5
=

LT

PITEY wsfile;

sntiestnt = 05

sfile = fopen (£:]

ol)
{

¥ 1

sfile == NiiLd

retu¥n -1;

MA060-043-00-00
Doc. ver.: 10.159

TriCore v2.5

CrossView Pro Debugger
User’s Manual

TASKING

Altrurm

A publication of
Altium BV
Documentation Department

Copyright 0 2005 Altium BV

All rights reserved. Reproduction in whole or part is prohibited
without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXIm is a registered trademark of Macrovision Corporation.
Intel is a trademark of Intel Corporation.
Motorola is a trademark of Motorola, Inc.
MS-DOS and Windows are registered trademarks of Microsoft Corporation.
IBM is a trademark of International Business Machines Corp.
SUN is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com
http://www.altium.com

The information in this document bas been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
Jfor inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

al TASKING [

SLN3LNODO

Table of Contents

OVERVIEW 1-1
1.1 Introduction i 1-3
1.2 CrossView Pro’s Features 1-3
13 Source Level Debugging 1-8
1.4 How CrossView Pro Works 1-10
1.5 TriCore Program Development 1-12
1.6 Getting Started 1-14
1.6.1 Before Starting 1-14
1.6.2 Setting Up the Execution Environment 1-14
1.6.3 Starting CrossView Pro 1-15
1.6.3.1 CrossView Pro Target Settings 1-16
1.6.3.2 Configuring CrossView Pro 1-18
1.6.3.3 Loading Symbolic Debug Information 1-19
1.6.4 Executing an Application 1-21
1.6.5 Debugging an Application 1-23
1.6.6 CrossView Pro Output 1-25
1.6.7 Exiting CrossView Pro 1-26
1.6.8 What You May Have Done Wrong 1-27
1.6.9 Building Your Executable 1-28
1.6.9.1 Using EDE 1-28
1.6.9.2 Using the Control Program 1-34
1.6.9.3 Using the Makefile 1-36

SOFTWARE INSTALLATION 2-1
2.1 Introduction 2-3
2.2 Note about Filenames 2-3
2.3 Installation for Windows 2-3
2.4 Installation for Linux 2-4
2.4.1 RPM Installation 2-4
242 Debian Installation 2-5
243 Tar.gz Installation 2-6
2.5 Installation for UNIX Hosts 2-7
2.6 Configuring the X Windows Motif Environment . . . 2-8
2.7 Using X Resources 2-9

\

Table of Contents

2.8 Licensing TASKING Products 2-12
2.8.1 Obtaining License Information 2-12
2.8.2 Installing Node-Locked Licenses 2-13
2.8.3 Installing Floating Licenses 2-14
2.8.4 Modifying the License File Location 2-16
2.8.5 How to Determine the Hostid 2-17
2.8.6 How to Determine the Hostname 2-17
COMMAND LANGUAGE 3-1
3.1 Introduction, 3-3
3.2 CrossView Pro Expressions 3-3
33 CONSLANLS + . v oottt 3-4
3.4 Variables 3-7
3.5 Formatting Expressions 3-14
3.6 OPETAtOrS .ottt e 3-18
3.7 Special Expressions i 3-19
3.8 Conditional Evaluation 3-20
3.9 Functions i i 3-21
3.10 Case Sensitivity i 3-21
USING CROSSVIEW PRO 4-1
4.1 Introduction i 4-3
4.2 Using the CrossView Pro Interface 4-3
4.3 Starting CrossView Pro 4-4
4.4 Startup OPtoONSot 4-5
4.4.1 What You May Have Done Wrong 4-10
4.5 The CrossView Pro Desktop 4-11
45.1 MENUS oot 4-13
4.5.1.1 Local Popup Menuso 4-14
452 Window Operation 4-14
4.5.3 Dialog BOXES oo 4-16
4.5.4 Customizing CrossView Pro 4-17
4.5.5 CrossView Pro Messages 4-19

