value 'value' at line number

Illegal value.

E 10: Illegal hex value 'value' at line number

Illegal hex value.

Appendix EE–4
E

E
L

 E
R

R
O

R
S

E 11: Illegal octal value 'value' at line number

Illegal octal value.

E 12: Missing value at line number

Missing value.

E 13: Illegal identifier at line number

Illegal identifier.

E 14: Wrong attribute 'attribute' at line number

Attribute not allowed.

E 15: Unknown identifier 'name' at line number

Unknown identifier.

E 16: Inserted 'character' at line number

Inserted character.

E 17: Cannot find bus/space 'name' in definition for space 'name'

Error in the destination of mapping from space.

E 18: Cannot find space/amode 'name' in definition for amode 'name'

Map error.

E 19: Cannot find chip 'name' in definition for bus 'name'

Map error.

E 20: Cannot find space/amode 'name' in layout definition for cluster

'name'

Map error.

E 21: Cannot find bus 'name' in definition for mapping 'name'

Map error.

Embedded Environment Error Messages E–5

• • • • • • • •

3 WARNINGS (W)

W 100: Cannot find mapping 'name' in cluster definition for space

'name'

Warning in cluster mapping.

W 101: Section 'name' should be defined in amode 'name', not amode

'name'

The section was specified in the wrong addressing mode

Appendix EE–6
E

E
L

 E
R

R
O

R
S

F

DESCRIPTIVE
LANGUAGE FOR
EMBEDDED
ENVIRONMENTS

A
P

P
E

N
D

I
X

Appendix FF–2
D
E
L
F
E
E

F

A
P

P
E

N
D

I
X

DEscriptive Language For Embedded Environments F–3

• • • • • • • •

1 INTRODUCTION

In an embedded environment an accurate description of available memory

and control over the behavior of the locator is crucial for a successful

application. For example, it may be necessary to port applications to

processors with different memory configurations, or it may be necessary to

tune the location of sections to take full advantage of fast memory chips.

For this purpose the DELFEE language, which stands for DEscriptive

Language For Embedded Environments, was designed.

2 GETTING STARTED

2.1 INTRODUCTION

This section gives a general introduction about the DELFEE description

language. The goal is to give you an overview and some basic knowledge

what the DELFEE description language is about, and how a basic

description file looks. A more detailed description and examples are given

in the following sections.

2.2 BASIC STRUCTURE

The DELFEE language describes where code or data sections should be

placed on the actual memory chips. This language has to define the

interface between a virtual world (the software) and a physical world (the

hardware configuration).

On the one side, in the virtual world, there are the code and data sections

which are described by the assembly language. Sections can have names,

attributes like writable or read-only and can have an address in the

addressing space or an addressing mode describing the range of the

address space in which they may be located.

Appendix FF–4
D
E
L
F
E
E

On the other side, the physical world, the actual processor is present

which reads instructions from memory chips and interprets these

instructions. With the DELFEE language you can instruct the locator to

place the code and data sections at the correct addresses, taking into

account things like the type of memory chip (rom/ram, fast/slow),

availability of memory, etc. The DELFEE language gives the possibility to

tune the same application for different hardware configurations.

In the DELFEE language the interface between virtual and physical world

is described in three parts:

1. software part (*.dsc)

The software part belongs to the virtual world and describes the ordering

of the data and code sections. The software part may vary for different

applications and can even be empty.

2. cpu part (*.cpu)

The cpu part is the interface between the virtual world and the real world.

It contains the application independent part of the virtual world (the

address translation of addressing modes to the addressing space), and the

configuration independent part of the physical world (on-chip memory,

address busses). The cpu part is independent of application and

configuration.

3. memory part (*.mem)

The memory belongs to the physical world. It contains the description of

the external memory. The memory part may vary for different

configurations and can even be empty (if there is no external memory).

The software part and the memory part can be empty, but that the cpu

part must always be defined.

DEscriptive Language For Embedded Environments F–5

• • • • • • • •

The DELFEE language is used in a special file, which is called the

description file. In the DELFEE description language the different parts are

defined with the following syntax:

software {
 layout {
 // ordering of sections
 }
}

cpu {
 // mapping of addressing modes to address space
 // defining address space
 // mapping of address space to actual busses
 // defining on–chip memory
}

memory {
 // description of external memory
}

For convenience the cpu part and the memory part can be placed in

different files, which makes it possible to have different layout parts for

different applications and different memory parts for different

configurations. The files can be included using the syntax:

 cpu filename // include cpu part defined in file filename
 mem filename // include memory part defined in file filename

Appendix FF–6
D
E
L
F
E
E

3 CPU PART

3.1 INTRODUCTION

The cpu part contains the application and configuration independent part

of the description file. This part defines the translations of the addresses

from the assembler language (virtual addresses) all the way down to the

chips (physical addresses). To describe the translations, DELFEE recognizes

four main levels:

1. addressing mode(s) definitions. Addressing modes are subsets of an

address space. They define address ranges within an address space.

2. address space(s) definitions. The address space is the total range of

addresses available.

3. bus(ses) definitions.

4. (on-chip) memory chips definitions.

The address translation is defined from addressing mode via space and

bus to the chip. The addressing modes and the busses can be nested, the

space and the chip cannot.

internal chip
space

addressing

addressing

mode 1

addressing
mode 4

mode 3 bus

external chip
external bus

internal bus

addressing
mode 2 mapmap

map

map

map

map

mem

mem

Figure F-1: Address translation

The addressing modes and addressing spaces belong to the virtual part,

the busses and chips belong to the physical part. The following sections

describe the address space and the addressing modes which are subsets of

the address space. Then a description of the physical side (hardware

configuration) follows, describing the busses and chips that are available.

DEscriptive Language For Embedded Environments F–7

• • • • • • • •

The following example illustrates how a cpu part could look like. It is a

fictitious example, mainly used to illustrate the definitions. You should be

able to recognize the addressing mode definitions, address space

definition, bus definitions and on-chip memory definition. Each definition

is explained in the following sub-sections.

cpu {
 //
 // addressing mode definitions
 //
 amode near_code {
 attribute Y1;
 mau 8;
 map src=0 size=1k dst=0 amode = far_code;
 }
 amode far_code {
 attribute Y2;
 mau 8;
 map src=0 size=32k dst=0 space = address_space;
 }
 amode near_data {
 attribute Y3;
 mau 8;
 map src=0 size=1k dst=0 amode = far_data;
 }
 amode far_data {
 attribute Y4;
 mau 8;
 map src=0 size=32k dst=32k space = address_space;
 }

 //
 // space definitions
 //
 space address_space {
 mau 8;
 map src=0 size=32k dst=0 bus = address_bus label = rom;
 map src=32k size=32k dst=32k bus = address_bus label = ram;
 }

 //
 // bus definitions
 //
 bus address_bus {
 mau 8;
 mem addr=0 chips=rom_chip;
 map src=0x100 size=0x7f00 dst=0x100 bus = external_rom_bus;
 mem addr=32k chips=ram_chip;
 map src=0x8100 size=0x7f00 dst=0x100 bus = external_ram_bus;
 }
 //
 // internal memory definitions
 //

Appendix FF–8
D
E
L
F
E
E

 chips rom_chip attr=r mau=8 size=0x100; // internal rom
 chips ram_chip attr=w mau=8 size=0x100; // internal ram
}

3.2 ADDRESS TRANSLATION: MAP AND MEM

In DELFEE there are two ways to describe a memory translation between

two levels (the source level and the destination level):

1. map keyword. This is for address translations between amodes, spaces,

busses (not chips).

2. mem keyword. This describes the address translation between bus and

chip. mem is a simplified case of map.

addresses (mau=8) addresses (mau=16)

map src=0 size=200 dst=0

dstsrc

size

source level destination level

0 0

100

100200

300

Figure F-2: Map address translation

The generalized syntax for the map definition is (see figure F-2):

map src=number size=number dst=number
destination_type=destination_name optional_specifiers;

where,

src start address of the source level. In case of an address

translation between amodes and spaces, the source

level is the amode and the destination level is the

space.

size length of the source level.

dst start address at the destination level.

DEscriptive Language For Embedded Environments F–9

• • • • • • • •

destination_type the destination type depends on the context the

mapping is used in and can have three different types:

1. amode allowed in context: amode.

2. space allowed in context: amode.

3. bus allowed in context: space, bus.

optional_specifiers The optional identifiers are also dependent of the

context they are used in:

1. label Only allowed in space context and

needed as a reference for the block

definition in the software part (see

section 4.5).

label = name ;

2. align This indicates that every section will be

aligned at the specified value.

align = number ;

3. page This indicates that every section should

be within a given page size.

page = number ;

Both the source level and the destination level have an address range that

is expressed in a number of Minimum Addressable Units (MAU, the

minimal amount of storage, in bits, that is accessed using an address). The

mapping only describes the range and the destination of the address

mapping, the actual transformation also depends on the memory unit that

an address can access. If a source level with a minimum addressable unit

of 8 bits (mau=8) maps to a destination level with a minimum addressable

unit of 16 bits (mau=16), the size of the destination level, expressed in

address range, is half the original size. So, according to figure F-2, the size

of the destination level is 100.

If a map is present from level1 down to level2, the map definition works as

follows:

end_address of level2 = dst + (size * mau of level1 / mau of level2)

Appendix FF–10
D
E
L
F
E
E

The mem description is actually a simplified case of the map description.

The length of the address translation is taken from the chip size, the

destination address is always zero. It is used to map a bus to a chip.

The syntax is:

mem addr=number chips=name;

where,

addr start address location of a chip.

chips the name of the chip that is located at address number.

3.3 ADDRESS SPACES

The link between the virtual and the physical world is the description of

the address space and the way it maps onto the internal address busses.

The address space is defined by the complete range of addresses that the

instruction set can access. Some instruction sets support multiple address

spaces (for example a data space and a code space).

An address space is described by the syntax:

space name {

mau number;

map src=number size=number dst=number bus=bus_name label=name;

// :

// more maps

}

where,

space defines the name by which the space can be referenced in

the description file.

mau the Minimum Addressable Unit, meaning the minimum

amount of storage (in bits) that is accessed using an address.

DEscriptive Language For Embedded Environments F–11

• • • • • • • •

map this specifies the mapping of a range of addresses in the

address space to a bus defined by bus_name. The range of

addresses is defined by src and length, the offset on the bus

is defined by dst. (The bus you map the address space on,

may have a different MAU, which will lead to another length

of the range of the bus). An address space can only map

onto a bus.

Usually an address in the address space corresponds to the same address

on the bus. In that case src and dst have the same value.

In the previous example there is one space definition:

 space address_space {
 mau 8;
 map src=0 size=32k dst=0 bus = address_bus label = rom;
 map src=32k size=32k dst=32k bus = address_bus label = ram;
 }

In this example the space is named address_space . Note that the amod

definitions use this name as destination for their mappings. The minimum

addressable unit (MAU) is set to 8 bits. The labels rom and ram are used

by block definitions in the software part which are discussed in section

4.5.

3.4 ADDRESSING MODES

Addressing modes define address ranges in the addressing space.

Addressing modes usually have a special characteristic, like bitaddressable

part of memory, parts especially for code sections, zero pages, etc. The

addressing modes are defined by the instruction set. The syntax of

defining an addressing mode in the DELFEE language is:

An address space is described by the syntax:

amode name {

mau number;

attr Ynumber;

map src=number size=number dst=number amode|space=name;

}

Appendix FF–12
D
E
L
F
E
E

where,

amode The name by which the addressing mode can be referenced.

In the object file the addressing mode of a section is encoded

with an Ynumber. This means that the name given to the

addressing mode has only meaning within the description

file, not to the sections!

mau the Minimum Addressable Unit, meaning the minimum

amount of storage (in bits) that is accessed using an address.

attr Y the addressing mode number. Code or data sections

(generated by the assembler) all have a number specifying

the addressing mode they belong to. In the DELFEE

description file this number is used to identify the addressing

mode. This number must never be changed, because the

interpretation of the sections will get mixed up.

map defines the mapping of the addressing mode to another

addressing mode (amode) or an address space (space).

Below is an example of two addressing mode definitions:

amode near_data {
 attribute Y3;
 mau 8;
 map src=0 size=1k dst=0 amode = far_data;
}
amode far_data {
 attribute Y4;
 mau 8;
 map src=0 size=32k dst=32k space = address_space;
}

DEscriptive Language For Embedded Environments F–13

• • • • • • • •

near_data

0x0000

0x7fff

Space

far_data

0xffff

0x7fff

0x0000

0x03ff

address_space

Figure F-3: Addressing mode mapping

In this example the addressing modes are named near_data and

far_data . They are identified by the addressing mode numbers Y3 and

Y4 respectively. The minimum addressable unit (MAU) is set to 8 bits.

Addressing mode near_data maps on addressing mode far_data , and

far_data , in its turn, maps on address space address_space .

address_space is the space as discussed in the previous section.

3.5 BUSSES

The bus keyword describes the bus configuration of a cpu. In essence it

describes the address translation from the address space to the chip. The

syntax is:

bus name {
mau number;
map src=number size=number dst=number bus=name;
mem addr=number chips=name;

}

where,

bus the name by which the bus can be referenced.

mau the Minimum Addressable Unit, meaning the minimum

amount of storage (in bits) that is accessed using an address.

Appendix FF–14
D
E
L
F
E
E

map mapping to another bus.

mem mapping to a memory chip.

Below is an example of a bus definition:

bus address_bus {
 mau 8;
 mem addr=0 chips=rom_chip;
 map src=0x100 size=0x7f00 dst=0x100 bus = external_rom_bus;
 mem addr=32k chips=ram_chip;
 map src=0x8100 size=0x7f00 dst=0x100 bus = external_ram_bus;
}

external_rom_bus

0x0000
0x0100

0xffff

0x7fff

Bus
address_bus

0x7fff

0x0000

0x00ff

0x7fff

0x0000

0x00ff

0x8100

external_ram_bus

ram_chip

rom_chip

Figure F-4: Bus mapping

In this example the address bus is named address_bus . The minimum

addressable unit (MAU) is set to 8 bits. The internal memory chip

rom_chip is located at address 0 of the bus, and the chip ram_chip is

located at address 32k .

Two address mappings to other busses are present: one to

external_rom_bus and one to external_ram_bus .

The first mapping translates addresses 0x100–0x7ff of address_bus
(src=0x100 size=0x7f00) onto addresses of external_rom_bus
starting at address 0x100 (dst=0x100).

DEscriptive Language For Embedded Environments F–15

• • • • • • • •

The second mapping translates addresses 0x8100–0xffff of

address_bus (src=0x8100 size=0x7f00) onto addresses of

external_ram_bus starting at address 0x100 (dst=0x100).

The second mapping maps to RAM, not ROM. That is why both

destination addresses are the same.

3.6 CHIPS

The chips keyword describes the memory chip. The syntax is:

chips name attr=letter_code mau=number size=number;

where,

chips the name by which the chip can be referenced.

attr defines the attributes of the chip with a letter code

letter_code one of the following attributes:

r read-only memory.

w writable memory.

s special memory (it must not be

located).

mau the Minimum Addressable Unit, meaning the minimum

amount of storage (in bits) that is accessed using an

address.

size the size of the chip (address range from 0-size).

Below is an example of two chip definitions:

chips rom_chip attr=r mau=8 size=0x100; // internal rom
chips ram_chip attr=w mau=8 size=0x100; // internal ram

In this example the chips are named rom_chip and ram_chip . The

minimum addressable unit (MAU) is set to 8 bits. The size of both chips is

0x100 MAUs (= 256 bytes). Chip rom_chip is read-only and chip

ram_chip writable, as you would expect with ROM and RAM.

Appendix FF–16
D
E
L
F
E
E

3.7 EXTERNAL MEMORY

With the syntax described in the previous sections it would be possible to

define mappings from an address space to external memory chips

(DELFEE does not actually know, or care, if memory is on-chip).

However, this is not advisory. For maintenance and flexibility reasons it is

better to keep the internal (static) memory part apart from the external

(variable) memory part. The chapter Memory Part describes how to deal

with external memory.

