
MB060-024-00-00

Doc. ver.: 1.4

TriCore v2.2

C Compiler,

Assembler, Linker

Reference Manual

A publication of

Altium BV

Documentation Department

Copyright  2002-2005 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Macrovision Corporation.

Intel is a trademark of Intel Corporation.

Motorola is a registered trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF

CONTENTS
C

O
N

T
E

N
T

S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

TRICORE C LANGUAGE 1-1

1.1 Introduction 1-3.

1.2 Data Types 1-4.

1.3 Keywords 1-6.

1.4 Function Qualifiers 1-9.

1.5 Intrinsic Functions 1-12.

1.5.1 Minium and maximum of (Short) Integers 1-13.

1.5.2 Fractional Arithmetic Support 1-14.

1.5.3 Packed Data Type Support 1-15.

1.5.4 Interrupt Handling 1-19.

1.5.5 Insert Single Assembly Instruction 1-21.

1.5.6 Register Handling 1-22.

1.5.7 Insert / Extract Bit-fields and Bits 1-23.

1.5.8 Miscellaneous Intrinsic Functions 1-25.

1.6 Pragmas 1-26.

1.7 Predefined Macros 1-31.

LIBRARIES 2-1

2.1 Introduction 2-3.

2.2 Library Functions 2-4.

2.2.1 assert.h 2-4.

2.2.2 complex.h 2-4.

2.2.3 ctype.h and wctype.h 2-6.

2.2.4 errno.h 2-7.

2.2.5 fcntl.h 2-9.

2.2.6 fenv.h 2-9.

2.2.7 float.h 2-10.

2.2.8 fss.h 2-10.

2.2.9 inttypes.h and stdint.h 2-11.

2.2.10 iso646.h 2-12.

2.2.11 limits.h 2-12.

2.2.12 locale.h 2-12.

2.2.13 math.h and tgmath.h 2-13.

2.2.14 setjmp.h 2-20.

Table of ContentsVI
C
O
N
T
E
N
T
S

2.2.15 signal.h 2-20.

2.2.16 stdarg.h 2-21.

2.2.17 stdbool.h 2-21.

2.2.18 stddef.h 2-22.

2.2.19 stdint.h 2-22.

2.2.20 stdio.h and wchar.h 2-22.

2.2.21 stdlib.h and wchar.h 2-33.

2.2.22 string.h and wchar.h 2-37.

2.2.23 time.h and wchar.h 2-41.

2.2.24 Unistd.h 2-44.

2.2.25 wchar.h 2-45.

2.2.26 wctype.h 2-46.

2.3 C Library Reentrancy 2-48.

TRICORE ASSEMBLY LANGUAGE 3-1

3.1 Introduction 3-3.

3.2 Built-in Assembly Functions 3-3.

3.2.1 Overview of Built-in Assembly Functions 3-3.

3.2.2 Detailed Description of Built-in Assembly Functions 3-6. .

3.3 Assembler Directives and Controls 3-19.

3.3.1 Overview of Assembler Directives 3-19.

3.3.2 Detailed Description of Assembler Directives 3-21.

3.3.3 Overview of Assembler Controls 3-65.

3.3.4 Detailed Description of Assembler Controls 3-66.

RUN-TIME ENVIRONMENT 4-1

4.1 Introduction 4-3.

4.2 Startup Code 4-3.

4.3 Stack Usage 4-9.

4.4 Heap Allocation 4-10.

4.5 Floating-Point Arithmetic 4-10.

4.5.1 Compliance with IEEE-754 4-11.

4.5.2 Special Floating-Point Values 4-13.

Table of Contents VII

• • • • • • • •

4.5.3 Trapping Floating-Point Exceptions 4-13.

4.5.4 Floating-Point Trap Handling API 4-15.

TOOL OPTIONS 5-1

5.1 Compiler Options 5-3.

5.2 Assembler Options 5-68.

5.3 Linker Options 5-107.

5.4 Control Program Options 5-153.

5.5 Make Utility Options 5-213.

5.6 Archiver Options 5-242.

LIST FILE FORMATS 6-1

6.1 Assembler List File Format 6-3.

6.2 Linker Map File Format 6-5.

OBJECT FILE FORMATS 7-1

7.1 ELF/DWARF Object Format 7-3.

7.2 Motorola S-Record Format 7-4.

7.3 Intel Hex Record Format 7-8.

LINKER SCRIPT LANGUAGE 8-1

8.1 Introduction 8-3.

8.2 Structure of a Linker Script File 8-3.

8.3 Syntax of the Linker Script Language 8-6.

8.3.1 Preprocessing 8-6.

8.3.2 Lexical Syntax 8-7.

8.3.3 Identifiers 8-7.

8.3.4 Expressions 8-8.

8.3.5 Built-in Functions 8-9.

8.3.6 LSL Definitions in the Linker Script File 8-11.

8.3.7 Memory and Bus Definitions 8-11.

8.3.8 Architecture Definition 8-13.

Table of ContentsVIII
C
O
N
T
E
N
T
S

8.3.9 Derivative Definition 8-15.

8.3.10 Processor Definition and Board Specification 8-16.

8.3.11 Section Placement Definition 8-16.

8.4 Expression Evaluation 8-20.

8.5 Semantics of the Architecture Definition 8-21.

8.5.1 Defining an Architecture 8-22.

8.5.2 Defining Internal Buses 8-23.

8.5.3 Defining Address Spaces 8-23.

8.5.4 Mappings 8-26.

8.6 Semantics of the Derivative Definition 8-29.

8.6.1 Defining a Derivative 8-29.

8.6.2 Instantiating Core Architectures 8-30.

8.6.3 Defining Internal Memory and Buses 8-31.

8.7 Semantics of the Board Specification 8-33.

8.7.1 Defining a Processor 8-33.

8.7.2 Instantiating Derivatives 8-34.

8.7.3 Defining External Memory and Buses 8-35.

8.8 Semantics of the Section Layout Definition 8-37.

8.8.1 Defining a Section Layout 8-38.

8.8.2 Creating and Locating Groups of Sections 8-39.

8.8.3 Creating or Modifying Special Sections 8-45.

8.8.4 Creating Symbols 8-48.

8.8.5 Conditional Group Statements 8-49.

CPU FUNCTIONAL PROBLEMS 9-1

9.1 Introduction 9-3.

9.2 CPU Functional Problem bypasses 9-4.

MISRA-C RULES 10-1

10.1 MISRA-C:1998 10-3.

10.2 MISRA-C:2004 10-10.

INDEX

Manual Purpose and Structure IX

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

Windows Users

The documentation explains and describes how to use the TriCore

toolchain to program a TriCore DSP. The documentation is primarily aimed

at Windows users. You can use the tools either with the graphical

Embedded Development Environment (EDE) or from the command line in

a command prompt window.

Unix Users

For UNIX the toolchain works the same as it works for the Windows

command line.

Directory paths are specified in the Windows way, with back slashes as in

\ctc\bin. Simply replace the back slashes by forward slashes for use

with UNIX: /ctc/bin.

Structure

The TriCore documentation consists of a User's Manual which includes a

Getting Started section and a separate Reference Manual (this manual).

First you need to install the software. This is described in Chapter 1,

Software Installation and Configuration, of the User's Manual.

After installation you are ready to follow the Getting Started in Chapter 2

of the User's Manual.

Next, move on with the other chapters in the User's Manual which explain

how to use the compiler, assembler, linker and the various utilities.

Once you are familiar with these tools, you can use the Reference Manual

to lookup specific options and details to make fully use of the TriCore

toolchain.

TriCore Reference ManualX
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

SHORT TABLE OF CONTENTS

Chapter 1: TriCore C Language

Contains overviews of all language extensions:

• Data types

• Keywords

• Function qualifiers

• Intrinsic functions

• Pragmas

• Predefined macros

Chapter 2: Libraries

Contains overviews of all library functions you can use in your C source.

The libraries are implemented according to the ISO/IEC 9899:1999(E)

standard.

Chapter 3: TriCore Assembly Language

Contains an overview of all assembly functions that you can use in your

assembly source code.

Chapter 4: Run-time Environment

Contains a description of the C startup code and explains stack and heap

usage and floating-point arithmetic.

Chapter 5: Tool Options

Contains a description of all tool options:

• Compiler options

• Assembler options

• Linker options

• Control program options

• Make utility options

• Archiver options

Chapter 6: List File Formats

Contains a description of the following list file formats:

• Assembler List File Format

• Linker Map File Format

Manual Purpose and Structure XI

• • • • • • • •

Chapter 7: Object File Formats

Contains a description of the following object file formats:

• ELF/DWARF Object Formats

• Motorola S-Record Format

• Intel Hex Record Format

Chapter 8: Linker Script Language

Contains a description of the linker script language (LSL).

Chapter 9: CPU Functional Problems

Contains a description of the TASKING TriCore toolchain software

solutions for functional problems and deviations from the electrical

specifications and timing specifications for some TriCore derivatives.

Chapter 10: MISRA-C Rules

Contains a description the supported and unsupported MISRA-C code

checking rules.

TriCore Reference ManualXII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

CONVENTIONS USED IN THIS MANUAL

Notation for syntax

The following notation is used to describe the syntax of command line

input:

bold Type this part of the syntax literally.

italics Substitute the italic word by an instance. For example:

filename

Type the name of a file in place of the word filename.

{ } Encloses a list from which you must choose an item.

[] Encloses items that are optional. For example

ctc [-?]

Both ctc and ctc -? are valid commands.

| Separates items in a list. Read it as OR.

... You can repeat the preceding item zero or more times.

,... You can repeat the preceding item zero or more times,

separating each item with a comma.

Example

ctc [option]... filename

You can read this line as follows: enter the command ctc with or without

an option, follow this by zero or more options and specify a filename. The

following input lines are all valid:

ctc test.c

ctc -g test.c

ctc -g -E test.c

Not valid is:

ctc -g

According to the syntax description, you have to specify a filename.

Manual Purpose and Structure XIII

• • • • • • • •

Icons

The following illustrations are used in this manual:

Note: notes give you extra information.

Warning: read the information carefully. It prevents you from making

serious mistakes or from loosing information.

This illustration indicates actions you can perform with the mouse. Such as

EDE menu entries and dialogs.

Command line: type your input on the command line.

Reference: follow this reference to find related topics.

TriCore Reference ManualXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

RELATED PUBLICATIONS

C Standards

• C A Reference Manual (fifth edition) by Samual P. Harbison and Guy L.

Steele Jr. [2002, Prentice Hall]

• The C Programming Language (second edition) by B. Kernighan and D.

Ritchie [1988, Prentice Hall]

• ISO/IEC 9899:1999(E), Programming languages - C [ISO/IEC]

More information on the standards can be found at

http://www.ansi.org

• DSP-C, An Extension to ISO/IEC 9899:1999(E),

Programming languages - C [TASKING, TK0071-14]

MISRA-C

• MISRA-C:2004, Guidelines for the Use of the C Language in Critical

Systems [MIRA Ltd, 2004]

See also http://www.misra-c.com

• Guidelines for the Use of the C Language in Vehicle Based Software

[MIRA Ltd, 1998]

See also http://www.misra.org.uk

TASKING Tools

• TriCore C Compiler, Assembler, Linker User's Manual

[Altium, MA060-024-00-00]

• TriCore C++ Compiler User's Manual

[Altium, MA060-012-00-00]

• TriCore CrossView Pro Debugger User's Manual

[Altium, MA060-043-00-00]

TriCore

• TriCore 1 Unified Processor Core v1.3 Architecture Manual, Doc v1.3.3

[2002-09, Infineon]

• TriCore2 Architecture Overview Handbook [2002, Infineon]

• TriCore Embedded Application Binary Interface [2000, Infineon]

1

TRICORE

C LANGUAGE
C

H
A

P
T

E
R

TriCore Reference Manual1-2
C

 L
A

N
G

U
A

G
E

1

C
H

A
P

T
E

R

TriCore C Language 1-3

• • • • • • • •

1.1 INTRODUCTION

The TASKING TriCore C compiler fully supports the ANSI C standard but

adds possibilities to program the special functions of the TriCore.

This chapter contains complete overviews of the following C language

extensions of the TASKING TriCore C compiler:

• Data types

• Keywords

• Function qualifiers

• Intrinsic functions

• Pragmas

• Predefined macros

TriCore Reference Manual1-4
C

 L
A

N
G

U
A

G
E

1.2 DATA TYPES

The TASKING TriCore C compiler ctc supports the following data types:

Type Keyword
Size
(bit)

Align
(bit)

Ranges

Bit __bit 8 8 0 or 1

Boolean _Bool 8 8 0 or 1

Character char

signed char
8 8 -27 .. 27-1

unsigned char 8 8 0 .. 28-1

Integral short

signed short
16 16 -215 .. 215-1

unsigned short 16 16 0 .. 216-1

int

signed int

long

signed long

32 16 -231 .. 231-1

unsigned int

unsigned long
32 16 0 .. 232-1

enum 8

16

32

8

16

-27 .. 27-1

-215 .. 215-1

-231 .. 231-1

long long

signed

 long long

64 32 -263 .. -263-1

unsigned

 long long
64 32 0 .. 264-1

Pointer pointer to data

pointer to func
32 32 0 .. 232-1

Floating-

Point
float 32 16

-3.402e38 .. -1.175e-38

1.175e-38 .. 3.402e38

double

long double
64 32

-1.797e308 .. -2.225e-308

2.225e-308 .. 1.797e308

Fract __sfract 16 16 [-1, 1>

__fract 32 32 [-1, 1>

TriCore C Language 1-5

• • • • • • • •

Ranges
Align
(bit)

Size
(bit)

KeywordType

Accum __laccum 64 64 [-131072,131072>

Packed __packb

signed __packb
32 16 4x: -27 .. 27-1

unsigned __packb 32 16 4x: 0 .. 28-1

__packhw

signed __packhw
32 16 2x: -215 .. 215-1

unsigned
__packhw

32 16 2x: 0 .. 216-1

Table 1-1: Data Types

TriCore Reference Manual1-6
C

 L
A

N
G

U
A

G
E

1.3 KEYWORDS

__a0, __a1, __a8, __a9

The data object is located in a section that is addressable with a

sign-extended 16-bit offset from address register A0, A1, A8 or A9

respectively.

__asm()

With the __asm() keyword you can use assembly instructions in the C

source and pass C variables as operands to the assembly code.

__asm("instruction_template"

 [: output_param_list

 [: input_param_list

 [: register_save_list]]]);

instruction_template Assembly instructions that may contain

parameters from the input list or output list in

the form: %parm_nr [.regnum]

 %parm_nr[.regnum] Parameter number in the range 0 .. 9. With the

optional .regnum you can access an individual

register from a register pair or register quad. For

example, with register pair d0/d1, .0 selects

register d0.

output_param_list [["=[&]constraint_char"(C_expression)],...]

input_param_list [["constraint_char"(C_expression)],...]

 & Says that an output operand is written to before

the inputs are read, so this output must not be

the same register as any input.

 constraint _char Constraint character: the type of register to be

used for the C_expression.

 C_expression Any C expression. For output parameters it must

be an lvalue, that is, something that is legal to

have on the left side of an assignment.

register_save_list [["register_name"],...]

 register_name Name of the register you want to reserve.

TriCore C Language 1-7

• • • • • • • •

Constraint
character

Type Operand Remark

a Address register a0 .. a15

d Data register d0 .. d15

e Data register pair e0 .. e7

m Memory variable Stack or memory operand

number Type of operand it

is associated with

same as

%number
Indicates that %number and

number are the same register.

Table 1-2: Available input/output operand constraints

For more information on __asm, see section 3.6, Using Assembly in the C
Source, in Chapter TriCore C Language of the User's Manual.

__at()

With the attribute __at() you can place an object at an absolute address.

int myvar __at(0x100);

__atbit()

If you have defined a 32-bits base variable (int, long) you can declare a

single bit of that variable as a bit variable with the keyword __atbit().

The syntax is:

__atbit(name, offset)

name is the name of an integer variable in which the bit is located. offset
(range 0-31) is the bit-offset within the variable.

__circ

The TriCore C compiler supports the __circ keyword for circular buffers.

For more information see section 3.4.1, Circular Buffers, in Chapter

TriCore C Language of the User's Manual.

TriCore Reference Manual1-8
C

 L
A

N
G

U
A

G
E

__near
__far

With keyword __near the declared data object will be located in the first

16 kB of a 256 MB block. These parts of memory are directly addressable

with the absolute addressing mode.

With keyword __far the data object can be located anywhere in the

indirect addressable memory region.

__sfrbit16
__sfrbit32

With the data type qualifiers __sfrbit16 and __sfrbit32 you can

declare bit fields in special function registers. These keywords force 16-bit

or 32-bit access.

For more information see section 3.4.2, Declare an SFR Bit Field: __sfrbit16
and __sfrbit32, in Chapter TriCore C Language of the User's Manual.

TriCore C Language 1-9

• • • • • • • •

1.4 FUNCTION QUALIFIERS

__enable_
__bisr_()

During the execution of an interrupt service routine or trap service routine,

the system blocks the CPU from taking further interrupt requests. You can

immediately re-enable the system to accept interrupt requests:

__interrupt(vector) __enable_ isr(void)

__trap(class) __enable_ tsr(void)

The function qualifier __bisr_() also re-enables the system to accept

interrupt requests. In addition, the current CPU priority number (CCPN) in

the interrupt control register is set:

__interrupt(vector) __bisr_(CCPN) isr(void)

__trap(class) __bisr_(CCPN) tsr(void)

For more information see section 3.9.2, Interrupt and Trap Functions, in
Chapter TriCore C Language of the User's Manual.

__indirect

Functions are default called with a single word direct call. However, when

you link the application and the target address appears to be out of reach

(+/- 16 MB from the callg or jg instruction), the linker generates an

error. In this case you can use the __indirect keyword to force the less

efficient, two and a half word indirect call to the function:

int __indirect foo(void)

{

...

}

inline
__noinline

You can use the inline qualifier to tell the compiler to inline the function

body instead of calling the function. Use the __noinline qualifier to tell

the compiler not to inline the function body.

TriCore Reference Manual1-10
C

 L
A

N
G

U
A

G
E

inline int func1(void)

{

 // inline this function

}

__noinline int func2(void)

{

 // do not inline this function

}

For more information see section 3.9.1, Inlining Functions: inline, in
Chapter TriCore C Language of the User's Manual.

__interrupt()
__interrupt_fast()

You can use the qualifier __interrupt() to declare a function as an

interrupt service routine.

void __interrupt(vector_number) isr(void)

{

...

}

The vector_number identifies the entry into the interrupt vector table

(0..255). Unlike other interrupt systems, the priority number (PIPN) of the

interrupt now being serviced by the CPU identifies the entry into the

vector table.

When you define an interrupt service routine with the

__interrupt_fast() qualifier, the interrupt handler is directly placed in

the interrupt vector table, thereby eliminating the jump code.

For more information see section 3.9.2, Interrupt and Trap Functions, in
Chapter TriCore C Language of the User's Manual.

__trap()
__trap_fast()
__syscallfunc()

The definition of a trap service routine is similar to the definition of an

interrupt service routine. Trap functions cannot accept arguments and do

not return anything:

TriCore C Language 1-11

• • • • • • • •

void __trap(class) tsr(void)

{

...

}

The argument class identifies the entry into the trap vector table. TriCore

defines eight classes of trap functions. Each class has its own trap handler.

When you define a trap service routine with the __trap_fast()

qualifier, the trap handler is directly placed in the trap vector table,

thereby eliminating the jump code.

A special kind of trap service routine is the system call trap. With a system

call the trap service routine of class 6 is called. For the system call trap, the

trap identification number (TIN) is taken from the immediate constant

specified with the function qualifier __syscallfunc():

__syscallfunc(TIN)

The TIN is a value in the range 0 and 255. You can only use

__syscallfunc() in the function declaration. A function body is useless,

because when you call the function declared with __syscallfunc(), a

trap class 6 occurs which calls the corresponding trap service routine.

For more information see section 3.9.2, Interrupt and Trap Functions, in
Chapter TriCore C Language of the User's Manual.

__stackparm

The function qualifier __stackparm changes the standard calling

convention of a function into a convention where all function arguments

are passed via the stack, conforming a so called stack model. This qualifier

is only needed for situations where you need to use an indirect call to a

function for which you do not have a valid prototype.

void __stackparm stack_func (int);

TriCore Reference Manual1-12
C

 L
A

N
G

U
A

G
E

1.5 INTRINSIC FUNCTIONS

The TASKING TriCore C compiler recognizes intrinsic functions that serve

the following purposes:

• Minimum and maximum of (short) integers

• Fractional data type support

• Packed data type support

• Interrupt handling

• Insert single assembly instruction

• Register handling

• Insert / extract bit-fields and bits

• Miscellaneous

All intrinsic functions begin with a double underscore character (__). You

can use intrinsic functions as if they were ordinary C functions.

TriCore C Language 1-13

• • • • • • • •

1.5.1 MINIUM AND MAXIMUM OF (SHORT) INTEGERS

The next table provides an overview of the intrinsic functions that return

the minium or maximum of a signed integer, unsigned integer or short

integer.

Intrinsic Function Description

int __min(int,int) Return minimum of two

integers

short __mins(short,short) Return minimum of two

short integers

unsigned int

 __minu(unsigned int, unsigned int)
Return minimum of two

unsigned integers

int __max(int,int) Return maximum of two

integers

short __maxs(short,short) Return maximum of two

short integers

unsigned int

 __maxu(unsigned int, unsigned int)
Return maximum of two

unsigned integers

Table 1-3: Intrinsic Functions for obtaining min/max values

TriCore Reference Manual1-14
C

 L
A

N
G

U
A

G
E

1.5.2 FRACTIONAL ARITHMETIC SUPPORT

The next table provides an overview of intrinsic functions to convert

fractional values. Note that the TASKING TriCore C compiler fully supports

the fractional type so normally you should not need these intrinsic

functions (except for __mulfractlong). For compatibility reasons the

TASKING TriCore C compiler does support these functions.

Conversion of Fractional Values

Intrinsic Function Description

long

 __mulfractlong(__fract,long)
Integer part of __fract x long

__sfract

 __round16(__fract)
Convert __fract to __sfract

__fract

 __getfract(__accum)
Convert __accum to __fract

short

 __clssf(__sfract)
Count the consecutive

number of bits that have the

same value as bit 15 of an

__sfract

__sfract

 __shasfracts(__sfract,int)
Left/right shift of an __sfract

__fract

 __shafracts(__fract,int)
Left/right shift of an __fract

__laccum

 __shaaccum(__laccum,int)
Left/right shift of an __laccum

Table 1-4: Intrinsic Functions for Conversion of Fractional Values

TriCore C Language 1-15

• • • • • • • •

1.5.3 PACKED DATA TYPE SUPPORT

The next table provides an overview of the intrinsic functions for

initialization of packed data type.

Initialize Packed Data Types

Intrinsic Function Description

__packb __initpackbl(long)
Initalize __packb with a

long integer

__packb __initpackb(int,int,int,int)
Initalize __packb with four

integers

unsigned __packb __initupackb(
 unsigned,unsigned,unsigned,unsigned)

Idem, but unsigned

__packhw __initpackhwl(long)
Initalize __packhw with a

long integer

__packhw __initpackhw(short,short)
Initalize __packhw with two

integers

unsigned __packhw __initupackhw(
 unsigned short,unsigned short)

Idem, but unsigned

Table 1-5: Intrinsic Functions to Initialize Packed Data Types

Extract Values from Packed Data Types

The next table provides an overview of the intrinsic functions to extract a

single byte or halfword from a __packb or __packhw data type.

Intrinsic Function Description

char __extractbyte1(__packb) Extract first byte from a __packb

unsigned char __extractubyte1(
 __unsigned packb)

Idem, but unsigned

char __extractbyte2(__packb) Extract second byte from a __packb

unsigned char __extractubyte2(
 __unsigned packb)

Idem, but unsigned

char __extractbyte3(__packb) Extract third byte from a __packb

unsigned char __extractubyte3(
 __unsigned packb)

Idem, but unsigned

char __extractbyte4(__packb) Extract fourth byte from a __packb

unsigned char __extractubyte4(
 __unsigned packb)

Idem, but unsigned

TriCore Reference Manual1-16
C

 L
A

N
G

U
A

G
E

DescriptionIntrinsic Function

short __extracthw1(__packhw) Extract first short from a __packhw

unsigned short __extractuhw1(

 unsigned __packhw)
Idem, but unsigned

short __extracthw2(__packhw) Extract second short from a __packhw

unsigned short __extractuhw2(

 unsigned __packhw)
Idem, but unsigned

char __getbyte1(__packb *) Extract first byte from a __packb

unsigned char __getubyte1(

 unsigned __packb *)
Idem, but unsigned

char __getbyte2(__packb *) Extract second byte from a __packb

unsigned char __getubyte2(

 unsigned __packb *)
Idem, but unsigned

char __getbyte3(__packb *) Extract third byte from a __packb

unsigned char __getubyte3(

 unsigned __packb *)
Idem, but unsigned

char __getbyte4(__packb *) Extract fourth byte from a __packb

unsigned char __getubyte4(

 unsigned __packb *)
Idem, but unsigned

short __gethw1(__packhw *) Extract first integer from a __packhw

unsigned short __getuhw1(

 unsigned __packhw *)
Idem, but unsigned

short __gethw2(__packhw *) Extract short integer from a __packhw

unsigned short __getuhw2(

 unsigned __packhw *)
Idem, but unsigned

Table 1-6: Intrinsic Functions to Extract Values from Packed Data Types

TriCore C Language 1-17

• • • • • • • •

Insert Values into Packed Data Types

The next table provides an overview of the intrinsic functions to insert a

single byte or halfword into a __packb or __packhw data type.

Intrinsic Function Description

__packb __insertbyte1(__packb, char)
Insert char into first byte of

a __packb

unsigned __packb __insertubyte1(

 unsigned __packb, unsigned char)
Idem, but unsigned

__packb __insertbyte2(__packb, char)
Insert char into second byte

of a __packb

unsigned __packb __insertubyte2(

 unsigned __packb, unsigned char)
Idem, but unsigned

__packb __insertbyte3(__packb, char)
Insert char into third byte of

a __packb

unsigned __packb __insertubyte3(

 unsigned __packb, unsigned char)
Idem, but unsigned

__packb __insertbyte4(__packb, char)
Insert char into fourth byte

of a __packb

unsigned __packb __insertubyte4(

 unsigned __packb, unsigned char)
Idem, but unsigned

__packhw __inserthw1(__packhw, short)
Insert short into first

halfword of a __packhw

unsigned __packhw __insertuhw1(

 unsigned __packhw, unsigned short)
Idem, but unsigned

__packhw __inserthw2(__packhw, short)
Insert short into second

halfword of a __packhw

unsigned __packhw __insertuhw2(

 unsigned __packhw, unsigned short)
Idem, but unsigned

void __setbyte1(__packb *, char)
Insert first byte into a

__packb

void __setubyte1(unsigned __packb *,

 unsigned char)
Idem, but unsigned

void __setbyte2(__packb *, char)
Insert second byte into a

__packb

void __setubyte2(unsigned __packb *,

 unsigned char)
Idem, but unsigned

TriCore Reference Manual1-18
C

 L
A

N
G

U
A

G
E

DescriptionIntrinsic Function

void __setbyte3(__packb *, char)
Insert third byte into a

__packb

void __setubyte3(unsigned __packb *,

 unsigned char)
Idem, but unsigned

void __setbyte4(__packb *, char)
Insert fourth byte into a

__packb

void __setubyte4(unsigned __packb *,

 unsigned char)
Idem, but unsigned

void __sethw1(__packhw *, short)
Insert first integer into a

__packhw

void __setuhw1(unsigned __packhw *,

 unsigned short)
Idem, but unsigned

void __sethw2(__packhw *, short)
Insert short integer into a

__packhw

void __setuhw2(unsigned __packhw *,

 unsigned short)
Idem, but unsigned

Table 1-7: Intrinsic Functions to Insert Values into Packed Data Types

Combine Packed Data Types into a Packed Word

The next table provides an overview of the intrinsic functions to combine

the value of packed data types into a packed word. You can combine two

__packb (2 x 4 bytes) into a long long or two __packhw (2 x 2

halfwords) into a long long.

The packed word is a double register that is represented by the additional

datatype __packw. To access the values in a _packw variable, you can use

a union data type: typedef double __packw.

These intrinsics are only supported for the TriCore2 (--is-tricore2).

Intrinsic Function Description

unsigned long long

 __transpose_byte(__packb,__packb)
Combine two __packb

unsigned long long

 __transpose_hword(__packhw,__packhw)
Combine two __packhw

Table 1-8: Intrinsic Functions to Combine Packed Data Types

TriCore C Language 1-19

• • • • • • • •

Calculate Absolute Values of Packed Data Type Values

The next table provides an overview of the intrinsic functions to calculate

the absolute value of packed data type values.

Intrinsic Function Description

__packb __absb(__packb) Absolute value of __packb

__packhw __absh(__packhw) Absolute value of __packhw

__sat __packhw

 __abssh(__sat __packhw)
Absolute value of __packhw

using saturation

Table 1-9: Intrinsic Functions to Calculate Absolute Values

Calculate Minimum Packed Data Type Values

The next table provides an overview of the intrinsic functions to calculate

the minimum from two packed data type values.

Intrinsic Function Description

__packb __minb(__packb,__packb) Minimum of two __packb

values

unsigned __packb __minbu(unsigned

__packb, unsigned __packb)
Minimum of two unsigned

__packb values

__packhw __minh(__packhw,__packhw) Minimum of two __packhw

values

unsigned __packhw __minhu(unsigned

__packhw, unsigned __packhw)
Minimum of two unsigned

__packhw values

Table 1-10: Intrinsic Functions to Calculate Absolute Values

1.5.4 INTERRUPT HANDLING

The next table provides an overview of the intrinsic functions to read or

set interrupt handling:.

TriCore Reference Manual1-20
C

 L
A

N
G

U
A

G
E

Intrinsic Function Description

void __enable (void) Enable interrupts immediately at

function entry

void __disable (void) Disable interrupts Only supported

for TriCore1.

int __disable_and_save (void) Disable interrupts and return

previous interrupt state (enabled or

disabled). Only supported for

TriCore2 (--is-tricore2).

void __restore (int) Restore interrupt state. Only

supported for TriCore2

(--is-tricore2).

void __bisr (int) Set CPU priority number [0..512]

and enable interrupts immediately

at function entry

void __syscall (int) Call a system call function number

Table 1-11: Intrinsic Functions for Interrupt Handling

TriCore C Language 1-21

• • • • • • • •

1.5.5 INSERT SINGLE ASSEMBLY INSTRUCTION

The next table provides an overview of the intrinsic functions that you can

use to insert a single assembly instruction.

You can also use inline assembly but these intrinsics provide a shorthand

for frequently used assembly instructions.

See section 3.6, Using Assembly in the C Source: __asm() of the

User's Manual

Intrinsic Function Description

void __debug(void) Insert DEBUG instruction

void __dsync(void) Insert DSYNC instruction

void __isync(void) Insert ISYNC instruction

void __svlcx(void) Insert SVLCX instruction

void __rslcx(void) Insert RSLCX instruction

void __nop(void) Insert NOP instruction

Table 1-12: Intrinsic Functions for Inserting Assembly Instructions

TriCore Reference Manual1-22
C

 L
A

N
G

U
A

G
E

1.5.6 REGISTER HANDLING

Access Control Registers

The next table provides an overview of the intrinsic functions that you can

use to acces control registers.

Intrinsic Function Description

int __mfcr(int) move contents of the addressed core SFR

into a data register

void __mtcr (int,int) move contents of a data register (second int)

to the addressed core SFR (first int)

Table 1-13: Intrinsic Functions for Accessing Control Registers

Perform Register Value Operations

The next table provides an overview of the intrinsic functions that operate

on a register and return a value in another register.

Intrinsic Function Description

int __clz (int) Count leading zeros in int

int __clo (int) Count leading ones in int

int __cls (int) Count number of redundant sign bits (all

consecutive bits with the same value as bit 31)

int __satb (int) Return saturated byte

int __satbu (int) Return saturated unsigned byte

int __sath (int) Return saturated halfword

int __sathu (int) Return saturated unsigned halfword

int __abs (int) Return absolute value

int __abss (int) Return absolute value with saturation

int __parity (int) Return parity

Table 1-14: Intrinsic Functions for Performing Register Value Operations

TriCore C Language 1-23

• • • • • • • •

1.5.7 INSERT / EXTRACT BIT-FIELDS AND BITS

Insert / Extract Bit-fields

The next table provides an overview of the intrinsic functions to insert or

extract a bit-field.

Intrinsic Function Description

int __extr (int value,
 int pos,int width)

Extract a bit-field (bit pos to bit

pos+width) from value

unsigned int __extru (int

 value,int pos,int width)
Same as __extr() but return bit-field

as unsigned integer

int __insert (int src,int
 trg, int pos,int width)

Extract bit-field (bit pos to bit

pos+width) from src and insert it in trg.

int _ins(int trg, int trgbit,
 int src, int srcbit)

Return trg but replace trgbit by srcbit
in src.

int _insn(int trg, int trgbit,
 int src, int srcbit)

Return trg but replace trgbit by inverse

of srcbit in src.

Table 1-15: Intrinsic Functions to Insert / Extract Bit-fields

Atomic Load-Modify-Store

With the next intrinsic function you can peform atomic Load-Modify-Store

of a bit-field from an integer value. This function uses the IMASK and

LDMST instruction. The intrinsic writes the number of bits of an integer

value at a certain address location in memory with a bitoffset. The number

of bits must be a constant value.

Intrinsic Function

void __imaskldmst(int* address,int value,int bitoffset,int bits)

Store a single bit

With the intrinsic macro __putbit() you can store a single bit atomicly

in memory at a specified bit offset. The bit at offset 0 in value is stored at

an address location in memory with a bitoffset.

This intrinsic is implemented as a macro definition which uses the

_imaskldmst() intrinsic:

#define __putbit (value, address, bitoffset) __imaskldmst

 (address, value, bitoffset, 1)

TriCore Reference Manual1-24
C

 L
A

N
G

U
A

G
E

Intrinsic Macro

void __putbit(int value, int* address, int bitoffset)

Load a single bit

With the intrinsic macro __getbit() you can load a single bit from

memory at a specified bit offset. A bit value is loaded from an address
location in memory with a bitoffset and returned as an unsigned integer

value.

This intrinsic is implemented as a macro definition which uses the

__extru() intrinsic function:

#define _getbit (address, bitoffset) _extru (*(address),

 bitoffset, 1)

Intrinsic Macro

unsigned integer __getbit(int* address, int bitoffset)

TriCore C Language 1-25

• • • • • • • •

1.5.8 MISCELLANEOUS INTRINSIC FUNCTIONS

Multiply and Scale Back

The next intrinsic multiplies two 32-bit numbers to an intermediate 64-bit

result, and scales back the result to 32 bits. To scale back the result, 32 bits

are extracted from the intermediate 64-bit result: bit 63-offset to bit

31-offset.

Intrinsic Function

int __mulsc(int a, int b, int offset)

Swap Mask

The next intrinsic exchanges the values of value and memory, but only

those bits that are allowed by mask. Before the __swapmsk instruction is

generated, the parameters value and mask are moved into a double

register.

This intrinsic is only supported for the TriCore2 (--is-tricore2).

Intrinsic Function

void __swapmsk (int value, int mask, int * memory)

Initialize Circular Pointer

With the next intrinsic you can initialize a circular pointer with a

dynamically allocated buffer at run-time.

Intrinsic Function

__circ void * __initcirc(void * buf, unsigned short bufsize,
 unsigned short byteindex)

See also Section 3.4.1, Circular Buffers, in Chapter TriCore C Language of

the User's Manual.

TriCore Reference Manual1-26
C

 L
A

N
G

U
A

G
E

1.6 PRAGMAS

Pragmas are keywords in the C source that control the behavior of the

compiler. Pragmas overrule compiler options and keywords.

For general information on pragmas see section 3.7, Pragmas to Control
the Compiler, in Chapter TriCore C Language of the User's Manual.

The syntax is:

#pragma pragma-spec [ON | OFF | RESTORE | DEFAULT]

or:

_Pragma("pragma-spec [ON | OFF | RESTORE | DEFAULT]")

The compiler recognizes the following pragmas, other pragmas are

ignored. Sometimes the resemblence of a pragma and a compiler option is

so strong, that no explanation is given but instead is referred to the

description of the corresponding compiler option.

#pragma CPU_functional_problem
#pragma DMU_functional_problem

Use software workarounds for the specified functional problem.

See compiler option --silicon-bug in section Compiler Options in
Chapter Tool Options.

#pragma alias symbol=defined_symbol

Define symbol as an alias for defined_symbol. It corresponds to an equate

directive (.EQU) at assembly level. The symbol should not be defined

elsewhere, and defined_symbol should be defined with static storage

duration (not extern or automatic).

See also the .EQU directive directive in Section 3.3, Assembler Directives
and Controls, in Chapter Assembly Language.

#pragma align n
#pragma align restore

See compiler option --align in section Compiler Options in Chapter Tool
Options. restore returns to the previous pragma level if the same

pragma is used more than once.

TriCore C Language 1-27

• • • • • • • •

#pragma clear
#pragma noclear

Performs 'clearing' or no 'clearing' of non-initialized static/public variables.

#pragma default_a0_size [value]

See compiler option -Z in section Compiler Options in Chapter Tool
Options.

#pragma default_a1_size [value]

See compiler option -Y in section Compiler Options in Chapter Tool
Options.

#pragma default_near_size [value]

See compiler option -N in section Compiler Options in Chapter Tool
Options.

#pragma extension isuffix

Enables a language extension to specify imaginary floating-point

constants. With this extension, you can use an "i" suffix on a floating-point

constant, to make the type _Imaginary:

float 0.5i

#pragma extern symbol

Normally, when you use the C keyword extern, the compiler generates

an .EXTERN directive in the generated assembly source. However, if the

compiler does not find any references to the extern symbol in the C

module, it optimizes the assembly source by leaving the .EXTERN

directive out.

With this pragma you force the compiler to generate the .EXTERN

directive, creating an external symbol in the generated assembly source,

even when the symbol is not used in the C module.

See the EXTERN directive directive in Section 3.3, Assembler Directives
and Controls, in Chapter Assembly Language.

TriCore Reference Manual1-28
C

 L
A

N
G

U
A

G
E

#pragma for_constant_data_use_memory memory
#pragma for_extern_data_use_memory memory
#pragma for_initialized_data_use_memory memory
#pragma for_uninitialized_data_use_memory memory

Use the specified memory for the type of data mentioned in the pragma

name. You can specify the following memories:

near, far, a0, a8 or a9.

For #pragma for_constant_data_use_memory you can also specify the

a1 memory.

This pragma overrules the pragmas #pragma default_a0_size, #pragma

default_a1_size, #pragma default_near_size, and the memory qualifiers

near and far.

#pragma indirect

Generates code for indirect function calling.

See compiler option --indirect in section Compiler Options in Chapter

Tool Options.

#pragma indirect_runtime

Generates code for indirect calls to run-time functions.

See compiler option --indirect_runtime in section Compiler Options in
Chapter Tool Options.

#pragma inline
#pragma noinline
#pragma smartinline

See section 3.9.1, Inlining Functions of the User's Manual.

#pragma macro

#pragma nomacro

Turns macro expansion on or off. Default, macro expansion is turned on.

#pragma message "string" ...

Print the message string(s) on standard output.

TriCore C Language 1-29

• • • • • • • •

#pragma object_comment "string" ...

This pragma generates a .comment section in the assembly file with the

specified string. After assembling, this string appears in the generated .o

or .elf object file. If you specify this pragma more than once in the same

module, only the last pragma has effect.

See compiler option --object-comment in section Compiler Options in
Chapter Tool Options.

#pragma optimize flags
#pragma endoptimize
#pragma optimize restore

See section 5.3, Compiler Optimizations in Chapter Using the Compiler of

the User's Manual. restore returns to the previous pragma level if the

same pragma is used more than once.

#pragma pack 2
#pragma pack 0

See section 3.2.4, Packed Data Types of the User's Manual.

#pragma section all "section_name"
#pragma section section_type "section_name"
#pragma section code_init
#pragma section const_init
#pragma section vector_init

#pragma section data_overlay

See section 3.10, Compiler Generated Sections and

compiler option -R in section Compiler Options in Chapter Tool Options.

#pragma source
#pragma nosource

See compiler option -s in section Compiler Options in Chapter Tool
Options.

TriCore Reference Manual1-30
C

 L
A

N
G

U
A

G
E

#pragma switch auto
#pragma switch jumptab
#pragma switch linear
#pragma switch lookup
#pragma switch restore

See section 3.11, Switch Statement of the User's Manual and

compiler option --switch in section Compiler Options in Chapter Tool
Options.

#pragma tradeoff level

Specify whether the used optizations should opimize for more speed (0),

regardless of code size or for smaller code size (4), regardless of speed).

See also compiler option -t (--tradeoff) in section Compiler Options in
Chapter Tool Options.

#pragma warning [number,...]

With this pragma you can disable warning messages. If you do not specify

a warning number, all warnings will be suppressed.

See also compiler option -w (--no-warnings) in section Compiler
Options in Chapter Tool Options.

#pragma weak symbol

Mark a symbol as "weak" (WEAK assembler directive). The symbol must

have external linkage, which means a global or external object or function.

A static symbol cannot be declared weak.

A weak external reference is resolved by the linker when a global (or

weak) definition is found in one of the object files. However, a weak

reference will not cause the extraction of a module from a library to

resolve the reference. When a weak external reference cannot be resolved,

the null pointer is substituted.

A weak definition can be overruled by a normal global definition. The

linker will not complain about the duplicate definition, and ignore the

weak definition.

See the .WEAK directive directive in Section 3.3, Assembler Directives and
Controls, in Chapter Assembly Language.

TriCore C Language 1-31

• • • • • • • •

1.7 PREDEFINED MACROS

In addition to the predefined macros required by the ISO C standard, the

TASKING TriCore C compiler supports the predefined macros as defined in

Table 1-16. The macros are useful to make conditional C code.

Macro Description

__DOUBLE_FP__ Defined when you do not use compiler option -F
(Treat double as float)

__SINGLE_FP__ Defined when you use compiler option -F (Treat

double as float)

__FPU__ Defined when you use compiler option

--fpu-present (Use hardware floating-point

instructions)

__CTC__ Identifies the compiler. You can use this symbol to flag

parts of the source which must be recognized by the

ctc compiler only. It expands to the version number of

the compiler.

__TASKING__ Identifies the compiler as the TASKING TriCore

compiler. It expands to 1.

__DSPC__ Indicates conformation to the DSP-C standard. It

expands to 1.

__DSPC_VERSION__ Expands to the decimal constant 200001L.

__VERSION__ Identifies the version number of the compiler. For

example, if you use version 2.1r1 of the compiler,

__VERSION__ expands to 2001 (dot and revision

number are omitted, minor version number in 3 digits).

__REVISION__ Identifies the revision number of the compiler. For

example, if you use version 2.1r1 of the compiler,

__REVISION__ expands to 1.

__BUILD__ Identifies the build number of the compiler, composed

of decimal digits for the build number, three digits for

the major branch number and three digits for the

minor branch number. For example, if you use build

1.22.1 of the compiler, __BUILD__ expands to

1022001. If there is no branch number, the branch

digits expand to zero. For example, build 127 results

in 127000000.

Table 1-16: Predefined macros

TriCore Reference Manual1-32
C

 L
A

N
G

U
A

G
E

2

LIBRARIES
C

H
A

P
T

E
R

TriCore Reference Manual2-2
L
IB
R
A
R
IE
S

2

C
H

A
P

T
E

R

Libraries 2-3

• • • • • • • •

2.1 INTRODUCTION

This chapter contains an overview of all library functions that you can call

in your C source. This includes all functions of the standard C library

(libc.a) and some functions of the floating-point library (libfp.a or

libfpt.a).

Section 2.2, Library Functions, gives an overview of all library functions

you can use, grouped per header file. A number of functions declared in

wchar.h are parallel to functions in other header files. These are

discussed together.

Section 2.3, C Library Reentrancy, gives an overview of which functions

are reentrant and which are not.

The following libraries are included in the TriCore (ctc) toolchain. Both

EDE and the control program cctc automatically select the appropriate

libraries depending on the specified TriCore derivative.

Library to link Description

libc.a C library

(Some functions require the floating-point library. Also

includes the startup code.)

libcs.a C library single precision (compiler option -F)

(Some functions require the floating-point library. Also

includes the startup code.)

libcs_fpu.a C library single precision with FPU instructions (compiler

option -F and --fpu-present)

libfp.a Floating-point library (non-trapping)

libfpt.a Floating-point library (trapping)

(Control program option --fp-trap)

libfp_fpu.a Floating-point library (non-trapping, with FPU instructions)

(Compiler option --fpu-present)

libfpt_fpu.a Floating-point library (trapping, with FPU instructions)

(Control program option --fp-trap, compiler option

--fpu-present)

librt.a Run-time library

Table 2-1: Overview of libraries

TriCore Reference Manual2-4
L
IB
R
A
R
IE
S

2.2 LIBRARY FUNCTIONS

The tables in the sections below list all library functions, grouped per

header file in which they are declared. Some functions are not completely

implemented because their implementaion depends on the context where

your application will run. These functions are for example all I/O related

functions. Where possible, these functions are implemented using file
system simulation (FSS). This system can be used by CrossView Pro to

simulate an I/O environment which enables you to debug your

application.

2.2.1 ASSERT.H

assert(expr) Prints a diagnostic message if NDEBUG is not defined.

(Implemented as macro)

2.2.2 COMPLEX.H

The complex number z is also written as x+yi where x (the real part) and

y (the imaginary part) are real numbers of types float, double or long

double. The real and imaginary part can be stored in structs or in arrays.

This implementation uses arrays because structs may have different

alignments.

The header file complex.h also defines the following macros for

backward compatibility:

complex _Complex /* C99 keyword */

imaginary _Imaginary /* C99 keyword */

Parallel sets of functions are defined for double, float and long double.

They are respectively named function, functionf, functionl. All long

type functions, though declared in complex.h, are implemented as the

double type variant which nearly always meets the requirement in

embedded applications.

This implementation uses the obvious implementation for complex

multiplication; and a more sophisticated implementation for divison and

absolute value calculations which handles underflow, overflow and

infinities with more care. The ISO/IEC 9899 #pragma

CX_LIMITED_RANGE therefore has no effect.

Libraries 2-5

• • • • • • • •

Trigonometric functions

csin csinf csinl Returns the complex sine of z.

ccos ccosf ccosl Returns the complex cosine of z.

ctan ctanf ctanl Returns the complex tangent of z.

casin casinf casinl Returns the complex arc sine sin-1(z).

cacos cacosf cacosl Returns the complex arc cosine cos-1(z).

catan catanf catanl Returns the complex arc tangent tan-1(z).

csinh csinhf csinhl Returns the complex hyperbolic sine of z.

ccosh ccoshf ccoshl Returns the complex hyperbolic cosine of z.

ctanh ctanhf ctanhl Returns the complex hyperbolic tangent of z.

casinh casinh cfasinhl Returns the complex arc hyperbolic sinus of z.

cacosh cacosh cfacoshl Returns the complex arc hyperbolic cosinus of z.

catanh catanhfcatanhl Returns the complex arc hyperbolic tangent of z.

Exponential and logarithmic functions

cexp cexpf cexpl Returns the result of the complex exponential

function ez.

clog clogf clogl Returns the complex natural logarithm.

Power and absolute-value functions

cabs cabsf cabsl Returns the complex absolute value of z (also

known as norm, modulus or magnitude).

cpow cpowf cpowl Returns the complex value of z raised to the

power w (zw) where both z and w are complex

numbers.

csqrt csqrtf csqrtl Returns the complex square root of z.

Manipulation functions

carg cargf cargl Returns the argument of z (also known as phase
angle).

cimag cimagf cimagl Returns the imaginary part of z as a real (re�

spectively as a double, float, long double)

conj conjf conjl Returns the complex conjugate value (the sign

of its imaginary part is reversed).

TriCore Reference Manual2-6
L
IB
R
A
R
IE
S

cproj cprojf cprojl Returns the value of the projection of z onto the

Riemann sphere.

creal crealf creall Returns the real part of z (respectively as a

double, float, long double)

2.2.3 CTYPE.H AND WCTYPE.H

The header file ctype.h declares the following functions which take a

character c as an integer type argument. The header file wctype.h

declares parallel wide-character functions which take a character c of the

wchar_t type as argument.

Ctype.h Wctype.h Description

isalnum iswalnum Returns a non-zero value when c is an alpha-

betic character or a number ([A-Z][a-z][0-9]).

isalpha iswalpha Returns a non-zero value when c is an alphabetic

character ([A-Z][a-z]).

isblank iswblank Returns a non-zero value when c is a blank

character (tab, space...)

iscntrl iswcntrl Returns a non-zero value when c is a control

character.

isdigit iswditit Returns a non-zero value when c is a numeric

character ([0-9]).

isgraph iswgraph Returns a non-zero value when c is printable, but

not a space.

islower iswlower Returns a non-zero value when c is a lowercase

character ([a-z]).

isprint iswprint Returns a non-zero value when c is printable,

including spaces.

ispunct iswpunct Returns a non-zero value when c is a punctuation

character (such as '.', ',', '!').

isspace iswspace Returns a non-zero value when c is a space type

character (space, tab, vertical tab, formfeed,

linefeed, carriage return).

isupper iswupper Returns a non-zero value when c is an uppercase

character ([A-Z]).

isxdigit iswxdigit Returns a non-zero value when c is a

hexadecimal digit ([0-9][A-F][a-f]).

Libraries 2-7

• • • • • • • •

Ctype.h DescriptionWctype.h

tolower towlower Returns c converted to a lowercase character if it

is an uppercase character, otherwise c is returned.

toupper towupper Returns c converted to an uppercase character if it

is a lowercase character, otherwise c is returned.

_tolower - Converts c to a lowercase character, does not

check if c really is an uppercase character.

Implemented as macro. This macro function is not

defined in ISO/IEC 9899.

_toupper - Converts c to an uppercase character, does not

check if c really is a lowercase character.

Implemented as macro. This macro function is not

defined in ISO/IEC 9899.

isascii Returns a non-zero value when c is in the range

of 0 and 127.

This function is not defined in ISO/IEC 9899.

toascii Converts c to an ASCII value (strip highest bit).

This function is not defined in ISO/IEC 9899.

2.2.4 ERRNO.H

int errno External variable that holds implementation defined error codes.

The following error codes are defined as macros in errno.h:

TriCore Reference Manual2-8
L
IB
R
A
R
IE
S

EZERO 0 No error

EPERM 1 Not owner

ENOENT 2 No such file or directory

EINTR 3 Interrupted system call

EIO 4 I/O error

EBADF 5 Bad file number

EAGAIN 6 No more processes

ENOMEM 7 Not enough core

EACCES 8 Permission denied

EFAULT 9 Bad address

EEXIST 10 File exists

ENOTDIR 11 Not a directory

EISDIR 12 Is a directory

EINVAL 13 Invalid argument

ENFILE 14 File table overflow

EMFILE 15 Too many open files

ETXTBSY 16 Text file busy

ENOSPC 17 No space left on device

ESPIPE 18 Illegal seek

EROFS 19 Read-only file system

EPIPE 20 Broken pipe

ELOOP 21 Too many levels of symbolic links

ENAMETOOLONG 22 File name too long

Floating-point errors

EDOM 23 Argument too large

ERANGE 24 Result too large

Errors returned by prinff/scanf

ERR_FORMAT 25 Illegal format string for printf/scanf

ERR_NOFLOAT 26 Floating-point not supported

ERR_NOLONG 27 Long not supported

ERR_NOPOINT 28 Pointers not supported

Error returned by file positioning routines

ERR_POS 29 Positioning failure

Encoding error stored in errno by functions like fgetwc, getwc,

mbrtowc, etc ...

EILSEQ 30 Illegal byte sequence (including too few bytes)

Libraries 2-9

• • • • • • • •

2.2.5 FCNTL.H

The header file fcntl.h contains the function open(), which calls the

low level function _open(), and definitions of flags used by the low level

function _open(). This header file is not defined in ISO/IEC9899.

open Opens a file a file for reading or writing. Calls _open.

(FSS implementation)

2.2.6 FENV.H

Contains mechanisms to control the floating-point environment. The

functions in this header file are not implemented.

fegetenv Stores the current floating-point environment.

(Not implemented)

feholdexept Saves the current floating-point environment and installs

an environment that ignores all floating-point

exceptions. (Not implemented)

fesetenv Restores a previously saved (fegetenv or feholdexcept)

floating-point environment. (Not implemented)

feupdateenv Saves the currently raised floating-point exceptions,

restores a previousely saved floating-point environment

and finally raises the saved exceptions.

(Not implemented)

feclearexcept Clears the current exception status flags corresponding

to the flags specified in the argument. (Not implemented)

fegetexceptflag Stores the current setting of the floating-point status

flags. (Not implemented)

feraiseexcept Raises the exceptions represented in the argument. As a

result, other exceptions may be raised as well.

(Not implemented)

fesetexceptflag Sets the current floating-point status flags.

(Not implemented)

fetestexcept Returns the bitwise-OR of the exception macros corre�

sponding to the exception flags which are currently set

and are specified in the argument. (Not implemented)

For each supported exception, a macro is defined. The following

exceptions are defined:

TriCore Reference Manual2-10
L
IB
R
A
R
IE
S

FE_DIVBYZERO FE_INEXACT FE_INVALID

FE_OVERFLOW FE_UNDERFLOW FE_ALL_EXCEPT

fegetround Returns the current rounding direction, represented as

one of the values of the rounding direction macros.

(Not implemented)

fesetround Sets the current rounding directions. (Not implemented)

Currently no rounding mode macros are implemented.

2.2.7 FLOAT.H

The header file float.h defines the characteristics of the real

floating-point types float, double and long double.

Float.h used to contain prototypes for the functions copysign(f),

isinf(f), isfinite(f), isnan(f) and scalb(f). These functions have

accordingly to the ISO/IEC9899 standard been moved to the header file

math.h. See also section 2.2.13, Math.h and Tgmath.h.

2.2.8 FSS.H

The header file fss.h contains definitions and prototypes for low level

I/O functions used for CrossView Pro's file system simulation (FSS). The

low level functions are also declared in stdio.h; they are all

implemented as FSS functions. This header file is not defined in

ISO/IEC9899.

Stdio.h Description

_fss_break(void)
Buffer and breakpoint functions for

CrossView Pro.

_fss_init(fd,is_close)

Opens file descriptors 0 (stdin), 1

(stdout) and 2 (stderr) and associates

them with terminal window FSS 0 of

CrossView Pro.

_close(fd)
_lseek(fd,offset,whence)
_open(fd,flags)
_read(fd,*buff,cnt)
_unlink(*name)
_write(fd,*buffer,cnt)

See Low Level File Access Functions
in section 2.2.20, Stdio.h.

Libraries 2-11

• • • • • • • •

2.2.9 INTTYPES.H AND STDINT.H

The header files stdint.h and inttypes.h provide additional

declarations for integer types and have various characteristics. The

stdint.h header file contains basic definitions of integer types of certain

sizes, and corresponding sets of macros. This header file clearly refers to

the corresponding sections in the ISO/IEC 9899 standard.

The inttypes.h header file incldues stdint.h and adds portable

formatting and conversion functions. Below the conversion functions from

inttypes.h are listed.

intmax_t imaxabs(intmax_t j); Returns the absolute value of j

imaxdiv_t imaxdiv(intmax_t numer,
intmax_t denom);

Computes numer/denom and

numer % denom. The result is

stored in the quot and rem

components of the imaxdiv_t

structure type.

intmax_t strtoimax(const char *
restrict nptr, char ** restrict
endptr, int base);

Convert string to maximum sized

integer. (Compare strtoll)

uintmax_t strtoumax(const char *
restrict nptr, char ** restrict
endptr, int base);

Convert string to maximum sized

unsigned integer. (Compare

strtoull)

intmax_t wcstoimax(const wchar_t
* restrict nptr, wchar_t **
restrict endptr, int base);

Convert wide string to maximum

sized integer. (Compare wcstoll)

uintmax_t wcstoumax(const wchar_t
* restrict nptr, wchar_t **
restrict endptr, int base);

Convert wide string to maximem

sized unsigned integer. (Compare

wcstoull)

TriCore Reference Manual2-12
L
IB
R
A
R
IE
S

2.2.10 ISO646.H

The header file iso646.h adds tokens that can be used instead of regular

operator tokens.

#define and &&

#define and_eq &=

#define bitand &

#define bitor |

#define compl ~

#define not !

#define not_eq !=

#define or ||

#define or_eq |=

#define xor ^

#define xor_eq ^=

2.2.11 LIMITS.H

Contains the sizes of integral types, defined as macros.

2.2.12 LOCALE.H

To keep C code reasonable portable accross different languages and

cultures, a number of facilities are provided in the header file local.h.

char *setlocale(int category, const char *locale)

The function above changes locale-specific features of the run-time

library as specified by the category to change and the name of the

locale.

The following categories are defined and can be used as input for this

function:

LC_ALL 0 LC_NUMERIC 3

LC_COLLATE 1 LC_TIME 4

LC_CTYPE 2 LC_MONETARY 5

Libraries 2-13

• • • • • • • •

struct lconv *localeconv(void)

Returns a pointer to type stuct lconv with values appropriate for

the formatting of numeric quantities according to the rules of the

current locale. The struct lconv in this header file is conforming the

ISO standard.

2.2.13 MATH.H AND TGMATH.H

The header file math.h contains the prototypes for many mathematical

functions. Before C99, all functions were computed using the double type

(the float was automatically converted to double, prior to calculation). In

this C99 version, parallel sets of functions are defined for double, float and

long double. They are respectively named function, functionf, functionl.

All long type functions, though declared in math.h, are implemented as

the double type variant which nearly always meets the requirement in

embedded applications.

The header file tgmath.h contains parallel type generic math macros

whose expansion depends on the used type. tgmath.h includes math.h

and the effect of expansion is that the correct math.h functions are called.

The type generic macro, if available, is listed in the second column of the

tables below.

Trigonometric functions

Math.h Tgmath.h Description

sin sinf sinl sin Returns the sine of x.

cos cosf cosl cos Returns the cosine of x.

tan tanf tanl tan Returns the tangent of x.

asin asinf asinl asin Returns the arc sine sin-1(x) of x.

acos acosf acosl acos Returns the arc cosine cos-1(x) of x.

atan atanf atanl atan Returns the arc tangent tan-1(x) of x.

atan2 atan2f atan2l atan2 Returns the result of: tan-1(y/x).

sinh sinhf sinhl sinh Returns the hyperbolic sine of x.

cosh coshf coshl cosh Returns the hyperbolic cosine of x.

tanh tanhf tanhl tanh Returns the hyperbolic tangent of x.

asinh asinhf asinhl asinh Returns the arc hyperbolic sinus of x.

TriCore Reference Manual2-14
L
IB
R
A
R
IE
S

Math.h DescriptionTgmath.h

acosh acoshf acoshl acosh Returns the non-negative arc hyper�

bolic cosinus of x.

atanh atanhf atanhl atanh Returns the arc hyperbolic tangent of

x.

Exponential and logarithmic functions

All of these functions are new in C99, except for exp, log and log10.

Math.h Tgmath.h Description

exp expf expl exp Returns the result of the exponential

function ex.

exp2 exp2f exp2l exp2 Returns the result of the exponential

function 2x. (Not implemented)

expm1 expm1f expm1l expm1 Returns the result of the exponential

function ex-1. (Not implemented)

log logf logl log Returns the natural logarithm ln(x),

x>0.

log10 log10f log10l log10 Returns the base-10 logarithm of x,

x>0.

log1p log1pf log1pl log1p Returns the base-e logarithm of

(1+x). x <> -1. (Not implemented)

log2 log2f log2l log2 Returns the base-2 logarithm of x.

x>0. (Not implemented)

ilogb ilogbf ilogbl ilogb Returns the signed exponent of x as

an integer. x>0. (Not implemented)

logb logbf logbl logb Returns the exponent of x as a signed

integer in value in floating-point

notation. x > 0. (Not implemented)

Libraries 2-15

• • • • • • • •

Rounding functions

Math.h Tgmath.h Description

ceil ceilf ceill ceil Returns the smallest integer not

less than x, as a double.

floor floorf floorl floor Returns the largest integer not

greater than x, as a double.

rint rintf rintl rint Returns the rounded integer

value as an int according to the

current rounding direction. See

fenv.h. (Not implemented)

lrint lrintf lrintl lrint Returns the rounded integer

value as a long int according

to the current rounding direction.

See fenv.h. (Not implemented)

llrint lrintf lrintl llrint Returns the rounded integer

value as a long long int

according to the current rounding

direction. See fenv.h.

(Not implemented)

nearbyint nearbyintf
nearbyintl

nearbyint Returns the rounded integer

value as a floating-point

according to the current rounding

direction. See fenv.h.

(Not implemented)

round roundf roundl round Returns the nearest integer

value of x as int.

(Not implemented)

lround lroundf lroundl lround Returns the nearest integer

value of x as long int.

(Not implemented)

llround lroundf
llroundl

llround Returns the nearest integer

value of x as long long int.

(Not implemented)

trunc truncf truncl trunc Returns the truncated integer

value x. (Not implemented)

TriCore Reference Manual2-16
L
IB
R
A
R
IE
S

Remainder after devision

Math.h Tgmath.h Description

fmod fmodf fmodl fmod Returns the remainder r of

x-ny. n is chosen as

trunc(x/y). r has the same

sign as x.

remainder remainderf
remainderl

remainder Returns the remainder r of

x-ny. n is chosen as

trunc(x/y). r may not have the

same sign as x. (Not implement�
ed)

remquo remquof remquol remquo Same as remainder. In addition,

the argument *quo is given a

specific value (see ISO).

(Not implemented)

frexp, ldexp, modf, scalbn, scalbln

Math.h Tgmath.h Description

frexp frexpf frexpl frexp Splits a float x into fraction f and

exponent n, so that:

f = 0.0 or 0.5 ≤ | f | ≤ 1.0 and

f*2n = x. Returns f, stores n.

ldexp ldexpf ldexpl ldexp Inverse of frexp. Returns the

result of x*2n.

(x and n are both arguments).

modf modff modfl - Splits a float x into fraction f and

integer n, so that:

| f | < 1.0 and f+n=x. Returns f,
stores n.

scalbn scalbnf scalbnl scalbn Computes the result of

x*FLT_RADIXn. efficiently, not

normally by computing

FLT_RADIXn explicitly.

scalbln scalblnf
scalblnl

scalbln Same as scalbn but with

argument n as long int.

Libraries 2-17

• • • • • • • •

Power and absolute-value functions

Math.h Tgmath.h Description

cbrt cbrtf cbrtl cbrt Returns the real cube root of x

(=x1/3). (Not implemented)

fabs fabsf fabsl fabs Returns the absolute value of x

(|x|). (abs, labs, llabs, div,

ldiv, lldiv are defined in

stdlib.h)

fma fmaf fmal fma Floating-point multiply add. Re�

turns x*y+z. (Not implemented)

hypot hypotf hypotl hypot Returns the square root of

x2+y2.

pow powf powl power Returns x raised to the power y

(xy).

sqrt sqrtf sqrtl sqrt Returns the non-negative

square root of x. x�0.

Manipulation functions: copysign, nan, nextafter, nexttoward

Math.h Tgmath.h Description

copysign copysignf
copysignl

copysign Returns the value of x with the

sign of y.

nan nanf nanl - Returns a quiet NaN, if

available, with content indcated

through tagp.

(Not implemented)

nextafter nextafterf
nextafterl

nextafter Returns the next representable

value in the specified format

after x in the direction of y.

Returns y is x=y.

(Not implemented)

nexttoward nexttowardf
nexttowardl

nexttoward Same as nextafter, except

that the second argument in all

three variants is of type long

double. Returns y if x=y.

(Not implemented)

TriCore Reference Manual2-18
L
IB
R
A
R
IE
S

Positive difference, maximum, minimum

Math.h Tgmath.h Description

fdim fdimf fdiml fdim Returns the positive difference

between: |x-y|.

(Not implemented)

fmax fmaxf fmaxl fmax Returns the maximum value of

their arguments.

(Not implemented)

fmin fminf fminl fmin Returns the minimum value of

their arguments.

(Not implemented)

Error and gamma (Not implemented)

Math.h Tgmath.h Description

erf erff erfl erf Computes the error function of x.

(Not implemented)

erfc erfcf erfcl erc Computes the complementary

error function of x.

(Not implemented)

lgamma lgammaf lgammal lgamma Computes the *loge|Γ(x)|
(Not implemented)

tgamma tgammaf tgammal tgamma Computes Γ(x)
(Not implemented)

Libraries 2-19

• • • • • • • •

Comparison macros

The next are implemented as macros. For any ordered pair of numeric

values exactly one of the relationships - less, greater, and equal - is true.

These macros are type generic and therefor do not have a parallel function

in tgmath.h. All arguments must be expressions of real-floating type.

Math.h Tgmath.h Description

isgreater - Returns the value of (x) > (y)

isgreaterequal - Returns the value of (x) >= (y)

isless - Returns the value of (x) < (y)

islessequal - Returns the value of (x) <= (y)

islessgreater - Returns the value of (x) < (y) ||

(x) > (y)

isunordered - Returns 1 if its arguments are

unordered, 0 otherwise.

Classification macros

The next are implemented as macros. These macros are type generic and

therefor do not have a parallel function in tgmath.h. All arguments must

be expressions of real-floating type.

Math.h Tgmath.h Description

fpclassify - Returns the class of its argument:

FP_INFINITE, FP_NAN, FP_NORMAL,

FP_SUBNORMAL or FP_ZERO

isfinite - Returns a nonzero value if and only if

its argument has a finite value

isinf - Returns a nonzero value if and only if

its argument has an infinit value

isnan - Returns a nonzero value if and only if

its argument has NaN value.

isnormal - Returns a nonzero value if an only if

its argument has a normal value.

signbit - Returns a nonzero value if and only if

its argument value is negative.