Table of Contents

4.6 CrossView Pro Windows 4-20
4.6.1 Command Window 4-21
4.6.2 Source Window i 4-23
4.6.3 Register Window 4-26
4.6.4 Memory Window i 4-27
4.6.5 Data Window i 4-29
4.6.6 Stack Window 4-32
4.6.7 Trace Window, 4-33
4.6.8 Terminal Window 4-34
4.6.9 Data Analysis Window 4-36
4.6.10 Pop-Up Windows, 4-37
4.7 Control Operations for CrossView Pro 4-38
4.7.1 Echoing Commands 4-38
4.7.2 Mouse/Menu/Command Equivalents 4-38
4.8 Using the On-line Help 4-39
4.8.1 Accessing On-line Help 4-39
4.8.2 Using MS-Windows Help 4-39
CONTROLLING PROGRAM EXECUTION 5-1
5.1 Source Positioning i 5-3
5.1.1 Changing the Viewing Position 5-4
5.1.2 Changing the Execution Position 5-5
5.1.3 Synchronizing the Execution and Viewing Positions 5-7
5.2 Controlling Program Execution 5-8
5.2.1 Starting the Program 5-8
522 Halting and Continuing Execution 5-9
5.2.3 Single-Step Execution 5-9
5.2.4 Stepping through at the Machine Level 5-12
53 Notes About Program Execution 5-14
5.4 Searching through the Source Window 5-14
5.4.1 Searching fora Function 5-14
5.4.2 Searching fora String 5-15
5.4.3 Jumping to a Source Line 5-16

Vil

VI

=

Table of Contents

ACCESSING CODE AND DATA 6-1
6.1 Introduction i 6-3
6.2 Accessing Variables 6-3
6.2.1 Viewing Variables, Structures and Arrays 6-3
6.2.2 Changing Variables 6-7
6.2.3 Thel Command 6-8
6.3 EXpPressionsc..oiiiiiiiiiii 6-10
6.3.1 Evaluating Expressions 6-10
6.3.2 Monitoring Expressions 6-11
6.3.3 Formatting Datacovuiiiieiinn... 6-13
6.3.4 Displaying Memory 6-14
6.3.5 Displaying Memory Addresses 6-16
6.4 Displaying Disassembled Instructions 6-17
6.4.1 Intermixed Source and Disassembly 6-18
6.5 The Stack 6-19
6.5.1 How the Stack is Organized 6-19
6.5.2 The Stack Window 6-20
653 Listing Locals and Parameters of a Function 6-21
6.5.4 Low-level Viewing the Stack 6-22
6.6 Trace Window, 6-23
6.6.1 Trace Window Setup, 6-23
6.7 Register Window 6-25
6.7.1 Register Window Setup 6-25
6.7.2 Editing Registers 6-26

BREAKPOINTS AND ASSERTIONS 7-1
7.1 Introduction to Breakpoints 7-3
7.1.1 Code Breakpoints 7-3
7.1.2 Data Breakpoints 7-7
7.13 Listing and Jumping to Breakpoints 7-8
7.2 Setting Breakpoints 7-8
7.2.1 Data Breakpoints over a Range of Addresses 7-11
7.2.2 Temporary Breakpoints 7-12
7.2.3 Breakpoint Names, 7-13

Table of Contents

7.2.4 Setting the Count c.ouiiiin... 7-14
7.2.5 Sequence Breakpoints oo 7-15
7.3 Deleting Breakpoints 7-16
7.4 Enabling/Disabling Breakpoints 7-17
7.5 Breakpoint Commands 7-18
7.5.1 Attaching Conditionals to a Breakpoint 7-21
7.5.2 Attaching Macros to a Breakpoint 7-21
7.5.3 Attaching Strings to a Breakpoint 7-22
7.6 Suppressing Breakpoint Messages 7-22
7.7 Up-level Breakpoints 7-22
7.8 Patches 7-25
7.8.1 Patching Code out of a Program 7-25
7.8.2 Patching Code into a Program 7-26
7.8.3 Replacing Code in a Program 7-26
7.9 Diagnostic Output and Statistical Information 7-27
7.10 ASSEItions 7-28
7.10.1 Assertion Mode 7-28
7.10.2 Defining an Assertion 7-29
7.10.3 Editing an Assertion 0.0 7-31
7.10.4 Activating and Suspending Assertions 7-31
7.10.5 Deleting ASSertionsc......... 7-32
7.10.6 Using ASSEItionSooveiiieenn. 7-33
7.10.7 Gathering Statistics with Assertions 7-35
DEFINING AND USING MACROS 8-1
8.1 CrossView Pro Macros 8-3
8.2 Defining Macros i 8-3
8.2.1 Listing Macros 8-5
8.2.2 Redefining a Macro 8-5
8.2.3 Saving Macro Definitions to a File 8-6
8.2.4 Loading Macro Definitions from a File 8-7
8.2.5 Deleting Macrosooviiianenn... 8-8
8.3 Macro Parameters oo 8-9
8.4 Redefining Existing CrossView Pro Commands 8-10