In the cpu part you only have to define a mapping to an external bus,

which can later be defined in the memory part. The following example

contains references to two external busses: external_ram_bus and

external_rom_bus .

bus address_bus {
 mau 8;
 mem addr=0 chips=rom_chip;
 map src=0x100 size=0x7f00 dst=0x100 bus = external_rom_bus;
 mem addr=32k chips=ram_chip;
 map src=0x8100 size=0x7f00 dst=0x100 bus = external_ram_bus;
}

DEscriptive Language For Embedded Environments F–17

• • • • • • • •

4 SOFTWARE PART

4.1 INTRODUCTION

The software part has two main parts:

1. load_mod

2. layout description

software {
 load_mod start = start_label ;

 layout {
 // ordering of sections
 }
}

4.2 LOAD MODULE

The keyword load_mod defines the program start label. The program start

label is the start of the code and the reset vector should point to this label.

The locator generates a warning if this label is not referenced.

load_mod start = start_label ;

4.3 LAYOUT DESCRIPTION

First of all, the layout definition can be omitted. If you omit the layout

definition, the locator will generate a layout definition based on the

DELFEE description of the amodes (addressing modes) in the cpu part

(See section 3). However this does not allow you to control the order in

which sections (like stack and heap) are located. If you define the layout

part, the locator uses this description.

The layout part is probably the most difficult part of the DELFEE language.

It is designed to give the locate algorithm the information it needs to

locate the sections correctly. Through some examples you will be shown

how to influence the locate algorithm using the DELFEE language.

Appendix FF–18
D
E
L
F
E
E

To give you an idea of where all this will lead to, an example of a layout

part is given:

layout {
 space address_space {
 block rom {
 cluster first_code_clstr {
 attribute i;
 amode near_code;
 amode far_code;
 }
 cluster code_clstr {
 attribute r;
 amode near_code {
 section selection=x;
 section selection=r;
 }
 amode far_code {
 table;
 section selection=x;
 section selection=r;
 copy; // locate rom copies here
 }
 }
 }
 block ram {
 cluster data_clstr {
 attribute w;
 amode near_data {
 section selection=w;
 }
 amode far_data {
 section selection=w;
 heap;
 stack;
 }
 }
 }
 }
}

The layout definition is defined with the syntax:

layout {

// space definitions

}

The first thing to notice is the different levels inside the layout definition:

space This level can only occur inside a layout level. There are as

much space levels as there are space definitions in the cpu

part.

DEscriptive Language For Embedded Environments F–19

• • • • • • • •

block This level can only occur inside a space level. There are as

much block levels as there are mappings defined in the

space definition in the cpu part.

cluster This level can only occur inside a block level. There can be

multiple clusters inside a block. Their main purpose is to

group (code/data) sections. The locator locates each cluster

in the specified order.

amode This level can only occur inside a cluster level. An amode

corresponds to an amode definition in the cpu part. Within

an amode you can specify the order in which data/code

sections are located.

The four levels can roughly be divided in two groups. The space and

block definition correspond to address ranges and the cluster and

amode definition correspond to (groups of) sections.

The following paragraphs first introduce the space and block definition.

Then separate paragraphs show how to select certain groups of sections

and how this is used in the cluster and amode definition.

4.4 SPACE DEFINITION

Section 3.3 already defined the address translation of a space in the cpu

part. In the example in that section, the following space was defined:

space address_space {
 mau 8;
 map src=0 size=32k dst=0 bus = address_bus label = rom;
 map src=32k size=32k dst=32k bus = address_bus label = ram;
}

For every space defined in the cpu part you have to provide a description

in the layout definition.

The space level should be inside the layout definition and can only

contain one or more block levels.

The name of the space must correspond to a space definition in the cpu

part.

Appendix FF–20
D
E
L
F
E
E

The syntax is:

space name {
// block definitions

}

Below is an example of a space definition from the software part:

space address_space {
 block rom {

 }
 block ram {
 ...
 }
}

In this example space address_space defines two blocks: block rom and

block ram .

4.5 BLOCK DEFINITION

With the block description you can set boundaries to the sections based

on chip sizes.

A block references a physical area of memory. Selected sections are only

allowed within the range of the block description. In effect a block limits

the range in which a section can be located.

The physical address range of a block is actually defined in the cpu part

by a labeled mapping:

space address_space {

 mau 8;

 map src=0 size=32k dst=0 bus = address_bus label = rom; //<––

 // ––> block name: rom

 map src=32k size=32k dst=32k bus = address_bus label = ram; //<––

 // ––> block name: ram

}

The name of the block description must correspond to a label in the map

definition of a space definition in the cpu part. The block definition must

be inside the space definition and can only contain one or more cluster

levels.

DEscriptive Language For Embedded Environments F–21

• • • • • • • •

The syntax is:

block name {
// cluster definitions

}

Below is an example of a bus definition from the software part:

block rom {
 cluster first_code_clstr {
 ...
 }
 cluster code_clstr {
 ...
 }
}

In this example block rom defines two clusters: cluster

first_code_clstr and cluster code_clstr .

4.6 SELECTING SECTIONS

The previous paragraphs explained how the address ranges are defined by

block definitions, now it is time to select the sections that should be

placed in these blocks. In DELFEE there are two levels in which you can

define the order of locating:

1. cluster

2. amode

To define the locating order you need to have some kind of handle to

specify a section or a group of sections. DELFEE recognizes the following

characteristics of a section:

name of the sectionThis is unique to a specific section.

attribute(s) of a section

The attributes of a section are specified by the

assembler or compiler. Possible attributes are defined

in table F-1. By selecting an attribute you select a

group of sections. The attributes can be grouped to an

attribute string, for example: by1w.

Appendix FF–22
D
E
L
F
E
E

addressing mode All sections have an addressing mode (as defined in

the cpu part).

attr Meaning Description

W Writable Must be located in ram

R Read only Can be located in rom

X Execute only Can be located in rom

Z Zero page Must be located in the zero page

Ynum Addressing mode Must be located in addressing mode num

A Absolute Already located by the assembler

B Blank Section must be initialized to ’0’ (cleared)

F Not filled Section is not filled or cleared (scratch)

I Initialize Section must be initialized in rom

N Now Section is located before normal sections
(without N or P)

P Postponed Section is located after normal sections
(without N or P)

Table F-1: Section Attributes

To specify a (group) of sections, DELFEE has the following syntax:

1. select a group on section attribute:

section selection = attr;

2. select a section by name:

section name;

3. select a special section:

heap; //locate heap here

stack; //locate stack here

table; //locate copy table here

copy; //locate all initial data here

copy name;//locate initial data of the named section here

4. create a section:

reserved label=name length=number;

DEscriptive Language For Embedded Environments F–23

• • • • • • • •

Instead of selecting a section by an attribute, DELFEE also allows

excluding a section by its attribute.

Excluding an attribute is done by placing a '-' (minus sign) in front of attr.

So, the example:

section selection= attr1 –attr2

selects a group of sections with attribute attr1 and without attribute attr2.

4.7 CLUSTER DEFINITION

Clusters are used to place specified sections in a group. The locator will

handle the clusters in the order that they are specified. This gives you the

possibility to create a group of selected sections and give it a higher locate

priority.

There are several possibilities to specify that a section is part of a cluster.

The exact rules and their priorities are given in the paragraph Section
Placing Algorithm. The three main possibilities are:

1. attribute

2. section selection=

3. amode definition

Examine the following example:

layout {
 space address_space {
 block rom {
 cluster first_code_clstr {
 attribute i ;
 amode near_code;
 amode far_code;
 }
 cluster code_clstr {
 attribute r;
 amode near_code {
 section selection=x;
 section selection=r;
 }
 amode far_code {
 table;
 section selection=x;
 section selection=r;

Appendix FF–24
D
E
L
F
E
E

 copy; // locate rom copies
here
 }
 }
 }
 }
}

In this example an extra cluster first_code_cluster was created.

Using the placing algorithm (paragraph 4.10) you can see that sections

with attribute 'i' will be placed in cluster first_code_clstr and

therefore will get a higher priority than sections in cluster code_clstr .

The syntax is:

cluster name {
// section selections

}

Within a cluster the sections with the least freedom are located first.

Freedom is defined by the possible addresses a section can be located at.

4.8 AMODE DEFINITION

Within a cluster you can specify an addressing mode or amode. Although

in the cpu part (paragraph 3.4) an address range was assigned to every

amode, in the layout part the addressing mode is used to identify groups

of sections.

The syntax is:

:

amode name {
section selection = attr;

:

}

:

The order of locating is now determined by the order of specification.

DEscriptive Language For Embedded Environments F–25

• • • • • • • •

For example, suppose you want to locate all writable sections first, then

the heap, followed by the stack. In the DELFEE language this is specified

by:

 :
section selection = w; // ’w’ means writable sections
heap;
stack;
 :

4.9 MANIPULATING SECTIONS IN AMODES

The previous paragraphs explained how to set the order of the sections

within an amode definition. DELFEE recognizes an extra set of keywords

to further tune the locating of code and data sections.

An amode definition can contain the following keywords:

Keyword Description

section Selects a section, or group of sections

selection Specifies attributes for grouping sections

attribute Assigns attributes (are past to the cluster

copy Selects a rom copy of a section by name, or all rom copies in
general

fixed Forces a section to be located around a fixed address

gap Creates a gap in the address range where sections will not be
located

reserved Reserves a memory area, which can be referenced using locator
labels

heap Defines the place and attributes of the heap

stack Defines the place and attributes of the stack

table Defines the place and attributes of the copy table

assert A user defined assertion

length Specifies the length of stack, heap, physical block or reserved
space

Table F-2: amode keywords

All keywords are described in section 7, Delfee Keyword Reference.

Appendix FF–26
D
E
L
F
E
E

4.10 SECTION PLACING ALGORITHM

There are different ways to reference a section. Sections can be referenced

as a group based on a certain attribute, or they can be referenced very

specific by name. To find out where sections are placed in the layout part,

DELFEE uses the following algorithm:

1. First, try to find a selection by section name.

2. If not found, search for a 'section selection=' within a matching amode

block.

3. If not found, search for a 'section selection=' not within an amode block.

4. If not found, search for a cluster with a correct 'amode= ..,..,.. ;' and

correct attributes.

5. If not found, search for a cluster with correct attributes.

6. If not found, relax attribute checking, and start over again.

Relax attributes using the following rules:

1. If stack, heap or reserved, switch indication off and try again.

2. If attribute 'f' (not filled), switch 'f' off and try again.

3. If attribute 'b' (clear), switch 'b' off and try again.

4. If attribute 'i' (initialize), switch 'i' off and try again.

5. If attribute 'x' (executable code), switch 'x' off and 'r' (read-only) on and

try again. (Try to place executable sections in read-only memory).

6. If attribute 'r' (read-only), switch 'r' off 'w' (writable) on and try again.

(Try to place read-only sections in writable memory).

DEscriptive Language For Embedded Environments F–27

• • • • • • • •

5 MEMORY PART

5.1 INTRODUCTION

The memory part defines the variable part of the memory configuration. It

can be placed in a different file, which allows to easily switch between

different memory configurations. The syntax used for the mappings is the

same as used in the cpu part.

As you have seen in the example of the cpu part in section 3, there were

two references to external busses:

bus address_bus {
 mau 8;
 mem addr=0 chips=rom_chip;
 map src=0x100 size=0x7f00 dst=0x100 bus = external_rom_bus;
 mem addr=32k chips=ram_chip;
 map src=0x8100 size=0x7f00 dst=0x100 bus = external_ram_bus;
}

In the memory part you have to define the description for the busses

external_rom_bus and external_ram_bus . Using the description in

sections 3.5 and 3.6 for specifying busses and chips, the memory part

could look like:

memory {
 bus external_rom_bus {
 mau 8;
 mem addr=0 chips=xrom;
 }

 chips xrom attr=r mau =8 size=0x8000;

 bus external_ram_bus {
 mau 8;
 mem addr=0 chips=xram;
 }

 chips xram attr=w mau=8 size=0x8000;
}

Appendix FF–28
D
E
L
F
E
E

6 DELFEE PREPROCESSING

6.1 INTRODUCTION

You can preprocess a DELFEE description file using exactly the same

syntax as used by the C preprocessor. This means that all preprocessor

directives start with a '#'-sign.

The preprocessor scans the input (description) file looking for macro calls.

A macro-call is a request to the preprocessor to replace the call pattern of

a built-in or user-defined macro with its definition.

There are two types of macro definitions: 'plain' macros and 'function-like'

macros. A plain macro is expanded to a fixed string of characters. A

function-like macro looks like a function call. The macro is expanded to

its definition, in which the macro parameters are replaced by their co

corresponding macro arguments.

6.2 USER DEFINED MACROS

You can create macros with the #define preprocessor directive.

Syntax:

#define macro-name[(formal-parameter-list)] macro-body

When you create a parameterless macro, there are two parts to a #define

call: the macro-name and the macro-body. The macro-name defines the

name used when the macro is called; the macro-body defines the return

value of the call.

The macro-body is usually the return value of the macro call. However,

the macro-body may contain calls to other macros. If so, the return value

is actually the fully expanded macro-body, including the return values of

the call to other macros.

Example:

#define ASIZE 10

Every occurrence of ASIZE is expanded to '10'.

DEscriptive Language For Embedded Environments F–29

• • • • • • • •

If the only function of the macro processor was to perform simple string

replacement, then it would not be very useful for the most programming

tasks. Each time you want to change even the simplest part of the macro's

return value you would have to redefine the macro. Parameters in macro

calls allow more general-purpose macros. Parameters leave holes in a

macro-body that are filled in when you call the macro. This permits you

to design a single macro that produces code for typical operations. The

term 'parameters' refers to both the formal parameters that are specified

when the macro is defined (the holes), and the actual parameters or

argument that are specified when the macro is called (the fill-ins). To

define macros with parameters you have to add a formal-parameter-list.
The formal-parameter-list is a list of macro identifiers separated by ','.

These identifiers comprise the formal parameters used in the macro. The

macro identifier for each parameter in the list must be unique.

Example:

After

#define ADD(a, b) a + b

the call ADD(4, 5) is expanded to 4 + 5 .

You can undefine a preprocessor macro with the #undef preprocessor

directive:

#undef macro-name

6.3 FILE INCLUSION

With the #include preprocessor directive:

#include <include-file>

you can include text from include-file within the input text of the

description file. At the occurrence of an #include control line, the

preprocessor reads the text from include-file until end-of-file is reached.

#include files may be nested. include-file is any file that contains

description file information. include-file is searched for in the directory

etc directory relative to the installation path of your product.

Appendix FF–30
D
E
L
F
E
E

The ANSI standard defines the following terms for the include directive:

#include "include-file"

#include <include-file>

#include token-sequence

The preprocessor uses the following search rules for include files between

" ":

1. search in the directory of the description file

2. search in the directory etc relative to the installation path of your product

Note that if you nest include files, the preprocessor applies the first rule

for each level.

Example:

product.dsc:
 #include ”../inc/product.cpu”

product.cpu:
 #include ”prod2.cpu”

According to rule 1 the preprocessor searches prod2.cpu in the same

directory as product.cpu since prod2.cpu is included by product.cpu

and not by product.dsc .

The preprocessor searches for include files between < > in the same way

as for include files between "�". The difference is that rule 1 does not

apply (the directory of the source description file is not searched).

The third form of include directives:

#include token-sequence

means that the included file name may be a token sequence that has been

defined before. After expansion by the preprocessor this should produce a

valid include directive as described by the first two forms:

DEscriptive Language For Embedded Environments F–31

• • • • • • • •

Example:

#ifdef STD
#define cpu_incl <product.cpu>
#else
#define cpu_incl ”my_cpu.cpu”
#endif

#include cpu_incl

6.4 CONDITIONAL STATEMENTS

Some preprocessor directives expect logical expressions in their arguments.

Logical expressions follow the same rules as numeric expressions. The

difference is in how preprocessor interprets the value that the expression
represents. Once the expression has been evaluated to a value, the

preprocessor uses the '= 0' comparison to determine whether the

expression is TRUE or FALSE (if the value is equal 0 the expression is

FALSE else TRUE).

The #if and #elif preprocessor directives evaluate a logical expression, and

based on that expression, expand or withhold their statements. The #ifdef

and #ifndef preprocessor directives evaluates the existence of a

user-defined macro, and based on the result, expand or withhold their

statements.

Syntax:

if-line
statements

[#elif expression
statements]...

[#else

statements]
#endif

where if-line is one of:

#if expression
#ifdef macro-name
#ifndef macro-name

Appendix FF–32
D
E
L
F
E
E

The expression in the #if directive and subsequent #elif directives are

evaluated in order until a TRUE value is encountered. If the value is TRUE,

then the preprocessor expands the succeeding statements; if the value is

FALSE and the optional #else directive is included in the call, then the

statements succeeding #else are expanded. If the expression results to

FALSE and the #else is not included, the #if call returns the null string.