TriCore Reference Manual2-20
L
IB
R
A
R
IE
S

2.2.14 SETJMP.H

The setjmp and longjmp in this header file implement a primitive form

of nonlocal jumps, which may be used to handle exceptional situations.

This facility is traditionally considered more portable than signal.h.

int setjmp(jmp_buf env) Records its caller's environment in env and

returns 0.

void longjmp(jmp_buf env,
int status)

Restores the environment previously saved

with a call to setjmp().

2.2.15 SIGNAL.H

Signals are possible asynchronous events that may require special

processing. Each signal is named by a number. The following signals are

defined:

SIGINT 1 Receipt of an interactive attention signal

SIGILL 2 Detection of an invalid function message

SIGFPE 3 An errouneous arithmetic operation (for example, zero

devide, overflow)

SIGSEGV 4 An invalid access to storage

SIGTERM 5 A termination request sent to the program

SIGABRT 6 Abnormal terminiation, such as is initiated by the abort

function

The next function sends the signal sig to the program:

int raise(int sig)

The next function determines how subsequent signals will be handled:

signalfunction *signal (int, signalfunction *);

The first argument specifies the signal, the second argument points to the

signal-handler function or has one of the following values:

SIG_DFL Default behavior is used

SIG_IGN The signal is ignored

The function returns the previous value of signalfunction for the

specific signal, or SIG_ERR if an error occurs.

Libraries 2-21

• • • • • • • •

2.2.16 STDARG.H

The facilities in this header file gives you a portable way to access variable

arguments lists, such as needed for as fprintf and vfprintf. This

header file contains the following macros:

va_arg(ap,type) Returns the value of the next argument in the

variable argument list. It's return type has the

type of the given argument type. A next call to

this macro will return the value of the next

argument.

va_end(va_list ap) This macro must be called after the arguments

have been processed. It should be called before

the function using the macro 'va_start' is

terminated (ANSI specification).

va_start(va_list ap,
lastarg);

This macro initializes ap. After this call, each call

to va_arg() will return the value of the next

argument. In our implementation, va_list
cannot contain any bit type variables. Also the

given argument lastarg must be the last

non-bit type argument in the list.

2.2.17 STDBOOL.H

This header file contains the following macro definitions. These names for

boolean type and values are consisten with C++. You are allowed to

#undefine or redefine the macros below.

#define bool _Bool

#define true 1

#define false 0

#define __bool_true_false_are_defined 1

TriCore Reference Manual2-22
L
IB
R
A
R
IE
S

2.2.18 STDDEF.H

This header file defines the types for common use:

ptrdiff_t Signed integer type of the result of subtracting two pointers.

size_t Unsigned integral type of the result of the sizeof operator.

wchar_t Integer type to represent character codes in large character sets.

Besides these types, the following macros are defined:

NULL Expands to the null pointer constant

offsetof(_type, _member) Expands to an integer constant expression

with type size_t that is the offset in bytes

of _member within structure type _type.

2.2.19 STDINT.H

See section 2.2.9, inttypes.h and stdint.h

2.2.20 STDIO.H AND WCHAR.H

Types

The header file stdio.h contains for performing input and output. A

number of also have a parallel wide character function or macro, defined

in wchar.h. The header file wchar.h also stdio.h.

In the C language, many I/O facilities are based on the concept of streams.

The stdio.h header file defines the data type FILE which holds the

information about a stream. An FILE object is created with the function

fopen. The pointer to this object is used as an argument in many of the in

this header file. The FILE object can contain the following information:

• the current position within the stream

• pointers to any associated buffers

• indications of for read/write errors

• end of file indication

The header file also defines type fpos_t as an unsigned long.

Libraries 2-23

• • • • • • • •

Macros

Stdio.h Description

BUFSIZ 512 Size of the buffer used by the setbuf/setvbuf function:

512

EOF -1 End of file indicator.

WEOF UINTMAX End of file indicator.

NOTE: WEOF need not to be a negative number as long

as its value does not correspond to a member of the

wide character set. (Defined in wchar.h).

FOPEN_MAX Number of files that can be opened simultaneously: 4

NOTE: According to ISO/IEC 9899 this value must be at

least 8.

FILENAME_MAX 100 Maximum length of a filename: 100

_IOFBF
_IOLBF
_IONBF

Expand to an integer expression, suitable for use as

argument to the setvbuf function.

L_tmpnam Size of the string used to hold temporary file names: 8

(tmpxxxxx)

TMP_MAX 0x8000 Maximum number of unique temporary filenames that

can be generated: 0x8000

stderr
stdin
stdout

Expressions of type "pointer to FILE" that point to the

FILE objects associated with standard error, input and

output streams.

TriCore Reference Manual2-24
L
IB
R
A
R
IE
S

Low level file access functions

Stdio.h Description

_close(fd) Used by the functions close and fclose.

(FSS implementation)

_lseek(fd,offset,whence) Used by all file positioning functions:

fgetpos, fseek, fsetpos, ftell, rewind.

(FSS implementation)

_open(fd,flags) Used by the functions fopen and

freopen. (FSS implementation)

_read(fd,*buff,cnt) Reads a sequence of characters from a

file. (FSS implementation)

_unlink(*name) Used by the function remove.

(FSS implementation)

_write(fd,*buffer,cnt) Writes a sequence of characters to a file.

(FSS implementation)

File access

Stdio.h Description

fopen(name,mode) Opens a file for a given mode. Available

modes are:

"r" read; open text file for reading

 "w" write; create text file for writing;

if the file already exists its contents

is discarded

"a" append; open existing text file or

create new text file for writing at

end of file

 "r+" open text file for update; reading

and writing

 "w+" create text file for update; previous

contents if any is discarded

 "a+" append; open or create text file for

update, writes at end of file

(FSS implementation)

fclose(name) Flushes the data stream and closes the

specified file that was previously opened

with fopen. (FSS implementation)

Libraries 2-25

• • • • • • • •

Stdio.h Description

fflush(name) If stream is an output stream, any

buffered but unwritten date is written.

Else, the effect is undefined.

(FSS implementation)

freopen(name,mode,
 stream)

Similar to fopen, but rather then

generating a new value of type FILE *,

the existing value is associated with a

new stream. (FSS implementation)

setbuf(stream,buffer) If buffer is NULL, buffering is turned off

for the stream. Otherwise, setbuf is

equivalent to:

(void)setvbuf(stream,buf,

 _IOFBF,BUFSIZ).

setvbuf(stream,buffer,
 mode,size)

Controls buffering for the stream; this

function must be called before reading or

writing. Mode can have the following

values:

_IOFBF causes full buffering

 _IOLBF causes line buffering of

text files

 _IONBF causes no buffering

If buffer is not NULL, it will be used as a

buffer; otherwise a buffer will be

allocated. size determines the buffer size.

Character input/output

The format string of printf related functions can contain plain text

mixed with conversion specifiers. Each conversion specifier should be

preceded by a '%' character. The conversion specifier should be build in

order:

- Flags (in any order):

- specifies left adjustment of the converted argument.

+ a number is always preceded with a sign character.

+ has higher precedence than space.

space a negative number is preceded with a sign, positive

numbers with a space.

0 specifies padding to the field width with zeros (only for

numbers).

TriCore Reference Manual2-26
L
IB
R
A
R
IE
S

specifies an alternate output form. For o, the first digit will

be zero. For x or X, "0x" and "0X" will be prefixed to the

number. For e, E, f, g, G, the output always contains a

decimal point, trailing zeros are not removed.

- A number specifying a minimum field width. The converted

argument is printed in a field with at least the length specified here.

If the converted argument has fewer characters than specified, it will

be padded at the left side (or at the right when the flag '-' was

specified) with spaces. Padding to numeric fields will be done with

zeros when the flag '0' is also specified (only when padding left).

Instead of a numeric value, also '*' may be specified, the value is

then taken from the next argument, which is assumed to be of type

int.

- A period. This separates the minimum field width from the

precision.

- A number specifying the maximum length of a string to be printed.

Or the number of digits printed after the decimal point (only for

floating-point conversions). Or the minimum number of digits to be

printed for an integer conversion. Instead of a numeric value, also

'*' may be specified, the value is then taken from the next

argument, which is assumed to be of type int.

- A length modifier 'h', 'l' or 'L'. 'h' indicates that the argument is to

be treated as a short or unsigned short number. 'l' should be used if

the argument is a long integer. 'L' indicates that the argument is a

long double.

Flags, length specifier, period, precision and length modifier are optional,

the conversion character is not. The conversion character must be one of

the following, if a character following '%' is not in the list, the behavior is

undefined:

Character Printed as

d, i int, signed decimal

o int, unsigned octal

x, X int, unsigned hexadecimal in lowercase or uppercase

respectively

u int, unsigned decimal

c int, single character (converted to unsigned char)

Libraries 2-27

• • • • • • • •

Printed asCharacter

s char *, the characters from the string are printed until a NULL

character is found. When the given precision is met before,

printing will also stop

f double

e, E double

g, G double

n int *, the number of characters written so far is written into the

argument. This should be a pointer to an integer in default

memory. No value is printed.

p pointer (hexadecimal 24-bit value)

% No argument is converted, a '%' is printed.

Table 2-2: Printf conversion characters

All arguments to the scanf related functions should be pointers to

variables (in default memory) of the type which is specified in the format

string.

The format string can contain :

- Blanks or tabs, which are skipped.

- Normal characters (not '%'), which should be matched exactly in the

input stream.

- Conversion specifications, starting with a '%' character.

Conversion specifications should be built as follows (in order) :

- A '*', meaning that no assignment is done for this field.

- A number specifying the maximum field width.

- The conversion characters d, i, n, o, u and x may be preceede by

'h' if the argument is a pointer to short rather than int, or by 'l'

(letter ell) if the argument is a pointer to long. The conversion

characters e, f, and g may be preceede by 'l' if a pointer double

rather than float is in the argument list, and by 'L' if a pointer to a

long double.

- A conversion specifier. '*', maximum field width and length modifier

are optional, the conversion character is not. The conversion

character must be one of the following, if a character following '%'

is not in the list, the behavior is undefined.

TriCore Reference Manual2-28
L
IB
R
A
R
IE
S

Length specifier and length modifier are optional, the conversion character

is not. The conversion character must be one of the following, if a

character following '%' is not in the list, the behavior is undefined.

Character Scanned as

d int, signed decimal.

i int, the integer may be given octal (i.e. a leading 0 is entered)

or hexadecimal (leading "0x" or "0X"), or just decimal.

o int, unsigned octal.

u int, unsigned decimal.

x int, unsigned hexadecimal in lowercase or uppercase.

c single character (converted to unsigned char).

s char *, a string of non white space characters. The argument

should point to an array of characters, large enough to hold the

string and a terminating NULL character.

f float

e, E float

g, G float

n int *, the number of characters written so far is written into the

argument. No scanning is done.

p pointer; hexadecimal 24-bit value which must be entered

without 0x- prefix.

[...] Matches a string of input characters from the set between the

brackets. A NULL character is added to terminate the string.

Specifying []...] includes the ']' character in the set of scanning

characters.

[^...] Matches a string of input characters not in the set between the

brackets. A NULL character is added to terminate the string.

Specifying [^]...] includes the ']' character in the set.

% Literal '%', no assignment is done.

Table 2-3: Scanf conversion characters

Libraries 2-29

• • • • • • • •

Stdio.h Wchar.h Description

fgetc(stream) fgetwc(stream) Reads one character from

stream. Returns the read

character, or EOF/WEOF on

error. (FSS implementation)

getc(stream) getwc(stream) Same as fgetc/fgetwc

except that is implemented

as a macro.

(FSS implementation)
NOTE: Currently #defined

as getchar()/getwchar()

because FILE I/O is not

supported. Returns the read

character, or EOF/WEOF on

error.

getchar(stdin) getwchar(stdin) Reads one character from

the stdin stream. Returns

the character read or

EOF/WEOF on error.

Implemented as macro.

(FSS implementation)

fgets(*s, n,
stream)

fgetws(*s, n,
stream)

Reads at most the next n-1

characters from the stream
into array s until a newline is

found. Returns s or NULL or

EOF/WEOF on error.

(FSS implementation)

gets(*s, n, stdin) - Reads at most the next n-1

characters from the stdin

stream into array s. A

newline is ignored. Returns

s or NULL or EOF/WEOF on

error. (FSS implementation)

ungetc(c, stream) ungetwc(c, stream) Pushes character c back

onto the input stream.

Returns EOF/WEOF on

error.

fscanf(stream,
format,...)

fwscanf(stream,
format,...)

Performs a formatted read

from the given stream.

Returns the number of items

converted succesfully.

(FSS implementation)

TriCore Reference Manual2-30
L
IB
R
A
R
IE
S

DescriptionStdio.h Wchar.h

scanf(format,...) wscanf(format,...) Performs a formatted read

from stdin. Returns the

number of items converted

succesfully.

(FSS implementation)

sscanf(*s,
format,...)

swscanf(*s,
format,...)

Performs a formatted read

from the string s. Returns

the number of items

converted succesfully.

vfscanf(stream,
format,arg)

vfwscanf(stream,
format,arg)

Same as fscanf/fwscanf,

but extra arguments are

given as variable argument

list arg. (See section 2.2.16,

stdarg.h)

vscanf(format,
arg)

vwscanf(format,
arg)

Same as sscanf/swscanf,

but extra arguments are

given as variable argument

list arg. (See section 2.2.16,

stdarg.h)

vsscanf(*s,
format,arg)

vswscanf(*s,
format,arg)

Same as scanf/wscanf, but

extra arguments are given

as variable argument list

arg. (See section 2.2.16,

stdarg.h)

fputc(c, stream) fputwc(c, stream) Put character c onto the

given stream. Returns

EOF/WEOF on error.

(FSS implementation)

putc(c, stream) putwc(c, stream) Same as fpuc/fputwc

except that is implemented

as a macro.

(FSS implementation)

putchar(c, stdout) putwchar(c,
stdout)

Put character c onto the

stdout stream. Returns

EOF/WEOF on error.

Implemented as macro.

(FSS implementation)

fputs(*s, stream) fputws(*s, stream) Writes string s to the given

stream. Returns EOF/WEOF

on error.

(FSS implementation)

Libraries 2-31

• • • • • • • •

DescriptionStdio.h Wchar.h

puts(*s) - Writes string s to the stdout

stream. Returns EOF/WEOF

on error.

(FSS implementation)

fprintf(stream,
format,...)

fwprintf(stream,
format,...)

Performs a formatted write

to the given stream. Returns

EOF/WEOF on error.

(FSS implementation)

printf(format,
...)

wprintf(format,
...)

Performs a formatted write

to the stream stdout.

Returns EOF/WEOF on

error. (FSS implementation)

sprintf(*s,
format,...)

- Performs a formatted write

to string s. Returns

EOF/WEOF on error.

snprintf(*s, n,
format,...)

swprintf(*s, n,
format,...)

Same as sprintf, but n

specifies the maximum

number of characters

(including the terminating

null character) to be written.

vfprintf(stream,
format,arg)

vfwprintf(stream,
format,arg)

Same as

fprintf/fwprintf, but

extra arguments are given

as variable argument list

arg. (See section 2.2.16,

stdarg.h)

(FSS implementation)

vprintf(format,
arg)

vwprintf(format,
arg)

Same as printf/wprintf,

but extra arguments are

given as variable argument

list arg. (See section 2.2.16,

stdarg.h)

(FSS implementation)

vsprintf(*s,
format,arg)

vswprintf(*s,
format,arg)

Same as

sprintf/swprintf, but

extra arguments are given

as variable argument list

arg. (See section 2.2.16,

stdarg.h)

TriCore Reference Manual2-32
L
IB
R
A
R
IE
S

Direct input/output

Stdio.h Description

fread(ptr,size,nobj,stream) Reads nobj members of size
bytes from the given stream into

the array pointed to by ptr.
Returns the number of elements

succesfully read.

(FSS implementation)

fwrite((ptr,size,nobj,stream) Writes nobj members of size
bytes from to the array pointed to

by ptr to the given stream.

Returns the number of elements

succesfully written.

(FSS implementation)

Random access

Stdio.h Description

fseek(stream, offset,
origin)

Sets the position indicator for stream.

(FSS implementation)

When repositioning a binary file, the new position origin is given by the following

macros:

SEEK_SET 0 offset characters from the beginning of the file

SEEK_CUR 1 offset characters from the current position in the file

SEEK_END 2 offset characters from the end of the file

ftell(stream) Returns the current file position for stream, or

-1L on error. (FSS implementation)

rewind(stream) Sets the file position indicator for the stream to

the beginning of the file. This function is

equivalent to:

 (void) fseek(stream,0L,SEEK_SET);

 clearerr(stream);

(FSS implementation)

fgetpos(stream,pos) Stores the current value of the file position

indicator for stream in the object pointed to by

pos. (FSS implementation)

fsetpos(stream,pos) Positions stream at the position recorded by

fgetpos in *pos. (FSS implementation)

Libraries 2-33

• • • • • • • •

Operations on files

Stdio.h Description

remove(file) Removes the named file, so that a subsequent

attempt to open it fails. Returns a non-zero value if

not succesful.

rename(old,new) Changes the name of the file from old name to new

name. Returns a non-zero value if not succesful.

tmpfile() Creates a temporary file of the mode "wb+" that will be

automatically removed when closed or when the

program terminates normally. Returns a file pointer.

tmpnam(buffer) Creates new file names that do not conflict with other

file names currently in use. The new file name is

stored in a buffer which must have room for

L_tmpnam characters. Returns a pointer to the

temporary name. The file names are created in the

current directory and all start with "tmp". At most

TMP_MAX unique file names can be generated.

Error handling

Stdio.h Description

clearerr(stream) Clears the end of file and error indicators for stream.

ferror(stream) Returns a non-zero value if the error indicator for

stream is set.

feof(stream) Returns a non-zero value if the end of file indicator for

stream is set.

perror(*s) Prints s and the error message belonging to the inte�

ger errno. (See section 2.2.4, errno.h)

2.2.21 STDLIB.H AND WCHAR.H

The header file stdlib.h contains general utility functions which fall into

the following categories (Some have parallel wide-character, declared in

wchar.h)

• Numeric conversions

• Random number generation

• Memory management

• Envirnoment communication

• Searching and sorting

TriCore Reference Manual2-34
L
IB
R
A
R
IE
S

• Integer arithmetic

• Multibyte/wide character and string conversions.

Macros

RAND_MAX 32767 Highest number that can be returned by the

rand/srand function.

EXIT_SUCCES 0
EXIT_FAILURE 1

Predefined exit codes that can be used in the exit

function.

MB_CUR_MAX 1 Maximum number of bytes in a multibyte character

for the extended character set specified by the

current locale (category LC_CTYPE, see section

2.2.12, locale.h).

Numeric conversions

Next functions convert the intial portion of a string *s to a double, int,

long int and long long int value respectively.

double atof(*s)
int atoi(*s)
long atol(*s)
long long atoll(*s)

Next functions convert the initial portion of the string *s to a float, double

and long double value respectively. *endp will point to the first character

not used by the conversion.

Stdlib.h Wchar.h

float strtof(*s,**endp)
double strtod(*s,**endp)
long double strtold(*s,**endp)

float wcstof(*s,**endp)

double wcstod(*s,**endp)

long double wcstold(*s,**endp)

Libraries 2-35

• • • • • • • •

Next functions convert the initial portion of the string *s to a long, long

long, unsigned long and unsigned long long respectively. Base

specifies the radix. *endp will point to the first character not used by the

conversion.

Stdlib.h Wchar.h

long strtol (*s,**endp,base)
long long strtoll
 (*s,**endp,base)
unsigned long strtoul
 (*s,**endp,base)
unsigned long long strtoull
 (*s,**endp,base)

long wcstol (*s,**endp,base)

long long wcstoll

 (*s,**endp,base)

unsigned long wcstoul

 (*s,**endp,base)

unsigned long long wcstoull

 (*s,**endp,base)

Random number generation

rand Returns a pseudo random integer in the range 0 to

RAND_MAX.

srand(seed) Same as rand but uses seed for a new sequence of

pseudo random numbers.

Memory management

malloc(size) Allocates space for an object with size size.

The allocated space is not initialized. Returns a

pointer to the allocated space.

calloc(nobj,size) Allocates space for n objects with size size.

The allocated space is initialized with zeros.

Returns a pointer to the allocated space.

free(*ptr) Deallocates the memory space pointed to by ptr
which should be a pointer earlier returned by the

malloc or calloc function.

realloc(*ptr,size) Deallocates the old object pointed to by ptr and

returns a pointer to a niew object with size size.

The new object cannot have a size larger than the

previous object.

TriCore Reference Manual2-36
L
IB
R
A
R
IE
S

Environment communication

abort() Causes abnormal program termination. If the

signal SIGABRTis caught, the signal handler may

take over control. (See section 2.2.15, signal.h).

atexit(*func) Func points to a function that is called (without

arguments) when the program normally

terminates.

exit(status) Causes normal program termination. Acts as if

main() returns with status as the return value.

Status can also be specified with the predefined

macros EXIT_SUCCES or EXIT_FAILURE.

_Exit(status) Same as exit, but not registered by the atexit

function or signal handlers registerd by the

signal function are called.

getenv(*s) Searches an environment list for a string s.

Returns a pointer to the contents of s.

NOTE: this function is not implemented because

there is no OS.

system(*s) Passes the string s to the environment for

execution.

NOTE: this function is not implemented because

there is no OS.

Searching and sorting

bsearch(*key,*base,
 n,size,
 *cmp)

This function searches in an array of n members,

for the object pointed to by key. The initial base of

the array is given by base. The size of each

member is specified by size. The given array must

be sorted in ascending order, according to the

results of the function pointed to by cmp. Returns

a pointer to the matching member in the array, or

NULL when not found.

qsort(*base,n,
 size,*cmp)

This function sorts an array of n members using

the quick sort algorithm. The initial base of the

array is given by base. The size of each member

is specified by size. The array is sorted in

ascending order, according to the results of the

function pointed to by cmp.

Libraries 2-37

• • • • • • • •

Integer arithmetic

int abs(j)
long labs(j)
long long llabs(j)

Compute the absolute value of an int, long

int, and long long int j resepectively.

div_t div(x,y)
ldiv_t ldiv(x,y)
lldiv_t lldiv(x,y)

Compute x/y and x%y in a single operation. X
and y have respectively type int, long int and

long long int. The result is stored in the

members quot and rem of struct div_t,

ldiv_t and lldiv_t which have the same

types.

Multibyte/wide character and string conversions

mblen(*s,n) Determines the number of bytes in the

multi-byte character pointed to by s. At most n
characters will be examined. (See also mbrlen

in section 2.2.25, wchar.h)

mbtowc(*pwc,*s,n) Converts the multi-byte character in s to a

wide-character code and stores it in pwc. At

most n characters will be examined.

wctomb(*s,wc) Converts the wide-character wc into a

multi-byte representation and stores it in the

string pointed to by s. At most MB_CUR_MAX

characters are stored.

mbstowcs(*pwcs,*s,n) Converts a sequence of multi-byte characters in

the string pointed to by s into a sequence of wide

characters and stores at most n wide characters

into the array pointed to by pwcs. (See also

mbsrtowcs in section 2.2.25, wchar.h)

wcstombs(*s,*pwcs,n) Converts a sequence of wide characters in the

array pointed to by pwcs into multi-byte

characters and stores at most n multi-byte

characters into the string pointed to by s. (See

also wcsrtowmb in section 2.2.25, wchar.h)

2.2.22 STRING.H AND WCHAR.H

This header file provides numerous functions for manipulating strings. By

convention, strings in C are arrays of characters with a terminating null

character. Most functions therefore take arguments of type *char.

However, many functions have also parallel wide-character functions

which take arguments of type *wchar_t. These functions are declared in

wchar.h.

TriCore Reference Manual2-38
L
IB
R
A
R
IE
S

Copying and concatenation functions

Stdio.h Wchar.h Description

memcpy(*s1,
 *s2,n)

wmemcpy(*s1,
 *s2,n)

Copies n characters from

*s2 into *s1 and returns

*s1. If *s1 and *s2 overlap

the result is undefined.

memmove(*s1,
 *s2,n)

wmemmove(*s1,
 *s2,n)

Same as memcpy, but

overlapping strings are

handled correctly. Returns

*s1.

strcpy(*s1,*s2) wcscpy(*s1,*s2) Copies *s2 into *s1 and

returns *s1. If *s1 and *s2
overlap the result is

undefined.

strncpy(*s1,
 *s2,n)

wcsncpy(*s1,
 *s2,n)

Copies not more than n
characters from *s2 into

*s1 and returns *s1. If *s1
and *s2 overlap the result

is undefined.

strcat(*s1,*s2) wcscat(*s1,*s2) Appends a copy of *s2 to

*s1 and returns *s1. If *s1
and *s2 overlap the result

is undefined.

strncat(*s1,
 *s2,n)

wcsncat(*s1,
 *s2,n)

Appends not more than n
characters from *s2 to *s1
and returns *s1. If *s1 and

*s2 overlap the result is

undefined.

Libraries 2-39

• • • • • • • •

Comparison functions

Stdio.h Wchar.h Description

memcmp(*s1,
 *s2,n)

wmemcmp(*s1,
 *s2,n)

Compares the first n
characters of *s1 to the first

n characters of *s2. Returns

< 0 if *s1 < *s2, 0 if *s1 = =

*s2, or > 0 if *s1 > *s2.

strcmp(*s1,*s2) wcscmp(*s1,*s2) Compares string *s1 to *s2.

Returns < 0 if *s1 < *s2, 0 if

*s1 = = *s2, or > 0 if *s1 >

*s2.

strncmp(*s1,
 *s2,n)

wcsncmp(*s1,
 *s2,n)

Compares the first n
characters of *s1 to the first

n characters of *s2. Returns

< 0 if *s1 < *s2, 0 if *s1 = =

*s2, or > 0 if *s1 > *s2.

strcoll(*s1,*s2) wcscoll(*s1,*s2) Performs a local-specific

comparison between string

*s1 and string *s2 according

to the LC_COLLATE

category of the current

locale. Returns < 0 if *s1 <

*s2, 0 if *s1 = = *s2, or > 0 if

*s1 > *s2. (See section

2.2.12, locale.h)

strxfrm(*s1,
 *s2,n)

wcsxfrm(*s1,
 *s2,n)

Transforms (a local) string

*s2 so that a comparison

between transformed strings

with strcmp gives the same

result as a comparison

between non-transformed

strings with strcoll.

Returns the transformed

string *s1.

TriCore Reference Manual2-40
L
IB
R
A
R
IE
S

Search functions

Stdio.h Wchar.h Description

memchr(*s,c,n) wmemchr(*s,c,n) Checks the first n characters

of *s on the occurence of

character c. Returns a

pointer to the found

character.

strchr(*s,c) wcschr(*s,c) Returns a pointer to the first

occurence of character c in

*s or the null pointer if not

found.

strrchr(*s,c) wcsrchr(*s,c) Returns a pointer to the last

occurence of character c in

*s or the null pointer if not

found.

strspn(*s,*set) wcsspn(*s,*set) Searches *s for a sequence

of characters specified in

*set. Returns the length of

the first sequence found.

strcspn(*s,*set) wcscspn(*s,*set) Searches *s for a sequence

of characters not specified in

*set. Returns the length of

the first sequence found.

strpbrk(*s,*set) wcspbrk(*s,*set) Same as strspn/wcsspn

but returns a pointer to the

first character in *s that also

is specified in *set.

strstr(*s,*sub) wcsstr(*s,*sub) Searches for a substring

*sub in *s. Returns a pointer

to the first occurence of *sub
in *s.

strtok(*s,*dlm) wcstok(*s,*dlm) A sequence of calls to this

function breaks the string *s
into a sequence of tokens

delimited by a character

specified in *dlm. The token

found in *s is terminated with

a null character. Returns a

pointer to the first position in

*s of the token.

Libraries 2-41

• • • • • • • •

Miscellaneous functions

Stdio.h Wchar.h Description

memset(*s,c,n) wmemset(*s,c,n) Fills the first n bytes of *s
with character c and returns

*s.

strerror(errno) - Typically, the values for err�

no come from int errno.

This function returns a point�

er to the associated error

message. (See also section

2.2.4, errno.h)

strlen(*s) wcslen(*s) Returns the length of string

*s.

2.2.23 TIME.H AND WCHAR.H

The header file time.h provides facilities to retrieve and use the

(calendar) date and time, and the process time. Time can be represented

as an integer value, or can be broken-down in components. Two

arithmetic data types are defined which are capable of holding the integer

representation of times:

clock_t unsigned long long

time_t unsigned long

The type struct tm below is defined according to ISO/IEC9899 with one

exception: this implementation does not support leap seconds. The

struct tm type is defines as follows:

struct tm

{

 int tm_sec; /* seconds after the minute - [0, 59] */

 int tm_min; /* minutes after the hour - [0, 59] */

 int tm_hour; /* hours since midnight - [0, 23] */

 int tm_mday; /* day of the month - [1, 31] */

 int tm_mon; /* months since January - [0, 11] */

 int tm_year; /* year since 1900 */

 int tm_wday; /* days since Sunday - [0, 6] */

 int tm_yday; /* days since January 1 - [0, 365] */

 int tm_isdst; /* Daylight Saving Time flag */

};

TriCore Reference Manual2-42
L
IB
R
A
R
IE
S

Time manipulation

clock Returns the application's best approximation to

the processor time used by the program since it

was started. This low-level routine is not

implemented because it strongly depends on the

hardware. To determine the time in seconds, the

result of clock should be divided by the value

defined as

 CLOCKS_PER_SEC 12000000

difftime(t1,t0) Returns the difference t1-t0 in seconds.

mktime(tm *tp) Converts the broken-down time in the structure

pointed to by tp, to a value of type time_t. The

return value has the same encoding as the return

value of the time function.

time(*timer) Returns the current calendar time. This value is

also assigned to *timer.

Time conversion

asctime(tm *tp) Converts the broken-down time in the structure

pointed to by tp into a string in the form Mon Jan

21 16:15:14 2004\n\0. Returns a pointer to

this string.

ctime(*timer) Converts the calender time pointed to by timer to
local time in the form of a string. This is equivalent

to: asctime(localtime(timer))

gmtime(*timer) Converts the calender time pointed to by timer to
the broken-down time, expressed as UTC.

Returns a pointer to the broken-down time.

localtime(*timer) Converts the calendar time pointed to by timer to
the broken-down time, expressed as local time.

Returns a pointer to the broken-down time.

Libraries 2-43

• • • • • • • •

Formatted time

The next function has a parallel function defined in wchar.h:

Stdio.h Wchar.h

strftime(*s,smax,*fmt,tm *tp) wstrftime(*s,smax,*fmt,tm *tp)

Formats date and time information from struct tm *tp into *s according

to the specified format *fmt. No more than smax characters are placed into

*s. The formatting of strftime is locale-specific using the LC_TIME

category (see section 2.2.12, locale.h). You can use the next conversion

specifiers:

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c local date and time representation

%d day of the month (01-31)

%H hour, 24-hour clock (00-23)

%I hour, 12-hour clock (01-12)

%j day of the year (001-366)

%m month (01-12)

%M minute (00-59)

%p local equivalent of AM or PM

%S second (00-59)

%U week number of the year, Sunday as first day of the week (00-53)

%w weekday (0-6, Sunday is 0)

%W week number of the year, Monday as first day of the week (00-53)

%x local date representation

%X local time representation

%y year without century (00-99)

%Y year with century

%Z time zone name, if any

%% %

TriCore Reference Manual2-44
L
IB
R
A
R
IE
S

2.2.24 UNISTD.H

The file unistd.h contains standard UNIX I/O functions. These functions

are all implemented using CrossView Pro's file system simulation. This

header file is not defined in ISO/IEC9899.

access(*name,mode) Use the file system simulation of CrossView Pro

to check the permissions of a file on the host.

mode specifies the type of access and is a bit

pattern constructed by a logical OR of the

following values:

 R_OK Checks read permission.

 W_OK Checks write permission.

 X_OK Checks execute (search) permission.

 F_OK Checks to see if the file exists.

(FSS implementation)

chdir(*path) Use the file system simulation feature of

CrossView Pro to change the current directory

on the host to the directory indicated by path.

(FSS implementation)

close(fd) File close function. The given file descriptor

should be properly closed. This function calls

_close(). (FSS implementation)

getcwd(*buf,size) Use the file system simulation feature of

CrossView Pro to retrieve the current directory

on the host. Returns the directory name. (FSS
implementation)

lseek(fd,offset,
 whence)

Moves read-write file offset. Calls _lseek().

(FSS implementation)

read(fd,*buff,cnt) Reads a sequence of characters from a file. This

function calls _read(). (FSS implementation)

stat(*name,*buff) Use the file system simulation feature of

CrossView Pro to stat() a file on the host

platform. (FSS implementation)

unlink(*name) Removes the named file, so that a subsequent

attempt to open it fails. Calls _unlink().

(FSS implementation)

write(fd,*buff,cnt) Write a sequence of characters to a file.

Calls _write(). (FSS implementation)

Libraries 2-45

• • • • • • • •

2.2.25 WCHAR.H

Many functions in wchar.h represent the wide-character variant of other

functions so these are discussed together. (See sections 2.2.20, stdio.h,

2.2.21, stdlib.h, 2.2.22, strings.h and 2.2.23, time.h).

The remaining functions are described below. They perform conversions

between multi-byte characters and wide characters. In these functions, ps

points to struct mbstate_t which holds the conversion state information

necessary to convert between sequences of multibyte characters and wide

characters:

typedef struct

{

 wchar_t wc_value; /* wide character value solved

 so far */

 unsigned short n_bytes; /* number of bytes of solved

 multibyte */

 unsigned short encoding; /* encoding rule for wide

 character <=> multibyte

 conversion */

} mbstate_t;

When multibyte characters larger than 1 byte are used, this struct will be

used to store the conversion information when not all the bytes of a

particular multibyte character have been read from the source. In this

implementation, multi-byte characters are 1 byte long (MB_CUR_MAX and

MB_LEN_MAX are defined as 1) and this will never occur.

mbsinit(*ps) Determines whether the object pointed to

by ps, is an initial conversion state.

Returns a non-zero value if so.

mbsrtowcs(*pwcs,**src,
 n,*ps)

Restartable version of mbstowcs. See

section 2.2.21, stdlib.h. The initial

conversion state is specified by ps. The

input sequence of multibyte charactersis

specified indirectly by src.

wcsrtombs(*s,**src,
 n,*ps)

Restartable version of wcstombs. See

section 2.2.21, stdlib.h. The initial

conversion state is specified by ps. The

input wide string is specified indirectly by

src.

mbrtowc(*pwc,*s,n,*ps) Converts a multibyte character *s to a wide

character *pwc according to conversion

state ps. See also mbtowc in section

2.2.21, stdlib.

TriCore Reference Manual2-46
L
IB
R
A
R
IE
S

wcrtomb(*s,wc,*ps) Converts a wide character wc to a

multi-byte character according to

conversion state ps and stores the

multi-byte character in *s.

btowc(c) Returns the wide character

corresponding to character c. Returns

WEOF on error.

wctob(c) Returns the multi-byte character

corresponding to the wide character c.

The returned multi-byte character is

represented as one byte. Returns EOF

on error.

mbrlen(*s,n,*ps) Inspects up to n bytes from the string *s
to see if those characters represent valid

multibyte characters, relative to the

conversion state held in *ps.

2.2.26 WCTYPE.H

Most functions in wctype.h represent the wide-character variant of

functions declared in ctype.h and are discussed in section 2.2.3, ctype.h.

In addition, this header file provides extensible, locale specific functions

and wide character classification.

wctype(*property) Constructs a value of type wctype_t that describes

a class of wide characters identified by the string

*property. If property identifies a valid class of wide

characters according to the LC_TYPE category (see

2.2.12, locale.h) of the current locale, a non-zero

value is returned that can be used as an argument

in the iswctype function.

iswctype(wc,desc) Tests whether the wide character wc is a member of

the class represented by wctype_t desc. Returns a

non-zero value if tested true.

Function Equivalent to locale specific test

iswalnum(wc) iswctype(wc,wctype("alnum"))

iswalpha(wc) iswctype(wc,wctype("alpha"))

iswcntrl(wc) iswctype(wc,wctype("cntrl"))

iswdigit(wc) iswctype(wc,wctype("digit"))

iswgraph(wc) iswctype(wc,wctype("graph"))

Libraries 2-47

• • • • • • • •

Function Equivalent to locale specific test

iswlower(wc) iswctype(wc,wctype("lower"))

iswprint(wc) iswctype(wc,wctype("print"))

iswpunct(wc) iswctype(wc,wctype("punct"))

iswspace(wc) iswctype(wc,wctype("space"))

iswupper(wc) iswctype(wc,wctype("upper"))

iswxditig(wc) iswctype(wc,wctype("xdigit"))

wctrans(*property) Constructs a value of type wctype_t that describes

a mapping between wide characters identified by the

string *property. If property identifies a valid mapping

of wide characters according to the LC_TYPE

category (see 2.2.12, locale.h) of the current locale,

a non-zero value is returned that can be used as an

argument in the towctrans function.

towctrans(wc,desc) Transforms wide character wc into another

wide-character, described by desc.

Function Equivalent to locale specific transformation

towlower(wc) towctrans(wc,wctrans("tolower")

towupper(wc) towctrans(wc,wctrans("toupper")

TriCore Reference Manual2-48
L
IB
R
A
R
IE
S

2.3 C LIBRARY REENTRANCY

Some of the functions in the C library are reentrant, others are not. The

table below shows the functions in the C library, and whether they are

reentrant or not. A dash means that the function is reentrant. Note that

some of the functions are not reentrant because they set the global

variable 'errno' (or call other functions that eventually set 'errno'). If your

program does not check this variable and errno is the only reason for the

function not being reentrant, these functions can be assumed reentrant as

well.

The explanation of the cause why a function is not reentrant sometimes

refers to a footnote because the explanation is to lengthy for the table.

Function Not reentrant because

_close Uses global File System Simulation buffer,

fss_buffer

_doflt Uses I/O functions which modify iob[].

See (1).

_doprint Uses indirect access to static iob[] array.

See (1).

_doscan Uses indirect access to iob[] and calls un�

getc (access to local static ungetc[] buffer).

See (1).

_Exit See exit.

_filbuf Uses iob[]. See (1).

_flsbuf Uses iob[]. See (1).

_getflt Uses iob[]. See (1).

_iob Defines static iob[]. See (1).

_ioread Depends on low level I/O implementation.

Uses iob[]. See (1).

_iowrite Depends on low level I/O implementation.

Uses iob[]. See (1).

_lseek Uses global File System Simulation buffer,

_fss_buffer

_open Uses global File System Simulation buffer,

_fss_buffer

_read Uses global File System Simulation buffer,

_fss_buffer

Libraries 2-49

• • • • • • • •

Not reentrant becauseFunction

_unlink Uses global File System Simulation buffer,

_fss_buffer

_write Uses global File System Simulation buffer,

_fss_buffer

abort Calls exit

abs labs llabs -

access Uses global File System Simulation buffer,

_fss_buffer

acos acosf acosl Sets errno.

acosh acoshf acoshl Sets errno via calls to other functions.

asctime asctime defines static array for broken-

down time string.

asin asinf asinl Sets errno.

asinh asinhf asinhl Sets errno via calls to other functions.

atan atanf atanl -

atan2 atan2f atan2l -

atanh atanhf atanhl Sets errno via calls to other functions.

atexit atexit defines static array with function

pointers to execute at exit of program.

atof -

atoi -

atol -

bsearch -

btowc -

cabs cabsf cabsl Sets errno via calls to other functions.

cacos cacosf cacosl Sets errno via calls to other functions.

cacosh cacosh cfacoshl Sets errno via calls to other functions.

calloc calloc uses static buffer management

structures. See malloc (5).

carg cargf cargl -

casin casinf casinl Sets errno via calls to other functions.

casinh casinh cfasinhl Sets errno via calls to other functions.

catan catanf catanl Sets errno via calls to other functions.

TriCore Reference Manual2-50
L
IB
R
A
R
IE
S

Not reentrant becauseFunction

catanh catanhf catanhl Sets errno via calls to other functions.

cbrt cbrtf cbrtl (Not implemented)

ccos ccosf ccosl Sets errno via calls to other functions.

ccosh ccoshf ccoshl Sets errno via calls to other functions.

ceil ceilf ceill -

cexp cexpf cexpl Sets errno via calls to other functions.

chdir Uses global File System Simulation buffer,

fss_buffer

cimag cimagf cimagl -

cleanup Calls fclose. See (1)

clearerr Modifies iob[]. See (1)

clock -

clog clogf clogl Sets errno via calls to other functions.

close Calls _close

conj conjf conjl -

copysign copysignf
 copysignl

-

cos cosf cosl -

cosh coshf coshl cosh calls exp(), which sets errno. If errno

is discarded, cosh is reentrant.

cpow cpowf cpowl Sets errno via calls to other functions.

cproj cprojf cprojl -

creal crealf creall -

csin csinf csinl Sets errno via calls to other functions.

csinh csinhf csinhl Sets errno via calls to other functions.

csqrt csqrtf csqrtl Sets errno via calls to other functions.

ctan ctanf ctanl Sets errno via calls to other functions.

ctanh ctanhf ctanhl Sets errno via calls to other functions.

ctime Calls asctime

difftime -

div ldiv lldiv -

erf erfl erff (Not implemented)

Libraries 2-51

• • • • • • • •

Not reentrant becauseFunction

erfc erfcf erfcl (Not implemented)

exit Calls fclose indirectly which uses iob[]

calls functions in _atexit array. See (1).

To make exit reentrant kernel support is

required.

exp expf expl Sets errno.

exp2 exp2f exp2l (Not implemented)

expm1 expm1f expm1l (Not implemented)

fabs fabsf fabsl -

fclose Uses values in iob[]. See (1).

fdim fdimf fdiml (Not implemented)

feclearexcept (Not implemented)

fegetenv (Not implemented)

fegetexceptflag (Not implemented)

fegetround (Not implemented)

feholdexept (Not implemented)

feof Uses values in iob[]. See (1).

feraiseexcept (Not implemented)

ferror Uses values in iob[]. See (1).

fesetenv (Not implemented)

fesetexceptflag (Not implemented)

fesetround (Not implemented)

fetestexcept (Not implemented)

feupdateenv (Not implemented)

fflush Modifies iob[]. See (1).

fgetc fgetwc Uses pointer to iob[]. See (1).

fgetpos Sets the variable errno and uses pointer to

iob[]. See (1) / (2).

fgets fgetws Uses iob[]. See (1).

floor floorf floorl -

fma fmaf fmal (Not implemented)

fmax fmaxf fmaxl (Not implemented)

fmin fminf fminl (Not implemented)

TriCore Reference Manual2-52
L
IB
R
A
R
IE
S

Not reentrant becauseFunction

fmod fmodf fmodl -

fopen Uses iob[] and calls malloc when file open

for buffered IO. See (1)

fpclassify -

fprintf fwprintf Uses iob[]. See (1).

fputc fputwc Uses iob[]. See (1).

fputs fputws Uses iob[]. See (1).

fread Calls fgetc. See (1).

free free uses static buffer management struc�

tures. See malloc (5).

freopen Modifies iob[]. See (1).

frexp frexpf frexpl -

fscanf fwscanf Uses iob[]. See (1)

fseek Uses iob[] and calls _doscan.

Acesses ungetc[] array. See (1).

fsetpos Uses iob[] and sets errno. See (1) / (2).

ftell Uses iob[] and sets errno. Calls _lseek.

See (1) / (2).

fwrite Uses iob[]. See (1).

getc getwc Uses iob[]. See (1).

getchar getwchar Uses iob[]. See (1).

getcwd Uses global File System Simulation buffer,

_fss_buffer

getenv Skeleton only.

gets getws Uses iob[]. See (1).

gmtime gmtime defines static structure

hypot hypotf hypotl Sets errno via calls to other functions.

ilogb ilogbf ilogbl (Not implemented)

imaxabs -

imaxdiv -

isalnum iswalnum -

isalpha iswalpha -

isascii iswascii -

Libraries 2-53

• • • • • • • •

Not reentrant becauseFunction

iscntrl iswcntrl -

isdigit iswdigit -

isfinite -

isgraph iswgraph -

isgreater -

isgreaterequal -

isinf -

isless -

islessequal -

islessgreater -

islower iswlower -

isnan -

isnormal -

isprint iswprint -

ispunct iswpunct -

isspace iswspace -

isunordered -

isupper iswupper -

iswalnum -

iswalpha -

iswcntrl -

iswctype -

iswdigit -

iswgraph -

iswlower -

iswprint -

iswpunct -

iswspace -

iswupper -

iswxditig -

isxdigit iswxdigit -

TriCore Reference Manual2-54
L
IB
R
A
R
IE
S

Not reentrant becauseFunction

ldexp ldexpf ldexpl Sets errno. See (2).

lgamma lgammaf lgammal (Not implemented)

llrint lrintf lrintl (Not implemented)

llround llroundf llroundl (Not implemented)

localeconv N.A.; skeleton function

localtime

log logf logl Sets errno. See (2).

log10 log10f log10l Sets errno via calls to other functions.

log1p log1pf log1pl (Not implemented)

log2 log2f log2l (Not implemented)

logb logbf logbl (Not implemented)

longjmp -

lrint lrintf lrintl (Not implemented)

lround lroundf lroundl (Not implemented)

lseek Calls _lseek

malloc Needs kernel support. See (5).

mblen N.A., skeleton function

mbrlen Sets errno.

mbrtowc Sets errno.

mbsinit -

mbsrtowcs Sets errno.

mbstowcs N.A., skeleton function

mbtowc N.A., skeleton function

memchr wmemchr -

memcmp wmemcmp -

memcpy wmemcpy -

memmove wmemmove -

memset wmemset -

mktime -

modf modff modfl -

nan nanf nanl (Not implemented)

Libraries 2-55

• • • • • • • •

Not reentrant becauseFunction

nearbyint nearbyintf
 nearbyintl

(Not implemented)

nextafter nextafterf
 nextafterl

(Not implemented)

nexttoward nexttowardf
 nexttowardl

(Not implemented)

offsetof -

open Calls _open

perror Uses errno. See (2)

pow powf powl Sets errno. See (2)

printf wprintf Uses iob[]. See (1)

putc putwc Uses iob[]. See (1)

putchar putwchar Uses iob[]. See (1)

puts Uses iob[]. See (1)

qsort -

raise Updates the signal handler table

rand Uses static variable to remember latest

random number. Must diverge from ANSI

standard to define reentrant rand. See (4).

read Calls _read

realloc See malloc (5).

remainder remainderf
 remainderl

(Not implemented)

remove N.A; skeleton only.

remquo remquof remquol (Not implemented)

rename N.A; skeleton only.

rewind N.A; skeleton only.

rint rintf rintl (Not implemented)

round roundf roundl (Not implemented)

scalbln scalblnf scalblnl -

scalbn scalbnf scalbnl -

scanf wscanf Uses iob[], calls _doscan. See (1).

setbuf Sets iob[]. See (1).

setjmp -

TriCore Reference Manual2-56
L
IB
R
A
R
IE
S

Not reentrant becauseFunction

setlocale N.A.; skeleton function

setvbuf Sets iob and calls malloc. See (1) / (5).

signal Updates the signal handler table

signbit -

sin sinf sinl -

sinh sinhf sinhl Sets errno via calls to other functions.

snprintf swprintf Sets errno. See (2).

sprintf Sets errno. See (2).

sqrt sqrtf sqrtl Sets errno. See (2).

srand See rand

sscanf swscanf Sets errno via calls to other functions.

stat Uses global File System Simulation buffer,

_fss_buffer

strcat wcscat -

strchr wcschr -

strcmp wcscmp -

strcoll wcscoll -

strcpy wcscpy -

strcspn wcscspn -

strerror -

strftime wstrftime -

strlen wcslen -

strncat wcsncat -

strncmp wcsncmp -

strncpy wcsncpy -

strpbrk wcspbrk -

strrchr wcsrchr -

strspn wcsspn -

strstr wcsstr -

strtod wcstod -

strtof wcstof -

strtoimax Sets errno via calls to other functions.

Libraries 2-57

• • • • • • • •

Not reentrant becauseFunction

strtok wcstok Strtok saves last position in string in local

static variable. This function is not

reentrant by design. See (4).

strtol wcstol Sets errno. See (2).

strtold wcstold -

strtoul wcstoul Sets errno. See (2).

strtoull wcstoull Sets errno. See (2).

strtoumax Sets errno via calls to other functions.

strxfrm wcsxfrm -

system N.A; skeleton function

tan tanf tanl Sets errno. See (2).

tanh tanhf tanhl Sets errno via call to other functions.

tgamma tgammaf tgammal (Not implemented)

time Uses static variable which defines initial

start time

tmpfile Uses iob[]. See (1).

tmpnam Uses local buffer to build filename.

Function can be adapted to use user buff�

er. This makes the function non ANSI. See

(4).

toascii -

tolower -

toupper -

towctrans -

towlower -

towupper -

trunc truncf truncl (Not implemented)

ungetc ungetwc Uses static buffer to hold ungetted charac�

ters for each file. Can be moved into iob

structure. See (1).

unlink Calls _unlink

vfprintf vfwprintf Uses iob[]. See (1).

vfscanf vfwscanf Calls doscan

vprintf vwprintf Uses iob[]. See (1).

TriCore Reference Manual2-58
L
IB
R
A
R
IE
S

Not reentrant becauseFunction

vscanf vwscanf Calls doscan

vsprintf vswprintf Sets errno.

vsscanf vswscanf Sets errno.

wcrtomb Sets errno.

wcsrtombs Sets errno.

wcstoimax Sets errno via calls to other functions.

wcstombs N.A.; skeleton function

wcstoumax Sets errno via calls to other functions.

wctob -

wctomb N.A.; skeleton function

wctrans -

wctype -

write Calls _write

Table 2-4: C library reentrancy

Several functions in the C library are not reentrant due to the following

reasons:

- The iob[] structure is static. This influences all I/O functions.

- The ungetc[] array is static. This array holds the characters (one

for each stream) when ungetc() is called.

- The variable errno is globally defined. Numerous functions read or

modify errno

- _doprint and _doscan use static variables for e.g. character

counting in strings.

- Some string functions use locally defined (static) buffers. This is

prescribed by ANSI.

- malloc uses a static heap space.

The following description discusses these items into more detail. The

numbers at the begin of each paragraph relate to the number references in

the table above.

Libraries 2-59

• • • • • • • •

(1) iob structures

The I/O part of the C library is not reentrant by design. This is mainly

caused by the static declaration of the iob[] array. The functions which use

elements of this array access these elements via pointers (FILE *).

Building a multi-process system that is created in one link-run is hard to

do. The C language scoping rules for external variables make it difficult to

create a private copy of the iob[] array. Currently, the iob[] array has

external scope. Thus it is visible in every module involved in one link

phase. If these modules comprise several tasks (processes) in a system

each of which should have its private copy of iob[], it is apparent that

the iob[] declaration should be changed. This requires adaption of the

library to the multi-tasking environment. The library modules must use a

process identification as an index for determining which iob[] array to

use. Thus the library is suitable for interfacing to that kernel only.

Another approach for the iob[] declaration problem is to declare the

array static in one of the modules which create a task. Thus there can be

more than one iob[] array is the system without having conflicts at link

time. This brings several restrictions: Only the module that holds the

declaration of the static iob[] can use the standard file handles stdin,

stdout and stderr (which are the first three entries in iob[]). Thus all

I/O for these three file handles should be located in one module.

(2) errno declaration

Several functions in the C library set the global variable errno. After

completion of the function the user program may consult this variable to

see if some error occurred. Since most of the functions that set errno

already have a return type (this is the reason for using errno) it is not

possible to check successful completion via the return type.

The library routines can set errno to the values defined in errno.h. See

the file errno.h for more information.

errno can be set to ERR_FORMAT by the print and scan functions in the

C library if you specify illegal format strings.

errno will never be set to ERR_NOLONG or ERR_NOPOINT since the

Tricore C library supports long and pointer conversion routines for input

and output.

TriCore Reference Manual2-60
L
IB
R
A
R
IE
S

errno can be set to ERANGE by the following functions: exp(),

strtol(), strtoul() and tan(). These functions may produce results

that are out of the valid range for the return type. If so, the result of the

function will be the largest representable value for that type and errno is

set to ERANGE.

errno is set to EDOM by the following functions: acos(), asin(),

log(), pow() and sqrt(). If the arguments for these functions are out of

their valid range (e.g. sqrt(-1)), errno is set to EDOM.

errno can be set to ERR_POS by the file positioning functions ftell(),

fsetpos() and fgetpos().

(3) ungetc

Currently the ungetc buffer is static. For each file entry in the iob[]

structure array, there is one character available in the buffer to unget a

character.

(4) local buffers

tmpnam() creates a temporary filename and returns a pointer to a local

static buffer. This is according to the ANSI definition. Changing this

function such that it creates the name in a user specified buffer requires

another calling interface. Thus the function would be no longer portable.

strtok() scans through a string and remembers that the string and the

position in the string for subsequent calls. This function is not reentrant by

design. Making it reentrant requires support of a kernel to store the

information on a per process basis.

rand() generates a sequence of random numbers. The function uses the

value returned by a previous call to generate the next value in the

sequence. This function can be made reentrant by specifying the previous

random value as one of the arguments. However, then it is no longer a

standard function.

(5) malloc

Malloc uses a heap space which is assigned at locate time. Thus this

implementation is not reentrant. Making a reentrant malloc requires some

sort of system call to obtain free memory space on a per process basis.

This is not easy to solve within the current context of the library. This

requires adaption to a kernel.

Libraries 2-61

• • • • • • • •

This paragraph on reentrancy applies to multi-process environments only.

If reentrancy is required for calling library functions from an exception

handler, another approach is required. For such a situation it is of no use

to allocate e.g. multiple iob[] structures. In such a situation several

pieces of code in the library have to be declared 'atomic': this means that

interrupts have to be disabled while executing an atomic piece of code.

TriCore Reference Manual2-62
L
IB
R
A
R
IE
S

3

TRICORE ASSEMBLY

LANGUAGE
C

H
A

P
T

E
R

TriCore Reference Manual3-2
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

3

C
H

A
P

T
E

R

TriCore Assembly Language 3-3

• • • • • • • •

3.1 INTRODUCTION

This chapter contains a detailed description of all built-in assembly

functions directives and controls. For a description of the TriCore

instruction set, refer to the TriCore Architecture v1.3 Manual [2000,

Infineon].

3.2 BUILT-IN ASSEMBLY FUNCTIONS

3.2.1 OVERVIEW OF BUILT-IN ASSEMBLY FUNCTIONS

The built-in assembler functions are grouped into the following types:

• Mathematical functions comprise, among others, transcendental,

random value, and min/max functions.

• Conversion functions provide conversion between integer,

floating-point, and fixed point fractional values.

• String functions compare strings, return the length of a string, and

return the position of a substring within a string.

• Macro functions return information about macros.

• Address calculation functions return the high or low part of an

address.

• Assembler mode functions relating assembler operation.

The following tables provide an overview of all built-in assembler

functions. expr can be any assembly expression resulting in an integer

value. Expressions are explained in section 4.6, Assembly Expressions, in
chapter Assembly Language of the User's Manual.

TriCore Reference Manual3-4
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Overview of mathematical functions

Function Description

@ABS(expr) Absolute value

@ACS(expr) Arc cosine

@ASN(expr) Arc sine

@AT2(expr1,expr2) Arc tangent

@ATN(expr) Arc tangent

@CEL(expr) Ceiling function

@COH(expr) Hyperbolic cosine

@COS(expr) Cosine

@FLR(expr) Floor function

@L10(expr) Log base 10

@LOG(expr) Natural logarithm

@MAX(expr,[,...,exprN]) Maximum value

@MIN(expr,[,...,exprN]) Minimum value

@POW(expr1,expr2) Raise to a power

@RND() Random value

@SGN(expr) Returns the sign of an expression as -1, 0 or 1

@SIN(expr) Sine

@SNH(expr) Hyperbolic sine

@SQT(expr) Square root

@TAN(expr) Tangent

@TNH(expr) Hyperbolic tangent

@XPN(expr) Exponential function (raise e to a power)

TriCore Assembly Language 3-5

• • • • • • • •

Overview of conversion functions

Function Description

@CVF(expr) Convert integer to floating-point

@CVI(expr) Convert floating-point to integer

@FLD(base,value,

 width[,start])
Shift and mask operation

@FRACT(expr) Convert floating-point to 32-bit fractional

@SFRACT(expr) Convert floating-point to 16-bit fractional

@LNG(expr) Concatenate to double word

@LUN(expr) Convert long fractional to floating-point

@RVB(expr1[,expr2]) Reverse order of bits in field

@UNF(expr) Convert fractional to floating-point

Overview of string functions

Function Description

@CAT(str1,str2) Concatenate strings

@LEN(string) Length of string

@POS(str1,str2[,start]) Position of substring in string

@SCP(str1,str2) Returns 1 if two strings are equal

@SUB(string,expr,expr) Returns a substring

Overview of macro functions

Function Description

@ARG('symbol'|expr) Test if macro argument is present

@CNT() Return number of macro arguments

@MAC(symbol) Test if macro is defined

@MXP() Test if macro expansion is active

TriCore Reference Manual3-6
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Overview of address calculation functions

Function Description

@DPTR(expr) PCP only: returns bits 6-13 of the pcpdata

address

@HI(expr) Returns upper 16 bits of expression value

@HIS(expr) Returns upper 16 bits of expression value,

adjusted for signed addition

@INIT_R7(start,dptr,flags) PCP only: returns the 32-bit value to initialize

R7

@LO(expr) Returns lower 16 bits of expression value

@LOS(expr) Returns lower 16 bits of expression value,

adjusted for signed addition

@LSB(expr) Get least significant byte of a word

@MSB(expr) Get most significant byte of a word

Overview of assembler mode functions

Function Description

@ASPCP() Returns the name of the PCP assembler

executable

@ASTC() Returns the name of the assembler executable

@CPU(string) Test if CPU type is selected

@DEF('symbol'|symbol) Returns 1 if symbol has been defined

@EXP(expr) Expression check

@INT(expr) Integer check

@LST() LIST control flag value

3.2.2 DETAILED DESCRIPTION OF BUILT-IN

ASSEMBLY FUNCTIONS

@ABS(expression)

Returns the absolute value of expression as an integer value.

Example:

AVAL .SET @ABS(-2.1) ; AVAL = 2

TriCore Assembly Language 3-7

• • • • • • • •

@ACS(expression)

Returns the arc cosine of expression as a floating-point value in the range

zero to pi. The result of expression must be between -1 and 1.

Example:

ACOS .SET @ACS(-1.0) ;ACOS = 3.1415926535897931

@ARG('symbol' | expression)

Returns an integer 1 if the macro argument represented by symbol or

expression is present, 0 otherwise. If the argument is a symbol it must be

single-quoted and refer to a formal argument name. If the argument is an

expression it refers to the ordinal position of the argument in the macro

formal argument list. The assembler issues a warning if this function is

used when no macro expansion is active.

Example:

.IF @ARG('TWIDDLE') ;twiddle factor provided?

.IF @ARG(1) ;is first argument present?

@ASN(expression)

Returns the arc sine of expression as a floating-point value in the range

-pi/2 to pi/2. The result of expression must be between -1 and 1.

Example:

ARCSINE .SET @ASN(-1.0) ;ARCSINE = -1.570796

@ASPCP()

Returns the name of the PCP assembler executable. This is 'aspcp' for the

PCP assembler.

Example:

ANAME: .byte @ASPCP() ; ANAME = 'aspcp'

@ASTC()

Returns the name of the assembler executable. This is 'astc' for the TriCore

assembler.

Example:

ANAME: .byte @ASTC() ; ANAME = 'astc'

TriCore Reference Manual3-8
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

@AT2(expr1,expr2)

Returns the arc tangent of expr1/expr2 as a floating-point value in the

range -pi to pi. Expr1 and expr2 must be separated by a comma.

Example:

ATAN2 .EQU @AT2(-1.0,1.0) ;ATAN2 = -0.7853982

@ATN(expression)

Returns the arc tangent of expression as a floating-point value in the range

-pi/2 to pi/2.

Example:

ATAN .SET @ATN(1.0) ;ATAN = 0.78539816339744828

@CAT(string1,string2)

Concatenates the two strings into one string. The two strings must be

enclosed in single or double quotes.

Example:

.DEFINE ID "@CAT('Tri','Core')" ;ID = 'TriCore'

@CEL(expression)

Returns a floating-point value which represents the smallest integer greater

than or equal to expression.

Example:

CEIL .SET @CEL(-1.05) ;CEIL = -1.0

@CNT()

Returns the number of arguments of the current macro expansion as an

integer. The assembler issues a warning if this function is used when no

macro expansion is active.

Example:

ARGCNT .SET @CNT() ;reserve argument count

TriCore Assembly Language 3-9

• • • • • • • •

@COH(expression)

Returns the hyperbolic cosine of expression as a floating-point value.

Example:

HYCOS .EQU @COH(VAL) ;compute hyperbolic cosine

@COS(expression)

Returns the cosine of expression as a floating-point value.

Example:

.WORD -@COS(@CVF(COUNT)*FREQ) ;compute cosine value

@CPU(string)

Returns an integer 1 if string corresponds to the selected CPU type; 0

otherwise. See also the assembler option -C (Select CPU).

Example:

IF @CPU("tc2") ;TriCore 2 specific part

@CVF(expression)

Converts the result of expression to a floating-point value.

Example:

FLOAT .SET @CVF(5) ;FLOAT = 5.0

@CVI(expression)

Converts the result of expression to an integer value. This function should

be used with caution since the conversions can be inexact (e.g.,

floating-point values are truncated).

Example:

INT .SET @CVI(-1.05) ;INT = -1

TriCore Reference Manual3-10
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

@DEF('symbol' | symbol)

Returns an integer 1 if symbol has been defined, 0 otherwise. symbol can

be any symbol or label not associated with a .MACRO or .SDECL directive.

If symbol is quoted it is looked up as a .DEFINE symbol; if it is not

quoted it is looked up as an ordinary symbol or label.

Example:

.IF @DEF('ANGLE') ;is symbol ANGLE defined?

.IF @DEF(ANGLE) ;does label ANGLE exist?

@DPTR(expression)

PCP assembler only. Returns bits 6-13 of the pcpdata address provided.

This is equivalent to ((expression>>6) & 0xff).

Example:

ldl.il r7,@DPTR(pcp_data_a0)

@EXP(expression)

Returns 0 if the evaluation of expression would normally result in an error.

Returns 1 if the expression can be evaluated correctly. With the @EXP

function, you prevent the assembler of generating an error if expression
contains an error. No test is made by the assembler for warnings. The

expression may be relative or absolute.

Example:

.IF !@EXP(3/0) ;Do the IF on error

 ;assembler generates no error

.IF !(3/0) ;assembler generates an error

TriCore Assembly Language 3-11

• • • • • • • •

@FLD(base,value,width[,start])

Shift and mask value into base for width bits beginning at bit start. If start
is omitted, zero (least significant bit) is assumed. All arguments must be

positive integers and none may be greater than the target word size.

Returns the shifted and masked value.

Example:

VAR1 .EQU @FLD(0,1,1) ;turn bit 0 on, VAR1=1

VAR2 .EQU @FLD(0,3,1) ;turn bit 0 on, VAR2=1

VAR3 .EQU @FLD(0,3,2) ;turn bits 0 and 1 on, VAR3=3

VAR4 .EQU @FLD(0,3,2,1) ;turn bits 1 and 2 on, VAR4=6

VAR5 .EQU @FLD(0,1,1,7) ;turn eighth bit on, VAR5=0x80

@FLR(expression)

Returns a floating-point value which represents the largest integer less

than or equal to expression.

Example:

FLOOR .SET @FLR(2.5) ;FLOOR = 2.0

@FRACT(expression)

This function returns the 32-bit fractional representation of the

floating-point expression. The expression must be in the range [-1,+1>.

Example:

.WORD @FRACT(0.1), @FRACT(1.0)

@HI(expression)

Returns the upper 16 bits of a value. @HI(expression) is equivalent to

((expression>>16) & 0xffff).

Example:

mov.u d2,#@LO(COUNT)

addih d2,d2,#@HI(COUNT) ; upper 16 bits of COUNT

TriCore Reference Manual3-12
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

@HIS(expression)

Returns the upper 16 bits of a value, adjusted for a signed addition.

@HIS(expression) is equivalent to (((expression+0x800)>>16) &

0xffff).

Example:

movh.a a3,#@HIS(label)

lea a3,[a3]@LOS(label)

@INIT_R7(start,dptr,flags)

PCP assembler only. Returns the 32-bit value needed to initialize R7. This

is equivalent to (start<<16) + (((dptr&0x3fff)>>6)<<8) +

(flags & 0xff).

Example:

.word @init_r7(start_0,pcp_data_0,7)

@INT(expression)

Returns an integer 1 if expression has an integer result; otherwise, it

returns a 0. The expression may be relative or absolute.

Example:

.IF @INT(TERM) ;Test if result is an integer

@L10(expression)

Returns the base 10 logarithm of expression as a floating-point value.

expression must be greater than zero.

Example:

LOG .EQU @L10(100.0) ;LOG = 2

@LEN(string)

Returns the length of string as an integer.

Example:

SLEN .SET @LEN('string') ;SLEN = 6

TriCore Assembly Language 3-13

• • • • • • • •

@LNG(expr1,expr2)

Concatenates the 16-bit expr1 and expr2 into a 32-bit word value such

that expr1 is the high half and expr2 is the low half.

Example:

LWORD .WORD @LNG(HI,LO) ;build long word

@LO(expression)

Returns the lower 16 bits of a value. @LO(expression) is equivalent to

expression & 0xffff).

Example:

mov.u d2,#@LO(COUNT) ;lower 16 bits of COUNT

addih d2,d2,#@HI(COUNT)

@LOG(expression)

Returns the natural logarithm of expression as a floating-point value.

expression must be greater than zero.

Example:

LOG .EQU @LOG(100.0) ;LOG = 4.605170

@LOS(expression)

Returns the lower 16 bits of a value, adjusted for a signed addition.

@LOS(expression) is equivalent to (((expression+0x8000) &

0xffff) - 0x8000).

Example:

movh.a a3,#@HIS(label)

lea a3,[a3]@LOS(label)

@LSB(expression)

Returns the least significant byte of the result of the expression.

expression is interpreted as a half word (16 bit).

Example:

VAR1 .SET @LSB(0x34) ;VAR1 = 0x34

VAR2 .SET @LSB(0x1234) ;VAR2 = 0x34

VAR3 .SET @LSB(0x654321) ;VAR3 = 0x21

TriCore Reference Manual3-14
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

@LST()

Returns the value of the $LIST ON/OFF control flag as an integer.

Whenever a $LIST ON control is encountered in the assembler source, the

flag is incremented; when a $LIST OFF control is encountered, the flag is

decremented.

Example:

.DUP @ABS(@LST()) ;list unconditionally

@LUN(expression)

Converts the 32-bit expression to a floating-point value. expression should

represent a binary fraction.

Example:

DBLFRC1 .EQU @LUN(0x40000000) ;DBLFRC1 = 0.5

DBLFRC2 .EQU @LUN(3928472) ;DBLFRC2 = 0.007354736

DBLFRC3 .EQU @LUN(0xE0000000) ;DBLFRC3 = -0.75

@MAC(symbol)

Returns an integer 1 if symbol has been defined as a macro name, 0

otherwise.

Example:

.IF @MAC(DOMUL) ;does macro DOMUL exist?

@MAX(expr1[,exprN]...)

Returns the greatest of expr1,...,exprN as a floating-point value.

Example:

MAX: .BYTE @MAX(1,-2.137,3.5) ;MAX = 3.5

@MIN(expr1[,exprN]...)

Returns the least of expr1,...,exprN as a floating-point value.

Example:

MIN: .BYTE @MIN(1,-2.137,3.5) ;MIN = -2.137

TriCore Assembly Language 3-15

• • • • • • • •

@MSB(expression)

Returns the most significant byte of the result of the expression.

expression is interpreted as a half word (16 bit).

Example:

VAR1 .SET @MSB(0x34) ;VAR1 = 0x00

VAR2 .SET @MSB(0x1234) ;VAR2 = 0x12

VAR3 .SET @MSB(0x654321) ;VAR3 = 0x43

@MXP()

Returns an integer 1 if the assembler is expanding a macro, 0 otherwise.

Example:

.IF @MXP() ;macro expansion active?

@POS(str1,str2[,start])

Returns the position of str2 in str1 as an integer, starting at position start. If
start is not given the search begins at the beginning of str1. If the start
argument is specified it must be a positive integer and cannot exceed the

length of the source string. Note that the first position in a string is

position 0.

Example:

ID .EQU @POS('TriCore','Core') ;ID = 3

ID2 .EQU @POS('ABCDABCD','B',2) ;ID2 = 5

@POW(expr1,expr2)

Returns expr1 raised to the power expr2 as a floating-point value. expr1
and expr2 must be separated by a comma.

Example:

BUF .EQU @CVI(@POW(2.0,3.0)) ;BUF = 8

@RND()

Returns a random value in the range 0.0 to 1.0.

Example:

SEED .EQU @RND() ;save initial SEED value

TriCore Reference Manual3-16
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

@RVB(expr1,expr2)

Reverse the order of bits in expr1 delimited by the number of bits in

expr2. If expr2 is omitted the field is bounded by the target word size.

Both expressions must be 16-bit integer values.

Example:

VAR1 .SET @RVB(0x200) ;reverse all bits, VAR1=0x40

VAR2 .SET @RVB(0xB02) ;reverse all bits, VAR2=0x40D0

VAR3 .SET @RVB(0xB02,2) ;reverse bits 0 and 1,

 ;VAR3=0xB01

@SCP(str1,str2)

Returns an integer 1 if the two strings compare, 0 otherwise. The two

strings must be separated by a comma.

Example:

.IF @SCP(STR,'MAIN') ;does STR equal MAIN?

@SFRACT(expression)

This function returns the 16-bit fractional representation of the

floating-point expression. The expression must be in the range [-1,+1>.

Example:

.WORD @SFRACT(0.1), @SFRACT(1.0)

@SGN(expression)

Returns the sign of expression as an integer: -1 if the argument is negative,

0 if zero, 1 if positive. The expression may be relative or absolute.

Example:

VAR1 .SET @SGN(-1.2e-92) ;VAR1 = -1

VAR2 .SET @SGN(0) ;VAR2 = 0

VAR3 .SET @SGN(28.382) ;VAR3 = 1

@SIN(expression)

Returns the sine of expression as a floating-point value.

Example:

.WORD @SIN(@CVF(COUNT)*FREQ) ;compute sine value

TriCore Assembly Language 3-17

• • • • • • • •

@SNH(expression)

Returns the hyperbolic sine of expression as a floating-point value.

Example:

HSINE .EQU @SNH(VAL) ;hyperbolic sine

@SQT(expression)

Returns the square root of expression as a floating-point value. expression
must be positive.

Example:

SQRT1 .EQU @SQT(3.5) ;SQRT1 = 1.870829

SQRT2 .EQU @SQT(16) ;SQRT2 = 4

@SUB(string,expression1,expression2)

Returns the substring from string as a string. Expression1 is the starting

position within string, and expression2 is the length of the desired string.

The assembler issues an error if either expression1 or expression2 exceeds

the length of string. Note that the first position in a string is position 0.

Example:

.DEFINE ID "@SUB('TriCore',3,4)" ;ID = 'Core'

@TAN(expression)

Returns the tangent of expression as a floating-point value.

Example:

TANGENT .SET @TAN(1.0) ;TANGENT = 1.5574077

@TNH(expression)

Returns the hyperbolic tangent of expression as a floating-point value.

Example:

HTAN .SET @TNH(1) ;HTAN = 0.76159415595

TriCore Reference Manual3-18
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

@UNF(expression)

Converts expression to a floating-point value. expression should represent

a 16-bit binary fraction.

Example:

FRC .EQU @UNF(0x4000) ;FRC = 0.5

@XPN(expression)

Returns the exponential function (base e raised to the power of

expression) as a floating-point value.

Example:

EXP .EQU @XPN(1.0) ;EXP = 2.718282

TriCore Assembly Language 3-19

• • • • • • • •

3.3 ASSEMBLER DIRECTIVES AND CONTROLS

3.3.1 OVERVIEW OF ASSEMBLER DIRECTIVES

Assembler directives are grouped in the following categories:

• Assembly control directives

• Symbol definition directives

• Data definition / Storage allocation directives

• Macro and conditional assembly directives

• Debug directives

The following tables provide an overview of all assembler directives.

Overview of assembly control directives

Directive Description

.COMMENT Start comment lines

.DEFINE Define substitution string

.END End of source program

.FAIL Programmer generated error message

.INCLUDE Include file

.MESSAGE Programmer generated message

.ORG Initialize memory space and location counters to

create a nameless section

.SDECL Declare a section with name, type and attributes

.SECT Activate a declared section

.UNDEF Undefine DEFINE symbol

.WARNING Programmer generated warning

TriCore Reference Manual3-20
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Overview of symbol definition directives

Directive Description

.EQU Assign permanent value to a symbol

.EXTERN External symbol declaration

.GLOBAL Global section symbol declaration

.LOCAL Local symbol declaration

.SET Set temporary value to a symbol

.SIZE Set size of symbol in the ELF symbol table

.TYPE Set symbol type in the ELF symbol table

.WEAK Mark symbol as 'weak'

Overview of data definition / storage allocation directives

Directive Description

.ACCUM Define 64-bit constant of 18 + 46 bits format

.ALIGN Define alignment

.ASCII / .ASCIIZ Define ASCII string without / with ending NULL byte

.BYTE Define constant byte (not for PCP)

.FLOAT / .DOUBLE Define a 32-bit / 64-bit floating-point constant

.FRACT / .SFRACT Define a 16-bit / 32-bit constant fraction

.SPACE Define storage

.WORD / .HALF Define a word / half-word constant (not for PCP)

TriCore Assembly Language 3-21

• • • • • • • •

Overview of macro and conditional assembly directives

Directive Description

.DUP / .ENDM Duplicate sequence of source lines

.DUPA / .ENDM Duplicate sequence with arguments

.DUPC / .ENDM Duplicate sequence with characters

.DUPF / .ENDM Duplicate sequence in loop

.EXITM Exit macro

.IF / .ELIF / .ELSE /

.ENDIF

Conditional assembly

.MACRO / .ENDM Define macro

.PMACRO Undefine (purge) macro definition

Overview of debug directives

Function Description

.CALLS Passes call information to object file. Used by the

linker to build a call graph and calculate stack size.

3.3.2 DETAILED DESCRIPTION OF ASSEMBLER

DIRECTIVES

Some assembler directives can be preceeded with a label. If you do not

preceede an assembler directive with a label, you must use white space

instead (spaces or tabs). The assembler recognizes both upper and lower

case for directives.

TriCore Reference Manual3-22
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.ACCUM

Syntax

[label:] .ACCUM expression[,expression]...

Description

With the .ACCUM directive (Define 64-bit Constant) the assembler allocates

and initializes two words of memory (64 bits) for each argument. Use

commas to separate multiple arguments.

An expression can be:

• a fractional fixed point expression (range [-217, 217>)

• NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive address locations in sets of

two bytes. If an argument is NULL its corresponding address location is

filled with zeros.

If the evaluated expression is out of the range [-217, 217>, the assembler

issues a warning and saturates the fractional value.

Example

ACC: .ACCUM 0.1,0.2,0.3

Related information

.SPACE (Define storage)

.FRACT / .SFRACT (Define 32-bit / 16-bit constant fraction)

TriCore Assembly Language 3-23

• • • • • • • •

.ALIGN

Syntax

.ALIGN expression

Description

With the .ALIGN directive you instruct the assembler to align the location

counter. By default the assembler aligns on one byte.

When the assembler encounters the .ALIGN directive, it advances the

location counter to an address that is aligned as specified by expression
and places the next instruction or directive on that address. The alignment

is in minimal addressable units (MAUs). The assembler fills the 'gap' with

NOP instructions for code sections or with zeros for data sections. If the

location counter is already aligned on the specified alignment, it remains

unchanged. The location of absolute sections will not be changed.

The expression must be a power of two: 2, 4, 8, 16, ... If you specify

another value, the assembler changes the alignment to the next higher

power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value

occurring in that secton.

A label is not allowed before this directive.

Example

.ALIGN 16 ; the assembler aligns

add d2,d2,d4 ; this instruction at 16 bytes and

 ; fills the 'gap' with NOP instructions

.ALIGN 12 ; WRONG: not a power of two, the

add d2,d2,d4 ; assembler aligns this instruction at

 ; 16 bytes and issues a warning

Related information

-

TriCore Reference Manual3-24
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.ASCII/.ASCIIZ

Syntax

[label:] .ASCII string[,string]...

[label:] .ASCIIZ string[,string]...

Description

With the .ASCII or .ASCIIZ directive the assembler allocates and

initializes memory for each string argument.

The .ASCII directive does not add a NULL byte to the end of the string.

The .ASCIIZ directive does add a NULL byte to the end of the string. The

"z" in .ASCIIZ stands for "zero". Use commas to separate multiple strings.

Example

STRING: .ASCII "Hello world"

STRINGZ: .ASCIIZ "Hello world"

With the .BYTE directive you can obain exactly the same effect:

STRING: .BYTE "Hello world" ; without a NULL byte

STRINGZ: .BYTE "Hello world",0 ; with a NULL byte

Related information

.SPACE (Define storage)

.BYTE (Define a constant byte)

.WORD / .HALF (Define a word / halfword)

TriCore Assembly Language 3-25

• • • • • • • •

.BYTE

Syntax

[label] .BYTE argument[,argument]...

Description

With the .BYTE directive (Define Constant Byte) the assembler allocates

and initializes a byte of memory for each argument.

The .BYTE directive is not available for the PCP assembler.

An argument can be:

• a single or multiple character string constant

• an integer expression

• NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive byte locations. If an argument

is NULL its corresponding byte location is filled with zeros.

If you specify label, it gets the value of the location counter at the start of

the directive processing.

Integer arguments are stored as is, but must be byte values (within the

range 0-255); floating-point numbers are not allowed. If the evaluated

expression is out of the range [-256, +255] the assembler issues an error.

For negative values within that range, the assembler adds 256 to the

specified value (for example, -254 is stored as 2).

In case of single and multiple character strings, each character is stored in

consecutive bytes whose lower seven bits represent the ASCII value of the

character. The standard C escape sequences are allowed:

.BYTE 'R' ; = 0x52

.BYTE 'AB',,'D' ; = 0x41420043

Example

TABLE .BYTE 'two',0,'strings',0

CHARS .BYTE 'A','B','C','D'

TriCore Reference Manual3-26
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Related information

.SPACE (Define storage)

.ASCII / .ASCIIZ (Define ASCII string without/with ending NULL)

.WORD / .HALF (Define a word / halfword)

TriCore Assembly Language 3-27

• • • • • • • •

.CALLS

Syntax

.CALLS 'caller', 'callee' [,call_frequency [,stack_usage]...]

Description

Create a flow graph reference between caller and callee. With this

information the linker can build a call graph and calculate stack size.

Caller and Callee are names of functions. The call_frequency shows how

many times the callee is called. The stack_usage represents the stack usage

in bytes at the location of the call or the maximum stack usage of function

caller. A function can use multiple stacks.

The compiler inserts .CALLS directives automatically to pass call tree

information. Normally it is not necessary to use the .CALLS directive in

hand coded assembly.

A label is not allowed before this directive.

Example

.CALLS 'main', 'nfunc', 1, 8

Indicates that the function main calls the function nfunc 1 time and that

the stack usage at the location of the call is 8 bytes.

.CALLS 'main', '', 0, 8

Specifies the maximum stack usage of function main (8 bytes).

Related information

-

TriCore Reference Manual3-28
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.COMMENT

Syntax

.COMMENT delimiter

.

.

delimiter

Description

With the .COMMENT directive (Start Comment Lines) you can define one or

more lines as comments. The first non-blank character after the .COMMENT

directive is the comment delimiter. The two delimiters are used to define

the comment text. The line containing the second comment delimiter will

be considered the last line of the comment. The comment text can include

any printable characters and the comment text will be produced in the

source listing as it appears in the source file.

A label is not allowed before this directive.

Example

.COMMENT + This is a one line comment +

.COMMENT * This is a multiple line

 comment. Any number of lines

 can be placed between the two

 delimiters.

 *

Related information

-

TriCore Assembly Language 3-29

• • • • • • • •

.DEFINE

Syntax

.DEFINE symbol string

Description

With the .DEFINE directive you define a substitution string that you can

use on all following source lines. The assembler searches all succeeding

lines for an occurrence of symbol, and replaces it with string. If the symbol
occurs in a double quoted string it is also replaced. Strings between single

quotes are not expanded.

This directive is useful for providing better documentation in the source

program. A symbol can consist of letters, digits and underscore characters

(_), and the first character cannot be a digit.

The assembler issues a warning if you redefine an existing symbol.

Macros represent a special case. .DEFINE directive translations are applied

to the macro definition as it is encountered. When the macro is expanded

any active .DEFINE directive translations will again be applied.

A label is not allowed before this directive.

Example

If the following .DEFINE directive occurred in the first part of the source

program:

.DEFINE LEN '32'

then the source line below:

.SPACE LEN

MSG "The length is: LEN"

would be transformed by the assembler to the following:

.SPACE 32

MSG "The length is: 32"

Related information

.UNDEF (Undefine .DEFINE symbol)

.SET (Set temporary value to a symbol)

TriCore Reference Manual3-30
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.DUP / .ENDM

Syntax

[label] .DUP expression
 .

 .

 .ENDM

Description

The sequence of source lines between the .DUP and .ENDM directives will

be duplicated by the number specified by the integer expression. If the

expression evaluates to a number less than or equal to 0, the sequence of

lines will not be included in the assembler output. The expression result

must be an absolute integer and cannot contain any forward references to

address labels (labels that have not already been defined). You can nest

the .DUP directive to any level.

If you specify label, it gets the value of the location counter at the start of

the DUP directive processing.

Example

Consider the following source input statements,

COUNT .SET 3

 .DUP COUNT ; duplicate NOP count times

 NOP

 .ENDM

This is expanded as follows:

COUNT .SET 3

 NOP

 NOP

 NOP

Related information

.DUPA (Duplicate Sequence with Arguments),

.DUPC (Duplicate Sequence with Characters),

.DUPF (Duplicate Sequence in Loop),

.MACRO (Define Macro)

TriCore Assembly Language 3-31

• • • • • • • •

.DUPA / .ENDM

Syntax

[label] .DUPA formal_arg,argument[,argument]...
 .

 .

 .ENDM

Description

With the .DUPA and .ENDM directives (Duplicate Sequence with

Arguments) you can repeat a block of source statements for each

argument. For each repetition, every occurrence of the formal_arg
parameter within the block is replaced with each succeeding argument
string. If an argument includes an embedded blank or other

assembler-significant character, it must be enclosed with single quotes.

If you specify label, it gets the value of the location counter at the start of

the .DUPA directive processing.

Example

Consider the following source input statements,

.DUPA VALUE,12,,32,34

.BYTE VALUE

.ENDM

This is expanded as follows:

.BYTE 12

.BYTE VALUE ; results in a warning

.BYTE 32

.BYTE 34

The second statement results in a warning of the assembler that the local

symbol VALUE is not defined in this module and is made external.

Related information

.DUP (Duplicate Sequence of Source Lines),

.DUPC (Duplicate Sequence with Characters),

.DUPF (Duplicate Sequence in Loop),

.MACRO (Define Macro)

TriCore Reference Manual3-32
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.DUPC / .ENDM

Syntax

[label] .DUPC formal_arg,string

 .

 .

 .ENDM

Description

With the .DUPC and .ENDM directives (Duplicate Sequence with

Characters) you can repeat a block of source statements for each character

within string. For each character in the string, the formal_arg parameter

within the block is replaced with that character If the string is empty, then

the block is skipped.

If you specify label, it gets the value of the location counter at the start of

the .DUPC directive processing.

Example

Consider the following source input statements,

.DUPC VALUE,'123'

.BYTE VALUE

.ENDM

This is expanded as follows:

.BYTE 1

.BYTE 2

.BYTE 3

Related information

.DUP (Duplicate Sequence of Source Lines),

.DUPA (Duplicate Sequence with Arguments),

.DUPF (Duplicate Sequence in Loop),

.MACRO (Define Macro)

TriCore Assembly Language 3-33

• • • • • • • •

.DUPF / .ENDM

Syntax

[label] .DUPF formal_arg,[start],end[,increment]
 .

 .

 .ENDM

Description

With the .DUPF and .ENDM directives (Duplicate Sequence in Loop) you

can repeat a block of source statements (end - start) + 1 / increment
times. Start is the starting value for the loop index; end represents the final

value. Increment is the increment for the loop index; it defaults to 1 if

omitted (as does the start value). The formal_arg parameter holds the

loop index value and may be used within the body of instructions.

If you specify label, it gets the value of the location counter at the start of

the .DUPF directive processing.

Example

Consider the following source input statements,

.DUPF NUM,0,7

MOV D\NUM,#0

.ENDM

This is expanded as follows:

MOV D0,#0

MOV D1,#0

MOV D2,#0

MOV D3,#0

MOV D4,#0

MOV D5,#0

MOV D6,#0

MOV D7,#0

Related information

.DUP (Duplicate Sequence of Source Lines),

.DUPA (Duplicate Sequence with Arguments),

.DUPC (Duplicate Sequence with Characters),

.MACRO (Define Macro)

TriCore Reference Manual3-34
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.END

Syntax

.END [expression]

Description

With the optional .END directive you tell the assembler that the logical end

of the source program is reached. If the assembler finds assembly source

lines beyond the .END directive, it ignores those lines and issues a

warning.

The expression is only permitted here for compatibility reasons. It is

ignored during assembly.

You cannot use the .END directive in a macro expansion.

A label is not allowed before this directive.

Example

.END ;End of source program

Related information

-

TriCore Assembly Language 3-35

• • • • • • • •

.EQU

Syntax

symbol .EQU expression

Description

With the .EQU directive you assign the value of expression to symbol
permanently. Once defined, you cannot redefine the symbol.

The expression can be relocatable or absolute and forward references are

allowed.

Example

To assign the value 0x4000 permanently to the symbol A_D_PORT:

A_D_PORT .EQU 0x4000

You cannot redefine the symbol A_D_PORT after this.

Related information

.SET (Set temporary value to a symbol)

TriCore Reference Manual3-36
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.EXITM

Syntax

.EXITM

Description

With the .EXITM directive (Exit Macro) the assembler will immediately

terminate a macro expansion. It is useful when you use it with the

conditional assembly directive .IF to terminate macro expansion when,

for example, error conditions are detected.

A label is not allowed before this directive.

Example

CALC .MACRO XVAL,YVAL

 .IF XVAL<0

 .FAIL 'Macro parameter value out of range'

 .EXITM ;Exit macro

 .ENDIF

 .

 .

 .

 .ENDM

Related information

.DUP (Duplicate Sequence of Source Lines),

.DUPA (Duplicate Sequence with Arguments),

.DUPC (Duplicate Sequence with Characters),

.DUPF (Duplicate Sequence in Loop),

.MACRO (Define Macro)

TriCore Assembly Language 3-37

• • • • • • • •

.EXTERN

Syntax

.EXTERN symbol[,symbol]...

Description

With the .EXTERN directive (External Symbol Declaration) you specify that

the list of symbols is referenced in the current module, but is not defined

within the current module. These symbols must either have been defined

outside of any module or declared as globally accessible within another

module with the .GLOBAL directive.

If you do not use the .EXTERN directive to specify that a symbol is

defined externally and the symbol is not defined within the current

module, the assembler issues a warning and inserts the .EXTERN directive

for that symbol.

A label is not allowed before this directive.

Example

.EXTERN AA,CC,DD ;defined elsewhere

Related information

.GLOBAL (Global symbol declaration)

.LOCAL (Local symbol declaration)

TriCore Reference Manual3-38
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.FAIL

Syntax

.FAIL [{string | exp}[,{string | exp}]...]

Description

With the .FAIL directive (Programmer Generated Error) you tell the

assembler to output an error message during the assembling process.

The total error count will be incremented as with any other error. The

.FAIL directive is for example useful in combination with conditional

assembly for exceptional condition checking. The assembly process

proceeds normally after the error has been printed.

Optionally, you can specify an arbitrary number of strings and expressions,

in any order but separated by commas, to describe the nature of the

generated error. If you use expressions, the assembler outputs the result.

The assembler outputs a space between each argument.

With this directive the assembler exits with exit code 1 (an error).

A label is not allowed before this directive.

Example

.FAIL 'Parameter out of range'

This results in the error:

E143: ["filename" line] Parameter out of range

Related information

.MESSAGE (Programmer Generated Message),

.WARNING (Programmer Generated Warning)

TriCore Assembly Language 3-39

• • • • • • • •

.FLOAT/.DOUBLE

Syntax

[label] .FLOAT expression[,expression]...

[label] .DOUBLE expression[,expression]...

Description

With the .FLOAT or .DOUBLE directive the assembler allocates and

initializes a floating-point number (32 bits) or a double (64 bits) in

memory for each argument.

An expression can be:

• a floating-point expression

• NULL (indicated by two adjacent commas: ,,)

You can represent a constant as a signed whole number with fraction or

with the 'e' format as used in the C language. 12.457 and +0.27E-13 are

legal floating-point constants.

If you specify label, it gets the value of the location counter at the start of

the directive processing.

If the evaluated argument is too large to be represented in a single word /

double-word, the assembler issues an error and truncates the value.

Examples

FLT: .FLOAT 12.457,+0.27E-13

DBL: .DOUBLE 12.457,+0.27E-13

Related information

.SPACE (Define storage)

TriCore Reference Manual3-40
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.FRACT/.SFRACT

Syntax

[label:] .FRACT expression[,expression]...

[label:] .SFRACT expression[,expression]...

Description

With the .FRACT or .SFRACT directive the assembler allocates and

initializes one word of memory (32 bits) or a halfword (16 bits) for each

argument. Use commas to separate multiple arguments.

An expression can be:

• a fractional fixed point expression (range [-1, +1>)

• NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive address locations in sets of

two bytes. If an argument is NULL its corresponding address location is

filled with zeros.

If the evaluated argument is out of the range [-1, +1> , the assembler

issues a warning and saturates the fractional value.

Example

FRCT: .FRACT 0.1,0.2,0.3

SFRCT: .SFRACT 0.1,0.2,0.3

Related information

.SPACE (Define storage)

.ACCUM (Define 64-bit constant fraction in 18+46 bits format)

TriCore Assembly Language 3-41

• • • • • • • •

.GLOBAL

Syntax

.GLOBAL symbol[,symbol]...

Description

All symbols or labels defined in the current section or module are local to

the module by default. You can change this default behavior with

assembler option -ig.

With the .GLOBAL directive (Global Section Symbol Declaration) you

declare one of more symbols as global. This means that the specified

symbols are defined within the current section or module, and that those

definitions should be accessible by all modules, using the EXTERN

directive.

Only symbols that are defined with the .EQU directive or program labels

can be made global.

If the symbols that appear in the operand field are not used in the module,

the assembler gives a warning.

A label is not allowed before this directive.

Example

 .SDECL ".data.io",DATA

 .SECT ".data.io"

 .GLOBAL LOOPA ; LOOPA will be globally

 ; accessible by other modules

LOOPA .HALF 0x100 ; assigns the value 0x100 to LOOPA

Related information

.EXTERN (External symbol declaration)

.LOCAL (Local symbol declaration)

TriCore Reference Manual3-42
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.IF / .ELIF / .ELSE / .ENDIF

Syntax

.IF expression
 .

 .

[.ELIF expression] (the .ELIF directive is optional)

 .

 .

[.ELSE] (the .ELSE directive is optional)

 .

 .

.ENDIF

Description

With the .IF/ .ENDIF directives you can create a part of conditional

assembly code. The assembler assembles only the code that matches a

specified condition.

The expression must evaluate to an absolute integer and cannot contain

forward references. If expression evaluates to zero, the .IF-condition is

considered FALSE. Any non-zero result of expression is considered as

TRUE.

You can nest .IF directives to any level. The .ELSE, .ELIF and .ENDIF

directives always refer to the nearest previous .IF directive.

A label is not allowed before this directive.

Example

Suppose you have an assemble source file with specific code for a test

version, for a demo version and for the final version. Within the assembly

source you define this code conditionally as follows:

.IF TEST

... ; code for the test version

.ELIF DEMO

... ; code for the demo version

.ELSE

... ; code for the final version

.ENDIF

TriCore Assembly Language 3-43

• • • • • • • •

Before assembling the file you can set the values of the symbols .TEST

and .DEMO in the assembly source before the .IF directive is reached. For

example, to assemble the demo version:

TEST .SET 0

DEMO .SET 1

You can also define the symbols on the command line with the option -D:

astc -DDEMO -DTEST=0 test.src

Related information

-

TriCore Reference Manual3-44
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.INCLUDE

Syntax

.INCLUDE 'filename' | <filename>

Description

With the .INCLUDE directive you include another file at the exact location

in the source where the .INCLUDE occurs. The .INCLUDE directive works

similarly to the #include statement in C. The source from the include file

is assembled as if it followed the point of the .INCLUDE directive. When

the end of the included file is reached, assembly of the original file

continues.

The filename specifies the filename of the file to be included. The

filename must be compatible with the operating system

(forward/backward slashes) and can include a directory specification.

If an absolute pathname is specified, the assembler searches for that file. If

a relative path is specified or just a filename, the order in which the

assembler searches for include files is:

1. The current directory if you used the 'filename' construction.

The current directory is not searched if you use the <filename> syntax.

2. The path that is specified with the assembler option -I.

3. The path that is specified in the environment variable ASTCINC when

the product was installed.

4. The include directory relative to the installation directory.

A label is not allowed before this directive.

Example

.INCLUDE 'storage\mem.asm' ; include file

.INCLUDE <data.asm> ; Do not look in

 ; current directory

Related information

Assembler option -I (Add directory to include file search path) in section

5.2, Assembler Options, of Chapter Tool Options.

TriCore Assembly Language 3-45

• • • • • • • •

.LOCAL

Syntax

.LOCAL symbol[,symbol]...

Description

All symbols or labels defined in the current section or module are local to

the module by default. You can change this default behavior with

assembler option -ig.

With the .LOCAL directive (Local Section Symbol Declaration) you declare

one of more symbols as local. This means that the specified symbols are

explicitly local to the module in which you define them.

If the symbols that appear in the operand field are not used in the module,

the assembler gives a warning.

A label is not allowed before this directive.

Example

 .SDECL ".data.io",DATA

 .SECT ".data.io"

 .LOCAL LOOPA ; LOOPA is local to this section

LOOPA .HALF 0x100 ; assigns the value 0x100 to LOOPA

Related information

.EXTERN (External symbol declaration)

.GLOBAL (Global symbol declaration)

TriCore Reference Manual3-46
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.MACRO / .ENDM

Syntax

macro_name .MACRO [dumarg[,dumarg]...]

 .

 macro_definition_statements
 .

 .

 .ENDM

Description

With the .MACRO directive you define a macro. Macros provide a

shorthand method for handling a repeated pattern of code or group of

instructions. You can define the pattern as a macro, and then call the

macro at the points in the program where the pattern would repeat. The

.ENDM directive indicates the end of the macro.

The definition of a macro consists of three parts:

• Header, which assigns a name to the macro and defines the arguments.

• Body, which contains the code or instructions to be inserted when the

macro is called.

• Terminator, which indicates the end of the macro definition (ENDM

directive).

The arguments are symbolic names that the macro preprocessor replaces

with the literal arguments when the macro is expanded (called). Each

formal argument must follow the same rules as symbol names: the name

can consist of letters, digits and underscore characters (_). The first

character cannot be a digit. Argument names cannot start with a percent

sign (%).

Macro definitions can be nested but the nested macro will not be defined

until the primary macro is expanded.

You can use the following operators in macro definition statements:

TriCore Assembly Language 3-47

• • • • • • • •

Operator Name Description

\ Macro argument

concatenation

Concatenates a macro argument with

adjacent alphanumeric characters.

? Return decimal

value of symbol

Substitutes the ?symbol sequence with a

character string that represents the decimal

value of the symbol.

% Return hex

value of symbol

Substitutes the %symbol sequence with a

character string that represents the

hexadecimal value of the symbol.

" Macro string

delimiter

Allows the use of macro arguments as literal

strings.

^ Macro local label

override

Causes local labels in its term to be evaluated

at normal scope rather than at macro scope.

Example

The macro definition:

CONSTD .MACRO reg,value ;header

 mov.u reg,#lo(value) ;body

 addih reg,reg,#hi(value)

 .ENDM ;terminator

The macro call:

 .SDECL ".text",code

 .SECT ".text"

 CONSTD d4,0x12345678

The macro expands as follows:

 mov.u d4,#lo(0x12345678)

 addih d4,d4,#hi(0x12345678)

Related information

.DUP (Duplicate Sequence of Source Lines),

.DUPA (Duplicate Sequence with Arguments),

.DUPC (Duplicate Sequence with Characters),

.DUPF (Duplicate Sequence in Loop)

Section 4.10, Macro Operations, in Chapter Assembly Language of the

User's Manual.

TriCore Reference Manual3-48
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.MESSAGE

Syntax

.MESSAGE [{string | exp}[,{string | exp}]...]

Description

With the .MESSAGE directive (Programmer Generated Message) you tell

the assembler to output an information message durring assembly.

The error and warning counts will not be affected. The .MESSAGE

directive is for example useful in combination with conditional assembly

for informational purposes. The assembly proceeds normally after the

message has been printed.

Optionally, you can specify an arbitrary number of strings and expressions,

in any order but separated by commas, to describe the nature of the

message. If you use expressions, the assembler outputs the result. The

assembler outputs a space between each argument.

This directive has no effect on the exit code of the assembler.

A label is not allowed before this directive.

Example

.DEFINE LONG "SHORT"

.MESSAGE 'This is a LONG string'

.MESSAGE "This is a LONG string"

Within single quotes, the defined symbol LONG is not expanded. Within

double quotes the symbol LONG is expanded. So, the actual message is

printed as:

This is a LONG string

This is a SHORT string

Related information

.FAIL (Programmer Generated Error)

.WARNING (Programmer Generated Warning)

TriCore Assembly Language 3-49

• • • • • • • •

.ORG

Syntax

.ORG [abs-loc][,sect_type][,attribute]...

Description

With the .ORG directive you can specify an absolute location (abs_loc) in
memory of a section. This is the same as a .SDECL/.SECT without a

section name.

This directive uses the following arguments:

abs-loc Initial value to assign to the run-time location counter.

abs-loc must be an absolute expression. If abs_loc is not

specified, then the value is zero.

sect_type An optional section type:

code code section

data data section

attribute An optional section attribute:

 Code attibutes:

init section is copied from ROM to RAM at startup

noread section can be executed from but not read

 Data attibutes:

noclear section is not cleared during startup

max data overlay with other parts with the same

name, is implicit a type of 'noclear'

rom data section remains in ROM

A label is not allowed before this directive.

Example

; define a section on location 100 decimal

.org 100

; define a relocatable nameless section

.org

; define a relocatable data section

.org ,data

TriCore Reference Manual3-50
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

; define a data section on 0x8000

.org 0x8000,data

Related information

.SDECL (Declare section name and attributes)

.SECT (Activate a declared section)

TriCore Assembly Language 3-51

• • • • • • • •

.PMACRO

Syntax

.PMACRO symbol[,symbol]...

Description

With the .PMACRO directive (Purge Macro) you tell the assembler to

undefine the specified macro, so that later uses of the symbol will not be

expanded.

A label is not allowed before this directive.

Example

.PMACRO MAC1,MAC2

This statement causes the macros named MAC1 and MAC2 to be undefined.

Related information

.MACRO (Define Macro)

TriCore Reference Manual3-52
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.SDECL

Syntax

.SDECL "name", type [, attribute]... [AT address]

Description

With the .SDECL directive you can define a section with a name, type and

optional attributes. Before any code or data can be placed in a section,

you must use the .SECT directive to activate the section.

This directive uses the following arguments:

type: A section type:

code code section

data data section

attribute: An optional section attribute:

 Code attibutes:

init section is copied from ROM to RAM at startup

noread section can be executed from but not read

 Data attibutes:

noclear section is not cleared during startup

max data overlay with other parts with the same

name, is implicit a type of 'noclear'

rom data section remains in ROM

Sections with attribute noclear are not zeroed at startup. This is a default

attribute for data sections. You can only use this attribute with a data

type section. This attribute is only useful with BSS sections, which are

cleared at startup by default.

The attribute init defines that the code section contains initialization

data, which is copied from ROM to RAM at program startup.

Sections with the attribute rom contain data to be placed in ROM. This

ROM area is not executable.

When data sections with the same name occur in different object

modules with the attribute max, the linker generates a section with a size

that is the largest of the sizes in the individual object modules. The

attribute max only applies to data sections.

TriCore Assembly Language 3-53

• • • • • • • •

The name of a section can have a special meaning for locating sections.

The name of code sections should always start with ".text" (or

".pcptext" for PCP code). With data sections, the prefix in the name is

important. The prefix determines if the section is initialized, constant or

uninitialized and which addressing mode is used.

Name prefix Type of DATA section

.data initialized

.zdata initialized, abs 18 addressing

.sdata initialized, a0 addressing

.data_a8 initialized, a8 addressing

.data_a9 initialized, a9 addressing

.rodata constant data

.zrodata constant data, abs 18 addressing

.srodata constant data, a0 addressing

.rodata_a8 constant data, a8 addressing

.rodata_a9 constant data, a9 addressing

.bss uninitialized

.zbss uninitialized, abs 18 addressing

.sbss uninitialized, a0 addressing

.bss_a8 uninitialized, a8 addressing

.bss_a9 uninitialized, a9 addressing

.ldata a1 addressing (read only constants, literal data)

.pcpdata pcp data

Table 3-1: Data section name prefixes

Note that the compiler uses the following name convention:

prefix.module-name.function-or-object-name

Examples:

.sdecl ".text.t.main", CODE ; declare code section

.sect ".text.t.main" ; activate section

.sdecl ".data.t.var1", DATA ; declare data section

.sect ".data.t.var1" ; activate section

TriCore Reference Manual3-54
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.sdecl ".text.intvec.00a", CODE ; declare interrupt

 ; vector table entry for interrupt 10

.sect ".text.intvec.00a" ; activate section

.SECT (Activate a declared section)

.ORG (Initialize a nameless section)

TriCore Assembly Language 3-55

• • • • • • • •

.SECT

Syntax

.SECT "name" [, RESET]

Description:

With the .SECT directive you activate a previously declared section with

the name name. Before you can activate a section, you must define the

section with the .SDECL directive. You can activate a section as many

times as you need.

With the section attribute RESET you can reset counting storage allocation

in data sections that have section attribute max.

Examples:

.sdecl ".zdata.t.var2", DATA ; declare data section

.sect ".zdata.t.var2" ; activate section

.SDECL (Declare a section with name, type and attributes)

.ORG (Initialize a nameless section)

TriCore Reference Manual3-56
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.SET

Syntax

symbol .SET expression

 .SET symbol expression

Description

With the .SET directive you assign the value of expression to symbol
temporarily. If a symbol was defined with the .SET directive, you can

redefine that symbol in another part of the assembly source, using another

.SET. directive.

The .SET directive is useful in establishing temporary or reusable counters

within macros. Expression must be absolute and forward references are

allowed.

Symbols that are set with the .EQU directive, cannot be redefined.

Example

COUNT .SET 0 ; Initialize COUNT. Later on you can

 ; assign other values to the symbol COUNT.

Related information

..EQU (Assign permanent value to a symbol)

TriCore Assembly Language 3-57

• • • • • • • •

.SIZE

Syntax

.SIZE symbol, expression

Description

With the .SIZE directive you set the size of the specified symbol to the

value represented by expression.

The .SIZE directive may occur anywhere in the source file unless the

specified symbol is a function. In this case, the .SIZE directive must occur

after the function has been defined.

Example

main: .type func

 . ; function main

 .

 ret16

main_function_end:

 .size main,main_function_end-main

Related information

.TYPE (Set Symbol Type)

TriCore Reference Manual3-58
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.SPACE

Syntax

[label] .SPACE expression

Description

With the .SPACE directive (Define Storage) the assembler reserves a block

of memory. The reserved block of memory is not initialized to any value.

With expression you specify the number of MAUs (Minimum Addressable

Units) you want to reserve, and how much the location counter will

advance. The expression must be an integer greater than zero and cannot

contain any forward references to address labels (labels that have not yet

been defined). For the TriCore assembler astc, the MAU size is 1 byte. For

the PCP assembler aspcp, the MAU size is 2 bytes for pcp code sections

and 4 bytes for pcp data sections.

If you specify label, it gets the value of the location counter at the start of

the directive processing.

Example

To reserve 12 bytes (not initialized) of memory in a TriCore data section:

.sdecl ".zbss.tst.uninit",DATA

.sect ".zbss.tst.uninit"

uninit .SPACE 12 ; Sample buffer

Related information

.ASCII / .ASCIIZ (Define ASCII string without/with ending NULL)

.BYTE (Define a constant byte)

.FLOAT / .DOUBLE (Define a 32-bit / 64-bit floating-point constant)

.WORD / .HALF (Define a word / halfword)

TriCore Assembly Language 3-59

• • • • • • • •

.TYPE

Syntax

symbol .TYPE typeid

Description

With the .TYPE directive you set a symbol's type to the specified value in

the ELF symbol table. Valid symbol types are:

FUNC The symbol is associated with a function or other

executable code.

OBJECT The symbol is associated with an object such as a

variable, an array, or a structure.

FILE The symbol name represents the filename of the

compilation unit.

Labels in code sections have the default type FUNC. Labels in data sections

have the default type OBJECT.

Example

Afunc .TYPE FUNC

Related information

.SIZE (Set Symbol Size)

TriCore Reference Manual3-60
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.UNDEF

Syntax

.UNDEF symbol

Description

With the .UNDEF directive you can undefine a substitution string that was

previously defined with the .DEFINE directive. The substitution string

associated with symbol is released, and symbol will no longer represent a

valid .DEFINE substitution.

A label is not allowed before this directive.

Example

.UNDEF LEN ; Undefines the LEN substitution string

 ; that was previously defined with the

 ; .DEFINE directive

Related information

.DEFINE (Define Substitution String)

TriCore Assembly Language 3-61

• • • • • • • •

.WARNING

Syntax

.WARNING [{string | exp}[,{string | exp}]...]

Description

With the .WARNING directive (Programmer Generated Warning) you tell

the assembler to output a warning message during the assembling process.

The total warning count will be incremented as with any other warning.

The .WARNING directive is for example useful in combination with

conditional assembly for exceptional condition checking. The assembly

process proceeds normally after the warning has been printed.

Optionally, you can specify an arbitrary number of strings and expressions,

in any order but separated by commas, to describe the nature of the

generated warning. If you use expressions, the assembler outputs the

result. The assembler outputs a space between each argument.

This directive has no effect on the exit code of the assembler, unless you

use the assembler option --warnings-as-errors. In that case the

assembler exits with exit code 1 (an error).

A label is not allowed before this directive.

Example

.WARNING 'parameter too large'

This results in the warning:

W144: ["filename" line] Parameter out of range

Related information

.FAIL (Programmer Generated Error),

.MESSAGE (Programmer Generated Message)

TriCore Reference Manual3-62
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.WEAK

Syntax

.WEAK symbol[,symbol]...

Description

With the .WEAK directive you mark one of more symbols as 'weak'. The

symbol can be defined in the same module with the .GLOBAL directive or

the .EXTERN directive. If the symbol does not already exist, it will be

created.

A 'weak' external reference is resolved by the linker when a global (or

weak) definition is found in one of the object files. However, a weak

reference will not cause the extraction of a module from a library to

resolve the reference.

You can overrule a weak definition with a .GLOBAL definition in another

module. The linker will not complain about the duplicate definition, and

ignore the weak definition.

Only program labels and symbols defined with EQU can be made weak.

Example

LOOPA .EQU 1 ; definition of symbol LOOPA

 .GLOBAL LOOPA ; LOOPA will be globally

 ; accessible by other modules

 .WEAK LOOPA ; mark LOOPA as weak

Related information

-

TriCore Assembly Language 3-63

• • • • • • • •

.WORD/.HALF

Syntax

[label] .WORD argument[,argument]...

[label] .HALF argument[,argument]...

Description

With the .WORD or .HALF directive the assembler allocates and initializes

one word (32 bits) or a halfword (16 bits) of memory for each argument.

The .HALF directive is not available for the PCP assembler.

An argument can be:

• a single or multiple character string constant

• an expression

• NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in sets of four or two bytes. If an argument

is NULL its corresponding address locations are filled with zeros.

If you specify label, it gets the value of the location counter at the start of

the directive processing.

In case of single and multiple character strings, each character is stored in

consecutive bytes whose lower seven bits represent the ASCII value of the

character. The standard C escape sequences are allowed:

.WORD 'R' ; = 0x52

.WORD 'ABCD' ; = 0x41424344

.HALF 'R' ; = 0x52

.HALF 'AB' ; = 0x4142

.HALF 'ABCD' ; = 0x4142

 0x4344

If the evaluated argument is too large to be represented in a word /

halfword, the assembler issues an error and truncates the value.

Examples

WRD: .WORD 14,1635,0x34266243,'ABCD'

HLF: .HALF 14,1635,0x2662,'AB'

TriCore Reference Manual3-64
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

With the .BYTE directive you can obain exactly the same effect:

WRD: .BYTE 14,0,0,0,1635%256,6,0,0,

 0x43,0x62,0x26,0x34,'D','C','B','A'

HLF: .BYTE 14,0,1635%256,6,0x62,0x26,'B','A'

Related information

.SPACE (Define storage)

.ASCII / .ASCIIZ (Define ASCII string without/with ending NULL)

.BYTE (Define a constant byte)

TriCore Assembly Language 3-65

• • • • • • • •

3.3.3 OVERVIEW OF ASSEMBLER CONTROLS

The following tables provide an overview of all assembler controls.

Overview of assembler listing controls

Function Description

$LIST ON / OFF Generation of assembly list file temporary

ON/OFF

$LIST "flags" Exclude / include lines in assembly list file

$PAGE Generate formfeed in assembly list file

$PAGE settings Define page layout for assemly list file

$PRCTL Send control string to printer

$STITLE Set program subtitle in header of assembly list

file

$TITLE Set program title in headerof assembly list file

Overview of miscellaneous assembler controls

Function Description

$CASE ON / OFF Case sensitive user names ON/OFF

$defect_TCnum ON / OFF Enable/disable assembler check for specified

functional problem, defect is one of CPU, DMU,

PMI or PMU

$DEBUG ON / OFF Generation of symbolic debug ON/OFF

$DEBUG "flags" Select debug information

$FPU Allow single precision floating-point instructions

$HW_ONLY Prevent substitution of assembly instructions by

smaller or faster instructions

$IDENT LOCAL / GLOBAL Assembler treats labels by default as local or

global

$MMU Allow memory management instructions

$OBJECT Alternative name for the generated object file

$TC2 Allow TriCore 2 instructions

$WARNING OFF [num] Suppress all or some warnings

TriCore Reference Manual3-66
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

3.3.4 DETAILED DESCRIPTION OF ASSEMBLER

CONTROLS

The assembler recognizes both upper and lower case for controls.

TriCore Assembly Language 3-67

• • • • • • • •

$CASE ON / OFF

Syntax

$CASE ON (default)

$CASE OFF

Description

With the $CASE ON and $CASE OFF controls you specify whether the

assembler operates in case sensitive mode or not. By default the assembler

operates in case sensitive mode. This means that all user-defined symbols

and labels are treated case sensitive, so LAB and Lab are distinct. Note that

instruction mnemonics, register names, directives and controls are always

treated case insensitive.

Example

;begin of source

$CASE OFF ; assembler in case insensitive mode

Related option

Assembler option -c (Switch to case insensitive mode) in section 5.2,

Assembler Options, of Chapter Tool Options.

Related information

-

TriCore Reference Manual3-68
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$defect_TCnum

Syntax

$CPU_TCnum ON

$CPU_TCnum OFF

$DMU_TCnum ON

$DMU_TCnum OFF

$PMI_TCnum ON

$PMI_TCnum OFF

$PMU_TCnum ON

$PMU_TCnum OFF

Description

With these controls you can enable or disable specific CPU functional

problem checks.

When you use this control, the define __defect_TCnum__ is set to 1.

Example

$CPU_TC018 ON ; enable assembler check for CPU

 ; functional problem CPU_TC.018,

 ; __CPU_TC018__ is defined

Related option

Assembler option --silicon-bug (Check on CPU functional defect) in

section 5.2, Assembler Options, of Chapter Tool Options.

Related information

See Chapter 9, CPU Functional Problems, for more information about the

individual problems.

TriCore Assembly Language 3-69

• • • • • • • •

$DEBUG ON / OFF

Syntax

$DEBUG ON

$DEBUG OFF

$DEBUG "flags"

Description

With the $DEBUG ON and $DEBUG OFF controls you turn the generation

of debug infomation on or off. ($DEBUG ON is similar to the assembler

option -gl).

If you use $DEBUG control with flags, you can set the following flags:

a/A assembler source line information

h/H pass HLL debug information

You cannot use these two types of debug information both. So,

$DEBUG "ah" is not allowed.

l/L local symbols debug information

s/S always debug; either "AhL" or "aHl"

Debug information that is generated by the C compiler, is always passed

to the object file.

Example

;begin of source

$DEBUG ON ; generate local symbols debug information

Related option

Assembler option -g (Select debug information) in section 5.2, Assembler
Options, of Chapter Tool Options.

Related information

-

TriCore Reference Manual3-70
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$FPU

Syntax

$FPU

Description

With the $FPU control you instruct the assembler to accept and encode

single precision floating-point instructions in the assembly source file.

When you use this control, the define __FPU__ is set to 1. By default the

define __FPU__ is set to 0 which tells the assembler not to accept single

precision floating-point instructions.

Example

;begin of source

$FPU ; the use of single precision FPU instructions

 ; in this source is allowed.

Related option

Assembler option --fpu-present (Allow the use of single precision

floating-point instructions) in section 5.2, Assembler Options, of Chapter

Tool Options.

Related information

-

TriCore Assembly Language 3-71

• • • • • • • •

$HW_ONLY

Syntax

$HW_ONLY

Description

Normally the assembler replaces instructions by other, smaller or faster

instructions. For example, the instruction jeq d0,#0,label1 is replaced

by jz d0,label1.

With the $HW_ONLY control you instruct the assembler to encode all

instruction as they are. The assembler does not substitute instructions with

other, faster or smaller instructions.

Example

;begin of source

$HW_ONLY ; the assembler does not substitute

 ; instructions with other, smaller or

 ; faster instructions.

Related option

Assembler option -Og (Allow generic instructions) in section 5.2,

Assembler Options, of Chapter Tool Options.

Related information

-

TriCore Reference Manual3-72
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$IDENT

Syntax

$IDENT LOCAL

$IDENT GLOBAL

Description

With the controls $IDENT LOCAL and $IDENT GLOBAL you tell the

assembler how to treat symbols that you have not specified explicitly as

local or global with the assembler directives .LOCAL or .GLOBAL.

By default the assembler treats all symbols as local symbols unless you

have defined them explicitly as global.

Example

;begin of source

$IDENT GLOBAL ; assembly labels are global by default

Related option

Assembler option -i (Treat labels by default local / global) in section 5.2,

Assembler Options, of Chapter Tool Options.

Related information

Assembler directive .LOCAL (Local symbol declaration)

Assembler directive .GLOBAL (Global symbol declaration)

TriCore Assembly Language 3-73

• • • • • • • •

$LIST ON / OFF

Syntax

$LIST ON

 .

 . ; assembly source lines

 .

$LIST OFF

Description

If you generate a list file with the assembler option -l, you can use the

$LIST ON and $LIST OFF controls to specify which source lines the

assembler must write to the list file. Without the command line option -l,

the $LIST ON and $LIST OFF controls have no effect.

The $LIST ON control actually increments a counter that is checked for a

positive value and is symmetrical with respect to the $LIST OFF control.

Note the following sequence:

; Counter value currently 1

$LIST ON ; Counter value = 2

$LIST ON ; Counter value = 3

$LIST OFF ; Counter value = 2

$LIST OFF ; Counter value = 1

The listing still would not be disabled until another $LIST OFF control

was issued.

Example

Suppose you assemble the following assembly source with the assembler

option -l:

 .SDECL ".text",CODE

 .SECT ".text"

 ... ; source line in list file

$LIST OFF

 ... ; source line not in list file

$LIST ON

 ... ; source line also in list file

 .END

TriCore Reference Manual3-74
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

The assembler generates a list file with the following lines:

 .SDECL ".text",CODE

 .SECT ".text"

 ... ; source line in list file

$LIST ON

 ... ; source line also in list file

 .END

Related option

Assembler option -l (Generate list file) in section 5.2, Assembler Options,
of Chapter Tool Options.

Related information

Assembler control $LIST (Exclude / include lines in assembly list file)

Assembler function @LST() in section 3.2, Built-in Asembly Functions.

TriCore Assembly Language 3-75

• • • • • • • •

$LIST flags

Syntax

Begin of assembly file

$LIST "flags"

Description

If you generate a list file with the assembler option -l, you can use the

$LIST controls to specify which type of source lines the assembler must

exclude from the list file. Without the command line option -l, the $LIST

control has no effect.

You can set the following flags to remove or include lines:

c/C Lines with assembler controls

d/D Lines with section directives (.SECT and .SDECL)

e/E Lines with symbol definition directives (.EXTERN, .GLOBAL,

.LOCAL, .CALLS)

g/G Lines with generic instruction expansion

i/I Lines with generic instructions

l/L #Line source lines

m/M Lines with macro definitions (.MACRO and .DUP)

n/N Empty source lines

p/P Lines with conditional assembly

q/Q Lines with the .EQU or .SET directive

r/R Lines with relocation characters ('r')

v/V Lines with .EQU or .SET values

w/W Wrapped part of a line

x/X Lines with expanded macros

y/Y Lines with cycle counts

If you do not specify this control or the assembler option -Lflag, the

assembler uses the default: -LcDEGilMnPqrVWXy.

Example

To exclude assembly files with controls from the list file:

;begin of source

$LIST "c"

TriCore Reference Manual3-76
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Related option

Assembler option -L (List file formatting options) in section 5.2, Assembler
Options, of Chapter Tool Options.

Related information

Assembler control $LIST ON / OFF (Assembly list file ON / OFF)

Assembler function @LST() in section 3.2, Built-in Asembly Functions.

TriCore Assembly Language 3-77

• • • • • • • •

$MMU

Syntax

$MMU

Description

With the $MMU control you instruct the assembler to accept and encode

memory management instructions in the assembly source file.

When you use this control, the define __MMU__ is set to 1.

Example

;begin of source

$MMU ; the use of memory management instructions

 ; in this source is allowed.

Related option

Assembler option --mmu-present (Allow the use of memory

management instructions) in section 5.2, Assembler Options, of Chapter

Tool Options.

Related information

-

TriCore Reference Manual3-78
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$OBJECT

Syntax

$OBJECT "file"

$OBJECT OFF

Description

With the $OBJECT control you can specify an alternative name for the

generated object file. With the $OBJECT OFF control, the assembler does

not generate an object file at all.

Example

;Begin of source

$object "x1.o" ; generate object file x1.o

Related option

Assembler option -o (Define output filename) in section 5.2, Assembler
Options, of Chapter Tool Options.

Related information

-

TriCore Assembly Language 3-79

• • • • • • • •

$PAGE

Syntax

$PAGE [width,length,blanktop,blankbtm,blankleft]

Description

If you generate a list file with the assembler option -l, you can use the

$PAGE control to format the generated list file.

width Number of characters on a line (1-255). Default is 132.

length Number of lines per page (10-255). Default is 66. As a special

case a page length of 0 (zero) turns off all headers, titles,

subtitles, and page breaks.

blanktop Number of blank lines at the top of the page. Default = 0.

Specify a value so that blanktop + blankbtm ≤ length - 10.

blankbtm Number of blank lines at the bottom of the page. Default = 0.

Specify a value so that blanktop + blankbtm ≤ length - 10.

blankleft Number of blank columns at the left of the page. Default = 0.

Specify a value smaller than width.

If you use the $PAGE control without arguments, it causes a 'formfeed': the

next source line is printed on the next page in the list file. The $PAGE

control itself is not printed.

You can omit an argument by using two adjacent commas. If the

remaining arguments after an argument are all empty, you can omit them.

Example

$PAGE ; formfeed, the next source line is printed

 ; on the next page in the list file.

$PAGE 96 ; set page width to 96. Note that you can

 ; omit the last four arguments.

$PAGE ,,3,3; use 3 line top/bottom margins.

Related option

-

TriCore Reference Manual3-80
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Related information

Assembler control $STITLE (Set program subtitle in header of list file)

Assembler control $TITLE (Set program title in header of list file)

Assembler option -l (Generate list file) in Section 5.2, Assembler Options,
of Chapter Tool Options.

Assembler option -L (List file formatting options) in Section 5.2, Assembler
Options, of Chapter Tool Options.

TriCore Assembly Language 3-81

• • • • • • • •

$PRCTL

Syntax

$PRCTL exp|string[,exp|string]...

Description

If you generate a list file with the assembler option -l, you can use the

$PRCTL control to send control strings to the printer.

The $PRCTL control simply concatenates its arguments and sends them to

the listing file (the control line itself is not printed unless there is an error).

You can specify the following arguments:

exp a byte expression which may be used to encode

non-printing control characters, such as ESC.

string an assembler string. which may be of arbitrary length, up to

the maximum assembler-defined limits.

The $PRCTL control can appear anywhere in the source file; the assembler

sends out the control string at the corresponding place in the listing file.

If a $PRCTL control is the last line in the last input file to be processed,

the assembler insures that all error summaries, symbol tables, and

cross-references have been printed before sending out the control string.

In this manner, you can use a PRCTL control to restore a printer to a

previous mode after printing is done.

Similarly, if the $PRCTL control appears as the first line in the first input

file, the assembler sends out the control string before page headings or

titles.

Example

$PRCTL $1B,'E' ; Reset HP LaserJet printer

Related option

-

Related information

Assembler option -l (Generate list file) in Section 5.2, Assembler Options,
of Chapter Tool Options.

TriCore Reference Manual3-82
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$STITLE

Syntax

$STITLE "title"

Description

If you generate a list file with the assembler option -l, you can use the

$STITLE control to specify the program subtitle which is printed at the

top of all succeeding pages in the assembler list file below the title.

The specified subtitle is valid until the assembler encouters a new STITLE

control. By default, the subtitle is empty.

The $STITLE control itself will not be printed in the source listing.

If the page width is too small for the title to fit in the header, it will be

truncated.

Example

$TITLE 'This is the title'

$STITLE 'This is the subtitle'

The header of the second page in the list file will now be:

TASKING TriCore Assembler vx.yrz Build nnn SN 00000000

This is the title Page 2

This is the subtitle

Related option

-

Related information

Assembler control $TITLE (Set program title in header of list file)

Assembler option -l (Generate list file) in Section 5.2, Assembler Options,
of Chapter Tool Options.

TriCore Assembly Language 3-83

• • • • • • • •

$TC2

Syntax

$TC2

Description

With the $TC2 control you instruct the assembler to accept and encode

TriCore 2 instructions in the assembly source file.

When you use this control, the define __TC2__ is set to 1.

Example

;begin of source

$TC2 ; the use of TriCore 2 instructions

 ; in this source is allowed.

Related option

Assembler option --is-tricore2 (Allow the use of TriCore 2 instructions)

in section 5.2, Assembler Options, of Chapter Tool Options.

Related information

-

TriCore Reference Manual3-84
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$TITLE

Syntax

$TITLE "title"

Description

If you generate a list file with the assembler option -l, you can use the

$TITLE control to specify the program title which is printed at the top of

each page in the assembler list file.

By default, the title is empty.

If the page width is too small for the title to fit in the header, it will be

truncated.

Example

$TITLE 'This is the title'

The header of the list file will now be:

TASKING TriCore Assembler vx.yrz Build nnn SN 00000000

This is the title Page 1

Related option

-

Related information

STITLE (Set program subtitle in header of assembly list file)

TriCore Assembly Language 3-85

• • • • • • • •

$WARNING OFF

Syntax

$WARNING OFF

$WARNING OFF number

Description

With the $WARNING OFF control you can suppresses all warning

messages or specific warning messages.

• By default, all warnings are reported.

• If you specify this option but without numbers, all warnings are

suppressed.

• If you specify this option with a number, only the specified warning is

suppressed.

Example

$WARNING OFF ; all warning messages are suppressed

$WARNING OFF 135 ; suppress warning message 135

Related option

Assembler option -w (Suppress some or all warnings) in section 5.2,

Assembler Options, of Chapter Tool Options.

Related information

-

TriCore Reference Manual3-86
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4

RUN-TIME

ENVIRONMENT
C

H
A

P
T

E
R

TriCore Reference Manual4-2
R
U
N
-T
IM
E

4

C
H

A
P

T
E

R

Run-time Environment 4-3

• • • • • • • •

4.1 INTRODUCTION

This chapter describes the startup code used by the TASKING TriCore C

compiler, the stack layout and the heap; and the floating-point arithmetic.

4.2 STARTUP CODE

You need the run-time startup code to build an executable application.

The default startup code consists of the following components:

• Initialization code. This code is executed when the program is

initiated and before the function main() is called.

• Exit code. This controls the closedown of the application after the

program's main function terminates.

• The trap vector table. This contains default trap vectors.

The startup code is part of the C library libc.a, and the source is present

in the file cstart.asm in the directory lib\src.

If the default run-time startup code does not match your configuration,

you need to modify the startup code accordingly.

See also section 7.6, Linking the C Startup Code in Chapter Using the Linker
of the User's Manual.

The entry point of the startup code (power-on vector) is label _START.

This global label should not be removed, since the C compiler refers to it.

It is also used as the default start address of the application.

Initialization code

The following initialization actions are executed before the application

starts:

1. Re-enable and reset the call depth counter and make A0, A1, A8, A9

write-able. It is required for CrossView Pro that these RESET values are

restored for each time the startup code is executed.

2. Initialize the user stack pointer. The user stack pointer is loaded into

memory by the stack address, located at _lc_ue_ustack. This label is

defined in the Linker Script File. See section 4.3, Stack Usage for

detailed information on the stack.

TriCore Reference Manual4-4
R
U
N
-T
IM
E

3. Clear Previous Context Pointer Segment Address and Offset Field. It is

required for CrossView Pro's stack trace that these RESET values are

restored for each time the startup code is executed.

4. Setup the context save area lists. Tables with start/end addresses go in

a separate 'csa_areas' section.

5. Initialize registers and bus configuration. In the file cstart.asm the

actual location of several special function registers is required. These

addresses are specified in the regcpu_name.def SFR system include

files. You can include such a file with the assembler option

-Ccpu_name. In EDE the appropriate file is included when you have

selected a CPU type. If you do not specify an SFR file, the default SFR

regtc11ib.def file is included.

6. Load Base Address of Trap Vector Table. This address is indicated by

the linker label _lc_u_trap_tab as defined in the Linker Script File.

7. Load Base Address of Interrupt Vector Table. This address is indicated

by the linker label _lc_u_int_tab as defined in the Linker Script File.

8. Initialize the interrupt stack pointer. The interupt stack pointer is

loaded into memory by the interrupt stack address, located at

_lc_ue_istack. This label is defined in the Linker Script File.

9. Initialize and clear C variables.

10. Copy initialized sections from ROM to RAM, using a linker generated

table (also known as the 'copy table') and a run-time library function

_c_init.

11. Initialize the argc and argv arguments to zero.

12. Call the entry point of your application with a call to function main().

Exit code

When the C application 'returns', which is not likely to happen in an

embedded environment, the program ends with a DEBUG16 instruction, at

the assembly label _exit. When using a debugger, it can be useful to set

a breakpoint on this label to indicate that the program has reached the

end, or that the library function exit() has been called.

Run-time Environment 4-5

• • • • • • • •

Trap vector table

The default startup code makes sure that the trap vectors for exceptions 0

to 7 are filled in. Default trap vectors are resolved from the C library. You

can overrule these routines with your own exception routines.

To disable a default trap vector from EDE:

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry, expand Startup, expand Startup Code

and select Trap Vectors.

3. Disable the trap vectors you do not want to be automatically defined in

the startup code.

See also section 3.9.2, Interrupt and Trap Functions in Chapter TriCore C
Language of the User's Manual.

Control Startup Code from EDE

To control cstart.asm from within EDE, you first have to add

cstart.asm to your project:

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Startup.

3. Enable the option Automatically copy and link cstart.asm to your

project.

The file cstart.asm is copied to your project directory and added to
your project.

Now you can specify all your startup settings in the pages Startup Code,

Boot Memory and Memory Control.

You can specify CPU settings in the same dialog:

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Bus Configuration.

TriCore Reference Manual4-6
R
U
N
-T
IM
E

3. Select the appropriate bus configuration settings.

EDE automatically defines macros according to the selected settings.

Macro Preprocessor Symbols

A number of macro preprocessor symbols are used in the startup code.

These can be enabled or disabled using the assembler command line

option -D with the following syntax:

-Didentifier[=replacement]).

In the startup file (cstart.asm) the following macro preprocessor

symbols are used:

Define Description

External Boot Memory Configuration (BOOTCFG)

_BOOTCFG_VALUE Boot memory Offset Address + 0x4

Memory Control (PMUCON/DMUCON)

_PMU_CON_VALUE If defined, value of PMU Control register

_PMU_EIFCON_VALUE If defined, value of PMU External Instruction

Fetch Control register

_DMU_CON_DCAON If defined, Enable data cache

Startup

_NO_BTV_INIT If defined, Base Address of Trap Vector Table is

not initialized with trap table start address

(trap_tab).

_NO_BIV_INIT If defined, Base Address of Interrupt Vector

Table is not initialized with interrupt table start

address (_lc_u_int_tab).

_NO_ISP_INIT If defined, Interrupt Stack Pointer is not initialized

with end address of interrupt stack

(_lc_ue_istack).

_NO_USP_INIT If defined, User Stack Pointer is not initialized

with end address of user stack (_lc_ue_istack).

_NO_PCX_RESET If defined, the Previous Context is not explicitly

cleared.

_NO_PSW_RESET If defined, the Call Depth Counter is not explicitly

cleared.

Run-time Environment 4-7

• • • • • • • •

DescriptionDefine

_NO_A0A1_ADDRESSING If defined, global address register A0/A1 is not

initialized with start address of the _a0/_a1

addressable area (_lc_gb_a0/1).

_NO_A8A9_ADDRESSING If defined, global address register A8/A9 is not

initialized with start address of the _a8/_a9

addressable area (_lc_gb_a8/9).

_NO_CSA_INIT If defined, Context Save Area lists are not

initialized.

_NO_WATCHDOG_INIT If defined, Watchdog timer disabled.

_NO_BUS_CONF If defined, bus configuration registers are not

initialized.

_NO_C_INIT If defined, C variables are not initialized.

_NO_ARG_INIT If defined, disable initialization of argc and argv[].

_NO_EXIT If defined, C library function exit() or abort() not

supported.

_USERDEFINED_TRAP_n If defined, the default trap vector n is disabled.