The #ifdef tests if the macro-name is a previously defined macro. The

#ifndef evaluates its statements if the macro-name is not currently

defined.

Each #if, #ifdef and #ifndef directive must have a corresponding #endif.

Example:

#define _STCK 100
#if _STCK == 100
 stack length=100;
#else
 stack length=200;
#endif

This example always expands to: stack length=100; . In this case the

#if control line could also be written as:

#ifdef _STCK

7 DELFEE KEYWORD REFERENCE

This section contains an alphabetical description of all keywords that can

be used in a description file. Some keywords can be abbreviated to a

minimum of four characters.

DEscriptive Language For Embedded Environments F–33

• • • • • • • •

.addr

Syntax:

.addr (Software part)

Description:

The predefined label .addr contains the current address.

Example:

block ram {
 cluster data_clstr {
 attribute w;
 amode near_data {
 section selection=w;
 assert (.addr < 256, ”page overflow”);
 // if the condition is false,
 // the locator generates an error with
 // the text as message
 }
 ...
 }
}

Appendix FF–34
D
E
L
F
E
E

address

Syntax:

address = address (all parts)
addr = address (abbreviated form)

Description:

Specify an absolute address in memory.

Example:

Cpu or memory part:

bus address_bus {
 mau 8;
 mem addr =0 chips=rom_chip;
 ...
 mem addr =32k chips=ram_chip;
 ...
}

Software part:

block rom {
 ...
 cluster code_clstr {
 attribute r;
 amode near_code {
 section selection=x;
 section selection=r;
 section .string address = 0x0100;
 }
 ...
 }
}

The locate order in the amode definition in the example above is fixed.

Sections with attribute selection 'x' and/or 'r' are forced to be located

before section .string . If this fixed order is not desired, the absolute

address specification can be done in a separate amode definition.

DEscriptive Language For Embedded Environments F–35

• • • • • • • •

Example:

amode near_code {
 section .string address = 0x0100;
}

amode near_code {
 section selection=x;
 section selection=r;
}

Appendix FF–36
D
E
L
F
E
E

amode

Syntax:

(Cpu or memory part)
amode identifier[, identifier]... { amod_description } (def)
amode = identifier (ref)

amode identifier[, identifier]... ; (Software part)
amode identifier[, identifier]... { section_blocks }

Description:

The keyword amode can appear in all parts. In the cpu or memory part

you can use amode to map an addressing mode or register bank on a

particular address space (definition). When you specify amode=, you map

a specific addressing mode on a previously defined addressing mode

(reference). The only keywords allowed in an amod_description (cpu part)

are attribute, map and mau. The keyword attribute Ynum uniquely

identifies the addressing mode.

In the software part you can use amode as part of a cluster definition to

change the locating order of sections. See also 4.10, Section Placing
Algorithm.

Example:

From cpu or memory part:

cpu {
 amode near_data {
 attribute Y3;
 mau 8;
 map src=0 size=1k dst=0 amode = far_data;
 // reference
 }
 amode far_data { // definition
 attribute Y4;
 mau 8;
 map src=0 size=32k dst=32k space = address_space;
 }

DEscriptive Language For Embedded Environments F–37

• • • • • • • •

From software part:

block ram {
 cluster data_clstr {
 attribute w;
 amode near_data {
 // Sections with addressing mode
 // near_data are located here
 section selection=w;
 }
 amode far_data {
 // Sections with addressing mode
 // far_data and the stack and heap
 // are located here
 section selection=w;
 heap;
 stack;
 }
 }
}

Appendix FF–38
D
E
L
F
E
E

assert

Syntax:

assert (condition , text) ; (Software part)
asse (condition , text) ; (abbreviated form)

Description:

Test condition of virtual address in memory. Generate an error if the

assertion fails and give a message with 'text'. condition is specified as one

of:

expr1 > expr2
expr1 < expr2
expr1 == expr2
expr1 != expr2

expr1 and expr2 can be any expression or label. The predefined label

.addr contains the current address.

Example:

block ram {
 cluster data_clstr {
 attribute w;
 amode near_data {
 section selection=w;
 assert (.addr < 256, ”page overflow”);
 // if the condition is false,
 // the locator generates an error with
 // the text as message
 }
 ...
 }
}

DEscriptive Language For Embedded Environments F–39

• • • • • • • •

attribute

Syntax:

attribute attribute_string ; (Software part)
attr attribute_string ; (abbreviated form)
attribute = attribute_string (Software part)
attr = attribute_string (abbreviated form)

Description:

With attribute you can assign attributes to sections, clusters or memory

blocks. See also the keyword selection.

For sections these attributes are pure supplementary to the standard

section attributes. The standard section attributes such as zero page (Y1),

blank (B) and executable (X) are set by the compiler (or by the assembler

in the case of an assembler program).

With an action attribute after a section (attr=), you can set section

attributes or you can disable section attributes with the - (minus) sign.

The attributes have the following meaning:

 num (Section only) Align the section at 2num MAUs.

 Ynum (amode and sections only) Identify addressing mode. Indicate

that sections with this attribute should be allocated in this

cluster.

 r (Memory and clusters) Indicate this is a read-only cluster or

read-only memory.

 w (Memory and clusters) Indicate this is a writable cluster or

writable memory.

 s (Memory only) Indicate this is special memory, it must not be

located.

 x (Clusters/sections only) Indicate that the cluster/section is

executable.

 g (Clusters/sections only) Indicate that the cluster/section is

global (known in a multi-module environment).

Appendix FF–40
D
E
L
F
E
E

 b (Clusters/sections only) Indicate that clusters/sections should

be cleared before locating.

 i (Sections only) Indicate that clusters/sections should be

copied from ROM to RAM.

 f (Clusters/sections only) Indicate that clusters/sections should

not be filled and not cleared. This is called a scratch

cluster/section.

Default attributes if the attribute keyword is omitted:

sections: The attributes as generated from the assembler/compiler.

clusters: The attributes as indicated by the underlaying memory, thus

r for rom and w for ram.

memory: If no attributes defined, the default is writable (w).

Example:

From software part:

layout {
 space address_space {
 block rom {
 cluster first_code_clstr {
 attribute i; // set cluster attribute
 amode near_code;
 amode far_code;
 }
 }

DEscriptive Language For Embedded Environments F–41

• • • • • • • •

 block ram
 cluster ram {
 amode near_data {
 // Default attribute of cluster
 // data is ’w’, because the
 // memory is RAM.

 section selection=w;
 section selection=b attr =–b;
 // Sections with attribute b are
 // are located here, and
 // attribute ’b’ is switched off
 }
 .
 }
 .
 }
 }
}

From cpu part:

 amode near_data {
 attribute Y3; //identify code with Y3
 mau 8;
 map src=0 size=1k dst=0 amode = far_data;
 }
 ...

 chips rom_chip attr =r mau=8 size=0x100;
 chips ram_chip attr =w mau=8 size=0x100;
 ...
 // memory attributes

Appendix FF–42
D
E
L
F
E
E

block

Syntax:

block identifier { block_description } (Software part)

Description:

With block you define the contents of a physical area of memory. You can

make a block description for each chip you use. Each block has a

symbolic name as previously defined by the keyword chips. It is allowed

to combine two or more memory chips in one block as long as their total

address range is linear, without gaps. The identifier indicates that a

memory block starts at the specified chip, no matter how many chips are

combined.

Example:

layout {
 space address_space {
 block ram
 // Memory block starting at chip ram_chip
 cluster ram {
 ...
 }
 }
 }
}

DEscriptive Language For Embedded Environments F–43

• • • • • • • •

bus

Syntax:

(Cpu or memory part)
bus identifier[, identifier]... { bus_description } (def)
bus = identifier (ref)

Description:

With bus you define the physical memory addresses for the chips that are

located on the cpu (definition). When you specify bus=, you map a

specific address range on a previously defined address bus (reference).

The only keywords allowed in an bus description are mem, map and

mau.

Example:
cpu {
 space address_space {
 // Specify space ’address_space’ for the address_bus
 // address bus.
 mau 8;
 map src=0 size=32k dst=0 bus = address_bus label = rom;
 map src=32k size=32k dst=32k bus = address_bus label = ram;
 // ref
 }

 bus address_bus { // definition
 mau 8;
 mem addr=0 chips=rom_chip;
 map src=0x100 size=0x7f00 dst=0x100 bus = external_rom_bus;
 mem addr=32k chips=ram_chip;
 map src=0x8100 size=0x7f00 dst=0x100 bus = external_ram_bus;
 }
 ...
}

Appendix FF–44
D
E
L
F
E
E

chips

Syntax:

(Cpu or memory part)
chips identifier[, identifier]... chips_description (def)
chips = identifier[| identifier]... [, identifier[| identifier]...]...

(ref)

Description:

With chips you describe the chips on the cpu or on your target board

(definition). For each chip its size and minimum addressable unit (mau) is

specified. With the keyword attr you can define if the memory is

read-only. The only three attributes allowed are r for read-only, w for

writable, or s for special. If omitted, w is default.

You can use chips= after the keyword mem to specify where a chip is

located (reference). You can create chip pairs by separating each chip with

a vertical bar '|'.

Example:

cpu {
 bus address_bus {
 mau 8;
 mem addr=0 chips =rom_chip; // ref
 ...
 }
 chips rom_chip attr=r mau=8 size=0x100; // def
 chips ram_chip attr=w mau=8 size=0x100;
 ...
}

DEscriptive Language For Embedded Environments F–45

• • • • • • • •

cluster

Syntax:

(Software part)
cluster cluster_name { cluster_description }
cluster cluster_name[, cluster_name]... ;

Description:

In the software layout part you can define the cluster name and cluster

location order. The attributes as valid for clusters (see attribute) can be

specified in the first syntax. If you do not specify any attribute, the default

attribute r or w is automatically set.

In a cluster description you can not only determine the locate order of

sections within the named cluster, but you can also specify stack and heap

size, extra process memory, define labels for the process, etc.

Example:
space address_space {
 block rom {
 cluster first_code_clstr {
 // The default attribute ’r’ of cluster
 // text is overruled to ’i’. All
 // sections with attribute ’i’ are
 // located here by default.
 attribute i;
 amode near_code;
 amode far_code;
 // Sections with addressing mode
 // near_code or far_cdoe are
 // located here
 }

 block ram {
 cluster data_clstr {
 // default attribute ’w’ because the
 // memory is RAM. All writable
 // sections are located here by default.
 attribute w; // can be omitted
 amode near_data {
 section selection=w;
 }
 }
}

Appendix FF–46
D
E
L
F
E
E

copy

Syntax:

copy section_name [attr = attribute] ; (Software part)
copy selection = attribute [attr = attribute] ;
copy ;

Description:

The ROM copy of data sections with the attribute i will be copied from

ROM to RAM at program startup. With copy you define the placement in

memory of these ROM copies. You can specify a specific section by giving

the section's name, or select sections with a specific attribute. If you do

not specify an argument, the locator locates all ROM copies at the

specified location. With attr= you can change the section attributes.

If you do not specify the keyword copy at all, the locator finds a suitable

place for ROM copies.

See also the keywords attribute and selection.

Example:

space address_space {
 block rom {
 ...
 cluster code_clstr {
 attribute r; //cluster attribute
 amode far_code {
 table;
 section selection=x;
 section selection=r;
 copy; // all ROM copies are located here
 }
 }
}

DEscriptive Language For Embedded Environments F–47

• • • • • • • •

cpu

Syntax:

cpu { cpu_description } (Cpu part)
cpu filename

Description:

The keyword cpu appears together with software and memory at the

highest level in a description file. The actual cpu description starts

between the curly braces { }. Normally you do not need to change the cpu

part because it is delivered with the product and describes the derivative

completely.

The second syntax is the so-called include syntax. The locator opens the

file filename and reads the actual cpu description from this file. You must

start the included file with cpu again. The filename can contain a

complete path including a drive letter (Windows). Parts of filename, or the

complete filename can be put in a environment variable. The file is first

searched for in the current directory, and secondly in the etc directory

relative to the installation directory.

Example:

Contents of the description file:

software {
 ...
}

cpu target .cpu //cpu part in separate file
memory target .mem

See section 3 for a sample contents of a .cpu file.

Appendix FF–48
D
E
L
F
E
E

dst

Syntax:

dst = address (Cpu or memory part)

Description:

Specify destination address as part of the keyword map in an amode,

space or bus description. For address you can use any decimal,

hexadecimal or octal number. You can also use the (standard) Delfee

suffix k, for kilo (210) or M, for mega (220). The unit of measure depends

on the MAU (minimum addressable unit) of the destination memory space.

Example:

cpu {
 ...
 amode near_code {
 attribute Y1;
 mau 8; // 8–bit addressable
 map src=0 size=1k dst =0 amode=far_code;
 }
}

DEscriptive Language For Embedded Environments F–49

• • • • • • • •

fixed

Syntax:

fixed address = address ; (Software part)
fixed addr = address ; (abbreviated form)

Description:

Define a fixed point in the memory map. The locator allocates the

section/cluster preceding the fixed definition and the section/cluster

following it as close as possible to the fixed point.

Example:

block ram {
 cluster near_data_clstr {
 amode near_data {
 section selection=w;
 fixed addr = 0x2000;
 }
 }
 cluster far_data_clstr;
}

Cluster far_data_clstr will be located with its upper bound at address

0x2000 and cluster near_data_clstr starts at this address. The same

can be applied to sections.

Appendix FF–50
D
E
L
F
E
E

gap

Syntax:

gap; (Software part)
gap length = value ;

Description

Reserve a gap with a dynamic size. The locator tries to make the memory

space as big as possible. You can use this keyword in a block description

to create a gap between clusters, or in a cluster description to create a gap

between sections. You can also use the gap keyword in combination with

the fixed keyword.

With the second form you can specify a gap of a fixed length. This form

can only occur in a block description.

Example:

space address_space {
 block ram {
 cluster data_clstr {
 attr w;
 amode near_data;
 } // low side mapping

 gap; // balloon
 cluster stck; // high side mapping
 }
}

DEscriptive Language For Embedded Environments F–51

• • • • • • • •

heap

Syntax:

heap heap_description ; (Software part)
heap ;

Description:

Like table and stack, heap is another special section. The section is not

created from the .out file, but generated at locate time. To control the

size of this special section the keyword length is allowed within the heap

description. You can use heap to include dynamic memory for a process.

Heap can only be used if a malloc() function has been implemented.

Two locator labels are used to mark begin and end of the heap, _lc_bh
for the begin of heap, and _lc_eh for the end of heap.

Note that if the heap keyword is specified in the description file this does

not automatically mean that a heap will always be generated. A heap will

only be allocated when its section labels (_lc_bh for begin of heap and

_lc_eh for end of heap) are used in the program.

The heap description can be a length specification and/or an attribute

specification. See the example.

Example:

layout {
 space address_space {
 block ram {
 cluster data_clstr {
 amode far_data {
 section selection=w;
 heap length=100;
 // Heap of 100 MAUs
 }
 }
 }
 }
}

Appendix FF–52
D
E
L
F
E
E

label

Syntax:

label identifier ; (Software part)
label = identifier ; (All parts)

Description:

The first form can be used stand-alone to specify a virtual address in

memory by means of a label. The virtual address is label _lc_u_identifier.
Note that at C level, all locator labels start with one underscore (the

compiler adds another underscore '_').

The second form can only be used as part of another keyword. As part of

the keyword reserved you can assign a label to an address range. The

start of the address range is identified by label _lc_ub_identifier. The end

of the address range is identified by label _lc_ue_identifier. The keyword

label is also allowed as part of the map keyword to assign a name to a

block of memory in a space definition.

Example:

From the software part:

block ram {
 cluster data_clstr {
 attribute w;
 amode far_data {
 section selection=w;
 heap;
 stack;
 reserved label= xvwbuffer length=0x10;

 // Start address of reserved area is
 // label _lc_ub_xvwbuffer
 // End address of reserved area is
 // label _lc_ue_xvwbuffer
 }
 }
}

DEscriptive Language For Embedded Environments F–53

• • • • • • • •

From the cpu part:

space address_space {
 mau 8;
 map src=0 size=32k dst=0 bus = address_bus label= rom;
 map src=32k size=32k dst=32k bus = address_bus label= ram;
}

Appendix FF–54
D
E
L
F
E
E

layout

Syntax:

layout { layout_description } (Software part)
layout filename

Description:

The layout part describes the layout of sections in memory. The layout

part groups sections into clusters and you can define the name, number

and the order of clusters. The layout part describes how these clusters

must be allocated into physical RAM and ROM block. The space and block

names used in the layout part must be present in the memory part or the

cpu part. The cluster definitions can contain fixed addresses as well as

definitions of gaps between sections.

Example:

software {
 layout {
 space address_space {
 block rom {
 cluster first_code_clstr {
 attribute i;
 amode near_code;
 }

DEscriptive Language For Embedded Environments F–55

• • • • • • • •

length

Syntax:

length = length (Cpu, memory and software part)
leng = length (abbreviated form)

Description:

You can use the keyword length to define the length in MAUs (minimum

addressable units) of a certain memory area. length must be a numeric

value and can be given either in hex, octal or decimal. As usual, hex

numbers must start with '0x' and octal numbers must start with '0'. You can

use the suffix k which stands for kilo or M which stands for mega.

You can use length to specify the length of the reserved memory or to

specify the stack, heap or gap length. For details see the keywords

reserved, stack, heap and gap.

Example:

space address_space {
 block ram {
 cluster data_clstr {
 amode far_data {
 stack leng = 2k;
 }
 }
 }
}

Appendix FF–56
D
E
L
F
E
E

load_mod

Syntax:

load_mod identifier start = label; (Software part)
load_mod start = label;

Description:

With load_mod you are introducing a load module description. This

keyword is followed by an optional identifier, representing a load module

name with or without the .out extension. The load module itself must be

supplied to the locator as a parameter in the invocation. If the identifier is

omitted, the load module is taken from the command line.

Example:

software {
 load_mod start = __START;
}

or:

software {
 load_mod hello start = __USER_start;
}

DEscriptive Language For Embedded Environments F–57

• • • • • • • •

map

Syntax:

map map_description (Cpu or memory part)

Description:

Map a memory part, specified as a source address and a size, to a

destination address of an amode, space or bus. The unit of measure

depends on the MAU of the memory space.

Example:
cpu {
 .
 amode far_data {
 attribute Y4;
 mau 8;
 map src=0 size=32k dst=32k space=address_space;
 }
 space address_space {
 mau 8;
 map src=0 size=32k dst=0 bus = address_bus label=rom;
 map src=32k size=32k dst=32k bus = address_bus label=ram;
 }
 bus address_bus {
 mau 8;
 mem addr=0 chips=rom_chip;
 map src=0x100 size=0x7f00 dst=0x100 bus=external_rom_bus;
 mem addr=32k chips=ram_chip;
 map src=0x8100 size=0x7f00 dst=0x100 bus=external_ram_bus;
 }
 .
}

Appendix FF–58
D
E
L
F
E
E

mau

Syntax:

mau number ; (Cpu or memory part)
mau = number

Description:

You can use the keyword mau to specify the minimum addressable unit in

bits of a certain memory area. The first form can only be used in an

amode, space or bus description. The second form can be used to

specify the minimum addressable unit of a chip. Note that mau affects the

unit of measure for other keywords. If no mau is specified, the default

number is 8 (byte addressable).

Example:

cpu {
 amode near_code {
 attribute Y1;
 mau 8 ; // byte addressable
 map src=0 size=1k dst=0 amode=far_code;
 // src is at address 0,
 // size is 1k byte units
 // dst is at address 0
 }
}

DEscriptive Language For Embedded Environments F–59

• • • • • • • •

mem

Syntax:

mem mem_description ; (Cpu or memory part)

Description:

Define the start address of a chip in memory. The only keywords allowed

in a mem description are address and chips.

Example:

cpu {
 ...
 bus internal_bus {
 mau 8;
 mem addr=0 chips=rom_chip;
 // chip ’rom_chip’ is located at memory
 // address 0
 ...
 mem addr=32k chips=ram_chip;
 // chip ’ram_chip’ is located at memory
 // address 0x8000
 ...

 }
 chips rom_chip attr=r mau=8 size=0x100;
 chips ram_chip attr=w mau=8 size=0x100;

}

Appendix FF–60
D
E
L
F
E
E

memory

Syntax:

memory { memory_description } (Memory part)
memory filename

Description:

Together with software and cpu, memory introduces a main part of the

description file. You can specify the actual memory part between the curly

braces { }.

You can use the memory part to describe any additional memory or

addresses of peripherals not integrated on the cpu.

The second syntax is the include syntax. In this case, the memory part is

defined in a separate file. This included file must start again with

memory. The filename can contain a complete path, including a drive

letter (Windows). You can put parts of filename, or the complete filename
in an environment variable. The file is first searched for in the current

directory, and secondly in the etc directory relative to the installation

directory.

Example:

software {
 ...
}

cpu target .cpu
memory target .mem //mem part in separate file

See section 5 for a sample contents of a .mem file.

DEscriptive Language For Embedded Environments F–61

• • • • • • • •

regsfr

Syntax:

regsfr filename (Cpu or memory part)

Description:

Specify a register file generated by the register manager for use by the

CrossView debugger.

Example:

cpu {
 .
 .
 .
 regsfr regfile.dat
 /*
 * Use file regfile.dat generated by
 * register manager for CrossView
 */
}

Appendix FF–62
D
E
L
F
E
E

reserved

Syntax:

reserved reserved_description ; (Software part)
reserved;

Description:

Reserve a fixed amount of memory space or reserve as much memory as

possible in the memory space. If no length is specified the size of the

memory allocation depends on the size of the memory space or the size is

limited by a fixed point definition following the reserved allocation.

You can only use the keywords address, attribute, label and length in

the reserved description. You can use the keyword reserved in an amode

description.

Example:

space address_space {
 block rom {
 cluster code_clstr {
 amode near_code {
 // system reserved
 // (exception vector)
 reserved length=0x2 addr=0x24;
 }
 }
}

DEscriptive Language For Embedded Environments F–63

• • • • • • • •

section

Syntax:

(Software part)
section identifier [addr = address] [attr = attribute] ;
section selection = attribute [addr = address] [attr = attribute];

Description:

section can be used in the layout part to specify the location order within

a cluster. See also layout.

The identifier is the name of a section.

With addr= you can make a section absolute.

With attr= you can assign new attributes to a section or disable attributes.

See also the keywords address, attribute and selection.

Example:

space address_space {
 block ram {
 cluster data_clstr {
 amode near_data {
 // locate section .data here and set
 // attribute ’w’
 section .data attr=w;
 section selection=b attr=–b;
 }
 }
 }
}

Appendix FF–64
D
E
L
F
E
E

selection

Syntax:

selection = attribute

Description:

You can use selection after the keywords section or copy to select all

sections with (a) specified attribute(s).

If more attributes are specified, only sections with all attributes are

selected. If a minus sign '-' precedes the attribute, only sections not

having the attribute are selected.

See also the keywords attribute, copy and section.

Example:

space address_space {
 block ram {
 cluster data_clstr {
 amode near_data {
 // select sections with w on and not i.
 // (select all writable sections which
 // are not copied from ROM)
 section selection =–iw;
 }
 }
 }
 .
}
...

DEscriptive Language For Embedded Environments F–65

• • • • • • • •

size

Syntax:

size = size (Cpu or memory part)

Description:

You can use the keyword size to define the size in minimum addressable

units (MAU) of a certain memory area. size must be a numeric value and

can be given either in hex, octal or decimal. As usual, hex numbers must

start with '0x' and octal numbers must start with '0'. You can use the suffix

k which stands for kilo or M which stands for mega.

You can use size to specify the size of a part of memory that must be

mapped on another part of memory or to specify the the size of a chip.

For details see the keywords map and chips.

Example:
cpu {
 amode near_code {
 attribute Y1; //identify near_code with Y1
 map src=0 size =1k dst=0 amode=far_code;
 }
space address_space {
 mau 8;
 map src=0 size =32k dst=0 bus=address_bus label=rom;
 map src=32k size =32k dst=32k bus=address_bus label=ram;
}
 chips rom_chip attr=r mau=8 size =0x100;
 chips ram_chip attr=w mau=8 size =0x100;
 // size of chips
}

Appendix FF–66
D
E
L
F
E
E

software

Syntax:

software { software_description } (Software part)
software filename

Description:

The keyword software appears at the highest level in a description file.

The actual software description starts between the curly braces { }.

The second syntax is the so called include syntax. The locator will open

file filename and read the actual software description from this file. The

first keyword in filename must be software again. The filename can

contain a complete path including a drive letter (Windows). You can put

parts of filename, or the complete filename in an environment variable.

The file is first searched for in the current directory, and secondly in the

etc directory relative to the installation directory.

Example:

Contents of the description file:

software $(MY_OWN_DESCRIPTION)

cpu target .cpu
memory target .mem

Environment variable MY_OWN_DESCRIPTION contains the name of a file

with contents like:

software {
 load_mod start = __START;
 layout {
 .
 .
 .
 }
}

DEscriptive Language For Embedded Environments F–67

• • • • • • • •

space

Syntax:

space identifier { space_description } (Software part)
(Cpu or memory part)

space identifier[, identifier]... { space_description }
space = identifier

Description:

The keyword space can be used in the cpu part, memory part and

software part. In the cpu or memory part you can use space to describe a

physical memory address space. The only keywords allowed in a space

description in the cpu or memory part are mau and map.

In the software part you can use space to describe one or more memory

blocks. Each space has a symbolic name as previously defined by the

keyword space in the cpu or memory part.

Example:

From the cpu part:

cpu {

 amode far_data {

 attribute Y4;

 mau 8;

 map src=0 size=32k dst=32k space =address_space;

 }

 ...

 space address_space {

 // Specify space ’address_space’ for the

 // address_bus address bus.

 mau 8;

 map src=0 size=32k dst=0 bus=address_bus label=rom;

 map src=32k size=32k dst=32k bus=address_bus label=ram;

 }

 .

}

Appendix FF–68
D
E
L
F
E
E

From the software part:

layout {

 // define the preferred locating order of sections

 // in the memory space

 // (the range is defined in the .cpu file)

 space address_space {

 ...

 // define for each sub–area in the space

 // the locating order of sections

 block rom {

 // Memory block starting at chip rom_chip

 // define a cluster for read–only sections

 cluster code_clstr {

 }

 }

 .

 }

}

DEscriptive Language For Embedded Environments F–69

• • • • • • • •

src

Syntax:

src = address (Cpu or memory part)

Description:

Specify source address as part of the keyword map in an amode, space

or bus description. For address you can use any decimal, hexadecimal or

octal number. You can also use the (standard) Delfee suffix k, for kilo

(210) or M, for mega (220). The address is specified in the addressing

mode's local MAU (minimum addressable unit) size (default 8 bits).

Example:

cpu {
 ...
 amode near_code {
 attribute Y1;
 mau 8; // 8–bit addressable
 map src =0 size=1k dst=0 amode=far_code;
 }
}

Appendix FF–70
D
E
L
F
E
E

stack

Syntax:

stack stack_description ; (Software part)
stack ;

Description:

stack is a special form of a section description. The stack is allocated at

locate time. The locator only allocates a stack if one is needed. Two

special locator labels are associated with the stack space located with

keyword stack. The begin of the stack area can be obtained by the locator

label _lc_bs , the end address is accessible by means of label _lc_es .

If the stack grows downwards the begin of stack must be the highest

address. To accomplish this, you can keep the length positive and set the

stack pointer to end_of_stack, so the formula:

 end_of_stack = begin_of_stack + length

is always true.

You can only use the keywords attribute and length in the stack

description. If you specify stack without a description, the locator tries to

make the stack as big as possible. If you do not specify the keyword stack

at all, the locator also tries to make the stack as big as possible but at least

100 (MAUs).

Example:

space address_space {
 block ram {
 cluster data_clstr {
 amode far_data {
 section selection=w;
 stack leng=150;
 // stack of 150 MAUs
 ...
 }
 }
 }
}

DEscriptive Language For Embedded Environments F–71

• • • • • • • •

start

Syntax:

start = label ; (Software part)

Description:

Define a start label for a process.

You can use start only within a load module description.

Example:

software {
 load_mod start = system_start;

 layout {
 .
 .
 }
}

Appendix FF–72
D
E
L
F
E
E

table

Syntax:

table attr = attribute ; (Software part)
table ;

Description:

Like stack and heap also table is a special kind of section. Normal

sections are generated at compile time, and passed via the assembler and

linker to the locator. The stack and heap sections are generated at locate

time, with a user requested size.

table is different. The locator is able to generate a copy table. Normally,

this table is put in read-only memory. If you want to steer the table

location, you can use the table keyword. With table only attribute is

allowed. The length is calculated at locate time. table can occur in a

cluster description.

Example:

space address_space {
 block rom {
 ...
 cluster code_clstr {
 attribute r; // cluster attribute
 amode far_code {
 table ; // locate copy table here
 section selection=x;
 section selection=r;
 copy ; // all ROM copies are located here
 }
 }
}

DEscriptive Language For Embedded Environments F–73

• • • • • • • •

7.1 ABBREVIATION OF DELFEE KEYWORDS

The following Delfee keywords can be abbreviated to unique 4 character

words:

Keyword Abbreviation

address addr

assert asse

attribute attr

length leng

Table F-3: Abbreviation of Delfee keywords

7.2 DELFEE KEYWORDS SUMMARY

Keyword Description

address Specify absolute memory address

amode Specify the addressing modes

assert Error if assertion failed

attribute Assign attributes to clusters, sections, stack or heap

block Define physical memory area

bus Specify address bus

chips Specify cpu chips

cluster Specify the order and placement of clusters

copy Define placement of ROM–copies of data sections

cpu Define cpu part

dst Destination address

fixed Define fixed point in memory map

gap Reserve dynamic memory gap

heap Define heap

label Define virtual address label

layout Start of the layout description

length Length of stack, heap, physical block or reserved space

load_mod Define load module (process)

Appendix FF–74
D
E
L
F
E
E

DescriptionKeyword

map Map a source address on a destination address

mau Define minimum addressable unit (in bits)

mem Define physical start address of a chip

memory Define memory part

regsfr Specify register file for use by CrossView

reserved Reserve memory

section Define how a section must be located

selection Specify attributes for grouping sections into clusters

size Size of address space or memory

software Define the software part

space Define an addressing space or specify memory blocks

src Source address

stack Define a stack section

start Give an alternative start label

table Define a table section

Table F-4: Overview of Delfee keywords

G

DELFEE SYNTAX
A
P
P
E
N
D
I
X

Appendix GG–2
D

E
L

F
E

E
 S

Y
N

T
A

X G

A
P
P
E
N
D
I
X

Delfee Syntax G–3

• • • • • • • •

This appendix describes the Delfee description language.