Miscellaneous

_CALL_INIT Can be set to a function to be called before

main. This function cannot have a return or

arguments. This function can be used, for

example, to initialize the serial port before main

is called. This is useful for building programs

without making any modifications to the original

source.

_CALL_ENDINIT Can be set to a function to be called before the

ENDINIT instruction is executed. Like the

CALLINIT function, it cannot not have a return

value or arguments.

CPU functional bypasses

_TC112_XXX If defined, TC112 CPU functional defect XXX is

bypassed and/or checked.

_TC113_XXX If defined, TC113 CPU functional defect XXX is

bypassed and/or checked. See Chapter 9 CPU

Functional Problems for a complete list of these

macros.

Table 4-1: Defines used in cstart.src

TriCore Reference Manual4-8
R
U
N
-T
IM
E

The following table shows the linker labels used in the startup code.

Define Description

_START start label, mentioned in LSL file (tc_arch.lsl)

_c_init label copy table init function

main start label user C program

exit start label of exit() function

_exit exit() function jumps to this place

_CALL_ENDINIT label called before ENDINIT

_CALL_INIT _CALL_INIT label called before main()

_lc_gb_a0 linker label start of A0 addressable area

_lc_gb_a1 linker label start of A1 addressable area

_lc_gb_a8 linker label start of A8 addressable area

_lc_gb_a9 linker label start of A9 addressable area

_lc_u_int_tab linker label interrupt table

_lc_ub_csa linker label context save area begin

_lc_ue_csa linker label context save area end

_lc_ue_istack linker label interrupt stack end

_lc_ue_ustack linker label user stack end

Table 4-2: Linker labels used in startup code

Run-time Environment 4-9

• • • • • • • •

4.3 STACK USAGE

The stack is used for local automatic variables and function parameters.

The following diagram show the structure of a stack frame.

sp

stack

grows down

high memory

low memory

framesize

sp

during execution

parameters

incoming

on entry

($sp)

local variables

parameters

outgoing

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

Figure 4-1: Stack diagram

The stack size is defined in the linker script file (tc_arch.lsl in

directory include.lsl) with the macro USTACK and ISTACK, which

results in sections called ustack and istack.

The linker defined label _lc_ue_ustack refers to the top of the user

stack area and is used in the file cstart.asm to initialize the user stack

pointer register (SP). The linker defined label _lc_ue_istack refers to

the top of the interrupt stack area and is used in the file cstart.asm to

initialize the interrupt stack pointer register (ISP)

As long as the user program does not change the IS bit in the program

status word (PSW), only the user stack is used. Refer to the TriCore
Architecture (v1.3) Manual for the implications of an IS bit change.

TriCore Reference Manual4-10
R
U
N
-T
IM
E

4.4 HEAP ALLOCATION

The heap is only needed when you use one or more of the dynamic

memory management library functions: malloc(), calloc(), free()

and realloc(). The heap is a reserved area in memory. Only if you use

one of the memory allocation functions listed above, the linker

automatically allocates a heap, as specified in the linker script file with the

keyword heap.

A special section called heap is used for the allocation of the heap area.

The size of the heap is defined in the linker script file (tc_arch.lsl in

directory include.lsl) with the macro HEAP, which results in a section

called heap. The linker defined labels _lc_bh and _lc_eh (begin and

end of heap) are used by the library function sbrk(), which is called by

malloc() when memory is needed from the heap.

The special heap section is only allocated when its linker labels are used

in the program.

4.5 FLOATING-POINT ARITHMETIC

Floating-point arithmetic support for the compiler ctc is included in the

software as a separate set of libraries or in the hardware when available

(only single precision). During linking you have to specify the desired

floating-point library after the C library. The libraries are reentrant, and

only use temporary program stack memory.

To ensure portability of floating-point arithmetic, floating-point arithmetic

for the compiler ctc has been implemented complying with the IEEE-754

standard for floating-point arithmetic. See the IEEE Standard Binary for
Floating-Point Arithmetic document [IEEE Computer Society, 1985] for

more details on the floating-point arithmetic definitions. This document is

referred to as IEEE-754 in this manual.

The compiler ctc supports both single and double precision floating-point

operations using the ISO C types float and double respectively. To

optimize for speed, also a non-trapping library is included.

It is possible to intercept floating-point exceptional cases and, if desired,

handle them with an application defined exception handler. The

intercepting of floating-point exceptions is referred to as 'trapping'.

Examples of how to install a trap handler are included.

Run-time Environment 4-11

• • • • • • • •

4.5.1 COMPLIANCE WITH IEEE-754

The level to which the floating-point implementation complies with the

IEEE-754 standard, depends on the choosen configuration.

All floating-point calculations are executed using the 'round to nearest

(even)' rounding mode, since this is required by ANSI-C 89. This is

conform IEEE-754. Because there are no double precision floating-point

hardware instructions, an emulating library is always needed for double

precision calculation.

When the use of hardware FPU instructions is choosen (--fpu-present),

the available hardware instructions for single precision floating-point will

be used either in the compiler or in one of the libraries. For double

precision floating-point calculations the choosen floating-point emulaton

library will be used. When no hardware FPU instructions are allowed, all

floating-point operations will be used from the choosen floating-point

emulaton library.

In EDE you can specify to use the single precision floating-point:

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Enable the option Single precision floating-point only: treat type

'double' as 'float'.

Compiler option --fpu-present in Chapter 5, Tool Options.

Compliance with IEEE-754: TriCore hardware FPU instructions

The following implementation issues for the single precision hardware

instructions (optionally implemented on the TriCore chip), are important:

• subnormals are not supported (hardware design decision).

• when converting single precision floats to integers, rounding is done to

the nearest (even) integer. This does not comply with ANSI-C 89 or

ISO-C 99, but does comply with IEEE-754, since this is the current

rounding mode (hardware design decision).

• when a converted single precision float overflows the target integer

type, the value is saturated to MAX_INT or MIN_INT (hardware design

decision).

TriCore Reference Manual4-12
R
U
N
-T
IM
E

• whenever a double precision float is involved, the results are

determined by the chosen emulation library.

Compliance with IEEE-754: Trapping emulation library

The following implementation issues for the trapping floating-point library

are important:

• subnormals are not supported. This is conform the TriCore hardware

design.

• when converting floats to integers, the value is truncated. This complies

with ANSI-C 89 and ISO-C 99, but does not comply with IEEE-754,

since the current rounding mode is 'round to nearest (even)'.

• when a converted float overflows the target integer type, a predictable

value is assigned to the target integer.

Compliance with IEEE-754: Hand-optimized non-trapping emulation
library

The following implementation issues for the non-trapping floating-point

library are important:

• when calculating with floats, rounding is done to the nearest integer

(rounding towards infinity when equally near).

• there is no distinction between -0 and +0

• when an operand of a calculation is a NaN, Inf or subnormal, the result

is undefined.

• when the result of a calculation would be a subnormal, the result is 0.

• whenever a NaN or Inf would be the result of a calculation, the result

is undefined

• when converting single precision floats to integers, rounding is done to

the nearest integer (rounding towards infinity when equally near). This

is similar to the TriCore FPU hardware.

• when converting double precision floats to integers, the value is

truncated. This is similar to the trapping emulation library.

• when a converted float overflows the target integer type, the value is

saturated to MAX_INT or MIN_INT.

Run-time Environment 4-13

• • • • • • • •

4.5.2 SPECIAL FLOATING-POINT VALUES

Below is a list of special, IEEE-754 defined, floating-point values as they

can occur during run-time.

Special value Sign Exponent Mantissa

+0.0 (Positive Zero) 0 all zeros all zeros

-0.0 (Negative Zero) 1 all zeros all zeros

+INF (Positive Infinite) 0 all ones all zeros

-INF (Negative Infinite) 1 all ones all zeros

NaN (Not a number) 0 all ones not all zeros

Table 4-3: Special floating-point values

4.5.3 TRAPPING FLOATING-POINT EXCEPTIONS

Four floating-point libraries are delivered:

Library to link Description

libfp.a Floating-point library (non-trapping, no FPU).

This is the default.

libfpt.a Floating-point library (trapping, no FPU)

(Control program option --fp-trap)

libfp_fpu.a Floating-point library (non-trapping, with FPU instructions)

(Compiler option --fpu-present)

libfpt_fpu.a Floating-point library (trapping, with FPU instructions)

(Control program option --fp-trap, compiler option

--fpu-present)

Table 4-4: Floating-point libraries

Both EDE and the control program cctc automatically select the

appropriate libraries depending on the specified TriCore derivative. By

specifying the --fp-trap option to the control program cctc, the trapping

type floating-point library is linked into your application. By specifying

the --fpu-present option to the control program cctc, a floating-point

library with single precision FPU instructions is linked into your

application. If these options are not specified, the floating-point library

without trapping mechanism and without FPU instructions is used.

TriCore Reference Manual4-14
R
U
N
-T
IM
E

In EDE you can specify to use the trapping type floating-point library as

follows:

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Libraries.

3. Enable the option Use traping floating-point library.

IEEE-754 Trap Handler

In the IEEE-754 standard a trap handler is defined, which is invoked on

(specified) exceptional events, passing along much information about the

event. To install your own trap handler, use the library call

_fp_install_trap_handler. When installing your own exception

handler, you must select on which types of exceptions you want to have

your handler invoked, using the function call

_fp_set_exception_mask. See below for more details on the

floating-point library exception handling function interface.

SIGFPE Signal Handler

In ANSI-C the regular approach of dealing with floating-point exceptions

is by installing a so-called signal handler by means of the ANSI-C library

call signal. If such a handler is installed, floating-point exceptions cause

this handler to be invoked. To have the signal handler for the SIGFPE

signal actually become operational with the provided floating-point

libraries, a (very) basic version of the IEEE-754 exception handler must be

installed (see example below) which will raise the desired signal by means

of the ANSI-C library function call raise. For this to be achieved, the

function call _fp_install_trap_handler is present. When installing

your own exception handler, you will have to select on which types of

exceptions you want to receive a signal, using the function call

_fp_set_exception_mask. See further below for more details on the

floating-point library exception handling function interface.

There is no way to specify any information about the context or nature of

the exception to the signal handler. Just that a floating-point exception

occurred can be detected. See therefor the IEEE-754 trap handler

discussion above if you want more control over floating-point results.

Run-time Environment 4-15

• • • • • • • •

Example:

#include <float.h>

#include <signal.h>

static void pass_fp_exception_to_signal(

 _fp_exception_info_t *info)

{

 info; /* suppress parameter not used warning */

 /* cause SIGFPE signal to be raised */

 raise(SIGFPE);

 /*

 * now continue the program

 * with the unaltered result

 */

}

4.5.4 FLOATING-POINT TRAP HANDLING API

For purposes of dealing with floating-point arithmetic exceptions, the

following library calls are available:

#include <float.h>

int _fp_get_exception_mask(void);

void _fp_set_exception_mask(int);

A pair of functions to get or set the mask which controls which type of

floating-point arithmetic exceptions are either ignored or passed on to the

trap handler. The types of possible exception flag bits are defined as:

EFINVOP

EFDIVZ

EFOVFL

EFUNFL

EFINEXCT

while,

EFALL

is the OR of all possible flags. See below for an explanation of each flag.

TriCore Reference Manual4-16
R
U
N
-T
IM
E

#include <float.h>

int _fp_get_exception_status(void);

void _fp_set_exception_status(int);

A pair of functions for examining or presetting the status word containing

the accumulation of all floating-point exception types which occurred so

far. See the possible exception type flags above.

#include <float.h>

void _fp_install_trap_handler(void (*)

 (_fp_exception_info_t *));

This function call expects a pointer to a function, which in turn expects a

pointer to a structure of type _fp_exception_info_t. The members of

_fp_exception_info_t are:

exception

This member contains one of the following (numerical) values:

EFINVOP

EFDIVZ

EFOVFL

EFUNFL

EFINEXCT

operation

This member contains one of the following numbers:

_OP_ADDITION

_OP_SUBTRACTION

_OP_COMPARISON

_OP_EQUALITY

_OP_LESS_THAN

_OP_LARGER_THAN

_OP_MULTIPLICATION

_OP_DIVISION

_OP_CONVERSION

source_format

destination_format

Run-time Environment 4-17

• • • • • • • •

Numerical values of these two members are:

_TYPE_SIGNED_CHARACTER

_TYPE_UNSIGNED_CHARACTER

_TYPE_SIGNED_SHORT_INTEGER

_TYPE_UNSIGNED_SHORT_INTEGER

_TYPE_SIGNED_INTEGER

_TYPE_UNSIGNED_INTEGER

_TYPE_SIGNED_LONG_INTEGER

_TYPE_UNSIGNED_LONG_INTEGER

_TYPE_FLOAT

_TYPE_DOUBLE

operand1 /* left side of binary or */

 /* right side of unary */

operand2 /* right side for binary */

result

These three are of the following type, to receive and return a value

of arbitrary type:

typedef union _fp_value_union_t

{

 char c;

 unsigned char uc;

 short s;

 unsigned short us;

 int i;

 unsigned int ui;

 long l;

 unsigned long ul;

 float f;

#if ! _SINGLE_FP

 double d;

#endif

}

_fp_value_union_t;

The member d is not present when specifying the -F option (treat double

as float) to the C compiler.

TriCore Reference Manual4-18
R
U
N
-T
IM
E

The following table lists all the exception code flags, the corresponding

error description and result:

Error Description Exception Flag Default Result with Trapping

Invalid Operation EFINVOP NaN

Division by zero EFDIVZ +INF or -INF

Overflow EFOVFL +INF or -INF

Underflow EFUNFL zero

Inexact EFINEXT undefined

INF Infinite which is the largest absolute floating-point number,

which is always: -INF < every finite number < +INF

NAN Not a Number, a symbolic entity encoded in floating-point format.

Table 4-5: Exception Type Flag Codes

To ensure all exception types are specified, you can specify EFALL to a

function, which is the binary OR of all above enlisted flags.

5

TOOL OPTIONS
C

H
A

P
T

E
R

TriCore Reference Manual5-2
T

O
O

L
 O

P
T

IO
N

S

5

C
H

A
P

T
E

R

Tool Options - Compiler 5-3

• • • • • • • •

5.1 COMPILER OPTIONS

This section lists all compiler options.

Options in EDE versus options on the command line

Most command line options have an equivalent option in EDE but some

options are only available on the command line. If there is no equivalent

option in EDE, you can specify a command line option in EDE as follows:

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Enter one or more command line options in the Additional options

field.

Be aware that some command line options are not useful in EDE or just

do not have any effect. For example, the option -n sends output to stdout

instead of a file and has no effect in EDE.

Short and long option names

Options have both short and long names. Short option names always

begin with a single minus (-) character, long option names always begin

with two minus (--) characters. You can abbreviate long option names as

long as it forms a unique name. You can mix short and long option names

on the command line.

Options can have flags or suboptions. To switch a flag 'on', use a

lowercase letter or a +longflag. To switch a flag off, use an uppercase

letter or a -longflag. Separate longflags with commas. The following two

invocations are equivalent:

ctc -Oac test.c

ctc --optimize=+coalesce,+cse test.c

When you do not specify an option, a default value may become active.

TriCore Reference Manual5-4
T

O
O

L
 O

P
T

IO
N

S

-? (--help)

EDE

-

Command line syntax

-?

--help[=item]

You can specify the following arguments:

intrinsics Show the list of intrinsic functions

options Show extended option descriptions

pragmas Show the list of supported pragmas

Description

Displays an overview of all command line options. When you specify an

argument you can list extended information such as a list of intrinsic

functions, pragmas or option descriptions.

Example

The following invocations all display a list of the available command line

options:

ctc -?

ctc --help

ctc

The following invocation displays a list of the available pragmas:

ctc --help=pragmas

Related information

-

Tool Options - Compiler 5-5

• • • • • • • •

-A (--language)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Language.

3. Enable or disable the options Allow C++ style comments in ISO C90

mode and Allow relaxed const check for string literals.

Command line syntax

-A[flags]

--language=[flags]

You can set the following flags:

g/G (+/-gcc) Enable a number of gcc extensions

p/P (+/-comments) Allow C++ style (//)comments in ISO C90

x/X (+/-strings) Relaxed const check for string literals

Default

-AGpx

Description

With this option you control the language extensions the compiler can

accept. By default the TriCore C compiler allows all language extensions,

except for gcc extensions.

The option -A (--language) without flags is the equivalent of -AGPX

and disables all language extensions.

With -Ag you tell the compiler to enable the following gcc languages

extensions:

• The identifier __FUNCTION__ expands to the current function name.

• Alternative syntax for variadic macros.

• Alternative syntax for designated initializers.

• Allow zero sized arrays.

• Allow empty struct/union.

TriCore Reference Manual5-6
T

O
O

L
 O

P
T

IO
N

S

• Allow empty initializer list.

• Allow initialization of static objects by compound literals.

• The middle operand of a ? : operator may be omitted.

• Allow a compound statement inside braces as expression.

• Allow arithmetic on void pointers and function pointers.

• Allow a range of values after a single case label.

• Additional preprocessor directive #warning.

• Allow comma operator, conditional operator and cast as lvalue.

• An inline function without "static" or "extern" will be global.

• An "extern inline" function will not be compiled on its own.

For an exact description of these gcc extensions, please refer to the gcc

info pages (info gcc).

With -Ap you tell the compiler to allow C++ style comments (//) in ISO

C90 mode (option -c90). In ISO C99 mode this style of comments is

always accepted.

With -Ax you tell the compiler not to check for assignments of a constant

string to a non-constant string pointer. With this option the following

example does not produces a warning:

char *p;

void main(void) { p = "hello"; }

Example

ctc -APx -c90 test.c

ctc --language=-comments,+strings --iso=90 test.c

The compiler compiles in ISO C90 mode, accepts assignments of a

constant string to a non-constant string pointer but ignores C++ style

comments.

Related information

Compiler option -c (ISO C standard)

Tool Options - Compiler 5-7

• • • • • • • •

--align

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Code Generation.

3. Specify a value in the Minimum alignment field.

Command line syntax

--align=value

Default

--align=1

Description

By default the TriCore compiler aligns objects to the minimum alignment

required by the architecture. With this option you can increase this

alignment for objects of four bytes or larger. The value must be a power of

two.

Example

To align all objects of four bytes or larger on a 4-byte boundary, enter:

ctc --align=4 test.c

Instead of this option you can also specify the following pragma in your C

source:

#pragma align 4

With #pragma align restore you can return to the previous alignment

setting.

Related information

Section 3.7, Controlling the Compiler: Pragmas, in Chapter TriCore C
Language of the TriCore User's Manual.

TriCore Reference Manual5-8
T

O
O

L
 O

P
T

IO
N

S

-C (--cpu)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. Select a processor from the Target processor list.

Command line syntax

-Ccpu

--cpu=cpu

Description

With this option you define the target processor for which you create your

application. By default EDE generates an object file for the TC11IB.

Based on the target processor the compiler automatically detects whether a

FPU-unit is present and whether the architecture is a TriCore2. This means

you do not have to specify the compiler options --fpu-present and

--is-tricore2 explicitly when one of the supported derivatives is selected.

The compiler always includes the register file regcpu.sfr, unless you

disable the option Automatic inclusion of '.sfr' file on the Preprocessing

page of the Compiler options (command line option --no-tasking-sfr).

Example

To compile the file test.c for the TC11IB processor and use the SFR file

regtc11ib.sfr:

ctc -Ctc11ib test.c

ctc --cpu=tc11ib test.c

To avoid conflicts, make sure you specify the same target processor to the

assembler.

Tool Options - Compiler 5-9

• • • • • • • •

Related information

Compiler option --no-tasking-sfr (Do not include SFR file)

Assembler option -C (Select CPU)

Control program option -C (Use SFR definitions for CPU)

Section 5.4, Calling the Compiler, in Chapter Using the Compiler of the

User's Manual.

TriCore Reference Manual5-10
T

O
O

L
 O

P
T

IO
N

S

-c (--iso)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Language.

3. Select the ISO C standard C90 or C99.

Command line syntax

-c{90|99}

--iso={90|99}

Default

-c99

Description

With this option you select the ISO C standard. C90 is also referred to as

the "ANSI C standard". C99 refers to the newer ISO/IEC 9899:1999 (E)

standard. C99 is the default.

Example

To select the ISO C90 standard on the command line:

ctc -c90 test.c

ctc --iso=90 test.c

Related information

Compiler option -A (Language extensions)

Tool Options - Compiler 5-11

• • • • • • • •

--check

EDE

1. In the project window, select the file you want to check.

2. From the Build menu, select Check Syntax.

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without

generating code. This saves time in developing your application.

The compiler reports any warnings and/or errors.

Example

To check for syntax errors, without generating code:

ctc --check test.c

Related information

Assembler option --check (Check syntax)

TriCore Reference Manual5-12
T

O
O

L
 O

P
T

IO
N

S

--cse-all-addresses

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Add the option --cse-all-addresses to the Additional options field.

Command line syntax

--cse-all-addresses

Description

With this option you tell the compiler to make all addresses available for

common subexpression evaluation.

Normally the compiler ignores __near and __ax addresses for common

subexpressions. However, depending on the use of address registers and

whether stack and/or addressed memory are internal or external, it might

be wise to consider them for CSE.

Example

ctc --cse-all-addresses -Oc test.c

The compiler makes all addresses available for common subexpression

evaluation.

Related information

Compiler option -Oc (Common subexpression elimination)

Tool Options - Compiler 5-13

• • • • • • • •

-D (--define)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Preprocessing.

3. Enter a macro name and/or definition in the Define user macros

field.

Use commas to separate multiple macro definitions.

Command line syntax

-Dmacro_name[=macro_definition]

--define=macro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the preprocessor.

If you only specify a macro name (no macro definition), the macro

expands as '1'.

You can specify as many macros as you like. In EDE, use commas to

separate multiple macro definitions. On the command line, use the

option -D multiple times. If the command line exceeds the limit of the

operating system, you can define the macros in an option file which you

then must specify to the compiler with the option -f file.

Defining macros with this option (instead of in the C source) is, for

example, useful to compile conditional C source as shown in the example

below.

TriCore Reference Manual5-14
T

O
O

L
 O

P
T

IO
N

S

Example

Consider the following C program with conditional code to compile a

demo program and a real program:

void main(void)

{

#if DEMO

 demo_func(); /* compile for the demo program */

#else

 real_func(); /* compile for the real program */

#endif

}

You can now use a macro definition to set the DEMO flag:

ctc -DDEMO test.c

ctc -DDEMO=1 test.c

ctc --define=DEMO test.c

ctc --define=DEMO=1 test.c

Note that all four invocations have the same effect.

The next example shows how to define a macro with arguments. Note that

the macro name and definition are placed between double quotes because

otherwise the spaces would indicate a new option.

ctc -D"MAX(A,B)=((A) > (B) ? (A) : (B))"

Related information

Compiler option -U (Remove preprocessor macro)

Compiler option -f (Specify an option file)

Tool Options - Compiler 5-15

• • • • • • • •

--diag

EDE

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or

warning message.

A description of the selected message appears.

Command line syntax

--diag=[format:]{all | number[,number]... }

Optionally, you can use one of the following display formats (format):

text The default is plain text

html Display explanation in HTML format

rtf Display explanation in RTF format

Description

With this option the compiler displays a description and explanation of the

specified error message(s) on stdout (usually the screen). The compiler

does not compile any files.

To create a file with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If

you want the description of one or more selected error messages, you can

specify the error message numbers, separated by commas.

With this option the compiler does not compile any files.

Example

To display an explanation of message number 282, enter:

ctc --diag=282

This results in the following message and explanation:

E282: unterminated comment

Make sure that all every comment starting with /* has

a matching */. Nested comments are not possible.

TriCore Reference Manual5-16
T

O
O

L
 O

P
T

IO
N

S

To write an explanation of all errors and warnings in HTML format to file

cerrors.html, enter:

ctc --diag=html:all > cerrors.html

Related information

Section 5.8, C Compiler Error Messages, in Chapter Using the Compiler of

the User's Manual.

Tool Options - Compiler 5-17

• • • • • • • •

-E (--preprocess)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Preprocessing.

3. Enable the option Store the C compiler preprocess output

(<file>.pre).

Command line syntax

-E[flags]

--preprocess[=flags]

You can set the following flags (when you specify -E without flags, the

default is -ECMP):

c/C (+/-comments) Keep comments

m/M (+/-make) Generate dependencies for make

p/P (+/-noline) Strip #line source position info

Description

With this option you tell the compiler to preprocess the C source. EDE

stores the preprocess output in the file name.pre (where name is the

name of the C source file to compile). EDE also compiles the C source.

On the command line, the compiler sends the preprocessed file to stdout.

To capture the information in a file, specify an output file with the

option -o.

With -Ec you tell the preprocessor to keep the comments from the C

source file in the preprocessed output.

With -Em the compiler will generate dependency lines that can be used

in a Makefile. The preprocessor output is discarded.

With -Ep you tell the preprocessor to strip the #line source position

information (lines starting with #line). These lines are normally

processed by the assembler and not needed in the preprocessed output.

When you leave these lines out, the output is easier to read.

TriCore Reference Manual5-18
T

O
O

L
 O

P
T

IO
N

S

Example

ctc -EcMP test.c -o test.pre

ctc --preprocess=+comments,-make,-noline test.c

 --output=test.pre

The compiler preprocesses the file test.c and sends the output to the

file test.pre. Comments are included but no dependencies are

generated and the line source position information is not stripped from the

output file.

Related information

-

Tool Options - Compiler 5-19

• • • • • • • •

--error-file

EDE

-

Command line syntax

--error-file[=file]

Description

With this option the compiler redirects error messages to a file.

If you do not specify a filename, the error file will be named after the

input file with extension .err.

Example

To write errors to errors.err instead of stderr, enter:

ctc --error-file=errors.err test.c

Related information

Compiler option --warnings-as-errors (Treat warnings as errors)

TriCore Reference Manual5-20
T

O
O

L
 O

P
T

IO
N

S

-F (--no-double)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Language.

3. Enable the option Single precision floating-point only.

Command line syntax

-F

--no-double

Description

With this option you tell the compiler to treat variables of the type double

as float. Because the float type takes less space, execution speed

increases and code size decreases, both at the cost of less precision.

Example

ctc -F test.c

ctc --no-double test.c

The file test.c is compiled where variables of the type double are

treated as float.

Related information

-

Tool Options - Compiler 5-21

• • • • • • • •

-f (--option-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Add the option -f to the Addtional options field.

In EDE you can save your options in a file and restore them to call the

compiler with those options:

• From the Project menu, select Save Options... or Load Options...

Be aware that when you specify the option -f in the Additional options

field, the options are added to the compiler options you have set in the

Project Options dialog. Only in extraordinary cases you may want to use

them in combination.

Command line syntax

-f file,...

--option-file=file,...

Description

Instead of typing all options on the command line, you can create an

option file which contains all options and files you want to specify. With

this option you specify the option file to the compiler.

Use an option file when the length of the command line would exceed the

limits of the operating system, or just to store options and save typing.

You can specify the option -f multiple times.

TriCore Reference Manual5-22
T

O
O

L
 O

P
T

IO
N

S

Format of an option file

• Multiple command line arguments on one line in the option file are

allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

 "This has a single quote ' embedded"

 'This has a double quote " embedded'

 'This has a double quote " and \

 a single quote '"' embedded"

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 "This is a continuation \

 line"

 -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

-Ctc11ib

-s

test.c

Specify the option file to the compiler:

ctc -f myoptions

ctc --option-file=myoptions

This is equivalent to the following command line:

ctc -Ctc11ib -s test.c

Related information

-

Tool Options - Compiler 5-23

• • • • • • • •

--fpu-present

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Target processor list select (user defined TriCore-1 v1.3) or

(user defined TriCore-2).

4. Enable the option FPU present.

Command line syntax

--fpu-present

Description

With this option the compiler can generate single precision floating-point

instructions in the assembly file. When you select this option, the macro

__FPU__ is defined in the C source file.

If you choose a valid target processor (command line option -C (--cpu)),

this option is automatically set, based on the chosen target processor.

Example

To allow the use of floating-point unit (FPU) instructions in the assembly

code, enter:

ctc --fpu-present test.c

Related information

Compiler option --is-tricore2 (Tricore2 instructions allowed)

Compiler option -C (Use SFR definitions for CPU)

TriCore Reference Manual5-24
T

O
O

L
 O

P
T

IO
N

S

-g (--debug-info)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Debug Information.

3. Enable the option Generate symbolic debug infomation

Command line syntax

-g

--debug-info

Description

With this option you tell the compiler to add directives to the output file

for including symbolic information. This facilitates high level debugging

but increases code size. For the final application, compile your C files

without debug information.

When you specify a high optimization level, the debug comfort may

decrease. Therefore, the compiler issues warning W555 if the debug

comfort would be decreased as a result of the chosen optimizations.

Example

To add symbolic debug information to the output file, enter:

ctc -g test.c

ctc --debug test.c

Related information

-

Tool Options - Compiler 5-25

• • • • • • • •

-H (--include-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Preprocessing.

3. Enter the name of the file in the Include this file before source field.

Command line syntax

-Hfile,...

--include-file=file,...

Description

With this option you include one extra file at the beginning of each C

source file, before other includes. This is the same as specifying #include

"file" at the beginning of each of your C sources.

Example

ctc -Hstdio.h test1.c test2.c

ctc --include-file=stdio.h test1.c test2.c

The file stdio.h is included at the beginning of both test1.c and

test2.c.

Related information

Compiler option -I (Add directory to include file search path)

Section 5.5, How the Compiler Searches Include Files, in Chapter Using the
Compiler of the User's Manual.

TriCore Reference Manual5-26
T

O
O

L
 O

P
T

IO
N

S

-I (--include-directory)

EDE

1. From the Project menu, select Directories...

The Directories dialog appears.

2. Enter one or more search paths in the Include Files Path field.

Command line syntax

-Ipath,...

--include-directory=path,...

Description

With this option you can specify the path where your include files are

located. A relative path will be relative to the current directory.

The order in which the compiler searches for include files is:

1. The pathname in the C source file and the directory of the C source

(only for #include files that are enclosed in "")

2. The path that is specified with this option.

3. The path that is specified in the environment variable CTCINC when

the product was installed.

4. The default directory $(PRODDIR)\include.

Example

Suppose that the C source file test.c contains the following lines:

#include <stdio.h>

#include "myinc.h"

You can call the compiler as follows:

ctc -Imyinclude test.c

ctc --include-directory=myinclude test.c

First the compiler looks for the file stdio.h in the directory myinclude

relative to the current directory. If it was not found, the compiler searches

in the environment variable and then in the default include directory.

Tool Options - Compiler 5-27

• • • • • • • •

The compiler now looks for the file myinc.h in the directory where

test.c is located. If the file is not there the compiler searches in the

directory myinclude. If it was still not found, the compiler searches in the

environment variable and then in the default include directory.

Related information

Compiler option -H (Include file at the start of a compilation)

Section 5.5, How the Compiler Searches Include Files, in Chapter Using the
Compiler of the User's Manual.

Section 1.3.2, Configuring the Command Line Environment, in Chapter

Software Installation of the User's Manual.

TriCore Reference Manual5-28
T

O
O

L
 O

P
T

IO
N

S

--indirect

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Code Generation.

3. Enable the option Call functions indirectly.

Command line syntax

--indirect

Description

With this option you tell the compiler to generate code for indirect

function calling.

Example

ctc --indirect test.c

The compiler generates far calls for all functions.

Instead of this option you can also specify the following pragma in your C

source:

#pragma indirect

Related information

Compiler option --indirect-runtime

See also section 3.9.3, Function Calling Modes: __indirect, in Chapter

TriCore C Language of the User's Manual.

Tool Options - Compiler 5-29

• • • • • • • •

--indirect-runtime

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Code Generation.

3. Enable the option Call run-time functions indirectly.

Command line syntax

--indirect-runtime

Description

With this option you tell the compiler to generate code for indirect calls to

run-time functions. Use this option if you locate the entire run-time library

in far memory.

Example

ctc --indirect-runtime test.c

The compiler generates far calls for all run-time functions.

Instead of this option you can also specify the following pragma in your C

source:

#pragma indirect_runtime

Related information

Compiler option --indirect

See also section 3.9.3, Function Calling Modes: __indirect, in Chapter

TriCore C Language of the User's Manual.

TriCore Reference Manual5-30
T

O
O

L
 O

P
T

IO
N

S

--inline

EDE

-

Command line syntax

--inline

Description

With this option you instruct the compiler to inline all functions, regardless

whether they have the keyword inline or not. This option has the same

effect as a #pragma inline at the start of the source file.

This option can be useful to increase the possibilities for code compaction

(option -Or).

Example

To inline all functions:

ctc --inline test.c

Related information

Compiler option -Or (Optimization: code compaction)

Tool Options - Compiler 5-31

• • • • • • • •

--inline-max-incr /

--inline-max-size

EDE

-

Command line syntax

--inline-max-incr=percentage

--inline-max-size=threshold

Default

--inline-max-incr=35

--inline-max-size=10

Description

With these options you can control the function inlining optimization

process of the compiler. These options have only effect when you have

enabled the inlining optimization (option -Oi).

Regardless of the optimization process, the compiler always inlines all
functions that have the function qualifier inline.

With the option --inline-max-size you can specify the maximum size of

functions that the compiler inlines as part of the optimization process. The

compiler always inlines all functions that are smaller than the specified

threshold. The threshold is measured in compiler internal units and the

compiler uses this measure to decide which functions are small enough to

inline. The default threshold is 10.

After the compiler has inlined all functions that have the function qualifier

inline and all functions that are smaller than the specified threshold, the

compiler looks whether it can inline more functions without increasing the

code size too much. With the option --inline-max-incr you can specify

how much the code size is allowed to increase. By default, this is 35%

which means that the compiler continues inlining functions until the

resulting code size is 35% larger than the original size.

TriCore Reference Manual5-32
T

O
O

L
 O

P
T

IO
N

S

Example

ctc --inline-max-incr=40 --inline-max-size=15 test.c

The compiler first inlines all functions with the function qualifier inline

and all functions that are smaller than the specified threshold of 15. If the

code size has still not increased with 40%, the compiler decides which

other functions it can inline.

Related information

Compiler option -O (Specify optimization level)

Section 3.9.1, Inlining Functions, in Chapter TriCore C Language of the

User's Manual.

Tool Options - Compiler 5-33

• • • • • • • •

--integer-enumeration

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Language.

3. Enable the option Use 32-bit integers for enumeration.

Command line syntax

--integer-enumeration

Description

With this option you tell the compiler to use (32-bit) integers for

enumerations. Without this option, the treats small enumerated types as a

smaller integer, a char or even a __bit type to reduce code size.

Example

To treat enumerated types always as 32-bit integer, enter:

ctc --integer-enumeration test.c

Related information

-

TriCore Reference Manual5-34
T

O
O

L
 O

P
T

IO
N

S

--is-tricore2

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Target processor list select (user defined TriCore-2).

4. Optionally enable or disable the options FPU present and MMU

present.

Command line syntax

--is-tricore2

Description

With this option the compiler can generate TriCore 2 instructions in the

assembly file. When you select this option, the macro __TC2__ is defined

in the C source file.

If you choose a valid target processor (command line option -C (--cpu)),

this option is automatically set, based on the chosen target processor.

Example

To allow the use of TriCore 2 instructions in the assembly code, enter:

ctc --is-tricore2 test.c

Related information

Compiler option --fpu-present (Use hardware floating-point

instructions)

Assembler option --mmu-present (Allow use of MMU instructions)

Compiler option -C (Use SFR definitions for CPU)

Tool Options - Compiler 5-35

• • • • • • • •

-k (--keep-output-files)

EDE

EDE always removes the .src file when errors occur during compilation.

Command line syntax

-k

--keep-output-files

Description

If an error occurs during compilation, the resulting .src file may be

incomplete or incorrect. With this option you keep the generated output

file (.src) when an error occurs.

By default the compiler removes the generated output file (.src) when an

error occurs. This is useful when you use the make utility mktc. If the

erroneous files are not removed, the make utility may process corrupt files

on a subsequent invocation.

Use this option when you still want to inspect the generated assembly

source. Even if it is incomplete or incorrect.

Example

ctc -k test.c

When an error occurs during compilation, the generated output file

test.src will not be removed.

Related information

Compiler option --warnings-as-errors (Treat warnings as errors)

TriCore Reference Manual5-36
T

O
O

L
 O

P
T

IO
N

S

--misrac

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select MISRA-C.

3. Select a MISRA-C configuration.

4. (Optional) In the MISRA-C Rules entry, specify the individual rules.

Command line syntax

--misrac={all | number [-number],... }

Description

With this option you specify to the compiler which MISRA-C rules must be

checked. With the option --misrac=all the compiler checks for all

supported MISRA-C rules.

Example

ctc --misrac=9-13 test.c

The compiler generates an error for each MISRA-C rule 9, 10, 11, 12 or 13

violation in file test.c.

Related information

See Chapter 10 MISRA-C Rules for a list of all supported MISRA-C rules.

Compiler option --misrac-advisory-warnings

Compiler option --misrac-required-warnings

Compiler option --misrac-version

Linker option --misra-c-report.

Tool Options - Compiler 5-37

• • • • • • • •

--misrac-advisory-warnings /

--misrac-required-warnings

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select MISRA-C.

3. Enable or disable the options Turn advisory rule violation into

warning and/or Turn required rule violation into warning.

Command line syntax

--misrac-advisory-warnings

--misrac-required-warnings

Description

Normally, if an advisory rule or required rule is violated, the compiler

generates an error. As a consequence, no output file is generated. With

this option, the compiler generates a warning instead of an error.

Example

ctc --misrac=all --misrac-advisory-warnings test.c

The compiler generates an error for each MISRA-C rule violation in file

test.c. If one of the advisory rules is violated, a warning instead of an

error is generated.

Related information

See Chapter 10 MISRA-C Rules for a list of all supported MISRA-C rules.

Compiler option --misrac

TriCore Reference Manual5-38
T

O
O

L
 O

P
T

IO
N

S

--misrac-version

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select MISRA-C.

3. Select the MISRA-C version: MISRA-C:1998 or MISRA-C:2004.

Command line syntax

--misrac-version={1998|2004}

Description

MISRA-C rules exist in two versions: MISRA-C:1998 and MISRA-C:2004. By

default, the C source is checked against the MISRA-C:2004 rules. With this

option you can specify to check against the MISRA-C:1998 rules.

Related information

See Chapter 10 MISRA-C Rules for a list of all supported MISRA-C rules.

Compiler option --misrac

Tool Options - Compiler 5-39

• • • • • • • •

-N (--default-near-size)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Allocation.

3. Enable the option Default __near allocations for objects below

threshold and enter a threshold value.

Command line syntax

-N[threshold]

--default-near-size[=threshold]

Default

-N8

Description

With this option you can specify a threshold value for __near allocation.

If you do not specify __near or __far in the declaration of an object, the

compiler chooses where to place the object. The compiler allocates objects

smaller or equal to the threshold in __near sections. Larger objects are

allocated in __a0, __a1 or __far sections.

The default threshold is eight bytes.

If you specify -N without a threshold value, all objects will be allocated

__near, including arrays and string constants.

Instead of this option you can also use #pragma default_near_size

in the C source.

Example

ctc -N12 test.c

Data elements smaller than or equal to 12 bytes are allocated in __near

sections.

TriCore Reference Manual5-40
T

O
O

L
 O

P
T

IO
N

S

Related information

Compiler option -Y (maximum size in bytes for data elements that are

default located in __a1 sections)

Compiler option -Z (maximum size in bytes for data elements that are

default located in __a0 sections)

Section 3.3.1, Declare a Data Object in a Special Part of Memory, in

Chapter TriCore C Language of the User's Manual.

Tool Options - Compiler 5-41

• • • • • • • •

-n (--stdout)

EDE

-

Command line syntax

-n

--stdout

Description

With this option you tell the compiler to send the output to stdout (usually

your screen). No files are created.

This option is for example useful to quickly inspect the output or to

redirect the output to other tools.

Example

ctc -n test.c

The compiler sends the output (normally test.src) to stdout and does

not create the file test.src.

Related information

-

TriCore Reference Manual5-42
T

O
O

L
 O

P
T

IO
N

S

--no-tasking-sfr

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Preprocessing.

3. Disable the option Automatic inclusion of '.sfr' file.

Command line syntax

--no-tasking-sfr

Description

Normally, the compiler includes a special function register (SFR) file before

compiling. The compiler automatically selects the SFR file belonging to the

target you select on the Processor definition page of the Processor

options (compiler option -C).

With this option the compiler does not include the register file

regcpu.sfr as based on the selected target processor.

Use this option if you want to use your own set of SFR files.

Example

ctc -Ctc11ib --no-tasking-sfr test.c

The register file regtc11ib.sfr is not included.

Related information

Compiler option -C (Use SFR definitions for CPU)

Tool Options - Compiler 5-43

• • • • • • • •

 -O (--optimize)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Optimization.

3. Select an optimization level in the Optimization level box.

Command line syntax

-O[flags]
--optimize[=flags]

You can set the following flags:

a/A (+/-coalesce) Coalescer: remove unnecessary moves

c/C (+/-cse) Common subexpression elimination

e/E (+/-expression) Expression simplification

f/F (+/-flow) Control flow optimization and

code reordering

g/G (+/-glo) Generic assembly optimizations

i/I (+/-inline) Function inlining

k/K (+/-schedule) Instruction scheduler

l/L (+/-loop) Loop transformations

m/M (+/-simd) Perform SIMD optimizations

o/O (+/-forward) Forward store

p/P (+/-propagate) Constant propagation

s/S (+/-subscript) Subscript strength reduction

v/V (+/-ifconvert) Convert IF statements using predicates

w/W (+/-pipeline) Software pipelining

y/Y (+/-peephole) Peephole optimizations

Use the following options for predefined sets of flags:

-O0 (--optimize=0) No optimization.

Alias for: -OACEFGIKLMOPSVWY

No optimizations are performed. The compiler tries to achieve a 1-to-1

resemblance between source code and produced code. Expressions are

evaluated in the same order as written in the source code, associative

and commutative properties are not used.

TriCore Reference Manual5-44
T

O
O

L
 O

P
T

IO
N

S

-O1 (--optimize=1) Debug purpose optimization

Alias for: -OaCefgIKLMOPSVWy

Enables optimizations that do not affect the debug-ability of the source

code. Use this level when you are developing/debugging new source

code.

-O2 (--optimize=2) Release purpose optimization (default)

Alias for: -OacefgIklMopsvwy

Enables more optimizations to reduce code size and/or execution time.

The debugger can handle this code but the relation between source

code and generated instructions may be hard to understand. Use this

level for those modules that have already been debugged. This is the

default optimization level.

-O3 (--optimize=3) Aggressive optimization

Alias for: -Oacefgiklmopsvwy

Enables aggressive global optimization techniques. Although in theory

debugging is still possible, the relation between source code and

generated instructions is complex and hard to understand. Use this

level to compress your program into the system memory, or to

decrease execution time to meet your real-time requirements.

Default

-O2

Description

With this option you can control the level of optimization. If you do not

use this option, the default optimization level is medium optimization
(option -O2 or -O or -OacefgIklMopsvwy).

When you use this option to specify a set of optimizations, you can

overrule these settings in your C source file with

#pragma optimize flag and #pragma endoptimize.

In addition to the option -O, you can specify the option -t. With this

option you specify whether the used optimizations should optimize for

more speed (regardless of code size) or for smaller code size (regardless of

speed).

Tool Options - Compiler 5-45

• • • • • • • •

Example

The following invocations are equivalent and result all in the default

medium optimization set:

ctc test.c

ctc -O2 test.c

ctc --optimize=2 test.c

ctc -O test.c

ctc --optimize test.c

ctc -OacefgIklpswy test.c

ctc --optimize=+coalesce,+cse,+expression,+flow,

 +glo,-inline,+schedule,+loop,+propagate,

 +subscript,+ifconvert,+pipeline,+peephole test.c

Related information

Compiler option -t (Trade off between speed (-t0) and size (-t4))

#pragma optimize flag

#pragma endoptimize

Section 5.3, Compiler Optimizations, in Chapter Using the Compiler of the

User's Manual.

TriCore Reference Manual5-46
T

O
O

L
 O

P
T

IO
N

S

-o (--output)

EDE

-

Command line syntax

-ofile

--output=file

Description

With this option you can specify another filename for the output file of the

compiler. Without this option the basename of the C source file is used

with extension .src.

EDE names the output file always after the C source file.

Example

ctc -o output.src test.c

ctc --output=output.src test.c

The compiler creates the file output.src for the compiled file test.c.

Without the option -o, like EDE, the compiler uses the names of the input

file and creates test.src.

Related information

-

Tool Options - Compiler 5-47

• • • • • • • •

--object-comment

EDE

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Miscellanaous.

3. Add your comment to the Comment in object file field.

Command line syntax

--object-comment=comment

Description

With this option the compiler generates a .comment section at the end of

the assembly file. The section contains the comment specified with this

option. After assembling, this text is included in the .o object and .elf

files. Place the comment between double quotes.

Example

ctc --object-comment="Created by TASKING" test.c

The compiler creates the file test.src with a .comment section at the

end of the file. After assembling this file, the text "Created by TASKING" is

incorporated in the generated object file.

Instead of this option you can also specify the following pragma in your C

source:

#pragma object_comment comment

Related information

-

TriCore Reference Manual5-48
T

O
O

L
 O

P
T

IO
N

S

-R (--rename-sections)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Add the option -R to the Addtional options field.

Command line syntax

-R [name]

--rename-sections[=name]

Description

The compiler defaults to a section naming convention, using a prefix

indicating the section type, the module name and a symbol name:

section_type_pref.module_name.symbol_name

For example .text.module_name.symbol_name for code sections.

If a module must be loaded at a fixed address or if a data section needs a

special place in memory, you can use the -R option to generate a different

section name (section_type_pref.name where name replaces the part

module_name.symbol_name). You can now use the new unique section

name in the linker script file for locating.

When you use -R without a value, the compiler uses the default section

naming.

Example

To generate the section name section_type_pref.NEW instead of the

default section name section_type_pref.module_name.symbol_name, enter:

ctc -RNEW test.c

To generate the section name section_type_pref instead of the default

section name section_type_pref.module_name.symbol_name, enter:

ctc -R" " test.c (note the space between the quotes)

Tool Options - Compiler 5-49

• • • • • • • •

Related information

Section 3.10, Compiler Generated Sections, in Chapter TriCore C Language
of the User's Manual.

TriCore Reference Manual5-50
T

O
O

L
 O

P
T

IO
N

S

-s (--source)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Enable the option Merge C source code with assembly in output

file (.src).

Command line syntax

-s

--source

Description

With this option you tell the compiler to merge C source code with

generated assembly code in the output file. The C source lines are

included as comments.

Example

ctc -s test.c

The output file test.src contains the original C source lines as

comments, besides the generated assembly code.

Related information

-

Tool Options - Compiler 5-51

• • • • • • • •

--section-per-data-object

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Code Generation.

3. Enable the option Generate a section for each data object.

Command line syntax

--section-per-data-object

Description

Normally the compiler generates one section for each data type in a

module (such as .data, .rodata, .bss, .zdata, ...).

With this option you force the compiler to generate a separate section for

each data object. This provides more control about allocation during the

linking process.

Example

ctc --section-per-data-object test.c

For each data object in test.c the compiler generates a separate section.

Related information

-

TriCore Reference Manual5-52
T

O
O

L
 O

P
T

IO
N

S

--silicon-bug

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Bypasses.

3. Select the bypasses you want to enable.

Command line syntax

--silicon-bug=arg,...

You can give one or more of the following arguments:

all-tc11ib All TriCore TC11IB workarounds

all-tc1130 All TriCore TC1130 workarounds

all-tc1765 All TriCore TC1765 workarounds

all-tc1766 All TriCore TC1766 workarounds

all-tc1775 All TriCore TC1775 workarounds

all-tc1796 All TriCore TC1796 workarounds

all-tc1910 All TriCore TC1910 workarounds

all-tc1912 All TriCore TC1912 workarounds

all-tc1920 All TriCore TC1920 workarounds

cpu-tc013 workaround for CPU_TC.013 (#pragma CPU_TC013)

cpu-tc018 workaround for CPU_TC.018 (#pragma CPU_TC018)

cpu-tc021 workaround for CPU_TC.021 (#pragma CPU_TC021)

cpu-tc024 workaround for CPU_TC.024 (#pragma CPU_TC024)

cpu-tc030 workaround for CPU_TC.030 (#pragma CPU_TC030)

cpu-tc031 workaround for CPU_TC.031 (#pragma CPU_TC031)

cpu-tc033 workaround for CPU_TC.033 (#pragma CPU_TC033)

cpu-tc034 workaround for CPU_TC.034 (#pragma CPU_TC034)

cpu-tc048 workaround for CPU_TC.048 (#pragma CPU_TC048)

cpu-tc050 workaround for CPU_TC.050 (#pragma CPU_TC050)

cpu-tc060 workaround for CPU_TC.060 (#pragma CPU_TC060)

cpu-tc065 workaround for CPU_TC.065 (#pragma CPU_TC065)

cpu-tc069 workaround for CPU_TC.069 (#pragma CPU_TC069)

cpu-tc070 workaround for CPU_TC.070 (#pragma CPU_TC070)

cpu-tc071 workaround for CPU_TC.071 (#pragma CPU_TC071)

cpu-tc072 workaround for CPU_TC.072 (#pragma CPU_TC072)

dmu-tc001 workaround for DMU_TC.001 (#pragma DMU_TC001)

Tool Options - Compiler 5-53

• • • • • • • •

Description

With this option you tell the compiler to use software workarounds for

some CPU functional problems.

Example

ctc --silicon-bug=cpu-tc021,cpu-tc030 test.c

The compiler uses workarounds for problems CPU_TC.024 and

CPU_TC.030.

Related information

See Chapter 9, CPU Functional Problems, for more information about the

individual problems and workarounds.

Assembler option --silicon-bug

#pragma CPU_functional_problem

#pragma DMU_functional_problem

TriCore Reference Manual5-54
T

O
O

L
 O

P
T

IO
N

S

--static

EDE

-

Command line syntax

--static

Description

With this option, the compiler treats external definitions at file scope

(except for main) as if they were declared static. As a result, unused

functions will be eliminated, and the alias checking algorithm assumes that

objects with static storage cannot be referenced from functions outside the

current module.

This option only makes sense when you specify all modules of an

application on the command line.

Example

ctc --static module1.c module2.c module3.c

Related information

-

Tool Options - Compiler 5-55

• • • • • • • •

--switch

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Code generation.

3. Select an Algorithm for switch statments.

Command line syntax

--switch=arg

You can give one of the following arguments:

auto Choose most optimal code

jumptab Generate jump tables

linear Use linear jump chain code

lookup Generate lookup tables

Default

--switch=auto

Description

With this option you tell the compiler which code must be generated for a

switch statement: a jump chain (linear switch), a jump table or a lookup

table. By default, the compiler will automatically choose the most efficient

switch implementation based on code and data size and execution speed.

Example

ctc --switch=jumptab test.c

The compiler uses a table filled with target addresses for each possible

switch value.

Instead of this option you can also specify the following pragma in your C

source:

#pragma switch jumptab

TriCore Reference Manual5-56
T

O
O

L
 O

P
T

IO
N

S

Related information

See also section 3.11, Switch Statement, in Chapter TriCore C Language of

the User's Manual.

Tool Options - Compiler 5-57

• • • • • • • •

-t (--tradeoff)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Optimization.

3. Select a trade-off level in the Size/speed trade-off box.

Command line syntax

-t{0|1|2|3|4}

--tradeoff={0|1|2|3|4}

Default

-t2

Description

If the compiler uses certain optimizations (option -O), you can use this

option to specify whether the used optizations should opimize for more

speed (regardless of code size) or for smaller code size (regardless of

speed).

Default the compiler balances speed and size while optimizing (-t0).

If you have not used the option -O, the compiler uses default medium

optimization, so you can still specify the option -t.

Example

To set the trade-off level for the used optimizations:

ctc -t4 test.c

ctc --tradeoff=4 test.c

The compiler uses the default medium optimization level and optimizes

for code size rather than for speed.

Related information

Compiler option -O (Specify optimization level)

TriCore Reference Manual5-58
T

O
O

L
 O

P
T

IO
N

S

-U (--undefine)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Add the option -U to the Additional compiler options field.

Command line syntax

-Umacro_name

--undefine=macro_name

Description

With this option you can undefine an earlier defined macro as with

#undef.

This option is for example useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

__FILE__ current source filename

__LINE__ current source line number (int type)

__TIME__ hh:mm:ss

__DATE__ Mmm dd yyyy

__STDC__ level of ANSI standard

Example

To undefine the predefined macro __TASKING__:

ctc -U__TASKING__ test.c

ctc --undefine=__TASKING__ test.c

Related information

Compiler option -D (Define macro)

Section 3.8, Predefined Macros, in Chapter Using the Compiler of the User's
Manual.

Tool Options - Compiler 5-59

• • • • • • • •

-u (--uchar)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Language.

3. Enable the option Treat 'char' variables as unsigned instead of

signed.

Command line syntax

-u

--uchar

Description

Treat 'character' type variables as 'unsigned character' variables. By default

char is the same as specifying signed char. With -u char is the same

as unsigned char.

Example

With the following command char is treated as unsigned char:

ctc -u test.c

ctc --uchar test.c

Related information

-

TriCore Reference Manual5-60
T

O
O

L
 O

P
T

IO
N

S

-V (--version)

EDE

-

Command line syntax

-V

--version

Description

Display version information. The compiler ignores all other options or

input files.

Example

ctc -v

ctc --version

The compiler does not compile any files but displays the following version

information:

TASKING TriCore VX-toolset C compiler vxx.yrz Build 000

Copyright 2002-year Altium BV Serial# 00000000

Related information

-

Tool Options - Compiler 5-61

• • • • • • • •

-w (--no-warnings)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Warnings.

3. Enable one of the options Report all warnings, Suppress all

warnings, or Suppress specific warnings.

If you select Suppress specific warnings:

4. Enter the numbers, separated by commas, of the warnings you want to

suppress.

Command line syntax

-w[nr]

--no-warnings[=nr]

Description

With this option you can suppresses all warning messages or specific

warning messages.

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are

suppressed.

• If you specify this option with a number, only the specified warning is

suppressed. You can specify the option -w multiple times.

Example

To suppress all warnings:

ctc test.c -w

ctc test.c --no-warnings

To suppress warnings 135 and 136:

ctc test.c -w135 -w136

ctc test.c --no-warnings=135 --no-warnings=136

TriCore Reference Manual5-62
T

O
O

L
 O

P
T

IO
N

S

Related information

Compiler option --warnings-as-errors (Treat warnings as errors)

Tool Options - Compiler 5-63

• • • • • • • •

--warnings-as-errors

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Warnings.

3. Enable the option Treat warnings as errors.

Command line syntax

--warnings-as-errors

Description

With this option you tell the compiler to treat warnings as errors.

Example

ctc --warnings-as-errors test.c

When a warning occurs, the compiler considers it as an error.

Related information

Compiler option -w (suppress some or all warnings)

TriCore Reference Manual5-64
T

O
O

L
 O

P
T

IO
N

S

-Y (--default-a1-size)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Allocation.

3. Enable the option Default __a1 allocations for objects below

threshold and enter a threshold value.

Command line syntax

-Z[threshold]

--default-a1-size[=threshold]

Default

-Y0

Description

With this option you can specify a threshold value for __a0 allocation. If

you do not specify a memory qualifier such as __near or __far in the

declaration of an object, the compiler chooses where to place the object

based on the size of the object.

First, the size of the object is checked against the -N threshold, according

to the description of the -N option. If the size is larger than the -N

threshold, but lower or equal to the -Y threshold, the object is allocated in

__a1 memory. Larger objects, arrays and strings will be allocated __far.

The default -Y threshold is zero, which means that the compiler will never

use __a1 memory unless you specify the -Y option. When you use the

-Y option without a threshold value, all objects not allocated __near,

including arrays and string constants, will be allocated in __a1 memory.

Allocation in __a1 memory means that the object is addressed indirectly,

using A1 as the base pointer. The total amount of memory that can be

addressed this way is 64 Kbytes.

Instead of this option you can also use #pragma default_a1_size in the C

source.

Tool Options - Compiler 5-65

• • • • • • • •

Example

ctc -Y12 test.c

Data elements smaller than or equal to 12 bytes are allocated in __a1

sections.

Related information

Compiler option -Z (max size (in bytes) for rodata elements located in

__a1 sections)

Compiler option -N (maximum size in bytes for data elements that are

default located in __near sections)

Section 3.3.1, Declare a Data Object in a Special Part of Memory, in

Chapter TriCore C Language of the User's Manual.

TriCore Reference Manual5-66
T

O
O

L
 O

P
T

IO
N

S

-Z (--default-a0-size)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Allocation.

3. Enable the option Default __a0 allocations for objects below

threshold and enter a threshold value.

Command line syntax

-Z[threshold]

--default-a0-size[=threshold]

Default

-Z0

Description

With this option you can specify a threshold value for __a0 allocation. If

you do not specify a memory qualifier such as __near or __far in the

declaration of an object, the compiler chooses where to place the object

based on the size of the object.

First, the size of the object is checked against the -N threshold, according

to the description of the -N option. If the size is larger than the -N

threshold, but lower or equal to the -Z threshold, the object is allocated in

__a0 memory. Larger objects, arrays and strings will be allocated __far.

The default -Z threshold is zero, which means that the compiler will never

use __a0 memory unless you specify the -Z option. When you use the -Z

option without a threshold value, all objects not allocated __near,

including arrays and string constants, will be allocated in __a0 memory.

Allocation in __a0 memory means that the object is addressed indirectly,

using A0 as the base pointer. The total amount of memory that can be

addressed this way is 64 Kbytes.

Instead of this option you can also use #pragma default_a0_size in the C

source.

Tool Options - Compiler 5-67

• • • • • • • •

Example

ctc -Z12 test.c

Data elements smaller than or equal to 12 bytes are allocated in __a0

sections.

Related information

Compiler option -Y (max size (in bytes) for data elements located in __a0

sections)

Compiler option -N (maximum size in bytes for data elements that are

default located in __near sections)

Section 3.3.1, Declare a Data Object in a Special Part of Memory, in

Chapter TriCore C Language of the User's Manual.

TriCore Reference Manual5-68
T

O
O

L
 O

P
T

IO
N

S

5.2 ASSEMBLER OPTIONS

This section lists all assembler options.

Options in EDE versus options on the command line

Most command line options have an equivalent option in EDE but some

options are only available on the command line. If there is no equivalent

option in EDE, you can specify a command line option in EDE as follows:

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Enter one or more command line options in the Additional options

field.

Be aware that some command line options are not useful in EDE or just

do not have any effect. For example, the option -V displays version

header information and has no effect in EDE.

Short and long option names

Options have both short and long names. Short option names always

begin with a single minus (-) character, long option names always begin

with two minus (--) characters. You can abbreviate long option names as

long as it forms a unique name. You can mix short and long option names

on the command line.

Options can have flags or suboptions. To switch a flag 'on', use a

lowercase letter or a +longflag. To switch a flag off, use an uppercase

letter or a -longflag. Separate longflags with commas. The following two

invocations are equivalent:

astc -Lmx test.src

astc --list-format=+macro,+macro-expansion test.src

When you do not specify an option, a default value may become active.

Tool Options - Assembler 5-69

• • • • • • • •

-? (--help)

EDE

-

Command line syntax

-?

--help[=options]

Description

Displays an overview of all command line options. When you specify the

options argument, a list with option descriptions is displayed.

Example

The following invocations all display a list of the available command line

options:

astc -?

astc --help

astc

The following invocation displays extended information about all options:

astc --help=options

Related information

-

TriCore Reference Manual5-70
T

O
O

L
 O

P
T

IO
N

S

-C (--cpu)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Target processor list select the target processor.

Command line syntax

-Ccpu

--cpu=cpu

Description

With this option you define the target processor for which you create your

application.

Based on the target processor the assembler automatically detects whether

a MMU or FPU-unit is present and whether the architecture is a TriCore2.

This means you do not have to specify the assembler options

--mmu-present, --fpu-present and --is-tricore2 explicitly when one

of the supported derivatives is selected.

The assembler automatically includes the register file regcpu.def, unless

you specify assembler option --no-tasking-sfr.

Example

In EDE, the target CPU has the following settings:

• Target processor: TC11IB

To define this on the command line:

astc -Ctc11ib test.src

astc --cpu=tc11ib test.src

The assembler assembles test.src for the TC11IB processor and

includes the register file regtc11ib.def. Furthermore the assembler

allows MMU instructions to be used.

Tool Options - Assembler 5-71

• • • • • • • •

To avoid conflicts, make sure you specify the same target processor as you

did for the compiler.

Related information

Assembler option --no-tasking-sfr (Do not include .def file)

Compiler option -C (Use SFR definitions for CPU)

Control program option -C (Use SFR definitions for CPU)

Section 6.4, Calling the Assembler, in Chapter Using the Assembler of the

User's Manual.

TriCore Reference Manual5-72
T

O
O

L
 O

P
T

IO
N

S

-c (--case-insensitive)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Disable the option Assemble case sensitive.

Command line syntax

-c

--case-insensitive

Description

With this option you tell the assembler not to distinguish between upper

and lower case characters. By default the assembler considers upper and

lower case characters in labels and user-defined symbols as different

characters. Note that instruction mnemonics, register names, directives and

controls are always treated case insensitive.

Disabling the option Assemble case sensitive in EDE is the same as

specifying the option -c on the command line.

Assembly source files that are generated by the compiler must always be

assembled case sensitive. When you are writing your own assembly code,

you may want to specify the case insensitive mode.

Example

To assemble case insensitive:

astc -c test.src

astc --case-insensitive test.src

The assembler considers upper and lower case characters as being the

same. So, for example, the label LabelName is the same label as

labelname.

Related information

Linker option --case-sensitive (Link case insensitive)

Tool Options - Assembler 5-73

• • • • • • • •

--check

EDE

1. In the project window, select the file you want to check.

2. From the Build menu, select Check Syntax.

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without

generating code. This saves time in developing your application.

The assembler reports any warnings and/or errors.

Example

To check for syntax errors, without generating code:

astc --check test.src

Related information

Compiler option --check (Check syntax)

TriCore Reference Manual5-74
T

O
O

L
 O

P
T

IO
N

S

-D (--define)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Preprocessing.

3. Enter a macro name and/or definition in the Define user macros

field.

Use commas to separate multiple macro definitions.

Command line syntax

-Dmacro_name[=macro_definition]

--define=macro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the assembler

preprocessor. If you only specify a macro name (no macro definition), the

macro expands as '1'.

You can specify as many macros as you like. In EDE, use commas to

separate multiple macro definitions. On the command line you can use the

option -D multiple times. If the command line exceeds the limit of the

operating system, you can define the macros in an option file which you

then must specify to the assembler with the option -ffile.

Defining macros with this option (instead of in the assembly source) is, for

example, useful in combination with conditional assembly as shown in the

example below.

This option has the same effect as defining symbols via the .SET, and

.EQU directives. (similar to #define in the C language). With the .MACRO

directive you can define more complex macros.

Tool Options - Assembler 5-75

• • • • • • • •

Example

Consider the following C program with conditional code to compile a

demo program and a real program:

.IF DEMO == 1

 ... ; instructions for demo application

.ELSE

 ... ; instructions for the real application

.ENDIF

You can now use a macro definition to set the DEMO flag:

astc -DDEMO test.src

astc -DDEMO=1 test.src

astc --define=DEMO test.src

astc --define=DEMO=1 test.src

Note that all four invocations have the same effect.

Related information

Assembler option -f (Specify an option file)

Section 4.10.5, Conditional Assembly, in Chapter TriCore Assembly
Language of the User's Manual.

TriCore Reference Manual5-76
T

O
O

L
 O

P
T

IO
N

S

--diag

EDE

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or

warning message.

A description of the selected message appears.

Command line syntax

--diag=[format:]{all | number[,number]... }

Optionally, you can use one of the following display formats (format):

text The default is plain text

html Display explanation in HTML format

rtf Display explanation in RTF format

Description

With this option you can ask for an extended description of error

messages in the format you choose. The output is directed to stdout

(normally your screen) and in the format you specify.

To create a file with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If

you want the description of one or more selected error messages, you can

specify the error message numbers, separated by commas.

With this option the assembler does not assemble any files.

Example

To display an explanation of message number 241, enter:

astc --diag=241

This results in the following message and explanation:

W241: additional input files will be ignored

The assembler supports only a single input file. All

other input files are ignored.

Tool Options - Assembler 5-77

• • • • • • • •

To write an explanation of all errors and warnings in HTML format to file

aserrors.html, enter:

astc --diag=html:all > aserrors.html

Related information

Section 6.7, Assembler Error Messages, in Chapter Using the Assembler of

the User's Manual.

TriCore Reference Manual5-78
T

O
O

L
 O

P
T

IO
N

S

--emit-locals

EDE

-

Command line syntax

--emit-locals

Description

With this option the assembler also emits local symbols to the object file's

symbol table. Normally, only global symbols are emitted.

Example

To emit local symbols, enter:

astc --emit-locals test.src

Related information

-

Tool Options - Assembler 5-79

• • • • • • • •

--error-file

EDE

-

Command line syntax

--error-file[=file]

Description

With this option the assembler redirects error messages to a file.

If you do not specify a filename, the error file will be named after the

input file with extension .ers.

Example

To write errors to errors.ers instead of stderr, enter:

astc --error-file=errors.ers test.src

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

TriCore Reference Manual5-80
T

O
O

L
 O

P
T

IO
N

S

-f (--option-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Add the option -f to the Additional options field.

In EDE you can save your options in a file and restore them to call the

assembler with those options:

1. From the Project menu, select Save Options... or Load Options...

Be aware that when you specify the option -f in the Additional options

field, the options are added to the assembler options you have set in the

Project Options dialog. Only in extraordinary cases you may want to use

them in combination.

Command line syntax

-f file,...

--option-file=file,...