GENERAL

description
partition
description partition

partition
memory_partition
cpu_partition
software_partition

ident_list
ident_list , identifier
identifier

identifier
STRING

file_name
STRING

CPU

cpu_partition
cpu { static_specs_list }
cpu { }
cpu file_name

MEMORY

memory_partition
memory { static_specs_list }
memory { }
memory file_name

static_specs_list
static_specs_list static_specs
static_specs

Appendix GG–4
D

E
L

F
E

E
 S

Y
N

T
A

X

static_specs
amod_specs
spce_specs
bus_specs
chips_specs

amod_specs
amode ident_list { amod_list }

spce_specs
space ident_list { spce_list }

bus_specs
bus ident_list { bus_list }

chips_specs
chips ident_list chips_list ;

amod_list
amod_list amod_def
amod_def

spce_list
spce_list spce_def
spce_def

bus_list
bus_list bus_def
bus_def

chips_list
chips_list chips_def
chips_def

amod_def
mau_spec
attribute_spec
map_spec

spce_def
mau_spec
map_spec

Delfee Syntax G–5

• • • • • • • •

bus_def
mau_spec
mem_spec
map_spec

chips_def
mau_equ_spec
attribute_equ_spec
size_spec

mau_spec
mau NUMBER ;

mau_equ_spec
mau = NUMBER

attribute_spec
attribute STRING ;
attribute NUMBER ;
attr STRING ;
attr NUMBER ;

attribute_equ_spec
attribute = STRING
attribute = NUMBER
attr = STRING
attr = NUMBER

map_spec
map map_list ;

map_list
map_list map_def
map_def

map_def
src_spec
size_spec
dst_spec
align_spec
page_spec
amode_spec
space_spec
bus_spec

Appendix GG–6
D

E
L

F
E

E
 S

Y
N

T
A

X

mem_spec
mem mem_list ;

mem_list
mem_list mem_def
mem_def

mem_def
addr_spec
chips_spec

src_spec
src = NUMBER

size_spec
size = NUMBER

dst_spec
dst = NUMBER

align_spec
align = NUMBER

page_spec
page = NUMBER

amode_spec
amode = identifier

space_spec
space = identifier

bus_spec
bus = identifier

addr_spec
address = NUMBER
addr = NUMBER

chips_spec
chips = low_chip_list

low_chip_list
low_chip_list , low_chip_pair
low_chip_pair

Delfee Syntax G–7

• • • • • • • •

low_chip_pair
low_chip_pair | low_chip
low_chip

low_chip
identifier

SOFTWARE

software_partition
software { layout_blocks }
software { }
software file_name

layout_blocks
layout_blocks layout_block
layout_block

layout_block
layout
loadmod

loadmod
load_mod software_specs ;
load_mod identifier software_specs ;

software_specs
software_specs software_spec
software_spec

software_spec
start
process

start
start = identifier ;

process
process = pids

pids
NUMBER
pids , NUMBER

Appendix GG–8
D

E
L

F
E

E
 S

Y
N

T
A

X

layout
layout { space_blocks }
layout { }

layout file_name

space_blocks
space_blocks space_block
space_block

space_block
space identifier { block_blocks }

block_blocks
block_blocks block_block
block_block

block_block
block identifier { cluster_blocks }

cluster_blocks
cluster_blocks cluster_block
cluster_block

cluster_block
cluster_spec
p_gap_spec
p_fixed_spec
p_pool_spec
p_skip_spec
p_label_spec

cluster_spec
cluster identifier { amod_blocks }
cluster ident_list ;

amode_blocks
amode_blocks amode_block
amode_block

amode_block
amode ident_list { section_blocks }
amode ident_list ;
section_block

Delfee Syntax G–9

• • • • • • • •

p_gap_spec
gap length ;
gap ;

p_fixed_spec
fixed address ;

p_pool_spec
pool length ;
pool ;

p_label_spec
label identifier ;

p_skip_spec
skip ;

attribute
attribute_equ_spec

length
length = NUMBER
leng = NUMBER

address
address = NUMBER
addr = NUMBER

section_blocks
section_blocks section_block
section_block

section_block
section_spec
copy_spec
v_fixed_spec
v_gap_spec
v_reserved_spec
stack_spec
heap_spec
table_spec
others
v_label_spec
v_assert_spec
attribute_spec

Appendix GG–10
D

E
L

F
E

E
 S

Y
N

T
A

X

section_spec
section selection modifiers ;
section selection ;

modifiers
modifiers modifier
modifier

modifier
attribute
address

copy_spec
copy selection attribute ;
copy selection ;
copy ;

selection
selection = STRING
identifier

v_fixed_spec
fixed address ;

v_gap_spec
gap ;

v_reserved_spec
reserved reserved_options ;
reserved ;

reserved_options
reserved_options reserved_option
reserved_option

reserved_option
attribute
address
length
v_label_equ_spec

stack_spec
stack stack_options ;
stack ;

Delfee Syntax G–11

• • • • • • • •

heap_spec
heap stack_options ;
heap ;

stack_options
stack_options stack_option
stack_option

stack_option
attribute
length

table_spec
table attribute ;
table ;

v_label_spec
label identifier ;

v_label_equ_spec
label = identifier

v_assert_spec
assert (bool_expression , STRING) ;
asse (bool_expression , STRING) ;

others
others ;

bool_expression
termp bool_op termp

termp
term + termp
term - termp
term

term
(term)
identifier
NUMBER

Appendix GG–12
D

E
L

F
E

E
 S

Y
N

T
A

X

bool_op
<

>

==

!=

A NUMBER is a series of (hex) digits with optional suffixes 'k' 'M' 'G'

which stands for 'kilo', 'mega' and 'giga'. Numbers may be given in hex,

octal or decimal with the usual prefix. Where applicable numbers may be

preceded by a minus sign.

A STRING is a series of characters that is not a number (089 is a STRING

because it is not a valid octal number) and consists of alphanumeric

characters including '_', '.', '-' and the host dependent directory separators.

(For PC '\', '/' and ':')

Any (part of a) token may contain environment variables. If the

environment variable A contains the text 'foo' then the sequence:

$A/proto.dsc

is translated to:

foo/proto.dsc

Multi character variables must be combined with braces:

window = $(MODE);

There are three methods to write comments in a delfee script. The first one

is the 'C' style comment between '/*' and '*/'. The second form is a '#' in

the first column. The second form allows preprocessing by the

C-preprocessor. Any #line or #file directive will be ignored by the locator.

The third form is the 'C++' style comment; a double slash '//' anywhere on

a line introduces comments until the end of line.

H

IEEE–695 OBJECT
FORMAT

A
P

P
E

N
D

I
X

Appendix HH–2
IE
E
E
-
6
9
5

H

A
P

P
E

N
D

I
X

IEEE–695 Object Format H–3

• • • • • • • •

1 TIOF AND IEEE-695

The IEEE-695 standard describes MUFOM: Microprocessor Universal

Format for Object Modules. It defines a target independent storage

standard for object files. However, this standard does not describe how

symbolic debug information should be encoded according to that

standard. Symbolic debug information can be a part of an object file. A

debugger which reads an object file uses the symbolic debug information

to obtain knowledge about the relation between the executable code and

the origination high-level language source files. Since the IEEE-695

standard does not describe the representation of debug information,

working implementations of this standard show vendor specific and

microprocessor specific solutions for this area.

TIOF, which stands for Target Independent Object Format, is specified as a

MUFOM based standard including the representation of symbolic debug

information for high-level languages, without introducing the

microprocessor dependent solutions. The current version of the TASKING

debugger is not yet prepared to read TIOF, so you will have to select

IEEE-695 as output format of the locator when you want to debug a

program.

Since TIOF and IEEE-695 both use the MUFOM concept as their basis both

formats are very similar to each other.

2 COMMAND LANGUAGE CONCEPT

Most object formats are record oriented: there are one or more section

headers at a fixed position in the file which describe how many sections

are present. A section header contains information like start address, file

offset, etc. The contents of the section is in some data part, which can only

be processed after the header has been read. So the tool that reads such

an object uses implicit assumptions how to process such a file. Seeking

through the file to get those records which are relevant is usual.

MUFOM (IEEE-695) uses a different approach. It is designed as a

command language which steers the linker, locator and object reader in

the debugger.

Appendix HH–4
IE
E
E
-
6
9
5

An assembler or compiler may create an object module where most of the

data contained in it is relocatable. The next phase in the translation

process is linking several object modules into one new object module. A

relocatable object uses relocation expressions at places where the absolute

values are not yet known. An expression evaluator in the locator

transforms the relocation expressions into absolute values.

Finally the object is ready for loading into memory. Since an object file is

transformed by several processes, MUFOM implements an object file as a

sequence of commands which steers this transformation process.

These commands are created, executed or copied by one of five processes

which act on a MUFOM object file:

1. Creation process

Creation of the object file by an assembler or compiler. The assembler or

compiler tells other MUFOM processes what to do, by emitting commands

generated from assembly source text or a high-level language.

2. Linkage process

Linking of several object modules into one module resolving external

references by renaming X variables into I variables, and by generating new

commands (assigning of R variables).

3. Relocation process

Relocation, giving all sections an absolute address by assigning their L

variable.

4. Expression evaluation process

Evaluation of loader expressions, generated in one of the three previously

mentioned MUFOM processes.

5. Loader process

Loading the absolute memory image.

The last four processes are in fact command interpreters: the assembler

writes an object file which is basically a large sequence of instructions for

the linker. For example, instead of writing the contents of a section as a

sequence of bytes at a specific position in the file, IEEE-695 defines a load

command, LR, which instructs the linker to load a number of bytes. The LR

command specifies the number of MAUs (minimum addressable unit) that

will be relocated, followed by the actual data. This data can be a number

of absolute bytes, or an expression which must be evaluated by the linker.

IEEE–695 Object Format H–5

• • • • • • • •

Transforming relocation expressions into new expressions or absolute data

and combining sections is the actual linkage process.

It is possible that one or more of the above MUFOM processes are

combined in one tool. For instance, the locator is built from process 3 and

process 4 above.

3 NOTATIONAL CONVENTIONS

The following conventions are used in this appendix:

| select one of the items listed between '|'

" " literal characters are between " "

[]+ optional item repeats one time or more

[]? optional item repeats zero times or one time

[]* optional item repeats zero times or more

::= can be read as "is defined as"

4 EXPRESSIONS

An expression in an IEEE-695 file or a TIOF file is a combination of

variables, operators and absolute data.

The variable name always starts with a non-hexadecimal letter (G...Z),

immediately followed by an optional hexadecimal number. The first

non-hexadecimal letter gives the class of the variable. Reading an object

file you encounter the following variables:

G - Start address of a program. If not assigned this address

defaults to the address of low-level symbol _start.

I - An I variable represents a global symbol in an object module.

The I variable is assigned an expression which is to be made

available to other modules for the purpose of linkage edition.

The name of an I variable is always composed of the letter 'I',

followed by a hexadecimal number. An I variable is created

only by an NI command.

Appendix HH–6
IE
E
E
-
6
9
5

L - Start address of a section. This variable is only used for

absolute sections. The 'L' is followed by a section index,

which is an hexadecimal number. L variables are created by

an assignment command, but the section index must have

been been defined by an ST command.

N - Name of internal symbol. This variable is used to assign

values of local symbols, or, to build complex types for use by

a high-level language debugger, or for inter-modular type

checking during linkage. The N variable is created with a NN

command.

P - Program pointer per section. This variable always contains

the current address of the target memory location. The P

variable is followed by a section index, which is a

hexadecimal number. The section index must have been

defined with an ST command (section type command). The

variable is created after its first assignment.

R - The R type variable is a relocation reference for a particular

section. All references to addresses in this section must be

made relative to the R variable. Linking is accomplished by

assigning a new value to R. The R variable consists of the

letter 'R', followed by an section index, which is a

hexadecimal number. The section index must have been

defined with an ST command. The default value of an

(unassigned) R variable is 0.

S - The S type variable is the section size (in MAUs) for a

section. There is one S variable per section. The 'S' is

followed by an section index. An S variable is created by its

first assignment.

W - Work variable. This type of variable can be used to assign

values to, which can be used in following MUFOM

commands. They serve the purpose of maintaining values in

a workspace without any additional meaning. A work

variable consists of the letter 'W' followed by a hexadecimal

number. W variables are created by their first assignment.

X - An X type variable refers to an external reference.

X-variables cannot have a value assigned to it. An X variable

consists of the letter 'X' followed by a hexadecimal number.

IEEE–695 Object Format H–7

• • • • • • • •

The MUFOM language uses the following data types to form expressions:

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" |

"9"

hex_letter ::= "A" | "B" | "C" | "D" | "E" | "F"

hex_digit ::= digit | hex_letter

hex_number ::= [hex_digit]+

nonhex_letter ::= "G" | "H" | "I" | "J" | "K" | "L" | "M" | "N" |

"O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" |

"W" | "X" | "Y" | "Z"

letter ::= hex_letter | nonhex_letter

alpha_num ::= letter | digit

identifier ::= letter [alpha_num]*

character ::= 'value valid within chosen character set'

char_string_length::= hex_digit hex_digit

char_string ::= char_string_length [character]*

The numeric value specified in 'char_string_length' should be followed by

an equal number of characters.

Expressions may be formed out of immediate numbers and MUFOM

variables. The MUFOM processes 2 to 4, which form the linker and the

locator, contain expression evaluators which parse and calculate the values

for the expressions. If a MUFOM process cannot calculate the absolute

value of an expression, because the values of the variable are not yet

known, it copies the expression (with modifications) into the output file.

Expression are coded in reverse Polish notation. (The operator follows the

operands.)

expression ::= boolean_function |

one_operand_function |

two_operand_function |

three_operand_function |

four_operand_function |

conditional_expr | hex_number | MUFOM_variable

Appendix HH–8
IE
E
E
-
6
9
5

4.1 FUNCTIONS WITHOUT OPERANDS

@F : false function

@T: true function

boolean_function ::= "@F" | "@T"

The false and true function produce a boolean result false or true which

may be used in logical expressions. Both functions do not have operands.

4.2 MONADIC FUNCTIONS

Monadic functions have one operand which precedes the function.

one_operand_function ::= operand "," monop

operand ::= expression

monop ::= "@ABS" | "@NEG" | "@NOT" | "@ISDEF"

@ABS: returns the absolute value of an integer operand

@NEG: returns the negative value of an integer operand

@NOT: returns the negation of a boolean operand or the one's

complement value if the operand is an integer

@ISDEF: returns the logical true value if all variable in an expression

are defined, return false otherwise.

4.3 DYADIC FUNCTIONS AND OPERATORS

Dyadic functions and operators have two operands which precede the

operator or function.

two_operand_function ::= operand1 "," operand2 "," dyadop

operand1 ::= expression

operand2 ::= expression

dyadop ::= "@AND" | "@MAX" | "@MIN" | "@MOD" |

"@OR" |"@XOR" |

"+" | "-" | "/" | "*" | "<" | ">" | "=" | "#"

IEEE–695 Object Format H–9

• • • • • • • •

@AND: returns boolean true/false result of logical 'and' operation on

operands, when both operands are logical values. When both

operands are not logical values the bitwise and is performed.

@MAX: compares both operands arithmetically and returns the largest

value.

@MIN: compares both operands arithmetically and returns the

smallest value.

@MOD: returns the modulo result of the division of operand1 by

operand2. The result is undefined if either operand is

negative, or if operand2 is zero.

@OR: returns boolean true/false result of logical 'or' operation on

operands, when both operands are logical values. When both

operands are no logical values the bitwise and is performed.

+, -, *, /: These are the arithmetic operators for addition, subtraction,

multiplication and division. The result is an integer. For

division the result is undefined if operand2 equals zero. The

result of a division rounds toward zero.

<, >, =, #: These are operators for the following logical relations: 'less

than', 'greater than', 'equals', 'is unequal'. The result is true or

false.

4.4 MUFOM VARIABLES

The meaning of the MUFOM variable is explained in section 4. The

following syntax rules apply for the MUFOM variables:

MUFOM_variable ::= MUFOM_var |

MUFOM_var_num

MUFOM_var_optnum

MUFOM_var ::= "G"

MUFOM_var_num ::= "I" | "N" | "W" | "X"

hex_number

MUFOM_var_optnum ::= "L" | "P" | "R" | "S"

[hex_number]?

Appendix HH–10
IE
E
E
-
6
9
5

4.5 @INS AND @EXT OPERATOR

The @INS operator inserts a bit string.

four_operand_function ::= operand1 "," operand2 "," operand3

"," operand4 "," @INS

operand2 is inserted in operand1 starting at position operand3, and ending

at position operand4.

The @EXT operator extracts a bit string.

three_operand_function ::= operand1 "," operand2 "," operand3

"," @EXT

A bit string is extracted from operand1 starting at position operand2 and

ending at position operand3.

4.6 CONDITIONAL EXPRESSIONS

conditional_expr ::= err_expr | if_else_expr

err_expr ::= value "," condition "," err_num "," "@ERR"

value ::= expression

condition ::= expression

err_num ::= expression

if_else_expr ::= condition "," "@IF" "," expression ","

"@ELSE" "," expression "," "@END"

IEEE–695 Object Format H–11

• • • • • • • •

5 MUFOM COMMANDS

5.1 MODULE LEVEL COMMANDS

At module level there are four commands: one command to start and one

to end a module, one command to set the date and time of creation of the

module, and one command to specify address formats.

5.1.1 MB COMMAND

The MB command is the first command in a module. It specifies the target

machine configuration and an optional command with the module name.

MB_command ::= "MB" machine_identifier ["," module_name]? "."

Example: MB TriCore.

5.1.2 ME COMMAND

The module end command is the last command in an object file. It defines

the end of the object module.

ME_command ::= "ME."

5.1.3 DT COMMAND

The DT command sets the date and time of creation of an object module.

DT_command ::= "DT" [digit]* "."

Example: DT19930120120432.

The format of display of the date and time is "YYYYMMDDHHMMSS":

4 digits for the year, 2 digits for the month, 2 digits for the day, 2 digits for

the hour, 2 digits for the minutes and 2 digits for the seconds.