Description

Instead of typing all options on the command line, you can create an

option file which contains all options and files you want to specify. With

this option you specify the option file to the assembler.

Use an option file when the length of the command line would exceed the

limits of the operating system, or just to store options and save typing.

You can specify the option -f multiple times.

Tool Options - Assembler 5-81

• • • • • • • •

Format of an option file

• Multiple command line arguments on one line in the option file are

allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

 "This has a single quote ' embedded"

 'This has a double quote " embedded'

 'This has a double quote " and \

 a single quote '"' embedded"

Note that adjacent strings are concatenated.

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 "This is a continuation \

 line"

 -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

-Ctc11ib

test.src

Specify the option file to the assembler:

astc -f myoptions

astc --option-file=myoptions

This is equivalent to the following command line:

astc -Ctc11ib test.src

Related information

-

TriCore Reference Manual5-82
T

O
O

L
 O

P
T

IO
N

S

--fpu-present

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Target processor list select a (user defined TriCore) option.

4. Enable the option FPU present.

Command line syntax

--fpu-present

Description

With this option you can use single precision floating-point instructions in

the assembly code. When you select this option, the define __FPU__ is set

to 1. By default the define __FPU__ is set to 0.

Example

To allow the use of floating-point unit (FPU) instructions in the assembly

code, enter:

astc --fpu-present test.src

Related information

Assembler option -C (Select CPU)

Tool Options - Assembler 5-83

• • • • • • • •

-g (--debug-info)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Debug Information.

3. Enable one or more debug options.

You cannot use Assembly source line information and Pass HLL

debug information simultaneously.

Command line syntax

-g[flag]

--debug-info[=flag]

You can set the following flags:

a/A (+/-asm) Assembly source line information

h/H (+/-hll) Pass HLL debug information

l/L (+/-local) Local symbols debug information

s/S (+/-smart) Smart debug information

Default

-gs

Description

With this option you tell the assembler to generate debug information. If

you do not use this option or if you specify -g without any flags, the

default is -gs.

You cannot specify -gah. Either the assembler generates assembly source

line information, or it passes HLL debug information.

When you specify -gs, the assembler selects which flags to use. If high

level language information is available in the source file, the assembler

passes this information (same as -gAhL). If not, the assembler generates

assembly source line information and local symbols debug information

(same as -gaHl).

TriCore Reference Manual5-84
T

O
O

L
 O

P
T

IO
N

S

With -gAHLS the assembler does not generate any debug information.

Example

To disable symbolic debug information, turn all flags off:

astc -gAHLS test.src

astc --debug-info=-asm,-hll,-local,-smart test.src

To enable smart debugging, enter:

astc -gs test.src

astc --debug-info=+smart test.src

Related information

-

Tool Options - Assembler 5-85

• • • • • • • •

-H (--include-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Preprocessing.

3. Enter the name of the file in the Include this file before source field.

Command line syntax

-Hfile,...

--include-file=file,...

Description

With this option you include one extra file at the beginning of the

assembly source file, before other includes. This is the same as specifying

.INCLUDE 'file' at the beginning of your assembly sources.

Example

astc -Hmyinc.inc test1.src

astc --include-file=myinc.inc test1.src

The file myinc.inc is included at the beginning of test1.src before it

is assembled.

Related information

Assembler option -I (Add directory to include file search path)

Section 6.5, How the Assembler Searches Include Files, in Chapter Using the
Assembler of the User's Manual.

TriCore Reference Manual5-86
T

O
O

L
 O

P
T

IO
N

S

-I (--include-directory)

EDE

1. From the Project menu, select Directories...

The Directories dialog appears.

2. Enter one or more search paths in the Include Files Path field.

Command line syntax

-Ipath,...

--include-directory=path,...

Description

With this option you can specify the path where your include files are

located. A relative path will be relative to the current directory.

The order in which the assembler searches for include files is:

1. The absolute pathname, if specified in the .INCLUDE directive. Or, if

no path or a relative path is specified, the same directory as the source

file.

2. The path that is specified with this option.

3. The path that is specified in the environment variable ASTCINC when

the product was installed.

4. The default include directory relative to the installation directory.

Example

Suppose that your assembly source file test.src contains the following

line:

.INCLUDE 'myinc.inc'

You can call the assembler as follows:

astc -Ic:\proj\include test.src

astc --include-directory=c:\proj\include test.src

Tool Options - Assembler 5-87

• • • • • • • •

First the assembler looks in the directory where test.src is located for

the file myinc.inc. If it does not find the file, it looks in the directory

c:\proj\include for the file myinc.inc (this option).

Related information

Section 6.5, How the Assembler Searches Include Files, in Chapter Using the
Assembler of the User's Manual.

Section 1.3.2, Configuring the Command Line Environment, in Chapter

Software Installation of the User's Manual.

Assembler option -H (Include file at the start of the input files)

TriCore Reference Manual5-88
T

O
O

L
 O

P
T

IO
N

S

-i (--symbol-scope)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Select the default label mode: Local or Global.

Command line syntax

-i{g|l}

--symbol-scope={global|local}

Default

-il

Description

With this option you tell the assembler how to treat symbols that you have

not specified explicitly as global or local.

By default the assembler treats all symbols as local symbols unless you

have defined them explicitly as global.

Example

astc -ig test.src

astc --symbol-scope=global test.src

The assembler treats all symbols as global symbols unless they are defined

as local symbols in the assembly source file.

Related information

-

Tool Options - Assembler 5-89

• • • • • • • •

--is-tricore2

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Target processor list select (user defined TriCore-2).

Command line syntax

--is-tricore2

Description

With this option you can use TriCore 2 instructions in the assembly code.

When you select this option, the define __TC2__ is set to 1.

Example

To allow the use of TriCore 2 instructions in the assembly code, enter:

astc --is-tricore2 test.src

Related information

Assembler option -C (Select CPU)

TriCore Reference Manual5-90
T

O
O

L
 O

P
T

IO
N

S

-k (--keep-output-files)

EDE

EDE always removes the .o file when errors occur during assembly.

Command line syntax

-k

--keep-output-files

Description

If an error occurs during assembly, the resulting .o file may be incomplete

or incorrect. With this option you keep the generated object file (.o)

when an error occurs.

By default the assembler removes the generated object file (.o) when an

error occurs. This is useful when you use the make utility mktc. If the

erroneous files are not removed, the make utility may process corrupt files

on a subsequent invocation.

Use this option when you still want to use the generated object. For

example when you know that a particular error does not result in a

corrupt object file.

Example

astc -k test.src

When an error occurs during assembly, the generated output file test.o

will not be removed.

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

Tool Options - Assembler 5-91

• • • • • • • •

-L (--list-format)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select List File.

3. Enable the options to include that information in the list file.

Command line syntax

-Lflags

--list-format=flags

You can set the following flags:

0 same as -LCDEGILMNPQRVWXY

1 same as -Lcdegilmnpqrvwxy

c/C (+/-control) Assembler controls

d/D (+/-section) Section directives

e/E (+/-symbol) Symbol definition directives

g/G (+/-generic-expansion) Generic instruction expansion

i/I (+/-generic) Generic instructions

l/L (+/-line) #line source lines

m/M (+/-macro) Macro definitions

n/N (+/-empty-line) Empty source lines

p/P (+/-conditional) Conditional assembly

q/Q (+/-equate) Assembler .EQU and .SET directives

r/R (+/-relocations) Relocation characters ('r')

v/V (+/-equate-values) Assembler .EQU and .SET values

w/W (+/-wrap-lines) Wrapped source lines

x/X (+/-macro-expansion) Macro expansions

y/Y (+/-cycle-count) Cycle counts

Default

-LcDEGilMnPqrVWXy

TriCore Reference Manual5-92
T

O
O

L
 O

P
T

IO
N

S

Description

With this option you specify which information you want to include in the

list file. Use this option in combination with the option -l (--list-file).

If you do not specify this option, the assembler uses the default:

-LcDEGilMnPqrVWXy.

With option -tl, the assembler also writes section information to the list

file.

Example

astc -l -Ldm test.src

astc --list-file --list-format=+section,+macro

 test.src

The assembler generates a list file that includes all default information plus

section directives and macro definitions.

Related information

Assembler option -l (Generate list file)

Assembler option -tl (Display section information in list file)

Linker option -M (Generate map file)

Section 6.1, Assembler List File Format, in Chapter List File Formats.

Tool Options - Assembler 5-93

• • • • • • • •

-l (--list-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select List File.

3. Enable the option Generate list file.

Command line syntax

-l

--list-file

Description

With this option you tell the assembler to generate a list file. A list file

shows the generated object code and the relative addresses. Note that the

assembler generates a relocatable object file with relative addresses.

Example

To generate a list file with the name test.lst, enter:

astc -l test.src

astc --list-file test.src

Related information

Assembler option -L (List file formatting options)

Linker option -M (Generate map file)

Section 6.1, Assembler List File Format, in Chapter List File Formats.

TriCore Reference Manual5-94
T

O
O

L
 O

P
T

IO
N

S

-m (--preprocessor-type)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Preprocessing.

3. Select No preprocessor or the TASKING preprocessor.

Command line syntax

-m{n|t}

--preprocessor-type={none|tasking}

Default

-mt

Description

With this option you select the preprocessor that the assembler will use.

By default, the assembler uses the TASKING preprocessor.

When the assembly source file does not contain any preprocessor

symbols, you can specify the assembler not to use a preprocessor.

Example

astc test.src

astc -mt test.src

astc --preprocessor=tasking test.src

These invocations have the same effect: the assembler preprocesses the

file test.src with the TASKING preprocessor.

Related information

-

Tool Options - Assembler 5-95

• • • • • • • •

--mmu-present

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Target processor list select (user defined TriCore-1 v1.3) or

(user defined TriCore-2).

4. Enable the option MMU present.

This option is only available (and relevant) for specific target processors.

See option -C (--cpu) to select a target processor.

Command line syntax

--mmu-present

Description

With this option you can use memory management instructions in the

assembly code. When you select this option, the define __MMU__ is set to

1.

Example

To allow the use of memory management unit (MMU) instructions in the

assembly code, enter:

astc --mmu-present test.src

Related information

Assembler option -C (Select CPU)

TriCore Reference Manual5-96
T

O
O

L
 O

P
T

IO
N

S

--no-tasking-sfr

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Preprocessing.

3. Disable the option Include '.def' file.

Command line syntax

--no-tasking-sfr

Description

Normally, the assembler includes a special function register (SFR) file

before compiling. The assembler automatically selects the SFR file

belonging to the target you select on the Processor definition page of

the Processor options (assembler option -C).

With this option the assembler does not include the register file

regcpu.def as based on the selected target processor.

Use this option if you want to use your own set of SFR '.def' files.

Example

astc -Ctc11ib --no-tasking-sfr test.src

The register file regtc11ib.def is not included, but the assembler allows

the use of MMU instructions due to -C.

Related information

Assembler option -C (Select CPU)

Tool Options - Assembler 5-97

• • • • • • • •

-O (--optimize)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Optimization.

3. Enable or disable the optimization suboptions.

Command line syntax

-Oflags

--optimize=flags

You can set the following flags:

g/G (+/-generics) Allow generic instructions

s/S (+/-instr-size) Optimize instruction size

Default

-Ogs

Description

With this option you can control the level of optimization. If you do not

use this option, -Ogs is the default.

Example

The following invocations are equivalent and result all in the default

optimizations:

astc test.src

astc -Ogs test.src

astc --optimize=+generics,+instr-size test.src

Related information

Section 6.3, Assembler Optimizations, in Chapter Using the Assembler of the

User's Manual.

TriCore Reference Manual5-98
T

O
O

L
 O

P
T

IO
N

S

-o (--output)

EDE

-

Command line syntax

-ofile

--output=file

Description

With this option you can specify another filename for the output file of the

assembler. Without this option, the basename of the assembly source file is

used with extension .o.

EDE names the output file always after the assembly source file.

Example

astc -o relobj.o asm.src

astc --output=relobj.o asm.src

The assembler creates the file relobj.o for the assembled file asm.src.

Without the option -o, like EDE, the assembler uses the name of the input

file and creates asm.o.

Related information

-

Tool Options - Assembler 5-99

• • • • • • • •

--silicon-bug

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Bypasses.

3. Select the CPU functional problems you want to check for.

Command line syntax

--silicon-bug=arg,...

You can give one or more of the following arguments:

all-tc11ib All TriCore TC11IB checks

all-tc1130 All TriCore TC1130 checks

all-tc1765 All TriCore TC1765 checks

all-tc1766 All TriCore TC1766 checks

all-tc1775 All TriCore TC1775 checks

all-tc1796 All TriCore TC1796 checks

all-tc1910 All TriCore TC1910 checks

all-tc1912 All TriCore TC1912 checks

all-tc1920 All TriCore TC1920 checks

cpu-tc013 check for CPU_TC.013

cpu-tc018 check for CPU_TC.018

cpu-tc021 check for CPU_TC.021

cpu-tc023 check for CPU_TC.023

cpu-tc024 check for CPU_TC.024

cpu-tc030 check for CPU_TC.030

cpu-tc031 check for CPU_TC.031

cpu-tc033 workaround for CPU_TC.033

cpu-tc034 check for CPU_TC.034

cpu-tc048 check for CPU_TC.048

cpu-tc050 check for CPU_TC.050

cpu-tc051 workaround for CPU_TC.051

cpu-tc060 check for CPU_TC.060

cpu-tc065 check for CPU_TC.065

cpu-tc069 check for CPU_TC.069

cpu-tc070 check for CPU_TC.070

cpu-tc071 check for CPU_TC.071

TriCore Reference Manual5-100
T

O
O

L
 O

P
T

IO
N

S

cpu-tc072 check for CPU_TC.072

dmu-tc001 check for DMU_TC.001

pmi-tc003 workaround for PMI_TC.003

pmu-tc004 workaround for PMU_TC.004

Description

With this option you tell the assembler to check for some CPU functional

problems. The assembles gives a warning when the specified problem is

present.

Example

astc --silicon-bug=cpu-tc021,cpu-tc030 test.src

The assembler checks for problems CPU_TC.024 and CPU_TC.030 and

gives a warning when the problem is present.

Related information

See Chapter 9, CPU Functional Problems, for more information about the

individual problems.

Compiler option --silicon-bug

Tool Options - Assembler 5-101

• • • • • • • •

-t (--section-info)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select List File.

3. Enable the option Generate list file.

4. Enable the option Display section information.

EDE always writes the section information to the list file.

Command line syntax

-tflags

--section-info=flags

You can set the following flags:

c/C (+/-console) Display section information on stdout.

l/L (+/-list) Write section information to the list file.

Description

With this option you tell the assembler to display section information. For

each section its memory space, size, total cycle counts and name is listed

on stdout and/or in the list file.

The cycle count consists of two parts: the total accumulated count for the

section and the total accumulated count for all repeated instructions. In the

case of nested loops it is possible that the total supersedes the section

total.

With -tl, the assembler writes the section information to the list file. You

must specify this option in combination with the option -l (generate list

file).

TriCore Reference Manual5-102
T

O
O

L
 O

P
T

IO
N

S

Example

astc -l -tcl test.src

astc -l --section-info=+console,+list test.src

The assembler generates a list file and writes the section information to

this file. The section information is also displayed on stdout.

Section summary:

 REL 4 .zbss_clr_test1

 REL 46 .text_test1

 REL 4 .zdata_rom_test1

Related information

Assembler option -l (Generate list file)

Tool Options - Assembler 5-103

• • • • • • • •

-V (--version)

EDE

-

Command line syntax

-V

--version

Description

Display version information. The assembler ignores all other options or

input files.

Example

astc -V

astc --version

The assembler does not assemble any files but displays the following

version information:

TASKING TriCore VX-toolset Assembler vxx.yrz Build nnn

Copyright years Altium BV Serial# 00000000

Related information

-

TriCore Reference Manual5-104
T

O
O

L
 O

P
T

IO
N

S

-w (--no-warnings)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Warnings.

3. Enable one of the options Report all warnings, Suppress all

warnings, or Suppress specific warnings.

If you select Suppress specific warnings:

4. Enter the numbers, separated by commas, of the warnings you want to

suppress.

Command line syntax

-w[nr,...]

--no-warnings[=nr,...]

Description

With this option you can suppresses all warning messages or specific

warning messages.

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are

suppressed.

• If you specify this option with a number, only the specified warning is

suppressed. You can specify the option -w multiple times.

Example

To suppress all warnings:

astc -w test.src

astc --no-warnings test.src

To suppress warnings 135 and 136:

astc -w135,136 test.src

astc --no-warnings=135,136 test.src

Tool Options - Assembler 5-105

• • • • • • • •

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

TriCore Reference Manual5-106
T

O
O

L
 O

P
T

IO
N

S

--warnings-as-errors

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Warnings.

3. Enable the option Treat warnings as errors.

Command line syntax

--warnings-as-errors

Description

With this option you tell the assembler to treat warnings as errors.

Example

astc --warnings-as-errors test.src

When a warning occurs, the assembler considers it as an error. No object

file is generated, unless you specify option -k (--keep-output-files).

Related information

Assembler option -w (suppress some or all warnings)

Tool Options - Linker 5-107

• • • • • • • •

5.3 LINKER OPTIONS

Options in EDE versus options on the command line

Most command line options have an equivalent option in EDE but some

options are only available on the command line. EDE invokes the linker

via the control program. Therefore, it uses the syntax of the control

program to pass options and files to the linker.

See section 5.4, Control Program Options.

If necessary, you can specify a command line option in EDE.

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Enter one or more command line options in the Additional options

field.

Because EDE uses the control program, EDE automatically precedes the
option with -Wl to pass the option via the control program directly to the
linker.

For example, if you enter the option -DDEMO in the Additional
options field, EDE generates the option -Wl-DDEMO for the control
program which tells the control program to pass the option -DDEMO to
the linker.

Be aware that some options are not useful in EDE or just will not have any

effect. For example, the option -k keeps files after an error occurred.

When you specify this option in EDE, it will have no effect because EDE

always removes the output file after an error had occurred.

Short and long option names

Options can have both short and long names. Short option names always

begin with a single minus (-) character, long option names always begin

with two minus (--) characters. You can abbreviate long option names as

long as it forms a unique name. You can mix short and long option names

on the command line.

TriCore Reference Manual5-108
T

O
O

L
 O

P
T

IO
N

S

Options can have flags or suboptions. To switch a flag 'on', use a

lowercase letter or a +longflag. To switch a flag off, use an uppercase

letter or a -longflag. Separate longflags with commas. The following two

invocations are equivalent:

ltc -mfkl test.o

ltc --map-file-format=+files,+link,+locate test.o

When you do not specify an option, a default value may become active.

Tool Options - Linker 5-109

• • • • • • • •

-? (--help)

EDE

-

Command line syntax

-?

--help[=options]

Description

Displays an overview of all command line options. When you specify the

argument options you can list detailed option descriptions.

Example

The following invocations all display a list of the available command line

options:

ltc -?

ltc --help

ltc

To see a detailed description of the available options, enter:

ltc --help=options

Related information

-

TriCore Reference Manual5-110
T

O
O

L
 O

P
T

IO
N

S

-c (--chip-output)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Output Format.

3. Enable one or more output formats.

4. Enable the option Create file for each memory chip.

For some output formats you can specify a number of suboptions.

Command line syntax

-c[basename]:format[:addr_size],...

--chip-output=[basename]:format[:addr_size],...

You can specify the following formats:

IHEX Intel Hex

SREC Motorola S-records

The addr_size specifies the size of the addresses in bytes (record length).

For Intel Hex you can use the values: 1, 2 and 4 (default). For Motorola S

you can specify: 2 (S1 records), 3 (S2 records, default) or 4 bytes (S3

records).

Description

With this option you specify the Intel Hex or Motorola S-record output

format for loading into a PROM-programmer. The linker generates a file

for each ROM memory defined in the LSL file, where sections are located:

memory memname

{ type=rom; }

The name of the file is the name of the EDE project or, on the command

line, the name of the memory device that was emitted with extension

.hex or .sre. Optionally you can specify a basename which prepends

the generated file name.

Tool Options - Linker 5-111

• • • • • • • •

Examples

To generate Intel Hex output files for each defined memory, enter the

following on the command line:

ltc -cmyfile:IHEX test1.o

ltc --chip-output=myfile:IHEX test1.o

This generates the file myfile_memname.hex.

Related information

Linker option -o (output file),

Section 7.2, Motorola S-Record Format,
Section 7.3, Intel Hex Record Format, in Chapter Object File Formats.

TriCore Reference Manual5-112
T

O
O

L
 O

P
T

IO
N

S

--case-insensitive

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Disable the option Link case sensitive.

Command line syntax

--case-insensitive

Description

With this option you tell the linker not to distinguish between upper and

lower case characters in symbols. By default the linker considers upper

and lower case characters as different characters.

Disabling the option Link case sensitive in EDE is the same as specifying

the option --case-insensitive on the command line.

Assembly source files that are generated by the compiler must always be

assembled and thus linked case sensitive. When you have written your

own assembly code and specified to assemble it case insensitive, you must

also link the .o file case insensitive.

Example

To link case insensitive:

ltc --case-insensitive test.o

The linker considers upper and lower case characters as being the same.

So, for example, the label LabelName is considered the same label as

labelname.

Related information

Assembler option -c (Assemble case insensitive)

Tool Options - Linker 5-113

• • • • • • • •

-D (--define)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option -D to the Additional options field.

Command line syntax

-Dmacro_name[=macro_definition]

--define=macro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the linker LSL

file preprocessor. If you only specify a macro name (no macro definition),

the macro expands as '1'.

You can specify as many macros as you like: you can use the option -D

multiple times. If the command line exceeds the limit of the operating

system, you can define the macros in an option file which you then must

specify to the linker with the option -ffile.

Define macro to the preprocessor, as in #define. Any number of symbols

can be defined. The definition can be tested by the preprocessor with #if,

#ifdef and #ifndef, for conditional locating.

Example

To define the RESET vector, interrupt table start address and trap table start

address which is used in the linker script file tc1v1_3.lsl, enter:

ltc test.o -otest.elf -dtc1v1_3.lsl -DRESET=0xa0000000

 -DINTTAB=0xa00f0000 --define=TRAPTAB=0xa00f2000

Related information

Linker option -f (Name of invocation file)

TriCore Reference Manual5-114
T

O
O

L
 O

P
T

IO
N

S

-d (--lsl-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Script File.

3. Select Use project specific memory and section LSL file and specify

a name.

Command line syntax

-dfile
--lsl-file=file

Description

With this option you specify a linker script file to the linker. If you do not

specify this option, the linker uses a default script file. You can specify the

existing file target.lsl or the name of a manually created linker script

file. You can use this option multiple times. The linker processes the LSL

files in the order in which they appear on the command line.

The linker script file contains vital information about the core for the

locating phase of the linker. A linker script file is coded in LSL and

contains the following types of information:

• the architecture definition describes the core's hardware architecture.

• the memory definition describes the physical memory in the system.

• the section layout definition describes how to locate sections in

memory.

Example

To read linker script file information from file tc1v1_3.lsl:

ltc -dtc1v1_3.lsl test.o

ltc --lsl-file=tc1v1_3.lsl test.o

Tool Options - Linker 5-115

• • • • • • • •

Related information

Linker option --lsl-check (Check LSL file(s) and exit)

Section 7.7, Controlling the Linker with a Script in Chapter Linker of the

User's Manual.

TriCore Reference Manual5-116
T

O
O

L
 O

P
T

IO
N

S

--diag

EDE

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or

warning message.

A description of the selected message appears.

Command line syntax

--diag=[format:]{all | number[,number]... }

Optionally, you can use one of the following display formats (format):

text The default is plain text

html Display explanation in HTML format

rtf Display explanation in RTF format

Description

With this option you can ask for an extended description of error

messages in the format you choose. The output is directed to stdout

(normally your screen) and in the format you specify.

To create a file with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If

you want the description of one or more selected error messages, you can

specify the error message numbers, separated by commas.

With this option the linker does not link any files.

Example

To display an explanation of message number 106, enter:

ltc --diag=106

This results in the following message and explanation:

E106: unresolved external: message

The linker could not resolve all external symbols. This is an

error when the incremental linking option is disabled. The

<message> indicates the symbol that is unresolved.

Tool Options - Linker 5-117

• • • • • • • •

To write an explanation of all errors and warnings in HTML format to file

lerrors.html, enter:

ltc --diag=html:all > lerrors.html

Related information

Section 7.10, Linker Error Messages, in Chapter Using the Linker of the

User's Manual.

TriCore Reference Manual5-118
T

O
O

L
 O

P
T

IO
N

S

-e (--extern)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option -e in the Additional options field.

Command line syntax

-e symbol
--extern=symbol

Description

With this option you force the linker to consider the given symbol as an

undefined reference. The linker tries to resolve this symbol, either the

symbol is defined in an object file or the linker extracts the corresponding

symbol definition from a library.

This option is, for example, useful if the startup code is part of a library.

Because your own application does not refer to the startup code, you can

force the startup code to be extracted by specifying the symbol _START as

an unresolved external.

Example

Consider the following invocation:

ltc mylib.a

Nothing is linked and no output file will be produced, because there are

no unresolved symbols when the linker searches through mylib.a.

ltc -e _START mylib.a

ltc --extern=_START mylib.a

In this case the linker searches for the symbol _START in the library and

(if found) extracts the object that contains _START, the startup code. If this

module contains new unresolved symbols, the linker looks again in

mylib.a. This process repeats until no new unresolved symbols are

found.

Tool Options - Linker 5-119

• • • • • • • •

Related information

Section 7.4.1, Specifying Libraries to the Linker, in Chapter Using the Linker
of the User's Manual.

TriCore Reference Manual5-120
T

O
O

L
 O

P
T

IO
N

S

--error-file

EDE

-

Command line syntax

--error-file[=file]

Description

With this option the linker redirects error messages to a file.

If you do not specify a filename, the error file is ltc.elk.

Example

ltc --error-file=my.elk test.o

The linker writes error messages to the file my.elk instead of stderr.

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

Tool Options - Linker 5-121

• • • • • • • •

-f (--option-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option -f to the Additional options field.

Be aware that when you specify the option -f in the Additional options

field, the options are added to the linker options you have set in the

Project Options dialog. Only in extraordinary cases you may want to use

them in combination.

In EDE you can save your options in a file and restore them to call the

linker with those options:

1. From the Project menu, select Save Options... or Load Options...

Command line syntax

-f file,...

--option-file=file,...

Description

Instead of typing all options on the command line, you can create an

option file which contains all options and files you want to specify. With

this option you specify the option file to the linker.

Use an option file when the length of the command line would exceed the

limits of the operating system, or just to store options and save typing.

You can specify the option -f multiple times.

Format of an option file

• Multiple command line arguments on one line in the option file are

allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

TriCore Reference Manual5-122
T

O
O

L
 O

P
T

IO
N

S

 "This has a single quote ' embedded"

 'This has a double quote " embedded'

 'This has a double quote " and \

 a single quote '"' embedded"

Note that adjacent strings are concatenated.

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 "This is a continuation \

 line"

 -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

-Mmymap (generate a map file)

test.o (input file)

-Lc:\mylibs (additional search path for system libraries)

Specify the option file to the linker:

ltc -f myoptions

ltc --option-file=myoptions

This is equivalent to the following command line:

ltc -Mmymap test.o -Lc:\mylibs

Related information

-

Tool Options - Linker 5-123

• • • • • • • •

--first-library first

EDE

-

Command line syntax

--first-library-first

Description

When the linker processes a library it searches for symbols that are

referenced by the objects and libraries processed so far. If the library

contains a definition for an unresolved reference the linker extracts the

object that contains the definition from the library.

By default the linker processes object files and libraries in the order in

which they appear on the command line. If you specify the option

--first-library-first the linker always tries to take the symbol definition

from the library that appears first on the command line before scanning

subsequent libraries.

This is for example useful when you are working with a newer version of

a library that partially overlaps the older version. Because they do not

contain exactly the same functions, you have to link them both. However,

when a function is present in both libraries, you may want the linker to

extract the most recent function.

Example

ltc --first-library-first a.a test.o b.a

If the file test.o calls a function which is both present in a.a and b.a,

normally the function in b.a would be extracted. With this option the

linker first tries to extract the symbol from the first library a.a.

Related information

Linker option --no-rescan (Do not rescan libraries)

TriCore Reference Manual5-124
T

O
O

L
 O

P
T

IO
N

S

-I (--include-directory)

EDE

-

Command line syntax

-Ipath,...

--include-directory=path,...

Description

With this option you can specify the path where your LSL include files are

located. A relative path will be relative to the current directory.

The order in which the linker searches for LSL include files is:

1. The pathname in the LSL file and the directory where the LSL files are

located (only for #include files that are enclosed in "")

2. The path that is specified with this option.

3. The default $(PRODDIR)\include.lsl directory relative to the

installation directory.

Example

Suppose that the LSL file lslfile.lsl contains the following lines:

#include "mypart.lsl"

You can call the linker as follows:

ltc -Imyinclude -dlslfile.lsl test.o

ltc --include-directory=myinclude

 --lsl-file=lslfile.lsl test.o

First the linker looks in the directory where lslfile.lsl is located for

the file mypart.lsl. If it does not find the file, it looks in myinclude

subdirectory relative to the current directory for the file mypart.lsl (this

option). Finally it looks in the directory $(PRODDIR)\include.lsl.

Related information

Linker option -d (Linker script file)

Tool Options - Linker 5-125

• • • • • • • •

-i

(--user-provided-initialization-code)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Disable the option Use standard copy-table for initialization.

Command line syntax

-i

--user-provided-initialization-code

Description

It is possible to use your own initialization code, for example, to save

ROM space. With this option you tell the linker not to generate a copy

table for initialize/clear sections. Use linker labels in your source code to

access the positions of the sections when located.

If the linker detects references to the TASKING initialization code, an error

is emitted: it is either the TASKING initialization routine or your own, not

both.

Note that the options --no-rom-copy and --non-romable, may vary

independently. The 'copytable-compression' optimization is automatically

disabled when you enable this option.

Example

To link with your own startup code:

ltc -i test.o

ltc --user-provided-initialization-code test.o

Related information

-

TriCore Reference Manual5-126
T

O
O

L
 O

P
T

IO
N

S

-k (--keep-output-files)

EDE

EDE always removes the output files when errors occurred.

Command line syntax

-k

--keep-output-files

Description

If an error occurs during linking, the resulting output file may be

incomplete or incorrect. With this option you keep the generated output

files when an error occurs.

By default the linker removes the generated output files when an error

occurs. This is useful when you use the make utility mktc. If the

erroneous files are not removed, the make utility may process corrupt files

on a subsequent invocation.

Use this option when you still want to use the generated file. For example

when you know that the error(s) do not result in a corrupt output file, or

when you want to inspect the output file, or send it to Altium support.

Example

ltc -k test.o

ltc --keep-output-files test.o

When an error occurs during linking, the generated output file test.elf

will not be removed.

Related information

-

Tool Options - Linker 5-127

• • • • • • • •

-L (--library-directory /

--ignore-default-library-path)

EDE

1. From the Project menu, select Directories...

The Directories dialog appears.

2. Add a pathname in the Library Files Path field.

3. In the Library Files Path field, add the pathnames of the directories

where the linker should look for library files.

If you enter multiple paths, separate them with a semicolon (;).

Command line syntax

-Lpath,...

--library-directory=path,...

-L

--ignore-default-library-path

Description

With this option you can specify the path(s) where your system libraries,

specified with the -l option, are located. If you want to specify multiple

paths, use the option -L for each separate path.

The default path is $(PRODDIR)\lib.

If you specify only -L (without a pathname) or the long option

--ignore-default-library-path, the linker will not search the default

path and also not in the paths specified in the environment variable

LIBTC1V1_2, LIBTC1V1_3 or LIBTC2. So, the linker ignores steps 2, 3 and

4 as listed below.

The priority order in which the linker searches for system libraries

specified with the -l option is:

1. The path that is specified with the -L option.

2. The path that is specified in the environment variable LIBTC1V1_2,

LIBTC1V1_3 or LIBTC2 when the product was installed.

TriCore Reference Manual5-128
T

O
O

L
 O

P
T

IO
N

S

3. The default directory $(PRODDIR)\lib.

4. The processor specific directory, for example $(PRODDIR)\lib\tc1.

Example

Suppose you call the linker as follows:

ltc test.o -Lc:\mylibs -lc

First the linker looks in the directory c:\mylibs for library libc.a (this

option).

If it does not find the requested libraries, it looks in the directory that is set

with the environment variable LIBTC1V1_2, LIBTC1V1_3 or LIBTC2.

Then the linker looks in the default directory $(PRODDIR)\lib for

libraries.

Related information

Linker option -l (Link system library)

Section 7.4.2, How the Linker Searches Libraries, in Chapter Using the
Linker of the User's Manual.

Section 1.3.2, Configuring the Command Line Environment, in Chapter

Software Installation of the User's Manual.

Tool Options - Linker 5-129

• • • • • • • •

-l (--library)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Libraries.

3. Enable the option Link default C libraries.

Command line syntax

-lname
--library=name

Description

With this option you tell the linker to search also in system library

libname.a, where name is a string. The linker first searches for system

libraries in any directories specified with -Lpath, then in the directories

specified with the environment variable LIBTC1V1_2, LIBTC1V1_3 or

LIBTC2, unless you used the option -L without a directory.

If you use the libc.a library, you must always link the libfp.a library

as well. Remember that the order of the specified libraries is important!

Example

To search in the system library libfp.a (floating-point library):

ltc test.o mylib.a -lfp

ltc test.o mylib.a --library=fp

The linker links the file test.o and first looks in mylib.a (in the current

directory only), then in the system library libfp.a to resolve unresolved

symbols.

Related information

Linker option -L (Additional search path for system libraries)

Section 7.4.1, Specifying Libraries to the Linker, in Chapter Using the Linker
of the User's Manual.

TriCore Reference Manual5-130
T

O
O

L
 O

P
T

IO
N

S

--link-only

EDE

-

Command line syntax

--link-only

Description

With this option you suppress the locating phase. The linker stops after

linking. The linker complains if any unresolved references are left.

Example

ltc --link-only hello.o

The linker checks for unresolved symbols and creates the file task1.out.

Related information

Control program option -cl (Stop after linking)

Tool Options - Linker 5-131

• • • • • • • •

--lsl-check

EDE

-

Command line syntax

--lsl-check

Description

With this option the linker just checks the syntax of the LSL file(s) and

exits. No linking or locating is performed.

Example

To check the LSL file(s) and exit:

ltc --lsl-check --lsl-file=mylslfile.lsl

Related information

Linker option -d (Linker script file)

Linker option --lsl-dump (Dump LSL info)

Chapter 8, Linker Script Language.

TriCore Reference Manual5-132
T

O
O

L
 O

P
T

IO
N

S

--lsl-dump

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Script File.

3. Enable the option Dump processor and memory info from LSL

file.

Command line syntax

--lsl-dump[=file]

Description

With this option you tell the linker to dump the LSL part of the map file in

a separate file, independent of the -M (generate map file) option. If you

do not specify a filename, the file ltc.ldf is used.

Example

ltc --lsl-dump=mydump.ldf test.o

The linker dumps the processor and memory info from the LSL file in the

file mydump.ldf.

Related information

Linker option -m (Map file formatting options)

Tool Options - Linker 5-133

• • • • • • • •

-M (--map-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Map File.

3. Enable the option Generate a map file (.map).

Command line syntax

-M[file]
--map-file[=file]

Description

With this option you tell the linker to generate a linker map file. If you do

not specify a filenam and you specified the -o option, the linker uses the

same basename as the output file with the extension .map.. If you did not

specify the -o option, the linker uses the file task1.map.

A linker map file is a text file that shows how the linker has mapped the

sections and symbols from the various object files (.o) to the linked object

file. A locate part shows the absolute position of each section. External

symbols are listed per space with their absolute address, both sorted on

symbol and sorted on address.

With the option -m (map file formatting) you can specify which parts you

want to place in the map file.

Example

To generate a map file (test.map):

ltc -Mtest.map test.o

ltc --map-file=test.map test.o

The control program by default tells the linker to generate a map file.

Related information

Linker option -m (Map file formatting options)

Section 6.2, Linker Map File Format, in Chapter List File Formats.

TriCore Reference Manual5-134
T

O
O

L
 O

P
T

IO
N

S

-m (--map-file-format)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Map File.

3. Enable the options to include that information in the map file.

Command line syntax

-mflags

--map-file-format=flags

You can set the following flags:

0 same as -mcfkLMoQrSU (link info)

1 same as -mCfKlMoQRSU (locate info)

2 same as -mcfklmoQrSu (most info)

c/C (+/-callgraph) Call graph info

f/F (+/-files) Processed files info

k/K (+/-link) Link result info

l/L (+/-locate) Locate result info

m/M (+/-memory) Memory usage info

o/O (+/-overlay) Overlay info

q/Q (+/-statics) Module local symbols

r/R (+/-crossref) Cross references info

s/S (+/-lsl) Processor and memory info

u/U (+/-rules) Locate rules

Default

-m2

Description

With this option you specify which information you want to include in the

map file. Use this option in combination with the option -M

(--map-file). If you do not specify this option, the linker uses the

default: -m2

Tool Options - Linker 5-135

• • • • • • • •

Example

ltc -Mtest.map -mF test.o

ltc --map-file=test.map

 --map-file-format=-files test.o

The linker generates the map file test.map that includes all default

information, but not the processed files part.

Related information

Linker option -M (Generate map file)

Section 6.2, Linker Map File Format, in Chapter List File Formats.

TriCore Reference Manual5-136
T

O
O

L
 O

P
T

IO
N

S

--misra-c-report

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select MISRA-C.

3. Select a MISRA-C configuration.

4. Enable the option Produce a MISRA-C report.

Command line syntax

--misra-c-report[=file]

Description

With this option you tell the linker to create a MISRA-C Quality Assurance

report. This report lists the various modules in the project with the

respective MISRA-C settings at the time of compilation. If you do not

specify a filename, the file name.mcr is used.

Example

ltc --misra-c-report test.o

The linker creates a MISRA-C report file test.mcr.

Related information

Compiler option --misrac

Tool Options - Linker 5-137

• • • • • • • •

--munch

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option --munch to the Additional options field.

Command line syntax

--munch

Description

With this option you tell the linker to activate the muncher in the

pre-locate phase.

The data sections are initialized when the application is downloaded. The

data sections are not re-initialized when the application is restarted.

Example

ltc --munch test.o

The linker activates the muncher in the pre-locate phase while linking the

file test.o.

Related information

-

TriCore Reference Manual5-138
T

O
O

L
 O

P
T

IO
N

S

-N (--no-rom-copy)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option -N to the Additional options field.

Command line syntax

-N

--no-rom-copy

Description

With this option the linker will not generate a ROM copy for data sections.

A copy table is generated and contains entries to clear BSS sections.

However, no entries to copy data sections from ROM to RAM are placed in

the copy table.

The data sections are initialized when the application is downloaded. The

data sections are not re-initialized when the application is restarted.

Example

ltc -N test.o

ltc --no-rom-copy test.o

The linker does not generate ROM copies for data sections.

Related information

-

Tool Options - Linker 5-139

• • • • • • • •

--no-rescan

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Libraries.

3. Disable the option Rescan libraries to solve unresolved externals.

Command line syntax

--no-rescan

Description

When the linker processes a library, it searches for symbol definitions that

are referenced by the objects and libraries processed so far. If the library

contains a definition for an unresolved reference, the linker extracts the

object that contains the definition from the library. The linker processes

object files and libraries in the order in which they appear on the

command line.

When all objects and libraries are processed the linker checks if there are

unresolved symbols left. If so, the default behavior of the linker is to

rescan all libraries in the order given on the command line. The linker

stops rescanning the libraries when all symbols are resolved, or when the

linker could not resolve any symbol(s) during the rescan of all libraries.

Notice that resolving one symbol may introduce new unresolved symbols.

With this option, you tell the linker to scan the object files and libraries

only once. When the linker has not resolved all symbols after the first

scan, it reports which symbols are still unresolved. This option is useful if

you are building your own libraries. The libraries are most efficiently

organized if the linker needs only one pass to resolve all symbols.

Example

To scan the libraries only once:

ltc --no-rescan test.o a.a b.a

The linker resolves all unresolved symbols while scanning the object files

and libraries and reports all remaining unresolved symbols after this scan.

TriCore Reference Manual5-140
T

O
O

L
 O

P
T

IO
N

S

Related information

Linker option --first-library-first (Scan libraries in the specified order)

Tool Options - Linker 5-141

• • • • • • • •

--non-romable

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option to the Additional options field.

Command line syntax

--non-romable

Description

With this option the linker will locate all ROM sections in RAM. A copy

table is generated and is located in RAM. When the application is started,

that data and BSS sections are re-initialized.

Example

ltc --non-romable test.o

The linker locates all ROM sections in RAM.

Related information

-

TriCore Reference Manual5-142
T

O
O

L
 O

P
T

IO
N

S

-O (--optimize)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Optimization.

3. Enable or disable the optimization suboptions.

Command line syntax

-Oflags

--optimize=flags

You can set the following flags:

c/C (+/-delete-unreferenced-sections)

Delete unreferenced sections from the output file

(no effect on sources compiled with debug information)

l/L (+/-first-fit-decreasing)

Use a 'first fit decreasing' algorithm to locate

unrestricted sections in memory.

s/S (+/-delete-unreferenced-symbols)

Delete unreferenced symbols from the output file

t/T (+/-copytable-compression)

Locate (unrestricted) sections in such a way that

the size of the copy table is as small as possible.

x/X (+/-delete-duplicate-code)

Delete duplicate code sections from the output file

y/Y (+/-delete-duplicate-data)

Delete duplicate constant data sections from the output file

Use the following options for predefined sets of flags:

-O0 (--optimize=0) No optimization.

Alias for: -OCLSTXY

Tool Options - Linker 5-143

• • • • • • • •

-O1 (--optimize=1) Normal optimization (default).

Alias for: -OCLStXY

-O2 (--optimize=2) All optimizations.

Alias for: -Oclstxy

Default

-O1

Description

With this option you can control the level of optimization. If you do not

use this option, -OCLStXY (-O1) is the default.

Example

The following invocations are equivalent and result all in the default

optimizations.

ltc test.o

ltc -O test.o

ltc -O1 test.o

ltc -OCLStXY test.o

ltc --optimize test.o

ltc --optimize=1 test.o

ltc --optimize=-delete-unreferenced-sections,

 -first-fit-decreasing,+copytable-compression,

 -delete-duplicate-code,-delete-duplicate-data test.o

Related information

Section 7.2.3, Linker Optimizations, in Chapter Using the Linker of the

User's Manual.

TriCore Reference Manual5-144
T

O
O

L
 O

P
T

IO
N

S

-o (--output)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Output Format.

3. Enable one or more output formats.

For some output formats you can specify a number of suboptions.

EDE and the control program name the output file always after the first
input file with the extension .elf.

Command line syntax

-o[filename][:format[:addr_size][,space_name]]...

--output=[filename][:format[:addr_size][,space_name]]...

You can specify the following formats:

ELF ELF/DWARF

IEEE IEEE-695

IHEX Intel Hex

SREC Motorola S-records

Description

By default, the linker generates an output file in ELF/DWARF format, with

the name task1.elf.

With this option you can specify an alternative filename, and an alternative

output format. The default output format is the format of the first input

file.

You can use the -o option multiple times. This is useful to generate

multiple output formats. With the first occurrence of the -o option you

specify the basename (the filename without extension), which is used for

subsequent -o options with no filename specified. If you do not specify a

filename, or you do not specify the -o option at all, the linker uses the

default basename taskn.

Tool Options - Linker 5-145

• • • • • • • •

IHEX and SREC formats

If you specify the Intel Hex format or the Motorola S-records format, you

can use the argument addr_size to specify the size of addresses in bytes

(record length). For Intel Hex you can use the values: 1, 2, and 4

(default). For Motorola S-records you can specify: 2 (S1 records), 3 (S2

records, default) or 4 bytes (S3 records).

With the argument space_name you can specify the name of the address

space. The name of the output file will be filename with the extension

.hex or .sre and contains the code and data allocated in the specified

space. The other address spaces are also emitted whereas there output

files are named filename_spacename with the extension .hex or .sre.

If you do not specify space_name, or you specify a non-existing space,

the default address space is filed in.

Use option -c (--chip-output) to create Intel Hex or Motorola S-record

output files for each chip (suitable for loading into a PROM-programmer).

Example

To create the output file myfile.hex of the address space named

linear:

ltc test.o -omyfile.hex:IHEX:2,linear

ltc test.o --output=myfile.hex:IHEX:2,linear

Related information

Linker option -c (Generate an output file for each chip)

Section 7.1, ELF/DWARF Object Format, in Chapter Object File Formats.

TriCore Reference Manual5-146
T

O
O

L
 O

P
T

IO
N

S

-r (--incremental)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option -r in the Additional options field.

Command line syntax

-r

--incremental

Description

Normally the linker links and locates the specified object files. With this

option you tell the linker only to link the specified files. The linker creates

a linker output file .out. You then can link this file again with other

object files until you have reached the final linker output file that is ready

for locating.

In the last pass, you call the linker without this option with the final linker

output file .out. The linker will now locate the file.

Example

In this example, the files test1.o, test2.o and test3.o are

incrementally linked:

1. ltc -r test1.o test2.o -otest.out

test1.o and test2.o are linked

2. ltc --incremental test3.o test.out

test3.o is linked together with test.out. File task1.out is created.

3. ltc task1.out (task1.out is located)

Related information

Section 7.5, Incremental Linking, in Chapter Using the Linker of the User's
Manual.

Tool Options - Linker 5-147

• • • • • • • •

-S (--strip-debug)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Enable the options to include that information in the map file.

4. Disable the option Include symbolic debug information.

Command line syntax

-S

--strip-debug

Description

With this option you specify not to include symbolic debug information in

the resulting output file.

Example

ltc -S test.o -otest.elf

ltc --strip-debug test.o --output=test.elf

The linker generates the object file test.elf without symbolic debug

information.

TriCore Reference Manual5-148
T

O
O

L
 O

P
T

IO
N

S

-V (--version)

EDE

-

Command line syntax

-V

Description

Display version information. The linker ignores all other options or input

files.

Example

ltc -V

ltc --version

The linker does not link any files but displays the following version

information:

TASKING TriCore VX-toolset object linker vx.yrz Build 000

Copyright years Altium BV Serial# 00000000

Related information

-

Tool Options - Linker 5-149

• • • • • • • •

-v (--verbose)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Enable the option Print the name of each file as it is processed.

Command line syntax

-v[v]

--verbose

--extra-verbose

Description

With this option you put the linker in verbose mode. The linker prints the

link phases while it processes the files. In the extra verbose mode, the

linker also prints the filenames and it shows which objects are extracted

from libraries. With this option you can monitor the current status of the

linker.

Example

ltc test.o -dextmem.lsl -ddefault.lsl -lc -lfp -lrt -v

The linker links the file test.o and displays the steps it performs.

ltc I437: reading file "extmem.lsl"

ltc I437: reading file "default.lsl"

ltc I400: activating link phase

ltc I403: resolving symbols (task1)

ltc I404: generating callgraphs (task1)

ltc I408: executing linker commands (task1)

ltc I418: finalize linking (task1)

ltc I401: activating locate phase

...

ltc I432: finalize locating (task1)

ltc I402: activating file producing phase

ltc I433: emitting object files (task1)

ltc I434: emitting report files (task1)

Related information

-

TriCore Reference Manual5-150
T

O
O

L
 O

P
T

IO
N

S

-w (--no-warnings)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Warnings.

3. Enable one of the options Report all warnings, Suppress all

warnings, or Suppress specific warnings.

If you select Suppress specific warnings:

4. Enter the numbers, separated by commas, of the warnings you want to

suppress.

Command line syntax

-w[nr[,nr]...]
--no-warnings[=nr[,nr]...]

Description

With this option you can suppresses all warning messages or specific

warning messages.

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are

suppressed.

• If you specify this option with a number, only the specified warnings

are suppressed. Separate multiple warnings by commas.

Example

To suppress all warnings:

ltc -w test.o

ltc --no-warnings test.o

To suppress warnings 113 and 114:

ltc -w113,114 test.o

ltc --no-warnings=113,114 test.o

Tool Options - Linker 5-151

• • • • • • • •

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

TriCore Reference Manual5-152
T

O
O

L
 O

P
T

IO
N

S

--warnings-as-errors

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Warnings.

3. Enable the option Treat warnings as errors.

Command line syntax

--warnings-as-errors

Description

With this option you tell the linker to treat warnings as errors.

Example

ltc --warnings-as-errors test.o

When a warning occurs, the linker considers it as an error.

Related information

Linker option -w (Suppress some or all warnings)

Tool Options - Control Program 5-153

• • • • • • • •

5.4 CONTROL PROGRAM OPTIONS

The control program cctc facilitates the invocation of the various

components of the TriCore toolchain from a single command line. The

control program is a command line tool so there are no equivalent options

in EDE.

For the linker options in EDE, EDE invokes the linker via the control

program. Therefore, it uses the syntax of the control program to pass

options and files to the linker. See section 5.3, Linker Options, for an

overview of the EDE linker options and the corresponding command line

linker options.

Some options are interpreted by the control program itself; other options

are passed to those programs in the toolchain that accept the option.

Recognized input files

The control program recognizes the following input files:

• Files with a .cc, .cxx or .cpp suffix are interpreted as C++ source

programs and are passed to the C++ compiler.

• Files with a .c suffix are interpreted as C source programs and are

passed to the compiler.

• Files with a .asm suffix are interpreted as hand-written assembly

source files which have to be passed to the assembler.

• Files with a .src suffix are interpreted as compiled assembly source

files. They are directly passed to the assembler.

• Files with a .a or .elb suffix are interpreted as library files and are

passed to the linker.

• Files with a .o suffix are interpreted as object files and are passed to

the linker.

• Files with a .out suffix are interpreted as linked object files and are

passed to the locating phase of the linker. The linker accepts only one

.out file in the invocation.

• An argument with a .lsl suffix is interpreted as a linker script file and

is passed to the linker.

Normally, the control program tries to compile, assemble, link and locate

all source files to absolute object files. There are however, options to

suppress the assembler, link or locate stage.

TriCore Reference Manual5-154
T

O
O

L
 O

P
T

IO
N

S

-? (--help)

Command line syntax

-?[options]

--help[=options]

Description

Displays an overview of all command line options. When you specify the

suboption options, you receive extended information.

Example

The following invocations all display a list of the available command line

options:

cctc -?

cctc

Related information

-

Tool Options - Control Program 5-155

• • • • • • • •

--address-size

Command line syntax

--address-size=addr_size

Description

If you specify IHEX or SREC with the control option --format, you can

additionally specify the record length and the address space to be emitted

in the output files.

With this option you can specify the size of addresses in bytes (record

length). For Intel Hex you can use the values: 1, 2, and 4 (default). For

Motorola S-records you can specify: 2 (S1 records), 3 (S2 records, default)

or 4 bytes (S3 records).

If you do not specify addr_size, the default address size is generated.

Example

To create the SREC file test.s with S1 records, type:

cctc --format=SREC --address-size=2

Related information

Control program option --format (Set linker output format)

Control program option --space (Set linker output space name)

Linker option -o (Specify an output object file)

TriCore Reference Manual5-156
T

O
O

L
 O

P
T

IO
N

S

-C (--cpu)

Command line syntax

-Ccpu

Description

With this option you define the target processor for which you create your

application.

Based on the specified target processor it is automatically detected

whether a MMU or FPU-unit is present and whether the architecture is a

TriCore2. This means you do not have to specify the assembler options

--mmu-present, --fpu-present and --is-tricore2 explicitly when one

of the supported derivatives is selected.

Based on the specified target processor the control program always

includes the correct register files, unless you specify control program

option --no-tasking-sfr.

Example

To generate the file test.elf for the TC11IB processor:

cctc -Ctc11ib test.c

cctc --cpu=tc11ib test.c

Related information

Compiler option -C (Use SFR definitions for CPU)

Assembler option -C (Select CPU)

Section 5.4, Calling the Compiler, in Chapter Using the Compiler of the

User's Manual.

Tool Options - Control Program 5-157

• • • • • • • •

--case-insensitive

Command line syntax

--case-insensitive

Description

With this option you tell the control progam not to distinguish between

upper and lower case characters. By default upper and lower case

characters are considered as different characters. Note that in assembly

instruction mnemonics, register names, directives and controls are always

treated case insensitive.

Assembly source files that are generated by the compiler must always be

assembled and linked case sensitive. When you are writing your own

assembly code, you may want to specify the case insensitive mode.

Example

To create the file test.elf with case insensitive assembling and linking:

cctc -c test.c

cctc --case-insensitive test.c

The assembler and linker now consider upper and lower case characters

as being the same. So, for example, the label LabelName is the same label

as labelname.

Related information

Assembler option --case-sensitive (Assemble case insensitive)

Linker option --case-sensitive (Link case insensitive)

TriCore Reference Manual5-158
T

O
O

L
 O

P
T

IO
N

S

-cc/-cs/-co/-cl

Command line syntax

-cc

--create=c

-cs

--create=assembly

-co

--create=object

-cl

--create=relocatable

Description

Normally the control program generates an absolute object file of the

specified output format from the file you supplied as input.

With this option you tell the control program to stop after a certain

number of phases.

-cc Stop after C++ files are compiled to intermediate C files (.ic)

-cs Stop after C files are compiled to assembly (.src)

-co Stop after the files are assembled to object files (.obj)

-cl Stop after the files are linked to a linker object file (.eln)

To generate the object file test.o:

cctc -c test.c

cctc --create=object test.c

The control program stops after the file is assembled. It does not link nor

locate the generated output.

Related information

-

Tool Options - Control Program 5-159

• • • • • • • •

--check

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without

generating code. This saves time in developing your application.

The compiler/assembler reports any warnings and/or errors.

Example

To check for syntax errors, without generating code:

cctc --check test.c

Related information

Compiler option --check (Check syntax)

Assembler option --check (Check syntax)

TriCore Reference Manual5-160
T

O
O

L
 O

P
T

IO
N

S

-D (--define)

Command line syntax

-Dmacro_name[=macro_definition]

--define=macro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the preprocessor.

If you only specify a macro name (no macro definition), the macro

expands as '1'.

You can specify as many macros as you like. On the command line, use

the option -D multiple times. If the command line exceeds the length limit

of the operating system, you can define the macros in an option file which

you then must specify to the control program with the option -f file.

Defining macros with this option (instead of in the C source) is, for

example, useful to compile or assemble conditional source as shown in

the example below.

The control program passes the option -D (--define) to the compiler and

the assembler.

Example

Consider the following C program with conditional code to compile a

demo program and a real program:

void main(void)

{

#if DEMO == 1

 demo_func(); /* compile for the demo program */

#else

 real_func(); /* compile for the real program */

#endif

}

You can now use a macro definition to set the DEMO flag. With the

control program this looks as follows:

cctc -DDEMO test.c

cctc -DDEMO=1 test.c

Tool Options - Control Program 5-161

• • • • • • • •

cctc --define=DEMO test.c

cctc --define=DEMO=1 test.c

Note that all four invocations have the same effect.

The next example shows how to define a macro with arguments. Note that

the macro name and definition are placed between double quotes because

otherwise the spaces would indicate a new option.

cctc -D"MAX(A,B)=((A) > (B) ? (A) : (B))"

cctc --define="MAX(A,B)=((A) > (B) ? (A) : (B))"

Related information

Control program option -U (Undefine preprocessor macro)

Control program option -f (Read options from file)

TriCore Reference Manual5-162
T

O
O

L
 O

P
T

IO
N

S

-d (--lsl-file)

Command line syntax

-dfile

--lsl-file=file

Description

A linker script file contains vital information about the core for the locating

phase of the linker. A linker script file is coded in LSL and contains the

following types of information:

• the architecture and derivative definition describe the core's hardware

architecture and its internal memory.

• the board specification describes the physical memory available in the

system.

• the section layout definition describes how to locate sections in

memory.

With this option you specify a linker script file via the control program to

the linker. If you do not specify this option, the linker does not use a

script file. You can specify the existing file tctarget.lsl or the name of

a manually written linker script file. You can use this option multiple

times. The linker processes the LSL files in the order in which they appear

on the command line.

Example

To read linker script file information from file mylslfile.lsl:

cctc -dmylslfile.lsl test.obj

cctc --lsl-file=mylslfile.lsl test.obj

Related information

Section 7.7, Controlling the Linker with a Script, in the User's Manual.

Tool Options - Control Program 5-163

• • • • • • • •

--diag

Command line syntax

--diag=[format:]{all|nr,...]

Description

With this option you can ask for an extended description of error

messages in the format you choose. The output is directed to stdout

(normally your screen) and in the format you specify. You can specify the

following formats: html, rtf or text (default). To create a file with the

descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If

you want the description of one or more selected error messages, you can

specify the error message numbers, separated by commas.

With this option the control program does not process any files.

Example

To display an explanation of message number 103 , enter:

cctc --diag=103

This results in message 103 with explanation.

To write an explanation of all errors and warnings in HTML format to file

ccerrors.html, enter:

cctc --diag=html:all > ccerrors.html

Related information

-

TriCore Reference Manual5-164
T

O
O

L
 O

P
T

IO
N

S

-E (--preprocess)

Command line syntax

-E[flags]

--preprocess=[flags]

You can set the following flags:

c/C (+/-comments) Keep comments

p/P (+/-noline) Strip #line source position info

Description

With this option you tell the control program to preprocess the C source.

The compiler sends the preprocessed file to stdout. To capture the

information in a file, specify an output file with the option -o.

With -Ec you tell the preprocessor to keep the comments from the C

source file in the preprocessed output.

With -Ep you tell the preprocessor to strip the #line source position

information (lines starting with #line). These lines are normally

processed by the assembler and not needed in the preprocessed output.

When you leave these lines out, the output is more orderly to read.

Example

cctc -EcP test.c -o test.pre

cctc --preprocess +comments,-noline test.c

 --output=test.pre

The compiler preprocesses the file test.c and sends the output to the

file test.pre. Comments are included but the line source position

information is not stripped from the output file.

Related information

-

Tool Options - Control Program 5-165

• • • • • • • •

--error-file

Command line syntax

--error-file

Description

With this option the control program tells the compiler, assembler and

linker to redirect error messages to a file. The error file will be named after

the input file with extension .err (compiler errors), .ers (assembler

errors) or .elk (linker errors).

Example

To write errors to error files instead of stderr, enter:

cctc --error-file -t test.c

Related information

Control program option --warnings-as-errors (Warnings as errors)

TriCore Reference Manual5-166
T

O
O

L
 O

P
T

IO
N

S

--exceptions

Command line syntax

--exceptions

Description

With this option you enable support for exception handling in the C++

compiler.

Example

To enable exception handling, enter:

cctc --exceptions test.cc

Related information

-

Tool Options - Control Program 5-167

• • • • • • • •

-F (--no-double)

Command line syntax

-F

--no-double

Description

With this option you tell the control program to treat variables of the type

double as float. Because the float type takes less space, execution speed

increases and code size decreases, both at the cost of less precision.

Example

cctc -F test.c

cctc --no-double test.c

The file test.c is processed where variables of the type double are

treated as float in the compilation phase.

Related information

Control program option --use-double-precision-fp (Do not replace

doubles with floats)

TriCore Reference Manual5-168
T

O
O

L
 O

P
T

IO
N

S

-f (--option-file)

Command line syntax

-f file

--option-file=file

Description

Instead of typing all options on the command line, you can create a option

file which contains all options and file you want to specify. With this

option you specify the option file to the control program.

Use an option file when the length of the command line would exceed the

limits of the operating system, or just to store options and save typing.

You can specify the option -f multiple times.

Format of an option file

• Multiple command line arguments on one line in the option file are

allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

 "This has a single quote ' embedded"

 'This has a double quote " embedded'

 'This has a double quote " and \

 a single quote '"' embedded"

Note that adjacent strings are concatenated.

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 "This is a continuation \

 line"

 -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Tool Options - Control Program 5-169

• • • • • • • •

Example

Suppose the file myoptions contains the following lines:

-g

-k

test.c

Specify the option file to the control program:

ctc -f myoptions

ctc --option-file=myoptions

This is equivalent to the following command line:

ctc -g -k test.c

Related information

-

TriCore Reference Manual5-170
T

O
O

L
 O

P
T

IO
N

S

--force-c

Command line syntax

--force-c

Description

With this option you tell the control program to treat all .cc files as C files

instead of C++ files. This means that the control program does not call the

C++ compiler and forces the linker to link C libraries.

Example

cctc --force-c test.cc

The C++ file test.cc is considered to be a normal C file.

Related information

Control program option --force-c++ (Force C++ compilation and linking)

Tool Options - Control Program 5-171

• • • • • • • •

--force-c++

--force-c++

Description

With this option you tell the control program to treat all .c files as C++

files instead of C files. This means that the control program calls the C++

compiler prior to the C compiler and forces the linker to link C++ libraries.

Example

cctc --force-c++ test.c

The file test.c is considered to be a C++ file.

Related information

Control program option --force-c (Treat C++ files as C files)

TriCore Reference Manual5-172
T

O
O

L
 O

P
T

IO
N

S

--force-munch

Command line syntax

--force-munch

Description

With this option you force the control program to activate the muncher in

the pre-locate phase.

Example

To force the muncher phase in the pre-locate phase, type:

cctc --force-munch test.cc

Related information

-

Tool Options - Control Program 5-173

• • • • • • • •

--force-prelink

Command line syntax

--force-prelink

Description

With this option you force the control program to invoke the C++

pre-linker.

Example

cctc --force-prelink test.cc

The control program always invokes the C++ pre-linker when generating

test.elf.

Related information

-

TriCore Reference Manual5-174
T

O
O

L
 O

P
T

IO
N

S

--format

Command line syntax

--format=format

You can specify the following formats:

ELF ELF/DWARF

IEEE IEEE-695

IHEX Intel Hex

SREC Motorola S-records

Description

With this option you specify the output format for the resulting (absolute)

object file. The default output format is ELF/DWARF, which can directly be

used by the CrossView Pro debugger.

If you choose IHEX or SREC, you can additionally specify the address size

of the chosen format (option --address-size) and the address space to

be emitted (option --space).

Example

To generate an IEEE output file:

cctc --format=IEEE test1.c test2.c --output=test.abs

Related information

Control program option --address-size (For linker IHEX./SREC files)

Control program option --space (Set linker output space name)

Linker option -o (output file)

Linker option -C (generate hex file)

Section 7.1, ELF/DWARF Object Format, in Chapter Object File Formats.

Tool Options - Control Program 5-175

• • • • • • • •

--fp-trap

Command line syntax

--fp-trap

Description

Default the control program uses the non-trapping floating-point library

(libfp.a). With this option you tell the control program to use the

trapping floating-point library (libfpt.a).

If you use the trapping floating-point library, exceptional floating-point

cases are intercepted and can be handled separately by an application

defined exception handler. Using this library decreases the execution

speed of your application.

Example

cctc --fp-trap test.c

Link the trapping floating-point library when generating the object file

test.elf.

Related information

-

TriCore Reference Manual5-176
T

O
O

L
 O

P
T

IO
N

S

--fpu-present

Command line syntax

--fpu-present

Description

With this option the compiler can generate single precision floating-point

instructions in the assembly file. When you select this option, the macro

__FPU__ is defined in the C source file.

This option automatically sets the option --no-double, which treats

'double' as 'float', unless you overrule it with option

--use-double-precision-fp.

If you choose a valid target processor (command line option -C (--cpu)),

this option is automatically set, based on the chosen target processor.

Example

To allow the use of floating-point unit (FPU) instructions in the assembly

code and treat 'double' as 'float', enter:

ctc --fpu-present test.c

Related information

Control program option --use-double-precision-fp (Do not replace

doubles with floats)

Compiler option -C (Use SFR definitions for CPU)

Tool Options - Control Program 5-177

• • • • • • • •

-g (--debug-info)

Command line syntax

-g

--debug-info

Description

With this option you tell the control program to include debug information

in the generated object file.

Example

cctc -g test.c

cctc --debug-info test.c

The control program includes symbolic debug information in the

generated object file test.elf.

Related information

-

TriCore Reference Manual5-178
T

O
O

L
 O

P
T

IO
N

S

-I (--include-directory)

Command line syntax

-Ipath

--include-directory=path

Description

With this option you can specify the path where your include files are

located. A relative path will be relative to the current directory.

Example

Suppose that the C source file test.c contains the following lines:

#include <stdio.h>

#include "myinc.h"

You can call the control program as follows:

cctc -Imyinclude test.c

cctc --include-directory=myinclude

First the compiler looks for the file stdio.h in the directory myinclude

relative to the current directory. If it was not found, the compiler searches

in the environment variable and then in the default include directory.

The compiler now looks for the file myinc.h in the directory where

test.c is located. If the file is not there the compiler searches in the

directory myinclude. If it was still not found, the compiler searches in the

environment variable and then in the default include directory.

Related information

Compiler option -I (Add directory to include file search path)

Compiler option -H (Include file at the start of a compilation)

Tool Options - Control Program 5-179

• • • • • • • •

--instantiate

Command line syntax

--instantiate=mode

Description

Normally, when a file is compiled, no template entities are instantiated

(except those assigned to the file by automatic instantiation). The overall

instantiation mode can, however, be changed with this option. You can

specify the following modes:

none Do not automatically create instantiations of any template

entities. This is the default. It is also the usually appropriate

mode when automatic instantiation is done.

used Instantiate those template entities that were used in the

compilation. This will include all static data members for which

there are template definitions.

all Instantiate all template entities declared or referenced in the

compilation unit. For each fully instantiated template class, all of

its member functions and static data members will be

instantiated whether or not they were used. Non-member

template functions will be instantiated even if the only reference

was a declaration.

local Similar to --instantiate=used except that the functions are

given internal linkage. This is intended to provide a very simple

mechanism for those getting started with templates. The

compiler will instantiate the functions that are used in each

compilation unit as local functions, and the program will link

and run correctly (barring problems due to multiple copies of

local static variables). However, one may end up with many

copies of the instantiated functions, so this is not suitable for

production use.