Appendix HH–12
IE
E
E
-
6
9
5

5.1.4 AD COMMAND

The AD command specifies the address format of the target execution

environment.

AD_command ::= "AD" bits_per_MAU ["," MAU_per_address

 ["," order]?]?

MAU_per_address ::= hex_number

bits_per_MAU ::= hex_number

order ::= "L" | "M"

MAU stands for minimum addressable unit. This is target processor

dependant.

L means least significant byte at lowest address (little endian)

M means most significant byte at lowest address (big endian)

Example:

AD8,3,L.

Specifies a 3-byte addressable 8-bit processor running in little endian

mode.

5.2 COMMENT AND CHECKSUM COMMAND

The comment command offers the possibility to store information in an

object module about the object module and the translators that created it.

The comment may be used to record the file name of the source file of the

object module or the version number of the translator that created it.

Because the standard supports several layers each of which has its own

revision number an object module may contain several comment

commands which specify which revision of the standard has been used to

create the module. The contents of a comment is not prescribed by the

standard and thus it is implementation defined how a MUFOM process

handles a comment command.

CO_command ::= "CO" [comment_level]? "," comment_text "."

comment_level ::= hex_number

comment_text ::= char_string

IEEE–695 Object Format H–13

• • • • • • • •

The comment levels 0 - 6 are reserved to pass information about the

revision number of the layers in this standard.

The checksum command starts and checks the checksum calculation of an

object module.

5.3 SECTIONS

A section is the smallest unit of code or data that can be controlled

separately. Each section has a unique number which is introduced at the

first section begin (SB) command. The contents of a section may follow its

introduction. A section ends at the next SB command with a number

different from the current number. A section resumes at an SB command

with a number that has been introduced before.

5.3.1 SB COMMAND

SB_command ::= "SB" hex_number "."

The maximum number of sections in an object module is implementation

defined.

5.3.2 ST COMMAND

The ST command specifies the type of a section.

ST_command ::= "ST" section_number ["," section_type]*

["," section_name]? "."

section_type ::= letter

section_name ::= char_string

A section can be named or unnamed. If section_name is omitted a section

is unnamed. A section can be relocatable or absolute. If the section start

address is an absolute number the section is called absolute. If the section

start address is not yet known, the section is called relocatable. In

relocatable sections all addresses are specified relative to the relocation

base of that section. The relocation phase of the linker or locator may map

the relocation base of a section onto a fixed address.

Appendix HH–14
IE
E
E
-
6
9
5

During linkage edition the section name and the section attributes identify

a section and thus the actions to be taken. If a section is defined in several

modules, the linkage editor must determine how to act on sections with

the same name. This can be either one of the following strategies:

• several sections are to be joined into a single one

• several sections are to be overlapped

• sections are not to coexist

A section type gives additional information to the linkage editor about the

section, which may be used to layout a section in memory. Section type

information is encoded with letters, which may be combined in one ST

command. Some combinations of letters are invalid or may be

meaningless.

letter meaning class explanation

A absolute access section has absolute address
assigned to corresponding L–variable

R read only access no write access to this section

W writable access section may be read and written

X executable access section contains executable code

Z zero page access if target has zero page or short
addressable page Z–section map into
it

Ynum addressing
mode

access section must be located in addressing
mode num

B blank access section must be initialized to ’0’
(cleared)

F not filled access section is not filled or cleared (scratch)

I initialize access section must be initialized in rom

E equal overlap if sections in two modules have
different length an error must be raised

M max overlap Use largest value as section size

U unique overlap The section name must be unique

C cumulative overlap Concatenate sections if they appear in
several modules. The section
alignment for partial section must be
preserved

IEEE–695 Object Format H–15

• • • • • • • •

explanation class meaningletter

O overlay overlap sections with the name name@func
must be combined to one section
name, according to the rules for func
obtained from the call graph

S separate overlap multiple sections can have the same
name and they may relocated at
unrelated addresses

N now when section is located before normal
sections (without N or P)

P postpone when section is located after normal
sections (without N or P)

Table H-1: Section types

5.3.3 SA COMMAND

SA_command ::= "SA" section_number "," [MAU_boundary]?

["," page_size]? ".'

MAU_boundary ::= expression

page_size ::= expression

The MAU boundary value forces the relocator to align a section on the

number of MAUs specified. If page_size is present the relocator checks

that the section does not exceed a page boundary limit when it is

relocated.

5.4 SYMBOLIC NAME DECLARATION AND TYPE

DEFINITION

5.4.1 NI COMMAND

The NI command defines an internal symbol. An internal symbol is visible

outside the module. Thus it may resolve an undefined external in another

module.

NI_command ::= "N" I_variable "," char_string "."

Appendix HH–16
IE
E
E
-
6
9
5

The NI_command must precede any reference to the I_variable in a

module. There may not be more than one I_variable with the same name

or number.

5.4.2 NX COMMAND

The NX command defines an external symbol which is undefined in the

current module. The NX command must precede all occurrences of the

corresponding X variable.

NX_command ::= "N" X_variable "," char_string "."

The unresolved reference corresponding to an NX-command can be

resolved by an internal symbol definition (NI_command) in another

module.

5.4.3 NN COMMAND

The NN command defines a local name which may be used for defining a

name of a local symbol in a module or a name in a type definition.

A name defined with an NN command is not visible outside the scope of

the module. The NN command must precede all occurrences of the

corresponding N variable.

NN_command ::= "N" N_variable "," char_string "."

5.4.4 AT COMMAND

The attribute command may be used to define debugging related

information of a symbol, such as the symbol type number. Level 2 of the

standard does not prescribe the contents of the optional fields of the AT

command. The language dependent layer (level 3) describes how these

fields can be used to pass high-level symbol information with the AT

command.

AT_command ::= "AT" variable "," type_table_entry ["," lex_level

["," hex_number]*]? "."

variable ::= I_variable | N_variable | X_variable

IEEE–695 Object Format H–17

• • • • • • • •

type_table_entry ::= hex_number

lex_level ::= hex_number

The type_table entry is a type number introduced with a type command

(TY). References to type numbers in the AT command may precede the

definition of the type in the TY command.

The meaning of the lex_level field is defined at layer 3 or higher. The

same applies to the optional hex_number fields.

5.4.5 TY COMMAND

The TY-command defines a new type table entry. The type number

introduced by the type command can be seen as a reference index to this

type. The TY-command defines the relation between the newly

introduced type and other types that are defined in other places in the

object module. It also establishes a relation between a new type index and

symbols (N_variable).

TY_command ::= "TY" type_table_entry ["," parameter]+ "."

type_table_entry ::= hex_number

parameter ::= hex_number | N_variable | "T" type_table_entry

Level 2 does not define the semantics of the parameters. These are defined

at level 3, the language layer. A linkage editor which does not have

knowledge of the semantics of the parameter in a type command can still

perform type comparison: Two types are considered to compare equal

when the following conditions hold:

• both types have an equal number of parameters.

• the numeric values in the types are equal

• N_variables in both types have the same name

• the type entries referenced from both types compare equal

Variable N0 is supposed to compare equal to any other name.

Type table entry T0 is supposed to compare equal to any other type.

Appendix HH–18
IE
E
E
-
6
9
5

5.5 VALUE ASSIGNMENT

5.5.1 AS COMMAND

The assignment command assigns a value to a variable.

AS_command ::= "AS" MUFOM_variable "," expression "."

5.6 LOADING COMMANDS

The contents of a section is either absolute data (code) or relocatable data

(code). Absolute data can be loaded with the LD command. The address

where loading takes place depends on the value of the P-variable

belonging to the section. Data which is contiguous in a LD command is

supposed to be loaded contiguously in memory.

If data is not absolute it contains expressions which must be evaluated by

the expression evaluator. The LR command allows a relocation expression

to be part of the loading command.

5.6.1 LD COMMAND

LD_command ::= "LD" [hex_digit]+ "."

The constants loaded with the LD command are loaded with the most

significant part first.

5.6.2 IR COMMAND

A relocation base is an expression which can be associated with a

relocation letter. This relocation letter can be used in subsequent load

relocate commands.

IR_command ::= "IR" relocation_letter "," relocation_base

["," number_of_bits]? "."

relocation_letter ::= nonhex_letter

relocation_base ::= expression

IEEE–695 Object Format H–19

• • • • • • • •

number_of_bits ::= expression

Example:

IRV,X20,16.
ITM,R2,40,+,8.

The number_of_bits must be less than or equal to the number of bits per

address, which is the product of the number of MAUs per address and the

number of bits per MAU, both of which are specified in the AD command.

If the number_of_bits is not specified it equals the number of bits per

address.

5.6.3 LR COMMAND

LR_command ::= "LR" [load_item]+ "."

load_item ::= relocation_letter offset "," | load_constant |

"(" expression ["," number_of_MAUs]? ")"

load_constant ::= [hex_digit]+

number_of_MAUs ::= expression

Examples:

LR002000400060.
LRT80,0020.
LR(R2,100,+,4).

The first example shows immediate constants which may be loaded as a

part of an LR command.

The second example shows the use of the relocation base defined in the

previous paragraph, followed by a constant.

The third example shows how the value of the expression R2 + 100 is

used to load 4 MAUs.

The three commands in this example may be combined into one LR

command:

LR002000400060T80,0020(R2,100,+,4).

Appendix HH–20
IE
E
E
-
6
9
5

5.6.4 RE COMMAND

The replicate command defines the number of times a LR command must

be replicated:

RE_command ::= "RE" expression "."

The LR command must immediately follow the RE command.

Example:

RE04.
LR(R2,200,+,4).

The commands above load 16 MAUs: 4 times the 4 MAU value of R2 + 200

5.7 LINKAGE COMMANDS

5.7.1 RI COMMAND

The retain internal symbol command indicates that the symbolic

information of an NI command must be retained in the output file.

RI_command::= "R" I_variable ["," level_number]? "."

level_number ::= hex_number

5.7.2 WX COMMAND

The weak external command flags a previously defined external

(NX_command) as weak. This means that if the external remains

unresolved, the value of the expression in the WX command is assigned to

the X variable.

WX_command ::= "W" X_variable ["," default_value]? "."

default_value::= expression

IEEE–695 Object Format H–21

• • • • • • • •

5.7.3 LI COMMAND

The LI command specifies a default library search list. The library names

specified in the LI_command are searched for unresolved references.

LI_command ::= "LI" char_string ["," char_string]* "."

5.7.4 LX COMMAND

The LX command specifies a library to search for a named unresolved

variable.

LX_command ::= "L" X_variable ["," char_string]+ "."

The paragraphs above showed the commands and operators as ASCII

strings. In an object file they are binary encoded. The following tables

show the binary representation.

Appendix HH–22
IE
E
E
-
6
9
5

6 MUFOM FUNCTIONS

The following table lists the first byte of MUFOM elements. Each value

between 0 and 255 classifies the MUFOM language element that follows,

or it is a language element itself. E.g. numbers outside the range 0-127 are

preceded by a length field: 0x82 specifies that a 2 byte integer follows.

0xE4 is the function code for the LR command.

Overview of first byte of MUFOM language elements

Value Description

0x00 – 0x7F Start of regular string, or one byte numbers ranging from 0 –
127

0x80 Code for omitted optional number field

0x81 – 0x88 Numbers outside the range 0 – 127

0x89 – 0x8F Unused

0x90 – 0xA0 User defined function codes

0xA0 – 0xBF MUFOM function codes

0xC0 Unused

0xC1 – 0xDA MUFOM letters

0xDB – 0xDF Unused

0xE0 – 0xF9 MUFOM commands

0xFA – 0xFF Unused

Table H-2: Overview of first byte of MUFOM language elements

Binary encoding of MUFOM letters and function codes

Function code Identifiers

Function code Letter code

@F 0xA0

@T 0xA1 A 0xC1

@ABS 0xA2 B 0xC2

@NEG 0xA3 C 0xC3

@NOT 0xA4 D 0xC4

+ 0xA5 E 0xC5

IEEE–695 Object Format H–23

• • • • • • • •

IdentifiersFunction code

codeLettercodeFunction

– 0xA6 F 0xC6

/ 0xA7 G 0xC7

* 0xA8 H 0xC8

@MAX 0xA9 I 0xC9

@MIN 0xAA J 0xCA

@MOD 0xAB K 0xCB

< 0xAC L 0xCC

> 0xAD M 0xCD

= 0xAE N 0xCE

!= <> 0xAF O 0xCF

@AND 0xB0 P 0xD0

@OR 0xB1 Q 0xD1

@XOR 0xB2 R 0xD2

@EXT 0xB3 S 0xD3

@INS 0xB4 T OxD4

@ERR 0xB5 U 0xD5

@IF 0xB6 V 0xD6

@ELSE 0xB7 W 0xD7

@END 0xB8 X 0xD8

@ISDEF 0xB9 Y 0xD9

Z 0xDA

Table H-3: Binary encoding of MUFOM letters and function codes

MUFOM Command codes

Command Code Description

MB 0xE0 Module begin

ME 0xE1 Module end

AS 0xE2 Assign

IR 0xE3 Inititialize relocation base

Appendix HH–24
IE
E
E
-
6
9
5

DescriptionCodeCommand

LR 0xE4 Load with relocation

SB 0xE5 Section begin

ST 0xE6 Section type

SA 0xE7 Section alignment

NI 0xE8 Internal name

NX 0xE9 External name

CO 0xEA Comment

DT 0xEB Date and time

AD 0xEC Address description

LD 0xED Load

CS (with sum) 0xEE Checksum followed by sum value

CS 0xEF Checksum (reset sum to 0)

NN 0xF0 Name

AT 0xF1 Attribute

TY 0xF2 Type

RI 0xF3 Retain internal symbol

WX 0xF4 Weak external

LI 0xF5 Library search list

LX 0xF6 Library external

RE 0xF7 Replicate

SC 0xF8 Scope definition

LN 0xF9 Line number

0xFA Undefined

0xFB Undefined

0xFC Undefined

0xFD Undefined

0xFE Undefined

0xFF Undefined

Table H-4: MUFOM Command codes

I

MOTOROLA
S–RECORDS

A
P
P
E
N
D
I
X

Appendix II–2
M

O
T

O
R

O
L

A
 S

I

A
P
P
E
N
D
I
X

Motorola S–Records I–3

• • • • • • • •

The locator by default generates three types of S-records: S0, S2 and S8.

With a the -f2S1 or -f2S3 option you can force other types of S-records.

They have the following layout:

S0 - record

'S' '0' <length_byte> <2 bytes 0> <comment> <checksum_byte>

A locator generated S-record file starts with a S0 record with the following

contents:

length_byte : 0x12

comment : TriCore locator

checksum : 0x21

 T r i C o r e l o c a t o r
S0120000547269436F7265206C6F6361746F7221

The S0 record is a comment record and does not contain relevant

information for program execution.

The length_byte represents the number of bytes in the record, not

including the record type and length byte.

The checksum is calculated by first adding the binary representation of the

bytes following the record type (starting with the length_byte) to just

before the checksum. Then the one's complement is calculated of this

sum. The least significant byte of the result is the checksum. The sum of

all bytes following the record type is 0xFF.

S1 - record

With the -f2S1 option of the locator, the actual program code and data is

supplied with S1 records, with the following layout:

'S' '1' <length_byte> <address> <code bytes> <checksum_byte>

This record is used for 2-byte addresses.

Example:

S1130250F03EF04DF0ACE8A408A2A013EDFCDB00E6
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

Appendix II–4
M

O
T

O
R

O
L

A
 S

The locator has an option that controls the length of the output buffer for

generating S1 records. The default buffer length is 32 code bytes.

The checksum calculation of S1 records is identical to S0.

S2 - record

With the -f2S2 option of the locator, which is the default, the actual

program code and data is supplied with S2 records, with the following

layout:

'S' '2' <length_byte> <address> <code bytes> <checksum_byte>

For the TriCore the locator generates 3-byte addresses.

Example:

S213FF002000232222754E00754F04AF4FAE4E22BF
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

The locator has an option that controls the length of the output buffer for

generating S2 records. The default buffer length is 32 code bytes.

The checksum calculation of S2 records is identical to S0.

S3 - record

With the -f2S3 option of the locator, the actual program code and data is

supplied with S3 records, with the following layout:

'S' '3' <length_byte> <address> <code bytes> <checksum_byte>

This record is used for 4-byte addresses.

Example:

S3070000FFFE6E6825
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

The locator has an option that controls the length of the output buffer for

generating S3 records.