You cannot use --instantiate=local in conjunction with automatic

template instantiation.

Example

To specify instantiation mode used, type

cctc --instantiate=used test.cc

TriCore Reference Manual5-180
T

O
O

L
 O

P
T

IO
N

S

Related information

-

Tool Options - Control Program 5-181

• • • • • • • •

--instantiation-dir

Command line syntax

--instantiation-dir=dir

Description

With this option the C++ compiler generates additional files for template

instantiations in the specified directory.

If you do not specify this option, files are created in the current directory.

If you specify the control program option

--no-one-instantiation-per-object, this option remains without effect.

Example

To specify the directory for instantiation files, type

cctc --instantiation-dir=instant test.cc

Related information

Control program option --no-one-instantiation-per-object

TriCore Reference Manual5-182
T

O
O

L
 O

P
T

IO
N

S

--instantiation-file

Command line syntax

--instantiation-file=file

Description

With this option the C++ compiler generates a list of all generated template

instantiation files and writes it to the specified file. You can use this file for

example to use as an option file for the archiver artc.

Example

To create a file with a list of all generated instantiation files, type

cctc --instantiation-file=instlist.ii test.cc

Related information

-

Tool Options - Control Program 5-183

• • • • • • • •

--is-tricore2

Command line syntax

--is-tricore2

Description

With this option you allow the control program to use TriCore 2

instructions in the generated output file.

If you choose a valid target processor (command line option -C (--cpu)),

this option is automatically set, based on the chosen target processor.

Example

To allow the use of TriCore 2 instructions in the assembly code, enter:

cctc --is-tricore2 test.c

Related information

Compiler option -C (Use SFR definitions for CPU)

TriCore Reference Manual5-184
T

O
O

L
 O

P
T

IO
N

S

--iso

Command line syntax

--iso={90|99}

Description

With this option you specify to the control program against which ISO

standard it should check your C source. C90 is also referred to as the

"ANSI C standard". C99 refers to the newer ISO/IEC 9899:1999 (E) standard

and is the default.

Independent of the chosen ISO standard, the control program always links

libraries with C99 support.

Example

To compile the file test.c conform the ISO C90 standard:

cctc --iso=90 test.c

Related information

Compiler option -c (ISO C standard)

Tool Options - Control Program 5-185

• • • • • • • •

-k (--keep-output-files)

Command line syntax

-k

--keep-output-files

Description

If an error occurs during the compilation, assembling or linking process,

the resulting output file may be incomplete or incorrect. With this option

you keep the generated output files when an error occurs.

By default the control program removes generated output files when an

error occurs. This is useful when you use the make utility. If the erroneous

files are not removed, the make utility may process corrupt files on a

subsequent invocation.

Use this option when you still want to use the generated files. For

example when you know that a particular error does not result in a

corrupt file, or when you want to inspect the output file, or send it to

Altium support.

Example

cctc -k test.c

cctc --keep-output-files test.c

When an error occurs during compiling, assembling or linking, the

erroneous generated output files will not be removed.

Related information

-

TriCore Reference Manual5-186
T

O
O

L
 O

P
T

IO
N

S

-L (--library-directory /

--ignore-default-library-path)

Command line syntax

-Lpath
--library-directory=path

-L

--ignore-default-library-path

Description

With this option you can specify the path(s) where your system libraries,

specified with the -l option, are located. If you want to specify multiple

paths, use the option -L for each separate path.

The default path is $(PRODDIR)\lib\tc1.

If you specify only -L (without a pathname) or the long option

--ignore-default-library-path, the linker will not search the default

path and also not in the paths specified in the environment variables

LIBTC1V1_2, LIBTC1V1_3 or LIBTC2. So, the linker ignores steps 2 and 3

as listed below.

The priority order in which the linker searches for system libraries

specified with the -l option is:

1. The path that is specified with the -L option.

2. The path that is specified in the environment variables LIBTC1V1_2,

LIBTC1V1_3 or LIBTC2 when the product was installed.

3. The default directory $(PRODDIR)\lib\tc1 or

$(PRODDIR)\lib\tc2.

Example

Suppose you call the control program as follows:

cctc test.c -Lc:\mylibs -lcs

cctc test.c --library-directory=c:\mylibs -lcs

First the linker looks in the directory c:\mylibs for library libc.a (this

option).

Tool Options - Control Program 5-187

• • • • • • • •

If it does not find the requested libraries, it looks in the directory that is set

with the environment variables LIBTC1V1_2, LIBTC1V1_3 or LIBTC2.

Then the linker looks in the default directory $(PRODDIR)\lib\tc1 or

$(PRODDIR)\lib\tc2 for libraries.

Related information

Linker option -l (Search also in system library libname)

TriCore Reference Manual5-188
T

O
O

L
 O

P
T

IO
N

S

-l (--library)

Command line syntax

-lname

--library=name

Description

With this option you tell the linker via the control program to search also

in system library libname.a, where name is a string. The linker first

searches for system libraries in any directories specified with -Lpath, then

in the directories specified with the environment variables LIBTC1V1_2,

LIBTC1V1_3 or LIBTC2, unless you used the option -L without a directory.

Example

To search in the system library libfp.a (floating-point library):

cctc test.obj mylib.a -lfp

cctc test.obj mylib.a --library=fp

The linker links the file test.obj and first looks in mylib.a (in the

current directory only), then in the system library libfp.a to resolve

unresolved symbols.

Related information

Control program option -L (Add library directory)

Section 7.4, Linking with Libraries, in the User's Manual.

Tool Options - Control Program 5-189

• • • • • • • •

--list-object-files

Command line syntax

--list-object-files

Description

With this option the list of object files that are handled by the prelinker, is

displayed at stdout. The list is shown when it is changed by the

prelinker.

Example

To show the list of object files handled by the prelinker, enter:

cctc --list-object-files test.cc

Related information

-

TriCore Reference Manual5-190
T

O
O

L
 O

P
T

IO
N

S

--mmu-present

Command line syntax

--mmu-present

Description

With this option you can use memory management instructions in the

assembly code. When you select this option, the define __MMU__ is set

to 1.

Example

To allow the use of memory management unit (MMU) instructions in the

assembly code, enter:

cctc --mmu-present test.c

Related information

Assembler option -C (Select CPU)

Tool Options - Control Program 5-191

• • • • • • • •

-n (--dry-run)

Command line syntax

-n

--dry-run

Description

With this option you put the control program verbose mode. The control

program prints the invocations of the tools it would use to process the

files.

Example

To see how the control program will invoke the tools it needs to process

the file test.c:

cctc -n test.c

cctc --dry-run test.c

The control program only displays the invocations of the tools it would

use to create the final object file but does not actually perform the steps.

Related information

Control program option -v (Verbose output)

TriCore Reference Manual5-192
T

O
O

L
 O

P
T

IO
N

S

--no-auto-instantiation

Command line syntax

--no-auto-instantiation

Description

Default, the c++ compiler automatically instantiates templates. With this

option automatic instantiation of templates is disabled.

Example

To disable automatic instantiation, type

cctc --no-auto-instantiation test.cc

Related information

For an extensive description of automatic insantiation, refer to section

2.6.1, Automatic Instantiation, in the TriCore C++ Compiler User's Manual.

Tool Options - Control Program 5-193

• • • • • • • •

--no-default-libraries

Command line syntax

--no-default-libraries

Description

Default the control program specifies the standard C libraries and run-time

library to the linker.

With this option you tell the control program not to specify the standard C

libraries and run-time library to the linker.

In this case you must specify the libraries you want to link to the linker

with the option -llibrary_name. The control program recognizes the

option -l as an option for the linker.

Example

cctc --no-default-libraries test.c

The control program does not specify any libraries to the linker. In normal

cases this would result in unresoved externals.

To specify your own libraries (libmy.a) and avoid unresolved externals:

cctc --no-default-libraries -lmy test.c

Related information

Linker option -l (Search also in system library libx.a)

TriCore Reference Manual5-194
T

O
O

L
 O

P
T

IO
N

S

--no-map-file

Command line syntax

--no-map-file

Description

By default the control program generates a linker map file (.map).

A linker map file is a text file that shows how the linker has mapped the

sections and symbols from the various object files (.obj) to the linked

object file. A locate part shows the absolute position of each section.

External symbols are listed per space with their absolute address, both

sorted on symbol and sorted on address.

With this option you prevent the generation of a map file.

Example

To prevent the generation of the linker map file test.map:

cctc --no-map-file test.c

Related information

Linker option -M (Generate map file)

Tool Options - Control Program 5-195

• • • • • • • •

--no-one-instantiation-per-object

Command line syntax

--no-one-instantiation-per-object

Description

With this option, the C++ compiler writes template instantiations into a

single object file. If you do not specify this option, the C++ compiler

creates multiple files. In that case you can specify a directory for those files

with the control program option --instantiation-dir.

Example

To create a file with a list of all generated instantiation files, type

cctc --no-one-instantiation-per-object test.cc

Related information

Control program option --instantiation-dir

TriCore Reference Manual5-196
T

O
O

L
 O

P
T

IO
N

S

--no-tasking-sfr

Command line syntax

--no-tasking-sfr

Description

Normally, the compiler and assembler include a special function register

(SFR) file before compiling. This file is automatically selected based on the

target you select on the Processor definition page of the Processor

options (compiler option -C).

With this option the compiler and assembler do not automatically include

a register file.

Use this option if you want to use your own set of SFR files.

Example

cctc -Ctc11ib --no-tasking-sfr test.c

The register file regtc11ib.sfr is not included.

Related information

Compiler option -C (Use SFR definitions for CPU)

Tool Options - Control Program 5-197

• • • • • • • •

-o (--output)

Command line syntax

-ofile

--output=file

Description

By default, the control program generates a file with the same basename

as the first specified input file. With this option you specify another name

for the resulting absolute object file.

Example

cctc test.c prog.c

The control program generates an ELF/DWARF object file (default) with

the name test.elf.

To generate the file result.elf:

cctc -oresult.elf test.c prog.c

cctc --output=result.elf test.c prog.c

Related information

-

TriCore Reference Manual5-198
T

O
O

L
 O

P
T

IO
N

S

--prelink-copy-if-non-local

Command line syntax

--prelink-copy-if-non-local

Description

If a file must be recompiled and it is not in the current directory, with this

option the C++ prelinker copies the prelink file (.ii) to the current

directory and rewrites that .ii file so it can find its associated .cc file. As a

result, the .cc file is recompiled in the current directory.

With this option you prevent that previously compiled files are overwritten

during recompilation.

Example

To copy all files for recompilation to the current directory:

cctc --prelink-copy-if-non-local test.cc

Related information

-

Tool Options - Control Program 5-199

• • • • • • • •

--prelink-local-only

Command line syntax

--prelink-local-only

Description

With this option the C++ prelinker ignores all files that are outside the

current directory.

Example

To prelink only files in the current directory:

cctc --prelink-local-only test.cc

Related information

-

TriCore Reference Manual5-200
T

O
O

L
 O

P
T

IO
N

S

--prelink-remove-instantiation-flags

Command line syntax

--prelink-remove-instantiation-flags

Description

With this option the C++ prelinker removes all instantiation flags from the

generated object files.

Example

To remove instantiation flags from the generated object files:

cctc --prelink-remove-instantiation-flags test.cc

Related information

-

Tool Options - Control Program 5-201

• • • • • • • •

--show-c++-warnings

Command line syntax

--show-c++-warnings

Description

The C++ compiler may generate a compiled C++ file (.ic) that causes

warnings during compilation or assembling. With this option you tell the

control program to show these warnings. Default C++ warnings are

suppressed.

Example

cctc --show-c++-warnings test.cc

The control program calls the C++ compiler which generates the C file

(test.ic). If this file causes warnings during compilation or assembling,

these warnings are shown.

Related information

-

TriCore Reference Manual5-202
T

O
O

L
 O

P
T

IO
N

S

--silicon-bug

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Bypasses.

3. Select the bypasses you want to enable.

Command line syntax

--silicon-bug=arg,...

For a list of available arguments refer to the description of option

--silicon-bug of the compiler and assembler. Depending on the available

arguments this option is passed to the compiler and/or assembler.

Description

With this option the control program tells the compiler/assembler/linker to

use software workarounds for some CPU functional problems.

Example

cctc --silicon-bug=cpu-tc021,cpu-tc030 test.c

The compiler uses workarounds for problems CPU_TC.024 and

CPU_TC.030.

Related information

See Chapter 9, CPU Functional Problems, for more information about the

individual problems and workarounds.

Assembler option --silicon-bug

Compiler option --silicon-bug

Tool Options - Control Program 5-203

• • • • • • • •

--space

Command line syntax

--space=space_name

Description

If you specify IHEX or SREC with the control option --format, you can

additionally specify the record length and the address space to be emitted

in the output files.

With this option you can specify which address space must be emitted.

With the argument space_name you can specify the name of the address

space. The name of the output file will be filename with the extension

.hex or .s.

If you do not specify space_name, the default address space is emitted. In

this case the name of the output file will be filename_spacename with the

extension .hex or .s.

Example

To create the IHEX file test.hex, type:

cctc --format=IHEX --space=far test.c

If the specified memory space does not exist, the control program emits

the default space name and reflects this in the output file name.

Related information

Control program option --format (Set linker output format)

Linker option -o (Specify an output object file)

TriCore Reference Manual5-204
T

O
O

L
 O

P
T

IO
N

S

--static

Command line syntax

--static

Description

This option is directly passed to the compiler.

With this option, the compiler treats external definitions at file scope

(except for main) as if they were declared static. As a result, unused

functions will be eliminated, and the alias checking algorithm assumes that

objects with static storage cannot be referenced from functions outside the

current module.

This option only makes sense when you specify all modules of an

application on the command line.

Example

cctc --static module1.c module2.c module3.c

Related information

-

Tool Options - Control Program 5-205

• • • • • • • •

-t (--keep-temporary-files)

Command line syntax

-t

--keep-temporary-files

Description

By default, the control program removes intermediate files like the .src

file (result of the compiler phase) and the .eln file (result of the linking

phase).

With this option you tell the control program to keep temporary files it

generates during the creation of the absolute object file.

Example

To keep all temporary files:

cctc -t test.c

cctc --keep-temporary-files test.c

The control program keeps all intermediate files it generates while creating

the absolute object file test.elf.

Related information

-

TriCore Reference Manual5-206
T

O
O

L
 O

P
T

IO
N

S

-U (--undefine)

Command line syntax

-Umacro_name
--undefine=macro_name

Description

With this option you can undefine an earlier defined macro as with

#undef.

This option is for example useful to undefine predefined macros.

However, the following predefined ISO C standard macros cannot be

undefined:

__FILE__ current source filename

__LINE__ current source line number (int type)

__TIME__ hh:mm:ss

__DATE__ mmm dd yyyy

__STDC__ level of ANSI standard

The control program passes the option -U (--undefine) to the compiler.

Example

To undefine the predefined macro __TASKING__:

cctc -U__TASKING__ test.c

cctc --undefine=__TASKING__ test.c

Related information

Control Pogram option -D (Define preprocessor macro)

Tool Options - Control Program 5-207

• • • • • • • •

--use-double-precision-fp

Command line syntax

--use-double-precision-fp

Description

When an FPU is present the control program will by default compile all

doubles as floats to make full use of the FPU. When you do not want this,

use the option --use-double-precision-fp.

Example

To allow the use of floating-point unit (FPU) instructions in the assembly

code and treat 'double' as 'double', enter:

ctc --fpu-present --use-double-precision-fp test.c

Related information

Control program option --fpu-present (Use hardware floating-point

instructions)

TriCore Reference Manual5-208
T

O
O

L
 O

P
T

IO
N

S

-V (--version)

Command line syntax

-V

--version

Description

Display version information. The control program ignores all other options

or input files.

Example

cctc -V

cctc --version

The control program does not call any tools but displays the following

version information:

TASKING TriCore VX-toolset control program vx.yrz Build nnn

Copyright 2003-year Altium BV Serial# 00000000

Related information

-

Tool Options - Control Program 5-209

• • • • • • • •

-v (--verbose)

Command line syntax

-v

--verbose

Description

With this option you put the control program in verbose mode. With the

option -v the control program performs it tasks while it prints the steps it

performs to stdout.

Example

cctc -v test.c

cctc --verbose test.c

The control program processes the file test.c and displays the

invocations of the tools it uses to create the final object file

Related information

Control program option -n (Verbose output and suppress execution)

TriCore Reference Manual5-210
T

O
O

L
 O

P
T

IO
N

S

-Wtool (--pass)

Command line syntax

-Wcpoption --pass-c++=option Pass option directly to the
C++ compiler

-Wcoption --pass-c=option Pass option directly to the
C compiler

-Waoption --pass-assembler=option Pass option directly to the
assembler

-Wploption --pass-prelinker=option Pass option directly to the
C++ prelinker

-Wloption --pass-linker=option Pass option directly to the
linker

Description

With this option you tell the control program to call a tool with the

specified option. The control program does not use the option itself, but

specifies it directly to the tool which the control program calls.

Example

cctc -Wl-r test.c

The control program does not use the option -r but calls the linker with

the option -r (ltc -r).

Related information

-

Tool Options - Control Program 5-211

• • • • • • • •

-w (--no-warnings)

Command line syntax

-w[nr]
--no-warnings[=nr]

Description

With this option suppresses all warning messages or a specific warning. If

you do not specify this option, all warnings are reported.

Example

To suppress all warnings:

cctc -w test.c

cctc --no-warnings test.c

To suppress warnings 100:

cctc -w100 test.c

cctc --no-warnings=100 test.c

Related information

Control program option --warnings-as-errors (Warnings as errors)

TriCore Reference Manual5-212
T

O
O

L
 O

P
T

IO
N

S

--warnings-as-errors

Command line syntax

--warnings-as-errors

Description

With this option you tell the control program to treat warnings as errors.

Example

cctc --warnings-as-errors test.c

When a warning occurs, the control program considers it as an error.

Related information

Control program option -w (Suppress all warnings)

Tool Options - Make Utility 5-213

• • • • • • • •

5.5 MAKE UTILITY OPTIONS

When you build a project in EDE, EDE generates a makefile and uses the

graphical make utility wmk to build all your files. However, you can also

use the make utility mktc from the command line to build your project.

The invocation syntax is:

mktc [option...] [target...] [macro=def]

This section describes all options for the make utility. The make utility is a

command line tool so there are no equivalent options in EDE.

TriCore Reference Manual5-214
T

O
O

L
 O

P
T

IO
N

S

Defining Macros

Command line syntax

macro=definition

Description

With this argument you can define a macro and specify it to the make

utility.

A macro definition remains in existence during the execution of the

makefile, even when the makefile recursively calls the make utility again.

In the recursive call, the macro acts as an environment variable. This

means that it is overruled by definitions in the recursive call. Use the

option -e to prevent this.

You can specify as many macros as you like. If the command line exceeds

the limit of the operating system, you can define the macros in an option
file which you then must specify to the compiler with the option -m file.

Defining macros on the command line is, for example, useful in

combination with conditional processing as shown in the example below.

Example

Consider the following makefile with conditional rules to build a demo

program and a real program:

ifdef DEMO # the value of DEMO is of no importance

 real.out : demo.o

 ltc demo.o main.o -lc -lfp -lrt

else

 real.out : real.o

 ltc real.o main.o -lc -lfp -lrt

endif

real.elf : real.out

 ltc -FELF -oreal.elf real.out

You can now use a macro definition to set the DEMO flag:

mktc real.elf DEMO=1

In both cases the absolute obect file real.elf is created but depending

on the DEMO flag it is linked with demo.o or with real.o.

Tool Options - Make Utility 5-215

• • • • • • • •

Related information

Make utility option -e (Environment variables override macro definitions)

Make utility option -m (Name of invocation file)

TriCore Reference Manual5-216
T

O
O

L
 O

P
T

IO
N

S

-?

Command line syntax

-?

Description

Displays an overview of all command line options.

Example

The following invocation displays a list of the available command line

options:

mktc -?

Related information

-

Tool Options - Make Utility 5-217

• • • • • • • •

-a

Command line syntax

-a

Description

Normally the make utility rebuilds only those files that are out of date.

With this option you tell the make utility to rebuild all files, without

checking whether they are out of date.

Example

mktc -a

Rebuilds all your files, regardless of whether they are out of date or not.

Related information

-

TriCore Reference Manual5-218
T

O
O

L
 O

P
T

IO
N

S

-c

Command line syntax

-c

Description

EDE uses this option for the graphical version of make when you create

sub-projects. In this case make calls another instance of make for the

sub-project. With the option -c, the make utility runs as a child process of

the current make.

The option -c overrules the option -err.

Example

The following command runs the make utility as a child process:

mktc -c

Related information

Make utility option -err (Redirect error message to file)

Tool Options - Make Utility 5-219

• • • • • • • •

-D/-DD

Command line syntax

-D

-DD

Description

With the option -D the make utility prints every line of the makefile to

standard output as it is read by mktc.

With the option -DD not only the lines of the makefile are printed but

also the lines of the mktc.mk file (implicit rules).

Example

mktc -D

Each line of the makefile that is read by the make utility is printed to

standard output (usually your screen).

Related information

-

TriCore Reference Manual5-220
T

O
O

L
 O

P
T

IO
N

S

-d/-dd

Command line syntax

-d

-dd

Description

With the option -d the make utility shows which files are out of date and

thus need to be rebuild. The option -dd gives more detail than the option

-d.

Example

mktc -d

Shows which files are out of date and rebuilds them.

Related information

-

Tool Options - Make Utility 5-221

• • • • • • • •

-e

Command line syntax

-e

Description

If you use macro definitions, they may overrule the settings of the

environment variables.

With the option -e, the settings of the environment variables are used

even if macros define otherwise.

Example

mktc -e

The make utility uses the settings of the environment variables regardless

of macro definitions.

Related information

-

TriCore Reference Manual5-222
T

O
O

L
 O

P
T

IO
N

S

-err

Command line syntax

-err file

Description

With this option the make utility redirects error messages and verbose

messages to a specified file.

With the option -s the make utility only displays error messages.

Example

mktc -err error.txt

The make utility writes messages to the file error.txt.

Related information

Make utility option -s (Do not print commands before execution)

Tool Options - Make Utility 5-223

• • • • • • • •

-f

Command line syntax

-f my_makefile

Description

Default the make utility uses the file makefile to build your files.

With this option you tell the make utility to use the specified file instead of

the file makefile. Multiple -f options act as if all the makefiles were

concatenated in a left-to-right order.

Example

mktc mymake

The make utility uses the file mymake to build your files.

Related information

-

TriCore Reference Manual5-224
T

O
O

L
 O

P
T

IO
N

S

-G

Command line syntax

-G path

Description

Normally you must call the make utility mktc from the directory where

your makefile and other files are stored.

With the option -G you can call the make utility from within another

directory. The path is the path to the directory where your makefile and

other files are stored and can be absolute or relative to your current

directory.

Example

Suppose your makefile and other files are stored in the directory

\currdir\myfiles. When your current directory is \currdir, you can

call the make utility as follows:

mktc -G myfiles

Related information

-

Tool Options - Make Utility 5-225

• • • • • • • •

-i

Command line syntax

-i

Description

When an error occurs during the make process, the make utility exits with

a certain exit code.

With the option -i, the make utility exits without an error code, even

when errors occurred.

Example

mktc -i

The make utility exits without an error code, even when an error occurs.

Related information

-

TriCore Reference Manual5-226
T

O
O

L
 O

P
T

IO
N

S

-K

Command line syntax

-K

Description

With this option the make utility keeps temporary files it creates during the

make process. The make utility stores temporary files in the directory that

you have specified with the environment variable TMPDIR or in the

default 'temp' directory of your system when the TMPDIR variable is not

specified.

Example

mktc -K

The make utility preserves all temporary files.

Related information

Section 1.3.2, Configuring the Command Line Environment, in Chapter

Software Installation of the User's Manual.

Tool Options - Make Utility 5-227

• • • • • • • •

-k

Command line syntax

-k

Description

When during the make process the make utility encounters an error, it

stops rebuilding your files.

With the option -k, the make utility only stops building the target that

produced the error. All other targets defined in the makefile are built.

Example

mktc -k

If the make utility encounters an error, it stops building the current target

but proceeds with the other targets that are defined in the makefile.

Related information

Make utility option -S (Undo the effect of -k)

TriCore Reference Manual5-228
T

O
O

L
 O

P
T

IO
N

S

-m

Command line syntax

-m file

Description

Instead of typing all options on the command line, you can create an

option file which contains all options and flags you want to specify. With

this option you specify the option file to the make utility.

Use an option file when the length of the command line would exceed the

limits of the operating system, or just to store options and save typing.

You can specify the option -m multiple times.

Format of an option file

• Multiple command line arguments on one line in the option file are

allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

 "This has a single quote ' embedded"

 'This has a double quote " embedded'

 'This has a double quote " and \

 a single quote '"' embedded"

Note that adjacent strings are concatenated.

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 "This is a continuation \

 line"

 -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Tool Options - Make Utility 5-229

• • • • • • • •

Example

Suppose the file myoptions contains the following lines:

-k

-err errors.txt

test.elf

Specify the option file to the make utility:

mktc -m myoptions

This is equivalent to the following command line:

mktc -k -err errors.txt test.elf

Related information

-

TriCore Reference Manual5-230
T

O
O

L
 O

P
T

IO
N

S

-n

Command line syntax

-n

Description

With this option you tell the make utility to perform a dry run. The make

utility shows what it would do but does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if

you call the make utility.

Example

mktc -n

The make utility does not perform any tasks but displays what it would do

if called without the option -n.

Related information

Make utility option -s (Do not print commands before execution)

Tool Options - Make Utility 5-231

• • • • • • • •

-p

Command line syntax

-p

Description

Normally, if a command in a target rule in a makefile returns an error or

when the target construction is interrupted, the make utility removes that

target file. With this option you tell the make utility to make all target files

precious. This means that all dependency files are never removed.

Example

mktc -p

The make utility never removes target dependency files.

Related information

Special target .PRECIOUS in section 8.3.2, Writing a Makefile in Chapter

Using the Utilities of the Reference Manual.

TriCore Reference Manual5-232
T

O
O

L
 O

P
T

IO
N

S

-q

Command line syntax

-q

Description

With this option the make utility does not perform any tasks but only

returns an error code. A zero status indicates that all target files are up to

date, a non-zero status indicates that some or all target files are out of

date.

Example

mktc -q

The make utility only returns an error code that indicates whether all target

files are up to date or not. It does not rebuild any files.

Related information

-

Tool Options - Make Utility 5-233

• • • • • • • •

-r

Command line syntax

-r

Description

When you call the make utility, it first reads the implicit rules from the file

mktc.mk, then it reads the makefile with the rules to build your files. (The

file mktc.mk is located in the \etc directory of the TriCore toolchain.)

With this option you tell the make utility not to read mktc.mk and to rely

fully on the make rules in the makefile.

Example

mktc -r

The make utility does not read the implicit make rules in mktc.mk.

Related information

-

TriCore Reference Manual5-234
T

O
O

L
 O

P
T

IO
N

S

-S

Command line syntax

-S

Description

With this option you cancel the effect of the option -k. This is never

necessary except in a recursive make where the option -k might be

inherited from the top-level make via MAKEFLAGS or if you set the option

-k in the environment variable MAKEFLAGS.

Example

mktc -S

The effect of the option -k is cancelled so the make utility stops with the

make process after it encounters an error.

The option -k in this example may have been set with the environment

variable MAKEFLAGS or in a recursive call to mktc in the makefile.

Related information

Make utility option -k (On error, abandon the work for the current target

only)

Tool Options - Make Utility 5-235

• • • • • • • •

-s

Command line syntax

-s

Description

With this option you tell the make utility to perform its tasks without

printing the commands it executes. Error messages are normally printed.

Example

mktc -s

The make utility rebuilds your files but does not print the commands it

executes during the make process.

Related information

Make utility option -n (Perform a dry run)

TriCore Reference Manual5-236
T

O
O

L
 O

P
T

IO
N

S

-t

Command line syntax

-t

Description

With this option you tell the make utility to touch the target files, bringing

them up to date, rather than performing the rules to rebuild them.

Example

mktc -t

The make utility updates out-of-date files by giving them a new date and

time stamp. The files are not actually rebuild.

Related information

-

Tool Options - Make Utility 5-237

• • • • • • • •

-time

Command line syntax

-time

Description

With this option you tell the make utility to display the current date and

time on standard output.

Example

mktc -time

The make utility displays the current date and time and updates

out-of-date files.

Related information

-

TriCore Reference Manual5-238
T

O
O

L
 O

P
T

IO
N

S

-V

Command line syntax

-V

Description

Display version information. The make utility ignores all other options or

input files.

Example

mktc -v

The make utility does not perform any tasks but displays the following

version information:

TASKING TriCore VX-toolset program builder vxx.yrz Build nnn

Copyright year Altium BV Serial# 00000000

Related information

-

Tool Options - Make Utility 5-239

• • • • • • • •

-W

Command line syntax

-W target

Description

With this option the make utility considers the specified target file always

as up to date and will not rebuild it.

Example

mktc -W test.elf

The make utility rebuilds out of date targets in the makefile except the file

test.elf which is considered now as up to date.

Related information

-

TriCore Reference Manual5-240
T

O
O

L
 O

P
T

IO
N

S

-w

Command line syntax

-w

Description

With this option the make utility sends error messages and verbose

messages to standard out. Without this option, the make utility sends these

messages to standard error.

This option is only useful on UNIX systems.

Example

mktc -w

The make utility sends messages to standard out instead of standard error.

Related information

-

Tool Options - Make Utility 5-241

• • • • • • • •

-x

Command line syntax

-x

Description

With this option the make utility shows extended error messages.

Extended error messages give more detailed information about the exit

status of the make utility after errors. EDE uses this option for the

graphical version of make.

Example

mktc -x

If errors occur, the make utility gives extended information.

Related information

-

TriCore Reference Manual5-242
T

O
O

L
 O

P
T

IO
N

S

5.6 ARCHIVER OPTIONS

The archiver and library maintainer artc is a tool to build library files and

it offers the possibility to replace, extract and remove modules from an

existing library.

The invocation syntax is:

artc key_option [sub_option...] library [object_file]

This section describes all options for the archiver. Some suboptions can

only be used in combination with certain key options. They are described

together. Suboptions that can always be used are described separately.

The archiver is a command line tool so there are no equivalent options in

EDE.

Description Option Suboption

Display an overview of all options -?

Display version information -V

Print object module to standard output -p

Main functions

Delete object module from library -d -v

Move object module to another position -m -a -b -v

Replace or add an object module -r -a -b -c -u -v

Print a table of contents of the library -t -s0 -s1

Extract an object module from the library -x -v

Table 5-1: Overview of archiver options and suboptions

Tool Options - Archiver 5-243

• • • • • • • •

-?

Command line syntax

-?

Description

Displays an overview of all command line options.

Example

The following invocations display a list of the available command line

options:

artc -?

artc

Related information

-

TriCore Reference Manual5-244
T

O
O

L
 O

P
T

IO
N

S

-d

Command line syntax

-d [-v]

Description

Delete the specified object modules from a library. With the suboption -v

the archiver shows which files are removed.

-v Verbose: the archiver shows which files are removed.

Example

artc -d lib.a obj1.o obj2.o

The archiver deletes obj1.o and obj2.o from the library lib.a.

artc -d -v lib.a obj1.o obj2.o

The archiver deletes obj1.o and obj2.o from the library lib.a and

displays which files are removed.

Related information

-

Tool Options - Archiver 5-245

• • • • • • • •

-m

Command line syntax

-m [-a posname] [-b posname]

Description

Move the specified object modules to another position in the library.

The ordering of members in a library can make a difference in how

programs are linked if a symbol is defined in more than one member.

Default, the specified members are moved to the end of the archive. Use

the suboptions -a or -b to move them to a specified place instead.

-a posname Move the specified object module(s) after

the existing module posname.

-b posname Move the specified object module(s) before

the existing module posname.

Example

Suppose the library lib.a contains the following objects (see option -t):

obj1.o

obj2.o

obj3.o

To move obj1.o to the end of lib.a:

artc -m lib.a obj1.o

To move obj3.o just before obj2.o:

artc -m -b obj3.o lib.a obj2.o

The library lib.a after these two invocations now looks like:

obj3.o

obj2.o

obj1.o

Related information

Archiver option -t (Print library contents)

TriCore Reference Manual5-246
T

O
O

L
 O

P
T

IO
N

S

-p

Command line syntax

-p

Description

Print the specified object module(s) in the library to standard output.

This option is only useful when you redirect or pipe the output to other

files or tools that serve your own purposes. Normally you do not need this

option.

Example

artc -p lib.a obj1.o > file.o

The archiver prints the file obj1.o to standard output where it is

redirected to the file file.o. The effect of this example is very similar to

extracting a file from the library but in this case the 'extracted' file gets

another nam.

Related information

-

Tool Options - Archiver 5-247

• • • • • • • •

-r

Command line syntax

-r [-a posname] [-b posname] [-c] [-u] [-v]

Description

You can use the option -r for several purposes:

• Adding new objects to the library

• Replacing objects in the library with the same object of a newer date

• Creating a new library

The option -r normally adds a new module to the library. However, if the

library already contains a module with the specified name, the existing

module is replaced. If you specify a library that does not exist, the archiver

creates a new library with the specified name.

If you add a module to the library without specifying the suboption -a or

-b, the specified module is added at the end of the archive. Use the

suboptions -a or -b to insert them to a specified place instead.

-a posname Add the specified object module(s) after the

existing module posname.

-b posname Add the specified object module(s) before

the existing module posname.

-c Create a new library without checking

whether it already exists. If the library

already exists, it is overwritten.

-u Insert the specified object module only if it

is newer than the module in the library.

-v Verbose: the archiver shows which files are

removed.

The suboptions -a or -b have no effect when an object is added to the

library.

TriCore Reference Manual5-248
T

O
O

L
 O

P
T

IO
N

S

Examples

Suppose the library lib.a contains the following objects (see option -t):

obj1.o

To add obj2.o to the end of lib.a:

artc -r lib.a obj2.o

To insert obj3.o just before obj2.o:

artc -r -b obj2.o lib.a obj3.o

The library lib.a after these two invocations now looks like:

obj1.o

obj3.o

obj2.o

Creating a new library

To create a new library file, add an object file and specify a library that

does not yet exist:

artc -r obj1.o newlib.a

The archiver creates the library newlib.a and adds the object obj1.o to

it.

To create a new library file and overwrite an existing library, add an object

file and specify an existing library with the supoption -c:

artc -r -c obj1.o lib.a

The archiver overwrites the library lib.a and adds the object obj1.o to

it. The new library lib.a only contains obj1.o.

Related information

Archiver option -t (Print library contents)

Tool Options - Archiver 5-249

• • • • • • • •

-t

Command line syntax

-t [-s0|-s1]

Description

Print a table of contents of the library to standard out. With the

suboption -s you the archiver displays all symbols per object file.

-s0 Displays per object the library in which it resides, the

name of the object itself and all symbols in the object.

-s1 Displays only the symbols of all object files in the

library.

Example

artc -t lib.a

The archiver prints a list of all object modules in the library lib.a.

artc -t -s0 lib.a

The archiver prints per object all symbols in the library. This looks like:

prolog.o

 symbols:

lib.a:prolog.o:___Qabi_callee_save

lib.a:prolog.o:___Qabi_callee_restore

div16.o

 symbols:

lib.a:div16.o:___udiv16

lib.a:div16.o:___div16

lib.a:div16.o:___urem16

lib.a:div16.o:___rem16

Related information

-

TriCore Reference Manual5-250
T

O
O

L
 O

P
T

IO
N

S

-V

Command line syntax

-V

Description

Display version information. The archiver ignores all other options or

input files.

Example

artc -V

The archiver does not perform any tasks but displays the following version

information:

TASKING TriCore VX-toolset ELF archiver vxx.yrz Build nnn

Copyright year Altium BV Serial# 00000000

Related information

-

Tool Options - Archiver 5-251

• • • • • • • •

-x

Command line syntax

-x [-o] [-v]

Description

Extract an existing module from the library.

-o Give the extracted object module the same date as the

last-modified date that was recorded in the library.

Without this suboption it receives the last-modified

date of the moment it is extracted.

-v Verbose: the archiver shows which files are extracted.

Example

To extract the file obj.o from the library lib.a:

artc -x lib.a obj1.o

If you do not specify an object module, all object modules are extracted:

artc -x lib.a

Related information

-

TriCore Reference Manual5-252
T

O
O

L
 O

P
T

IO
N

S

-w

Command line syntax

-wlevel

Description

With this suboption you tell the archiver to suppress all warnings above

the specified level. The level is a number between 0 - 9.

The level of a message is printed between parentheses after the warning

number. If you do not use the -w option, the default warning level is 8.

Example

To suppresses warnings above level 5:

artc -x -w5 lib.a obj1.o

Related information

-

6

LIST FILE FORMATS
C

H
A

P
T

E
R

TriCore Reference Manual6-2
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

6

C
H

A
P

T
E

R

List File Formats 6-3

• • • • • • • •

6.1 ASSEMBLER LIST FILE FORMAT

The assembler list file is an additional output file of the assembler that

contains information about the generated code.

The list file consists of a page header and a source listing.

Page header

The page header consists of four lines:

TASKING TriCore VX-toolset Assembler vx.yrz Build nnn SN 00000000

This is the page header title Page 1

ADDR CODE CYCLES LINE SOURCE LINE

The first line contains information about the assembler name, version

number and serial number. The second line contains a title specified by

the TITLE (first page) assembler directive and a page number. The third

line is empty. The fourth line contains the heading of the source listing.

Source listing

The following is a sample part of a listing. An explanation of the different

columns follows below.

ADDR CODE CYCLES LINE SOURCE LINE

 .

 .

0002 85rFrrrr 1 2 27 ld.a a15,world

0006 F4AF 1 3 28 st16.a [a10],a15

0008 91r0rr4r 1 4 29 movh.a a4,#@his(_2_ini)

000C D944rrrr 1 5 30 lea a4,[a4]@los(_2_ini)

0010 1Drrrrrr 1 6 31 j printf

 .

 .

0000 44 buf: .space 4

 | RESERVED

0003

The meaning of the different columns is:

ADDR This column contains the memory address. The

address is a hexadecimal number that represents the

offset from the beginning of a relocatable section or

the absolute address for an absolute section. The

address only appears on lines that generate object

code.

TriCore Reference Manual6-4
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

CODE This is the object code generated by the assembler for

this source line, displayed in hexadecimal format. The

displayed code need not be the same as the generated

code that is entered in the object module. The code

can also be relocatable code. In this case the letter 'r'

is printed for the relocatable code part in the listing.

For lines that allocate space, the code field contains

the text "RESERVED".

CYCLES The first number in this column is the number of

instruction cycles needed to execute the instruction(s)

as generated in the CODE field. The second number is

the accumulated cycle count of this section.

LINE This column contains the line number. This is a

decimal number indicating each input line, starting

from 1 and incrementing with each source line.

SOURCE LINE This column contains the source text. This is a copy of

the source line from the assembly source file.

For the .SET and .EQU directives the ADDR and CODE columns do not

apply. The symbol value is listed instead.

Related information

See section 6.6, Generating a List File, in Chapter Using the Assembler of

the User's Manual for more information on how to generate a list file and

specify the amount of list file information.

List File Formats 6-5

• • • • • • • •

6.2 LINKER MAP FILE FORMAT

The linker map file is an additional output file of the linker that shows

how the link phase has mapped the sections and symbols from the various

object files (.o) to output sections. The locate part shows the absolute

position of each section. External symbols are listed per space with their

absolute address, both sorted on symbol and sorted on address.

With the linker option -m (map file formatting) you can specify which

parts of the map file you want to see.

Example (part of) linker map file

********************************** Processed Files Part *******************************
+---+
| File | From archive | Symbol causing the extraction |
|===|
cstart.o	libc.a	_START
hello.o		
printf.o	libc.a	printf
+---+

** Link Part ************************************
+---+
| [in] File | [in] Section | [in] Size | [out] Offset | [out] Section |
|===|
| hello.o | .text.hello.main | 0x00000014 | 0x00000000 | .text.hello.main |
|---|
| cstart.o | .text.libc | 0x00000202 | 0x00000000 | .text.libc |
| strcpy.o | .text.libc | 0x00000024 | 0x00000204 | |
| printf.o | .text.libc | 0x0000002c | 0x00000800 | |
|---|
| cstart.o | .text.libc.reset | 0x00000008 | 0x00000000 | .text.libc.reset |
+---+

********************************* Module Local Symbols Part ***************************

* Symbol translation (sorted on name)
======================================

+ Scope "./hello.o"
+---+
| Name | Address | Space |
|===|
| hello.src | 0x00000000 | - |
| .rodata.hello | 0xa00000e0 | spe:tc:linear |
| .text.hello.main | 0xa00000f8 | |
| .zdata.hello | 0xd0000000 | spe:tc:abs18 |
| .zrodata.hello | 0xa0000008 | |
+---+

TriCore Reference Manual6-6
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

*********************************** Cross Reference Part ******************************

+--+
| Definition file | Definition section | Symbol | Referenced in |
|==|
_doprint_int.o	.text.libc	__printf_int2	printf_int.o
_doprint_int.o	.text.libc	_doprint	printf.o
cstart.o	.text.libc	_start	hello.o
cstart.o	.text.libc.reset	_START	
hello.o	.text.hello.main	main	cstart.o
printf.o	.text.libc	printf	hello.o
+--+

************************************* Call Graph Part *********************************

*************************************** Overlay Part **********************************

*************************************** Locate Part ***********************************

* Task entry address
=====================
+-------------------------------+
| symbol | _START |
| absolute address | 0xa0000000 |
+-------------------------------+

* Section translation
======================

+ Space spe:tc:linear

+---+
| Chip | Group | Section | Size (MAU) | Space addr | Chip addr |
|===|
ext_c		.text.libc.reset	0x00000008	0xa0000000	0x00000000
		[.data.libc]	0x000000cc	0xa0000010	0x00000010
		[.zdata.hello]	0x00000004	0xa00000dc	0x000000dc
		.rodata.hello	0x0000000c	0xa00000e0	0x000000e0
		.rodata.libc	0x0000000c	0xa00000ec	0x000000ec
		.text.hello.main	0x00000014	0xa00000f8	0x000000f8
		.text.libc.csa_areas	0x00000008	0xa000010c	0x0000010c
		table	0x00000034	0xa0000114	0x00000114
	libraries	.text.libc	0x00000eae	0xa0004000	0x00004000
+---+

+ Space spe:tc:abs18

+---+
| Chip | Group | Section | Size (MAU) | Space addr | Chip addr |
|===|
| ext_c | | .zrodata.hello | 0x00000006 | 0xa0000008 | 0x00000008 |
| spe:dsram | | .zdata.hello | 0x00000004 | 0xd0000000 | 0x00000000 |
+---+

* Symbol translation (sorted on name)
======================================
+---+
| Name | Address | Space |
|===|
| _A8_DATA_ | 0x00000000 | spe:tc:linear |
| _Exit | 0xa0004170 | |
| _START | 0xa0000000 | |
| _lc_gb_int_tab | 0x00000000 | |
| _lc_ge_int_tab | 0x00000000 | |
| main | 0xa00000f8 | |
| world | 0xd0000000 | spe:tc:abs18 |
+---+

List File Formats 6-7

• • • • • • • •

* Symbol translation (sorted on address)
===
+---+
| Address | Name | Space |
|===|
| 0x00000000 | _lc_ge_int_tab | spe:tc:linear |
| 0x00000000 | _lc_gb_int_tab | |
| 0x00000000 | _A8_DATA_ | |
| 0xa0000000 | _START | |
| 0xa00000f8 | main | |
| 0xa0004170 | _Exit | |
| 0xd0000000 | world | spe:tc:abs18 |
+---+

*************************************** Memory Part ***********************************

* Address range usage at space level
=====================================
+---+
| Name | Total | Used % | Free % | > free gap % |
|===|
| spe:tc:abs18 | 0x00008000 | 0x00000146 1 | 0x00007eba 99 | 0x00004000 50 |
| spe:tc:abs24 | 0x50024000 | 0x00022820 1 | 0x500017e0 99 | 0x2ff0df0a 59 |
| spe:tc:csa | 0x00006000 | 0x00001004 17 | 0x00004ffc 83 | 0x00004fc0 83 |
| spe:tc:linear | 0x00085000 | 0x00021788 26 | 0x00063878 74 | 0x0004f878 59 |
| spe:tc:pcp_code | 0x00002000 | 0x00000000 0 | 0x00002000 100 | 0x00002000 100 |
| spe:tc:pcp_data | 0x00000400 | 0x00000000 0 | 0x00000400 100 | 0x00000400 100 |
+---+

* Address range usage at memory level
======================================
+---+
| Name | Total | Used % | Free % | > free gap % |
|===|
| ext_c | 0x00080000 | 0x00000ff4 1 | 0x0007f00c 99 | 0x0007b152 96 |
| ext_c2 | 0x00080000 | 0x00000000 0 | 0x00080000 100 | 0x00080000 100 |
| ext_d | 0x00070000 | 0x00020784 29 | 0x0004f87c 71 | 0x0004f878 71 |
| spe:brom | 0x00008000 | 0x00000000 0 | 0x00008000 100 | 0x00008000 100 |
| spe:csram | 0x00006000 | 0x00000000 0 | 0x00006000 100 | 0x00006000 100 |
| spe:dsram | 0x00006000 | 0x00001004 17 | 0x00004ffc 83 | 0x00004fc0 83 |
| spe:fpidram | 0x00004000 | 0x00000000 0 | 0x00004000 100 | 0x00004000 100 |
| spe:pcode | 0x00004000 | 0x00000000 0 | 0x00004000 100 | 0x00004000 100 |
| spe:pram | 0x00001000 | 0x00000000 0 | 0x00001000 100 | 0x00001000 100 |
| vecttable | 0x00002400 | 0x000000a4 2 | 0x0000235c 98 | 0x00002000 88 |
+---+

********************************* Linker Script File Part *****************************

************************************ Locate Rule Part *********************************
+--+
| Address space | Type | Properties | Sections |
|==|
spe:tc:linear	absolute	0xa0004000	.text.libc
spe:tc:abs18	clustered		.zdata.hello
spe:tc:linear	clustered		.data.libc
spe:tc:linear	ordered		.text.trapvec.000 < .text.trapvec.001 ...
spe:tc:abs18	unrestricted		.zrodata.hello
spe:tc:linear	unrestricted		ustack
+--+

TriCore Reference Manual6-8
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

The meaning of the different parts is:

Processed Files Part

This part of the map file shows all processed files. This also includes

object files that are extracted from a library, with the symbol that led to the

extraction

Link Part

This part of the map file shows per object file how the link phase has

mapped the sections from the various object files (.o) to output sections.

[in] File The name of an input object file.

[in] Section A section name from the input object file.

[in] Size The size of the input section.

[out] Offset The offset relative to the start of the output section.

[out] Section The resulting output section name.

Module Local Symbols Part

This part of the map file shows a table for each local scope within an

object file. Each table has three columns, 1 the symbol name, 2 the

address of the symbol and 3 the space where the symbol resides in. The

table is sorted on symbol name within each space.

By default this part is not shown in the map file. You have to turn this part

on manually with linker option -mq (module local symbols).

Cross Reference Part

This part of the map file lists all symbols defined in the object modules

and for each symbol the object modules that contain a reference to the

symbol are shown.

Call Graph Part

This part of the map file contains a schematic overview that shows how

(library) functions call each other. To obtain call graph information, the

assembly file must contain .CALLS directives which you must manually

add to the assembly source.

List File Formats 6-9

• • • • • • • •

Overlay Part

This part is empty for the TriCore.

Locate Part: Section translation

This part of the map file shows the absolute position of each section in the

absolute object file. It is organized per address space, memory chip and

group and sorted on space address.

+ Space The names of the address spaces as defined in the

linker script file (tc*.lsl). The names are

constructed of the derivative name followed by a

colon ':', the core name, another colon ':' and the

space name. For example: spe:tc:linear

Chip The names of the memory chips as defined in the

linker script file (*.lsl) in the memory definitions.

Group Sections can be ordered in groups. These are the

names of the groups as defined in the linker script file

(*.lsl) with the keyword group in the

section_layout definition. The name that is

displayed is the name of the deepest nested group.

Section The name of the section. Names within square

brackets [] will be copied during initialization from

ROM to the corresponding section name in RAM.

Size (MAU) The size of the section in minimum addressable units.

Space addr The absolute address of the section in the address

space.

Chip addr The absolute offset of the section from the start of a

memory chip.

Locator Part: Symbol translation

This part of the map file lists all external symbols per address space name,

both sorted on symbol name and sorted on address.

Name The name of the symbol.

Address The absolute address of the symbol in the address

space.

TriCore Reference Manual6-10
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

Space The names of the address spaces as defined in the

linker script file (tc*.lsl). The names are

constructed of the derivative name followed by a

colon ':', the core name, another colon ':' and the

space name. For example: spe:tc:linear

Memory Part

This part of the map file shows the memory usage in totals and

percentages for spaces and chips. The largest free block of memory per

space and per chip is also shown.

By default this part is not shown in the map file. You have to turn this part

on manually with linker option -mm (memory usage info).

Linker Script File Part

This part of the map file shows the processor and memory information of

the linker script file.

By default this part is not shown in the map file. You have to turn this part

on manually with linker option -ms (processor and memory info). You

can print this information to a separate file with linker option

--lsl-dump.

Locate Rule Part

This part of the map file shows the rules the linker uses to locate sections.

Address space The names of the address spaces as defined in the

linker script file (*.lsl). The names are constructed

of the derivative name followed by a colon ':', the

core name, another colon ':' and the space name.

For example: spe:tc:linear

Type The rule type:

 ordered/contiguous/clustered/unrestricted

Specifies how sections are grouped. By

default, a group is 'unrestricted' which

means that the linker has total freedom to

place the sections of the group in the

address space.

 absolute address The section must be located at the address

shown in the Properties column

List File Formats 6-11

• • • • • • • •

 address range The section must be located in the union of

the address ranges shown in the Properties

column; end addreses are not included in

the range.

 address range size The sections must be located in some

address range with size not larger than

shown in the Properties column; the second

number in that field is the alignment

requirement for the address range.

 ballooned After locating all sections, the largest

remaining gap in the space is used

completely for the stack and/or heap.

Properties The contents depends on the Type column.

Sections The sections to which the rule applies;

restrictions between sections are shown in this

column:

 < ordered

 | contiguous

 + clustered

For contiguous sections, the linker uses the section

order as shown here. Clustered sections can be located

in any relative order.

Related information

Section 7.9, Generating a Map File, in Chapter Using the Linker of the

User's Manual.

Linker option -M (Generate map file)

TriCore Reference Manual6-12
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

7

OBJECT FILE

FORMATS
C

H
A

P
T

E
R

TriCore Reference Manual7-2
O

B
JE

C
T

 F
O

R
M

A
T

S 7

C
H

A
P

T
E

R

Object File Formats 7-3

• • • • • • • •

7.1 ELF/DWARF OBJECT FORMAT

The TriCore toolchain by default produces objects in the ELF/DWARF 2

(.elf) format.

The ELF/DWARF 2 Object Format for the TriCore toolchain follows the

convention as described in the TriCore Embedded Application Binary
Interface [2000, Infineon].

For a complete description of the ELF and DWARF formats, please refer to

the Tool Interface Standard (TIS).

TriCore Reference Manual7-4
O

B
JE

C
T

 F
O

R
M

A
T

S

7.2 MOTOROLA S-RECORD FORMAT

With the linker option -ofilename:SREC option the linker produces output

in Motorola S-record format with three types of S-records: S0, S2 and S8.

With the options -ofilename:SREC:2 or -ofilename:SREC:4 option you

can force other types of S-records. They have the following layout:

S0 - record

'S' '0' <length_byte> <2 bytes 0> <comment> <checksum_byte>

A linker generated S-record file starts with a S0 record with the following

contents:

length_byte : 0x6

comment : ltc (TriCore linker)

checksum : 0xB6

 l t c

S00600006C7463B6

The S0 record is a comment record and does not contain relevant

information for program execution.

The length_byte represents the number of bytes in the record, not

including the record type and length byte.

The checksum is calculated by first adding the binary representation of the

bytes following the record type (starting with the length_byte) to just

before the checksum. Then the one's complement is calculated of this

sum. The least significant byte of the result is the checksum. The sum of

all bytes following the record type is 0xFF.

S1 - record

With the linker option -ofilename:SREC:2, the actual program code and

data is supplied with S1 records, with the following layout:

'S' '1' <length_byte> <address> <code bytes> <checksum_byte>

This record is used for 2-byte addresses.

Object File Formats 7-5

• • • • • • • •

Example:

S1130250F03EF04DF0ACE8A408A2A013EDFCDB00E6

 | | | |_ checksum

 | | |_ code

 | |_ address

 |_ length

The linker has an option that controls the length of the output buffer for

generating S1 records. The default buffer length is 32 code bytes.

The checksum calculation of S1 records is identical to S0.

S2 - record

With the linker option -ofilename:SREC:3, which is the default, the actual

program code and data is supplied with S2 records, with the following

layout:

'S' '2' <length_byte> <address> <code bytes> <checksum_byte>

For the TriCore the linker generates 3-byte addresses.

Example:

S213FF002000232222754E00754F04AF4FAE4E22BF

 | | | |_ checksum

 | | |_ code

 | |_ address

 |_ length

The linker has an option that controls the length of the output buffer for

generating S2 records. The default buffer length is 32 code bytes.

The checksum calculation of S2 records is identical to S0.

S3 - record

With the linker option -ofilename:SREC:4, the actual program code and

data is supplied with S3 records, with the following layout:

'S' '3' <length_byte> <address> <code bytes> <checksum_byte>

This record is used for 4-byte addresses.

TriCore Reference Manual7-6
O

B
JE

C
T

 F
O

R
M

A
T

S

Example:

S3070000FFFE6E6825

 | | | |_ checksum

 | | |_ code

 | |_ address

 |_ length

The linker has an option that controls the length of the output buffer for

generating S3 records.

The checksum calculation of S3 records is identical to S0.

S7 - record

With the linker option -ofilename:SREC:4, at the end of an S-record file,

the linker generates an S7 record, which contains the program start

address. S7 is the corresponding termination record for S3 records.

Layout:

'S' '7' <length_byte> <address> <checksum_byte>

Example:

S70500006E6824

 | | |_checksum

 | |_ address

 |_ length

The checksum calculation of S7 records is identical to S0.

S8 - record

With the linker option -ofilename:SREC:3, which is the default, at the end

of an S-record file, the linker generates an S8 record, which contains the

program start address.

Layout:

'S' '8' <length_byte> <address> <checksum_byte>

Example:

S804FF0003F9

 | | |_checksum

 | |_ address

 |_ length

Object File Formats 7-7

• • • • • • • •

The checksum calculation of S8 records is identical to S0.

S9 - record

With the linker option -ofilename:SREC:2, at the end of an S-record file,

the linker generates an S9 record, which contains the program start

address. S9 is the corresponding termination record for S1 records.

Layout:

'S' '9' <length_byte> <address> <checksum_byte>

Example:

S9030210EA

 | | |_checksum

 | |_ address

 |_ length

The checksum calculation of S9 records is identical to S0.

TriCore Reference Manual7-8
O

B
JE

C
T

 F
O

R
M

A
T

S

7.3 INTEL HEX RECORD FORMAT

Intel Hex records describe the hexadecimal object file format for 8-bit,

16-bit and 32-bit microprocessors. The hexadecimal object file is an ASCII

representation of an absolute binary object file. There are six different

types of records:

• Data Record (8-, 16, or 32-bit formats)

• End of File Record (8-, 16, or 32-bit formats)

• Extended Segment Address Record (16, or 32-bit formats)

• Start Segment Address Record (16, or 32-bit formats)

• Extended Linear Address Record (32-bit format only)

• Start Linear Address Record (32-bit format only)

For the TriCore the linker generates records in the 32-bit format (4-byte

addresses with linker option -ofilename:IHEX).

General Record Format

In the output file, the record format is:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

length
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

offset
ÁÁÁ
ÁÁÁ
ÁÁÁ

type
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

content
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

Where:

: is the record header.

length is the record length which specifies the number of bytes of

the content field. This value occupies one byte (two

hexadecimal digits). The linker outputs records of 255 bytes

(32 hexadecimal digits) or less; that is, length is never greater

than 0xFF.

offset is the starting load offset specifying an absolute address in

memory where the data is to be located when loaded by a

tool. This field is two bytes long. This field is only used for

Data Records. In other records this field is coded as four

ASCII zero characters ('0000').

type is the record type. This value occupies one byte (two

hexadecimal digits). The record types are:

Object File Formats 7-9

• • • • • • • •

Byte Type Record type

00 Data

01 End of File

02 Extended segment address (not used)

03 Start segment address (not used)

04 Extended linear address (32-bit)

05 Start linear address (32-bit)

content is the information contained in the record. This depends on

the record type.

checksum is the record checksum. The linker computes the checksum

by first adding the binary representation of the previous

bytes (from length to content). The linker then computes the

result of sum modulo 256 and subtracts the remainder from

256 (two's complement). Therefore, the sum of all bytes

following the header is zero.

Extended Linear Address Record

The Extended Linear Address Record specifies the two most significant

bytes (bits 16-31) of the absolute address of the first data byte in a

subsequent Data Record:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁ
ÁÁÁ
ÁÁÁ

02
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ
ÁÁÁ

04
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

upper_address
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

The 32-bit absolute address of a byte in a Data Record is calculated as:

(address + offset + index) modulo 4G

where:

address is the base address, where the two most significant bytes are

the upper_address and the two least significant bytes are

zero.

offset is the 16-bit offset from the Data Record.

index is the index of the data byte within the Data Record (0 for

the first byte).

TriCore Reference Manual7-10
O

B
JE

C
T

 F
O

R
M

A
T

S

Example:

:0200000400FFFB

 | | | | |_ checksum

 | | | |_ upper_address

 | | |_ type

 | |_ offset

 |_ length

Data Record

The Data Record specifies the actual program code and data.

ÁÁÁ
ÁÁÁ
ÁÁÁ

:

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

length

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

offset

ÁÁÁ
ÁÁÁ
ÁÁÁ

00

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

data

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

The length byte specifies the number of data bytes. The linker has an

option that controls the length of the output buffer for generating Data

records. The default buffer length is 32 bytes.

The offset is the 16-bit starting load offset. Together with the address

specified in the Extended Address Record it specifies an absolute address

in memory where the data is to be located when loaded by a tool.

Example:

:0F00200000232222754E00754F04AF4FAE4E22C3

 | | | | |_ checksum

 | | | |_ data

 | | |_ type

 | |_ offset

 |_ length

Object File Formats 7-11

• • • • • • • •

Start Linear Address Record

The Start Linear Address Record contains the 32-bit program execution

start address.

Layout:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:

ÁÁÁ
ÁÁÁ
ÁÁÁ

04

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000

ÁÁÁ
ÁÁÁ
ÁÁÁ

05

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

address
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

Example:

:0400000500FF0003F5

 | | | | |_ checksum

 | | | |_ address

 | | |_ type

 | |_ offset

 |_ length

End of File Record

The hexadecimal file always ends with the following end-of-file record:

:00000001FF

 | | | |_ checksum

 | | |_ type

 | |_ offset

 |_ length

TriCore Reference Manual7-12
O

B
JE

C
T

 F
O

R
M

A
T

S

8

LINKER SCRIPT

LANGUAGE
C

H
A

P
T

E
R

TriCore Reference Manual8-2
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

8

C
H

A
P

T
E

R

Linker Script Language 8-3

• • • • • • • •

8.1 INTRODUCTION

To make full use of the linker, you can write a script with information

about the architecture of the target processor and locating information.

The language for the script is called the Linker Script Language (LSL). This

chapter first describes the structure of an LSL file. The next section

contains a summary of the LSL syntax. Finally, in the remaining sections,

the semantics of the Linker Script Language is explained.

The TASKING linker is a target independent linker/locator that can

simultaneously link and locate all programs for all cores available on a

target board. The target board may be of arbitrary complexity. A simple

target board may contain one standard processor with some external

memory that executes one task. A complex target board may contain

multiple standard processors and DSPs combined with configurable

IP-cores loaded in an FPGA. Each core may execute a different program,

and external memory may be shared by multiple cores.

LSL serves two purposes. First it enables you to specify the characteristics

(that are of interest to the linker) of your specific target board and of the

cores installed on the board. Second it enables you to specify how

sections should be located in memory.

8.2 STRUCTURE OF A LINKER SCRIPT FILE

 A script file consists of several definitions. The definitions can appear in

any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should

convert logical addresses into physical addresses for a given type of core.

If the core supports multiple address spaces, then for each space the linker

must know how to perform this conversion. In this context a physical

address is an offset on a given internal or external bus. Additionally the

architecture definition contains information about items such as the

(hardware) stack and the interrupt vector table.

This specification is normally written by Altium. The architecture definition

of the LSL file should not be changed by you unless you also modify the

core's hardware architecture. If the LSL file describes a multi-core system

an architecture definition must be available for each different type of core.

TriCore Reference Manual8-4
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

See section 8.5, Semantics of the Architecture Definition for detailed

descriptions of LSL in the architecture definition.

The derivative definition (required)

The derivative definition describes the configuration of the internal

(on-chip) bus and memory system. Basically it tells the linker how to

convert offsets on the buses specified in the architecture definition into

offsets in internal memory. A derivative definition must be present in an

LSL file. Microcontrollers and DSPs often have internal memory and I/O

sub-systems apart from one or more cores. The design of such a chip is

called a derivative.

Altium provides LSL descriptions of supported derivatives, along with "SFR

files", which provide easy access to registers in I/O sub-systems from C

and assembly programs. When you build an ASIC or use a derivative that

is not (yet) supported by the TASKING tools, you may have to write a

derivative definition.

When you want to use multiple cores of the same type, you must

instantiate the cores in a derivative definition, since the linker

automatically instantiates only a single core for an unused architecture.

See section 8.6, Semantics of the Derivative Definition for a detailed

description of LSL in the derivative definition.

The processor definition

The processor definition describes an instance of a derivative. A processor

definition is only needed in a multi-processor embedded system. It allows

you to define multiple processors of the same type.

See section 8.7, Semantics of the Board Specification for a detailed

description of LSL in the processor definition.

The memory and bus definitions (optional)

Memory and bus definition are used within the context of a derivative

definition to specify internal memory and on-chip buses. In the context of

a board specification the memory and bus definitions are used to define

external (off-chip) memory and buses. Given the above definitions the

linker can convert a logical address into an offset into an on-chip or

off-chip memory device.

Linker Script Language 8-5

• • • • • • • •

See section 8.7.3, Defining External Memory and Buses, for more

information on how to specify the external physical memory layout.

Internal memory for a processor should be defined in the derivative

definition for that processor.

The board specification

The processor definition and memory and bus definitions together form a

board specification. LSL provides language constructs to easily describe

single-core and heterogeneous or homogeneous multi-core systems. The

board specification describes all characteristics of your target board's

system buses, memory devices, I/O sub-systems, and cores that are of

interest to the linker. Based on the information provided in the board

specification the linker can for each core:

• convert a logical address to a physical addresses (offsets within a

memory device)

• locate sections in physical memory

• maintain an overall view of the used and free physical memory within

the whole system while locating

The section layout definition (optional)

The optional section layout definition enables you to exactly control

where input sections are located. Features are provided such as: the

ability to place sections at a given load-address or run-time address, to

place sections in a given order, and to overlay code and/or data sections.

Which object files (sections) constitute the task that will run on a given

core is specified on the command line when you invoke the linker. The

linker will link and locate all sections of all tasks simultaneously. From the

section layout definition the linker can deduce where a given section may

be located in memory, form the board specification the linker can deduce

which physical memory is (still) available while locating the section.

See section 8.8, Semantics of the Section Layout Definition,, for more

information on how to locate a section at a specific place in memory.

Skeleton of a Linker Script File

The skeleton of a linker script file now looks as follows:

architecture architecture_name

{

 architecture definition

}

TriCore Reference Manual8-6
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

derivative derivative_name

{

 derivative definition

}

processor processor_name

{

 processor definition

}

memory definitions and/or bus definitions

section_layout space_name

{

 section placement statements

}

8.3 SYNTAX OF THE LINKER SCRIPT LANGUAGE

8.3.1 PREPROCESSING

When the linker loads an LSL file, the linker processes it with a C-style

prepocessor. As such, it strips C and C++ comments. You can use the

standard ISO C preprocessor directives, such as #include, #define,

#if/#else/#endif.

For example:

#include "arch.lsl"

Preprocess and include the file arch.lsl at this point in the LSL file.

Linker Script Language 8-7

• • • • • • • •

8.3.2 LEXICAL SYNTAX

The following lexicon is used to describe the syntax of the Linker Script

Language:

A ::= B = A is defined as B
A ::= B C = A is defined as B and C; B is followed by C
A ::= B | C = A is defined as B or C
0|1 = zero or one occurrence of B
>=0 = zero of more occurrences of B
>=1 = one of more occurrences of B

IDENTIFIER = a character sequence starting with 'a'-'z', 'A'-'Z' or '_'.

 Following characters may also be digits and dots '.'

STRING = sequence of characters not starting with \n, \r or \t

DQSTRING = " STRING " (double quoted string)

OCT_NUM = octal number, starting with a zero (06, 045)

DEC_NUM = decimal number, not starting with a zero (14, 1024)

HEX_NUM = hexadecimal number, starting with '0x' (0x0023, 0xFF00)

OCT_NUM, DEC_NUM and HEX_NUM can be followed by a k (kilo), M

(mega), or G (giga).

Characters in bold are characters that occur literally. Words in italics are

higher order terms that are defined in the same or in one of the other

sections.

To write comments in LSL file, you can use the C style '/* */' or C++

style '//'.

8.3.3 IDENTIFIERS

arch_name ::= IDENTIFIER

bus_name ::= IDENTIFIER

core_name ::= IDENTIFIER

derivative_name ::= IDENTIFIER

file_name ::= DQSTRING

group_name ::= IDENTIFIER

mem_name ::= IDENTIFIER

proc_name ::= IDENTIFIER

section_name ::= DQSTRING

space_name ::= IDENTIFIER

stack_name ::= section_name

symbol_name ::= DQSTRING

TriCore Reference Manual8-8
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

8.3.4 EXPRESSIONS

The expressions and operators in this section work the same as in ISO C.

number ::= OCT_NUM

 | DEC_NUM

 | HEX_NUM

expr ::= number

 | symbol_name

 | unary_op expr

 | expr binary_op expr

 | expr ? expr : expr

 | (expr)

 | function_call

unary_op ::= ! // logical NOT

 | ~ // bitwise complement

 | - // negative value

binary_op ::= ^ // exclusive OR

 | * // multiplication

 | / // division

 | % // modulus

 | + // addition

 | - // subtraction

 | >> // right shift

 | << // left shift

 | == // equal to

 | != // not equal to

 | > // greater than

 | < // less than

 | >= // greater than or equal to

 | <= // less than or equal to

 | & // bitwise AND

 | | // bitwise OR

 | && // logical AND

 | || // logical OR

Linker Script Language 8-9

• • • • • • • •

8.3.5 BUILT-IN FUNCTIONS

function_call ::= absolute (expr)

 | addressof (addr_id)

 | exists (section_name)

 | max (expr , expr)

 | min (expr , expr)

 | sizeof (size_id)

addr_id ::= sect : section_name

 | mem : mem_name

 | group : group_name

size_id ::= group : group_name

 | mem : mem_name

 | sect : section_name

• Every space, bus, memory, section or group your refer to, must be

defined in the LSL file.

• The addressof() and sizeof() functions with the group or

sect argument can only be used in the right hand side of an

assignment. The sizeof() function with the mem argument can be

used anywhere in section layouts.

You can use the following built-in functions in expressions. All functions

return a numerical value. This value is a 64-bit signed integer.

absolute()

int absolute(expr)

Converts the value of expr to a positive integer.

absolute("labelA"-"labelB")

addressof()

int addressof(addr_id)

Returns the address of addr_id, which is a named section, group or

memory. To get the offset of the section with the name asect:

addressof(sect: "asect")

This function only works in assignments.

TriCore Reference Manual8-10
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

exists()

int exists(section_name)

The function returns 1 if the section section_name exists in one or more

object file, 0 otherwise. If the section is not present in input object files,

but generated from LSL, the result of this function is undefined.

To check whether the section mysection exists in one of the object files

that is specified to the linker:

exists("mysection")

max()

int max(expr, expr)

Returns the value of the expression that has the largest value. To get the

highest value of two symbols:

max("sym1" , "sym2")

min()

int min(expr, expr)

Returns the value of the expression hat has the smallest value. To get the

lowest value of two symbols:

min("sym1" , "sym2")

sizeof()

int sizeof(size_id)

Returns the size of the object (group, section or memory) the identifier

refers to. To get the size of the section "asection":

sizeof(sect: "asection")

The group and sect arguments only works in assignments. The mem

argument can be used anywhere in section layouts.

Linker Script Language 8-11

• • • • • • • •

8.3.6 LSL DEFINITIONS IN THE LINKER SCRIPT FILE

description ::= <definition>>=1

definition ::= architecture_definition

 | derivative_definition

 | board_spec

 | section_definition

• At least one architecture_definition must be present in the

LSL file.

8.3.7 MEMORY AND BUS DEFINITIONS

mem_def ::= memory mem_name { <mem_descr ;>>=0 }

• A mem_def defines a memory with the mem_name as a unique

name.

mem_descr ::= type = <reserved>0|1 mem_type

 | mau = expr

 | size = expr

 | speed = number

 | mapping

• A mem_def contains exactly one type statement.

• A mem_def contains exactly one mau statement (non-zero size).

• A mem_def contains exactly one size statement.

• A mem_def contains zero or one speed statement

(default value is 1).

• A mem_def contains at least one mapping.

mem_type ::= rom // attrs = rx

 | ram // attrs = rw

 | nvram // attrs = rwx

bus_def ::= bus bus_name { <bus_descr ;>>=0 }

• A bus_def statement defines a bus with the given bus_name as a

unique name within a core architecture.

bus_descr ::= mau = expr

 | width = expr // bus width, nr

 | // of data bits

 | mapping // legal destination

 // 'bus' only

TriCore Reference Manual8-12
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• The mau and width statements appear exactly once in a

bus_descr. The default value for width is the mau size.

• The bus width must be an integer times the bus MAU size.

• The MAU size must be non-zero.

• A bus can only have a mapping on a destination bus (through

dest = bus:).

mapping ::= map (map_descr <, map_descr>>=0)

map_descr ::= dest = destination

 | dest_dbits = range

 | dest_offset = expr

 | size = expr

 | src_dbits = range

 | src_offset = expr

• A mapping requires at least the size and dest statements.

• Each map_descr can occur only once.

• You can define multiple mappings from a single source.

• Overlap between source ranges or destination ranges is not allowed.

• If the src_dbits or dest_dbits statement is not present, its value

defaults to the width value if the source/destination is a bus, and to

the mau size otherwise.

destination ::= space : space_name

 | bus : <proc_name |

 core_name :>0|1 bus_name

• A space_name refers to a defined address space.

• A proc_name refers to a defined processor.

• A core_name refers to a defined core.

• A bus_name refers to a defined bus.

• The following mappings are allowed (source to destination)

- space => space

- space => bus

- bus => bus

- memory => bus

range ::= number .. number

Linker Script Language 8-13

• • • • • • • •

8.3.8 ARCHITECTURE DEFINITION

architecture_definition

 ::= architecture arch_name

 <(parameter_list)>0|1

 <extends arch_name

 <(argument_list)>0|1 >0|1

 { arch_spec>=0 }

• An architecture_definition defines a core architecture with

the given arch_name as a unique name.

• At least one space_def and at least one bus_def have to be

present in an architecture_definition.

• An architecture_definition that uses the extends construct

defines an architecture that inherits all elements of the architecture

defined by the second arch_name. The parent architecture must

be defined in the LSL file as well.

parameter_list ::= parameter <, parameter>>=0

parameter ::= IDENTIFIER <= expr>0|1

argument_list ::= expr <, expr>>=0

arch_spec ::= bus_def

 | space_def

 | endianness_def

space_def ::= space space_name { <space_descr;>>=0 }

• A space_def defines an address space with the given

space_name as a unique name within an architecture.

space_descr ::= space_property ;

 | section_definition //no space ref

space_property ::= id = number // as used in object

 | mau = expr

 | align = expr

 | page_size = expr

 | stack_def

 | heap_def

 | copy_table_def

 | start_address

 | mapping

• A space_def contains exactly one id and one mau statement.

TriCore Reference Manual8-14
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• A space_def contains at most one align statement.

• A space_def contains at most one page_size statement.

• A space_def contains at least one mapping.

stack_def ::= stack stack_name (stack_heap_descr

 <, stack_heap_descr >>=0)

• A stack_def defines a stack with the stack_name as a unique

name.

heap_def ::= heap heap_name (stack_heap_descr

 <, stack_heap_descr >>=0)

• A heap_def defines a heap with the heap_name as a unique

name.

copy_table_def ::= copytable (copy_table_descr

 <, copy_table_descr>>=0)

• A space_def contains at most one copytable statement.

• If the architecture definition contains more than one address space,

exactly one copy table must be defined in one of the spaces. If the

the architecture definition contains only one address space, a copy

table definition is optional (it will be generated in the space).

stack_heap_descr ::= min_size = expr

 | grows = direction

 | align = expr

 | fixed

• The min_size statement must be present.

• You can specify at most one align statement and one grows

statement.

direction ::= low_to_high

 | high_to_low

• If you do not specify the grows statement, the stack and grow

low-to-high.

copy_table_descr ::= align = expr

 | copy_unit = expr

 | dest <space_name>0|1 = space_name

• The copy_unit is defined by the size in MAUs in which the startup

code moves data.

• The dest statement is only required when the startup code

initializes memory used by another processor that has no access to

ROM.

Linker Script Language 8-15

• • • • • • • •

• A space_name refers to a defined address space.

start_addr ::= start_address (start_addr_descr

 <, start_addr_descr>>=0)

start_addr_descr ::= run_addr = expr

 | symbol = symbol_name

• A symbol_name refers to the section that contains the startup code.

endianness_def ::= endianness { <endianness_type;>>=1 }

endianness_type ::= big

 | little

8.3.9 DERIVATIVE DEFINITION

derivative_definition

 ::= derivative derivative_name

 <(parameter_list)>0|1

 <extends derivative_name

 <(argument_list)>0|1 >0|1

 { <derivative_spec>>=0 }

• A derivative_definition defines a derivative with the given

derivative_name as a unique name.

• At least one core_def must be present in a

derivative_definition.

derivative_spec ::= core_def

 | bus_def

 | mem_def

 | section_definition // no processor

 // name

core_def ::= core core_name { <core_descr ;>>=0 }

• A core_def defines a core with the given core_name as a unique

name.

core_descr ::= architecture = arch_name

 <(argument_list)>0|1

 | endianness = (endianness_type

 <, endianness_type>>=0)

• An arch_name refers to a defined core architecture.

TriCore Reference Manual8-16
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• Exactly one architecture statement must be present in a

core_def.

8.3.10 PROCESSOR DEFINITION AND BOARD

SPECIFICATION

board_spec ::= proc_def

 | bus_def

 | mem_def

proc_def ::= processor proc_name

 { proc_descr ; }

proc_descr ::= derivative = derivative_name

 <(argument_list)>0|1

• A proc_def defines a processor with the proc_name as a unique

name.

• If you do not explicitly define a processor for a derivative in an LSL

file, the linker defines a processor with the same name as that

derivative.

• A derivative_name refers to a defined derivative.

• A proc_def contains exactly one derivative statement.

8.3.11 SECTION PLACEMENT DEFINITION

section_definition ::= section_layout <space_ref>0|1

 <(locate_direction)>0|1

 { <section_statement>>=0 }

• A section definition inside a space definition does not have a

space_ref.

• All global section definitions have a space_ref.

space_ref ::= <proc_name>0|1 : <core_name>0|1

 : space_name

• If more than one processor is present, the proc_name must be

given for a global section layout.

• If the section layout refers to a processor that has more than one

core, the core_name must be given in the space_ref.

• A proc_name refers to a defined processor.

Linker Script Language 8-17

• • • • • • • •

• A core_name refers to a defined core.

• A space_name refers to a defined address space.

locate_direction ::= direction = direction

direction ::= low_to_high

 | high_to_low

• A section layout contains at most one direction statement.

• If you do not specify the direction statement, the locate direction

of the section layout is low-to-high.

section_statement

 ::= simple_section_statement ;

 | aggregate_section_statement

simple_section_statement

 ::= assignment

 | select_section_statement

 | special_section_statement

assignment ::= symbol_name assign_op expr

assign_op ::= =

 | :=

select_section_statement

 ::= select <section_name>0|1

 <section_selections>0|1

• Either a section_name or at least one section_selection must

be defined.

section_selections

 ::= (section_selection

 <, section_selection>>=0)

section_selection

 ::= attributes = < <+|-> attribute>>0

• +attribute means: select all sections that have this attribute.

• -attribute means: select all sections that do not have this

attribute.

TriCore Reference Manual8-18
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

special_section_statement

 ::= heap stack_name <size_spec>0|1

 | stack stack_name <size_spec>0|1

 | copytable

 | reserved <section_name>0|1

 <reserved_specs>0|1

• Special sections cannot be selected in load-time groups.

size_spec ::= (size = expr)

reserved_specs ::= (reserved_spec

 <, reserved_spec>>=0)

reserved_spec ::= attributes

 | fill_spec

 | size = expr

 | alloc_allowed = absolute

• If a reserved section has attributes r, rw, x, rx or rwx, and no fill

pattern is defined, the section is filled with zeros. If no attributes are

set, the section is created as a scratch section (attributes ws, no

image).

aggregate_section_statement

 ::= { <section_statement>>=0 }

 | group_descr

 | if_statement

 | section_creation_statement

group_descr ::= group <group_name>0|1

 <(group_specs)>0|1

 section_statement

• No two groups for an address space can have the same

group_name.

group_specs ::= group_spec <, group_spec >>=0

group_spec ::= group_alignment

 | attributes

 | group_load_address

 | fill <= fill_values>0|1

 | group_page

 | group_run_address

 | group_type

 | allow_cross_references

Linker Script Language 8-19

• • • • • • • •

• The allow-cross-references property is only allowed for

overlay groups.

• Sub groups inherit all properties from a parent group.

group_alignment ::= align = expr

attributes ::= attributes = <attribute>>=1

group_load_address

 ::= load_addr <= load_or_run_addr>0|1

fill_spec ::= fill = fill_values

fill_values ::= expr

 | [expr <, expr>>=0]

group_page ::= page <= expr>0|1

group_run_address ::= run_addr <= load_or_run_addr>0|1

group_type ::= clustered

 | contiguous

 | ordered

 | overlay

• For non-contiguous groups, you can only specify

group_alignment and attributes.

• The overlay keyword also sets the contiguous property.

• The clustered property cannot be set together with contiguous

or ordered on a single group.

attribute ::= r // readable sections

 | w // writable sections

 | x // executable code sections

 | i // initialized sections

 | s // scratch sections

 | b // blanked (cleared) sections

load_or_run_addr ::= addr_absolute

 | addr_range <| addr_range>>=0

addr_absolute ::= expr

 | memory_reference [expr]

• An absolute address can only be set on ordered groups.

addr_range ::= [expr .. expr]

 | memory_reference

 | memory_reference [expr .. expr]

TriCore Reference Manual8-20
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• The parent of a group with an addr_range or page restriction

cannot be ordered, contiguous or clustered.

memory_reference ::= mem : <proc_name :>0|1

 <core_name :>0|1 mem_name

• A proc_name refers to a defined processor.

• A core_name refers to a defined core.

• A mem_name refers to a defined memory.

if_statement ::= if (expr) section_statement

 <else section_statement>0|1

section_creation_statement

 ::= section section_name

 (<section_spec>0|1)

 { <select_section_statement ;>>=0 }

section_spec ::= attributes

 | fill_spec

 | size = expr

8.4 EXPRESSION EVALUATION

Only constant expressions are allowed, including sizes, but not addresses,

of sections in object files.

All expressions are evaluated with 64-bit precision integer arithmetic. The

result of an expression can be absolute or relocatable. A symbol you

assign is created as an absolute symbol.

Linker Script Language 8-21

• • • • • • • •

8.5 SEMANTICS OF THE ARCHITECTURE DEFINITION

Keywords in the architecture definition

architecture

 extends

endianness big little

bus

 mau

 width

 map

space

 id

 mau

 align

 page_size

 stack

 min_size

 grows low_to_high high_to_low

 align

 fixed

 heap

 min_size

 grows low_to_high high_to_low

 align

 fixed

 copytable

 align

 copy_unit

 dest

 start_address

 run_addr

 symbol

 map

 map

 dest bus space

 dest_dbits

 dest_offset

 size

 src_dbits

 src_offset

TriCore Reference Manual8-22
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

8.5.1 DEFINING AN ARCHITECTURE

With the keyword architecture you define an architecture and assign a

unique name to it. The name is used to refer to it at other places in the

LSL file:

architecture name

{

 definitions

}

If you are defining multiple core architectures that show great

resemblance, you can define the common features in a parent core

architecture and extend this with a child core architecture that contains

specific features. The child inherits all features of the parent. With the

keyword extends you create a child core architecture:

architecture name_child_arch extends name_parent_arch

{

 definitions

}

A core architecture can have any number of parameters. These are

identifiers which get values assigned on instantiation or extension of the

architecture. You can use them in any expression within the core

architecture. Parameters can have default values, which are used when the

core architecture is instantiated with less arguments than there are

parameters defined for it. When you extend a core architecture you can

pass arguments to the parent architecture. Arguments are expressions that

set the value of the parameters of the sub-architecture.

architecture name_child_arch (parm1,parm2=1)

 extends name_parent_arch (arguments)

{

 definitions

}

Linker Script Language 8-23

• • • • • • • •

8.5.2 DEFINING INTERNAL BUSES

With the bus keyword you define a bus (the combination of data and

corresponding address bus). The bus name is used to identify a bus and

does not conflict with other identifiers. Bus descriptions in an architecture

definition or derivative definition define internal buses. Some internal

buses are used to communicate with the components outside the core or

processor. Such buses on a processor have physical pins reserved for the

number of bits specified with the width statements.

• The mau field specifies the MAU size (Minimum Addressable Unit) of

the data bus. This field is required.

• The width field specifies the width (number of address lines) of the

data bus. The default value is the MAU size.

• The map keyword specifies how this bus maps onto another bus (if so).

Mappings are described in section 8.5.4, Mappings.

bus bus_name

{

 mau = 8;

 width = 8;

 map (map_description);

}

8.5.3 DEFINING ADDRESS SPACES

With the space keyword you define a logical address space. The space

name is used to identify the address space and does not conflict with other

identifiers.

• The id field defines how the addressing space is identified in object

files. In general, each address space has a unique ID. The linker locates

sections with a certain ID in the address space with the same ID. This

field is required. In IEEE this ID is specified explicitly for sections and

symbols, ELF sections map by default to the address space with ID 1.

Sections with one of the special names defined in the ABI (Application

Binary Interface) may map to different address spaces.

• The mau field specifies the MAU size (Minimum Addressable Unit) of

the space. This field is required.

• The align value must be a power of two. The linker uses this value to

compute the start addresses when sections are concatenated. An align

value of n means that objects in the address space have to be aligned

on n MAUs.

TriCore Reference Manual8-24
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• The page_size field sets the page size in MAUs for the address space.

It must be a power of 2. The default page size is 1. See also the page

keyword in subsection Locating a group in section 8.8.2, Creating and
Locating Groups of Sections.

• The map keyword specifies how this address space maps onto an

internal bus or onto another address space. Mappings are described in

section 8.5.4, Mappings.

Stacks and heaps

• The stack keyword defines a stack in the address space and assigns a

name to it. The architecture definition must contain at least one stack

definition. Each stack of a core architecture must have a unique name.

See also the stack keyword in section 8.8.3, Creating or Modifying
Special Sections.

The stack is described in terms of a minimum size (min_size) and the

direction in which the stack grows (grows). This can be either from

low_to_high addresses (stack grows upwards, this is the default) or

from high_to_low addresses (stack grows downwards). The

min_size is required.

By default, the linker tries to maximize the size of the stacks and heaps.

After locating all sections, the largest remaining gap in the space is

used completely for the stacks and heaps. If you specify the keyword

fixed, you can disable this so-called 'balloon behavior'. The size is

also fixed if you used a stack or heap in the software layout definition

in a restricted way. For example when you override a stack with

another size or select a stack in an ordered group with other sections.

Optionally you can specify an alignment for the stack with the

argument align. This alignment must be equal or larger than the

alignment that you specify for the address space itself.

• The heap keyword defines a heap in the address space and assigns a

name to it. The definition of a heap is similar to the definition of a

stack. See also the heap keyword in section 8.8.3, Creating or
Modifying Special Sections.

See section 8.8, Semantics of the Section Layout Definition for

information on creating and placing stack sections.

Linker Script Language 8-25

• • • • • • • •

Copy tables

• The copytable keyword defines a copy table in the address space.

The content of the copy table is created by the linker and contains the

start address and size of all sections that should be initialized by the

startup code. If the architecture definition contains more than one

address space, you must define exactly one copy table in one of the

address spaces. If the architecture definition contains only one address

space, the copy table definition is optional.

Optionally you can specify an alignment for the copy table with the

argument align. This alignment must be equal or larger than the

alignment that you specify for the address space itself. If smaller, the

alignment for the address space is used.

The copy_unit argument specifies the size in MAUs of information

chunks that are copied. If you do not specify the copy unit, the MAU

size of the address space itself is used.

The dest argument specifies the destination address space that the

code uses for the copy table. The linker uses this information to

generate the correct addresses in the copy table. The memory into

where the sections must be copied at run-time, must be accessible

from this destination space.

Start address

• The start_address keyword specifies the start address for the

position where the C startup code is located. When a processor is reset,

it initializes its program counter to a certain start address, sometimes

called the reset vector. In the architecture definition, you must specify

this start address in the correct address space in combination with the

name of the label in the application code which must be located here.

The run_addr argument specifies the start address (reset vector). If the

core starts executing using an entry from a vector table, and directly

jumps to the start label, you should omit this argument.

The symbol argument specifies the name of the label in the

application code that should be located at the specified start address.

The symbol argument is required. The linker will resolve the start

symbol and use its value after locating for the start address field in

IEEE-695 files and Intel Hex files. If you also specified the run_addr

argument, the start symbol (label) must point to a section. The linker

locates this section such that the start symbol ends up on the start

address.

TriCore Reference Manual8-26
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

space space_name

{

 id = 1;

 mau = 8;

 align = 8;

 page_size = 1;

 stack name (min_size = 1k, grows = low_to_high);

 start_address (run_addr = 0x0000,

 symbol = "start_label")

 map (map_description);

}

8.5.4 MAPPINGS

You can use a mapping when you define a space, bus or memory. With

the map field you specify how addresses from the source (space, bus or

memory) are translated to addresses of a destination (space, bus). The

following mappings are possible:

• space => space

• space => bus

• bus => bus

• memory => bus

With a mapping you specify a range of source addresses you want to map

(specified by a source offset and a size), the destination to which you

want to map them (a bus or another address space), and the offset address

in the destination.

• The dest argument specifies the destination. This can be a bus or

another address space (only for a space to space mapping). This

argument is required.

• The src_offset argument specifies the offset of the source addresses.

In combination with size, this specifies the range of address that are

mapped. By default the source offset is 0x0000.

• The size argument specifies the number of addresses that are

mapped. This argument is required.

• The dest_offset argument specifies the position in the destination to

which the specified range of addresses is mapped. By default the

destination offset is 0x0000.

Linker Script Language 8-27

• • • • • • • •

If you are mapping a bus to another bus, the number of data lines of each

bus may differ. In this case you have to specify a range of source data

lines you want to map (src_dbits = begin..end) and the range of

destination data lines you want to map them to (dest_dbits =

first..last).

• The src_dbits argument specifies a range of data lines of the source

bus. By default all data lines are mapped.

• The dest_dbits argument specifies a range of data lines of the

destination bus. By default, all data lines from the source bus are

mapped on the data lines of the destination bus (starting with line 0).

From space to space

If you map an address space to another address space (nesting), you can

do this by mapping the subspace to the containing larger space. In this

example a small space of 64k is mapped on a large space of 16M.

space small

{

 id = 2;

 mau = 4;

 map (src_offset = 0, dest_offset = 0,

 dest = space : large, size = 64k);

}

From space to bus

All spaces that are not mapped to another space must map to a bus in the

architecture:

space large

{

 id = 1;

 mau = 4;

 map (src_offset = 0, dest_offset = 0,

 dest = bus:bus_name, size = 16M);

}

From bus to bus

The next example maps an external bus called e_bus to an internal bus

called i_bus. This internal bus resides on a core called mycore. The

source bus has 16 data lines whereas the destination bus has only 8 data

lines. Therefore, the keywords src_dbits and dest_dbits specify

which source data lines are mapped on which destination data lines.

TriCore Reference Manual8-28
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

architecture mycore

{

 bus i_bus

 {

 mau = 4;

 }

 space i_space

 {

 map (dest=bus:i_bus, size=256);

 }

}

bus e_bus

{

 mau = 16;

 width = 16;

 map (dest = bus:mycore:i_bus,

 src_dbits = 0..7, dest_dbits = 0..7)

}

It is not possible to map an internal bus to an external bus.

Linker Script Language 8-29

• • • • • • • •

8.6 SEMANTICS OF THE DERIVATIVE DEFINITION

Keywords in the derivative definition

derivative

 extends

core

 architecture

bus

 mau

 width

 map

memory

 type reserved rom ram nvram

 mau

 size

 speed

 map

 map

 dest bus space

 dest_dbits

 dest_offset

 size

 src_dbits

 src_offset

8.6.1 DEFINING A DERIVATIVE

With the keyword derivative you define a derivative and assign a

unique name to it. The name is used to refer to it at other places in the

LSL file:

derivative name

{

 definitions

}

TriCore Reference Manual8-30
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

If you are defining multiple derivatives that show great resemblance, you

can define the common features in a parent derivative and extend this

with a child derivative that contains specific features. The child inherits all

features of the parent (cores and memories). With the keyword extends

you create a child derivative:

derivative name_child_deriv extends name_parent_deriv

{

 definitions

}

As with a core architecture, a derivative can have any number of

parameters. These are identifiers which get values assigned on

instantiation or extension of the derivative. You can use them in any

expression within the derivative definition.

derivative name_child_deriv (parm1,parm2=1)

 extends name_parent_derivh (arguments)

{

 definitions

}

8.6.2 INSTANTIATING CORE ARCHITECTURES

With the keyword core you instantiate a core architecture in a derivative.

• With the keyword architecture you tell the linker that the given

core has a certain architecture. The architecture name refers to an

existing architecture definition in the same LSL file.

For example, if you have two cores (called mycore_1 and mycore_2)

that have the same architecture (called mycorearch), you must

instantiate both cores as follows:

core mycore_1

{

 architecture = mycorearch;

}

core mycore_2

{

 architecture = mycorearch;

}

Linker Script Language 8-31

• • • • • • • •

If the architecture definition has parameters you must specify the

arguments that correspond with the parameters. For example

mycorearch1 expects two parameters which are used in the

architecture definition:

core mycore

{

 architecture = mycorearch1 (1,2);

}

8.6.3 DEFINING INTERNAL MEMORY AND BUSES

With the memory keyword you define physical memory that is present on

the target board. The memory name is used to identify the memory and

does not conflict with other identifiers. It is common to define internal

memory (on-chip) in the derivative definition. External memory (off-chip

memory) is usually defined in the board specification (See section 8.7.3,

Defining External Memory and Buses).

• The type field specifies a memory type:

- rom: read only memory

- ram: random access memory

- nvram: non volatile ram

The optional reserved qualifier before the memory type, tells the

linker not to locate any section in the memory by default. You can

locate sections in such memories using an absolute address or range

restriction (see subsection Locating a group in section 8.8.2, Creating
and Locating Groups of Sections).

• The mau field specifies the MAU size (Minimum Addressable Unit) of

the memory. This field is required.

• The size field specifies the size in MAU of the memory. This field is

required.

• The speed field specifies a symbolic speed for the memory (0..4): 0 is

the fastest, 4 the slowest. The linker uses the relative speed of the

memories in such a way, that optimal speed is achieved. The default

speed is 1.

• The map field specifies how this memory maps onto an (internal) bus.

Mappings are described in section 8.5.4, Mappings.

TriCore Reference Manual8-32
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

memory mem_name

{

 type = rom;

 mau = 8;

 size = 64k;

 speed = 2;

 map (map_description);

}

With the bus keyword you define a bus in a derivative definition. Buses

are described in section 8.5.2, Defining Internal Buses.

Linker Script Language 8-33

• • • • • • • •

8.7 SEMANTICS OF THE BOARD SPECIFICATION

Keywords in the board specification

processor

 derivative

bus

 mau

 width

 map

memory

 type reserved rom ram nvram

 mau

 size

 speed

 map

 map

 dest bus space

 dest_dbits

 dest_offset

 size

 src_dbits

 src_offset

8.7.1 DEFINING A PROCESSOR

If you have a target board with multiple processors that have the same

derivative, you need to instantiate each individual processor in a processor

definition. This information tells the linker which processor has which

derivative and enables the linker to distinguish between the present

processors.

If you use processors that all have a unique derivative, you may omit the

processor definitions. In this case the linker assumes that for each

derivative definition in the LSL file there is one processor. The linker uses

the derivative name also for the processor.

TriCore Reference Manual8-34
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

With the keyword processor you define a processor. You can freely

choose the processor name. The name is used to refer to it at other places

in the LSL file:

processor proc_name

{

 processor definition

}

8.7.2 INSTANTIATING DERIVATIVES

With the keyword derivative you tell the linker that the given processor

has a certain derivative. The derivative name refers to an existing

derivative definition in the same LSL file.

For examples, if you have two processors on your target board (called

myproc_1 and myproc_2) that have the same derivative (called

myderiv), you must instantiate both processors as follows:

processor myproc_1

{

 derivative = myderiv;

}

processor myproc_2

{

 derivative = myderiv;

}

If the derivative definition has parameters you must specify the

arguments that correspond with the parameters. For example

myderiv1 expects two parameters which are used in the derivative

definition:

processor myproc

{

 derivative = myderiv1 (2,4);

}

Linker Script Language 8-35

• • • • • • • •

8.7.3 DEFINING EXTERNAL MEMORY AND BUSES

It is common to define external memory (off-chip) and external buses at

the global scope (outside any enclosing definition). Internal memory

(on-chip memory) is usually defined in the scope of a derivative

definition.

With the keyword memory you define physical memory that is present on

the target board. The memory name is used to identify the memory and

does not conflict with other identifiers. If you define memory parts in the

LSL file, only the memory defined in these parts is used for placing

sections.

If no external memory is defined in the LSL file and if the linker option to

allocate memory on demand is set then the linker will assume that all

virtual addresses are mapped on physical memory. You can override this

behavior by specifying one or more memory definitions.

memory mem_name

{

 type = rom;

 mau = 8;

 size = 64k;

 speed = 2;

 map (map_description);

}

For a description of the keywords, see section 8.6.3, Defining Internal
Memory and Buses.

With the keyword bus you define a bus (the combination of data and

corresponding address bus). The bus name is used to identify a bus and

does not conflict with other identifiers. Bus descriptions at the global

scope (outside any definition) define external buses. These are buses that

are present on the target board.

bus bus_name

{

 mau = 8;

 width = 8;

 map (map_description);

}

For a description of the keywords, see section 8.5.2, Defining Internal
Buses.

TriCore Reference Manual8-36
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

You can connect off-chip memory to any derivative: you need to map the

off-chip memory to a bus and map that bus on the internal bus of the

derivative you want to connect it to.

Linker Script Language 8-37

• • • • • • • •

8.8 SEMANTICS OF THE SECTION LAYOUT DEFINITION

Keywords in the section layout definition

section_layout

 direction low_to_high high_to_low

group

 align

 attributes + - r w x b i s

 fill

 ordered

 clustered

 contiguous

 overlay

 allow_cross_references

 load_addr

 mem

 run_addr

 mem

 page

select

heap

 size

stack

 size

reserved

 size

 attributes r w x

 fill

 alloc_allowed absolute

copytable

section

 size

 attributes r w x

 fill

if

else

TriCore Reference Manual8-38
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

8.8.1 DEFINING A SECTION LAYOUT

With the keyword section_layout you define a section layout for

exactly one address space. In the section layout you can specify how input

sections are placed in the address space, relative to each other, and what

the absolute run and load addresses of each section will be.

You can define one or more section definitions. Each section definition

arranges the sections in one address space. You can precede the address

space name with a processor name and/or core name, separated by

colons. You can omit the processor name and/or the core name if only

one processor is defined and/or only one core is present in the processor.

A reference to a space in the only core of the only processor in the system

would look like "::my_space". A reference to a space of the only core

on a specific processor in the system could be "my_chip::my_space".

The next example shows a section definition for sections in the my_space

address space of the processor called my_chip:

section_layout my_chip::my_space (locate_direction)

{

 section statements

}

With the optional keyword direction you specify whether the linker

starts locating sections from low_to_high (default) or from

high_to_low. In the second case the linker starts locating sections at the

highest addresses in the address space but preserves the order of sections

when necessary (one processor and core in this example).

section_layout ::my_space (direction = high_to_low)

{

 section statements

}

If you do not explicitly tell the linker how to locate a section, the linker

decides on the basis of the section attributes in the object file and the

information in the architecture definition and memory parts where to

locate the section.

Linker Script Language 8-39

• • • • • • • •

8.8.2 CREATING AND LOCATING GROUPS OF

SECTIONS

Sections are located per group. A group can contain one or more (sets of)

input sections as well as other groups. Per group you can assign a mutual

order to the sets of sections and locate them into a specific memory part.

group (group_specifications)

{

 section_statements

}

With the section_statements you generally select sets of sections to form

the group. This is described in subsection Selecting sections for a group.

Instead of selecting sections, you can also modify special sections like

stack and heap or create a reserved section. This is described in section

8.8.3, Creating or Modifying Special Sections.

With the group_specifications you actually locate the sections in the group.

This is described in subsection Locating a group.

Selecting sections for a group

With the select keyword you can select one or more sections for the

group. You can select a section by name or by attributes. If you select a

section by name, you can use a wildcard pattern:

"*" matches with all section names

"?" matches with a single character in the section name

"\" takes the next character literally

"[abc]" matches with a single 'a', 'b' or 'c' character

"[a-z]" matches with any single character in the range 'a' to 'z'

group (...)

{

 select "mysection";

 select "*";

}

The first select statement selects the section with the name "mysection".

The second select statement selects all sections that were not selected

yet.

TriCore Reference Manual8-40
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

A section is selected by the first select statement that matches, in the

union of all section layouts for the address space. Global section layouts

are processed in the order in which they appear in the LSL file. Internal

core architecture section layouts always take precedence over global

section layouts.

• The attributes field selects all sections that carry (or do not carry)

the given attribute. With +attribute you select sections that have the

specified attribute set. With -attribute you select sections that do not

have the specified attribute set. You can specify one or more of the

following attributes:

- r readable sections

- w writable sections

- x executable sections

- i initialized sections

- b sections that should be cleared at program startup

- s scratch sections (not cleared and not initialized)

To select all read-only sections:

group (...)

{

 select (attributes = +r-w);

}

Keep in mind that all section selections are restricted to the address space

of the section layout in which this group definition occurs.

Locating a group

group group_name (group_specifications)

{

 section_statements

}

With the group_specifications you actually define how the linker must

locate the group. You can roughly define three things: 1) assign properties

to the group like alignment and read/write attributes, 2) define the mutual

order in the address space for sections in the group and 3) restrict the

possible addresses for the sections in a group.

Linker Script Language 8-41

• • • • • • • •

The linker creates labels that allow you to refer to the begin and end

address of a group from within the application software. Labels

_lc_gb_group_name and _lc_ge_group_name mark the begin and end

of the group respectively, where the begin is the lowest address used

within this group and the end is the highest address used. Notice that a

group not necessarily occupies all memory between begin and end

address. The given label refers to where the section is located at run-time

(versus load-time).

1. Assign properties to the group like alignment and read/write attributes.

These properties are assigned to all sections in the group (and subgroups)

and override the attributes of the input sections.

• The align field tells the linker to align all sections in the group and

the group as a whole according to the align value. By default the linker

uses the largest alignment constraint of either the input sections or the

alignment of the address space.

• The attributes field tells the linker to assign one or more attributes

to all sections in the group. This overrules the default attributes. By

default the linker uses the attributes of the input sections. You can set

the r, w, or rw attributes and you can switch between the b and s

attributes.

2. Define the mutual order of the sections in the group.

By default, a group is unrestricted which means that the linker has total

freedom to place the sections of the group in the address space.

• The ordered keyword tells the linker to locate the sections in the

same order in the address space as they appear in the group (but not

necessarily adjacent).

Suppose you have an ordered group that contains the sections 'A', 'B'

 and 'C'. By default the linker places the sections in the address space

like 'A' - 'B' - 'C', where section 'A' gets the lowest possible address.

With direction=high_to_low in the section_layout space

properties, the linker places the sections in the address space like 'C' -

'B' - 'A', where section 'A' gets the highest possible address.

• The contiguous keyword tells the linker to locate the sections in the

group in a single address range. Within a contiguous group the input

sections are located in arbitrary order, however the group occupies one

contigous range of memory. Due to alignment of sections there can be

'alignment gaps' between the sections.

TriCore Reference Manual8-42
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

When you define a group that is both ordered and contiguous, this

is called a sequential group. In a sequential group the linker places

sections in the same order in the address space as they appear in the

group and it occupies a contiguous range of memory.

• The clustered keyword tells the linker to locate the sections in the

group in a number of contiguous blocks. It tries to keep the number of

these blocks to a minimum. If enough memory is available, the group

will be located as if it was specified as contiguous. Otherwise, it gets

split into two or more blocks.

If a contiguous or clustered group contains alignment gaps, the linker

can locate sections that are not part of the group in these gaps. To

prevent this, you can use the fill keyword. If the group is located in

RAM, the gaps are treated as reserved (scratch) space. If the group is

located in ROM, the alignment gaps are filled with zeros by default.

You can however change the fill pattern by specifying a bit pattern.

The result of the expression, or list of expressions, is used as values to

write to memory, each in MAU.

• The overlay keyword tells the linker to overlay the sections in the

group. The linker places all sections in the address space using a

contiguous range of addresses. (Thus an overlay group is automatically

also a contiguous group.) To overlay the sections, all sections in the

overlay group share the same run-time address.

For each input section within the overlay the linker automatically

defines two symbols. The symbol _lc_cb_section_name is defined

as the load-time start address of the section. The symbol

_lc_ce_section_name is defined as the load-time end address of

the section. C (or assembly) code may be used to copy the overlaid

sections.

If sections in the overlay group contain references between groups, the

linker reports an error. The keyword allow_cross_references tells

the linker to accept cross-references. Normally, it does not make sense

to have references between sections that are overlaid.

Linker Script Language 8-43

• • • • • • • •

group ovl (overlay)

{

 group a

 {

 select "my_ovl_p1";

 select "my_ovl_p2";

 }

 group b

 {

 select "my_ovl_q1";

 }

}

It may be possible that one of the sections in the overlay group already

has been defined in another group where it received a load-time

address. In this case the linker does not overrule this load-time address

and excludes the section from the overlay group.

3. Restrict the possible addresses for the sections in a group.

The load-time address specifies where the group's elements are loaded in

memory at download time. The run-time address specifies where sections

are located at run-time, that is when the program is executing. If you do

not explicitly restrict the address in the LSL file, the linker assigns

addresses to the sections based on the restrictions relative to other sections

in the LSL file and section alignments. The program is responsible for

copying overlay sections at appropriate moment from its load-time

location to its run-time location (this is typically done by the startup

code).

• The run_addr keyword defines the run-time address. If the run-time

location of a group is set explicitly, the given order between groups

specify whether the run-time address propagates to the parent group

or not. The location of the sections a group can be restricted either to a

single absolute address, or to a number of address ranges. With an

expression you can specify that the group should be located at the

absolute address specified by the expression:

group (run_addr = 0xa00f0000)

You can use the '[offset]' variant to locate the group at the given

absolute offset in memory:

group (run_addr = mem:A[0x1000])

TriCore Reference Manual8-44
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

A range can be an absolute space address range, written as [expr ..

expr], a complete memory device, written as mem:mem_name, or a

memory address range, mem:mem_name[expr .. expr]

group (run_addr = mem:my_dram)

You can use the '|' to specify an address range of more than one

physical memory device:

group (run_addr = mem:A | mem:B)

• The load_addr keyword changes the meaning of the section selection

in the group: the linker selects the load-time ROM copy of the named

section(s) instead of the regular sections. Just like run_addr you can

specify an absolute address or an address range.

The load_addr keyword itself (without an assignment) specifies that

the group's position in the LSL file defines its load-time address.

group (load_addr)

select "mydata"; // select ROM copy of mydata:

 // "[mydata]"

The load-time and run-time addresses of a group cannot be set at the

same time. If the load-time property is set for a group, the group (only)

restricts the positioning at load-time of the group's sections. It is not

possible to set the address of a group that has a not-unrestricted parent

group.

The properties of the load-time and run-time start address are:

• At run-time, before using an element in an overlay group, the

application copies the sections from their load location to their

run-time location, but only if these two addresses are different. For

non-overlay sections this happens at program start-up.

• The start addresses cannot be set to absolute values for unrestricted

groups.

• For non-overlay groups that do not have an overlay parent, the

load-time start address equals the run-time start address.

• For any group, if the run-time start address is not set, the linker

selects an appropriate address.

For overlays, the linker reserves memory at the run-time start address as

large as the largest element in the overlay group.

Linker Script Language 8-45

• • • • • • • •

• The page keyword tells the linker to place the group in one page.

Instead of specifying a run-time address, you can specify a page and

optional a page number. Page numbers start from zero. If you omit the

page number, the linker chooses a page.

The page keyword refers to pages in the address space as defined in

the architecture definition. See also the page_size keyword in section

8.5.3, Defining Address Spaces.

group (page, ...)

group (page = 3, ...)

8.8.3 CREATING OR MODIFYING SPECIAL SECTIONS

Instead of selecting sections, you can also create a reserved section or an

output section or modify special sections like a stack or a heap. Because

you cannot define these sections in the input files, you must use the linker

to create them.

Stack

• The stack keyword tells the linker to reserve memory for the stack.

The name for the stack section refers to the stack as defined in the

architecture definition. If no name was specified in the architecture

definition, the default name is stack.

With the keyword size you can specify the size for the stack. If the

size is not specified, the linker uses the size given by the min_size

argument as defined for the stack in the architecture definition.

Normally the linker automatically tries to maximize the size, unless you

specified the fixed keyword.

group (...)

{

 stack "mystack" (size = 2k);

}

The linker creates two labels to mark the begin and end of the stack,

_lc_ub_stack_name for the begin of the stack and

_lc_ue_stack_name for the end of the stack. The linker allocates

space for the stack when there is a reference to either of the labels.

See also the stack keyword in section 8.5.3, Defining Address Spaces.

TriCore Reference Manual8-46
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

Heap

• The heap keyword tells the linker to reserve a dynamic memory range

for the malloc() function. Optionally you can assign a name to the

heap section. With the keyword size you can change the size for the

heap. If the size is not specified, the linker uses the size given by the

min_size argument as defined for the heap in the architecture

definition. Normally the linker automatically tries to maximize the size,

unless you specified the fixed keyword.

group (...)

{

 heap "myheap" (size = 2k);

}

The linker creates two labels to mark the begin and end of the heap,

_lc_ub_heap_name for the begin of the heap and

_lc_ue_heap_name for the end of the heap. The linker allocates

space for the heap when a reference to either of the section labels

exists in one of the input object files.

Reserved section

• The reserved keyword tells the linker to create an area or section of

a given size. The linker will not locate any other sections in the

memory occupied by a reserved section, with some exceptions.

Optionally you can assign a name to a reserved section. With the

keyword size you can specify a size for a given reserved area or

section.

group (...)

{

 reserved "myreserved" (size = 2k);

}

The optional fill field contains a bit pattern that the linker writes to

all memory addresses that remain unoccupied during the locate

process. The result of the expression, or list of expressions, is used as

values to write to memory, each in MAU. The first MAU of the fill

pattern is always the first MAU in the section.

By default, no sections can overlap with a reserved section. With

alloc_allowed=absolute sections that are located at an absolute

address due to an absolute group restriction can overlap a reserved

section.

Linker Script Language 8-47

• • • • • • • •

With the attributes field you can set the access type of the reserved

section. The linker locates the reserved section in its space with the

restrictions that follow from the used attributes, r, w or x or a valid

combination of them. The allowed attributes are shown in the

following table. A value between < and > in the table means this value

is set automatically by the linker.

Properties set in LSL Resulting section properties

attributes filled access memory content

x yes <rom> executable

r yes r <rom> data

r no r <rom> scratch

rx yes r <rom> executable

rw yes rw <ram> data

rw no rw <ram> scratch

rwx yes rw <ram> executable

group (...)

{

 reserved "myreserved" (size = 2k,

 attributes = rw, fill = 0xaa);

}

If you do not specify any attributes, the linker will reserve the given

number of maus, no matter what type of memory lies beneath. If you

do not specify a fill pattern, no section is generated.

The linker creates two labels to mark the begin and end of the section,

_lc_ub_name for the start, and _lc_ue_name for the end of the

reserved section.

Output sections

• The section keyword tells the linker to accumulate sections obtained

from object files ("input sections") into an output section of a fixed size

in the locate phase. You can select the input sections with select

statements. With the keyword size you specify the size of the output

section.

TriCore Reference Manual8-48
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

The fill field contains a bit pattern that the linker writes to all unused

space in the output section. When all input sections have an image

(code/data) you must specify a fill pattern. If you do not specify a fill

pattern, all input sections must be scratch sections. The fill pattern is

aligned at the start of the output section.

As with a reserved section you can use the attributes field to set the

access type of the output section.

group (...)

{

 section "myoutput" (size = 4k, attributes = rw,

 fill = 0xaa)

 {

 select "myinput1";

 select "myinput2";

 }

}

The linker creates two labels to mark the begin and end of the section,

_lc_ub_name for the start, and _lc_ue_name for the end of the

output section.

Copy table

• The copytable keyword tells the linker to select a section that is used

as copy-table. The content of the copy-table is created by the linker. It

contains the start address and length of all sections that should be

initialized by the startup code.

The linker creates two labels to mark the begin and end of the section,

_lc_ub_table for the start, and _lc_ue_table for the end of the

copy table. The linker generates a copy table when a reference to

either of the section labels exists in one of the input object files.

8.8.4 CREATING SYMBOLS

You can tell the linker to create symbols before locating by putting

assignments in the section layout definition. Symbol names are

represented by double-quoted strings. Any string is allowed, but object

files may not support all characters for symbol names. You can use two

different assignment operators. With the simple assignment operator '=',

the symbol is created unconditionally. With the ':=' operator, the symbol is

only created if it already exists as an undefined reference in an object file.

Linker Script Language 8-49

• • • • • • • •

The expression that represents the value to assign to the symbol may

contain references to other symbols. If such a referred symbol is a special

section symbol, creation of the symbol in the left hand side of the

assignment will cause creation of the special section.

section_layout

{

 "_lc_bs" := "_lc_ub_stack";

 // when the symbol _lc_bs occurs as an undefined

 // reference in an object file,

 // the linker allocates space for the stack

}

8.8.5 CONDITIONAL GROUP STATEMENTS

Within a group, you can conditionally select sections or create special

sections.

• With the if keyword you can specify a condition. The succeeding

section statement is executed if the condition evaluates to TRUE (1).

• The optional else keyword is followed by a section statement which

is executed in case the if-condition evaluates to FALSE (0).

group (...)

{

 if (exists("mysection"))

 select "mysection";

 else

 reserved "myreserved" (size=2k);

}

TriCore Reference Manual8-50
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

9

CPU FUNCTIONAL

PROBLEMS
C

H
A

P
T

E
R

TriCore Reference Manual9-2
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

9

C
H

A
P

T
E

R

CPU Functional Problems 9-3

• • • • • • • •

9.1 INTRODUCTION

Infineon Technologies regularly publishes microcontroller errata sheets

reporting functional problems and deviations from the electrical

specifications and timing specifications.

The TASKING TriCore software development tools provide solutions for a

number of these functional problems in the TriCore architecture.

Support to deal with CPU functional problem is provided in three areas:

• Whenever possible and relevant, compiler bypasses will modify the

code in order to avoid the identified erroneous code sequences;

• The TriCore assembler gives warnings for suspicious or erroneous code

sequences;

• Ready-built, 'protected' standard C libraries with bypasses for all

identified TriCore CPU functional problems are included in the

toolchain.

This chapters lists a summary of identified functional problems which can

be bypassed by the TASKING TriCore tool kit.

Please refer to the Infineon errata sheets for the TriCore architecture

revision-step of your particular device, to check the need for applying any

of these bypasses. Also refer to the Infineon errata sheets for a complete

description of the CPU functional problems, as the workarounds listed

below do not describe the functional problem itself.

With the TASKING C compiler and assembler command line options,

pragmas and macro definitions you can enable or disable specific CPU

functional problem bypasses.

To enable all compiler bypasses and assembler checks for a specific

TriCore derivative at once, for example for the TC11IB, use the command

line option --silicon-bug=all-tc11ib.

To enable the bypasses from the embedded development environment

(EDE):

1. From the Projects menu select Project Options...

2. Expand the Processor entry.

3. Select Bypasses. This shows the bypasses for the target processor you

have selected.

TriCore Reference Manual9-4
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

4. Enable one or more bypasses, or select All bypasses TCxxx

9.2 CPU FUNCTIONAL PROBLEM BYPASSES

CPU_TC.013

Compiler and assembler option:

--silicon-bug=cpu-tc013

Assembler control:

$CPU_TC013 {on|off}

Assembler macro:

The assembler macro __CPU_TC013__ is defined if you specify option

--silicon-bug=cpu-tc013.

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a NOP16

instruction if a 16-bit load/store address register instruction (instructions:

LD16.A en ST16.A) is followed by a lower context load/store instruction

(instructions: LDLCX and STLCX).

Assembler check:

The assembler gives a warning if a 16-bit load/store address register

instruction (instructions: LD16.A en ST16.A) is followed by a lower context

load/store instruction (instructions: LDLCX and STLCX).

Wnum: suspicious instruction concerning CPU functional

defect TC013

You can suppress this warning with the option -wnum.

CPU Functional Problems 9-5

• • • • • • • •

CPU_TC.018

Compiler and assembler option:

--silicon-bug=cpu-tc018

Assembler control:

$CPU_TC018 {on|off}

Assembler macro:

The assembler macro __CPU_TC018__ is defined if you specify option

--silicon-bug=cpu-tc018.

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates an

ISYNC instruction before each LOOP, LOOP16 and LOOPU instruction.

Assembler check:

The assembler gives a warning when the preceding instruction of a LOOP,

LOOP16 or LOOPU instruction is not an ISYNC instruction:

Wnum: suspicious instruction concerning CPU functional

defect TC018

You can suppress this warning with the option -wnum.

TriCore Reference Manual9-6
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

CPU_TC.021

Compiler and assembler option:

--silicon-bug=cpu-tc021

Assembler control:

$CPU_TC021 {on|off}

Assembler macro:

The assembler macro __CPU_TC021__ is defined if you specify option

--silicon-bug=cpu-tc021.

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a NOP

instruction between a (target) label and the instruction following it This is

done when the instruction directly uses an An register for either an

effective address calculation or as the target of an indirect branch.

Optionally an integer instruction may directly follow the label.

For example, a NOP will be inserted after the following labels:

A_label:

 ji a4

B_label:

 add d0, d1 ; integer instruction

 ji a4

Assembler check:

The assembler gives a warning for an instruction using an An register for

either an effective address calculation or as the target of an indirect branch

that is located directly after a (target) label, optionally with an integer

instruction in between:

Wnum: suspicious instruction concerning CPU functional

defect TC021

You can suppress this warning with the option -wnum.

CPU Functional Problems 9-7

• • • • • • • •

CPU_TC.023

Assembler option:

--silicon-bug=cpu-tc023

Assembler control:

$CPU_TC023 {on|off}

Assembler macro:

The assembler macro __CPU_TC023__ is defined if you specify option

--silicon-bug=cpu-tc023.

Compiler bypass:

There is no C compiler workaround required for this CPU functional

problem, because the compiler does not generate CALLI instructions with

a target address in register A11.

Assembler check:

The assembler generates an error for instruction CALLI A11.

TriCore Reference Manual9-8
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

CPU_TC.024

Compiler and assembler option:

--silicon-bug=cpu-tc024

Assembler control:

$CPU_TC024 {on|off}

Assembler macro:

The assembler macro __CPU_TC024__ is defined if you specify option

--silicon-bug=cpu-tc024.

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a NOP

instruction at the very top of any subroutine that starts with a CALL

instruction or that starts with an integer instruction or MAC instruction

directly followed by a CALL instruction.

Assembler check:

The assembler gives a warning when the first instruction of a subroutine is

a CALL instruction or an integer instruction or MAC instruction directly

followed by a CALL instruction.

Wnum: suspicious instruction concerning CPU functional

defect TC024

You can suppress this warning with the option -wnum.

CPU Functional Problems 9-9

• • • • • • • •

CPU_TC.030

Compiler and assembler option:

--silicon-bug=cpu-tc030

Assembler control:

$CPU_TC030 {on|off}

Assembler macro:

The assembler macro __CPU_TC030__ is defined if you specify option

--silicon-bug=cpu-tc030.

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates an

ISYNC instruction prior to the LOOP instruction if the last instruction in the

loop is a DVSTEP or a DVSTEP.U.

Assembler check:

The assembler gives a warning for loops where the last instruction is a

DVSTEP or a DVSTEP.U:

Wnum: suspicious instruction concerning CPU functional

defect TC030

You can suppress this warning with the option -wnum.

TriCore Reference Manual9-10
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

CPU_TC.031

Compiler and assembler option:

--silicon-bug=cpu-tc031

Assembler control:

$CPU_TC031 {on|off}

Assembler macro:

The assembler macro __CPU_TC031__ is defined if you specify option

--silicon-bug=cpu-tc031.

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates an

ISYNC instruction prior to the LOOP instruction.

Assembler check:

The assembler gives a warning if the LOOP instruction is not preceded by

an ISYNC instruction:

Wnum: suspicious instruction concerning CPU functional

defect TC031

You can suppress this warning with the option -wnum.

CPU Functional Problems 9-11

• • • • • • • •

CPU_TC.033

Compiler and assembler option:

--silicon-bug=cpu-tc033

Assembler control:

$CPU_TC033 {on|off}

Assembler macro:

The assembler macro __CPU_TC033__ is defined if you specify option

--silicon-bug=cpu-tc033.

Compiler bypass:

To bypass this CPU functional problem, the C compiler aligns circular

qualified buffers to a quad-word boundary, and the compiler sizes all

stack frames to an integral number of quad-words. See section 3.4.1,

Circular Buffers in the User's Manual, for a description on how to declare

a circular buffer.

Assembler bypass:

To bypass this CPU functional problem, the assembler adds a macro to the

C startup code to enable initialization of the stack pointers to a quad-word

boundary.

Linker bypass:

A preprocessor define is used in the tc*.lsl linker script files to set the

alignment of the user stack and the interrupt stack to a quad-word

alignment.

TriCore Reference Manual9-12
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

CPU_TC.034

Compiler and assembler option:

--silicon-bug=cpu-tc034

Assembler control:

$CPU_TC034 {on|off}

Assembler macro:

The assembler macro __CPU_TC034__ is defined if you specify option

--silicon-bug=cpu-tc034.

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates an

ISYNC instruction after each DSYNC instruction.

Assembler check:

The assembler gives a warning if a DSYNC instruction is not followed by

an ISYNC instruction:

Wnum: suspicious instruction concerning CPU functional

defect TC034

You can suppress this warning with the option -wnum.

CPU Functional Problems 9-13

• • • • • • • •

CPU_TC.043

Linker option:

-D__CPU_TC043__

Linker bypass:

To bypass this CPU functional problem, a preprocessor define is used in

the tc*.lsl linker script files. The linker will not use the last 16 bytes of

a segment.

TriCore Reference Manual9-14
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

CPU_TC.048

Compiler and assembler option:

--silicon-bug=cpu-tc048

Assembler control:

$CPU_TC048 {on|off}

Assembler macro:

The assembler macro __CPU_TC048__ is defined if you specify option

--silicon-bug=cpu-tc048.

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a NOP

instruction before a JI or CALLI instruction when this instruction is not

directly preceded by either a NOP instruction or an integer instruction or a

MAC instruction. The compiler also generates a NOP instruction before a

RET and RET16 instruction if there is no or just one instruction before RET,

starting from the function entry point.

Assembler check:

The assembler gives a warning when a JI or CALLI instruction is not

directly preceded by a NOP instruction. The assembler also gives a

warning when there is no or just one instruction (not a NOP instruction)

between label and RET or RET16:

Wnum: suspicious instruction concerning CPU functional

defect TC048

You can suppress this warning with the option -wnum.

CPU Functional Problems 9-15

• • • • • • • •

CPU_TC.050

Compiler and assembler option:

--silicon-bug=cpu-tc050

Assembler control:

$CPU_TC050 {on|off}

Assembler macro:

The assembler macro __CPU_TC050__ is defined if you specify option

--silicon-bug=cpu-tc050.

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a NOP

instruction between a multi-cycle integer instruction and a load

instruction.

Assembler check:

The assembler gives a warning if a multi-cycle integer instruction is

directly followed by a load instruction.:

Wnum: suspicious instruction concerning CPU functional

defect TC050

You can suppress this warning with the option -wnum.

TriCore Reference Manual9-16
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

CPU_TC051

Assembler option:

--silicon-bug=cpu-tc051

Assembler control:

$CPU_TC051 {on|off}

Linker option:

-D__CPU_TC051__

Assembler macro:

The assembler macro __CPU_TC051__ is defined if you specify the option

--silicon-bug=cpu-tc051.

Assembler bypass:

To bypass this CPU functional problem, the assembler adds a macro to the

C startup code.

Linker bypass:

To bypass this CPU functional problem, a preprocessor define is used in

the tc*.lsl linker script files. The linker will use more than one section

for context stores if the required CSA area exceeds the 4k. Each section

will have a maximum size of 4k and will start on an 8k boundary.

CPU Functional Problems 9-17

• • • • • • • •

CPU_TC.060

Compiler and assembler option:

--silicon-bug=cpu-tc060

Assembler control:

$CPU_TC060 {on|off}

Assembler macro:

The assembler macro __CPU_TC060__ is defined if you specify option

--silicon-bug=cpu-tc060.

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a NOP

instruction between an LD.A / LD.DA instruction and a following LD.W /

LD.D instruction, even if an integer instruction occurs in between.

Assembler check:

The assembler gives a warning when an LD.A / LD.DA instruction is

directly followed by an LD.W / LD.D instruction, or when only an integer

instruction is in between.

Wnum: suspicious instruction concerning CPU functional

defect TC060

You can suppress this warning with the option -wnum.

TriCore Reference Manual9-18
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

CPU_TC.065

Compiler and assembler option:

--silicon-bug=cpu-tc065

Assembler control:

$CPU_TC065 {on|off}

Assembler macro:

The assembler macro __CPU_TC065__ is defined if you specify option

--silicon-bug=cpu-tc065.

Compiler bypass:

To bypass this CPU functional problem, the C compiler inserts a NOP

instruction before a jump, when a label is directly followed by an

unconditional jump.

Assembler check:

The assembler gives a warning when a label is directly followed by an

unconditional jump, only when debug information is turned off.

Wnum: suspicious instruction concerning CPU functional

defect TC065

You can suppress this warning with the option -wnum.

CPU Functional Problems 9-19

• • • • • • • •

CPU_TC.069

Compiler and assembler option:

--silicon-bug=cpu-tc069

Assembler control:

$CPU_TC069 {on|off}

Assembler macro:

The assembler macro __CPU_TC069__ is defined if you specify option

--silicon-bug=cpu-tc069.

Compiler bypass:

To bypass this CPU functional problem, the C compiler inserts a NOP

instruction after each RSLCX instruction.

Assembler check:

The assembler gives a warning when an RSLCX instruction is not followed

by a NOP instruction.

Wnum: suspicious instruction concerning CPU functional

defect TC069

You can suppress this warning with the option -wnum.

TriCore Reference Manual9-20
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

CPU_TC.070

Compiler and assembler option:

--silicon-bug=cpu-tc070

Assembler control:

$CPU_TC070 {on|off}

Assembler macro:

The assembler macro __CPU_TC070__ is defined if you specify option

--silicon-bug=cpu-tc070.

Compiler bypass:

To bypass this CPU functional problem, the C compiler inserts a NOP

instruction before a loop instruction, when a conditional jump, based on

the value in an address register, is directly followed by a loop instruction.

The compiler inserts two NOP instructions before a loop instruction, when

a conditional jump, based on the value in a data register, is directly

followed by a loop instruction.

Assembler check:

The assembler gives a warning when a conditional jump, based on the

value in an address register, is directly followed by a loop instruction.

The assembler gives a warning when a conditional jump, based on the

value in a data register, is directly followed by a loop instruction or when

only a single NOP instruction is in between.

Wnum: suspicious instruction concerning CPU functional

defect TC070

You can suppress this warning with the option -wnum.

CPU Functional Problems 9-21

• • • • • • • •

CPU_TC.071

Compiler and assembler option:

--silicon-bug=cpu-tc071

Assembler control:

$CPU_TC071 {on|off}

Assembler macro:

The assembler macro __CPU_TC071__ is defined if you specify option

--silicon-bug=cpu-tc071.

Compiler bypass:

To bypass this CPU functional problem, the C compiler inserts a NOP

instruction before a loop instruction, when a label is directly followed by

an unconditional loop instruction.

Assembler check:

The assembler gives a warning when a label is directly followed by an

unconditional loop instruction, only when debug information is turned off.

Wnum: suspicious instruction concerning CPU functional

defect TC071

You can suppress this warning with the option -wnum.

TriCore Reference Manual9-22
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

CPU_TC.072

Compiler and assembler option:

--silicon-bug=cpu-tc072

Assembler control:

$CPU_TC072 {on|off}

Assembler macro:

The assembler macro __CPU_TC072__ is defined if you specify option

--silicon-bug=cpu-tc072.

Compiler bypass:

To bypass this CPU functional problem, the C compiler inserts a NOP

instruction before a loop instruction, when an instruction that updates an

address register is followed by a conditional loop instruction which uses

this address register.

Assembler check:

The assembler gives a warning when an instruction that updates an

address register is followed by a conditional loop instruction which uses

this address register.

Wnum: suspicious instruction concerning CPU functional

defect TC072

You can suppress this warning with the option -wnum.

CPU Functional Problems 9-23

• • • • • • • •

DMU_TC.001

Compiler and assembler option:

--silicon-bug=dmu-tc001

Assembler control:

$DMU_TC001 {on|off}

Assembler macro:

The assembler macro __DMU_TC001__ is defined if you specify the option

--silicon-bug=dmu-tc001.

Compiler bypass:

To bypass this CPU functional problem, the C compiler avoids generation

of the ST.T, SWAP and LDMST instructions. For direct __bit and bit-field

operations, alternative instructions are used.

Assembler check:

The assembler gives a warning for SWAP, LDMST and ST.T instructions:

Wnum: suspicious instruction concerning CPU functional

defect TC001

You can suppress this warning with the option -wnum.

TriCore Reference Manual9-24
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

PMI_TC.003

Assembler option:

--silicon-bug=pmi-tc003

Assembler control:

$PMI_TC003 {on|off}

Assembler macro:

The assembler macro __PMI_TC003__ is defined if you specify the option

--silicon-bug=pmi-tc003.

Compiler bypass:

There is no compiler bypass for this problem.

Assembler bypass:

To bypass this CPU functional problem, the assembler adds a macro to the

C startup code to set the TLB-A and TLB-B mappings to a page size of 16

Kb. The SZA and SZB in the MMU_CON are set to 16 Kb.

CPU Functional Problems 9-25

• • • • • • • •

PMU_TC.004

Assembler option:

--silicon-bug=pmu-tc004

Assembler control:

$PMU_TC004 {on|off}

Assembler macro:

The assembler macro __PMU_TC004__ is defined if you specify the option

--silicon-bug=pmu-tc004.

Compiler bypass:

There is no compiler bypass for this problem.

Assembler bypass:

To bypass this CPU functional problem, the assembler adds a macro to the

C startup code to disable the split mode on the LMB bus. The SPLT bit of

the SFR register LFI_CON is set to zero.

TriCore Reference Manual9-26
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

10

MISRA-C RULES
C
H
A
P
T
E
R

TriCore Reference Manual10-2
M
IS
R
A
-C

10

C
H
A
P
T
E
R

MISRA-C Rules 10-3

• • • • • • • •

10.1 MISRA-C:1998

This section lists all supported and unsupported MISRA-C:1998 rules.

See also section 5.7, C Code Checking: MISRA-C, in Chapter Using the
Compiler of the User's Manual.

A number of MISRA-C rules leave room for interpretation. Other rules can

only be checked in a limited way. In such cases the implementation

decisions and possible restrictions for these rules are listed.

x means that the rule is not supported by the TASKING C compiler.

(R) is a required rule, (A) is an advisory rule.

1. (R) The code shall conform to standard C, without language
extensions

x 2. (A) Other languages should only be used with an interface
standard

3. (A) Inline assembly is only allowed in dedicated C functions

x 4. (A) Provision should be made for appropriate run-time
checking

5. (R) Only use characters and escape sequences defined by ISO C

x 6. (R) Character values shall be restricted to a subset of ISO
106460-1

7. (R) Trigraphs shall not be used

8. (R) Multibyte characters and wide string literals shall not be
used

9. (R) Comments shall not be nested

10. (A) Sections of code should not be "commented out"

In general, it is not possible to decide whether a piece of
comment is C code that is commented out, or just some
pseudo code. Instead, the following heuristics are used to
detect possible C code inside a comment:

- a line ends with ';', or

- a line starts with '}', possibly preceded by white space

11. (R) Identifiers shall not rely on significance of more than 31
characters

12. (A) The same identifier shall not be used in multiple name
spaces

TriCore Reference Manual10-4
M
IS
R
A
-C

13. (A) Specific-length typedefs should be used instead of the basic
types

14. (R) Use 'unsigned char' or 'signed char' instead of plain 'char'

x 15. (A) Floating point implementations should comply with a
standard

16. (R) The bit representation of floating point numbers shall not be
used

A violation is reported when a pointer to a floating point
type is converted to a pointer to an integer type.

17. (R) "typedef" names shall not be reused

18. (A) Numeric constants should be suffixed to indicate type

A violation is reported when the value of the constant is
outside the range indicated by the suffixes, if any.

19. (R) Octal constants (other than zero) shall not be used

20. (R) All object and function identifiers shall be declared before
use

21. (R) Identifiers shall not hide identifiers in an outer scope

22. (A) Declarations should be at function scope where possible

x 23. (A) All declarations at file scope should be static where possible

24. (R) Identifiers shall not have both internal and external linkage

x 25. (R) Identifiers with external linkage shall have exactly one
definition

26. (R) Multiple declarations for objects or functions shall be
compatible

x 27. (A) External objects should not be declared in more than one
file

28. (A) The "register" storage class specifier should not be used

29. (R) The use of a tag shall agree with its declaration

30. (R) All automatics shall be initialized before being used

This rule is checked using worst-case assumptions. This
means that violations are reported not only for variables that
are guaranteed to be uninitialized, but also for variables that
are uninitialized on some execution paths.