Motorola S–Records I–5

• • • • • • • •

The checksum calculation of S3 records is identical to S0.

S7 - record

With the -f2S3 option of the locator, at the end of an S-record file, the

locator generates an S7 record, which contains the program start address.

S7 is the corresponding termination record for S3 records.

Layout:

'S' '7' <length_byte> <address> <checksum_byte>

Example:

S70500006E6824
 | | |_checksum
 | |_ address
 |_ length

The checksum calculation of S7 records is identical to S0.

S8 - record

With the -f2S2 option of the locator, which is the default, at the end of an

S-record file, the locator generates an S8 record, which contains the

program start address.

Layout:

'S' '8' <length_byte> <address> <checksum_byte>

Example:

S804FF0003F9
 | | |_checksum
 | |_ address
 |_ length

The checksum calculation of S8 records is identical to S0.

S9 - record

With the -f2S1 option of the locator, at the end of an S-record file, the

locator generates an S9 record, which contains the program start address.

S9 is the corresponding termination record for S1 records.

Layout:

'S' '9' <length_byte> <address> <checksum_byte>

Appendix II–6
M

O
T

O
R

O
L

A
 S

Example:

S9030210EA
 | | |_checksum
 | |_ address
 |_ length

The checksum calculation of S9 records is identical to S0.

J

INTEL HEX
RECORDS

A
P
P
E
N
D
I
X

Appendix JJ–2
IN

T
E

L
 H

E
X

J

A
P
P
E
N
D
I
X

Intel Hex Records J–3

• • • • • • • •

Intel Hex records describe the hexadecimal object file format for 8-bit,

16-bit and 32-bit microprocessors. The hexadecimal object file is an ASCII

representation of an absolute binary object file. There are six different

types of records:

• Data Record (8-, 16, or 32-bit formats)

• End of File Record (8-, 16, or 32-bit formats)

• Extended Segment Address Record (16, or 32-bit formats)

• Start Segment Address Record (16, or 32-bit formats)

• Extended Linear Address Record (32-bit format only)

• Start Linear Address Record (32-bit format only)

For the TriCore the locator generates records in the 32-bit format (4-byte

addresses).

General Record Format

In the output file, the record format is:

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

:

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

length

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

offset

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

type

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

content

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

Where:

: is the record header.

length is the record length which specifies the number of bytes of

the content field. This value occupies one byte (two

hexadecimal digits). The locator outputs records of 255 bytes

(32 hexadecimal digits) or less; that is, length is never greater

than FFH.

offset is the starting load offset specifying an absolute address in

memory where the data is to be located when loaded by a

tool. This field is two bytes long. This field is only used for

Data Records. In other records this field is coded as four

ASCII zero characters ('0000').

type is the record type. This value occupies one byte (two

hexadecimal digits). The record types are:

Appendix JJ–4
IN

T
E

L
 H

E
X

Byte Type Record type

00 Data

01 End of File

02 Extended segment address (not used)

03 Start segment address (not used)

04 Extended linear address (32–bit)

05 Start linear address (32–bit)

content is the information contained in the record. This depends on

the record type.

checksum is the record checksum. The locator computes the checksum

by first adding the binary representation of the previous

bytes (from length to content). The locator then computes the

result of sum modulo 256 and subtracts the remainder from

256 (two's complement). Therefore, the sum of all bytes

following the header is zero.

Extended Linear Address Record

The Extended Linear Address Record specifies the two most significant

bytes (bits 16-31) of the absolute address of the first data byte in a

subsequent Data Record:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁ
ÁÁÁ
ÁÁÁ

02
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ
ÁÁÁ

04
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

upper_address
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

checksum

The 32-bit absolute address of a byte in a Data Record is calculated as:

(address + offset + index) modulo 4G

where:

address is the base address, where the two most significant bytes are

the upper_address and the two least significant bytes are

zero.

offset is the 16-bit offset from the Data Record.

index is the index of the data byte within the Data Record (0 for

the first byte).

Intel Hex Records J–5

• • • • • • • •

Example:

:0200000400FFFB
 | | | | |_ checksum
 | | | |_ upper_address
 | | |_ type
 | |_ offset
 |_ length

Data Record

The Data Record specifies the actual program code and data.

ÁÁÁ
ÁÁÁ
ÁÁÁ

:

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

length

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

offset

ÁÁÁ
ÁÁÁ
ÁÁÁ

00

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

data

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

The length byte specifies the number of data bytes. The locator has an

option that controls the length of the output buffer for generating Data

records. The default buffer length is 32 bytes.

The offset is the 16-bit starting load offset. Together with the address

specified in the Extended Address Record it specifies an absolute address

in memory where the data is to be located when loaded by a tool.

Example:

:0F00200000232222754E00754F04AF4FAE4E22C3
 | | | | |_ checksum
 | | | |_ data
 | | |_ type
 | |_ offset
 |_ length

Appendix JJ–6
IN

T
E

L
 H

E
X

Start Linear Address Record

The Start Linear Address Record contains the 32-bit program execution

start address.

Layout:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁ
ÁÁÁ
ÁÁÁ

04
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ
ÁÁÁ

05
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

address
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

Example:

:0400000500FF0003F5
 | | | | |_ checksum
 | | | |_ address
 | | |_ type
 | |_ offset
 |_ length

End of File Record

The hexadecimal file always ends with the following end-of-file record:

:00000001FF
 | | | |_ checksum
 | | |_ type
 | |_ offset
 |_ length

INDEX
I
N
D
E
X

IndexIndex–2
IN
D
E
X

I
N
D
E
X

Index Index–3

• • • • • • • •

Symbols
.a extension, 9-25

.accum, 7-6

.addr, F-33

.align, assembler directive, 7-7

.ascii, 7-8

.asciiz, 7-9

.asm, file extension, 2-4

.byte, 7-10

.calls, 7-11

.comment, assembler directive, 7-12

.DEFAULT, 11-22

.define, assembler directive, 7-13

.DONE, 11-22

.double, 7-14

.dsc extension, 10-4

.dup, 7-15

.dupa, 7-16

.dupc, 7-17

.dupf, 7-18

.elc extension, 10-27

.else, assembler directive, 7-31

.elseif, assembler directive, 7-31

.end, assembler directive, 7-19

.endif, 7-20

.endm, 7-21

.equ, 7-22

.ers extension, 2-13

.exitm, 7-23

.extern, assembler directive, 7-24

.fail, assembler directive, 7-25

.float, 7-26

.fract, 7-27

.global, assembler directive, 7-28

.half, 7-29

.if, assembler directive, 7-31

.IGNORE, 11-22

.include, assembler directive, 7-33

.INIT, 11-22

.local, assembler directive, 7-34

.lst, file extension, 2-4, 2-6

.macro, assembler directive, 7-35

.message, 7-37

.name, assembler directive, 7-38

.obj file extension, 2-4, 2-6

.org, assembler directive, 7-39

.out extension, 10-4

.pcp, file extension, 2-6

.pmacro, 7-41

.PRECIOUS, 11-22

.sdecl, 3-4

assembler directive, 7-42
.sect, assembler directive, 7-44

.set, assembler directive, 7-45

.sfract, 7-46

.SILENT, 11-22

.space, 7-47

.src, file extension, 2-4

.SUFFIXES, 11-22

.symb, 7-48

.undef, assembler directive, 7-49

.warning, 7-50

.word, 7-51

#define, F-28

#elif, F-31

#endif, F-32

#if, F-31

#ifdef, F-31

#ifndef, F-31

#include, F-29

#undef, F-29

@ character, 3-4

\ character, 4-6

_ASPCP, 5-8

_ASTRI, 5-8

_lc_b_section, 10-31

_lc_bh, 10-32, F-51

_lc_bs, 10-33, F-70

_lc_cp, 10-28, 10-34

_lc_e_section, 10-31

_lc_eh, 10-32, F-51

_lc_es, 10-33, F-70

_lc_u_identifier, 10-35

IndexIndex–4
IN
D
E
X

_lc_ub_identifier, 10-36

_lc_ue_identifier, 10-36

PCP, 2-34

A
action attribute, F-39

actions, 10-28

adding files to a project, 1-11

addition and subtraction, 5-11

addr, F-34

address, F-34

sorted ascending, 10-24
unsorted, 10-24

address mapping, F-8

address space, definition, F-10

addressing mode, F-36

definition, F-11
addressing modes

absolute, 5-3
base + offset, 5-4
bit-reverse, 5-5
circular, 5-4
PCP assembler, 5-5
post-increment, 5-4
pre-increment, 5-4
TriCore assembler, 5-3

alignment, F-39

amode, F-36

definition, F-11, F-24
manipulating sections, F-25

archiver, 11-4

arithmetic operators, 5-11

artri, 1-3, 11-4

ASPCPINC, 2-22, 2-44

asse, F-38

assembler

absolute list file, 2-45
controls

case, 8-6
debug, 8-7

fpu, 8-8
hw_only, 8-9
ident, 8-10
list, 8-11, 8-12
mmu, 8-13
nopaging, 8-20
object, 8-14
overview of, 8-4�8-26
page, 8-15, 8-16
pagelength, 8-18
pagewidth, 8-19
paging, 8-20
prctl, 8-21
print, 8-22
stitle, 8-23
TC, 8-24
title, 8-25
warning, 8-26

general controls, 8-3
input files and output files, 2-4, 2-6
invocation, 2-3
invocation aspcp, 2-6
invocation astri, 2-4
list file, 2-44
options summary aspcp, 2-7
options summary astri, 2-5
page header, 2-45
primary controls, 8-3
source listing, 2-46

assembler controls, overview of,

8-4�8-26

assembler directives

.accum, 7-6

.align, 7-7

.ascii, 7-8

.asciiz, 7-9

.byte, 7-10

.calls, 7-11

.comment, 7-12

.define, 7-13

.double, 7-14

.dup, 7-15

Index Index–5

• • • • • • • •

.dupa, 7-16

.dupc, 7-17

.dupf, 7-18

.else, 7-31

.elseif, 7-31

.end, 7-19

.endif, 7-20

.endm, 7-21

.equ, 7-22

.exitm, 7-23

.extern, 7-24

.fail, 7-25

.float, 7-26

.fract, 7-27

.global, 7-28

.half, 7-29

.if, 7-31

.include, 7-33

.local, 7-34

.macro, 7-35

.message, 7-37

.name, 7-38

.org, 7-39

.pmacro, 7-41

.sdecl, 7-42

.sect, 7-44

.set, 7-45

.sfract, 7-46

.space, 7-47

.symb, 7-48

.undef, 7-49

.warning, 7-50

.word, 7-51
assembly control, 7-3
conditional assembly, 7-5
debugging, 7-3
macros, 7-5
overview, 7-3
symbol definition, 7-4

assembler options

-?, 2-8
-C, 2-9
-c, 2-10

-D, 2-11
-e, 2-12
-err, 2-13
-f, 2-14
-FPU, 2-16
-g, 2-17, 2-18
-H, 2-20, 2-21
-I, 2-22
-i, 2-23
-L, 2-24
-l, 2-26
-ll, 2-27
-ln, 2-28
-lt, 2-29
-lw, 2-30
-MMU, 2-31
-o, 2-33
-P, 2-34
-p, 2-35
-pRAPTOR, 2-36
-pTC1775, 2-37
-t, 2-38
-TC2, 2-32
-V, 2-39
-v, 2-40
-w, 2-41
-WAE, 2-42
-z, 2-43

assembly source file, 2-4, 2-6

assert, F-38

astri, 1-3

ASTRIINC, 2-22, 2-44

AT keyword, 3-6

attr, F-39

attribute, F-39

action, F-39
b, F-40
defaults, F-40
f, F-40
g, F-39
i, F-40
r, F-39
s, F-39

IndexIndex–6
IN
D
E
X

section, 7-42
w, F-39
x, F-39
y, F-39

B
binary operator, 5-10

bitwise and operator, 5-13

bitwise not operator, 5-13

bitwise operators, 5-13

bitwise or operator, 5-13

bitwise xor operator, 5-13

block, F-42

definition, F-20
buffer size, 10-24

bus, F-43

definition, F-13

C
call graph, 9-3, 9-7, 9-28, 11-32

stack usage, 9-28
case, assembler control, 8-6

case sensitivity, 9-6

cctri, 1-3, 11-7

CCTRIBIN, 11-12

CCTRIOPT, 11-12

character, 4-4

chip, definition, F-15

chips, F-44

clear, section attribute, 3-5

cluster

cleared sections, F-40
definition, F-23
executable sections, F-39
global sections, F-39
read-only, F-39
scratch sections, F-40
writable, F-39

cluster keyword, F-45

command file, 2-14, 9-11, 10-11, 11-9

command line processing, 2-14, 9-11,

10-11

comment, 4-5

conditional assembly, 6-12

conditional statements, F-31

continuation, 3-4

control lines, 8-3

control program, 10-27, 11-7

control program options

-?, 11-8
-c, 11-9
-c++, 11-8
-cc, 11-9
-cl, 11-9
-cm, 11-9
-cp, 11-9
-cs, 11-9
-elf, 11-11
-f, 11-9
-fptrap, 11-11
-ieee, 11-11
-ihex, 11-11
-nolib, 11-11
-o, 11-11
-srec, 11-11
-tiof, 11-11
-tmp, 11-11
-V, 11-8
-v, 11-11
-v0, 11-12
-Wa, 11-8
-Wc, 11-8
-wc++, 11-12
-Wcp, 11-8
-Wlc, 11-8
-Wlk, 11-8
-Wpl, 11-8

copy, F-46

copy table, 10-28, 10-34

start of, 10-29
cp_bss, 10-28

cp_copy, 10-28

Index Index–7

• • • • • • • •

cpu, F-47

creating a makefile, 1-12

CTRILIB, 9-13, 9-25

D
debug, assembler control, 8-7

debug information, 11-39

debugger, starting, 1-10

debugging, 1-17, 7-3

declaration attribute, 7-42

Delfee, 10-3

abbreviation of keywords, F-73
basic structure, F-3
comments, G-12
cpu part, F-6, G-3
getting started, F-3
keyword reference, F-32
keyword summary, F-73
memory part, F-27, G-3
preprocessing, F-28
software part, F-17, G-7

description file, F-5

development flow, 1-4

directive, 4-4

directory separator, 9-25

division, 5-12

double, 7-14

dst keyword, F-48

dummy argument string, 6-10

dyadic functions, H-8

E
EDE, 1-5

build an application, 1-9
load files, 1-7
open a project, 1-7
select a toolchain, 1-6
start a new project, 1-11
starting, 1-5

else, 11-16

embedded development environment.

See EDE

endif, 11-16

environment variable

ASPCPINC, 2-22, 2-44
ASTRIINC, 2-22, 2-44
CCTRIBIN, 11-12
CCTRIOPT, 11-12
CTRILIB, 9-13, 9-25
HOME, 11-15
overview of, 1-16
TMPDIR, 1-17, 2-44, 11-12
used by control program, 11-12
used by tool chain, 1-16

equal operator, 5-13

error list file, 2-4, 2-6

example

starting EDE, 1-5
using EDE, 1-5
using the control program, 1-12
using the makefile, 1-15

exit macro, 7-23

expression evaluator, H-4

expression string, 5-7

expressions, 5-5

absolute, 5-5
relocatable, 5-5
type of, 5-8

extension, 1-18

.a, 1-19, 9-25

.abs, 1-19

.asm, 1-19

.c, 1-19

.cal, 1-19

.cc, 1-19

.dsc, 1-19

.elf, 1-19

.ers, 2-13

.hex, 1-19

.ic, 1-19

.lnl, 1-19

.lst, 1-19

IndexIndex–8
IN
D
E
X

.map, 1-19

.obj, 1-19, 2-4, 2-6

.out, 1-19

.pcp, 1-19

.src, 1-19

.sre, 1-19
external memory, F-16

external part, 10-15, 11-34

F
file extensions, 1-18

file inclusion, F-29

fixed, F-49

float, 7-26

floating point, single precision, 2-16

flow graph, 2-3, 7-11

format

specifier, 10-24
suboptions, 10-24

fpu, assembler control, 8-8

fraction

16-bit, 7-46
32-bit, 7-27

function, 5-15

abs, 5-17
address calculation, 5-16
arg, 5-17
aspcp, 5-17
assembler mode, 5-16
astri, 5-18
cat, 5-18
cnt, 5-18
def, 5-18
detailed description, 5-17
fract, 5-18
fraction, 5-17
hi, 5-19
his, 5-19
len, 5-19
lo, 5-19
los, 5-19

lst, 5-20
mac, 5-20
macro, 5-16
mathematical, 5-15
max, 5-20
min, 5-20
mxp, 5-20
pos, 5-20
result type, 5-9
scp, 5-21
sfract, 5-21
sgn, 5-21
string, 5-15
sub, 5-21
syntax, 5-15

function delimiter, 4-13

Functional problem checks, 2-43, 8-24

G
gap, F-50

global symbol, 3-3

global type info, 11-36

greater than operator, 5-13

greater than or equal operator, 5-13

H
heap, 10-32, F-51

HOME, 11-15

hw_only, assembler control, 8-9

I
ident, assembler control, 8-10

identifier, 4-3

IEEE

archiver, 11-4
command language concept, H-3

Index Index–9

• • • • • • • •

conditional expressions, H-10
expressions, H-5
notational conventions, H-5
variables in object file, H-5
viewer, 11-26

ifdef, 11-16

ifndef, 11-16

include file, 2-22

incremental linkage, 9-29

incremental linking, 9-3

input specification, 4-3

instruction, 4-3

Intel hex, record type, J-3

invocation

assembler, 2-3
assembler aspcp, 2-6
assembler astri, 2-4
linker, 9-4
locator, 10-4

K
keyword

abbreviation of, F-73
amode, F-24
block, F-20
bus, F-13
chips, F-15
cluster, F-23
map, F-8
mem, F-10
selection, F-22
stack, 10-29
summary of, F-73

L
label, 3-3, 4-3, F-52

local, 4-3
locator, 10-29
numeric, 4-3

layout, F-17, F-54

definition, F-18
example, F-18

lctri, 1-3

leng, F-55

length, F-55

less than operator, 5-13

less than or equal operator, 5-13

level, mixed, 11-47

level 0, 11-47

level 1, 11-46

level option -ln, 11-46

library

linking, 9-27
position, 9-27
system, 9-25
user, 9-25

library maintainer, 11-4

library member, search algorithm, 9-27

library search path, 9-25

line continuation, 4-6

linker

invocation, 9-4
linking with libraries, 9-27
map file, 9-28
messages, 9-37
options summary, 9-4
output, 9-28

linker options

-?, 9-5
-C, 9-6
-c, 9-7
-d, 9-8
-e, 9-9
-err, 9-10
-f, 9-11
-H, 9-5
-L, 9-13
-l, 9-14
-M, 9-15
-N, 9-16
-O, 9-17
-o, 9-18

IndexIndex–10
IN
D
E
X

-r, 9-19
-t, 9-22
-u, 9-20
-V, 9-21
-v, 9-22
-w, 9-23
-WAE, 9-24

linking, incremental, 9-29

list, assembler control, 8-11, 8-12

list file, 2-4, 2-6, 2-26, 2-27, 2-28,

2-29, 2-30, 2-44, 9-15

absolute, 2-45
file name, 2-28
header title, 2-29
page length, 2-27
page width, 2-30
removing lines from, 2-24

lktri, 1-3

load module, F-17

load_mod, F-17, F-56

local label, 4-3, 6-11

local symbol, 3-3

locating, 10-25

location counter, 4-14

locator

calling via control program, 10-27
error output file, 10-27
invocation, 10-4
labels, 10-29
labels reference, 10-30
locating, 10-25
messages, 10-27
options summary, 10-4
output, 10-27

locator control file, 10-25

locator options

-?, 10-5
-c, 10-6
-d, 10-7
-e, 10-8
-em, 10-9
-err, 10-10
-f, 10-11

-f format, 10-13
-H, 10-5
-M, 10-14
-N, 10-15
-o, 10-16
-p, 10-17
-S, 10-18
-s, 10-19
-V, 10-20
-v, 10-21
-w, 10-22
-WAE, 10-23

logical and, 5-14

logical not, 5-14

logical operators, 5-14

logical or, 5-14

M
macro, 4-4

.dup directive, 6-11
argument concatenation, 4-6, 6-7
call, 6-5
conditional assembly, 6-12
definition, 6-4
dummy argument operator, 6-7
dummy argument string, 6-10
local label, 4-10, 6-11
return hex value operator, 6-9
return value operator, 6-8
string delimiter, 4-11

macro definition, F-28

macros

parameterless, F-28
user defined, F-28
with parameters, F-29

makefile, 11-13

automatic creation of, 1-12
updating, 1-12

map, Delfee keyword, F-8

Index Index–11

• • • • • • • •

map file, 9-28, 10-14

default basename, 9-17
map keyword, F-57

MAU, H-4

mau, F-58

mau (minimum addressable unit), F-9,

F-10

max, section attribute, 3-5

mem, Delfee keyword, F-10

mem keyword, F-59

memory, F-60

external, F-16
layout, F-54
reserve, F-62
scratch, 11-44

memory management instructions,

2-31

messages

linker, 9-37
locator, 10-27

minimum addressable unit, F-58

minus operator, 5-11

mktri, 11-13

.DEFAULT target, 11-22

.DONE target, 11-22

.IGNORE target, 11-22

.INIT target, 11-22

.PRECIOUS target, 11-22

.SILENT target, 11-22

.SUFFIXES target, 11-22
comment lines, 11-15
conditional processing, 11-16
exist function, 11-20
export line, 11-16
functions, 11-19
ifdef, 11-16
implicit rules, 11-24
include line, 11-16
macro definition, 11-15
macro MAKE, 11-17
macro MAKEFLAGS, 11-18
macro PRODDIR, 11-18
macro SHELLCMD, 11-18

macro TMP_CCOPT, 11-18
macro TMP_CCPROG, 11-18
macros, 11-17
makefiles, 11-15
match function, 11-19
nexist function, 11-21
protect function, 11-20
rules in makefile, 11-22
separate function, 11-20
special macros, 11-17
special targets, 11-22
targets, 11-21

mmu, assembler control, 8-13

module, 3-3

symbols, 3-3
modulo, 5-12

monadic functions, H-8

MUFOM, H-3

AD command, H-12
AS command, H-18
AT command, H-16
checksum command, H-12
command codes, H-23
comment command, H-12
data types, H-7
DT command, H-11
first byte of language elements, H-22
function codes, H-22
functions, H-22
IR command, H-18
LD command, H-18
letters, H-22
LI command, H-21
loading commands, H-18
LR command, H-19
LX command, H-21
MB command, H-11
ME command, H-11
module level commands, H-11
NI command, H-15
NN command, H-16
NX command, H-16
processes, H-4

IndexIndex–12
IN
D
E
X

RE command, H-20
RI command, H-20
SA command, H-15
SB command, H-13
sections, H-13
ST command, H-13
TY command, H-17
value assignment, H-18
WX command, H-20

multiplication, 5-12

N
noclear, section attribute, 3-5

nopaging, assembler control, 8-20

not equal operator, 5-13

number, 5-6

binary, 5-6
decimal, 5-6
hexadecimal, 5-7

numeric label, 4-3

O
object, assembler control, 8-14

object file, 2-4, 2-6

displaying parts of, 11-29
external part, 11-34

object layer, 11-45

object reader (prtri), 11-26

operands, 5-3

operators, 5-10

precedence list, 5-10
options summary

assembler aspcp, 2-7
assembler astri, 2-5
linker, 9-4
locator, 10-4

output buffer size, 10-24

output file, 2-33, 9-18, 10-16

output format, 10-13

P
page, assembler control, 8-15, 8-16

pagelength, assembler control, 8-18

pagewidth, assembler control, 8-19

paging, assembler control, 8-20

parameterless macros, F-28

parentheses, 5-6

PCP assembler, 2-3

plus operator, 5-11

prctl, assembler control, 8-21

predefined symbol

_ASPCP, 5-8
_ASTRI, 5-8

prefix for global/external symbols,

2-34

preprocessing, F-28

preprocessor directives

#define, F-28
#elif, F-31
#endif, F-32
#if, F-31
#ifdef, F-31
#ifndef, F-31
#include, F-29
#undef, F-29

print, assembler control, 8-22

procedures, 11-40

program development, 1-3

project files, adding files, 1-11

prototype, 9-36

prtri, 1-3, 11-26

display options, 11-28
file info, 11-29
global type info, 11-36
input control option, 11-26
options

-c, 11-32
-d, 11-39
-e, 11-34
-f file, 11-26
-g, 11-36
-h, 11-29

Index Index–13

• • • • • • • •

-i, 11-43
-ln, 11-46
-s, 11-30
-vn, 11-49

output control options, 11-28
section info, 11-30

R
regsfr, F-61

relational operators, 5-13

relocatable object file, 9-3

relocatable object module, 2-4, 2-6

reserved, F-62

reset, section activation attribute, 3-5

return hex value operator, 6-9

return value operator, 6-8

S
scratch cluster, F-40

scripts, 1-20

sdecl, 3-4

section, 3-4, 10-31, F-63

absolute, 3-6
activation, 3-6, 7-44
activation attribute, 3-5
alignment, F-39
attribute, 3-5, 7-42

max, 3-5
attributes, F-21
characteristics, F-21
declaration, 3-4
definition, 7-42
examples, 3-7
image, 11-43
manipulation, F-25
name, 3-4
placing algorithm, F-26
selection, F-21

by attribute, F-22

by name, F-22
by special section, F-22
excluding, F-23

summary, 2-38
type, 3-4, 7-42

selection, F-64

separator character, 9-25

shift left operator, 5-12

shift operators, 5-12

shift right operator, 5-12

sign operators, 5-11

size, F-65

software, F-66

source line, removing from list file,

2-24

source listing, addr field, 2-46

space, F-67

definition, F-10, F-19
generate code for, 10-18

src keyword, F-69

stack, 10-33, F-70

stack usage, 9-28

start, F-71

statement, 4-3

stitle, assembler control, 8-23

string, 5-7

DEFINE expansion, 4-11
symbol, 3-3, 5-7

global, 3-3
local, 3-3
predefined, 5-8

symbol character

return hex value, 4-9
return value, 4-8

symbols, 11-40

syntax for PCP assembler, 2-35, 2-36

syntax of an expression, 5-6

system libraries, 9-13, 9-14

IndexIndex–14
IN
D
E
X

T
table, F-72

TC, assembler control, 8-24

temporary files, 1-17, 11-12

TIOF, H-3

title, assembler control, 8-25

TMPDIR, 1-17, 2-44, 11-12

toolchain, 1-3

TriCore2 instructions, 2-32

type

basic, 11-37
mnemonic, 11-38

type checking, 9-33

between functions, 9-35
missing types, 9-37
recursive, 9-34

U
unary operator, 5-10

UNIX, scripts, 1-20

updating makefile, 1-12

user defined macros, F-28

utilities

artri, 11-4
cctri, 11-7
mktri, 11-13
prtri, 11-26

V
verbose, 2-40, 9-22, 10-21

verbose option, linker, 9-28

verbose option -vn, 11-49

version information, 2-39, 9-21, 10-20

W
warning, assembler control, 8-26

warnings (suppress), 2-41, 9-23, 10-22

warnings as errors, 2-42, 9-24, 10-23

	TABLE OF CONTENTS
	OVERVIEW
	Introduction
	An Example TriCore Program
	Using EDE
	Using the Control Program
	Using the Makefile

	Environment Variables
	Temporary Files
	Debugging with CrossView Pro
	File Extensions
	Preprocessing
	Assembler Listing
	Errors and Warnings
	Command Line Processing
	UNIX Scripts

	ASSEMBLER
	Description
	Invocation
	astri Invocation
	aspcp Invocation
	Detailed Description of Assembler Options
	Environment Variables used by the Assembler
	List File
	Absolute List File Generation
	Page Header
	Source Listing

	SOFTWARE CONCEPT
	Introduction
	Modules
	Modules and Symbols

	Sections
	Section Names
	Absolute Sections
	Section Examples

	ASSEMBLY LANGUAGE
	Input Specification
	Assembler Significant Characters

	OPERANDS AND EXPRESSIONS
	Operands
	TriCore Addressing Modes
	PCP Addressing Modes

	Expressions
	Number
	Expression String
	Symbol
	Expression Type

	Operators
	Addition and Subtraction
	Sign Operators
	Multiplication and Division
	Shift Operators
	Relational Operators
	Bitwise Operators
	Logical Operators

	Functions
	Mathematical Functions
	String Functions
	Macro Functions
	Assembler Mode Functions
	Address Calculation Functions
	Fractional Functions
	Detailed Description

	MACRO OPERATIONS
	Introduction
	Macro Operations
	Macro Definition
	Macro Calls
	Dummy Argument Operators
	Dummy Argument Concatenation Operator - \
	Return Value Operator - ?
	Return Hex Value Operator - %
	Dummy Argument String Operator - "
	Macro Local Label Operator - ^

	.DUP, .DUPA, .DUPC, .DUPF Directives
	Conditional Assembly

	ASSEMBLER DIRECTIVES
	Overview
	Debugging
	Assembly Control
	Symbol Definition
	Data Definition/Storage Allocation
	Macros and Conditional Assembly

	Directives

	ASSEMBLER CONTROLS
	Introduction
	Overview Assembler Controls
	Description of Assembler Controls

	LINKER
	Overview
	Linker Invocation
	Detailed Description of Linker Options

	Libraries
	Library Search Path
	Linking with Libraries
	Library Member Search Algorithm

	Linker Output
	Type Checking
	Introduction
	Recursive Type Checking
	Type Checking between Functions
	Missing Types

	Linker Messages

	LOCATOR
	Overview
	Invocation
	Detailed Description of Locator Options
	Format Suboptions

	Locating Your Application
	Calling the Locator via the Control Program
	Locator Output
	Locator Messages
	Copy Table
	Locator Labels
	Locator Labels Reference

	UTILITIES
	Overview
	artri
	cctri
	mktri
	prtri
	Preparing the Demo Files
	Displaying Parts of an Object File
	Option -h, display general file info
	Option -s, display section info
	Option -c, display call graphs
	Option -e, display external part
	Option -g, display global type information
	Option -d, display debug information
	Option -i, display the section images

	Viewing an Object at Lower Level
	Object Layers
	The Level Option -ln
	The Verbose Option -vn

	ASSEMBLER ERROR MESSAGES
	Introduction
	Warnings (W)
	Errors (E)
	Fatal Errors (F)

	LINKER ERROR MESSAGES
	Introduction
	Warnings (W)
	Errors (E)
	Fatal Errors (F)
	Verbose (V)

	LOCATOR ERROR MESSAGES
	Introcuction
	Warnings (W)
	Errors (E)
	Fatal Errors (F)
	Verbose (V)

	ARCHIVER ERROR MESSAGES
	Introduction
	Warnings (W)
	Errors (E)
	Fatal Errors (F)

	EMBEDDED ENVIRONMENT ERROR MESSAGES
	Introduction
	Errors (E)
	Warnings (W)

	DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS
	Introduction
	Getting Started
	Introduction
	Basic Structure

	CPU Part
	Introduction
	Address Translation: map and mem
	Address Spaces
	Addressing Modes
	Busses
	Chips
	External Memory

	Software Part
	Introduction
	Load Module
	Layout Description
	Space Definition
	Block Definition
	Selecting Sections
	Cluster Definition
	Amode Definition
	Manipulating Sections in Amodes
	Section Placing Algorithm

	Memory Part
	Introduction

	Delfee Preprocessing
	Introduction
	User Defined Macros
	File Inclusion
	Conditional Statements

	Delfee Keyword Reference
	Abbreviation of Delfee Keywords
	Delfee Keywords Summary

	DELFEE SYNTAX
	IEEE-695 OBJECT FORMAT
	TIOF and IEEE-695
	Command Language Concept
	Notational Conventions
	Expressions
	Functions without Operands
	Monadic Functions
	Dyadic Functions and Operators
	MUFOM Variables
	@INS and @EXT Operator
	Conditional Expressions

	MUFOM Commands
	Module Level Commands
	MB Command
	ME Command
	DT Command
	AD Command

	Comment and Checksum Command
	Sections
	SB Command
	ST Command
	SA Command

	Symbolic Name Declaration and Type Definition
	NI Command
	NX Command
	NN Command
	AT Command
	TY Command

	Value Assignment
	AS Command

	Loading Commands
	LD Command
	IR Command
	LR Command
	RE Command

	Linkage Commands
	RI Command
	WX Command
	LI Command
	LX Command

	MUFOM Functions

	MOTOROLA S-RECORDS
	INTEL HEX RECORDS
	INDEX