31. (R) Braces shall be used in the initialization of arrays and
structures

MISRA-C Rules 10-5

• • • • • • • •

32. (R) Only the first, or all enumeration constants may be
initialized

33. (R) The right hand operand of && or || shall not contain side
effects

34. (R) The operands of a logical && or || shall be primary
expressions

35. (R) Assignment operators shall not be used in Boolean
expressions

36. (A) Logical operators should not be confused with bitwise
operators

37. (R) Bitwise operations shall not be performed on signed
integers

38. (R) A shift count shall be between 0 and the operand width
minus 1

This violation will only be checked when the shift count
evaluates to a constant value at compile time.

39. (R) The unary minus shall not be applied to an unsigned
expression

40. (A) "sizeof" should not be used on expressions with side effects

x 41. (A) The implementation of integer division should be
documented

42. (R) The comma operator shall only be used in a "for" condition

43. (R) Don't use implicit conversions which may result in
information loss

44. (A) Redundant explicit casts should not be used

45. (R) Type casting from any type to or from pointers shall not be
used

46. (R) The value of an expression shall be evaluation order
independent

This rule is checked using worst-case assumptions. This
means that a violation will be reported when a possible alias
may cause the result of an expression to be evaluation order
dependent.

47. (A) No dependence should be placed on operator precedence
rules

48. (A) Mixed arithmetic should use explicit casting

TriCore Reference Manual10-6
M
IS
R
A
-C

49. (A) Tests of a (non-Boolean) value against 0 should be made
explicit

50. (R) F.P. variables shall not be tested for exact equality or
inequality

51. (A) Constant unsigned integer expressions should not
wrap-around

52. (R) There shall be no unreachable code

53. (R) All non-null statements shall have a side-effect

54. (R) A null statement shall only occur on a line by itself

55. (A) Labels should not be used

56. (R) The "goto" statement shall not be used

57. (R) The "continue" statement shall not be used

58. (R) The "break" statement shall not be used (except in a
"switch")

59. (R) An "if" or loop body shall always be enclosed in braces

60. (A) All "if", "else if" constructs should contain a final "else"

61. (R) Every non-empty "case" clause shall be terminated with a
"break"

62. (R) All "switch" statements should contain a final "default" case

63. (A) A "switch" expression should not represent a Boolean case

64. (R) Every "switch" shall have at least one "case"

65. (R) Floating point variables shall not be used as loop counters

66. (A) A "for" should only contain expressions concerning loop
control

A violation is reported when the loop initialization or loop
update expression modifies an object that is not referenced
in the loop test.

67. (A) Iterator variables should not be modified in a "for" loop

68. (R) Functions shall always be declared at file scope

69. (R) Functions with variable number of arguments shall not be
used

MISRA-C Rules 10-7

• • • • • • • •

70. (R) Functions shall not call themselves, either directly or
indirectly

A violation will be reported for direct or indirect recursive
function calls in the source file being checked. Recursion via
functions in other source files, or recursion via function
pointers is not detected.

71. (R) Function prototypes shall be visible at the definition and call

72. (R) The function prototype of the declaration shall match the
definition

73. (R) Identifiers shall be given for all prototype parameters or for
none

74. (R) Parameter identifiers shall be identical for
declaration/definition

75. (R) Every function shall have an explicit return type

76. (R) Functions with no parameters shall have a "void" parameter
list

77. (R) An actual parameter type shall be compatible with the
prototype

78. (R) The number of actual parameters shall match the prototype

79. (R) The values returned by "void" functions shall not be used

80. (R) Void expressions shall not be passed as function parameters

81. (A) "const" should be used for reference parameters not
modified

82. (A) A function should have a single point of exit

83. (R) Every exit point shall have a "return" of the declared return
type

84. (R) For "void" functions, "return" shall not have an expression

85. (A) Function calls with no parameters should have empty
parentheses

86. (A) If a function returns error information, it should be tested

A violation is reported when the return value of a function
is ignored.

87. (R) #include shall only be preceded by other directives or
comments

88. (R) Non-standard characters shall not occur in #include
directives

TriCore Reference Manual10-8
M
IS
R
A
-C

89. (R) #include shall be followed by either <filename> or
"filename"

90. (R) Plain macros shall only be used for
constants/qualifiers/specifiers

91. (R) Macros shall not be #define'd and #undef'd within a block

92. (A) #undef should not be used

93. (A) A function should be used in preference to a function-like
macro

94. (R) A function-like macro shall not be used without all
arguments

95. (R) Macro arguments shall not contain pre-preprocessing
directives

A violation is reported when the first token of an actual
macro argument is '#'.

96. (R) Macro definitions/parameters should be enclosed in
parentheses

97. (A) Don't use undefined identifiers in pre-processing directives

98. (R) A macro definition shall contain at most one # or ##
operator

99. (R) All uses of the #pragma directive shall be documented

This rule is really a documentation issue. The compiler will
flag all #pragma directives as violations.

100. (R) "defined" shall only be used in one of the two standard
forms

101. (A) Pointer arithmetic should not be used

102. (A) No more than 2 levels of pointer indirection should be used

A violation is reported when a pointer with three or more
levels of indirection is declared.

103. (R) No relational operators between pointers to different objects

In general, checking whether two pointers point to the same
object is impossible. The compiler will only report a
violation for a relational operation with incompatible pointer
types.

104. (R) Non-constant pointers to functions shall not be used

105. (R) Functions assigned to the same pointer shall be of identical
type

MISRA-C Rules 10-9

• • • • • • • •

106. (R) Automatic address may not be assigned to a longer lived
object

107. (R) The null pointer shall not be de-referenced

A violation is reported for every pointer dereference that is
not guarded by a NULL pointer test.

108. (R) All struct/union members shall be fully specified

109. (R) Overlapping variable storage shall not be used

A violation is reported for every 'union' declaration.

110. (R) Unions shall not be used to access the sub-parts of larger
types

A violation is reported for a 'union' containing a 'struct'
member.

111. (R) Bit fields shall have type "unsigned int" or "signed int"

112. (R) Bit fields of type "signed int" shall be at least 2 bits long

113. (R) All struct/union members shall be named

114. (R) Reserved and standard library names shall not be redefined

115. (R) Standard library function names shall not be reused

x 116. (R) Production libraries shall comply with the MISRA-C
restrictions

x 117. (R) The validity of library function parameters shall be checked

118. (R) Dynamic heap memory allocation shall not be used

119. (R) The error indicator "errno" shall not be used

120. (R) The macro "offsetof" shall not be used

121. (R) <locale.h> and the "setlocale" function shall not be used

122. (R) The "setjmp" and "longjmp" functions shall not be used

123. (R) The signal handling facilities of <signal.h> shall not be used

124. (R) The <stdio.h> library shall not be used in production code

125. (R) The functions atof/atoi/atol shall not be used

126. (R) The functions abort/exit/getenv/system shall not be used

127. (R) The time handling functions of library <time.h> shall not be
used

TriCore Reference Manual10-10
M
IS
R
A
-C

10.2 MISRA-C:2004

This section lists all supported and unsupported MISRA-C:2004 rules.

See also section 5.7, C Code Checking: MISRA-C, in Chapter Using the
Compiler of the User's Manual.

A number of MISRA-C rules leave room for interpretation. Other rules can

only be checked in a limited way. In such cases the implementation

decisions and possible restrictions for these rules are listed.

x means that the rule is not supported by the TASKING C compiler.

(R) is a required rule, (A) is an advisory rule.

Environment

1.1 (R) All code shall conform to ISO 9899:1990 "Programming
languages - C", amended and corrected by ISO/IEC
9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC
9899/COR2:1996.

1.2 (R) No reliance shall be placed on undefined or unspecified
behavior.

x 1.3 (R) Multiple compilers and/or languages shall only be used if
there is a common defined interface standard for object
code to which the languages/compilers/assemblers conform.

x 1.4 (R) The compiler/linker shall be checked to ensure that 31
character significance and case sensitivity are supported for
external identifiers.

x 1.5 (A) Floating-point implementations should comply with a
defined floating-point standard.

Language extensions

2.1 (R) Assembly language shall be encapsulated and isolated.

2.2 (R) Source code shall only use /* ... */ style comments.

MISRA-C Rules 10-11

• • • • • • • •

2.3 (R) The character sequence /* shall not be used within a
comment.

2.4 (A) Sections of code should not be "commented out".

In general, it is not possible to decide whether a piece of
comment is C code that is commented out, or just some
pseudo code. Instead, the following heuristics are used to
detect possible C code inside a comment:

- a line ends with ';', or

- a line starts with '}', possibly preceded by white space

Documentation

x 3.1 (R) All usage of implementation-defined behavior shall be
documented.

x 3.2 (R) The character set and the corresponding encoding shall be
documented.

x 3.3 (A) The implementation of integer division in the chosen
compiler should be determined, documented and taken into
account.

3.4 (R) All uses of the #pragma directive shall be documented and
explained.

This rule is really a documentation issue. The compiler will
flag all #pragma directives as violations.

3.5 (R) The implementation-defined behavior and packing of bit
fields shall be documented if being relied upon.

x 3.6 (R) All libraries used in production code shall be written to
comply with the provisions of this document, and shall have
been subject to appropriate validation.

Character sets

4.1 (R) Only those escape sequences that are defined in the ISO C
standard shall be used.

4.2 (R) Trigraphs shall not be used.

TriCore Reference Manual10-12
M
IS
R
A
-C

Identifiers

5.1 (R) Identifiers (internal and external) shall not rely on the
significance of more than 31 characters.

5.2 (R) Identifiers in an inner scope shall not use the same name as
an identifier in an outer scope, and therefore hide that
identifier.

5.3 (R) A typedef name shall be a unique identifier.

5.4 (R) A tag name shall be a unique identifier.

x 5.5 (A) No object or function identifier with static storage duration
should be reused.

5.6 (A) No identifier in one name space should have the same
spelling as an identifier in another name space, with the
exception of structure and union member names.

x 5.7 (A) No identifier name should be reused.

Types

6.1 (R) The plain char type shall be used only for storage and use
of character values.

x 6.2 (R) signed and unsigned char type shall be used only for
the storage and use of numeric values.

6.3 (A) typedefs that indicate size and signedness should be used
in place of the basic types.

6.4 (R) Bit fields shall only be defined to be of type unsigned int
or signed int.

6.5 (R) Bit fields of type signed int shall be at least 2 bits long.

Constants

7.1 (R) Octal constants (other than zero) and octal escape
sequences shall not be used.

Declarations and definitions

8.1 (R) Functions shall have prototype declarations and the
prototype shall be visible at both the function definition and
call.

8.2 (R) Whenever an object or function is declared or defined, its
type shall be explicitly stated.

MISRA-C Rules 10-13

• • • • • • • •

8.3 (R) For each function parameter the type given in the
declaration and definition shall be identical, and the return
types shall also be identical.

8.4 (R) If objects or functions are declared more than once their
types shall be compatible.

8.5 (R) There shall be no definitions of objects or functions in a
header file.

8.6 (R) Functions shall be declared at file scope.

8.7 (R) Objects shall be defined at block scope if they are only
accessed from within a single function.

x 8.8 (R) An external object or function shall be declared in one and
only one file.

x 8.9 (R) An identifier with external linkage shall have exactly one
external definition.

x 8.10 (R) All declarations and definitions of objects or functions at file
scope shall have internal linkage unless external linkage is
required.

8.11 (R) The static storage class specifier shall be used in
definitions and declarations of objects and functions that
have internal linkage.

8.12 (R) When an array is declared with external linkage, its size
shall be stated explicitly or defined implicitly by
initialization.

Initialization

9.1 (R) All automatic variables shall have been assigned a value
before being used.

This rule is checked using worst-case assumptions. This
means that violations are reported not only for variables that
are guaranteed to be uninitialized, but also for variables that
are uninitialized on some execution paths.

9.2 (R) Braces shall be used to indicate and match the structure in
the non-zero initialization of arrays and structures.

9.3 (R) In an enumerator list, the "=" construct shall not be used to
explicitly initialize members other than the first, unless all
items are explicitly initialized.

TriCore Reference Manual10-14
M
IS
R
A
-C

Arithmetic type conversions

10.1 (R) The value of an expression of integer type shall not be
implicitly converted to a different underlying type if:
a) it is not a conversion to a wider integer type of the same
signedness, or
b) the expression is complex, or
c) the expression is not constant and is a function argument,
or
d) the expression is not constant and is a return expression.

10.2 (R) The value of an expression of floating type shall not be
implicitly converted to a different type if:
a) it is not a conversion to a wider floating type, or
b) the expression is complex, or
c) the expression is a function argument, or
d) the expression is a return expression.

10.3 (R) The value of a complex expression of integer type may only
be cast to a type that is narrower and of the same
signedness as the underlying type of the expression.

10.4 (R) The value of a complex expression of floating type may
only be cast to a narrower floating type.

10.5 (R) If the bitwise operators ~ and << are applied to an operand
of underlying type unsigned char or unsigned short,
the result shall be immediately cast to the underlying type of
the operand.

10.6 (R) A "U" suffix shall be applied to all constants of unsigned
type.

Pointer type conversions

11.1 (R) Conversions shall not be performed between a pointer to a
function and any type other than an integral type.

11.2 (R) Conversions shall not be performed between a pointer to
object and any type other than an integral type, another
pointer to object type or a pointer to void.

11.3 (A) A cast should not be performed between a pointer type and
an integral type.

MISRA-C Rules 10-15

• • • • • • • •

11.4 (A) A cast should not be performed between a pointer to object
type and a different pointer to object type.

11.5 (R) A cast shall not be performed that removes any const or
volatile qualification from the type addressed by a
pointer.

Expressions

12.1 (A) Limited dependence should be placed on C's operator
precedence rules in expressions.

12.2 (R) The value of an expression shall be the same under any
order of evaluation that the standard permits.

This rule is checked using worst-case assumptions. This
means that a violation will be reported when a possible alias
may cause the result of an expression to be evaluation order
dependent.

12.3 (R) The sizeof operator shall not be used on expressions that
contain side effects.

12.4 (R) The right-hand operand of a logical && or || operator shall
not contain side effects.

12.5 (R) The operands of a logical && or || shall be
primary-expressions.

12.6 (A) The operands of logical operators (&&, || and !) should be
effectively Boolean. Expressions that are effectively Boolean
should not be used as operands to operators other than (&&,
|| and !).

12.7 (R) Bitwise operators shall not be applied to operands whose
underlying type is signed.

12.8 (R) The right-hand operand of a shift operator shall lie between
zero and one less than the width in bits of the underlying
type of the left-hand operand.

This violation will only be checked when the shift count
evaluates to a constant value at compile time.

12.9 (R) The unary minus operator shall not be applied to an
expression whose underlying type is unsigned.

12.10 (R) The comma operator shall not be used.

12.11 (A) Evaluation of constant unsigned integer expressions should
not lead to wrap-around.

TriCore Reference Manual10-16
M
IS
R
A
-C

12.12 (R) The underlying bit representations of floating-point values
shall not be used.

A violation is reported when a pointer to a floating point
type is converted to a pointer to an integer type.

12.13 (A) The increment (++) and decrement (--) operators should
not be mixed with other operators in an expression.

Control statement expressions

13.1 (R) Assignment operators shall not be used in expressions that
yield a Boolean value.

13.2 (A) Tests of a value against zero should be made explicit, unless
the operand is effectively Boolean.

13.3 (R) Floating-point expressions shall not be tested for equality or
inequality.

13.4 (R) The controlling expression of a for statement shall not
contain any objects of floating type.

13.5 (R) The three expressions of a for statement shall be
concerned only with loop control.

A violation is reported when the loop initialization or loop
update expression modifies an object that is not referenced
in the loop test.

13.6 (R) Numeric variables being used within a for loop for iteration
counting shall not be modified in the body of the loop.

13.7 (R) Boolean operations whose results are invariant shall not be
permitted.

Control flow

14.1 (R) There shall be no unreachable code.

14.2 (R) All non-null statements shall either:
a) have at least one side effect however executed, or
b) cause control flow to change.

14.3 (R) Before preprocessing, a null statement shall only occur on a
line by itself; it may be followed by a comment provided
that the first character following the null statement is a
white-space character.

14.4 (R) The goto statement shall not be used.

14.5 (R) The continue statement shall not be used.

MISRA-C Rules 10-17

• • • • • • • •

14.6 (R) For any iteration statement there shall be at most one break
statement used for loop termination.

14.7 (R) A function shall have a single point of exit at the end of the
function.

14.8 (R) The statement forming the body of a switch, while, do
... while or for statement be a compound statement.

14.9 (R) An if (expression) construct shall be followed by a
compound statement. The else keyword shall be followed
by either a compound statement, or another if statement.

14.10 (R) All if ... else if constructs shall be terminated with an
else clause.

Switch statements

15.1 (R) A switch label shall only be used when the most
closely-enclosing compound statement is the body of a
switch statement.

15.2 (R) An unconditional break statement shall terminate every
non-empty switch clause.

15.3 (R) The final clause of a switch statement shall be the default
clause.

15.4 (R) A switch expression shall not represent a value that is
effectively Boolean.

15.5 (R) Every switch statement shall have at least one case clause.

Functions

16.1 (R) Functions shall not be defined with variable numbers of
arguments.

16.2 (R) Functions shall not call themselves, either directly or
indirectly.

A violation will be reported for direct or indirect recursive
function calls in the source file being checked. Recursion via
functions in other source files, or recursion via function
pointers is not detected.

16.3 (R) Identifiers shall be given for all of the parameters in a
function prototype declaration.

16.4 (R) The identifiers used in the declaration and definition of a
function shall be identical.

TriCore Reference Manual10-18
M
IS
R
A
-C

16.5 (R) Functions with no parameters shall be declared with
parameter type void.

16.6 (R) The number of arguments passed to a function shall match
the number of parameters.

16.7 (A) A pointer parameter in a function prototype should be
declared as pointer to const if the pointer is not used to
modify the addressed object.

16.8 (R) All exit paths from a function with non-void return type
shall have an explicit return statement with an expression.

16.9 (R) A function identifier shall only be used with either a
preceding &, or with a parenthesized parameter list, which
may be empty.

16.10 (R) If a function returns error information, then that error
information shall be tested.

A violation is reported when the return value of a function
is ignored.

Pointers and arrays

x 17.1 (R) Pointer arithmetic shall only be applied to pointers that
address an array or array element.

x 17.2 (R) Pointer subtraction shall only be applied to pointers that
address elements of the same array.

17.3 (R) >, >=, <, <= shall not be applied to pointer types except
where they point to the same array.

In general, checking whether two pointers point to the same
object is impossible. The compiler will only report a
violation for a relational operation with incompatible pointer
types.

17.4 (R) Array indexing shall be the only allowed form of pointer
arithmetic.

17.5 (A) The declaration of objects should contain no more than 2
levels of pointer indirection.

A violation is reported when a pointer with three or more
levels of indirection is declared.

17.6 (R) The address of an object with automatic storage shall not be
assigned to another object that may persist after the first
object has ceased to exist.

MISRA-C Rules 10-19

• • • • • • • •

Structures and unions

18.1 (R) All structure or union types shall be complete at the end of
a translation unit.

18.2 (R) An object shall not be assigned to an overlapping object.

x 18.3 (R) An area of memory shall not be reused for unrelated
purposes.

18.4 (R) Unions shall not be used.

Preprocessing directives

19.1 (A) #include statements in a file should only be preceded by
other preprocessor directives or comments.

19.2 (A) Non-standard characters should not occur in header file
names in #include directives.

x 19.3 (R) The #include directive shall be followed by either a
<filename> or "filename" sequence.

19.4 (R) C macros shall only expand to a braced initializer, a
constant, a parenthesized expression, a type qualifier, a
storage class specifier, or a do-while-zero construct.

19.5 (R) Macros shall not be #define'd or #undef'd within a block.

19.6 (R) #undef shall not be used.

19.7 (A) A function should be used in preference to a function-like
macro.

19.8 (R) A function-like macro shall not be invoked without all of its
arguments.

19.9 (R) Arguments to a function-like macro shall not contain tokens
that look like preprocessing directives.

A violation is reported when the first token of an actual
macro argument is '#'.

19.10 (R) In the definition of a function-like macro each instance of a
parameter shall be enclosed in parentheses unless it is used
as the operand of # or ##.

19.11 (R) All macro identifiers in preprocessor directives shall be
defined before use, except in #ifdef and #ifndef
preprocessor directives and the defined() operator.

19.12 (R) There shall be at most one occurrence of the # or ##
preprocessor operators in a single macro definition.

TriCore Reference Manual10-20
M
IS
R
A
-C

19.13 (A) The # and ## preprocessor operators should not be used.

19.14 (R) The defined preprocessor operator shall only be used in
one of the two standard forms.

19.15 (R) Precautions shall be taken in order to prevent the contents
of a header file being included twice.

19.16 (R) Preprocessing directives shall be syntactically meaningful
even when excluded by the preprocessor.

19.17 (R) All #else, #elif and #endif preprocessor directives shall
reside in the same file as the #if or #ifdef directive to
which they are related.

Standard libraries

20.1 (R) Reserved identifiers, macros and functions in the standard
library, shall not be defined, redefined or undefined.

20.2 (R) The names of standard library macros, objects and functions
shall not be reused.

x 20.3 (R) The validity of values passed to library functions shall be
checked.

20.4 (R) Dynamic heap memory allocation shall not be used.

20.5 (R) The error indicator errno shall not be used.

20.6 (R) The macro offsetof, in library <stddef.h>, shall not be
used.

20.7 (R) The setjmp macro and the longjmp function shall not be
used.

20.8 (R) The signal handling facilities of <signal.h> shall not be
used.

20.9 (R) The input/output library <stdio.h> shall not be used in
production code.

20.10 (R) The library functions atof, atoi and atol from library
<stdlib.h> shall not be used.

20.11 (R) The library functions abort, exit, getenv and system
from library <stdlib.h> shall not be used.

20.12 (R) The time handling functions of library <time.h> shall not
be used.

MISRA-C Rules 10-21

• • • • • • • •

Run-time failures

x 21.1 (R) Minimization of run-time failures shall be ensured by the
use of at least one of:
a) static analysis tools/techniques;
b) dynamic analysis tools/techniques;
c) explicit coding of checks to handle run-time faults.

TriCore Reference Manual10-22
M
IS
R
A
-C

INDEX
I
N
D
E
X

IndexIndex-2
IN
D
E
X

I
N
D
E
X

Index Index-3

• • • • • • • •

Symbols
#define, 5-13, 5-113

#include, 5-26

#undef, 5-58

__BUILD__, 1-31

__REVISION__, 1-31

__VERSION__, 1-31

_close, 2-24

_Complex, 2-4

_Exit, 2-36

_fp_get_exception_mask, 4-15

_fp_get_exception_status, 4-16

_fp_install_trap_handler, 4-16

_fp_set_exception_mask, 4-15

_fp_set_exception_status, 4-16

_fss_break, 2-10

_fss_init, 2-10

_Imaginary, 2-4

_IOFBF, 2-25

_IOLBF, 2-25

_IONBF, 2-25

_lseek, 2-24

_open, 2-24

_read, 2-24

_START, 4-3

_tolower, 2-7

_unlink, 2-24

_write, 2-24

A
abort, 2-36

abs, 2-37, 3-6

access, 2-44

accum, 3-22

acos functions, 2-13

acosh functions, 2-14

acs, 3-7

address spaces, 8-23

alias, 1-26

align, 1-26, 3-23

Alignment gaps, 8-42

architecture definition, 8-3, 8-21

archiver options

-?, 5-243
-d, 5-244
-p, 5-246
-m, 5-245
-r, 5-247
-t, 5-249
-V, 5-250
-w, 5-252
-x, 5-251
add module, 5-247
create library, 5-247
delete module, 5-244
extract module, 5-251
move module, 5-245
print list of objects, 5-249
print list of symbols, 5-249
print module, 5-246
replace module, 5-247

arg, 3-7

Argument, 2-5

ascii, 3-24

asciiz, 3-24

asctime, 2-42

asin functions, 2-13

asinh functions, 2-13

asn, 3-7

aspcp, 3-7

assembler controls

$case, 3-67
$cpu_tc, 3-68
$debug, 3-69
$dmu_tc, 3-68
$fpu, 3-70
$hw_only, 3-71
$ident, 3-72
$list, 3-75
$list on/off, 3-73
$mmu, 3-77

IndexIndex-4
IN
D
E
X

$object, 3-78
$page, 3-79
$pmi_tc, 3-68
$pmu_tc, 3-68
$prctl, 3-81
$stitle, 3-82
$tc2, 3-83
$title, 3-84
$warning off, 3-85
detailed description, 3-66
listing controls (overview), 3-65
miscellaneous (overview), 3-65
overview, 3-65

assembler directives

accum, 3-22
align, 3-23
ascii, 3-24
asciiz, 3-24
assembly control (overview), 3-19
byte, 3-25
calls, 3-27
comment, 3-28
conditional assembly (overview),

3-21
data definition (overview), 3-20
debug information (overview), 3-21
define, 3-29
detailed description, 3-21
double, 3-39
dup/endm, 3-30
dupa/endm, 3-31
dupc/endm, 3-32
dupf/endm, 3-33
end, 3-34
equ, 3-35
exitm, 3-36
extern, 3-37
fail, 3-38
float, 3-39
fract, 3-40
global, 3-41
half, 3-63
if, 3-42

include, 3-44
local, 3-45
macro/endm, 3-46
macros (overview), 3-21
message, 3-48
org, 3-49
overview, 3-19
pmacro, 3-51
sdecl, 3-52
sect, 3-55
set, 3-56
sfract, 3-40
size, 3-57
space, 3-58
storage allocation (overview), 3-20
symbol definitions (overview), 3-20
type, 3-59
undef, 3-60
warning, 3-61
weak, 3-62
word, 3-63

assembler list file, 5-91

assembler options

-?, 5-69
--case-sensitive, 5-72
--check, 5-73
--cpu, 5-70
--debug-info, 5-83
--define, 5-74
--diag, 5-76
--emit-locals, 5-78
--error-file, 5-79
--fpu-present, 5-82
--help, 5-69
--include-directory, 5-86
--include-file, 5-85
--is-tricore2, 5-89
--keep-output-files, 5-90
--list-file, 5-93
--list-format, 5-91
--mmu-present, 5-95
--no-tasking-sfr, 5-96
--no-warnings, 5-104

Index Index-5

• • • • • • • •

--optimize, 5-97
--option-file, 5-80
--output, 5-98
--preprocessor-type, 5-94
--section-info, 5-101
--silicon-bug, 5-99
--symbol-scope, 5-88
--version, 5-103
--warnings-as-errors, 5-106
-C, 5-70
-c, 5-72
-D, 5-74
-f, 5-80
-g, 5-83
-H, 5-85
-I, 5-86
-i, 5-88
-k, 5-90
-L, 5-91
-l, 5-93
-m, 5-94
-O, 5-97
-o, 5-98
-t, 5-101
-V, 5-103
-w, 5-104

assembly functions

abs, 3-6
acs, 3-7
address calculation (overview), 3-6
arg, 3-7
asn, 3-7
aspcp, 3-7
assembler mode (overview), 3-6
astc, 3-7
at2, 3-8
atn, 3-8
fract, 3-8, 3-11
cel, 3-8
cnt, 3-8
coh, 3-9
conversions (overview), 3-5
cos, 3-9

cpu, 3-9
cvf, 3-9
cvi, 3-9
def, 3-10
dptr, 3-10
exp, 3-10
fld, 3-11
flr, 3-11
hi, 3-11
his, 3-12
init_r7, 3-12
int, 3-12
l10, 3-12
len, 3-12
lng, 3-13
lo, 3-13
log, 3-13
los, 3-13
lsb, 3-13
lst, 3-14
lun, 3-14
mac, 3-14
macros (overview), 3-5
mathematical (overview), 3-4
max, 3-14
min, 3-14
msb, 3-15
mxp, 3-15
pos, 3-15
pow, 3-15
rnd, 3-15
rvb, 3-16
scp, 3-16
sfract, 3-16
sgn, 3-16
sin, 3-16
snh, 3-17
sqt, 3-17
strings (overview), 3-5
sub, 3-17
syntax, 3-3
tan, 3-17
tnh, 3-17

IndexIndex-6
IN
D
E
X

unf, 3-18
xpn, 3-18

astc, 3-7

at2, 3-8

atan functions, 2-13

atan2 functions, 2-13

atanh functions, 2-14

atexit, 2-36

atn, 3-8

atof, 2-34

atoi, 2-34

atol, 2-34

atoll, 2-34

B
bit handling, 1-23

board specification, 8-5, 8-33

bsearch, 2-36

btowc, 2-46

BUFSIZ, 2-23

bus definition, 8-4

buses, 8-23

byte, 3-25

C
C library, reentrancy, 2-48

cabs, 2-5

cacos, 2-5

cacosh, 2-5

calloc, 2-35

calls, 3-27

carg, 2-5

case, 3-67

case sensitivity, 5-112

casin, 2-5

casinh, 2-5

cat, 3-8

catan, 2-5

catanh, 2-5

cbrt functions, 2-17

ccos, 2-5

ccosh, 2-5

ceil functions, 2-15

cel, 3-8

cexp, 2-5

char type, treat as unsigned, 5-59

chdir, 2-44

check source code, 5-11, 5-73, 5-159

cimag, 2-5

clear/noclear, 1-27

clearerr, 2-33

clock, 2-42

clock_t, 2-41

CLOCKS_PER_SEC, 2-42

clog, 2-5

close, 2-44

cnt, 3-8

coh, 3-9

command file, 5-21, 5-80, 5-121,

5-168, 5-228

comment, 3-28

comments, 8-7

common subexpression elimination,

5-12

compiler options

-?, 5-4
--align, 5-7
--check, 5-11
--cpu, 5-8
--cse-all-addresses, 5-12
--debug-info, 5-24
--default-a0-size, 5-66
--default-a1-size, 5-64
--default-near-size, 5-39
--define, 5-13
--diag, 5-15
--error-file, 5-19
--fpu-present, 5-23
--help, 5-4
--include-directory, 5-26
--include-file, 5-25
--indirect, 5-28

Index Index-7

• • • • • • • •

--indirect-runtime, 5-29
--inline, 5-30
--inline-max-incr, 5-31
--inline-max-size, 5-31
--integer-enumeration, 5-33
--is-tricore2, 5-34
--iso, 5-10
--keep-output-files, 5-35
--language, 5-5
--misrac, 5-36
--misrac-advisory-warnings, 5-37
--misrac-required-warnings, 5-37
--misrac-version, 5-38
--no-double, 5-20
--no-tasking-sfr, 5-42
--no-warnings, 5-61
--object-comment, 5-47
--option-file, 5-21
--output, 5-46
--preprocess, 5-17
--rename-sections, 5-48
--section-per-data-object, 5-51
--silicon-bug, 5-52, 5-55
--source, 5-50
--static, 5-54
--stdout, 5-41
--tradeoff, 5-57
--uchar, 5-59
--undefine, 5-58
--version, 5-60
--warnings-as-errors, 5-63
-A, 5-5
-C, 5-8
-c, 5-10
-D, 5-13
-E, 5-17
-F, 5-20
-f, 5-21
-g, 5-24
-H, 5-25
-I, 5-26
-k, 5-35
-N, 5-39

-n, 5-41
--optimize, 5-43
-O, 5-43
-o, 5-46
-R, 5-48
-s, 5-50
-t, 5-57
-U, 5-58
-u, 5-59
-V, 5-60
-w, 5-61
-Y, 5-64
-Z, 5-66

complex, 2-4

conditional make rules, 5-214

conj, 2-5

Conjugate value, 2-5

control program options

-?, 5-154
--address-size, 5-155
--case-sensitive, 5-157
--check, 5-159
--cpu, 5-156
--create, 5-158
--d, 5-162
--debug-info, 5-177
--define, 5-160
--diag, 5-163
--dry-run, 5-191
--error-file, 5-165
--exeptions, 5-166
--force-c, 5-170
--force-c++, 5-171
--force-munch, 5-172
--force-prelink, 5-173
--format, 5-174
--fptrap, 5-175
--fpu-present, 5-176
--help, 5-154
--ignore-default-library-path,

5-186
--include-directory, 5-178
--instantiate, 5-179

IndexIndex-8
IN
D
E
X

--instantiation-dir, 5-181
--instantiation-file, 5-182
--is-tricore2, 5-183
--iso, 5-184
--keep-output-files, 5-185
--keep-temporary-files, 5-205
--library, 5-188
--library-directory, 5-186
--list-object-files, 5-189
--lsl-file, 5-162
--mmu-present, 5-190
--no-auto-instantiation, 5-192
--no-default-libraries, 5-193
--no-double, 5-167
--no-map-file, 5-194
--no-one-instantiation-per-object,

5-195
--no-tasking-sfr, 5-196
--no-warnings, 5-211
--option-file, 5-168
--output, 5-197
--pass, 5-210
--pass-assembler, 5-210
--pass-c, 5-210
--pass-linker, 5-210
--pass-c++, 5-210
--pass-prelinker, 5-210
--prelink-copy-if-non-local, 5-198
--prelink-local-only, 5-199
--prelink-remove-instantiation-flags

, 5-200
--preprocess, 5-164
--show-c++-warnings, 5-201
--silicon-bug, 5-202
--space, 5-203
--static, 5-204
--undefine, 5-206
--use-double-precision-fp, 5-207
--verbose, 5-209
--version, 5-208
--warnings-as-errors, 5-212
-C, 5-156
-cc, 5-158

-cl, 5-158
-co, 5-158
-cs, 5-158
-D, 5-160
-E, 5-164
-F, 5-167
-f, 5-168
-g, 5-177
-I, 5-178
-k, 5-185
-L, 5-186
-l, 5-188
-n, 5-191
-o, 5-197
-t, 5-205
-U, 5-206
-V, 5-208
-v, 5-209
-W, 5-210
-w, 5-211
-Wa, 5-210
-Wc, 5-210
-Wcp, 5-210
-Wl, 5-210
-Wpl, 5-210

controls

See also assembler directives
detailed description, 3-66

copy table, 5-138, 8-25, 8-48

copysign functions, 2-17

core type, 5-70

cos, 3-9

cos functions, 2-13

cosh functions, 2-13

cpow, 2-5

cproj, 2-6

cpu, 3-9

CPU type, 5-8, 5-70, 5-156

cpu_tc, 3-68

creal, 2-6

CSE, 5-12

csin, 2-5

csinh, 2-5

Index Index-9

• • • • • • • •

csqrt, 2-5

cstart.asm, 4-3

ctan, 2-5

ctanh, 2-5

ctime, 2-42

cvf, 3-9

cvi, 3-9

cycle count, 5-101

D
data types, 1-4

debug, 3-69

debug information, 5-24, 5-83, 5-147

def, 3-10

default_a0_size, 1-27

default_a1_size, 1-27

default_near_size, 1-27

define, 3-29

derivative definition, 8-4, 8-29

difftime, 2-42

directives

See also assembler directives
detailed description, 3-21

div, 2-37

dmu_tc, 3-68

double, 3-39

dptr, 3-10

dup, 3-30

dupa, 3-31

dupc, 3-32

dupf, 3-33

E
ELF/DWARF object format, 7-3

elif, 3-42

else, 3-42

end, 3-34

endif, 3-42

enum, 5-33

EOF, 2-23

equ, 3-35

erf functions, 2-18

erfc functions, 2-18

errno, 2-7

errno declaration, 2-59

errno.h, 2-59

exceptions, floating-point, 4-13

exit, 2-36

exit macro, 3-36

EXIT_FAILURE, 2-34

EXIT_SUCCES, 2-34

exitm, 3-36

exp, 3-10

exp functions, 2-14

exp2 functions, 2-14

expm1 functions, 2-14

extension isuffix, 1-27

extern, 1-27, 3-37

F
fabs functions, 2-17

fail, 3-38

fclose, 2-24

fdim functions, 2-18

FE_ALL_EXCEPT, 2-10

FE_DIVBYZERO, 2-10

FE_INEXACT, 2-10

FE_INVALID, 2-10

FE_OVERFLOW, 2-10

FE_UNDERFLOW, 2-10

feclearexcept, 2-9

fegetenv, 2-9

fegetexceptflag, 2-9

feholdexept, 2-9

feof, 2-33

feraiseexcept, 2-9

ferror, 2-33

fesetenv, 2-9

fesetexceptflag, 2-9

fetestexcept, 2-9, 2-10

IndexIndex-10
IN
D
E
X

feupdateenv, 2-9

fflush, 2-25

fgetc, 2-29

fgetpos, 2-32

fgets, 2-29

fgetwc, 2-29

fgetws, 2-29

File system simulation, 2-4

FILENAME_MAX, 2-23

fld, 3-11

float, 3-39

floating-point, 4-10

libraries, 4-13
single precision, 5-23, 5-82, 5-176
special values, 4-13
trap handler, 4-14
trap handling api, 4-15
trapping, 4-13

floor functions, 2-15

flr, 3-11

fma functions, 2-17

fmax functions, 2-18

fmin functions, 2-18

fmod functions, 2-16

fopen, 2-24

FOPEN_MAX, 2-23

for_constant_data_use_memory, 1-28

for_extern_data_use_memory, 1-28

for_initialized_data_use_memory, 1-28

for_uninitialized_data_use_memory,

1-28

fpclassify, 2-19

fprintf, 2-31

fputc, 2-30

fputs, 2-30

fputwc, 2-30

fputws, 2-30

fract, 3-11, 3-40

fractional arithmetic support, 1-14

fread, 2-32

free, 2-35

freopen, 2-25

frexp functions, 2-16

fscanf, 2-29

fseek, 2-32

fsetpos, 2-32

FSS, 2-4

ftell, 2-32

functional problems, 9-3

functions, assembly, 3-3

fwprintf, 2-31

fwrite, 2-32

fwscanf, 2-29

G
getc, 2-29

getchar, 2-29

getcwd, 2-44

getenv, 2-36

gets, 2-29

getwc, 2-29

getwchar, 2-29

global, 3-41

gmtime, 2-42

H
half, 3-63

Header files, 2-4

alert.h, 2-4
complex.h, 2-4
ctype.h, 2-6
errno.h, 2-7
fcntl.h, 2-9
fenv.h, 2-9
float.h, 2-10
fss.h, 2-10
inttypes.h, 2-11
iso646.h, 2-12
limits.h, 2-12
locale.h, 2-12
math.h, 2-13

Index Index-11

• • • • • • • •

setjmp.h, 2-20
signal.h, 2-20
stdarg.h, 2-21
stdbool.h, 2-21
stddef.h, 2-22
stdint.h, 2-11
stdio.h, 2-22
stdlib.h, 2-33
string.h, 2-37
tgmath.h, 2-13
time.h, 2-41
unistd.h, 2-44
wchar.h, 2-22, 2-37, 2-41, 2-45
wctype.h, 2-6, 2-46

heap, 4-10, 8-24

begin of, 4-10
end of, 4-10

hi, 3-11

his, 3-12

hw_only, 3-71

hypot functions, 2-17

I
ident, 3-72

if, 3-42

ilogb functions, 2-14

imaginary, 2-4

imaxabs, 2-11

imaxdiv, 2-11

include, 3-44

indirect, 1-28

indirect function calling, 5-28, 5-29

indirect_runtime, 1-28

init_r7, 3-12

inline functions, 5-31

inline/noinline, 1-28

insert assembly instruction, 1-21

int, 3-12

Intel hex, record type, 7-8

interrupt handling, 1-19

intrinsic functions, 1-12

bit handling, 1-23
fractional data type, 1-14
insert assembly instruction, 1-21
interrupt handling, 1-19
min/max of integers, 1-13
miscellaneous, 1-25
packed data type, 1-15
register handling, 1-22

iob structures, 2-59

isalnum, 2-6

isalpha, 2-6

isblank, 2-6

iscntrl, 2-6

isdigit, 2-6

isfinite, 2-19

isgraph, 2-6

isgreater, 2-19

isgreaterequal, 2-19

isinf, 2-19

isless, 2-19

islessequal, 2-19

islessgreater, 2-19

islower, 2-6

isnan, 2-19

isnormal, 2-19

ISO C standard, 5-10

isprint, 2-6

ispunct, 2-6

isspace, 2-6

isunordered, 2-19

isupper, 2-6

iswalnum, 2-6, 2-46

iswalpha, 2-6, 2-46

iswblank, 2-6

iswcntrl, 2-6, 2-46

iswctype, 2-46

iswdigit, 2-6, 2-46

iswgraph, 2-6, 2-46

iswlower, 2-6, 2-47

iswprint, 2-6, 2-47

iswpunct, 2-6, 2-47

IndexIndex-12
IN
D
E
X

iswspace, 2-6, 2-47

iswupper, 2-6, 2-47

iswxdigit, 2-6

iswxditig, 2-47

isxdigit, 2-6

L
L_tmpnam, 2-23

l10, 3-12

labs, 2-37

language extensions, intrinsic

functions, 1-12

ldexp functions, 2-16

ldiv, 2-37

len, 3-12

lgamma functions, 2-18

linker map file, 5-133

linker options

-?, 5-109
--case-insensitive, 5-112
--chip-output, 5-110
--define, 5-113
--diag, 5-116
--error-file, 5-120
--extern, 5-118
--extra-verbose, 5-149
--first-library-first, 5-123
--help, 5-109
--ignore-default-library-path,

5-127
--include-directory, 5-124
--incremental, 5-146
--keep-output-files, 5-126
--library, 5-129
--library-directory, 5-127
--link-only, 5-130
--lsl-check, 5-131
--lsl-dump, 5-132
--map-file, 5-133
--map-file-format, 5-134

--misra-c-report, 5-136
--munch, 5-137
--no-rescan, 5-139
--no-rom-copy, 5-138
--no-warnings, 5-150
--non-romable, 5-141
--optimize, 5-142
--option-file, 5-121
--output, 5-144
--strip-debug, 5-147
--user-provided-initialization-code,

5-125
--verbose, 5-149
--version, 5-148
--warnings-as-errors, 5-152
-c, 5-110
-D, 5-113
-d, 5-114
-e, 5-118
-f, 5-121
-I, 5-124
-i, 5-125
-k, 5-126
-L, 5-127
-l, 5-129
-M, 5-133
-m, 5-134
-N, 5-138
-O, 5-142
-o, 5-144
-r, 5-146
-S, 5-147
-V, 5-148
-v, 5-149
-vv, 5-149
-w, 5-150

linker script file

architecture definition, 8-3
boad specification, 8-5
bus definition, 8-4
derivative definition, 8-4
memory definition, 8-4

Index Index-13

• • • • • • • •

preprocessing, 8-6
processor definition, 8-4
section layout definition, 8-5
structure, 8-3

list, 3-75

list file, 5-93

assembler, 5-91
linker, 5-133

list on/off, 3-73

llabs, 2-37

lldiv, 2-37

llrint functions, 2-15

llround functions, 2-15

lng, 3-13

lo, 3-13

local, 3-45

localeconv, 2-13

localtime, 2-42

log, 3-13

log functions, 2-14

log10 functions, 2-14

log1p functions, 2-14

log2 functions, 2-14

logb functions, 2-14

longjmp, 2-20

los, 3-13

lrint functions, 2-15

lround functions, 2-15

lsb, 3-13

lseek, 2-44

LSL expression evaluation, 8-20

LSL functions

absolute(), 8-9
addressof(), 8-9
exists(), 8-10
max(), 8-10
min(), 8-10
sizeof(), 8-10

LSL keywords

align, 8-23, 8-24, 8-25, 8-41
alloc_allowed, 8-46
allow_cross_references, 8-42
architecture, 8-22, 8-30

attributes, 8-40, 8-41
bus, 8-23, 8-26, 8-35
clustered, 8-42
contiguous, 8-41
copy_unit, 8-25
copytable, 8-25, 8-48
core, 8-30
derivative, 8-29, 8-34
dest, 8-25, 8-26
dest_dbits, 8-27
dest_offset, 8-26
direction, 8-38, 8-41
else, 8-49
extends, 8-22, 8-29
fill, 8-42, 8-46, 8-48
fixed, 8-24, 8-45, 8-46
group, 8-39, 8-40
grows, 8-24
heap, 8-24, 8-46
high_to_low, 8-24, 8-38
id, 8-23
if, 8-49
load_addr, 8-44
low_to_high, 8-24, 8-38
map, 8-23, 8-24, 8-26, 8-31
mau, 8-23, 8-31, 8-35
mem, 8-43
memory, 8-31, 8-35
min_size, 8-24, 8-45, 8-46
nvram, 8-31
ordered, 8-41
overlay, 8-42
page, 8-45
page_size, 8-24
processor, 8-33
ram, 8-31
reserved, 8-31, 8-46
rom, 8-31
run_addr, 8-25, 8-43
section, 8-47
section_layout, 8-38
select, 8-39

IndexIndex-14
IN
D
E
X

size, 8-26, 8-31, 8-35, 8-45, 8-46,
8-47

space, 8-23, 8-26
speed, 8-31, 8-35
src_dbits, 8-27
src_offset, 8-26
stack, 8-24, 8-45
start_address, 8-25
symbol, 8-25
type, 8-31, 8-35
width, 8-23

LSL syntax, 8-6

lst, 3-14

lun, 3-14

M
mac, 3-14

macro, 3-46

define, 5-160
definition, 3-46
undefine, 3-51, 5-206

macro/nomacro, 1-28

macros, 1-31

make utility, 5-214
macros, predefined

__DATE__, 5-58
__FILE__, 5-58
__LINE__, 5-58
__STDC__, 5-58
__TIME__, 5-58

Magnitude, 2-5

make utility options

-?, 5-216
-a, 5-217
-c, 5-218
-D, 5-219
-d, 5-220
-DD, 5-219
-dd, 5-220
-e, 5-221

-err, 5-222
-f, 5-223
-G, 5-224
-i, 5-225
-K, 5-226
-k, 5-227
-m, 5-228, 5-234
-n, 5-230
-p, 5-231
-q, 5-232
-r, 5-233
-s, 5-235
-t, 5-236
-time, 5-237
-V, 5-238
-W, 5-239
-w, 5-240
-x, 5-241
defining a macro, 5-214

malloc, 2-35

map file

control program option, 5-194
format, 5-134
linker, 5-133

mappings, 8-26

max, 3-14

MB_CUR_MAX, 2-34, 2-45

MB_LEN_MAX, 2-45

mblen, 2-37

mbrlen, 2-46

mbrtowc, 2-45

mbsinit, 2-45

mbsrtowcs, 2-45

mbstate_t, 2-45

mbstowcs, 2-37

mbtowc, 2-37

memchr, 2-40

memcmp, 2-39

memcpy, 2-38

memmove, 2-38

memory definition, 8-4

Index Index-15

• • • • • • • •

memory management instructions,

5-95, 5-190

memset, 2-41

message, 1-28, 3-48

min, 3-14

min/max of integers, 1-13

MISRA-C, 5-36, 5-37

supported rules 1998, 10-3
supported rules 2004, 10-10
version, 5-38

mktime, 2-42

fpu, 3-70

mmu, 3-77

modf functions, 2-16

Modulus, 2-5

msb, 3-15

mxp, 3-15

N
nan functions, 2-17

nearbyint functions, 2-15

nextafter functions, 2-17

nexttoward functions, 2-17

Norm, 2-5

NULL, 2-22

O
object, 3-78

object_comment, 1-29

offsetof, 2-22

open, 2-9

optimization, 5-43, 5-97, 5-142

optimize/endoptimize, 1-29

option file, 5-21, 5-80, 5-121, 5-168,

5-228

org, 3-49

output file, 5-46, 5-98, 5-144, 5-197

output format, 5-110, 5-174

P
pack, 1-29

packed data type support, 1-15

page, 3-79

pass option to tool, 5-210

perror, 2-33

Phase angle, 2-5

pmacro, 3-51

pmi_tc, 3-68

pmu_tc, 3-68

pos, 3-15

pow, 3-15

pow functions, 2-17

power-on vector, 4-3

Pragma

extern, 1-27
indirect, 1-28
indirect_runtime, 1-28
macro, 1-28
message, 1-28
object_comment, 1-29
tradeoff, 1-30
warning, 1-30
weak, 1-30

Pragmas

alias, 1-26, 1-30
align, 1-26
clear/noclear, 1-27
default_a0_size, 1-27
default_a1_size, 1-27
default_near_size, 1-27
extension isuffix, 1-27
for_constant_data_use_memory,

1-28
for_extern_data_use_memory, 1-28
for_initialized_data_use_memory,

1-28
for_uninitialized_data_use_memory,

1-28
inline/noinline, 1-28
optimize/endoptimize, 1-29

IndexIndex-16
IN
D
E
X

pack, 1-29
section, 1-29
section all, 1-29
section code_init, 1-29
section const_init, 1-29
section data_overlay, 1-29
section vector_init, 1-29
smartinline, 1-28
source/nosource, 1-29

pragmas, 1-26

prctl, 3-81

predefined macros, 1-31

predefined macros in C

__CTC__, 1-31
__DOUBLE_FP__, 1-31
__DSPC__, 1-31
__DSPC_VERSION__, 1-31
__FPU__, 1-31
__SINGLE_FP__, 1-31
__TASKING__, 1-31

preprocessing, 8-6

preprocessor, 5-94

printf, 2-25, 2-31

conversion characters, 2-27
processor definition, 8-4, 8-33

ptrdiff_t, 2-22

putc, 2-30

putchar, 2-30

puts, 2-31

putwc, 2-30

putwchar, 2-30

Q
qsort, 2-36

R
raise, 2-20

rand, 2-35

RAND_MAX, 2-34

read, 2-44

realloc, 2-35

reentrancy, 2-48

register handling, 1-22

remainder functions, 2-16

remove, 2-33

remquo functions, 2-16

rename, 2-33

rename sections, 5-48

reset vector, 8-25

rewind, 2-32

Riemann sphere, 2-6

rint functions, 2-15

rnd, 3-15

round functions, 2-15

rvb, 3-16

S
scalbln functions, 2-16

scalbn functions, 2-16

scanf, 2-27, 2-30

conversion characters, 2-28
scp, 3-16

sdecl, 3-52

sect, 3-55

section, 1-29

summary, 5-101
section activation, 3-55

section all, 1-29

section attributes, 3-52

section code_init, 1-29

section data_overlay, 1-29

section declaration, 3-52

section layout definition, 8-5, 8-37

section names, 3-53

sections

grouping, 8-39
rename, 5-48

SEEK_CUR, 2-32

SEEK_END, 2-32

SEEK_SET, 2-32

Index Index-17

• • • • • • • •

set, 3-56

setbuf, 2-25

setjmp, 2-20

setlocale, 2-12

setvbuf, 2-25

sfract, 3-16, 3-40

sgn, 3-16

SIGABRT, 2-20

SIGFPE, 2-20

SIGFPE signal handler, 4-14

SIGILL, 2-20

SIGINT, 2-20

signal, 2-20

signbit, 2-19

SIGSEGV, 2-20

SIGTERM, 2-20

silicon bug workaround, 5-52, 5-99,

5-202

sin, 3-16

sin functions, 2-13

sinh functions, 2-13

size, 3-57

size_t, 2-22

smartinline, 1-28

snh, 3-17

snprintf, 2-31

source/nosource, 1-29

space, 3-58

sprintf, 2-31

sqrt functions, 2-17

sqt, 3-17

srand, 2-35

sscanf, 2-30

stack, 4-9, 8-24

begin of, 4-9
start address, 8-25

startup code, 4-3

stat, 2-44

stderr, 2-23

stdin, 2-23

stdout, 2-23

stitle, 3-82

strcat, 2-38

strchr, 2-40

strcmp, 2-39

strcoll, 2-39

strcpy, 2-38

strcspn, 2-40

strerror, 2-41

strftime, 2-43

strncat, 2-38

strncmp, 2-39

strncpy, 2-38

strpbrk, 2-40

strrchr, 2-40

strspn, 2-40

strstr, 2-40

strtod, 2-34

strtof, 2-34

strtoimax, 2-11

strtok, 2-40

strtol, 2-35

strtold, 2-34

strtoll, 2-35

strtoul, 2-35

strtoull, 2-35

strtoumax, 2-11

strxfrm, 2-39

sub, 3-17

switch auto, 1-30

switch jumptab, 1-30

switch linear, 1-30

switch lookup, 1-30

switch restore, 1-30

switch statement, 5-55

swprintf, 2-31

swscanf, 2-30

syntax error checking, 5-11, 5-73,

5-159

system, 2-36

system libraries, 5-127, 5-129

IndexIndex-18
IN
D
E
X

T
tan, 3-17

tan functions, 2-13

tanh functions, 2-13

tc2, 3-83

temporary files, 5-205

tgamma functions, 2-18

time, 2-42

time_t, 2-41

tm (struct), 2-41

TMP_MAX, 2-23

tmpfile, 2-33

tmpnam, 2-33

tnh, 3-17

tolower, 2-7

toupper, 2-7

towctrans, 2-47

towlower, 2-7, 2-47

towupper, 2-7, 2-47

tradeoff, 1-30

trap, 4-18

trap handler, 4-14

trap handling, 5-175

trap handling api, 4-15

TriCore 2 instructions, 5-34, 5-89,

5-183

trunc functions, 2-15

type, 3-59

U
undef, 3-60

unf, 3-18

ungetc, 2-29

ungetwc, 2-29

unlink, 2-44

V
va_arg, 2-21

va_end, 2-21

va_start, 2-21

verbose, 5-149, 5-209

version information, 5-60, 5-103,

5-148, 5-208, 5-238, 5-239, 5-250

vfprintf, 2-31

vfscanf, 2-30

vfwprintf, 2-31

vfwscanf, 2-30

vprintf, 2-31

vscanf, 2-30

vsprintf, 2-31

vsscanf, 2-30

vswprintf, 2-31

vswscanf, 2-30

vwprintf, 2-31

vwscanf, 2-30

W
warning, 1-30, 3-61

title, 3-84, 3-85

warnings, 5-212

suppress, 5-104
warnings as errors, 5-63, 5-106, 5-152

warnings, suppress, 5-61, 5-150

wchar_t, 2-22

wcrtomb, 2-46

wcscat, 2-38

wcschr, 2-40

wcscmp, 2-39

wcscoll, 2-39

wcscpy, 2-38

wcscspn, 2-40

Index Index-19

• • • • • • • •

wcsncat, 2-38

wcsncmp, 2-39

wcsncpy, 2-38

wcspbrk, 2-40

wcsrchr, 2-40

wcsrtombs, 2-45

wcsspn, 2-40

wcsstr, 2-40

wcstod, 2-34

wcstof, 2-34

wcstoimax, 2-11

wcstok, 2-40

wcstol, 2-35

wcstold, 2-34

wcstoll, 2-35

wcstombs, 2-37

wcstoul, 2-35

wcstoull, 2-35

wcstoumax, 2-11

wcsxfrm, 2-39

wctob, 2-46

wctomb, 2-37

wctrans, 2-47

wctype, 2-46

weak, 1-30, 3-62

WEOF, 2-23

wmemchr, 2-40

wmemcmp, 2-39

wmemcpy, 2-38

wmemmove, 2-38

wmemset, 2-41

word, 3-63

wprintf, 2-31

write, 2-44

wscanf, 2-30

wstrftime, 2-43

X
xpn, 3-18

IndexIndex-20
IN
D
E
X

	TABLE OF CONTENTS
	1. TRICORE C LANGUAGE
	1.1 Introduction
	1.2 Data Types
	1.3 Keywords
	1.4 Function Qualifiers
	1.5 Intrinsic Functions
	1.5.1 Minium and maximum of (Short) Integers
	1.5.2 Fractional Arithmetic Support
	1.5.3 Packed Data Type Support
	1.5.4 Interrupt Handling
	1.5.5 Insert Single Assembly Instruction
	1.5.6 Register Handling
	1.5.7 Insert / Extract Bit-fields and Bits
	1.5.8 Miscellaneous Intrinsic Functions

	1.6 Pragmas
	1.7 Predefined Macros

	2. LIBRARIES
	2.1 Introduction
	2.2 Library Functions
	2.2.1 assert.h
	2.2.2 complex.h
	2.2.3 ctype.h and wctype.h
	2.2.4 errno.h
	2.2.5 fcntl.h
	2.2.6 fenv.h
	2.2.7 float.h
	2.2.8 fss.h
	2.2.9 inttypes.h and stdint.h
	2.2.10 iso646.h
	2.2.11 limits.h
	2.2.12 locale.h
	2.2.13 math.h and tgmath.h
	2.2.14 setjmp.h
	2.2.15 signal.h
	2.2.16 stdarg.h
	2.2.17 stdbool.h
	2.2.18 stddef.h
	2.2.19 stdint.h
	2.2.20 stdio.h and wchar.h
	2.2.21 stdlib.h and wchar.h
	2.2.22 string.h and wchar.h
	2.2.23 time.h and wchar.h
	2.2.24 Unistd.h
	2.2.25 wchar.h
	2.2.26 wctype.h

	2.3 C Library Reentrancy

	3. TRICORE ASSEMBLY LANGUAGE
	3.1 Introduction
	3.2 Built-in Assembly Functions
	3.2.1 Overview of Built-in Assembly Functions
	3.2.2 Detailed Description of Built-in Assembly Functions

	3.3 Assembler Directives and Controls
	3.3.1 Overview of Assembler Directives
	3.3.2 Detailed Description of Assembler Directives
	.ACCUM
	.ALIGN
	.ASCII/.ASCIIZ
	.BYTE
	.CALLS
	.COMMENT
	.DEFINE
	.DUP / .ENDM
	.DUPA / .ENDM
	.DUPC / .ENDM
	.DUPF / .ENDM
	.END
	.EQU
	.EXITM
	.EXTERN
	.FAIL
	.FLOAT/.DOUBLE
	.FRACT/.SFRACT
	.GLOBAL
	.IF / .ELIF / .ELSE / .ENDIF
	.INCLUDE
	.LOCAL
	.MACRO / .ENDM
	.MESSAGE
	.ORG
	.PMACRO
	.SDECL
	.SECT
	.SET
	.SIZE
	.SPACE
	.TYPE
	.UNDEF
	.WARNING
	.WEAK
	.WORD/.HALF

	3.3.3 Overview of Assembler Controls
	3.3.4 Detailed Description of Assembler Controls
	$CASE ON / OFF
	$defect_TCnum
	$DEBUG ON / OFF
	$FPU
	$HW_ONLY
	$IDENT
	$LIST ON / OFF
	$LIST flags
	$MMU
	$OBJECT
	$PAGE
	$PRCTL
	$STITLE
	$TC2
	$TITLE
	$WARNING OFF

	4. RUN-TIME ENVIRONMENT
	4.1 Introduction
	4.2 Startup Code
	4.3 Stack Usage
	4.4 Heap Allocation
	4.5 Floating-Point Arithmetic
	4.5.1 Compliance with IEEE-754
	4.5.2 Special Floating-Point Values
	4.5.3 Trapping Floating-Point Exceptions
	4.5.4 Floating-Point Trap Handling API

	5. TOOL OPTIONS
	5.1 Compiler Options
	-? (--help)
	-A (--language)
	--align
	-C (--cpu)
	-c (--iso)
	--check
	--cse-all-addresses
	-D (--define)
	--diag
	-E (--preprocess)
	--error-file
	-F (--no-double)
	-f (--option-file)
	--fpu-present
	-g (--debug-info)
	-H (--include-file)
	-I (--include-directory)
	--indirect
	--indirect-runtime
	--inline
	--inline-max-incr / --inline-max-size
	--integer-enumeration
	--is-tricore2
	-k (--keep-output-files)
	--misrac
	--misrac-advisory-warnings / --misrac-required-warnings
	--misrac-version
	-N (--default-near-size)
	-n (--stdout)
	--no-tasking-sfr
	 -O (--optimize)
	-o (--output)
	--object-comment
	-R (--rename-sections)
	-s (--source)
	--section-per-data-object
	--silicon-bug
	--static
	--switch
	-t (--tradeoff)
	-U (--undefine)
	-u (--uchar)
	-V (--version)
	-w (--no-warnings)
	--warnings-as-errors
	-Y (--default-a1-size)
	-Z (--default-a0-size)

	5.2 Assembler Options
	-? (--help)
	-C (--cpu)
	-c (--case-insensitive)
	--check
	-D (--define)
	--diag
	--emit-locals
	--error-file
	-f (--option-file)
	--fpu-present
	-g (--debug-info)
	-H (--include-file)
	-I (--include-directory)
	-i (--symbol-scope)
	--is-tricore2
	-k (--keep-output-files)
	-L (--list-format)
	-l (--list-file)
	-m (--preprocessor-type)
	--mmu-present
	--no-tasking-sfr
	-O (--optimize)
	-o (--output)
	--silicon-bug
	-t (--section-info)
	-V (--version)
	-w (--no-warnings)
	--warnings-as-errors

	5.3 Linker Options
	-? (--help)
	-c (--chip-output)
	--case-insensitive
	-D (--define)
	-d (--lsl-file)
	--diag
	-e (--extern)
	--error-file
	-f (--option-file)
	--first-library first
	-I (--include-directory)
	-i (--user-provided-initialization-code)
	-k (--keep-output-files)
	-L (--library-directory / --ignore-default-library-path)
	-l (--library)
	--link-only
	--lsl-check
	--lsl-dump
	-M (--map-file)
	-m (--map-file-format)
	--misra-c-report
	--munch
	-N (--no-rom-copy)
	--no-rescan
	--non-romable
	-O (--optimize)
	-o (--output)
	-r (--incremental)
	-S (--strip-debug)
	-V (--version)
	-v (--verbose)
	-w (--no-warnings)
	--warnings-as-errors

	5.4 Control Program Options
	-? (--help)
	--address-size
	-C (--cpu)
	--case-insensitive
	-cc/-cs/-co/-cl
	--check
	-D (--define)
	-d (--lsl-file)
	--diag
	-E (--preprocess)
	--error-file
	--exceptions
	-F (--no-double)
	-f (--option-file)
	--force-c
	--force-c++
	--force-munch
	--force-prelink
	--format
	--fp-trap
	--fpu-present
	-g (--debug-info)
	-I (--include-directory)
	--instantiate
	--instantiation-dir
	--instantiation-file
	--is-tricore2
	--iso
	-k (--keep-output-files)
	-L (--library-directory / --ignore-default-library-path)
	-l (--library)
	--list-object-files
	--mmu-present
	-n (--dry-run)
	--no-auto-instantiation
	--no-default-libraries
	--no-map-file
	--no-one-instantiation-per-object
	--no-tasking-sfr
	-o (--output)
	--prelink-copy-if-non-local
	--prelink-local-only
	--prelink-remove-instantiation-flags
	--show-c++-warnings
	--silicon-bug
	--space
	--static
	-t (--keep-temporary-files)
	-U (--undefine)
	--use-double-precision-fp
	-V (--version)
	-v (--verbose)
	-Wtool (--pass)
	-w (--no-warnings)
	--warnings-as-errors

	5.5 Make Utility Options
	Defining Macros
	-?
	-a
	-c
	-D/-DD
	-d/-dd
	-e
	-err
	-f
	-G
	-i
	-K
	-k
	-m
	-n
	-p
	-q
	-r
	-S
	-s
	-t
	-time
	-V
	-W
	-w
	-x

	5.6 Archiver Options
	-?
	-d
	-m
	-p
	-r
	-t
	-V
	-x
	-w

	6. LIST FILE FORMATS
	6.1 Assembler List File Format
	6.2 Linker Map File Format

	7. OBJECT FILE FORMATS
	7.1 ELF/DWARF Object Format
	7.2 Motorola S-Record Format
	7.3 Intel Hex Record Format

	8. LINKER SCRIPT LANGUAGE
	8.1 Introduction
	8.2 Structure of a Linker Script File
	8.3 Syntax of the Linker Script Language
	8.3.1 Preprocessing
	8.3.2 Lexical Syntax
	8.3.3 Identifiers
	8.3.4 Expressions
	8.3.5 Built-in Functions
	8.3.6 LSL Definitions in the Linker Script File
	8.3.7 Memory and Bus Definitions
	8.3.8 Architecture Definition
	8.3.9 Derivative Definition
	8.3.10 Processor Definition and Board Specification
	8.3.11 Section Placement Definition

	8.4 Expression Evaluation
	8.5 Semantics of the Architecture Definition
	8.5.1 Defining an Architecture
	8.5.2 Defining Internal Buses
	8.5.3 Defining Address Spaces
	8.5.4 Mappings

	8.6 Semantics of the Derivative Definition
	8.6.1 Defining a Derivative
	8.6.2 Instantiating Core Architectures
	8.6.3 Defining Internal Memory and Buses

	8.7 Semantics of the Board Specification
	8.7.1 Defining a Processor
	8.7.2 Instantiating Derivatives
	8.7.3 Defining External Memory and Buses

	8.8 Semantics of the Section Layout Definition
	8.8.1 Defining a Section Layout
	8.8.2 Creating and Locating Groups of Sections
	8.8.3 Creating or Modifying Special Sections
	8.8.4 Creating Symbols
	8.8.5 Conditional Group Statements

	9. CPU FUNCTIONAL PROBLEMS
	9.1 Introduction
	9.2 CPU Functional Problem bypasses
	CPU_TC.013
	CPU_TC.018
	CPU_TC.021
	CPU_TC.023
	CPU_TC.024
	CPU_TC.030
	CPU_TC.031
	CPU_TC.033
	CPU_TC.034
	CPU_TC.043
	CPU_TC.048
	CPU_TC.050
	CPU_TC051
	CPU_TC.060
	CPU_TC.065
	CPU_TC.069
	CPU_TC.070
	CPU_TC.071
	CPU_TC.072
	DMU_TC.001
	PMI_TC.003
	PMU_TC.004

	10. MISRA-C RULES
	10.1 MISRA-C:1998
	10.2 MISRA-C:2004

	INDEX