Table of Contents

8.5 Using the Toolbox 8-11
8.5.1 Opening the Toolbox 8-11
8.5.2 Connecting Macros to the Toolbox 8-11
8.5.3 Removing a Macro Connection 8-12
COMMAND RECORDING & PLAYBACK 9-1
9.1 Recording Commands 9-3
9.1.1 Entering Comments 9-4
9.1.2 Suspend Recording 9-5
9.13 Resume Recording 9-5
9.1.4 Check Recording Status 9-6
9.15 Close File for Recording 9-6
9.1.6 Command Recording Example 9-7
9.2 Playing Back Command Files 9-8
9.2.1 Setting the Type of Playback 9-9
9.2.2 Calling Other Playback Files 9-9
9.23 Quitting Playback Mode 9-10
9.3 Command Line Batch Processing 9-10
9.4 LOZEING . ..o 9-12
9.4.1 Setting up Logging 9-13
9.4.2 Recording Commands and Logging Screen Output 9-15
9.4.3 Command Window Log File Example 9-15
9.4.4 Suspending and Resuming Output Log 9-15
9.4.5 Closing the Output Log File 9-17
9.5 Startup Options 9-18
9.6 CrossView Pro Command History Mechanism 9-19
1/0 SIMULATION 10-1
10.1 Introduction oo 10-3
10.2 I/OStreams 10-3
10.2.1 Setting Up File I/O Streams 10-4
10.2.2 Redirecting I/O Streams 10-6

10.3 File System Simulation 10-7

Table of Contents

10.3.1 File System Simulation Libraries 10-8
10.4 Debug Instrument I/O 10-9
10.5 The Terminal Window 10-10
10.5.1 Terminal Window Keyboard Mappings 10-10
SPECIAL FEATURES 11-1
11.1 Transparency Mode 11-3
11.2 RTOS Aware Debugging 11-4
11.3 COVEIAZE . . . ot v e 11-6
11.4 Profiling 11-8
11.5 Data Analysis i 11-12
11.5.1 Supplied Data Analysis Window Scripts 11-14
11.6 Background Mode 11-21
11.6.1 Configuration i i 11-21
11.6.2 Manual Refresh 11-22
11.6.3 Entering Background Mode 11-23
11.6.4 Leaving Background Mode 11-24
11.6.5 The Stack in Background Mode 11-25
11.6.6 Local and Global Variables 11-25
11.6.7 Refresh Limitation 11-25
11.6.8 ASSEITIONS o\ vt 11-26
DEBUGGING NOTES 12-1
12.1 Debugging Assembly Language 12-3
12.2 Debugging Multiple Programs 12-3
COMMAND REFERENCE 13-1
13.1 Conventions Used in this Chapter 13-3
13.2 Commands: Summary 13-4
13.2.1 Viewing Commands 13-4
13.2.2 Data Monitoringo i 13-5
13.2.3 Data Analysis 13-7

Xl

Xl

Table of Contents

13.2.4 Execution Control Commands 13-8
13.2.5 Record & Playback 13-11
13.2.6 MACIOS .+« v vttt 13-12
13.2.7 Input/Output Simulation 13-13
13.2.8 File System Simulation 13-14
13.2.9 Target System Control 13-14
13.2.10 Save and Restore Target State 13-15
13.2.11 Help Commands 13-15
13.2.12 Search Commands 13-15
13.3 Commands: Detailed Descriptions 13-15
ERROR MESSAGES 14-1
14.1 What this Chapter Covers 14-3
14.2 Error MESSAgES . .. v oo 14-3
GLOSSARY 15-1
15.1 What this Chapter Covers 15-3
15.2 Glossary Terms, 15-3
INTERPROCESS COMMUNICATION A-1
1 COM Interface A-3
1.1 Introduction A-3
1.2 Using the COM Object Interface A-3
1.2.1 Run-Time Environment A-3
1.2.2 Command Line Options A-3
1.2.3 Startup Directoryt A-4
1.3 COM Interfacesc.oiiiiiiiinan. A-5
1.3.1 Activating the COM object A-5
1.3.2 Methods i A-6
1.3.3 Implementation Details A-7
1.4 EVents A-8
1.5 COM Examples ..., A-12

Table of Contents Xl

1.5.1 Python Examples A-12
1.5.2 Visual Basic Examples A-16
153 WORD Examples A-17
1.5.4 Excerpt of the MIDL Definition A-19
2 DDE Server Interface A-20
2.1 Introduction A-20
2.2 DDE Items and Topics A-20
2.3 DDE Events, A-27
231 Packet Format A-27
24 CrossView Pro DDE Specific Options and
Commands i A-28
2.4.1 Command Line Options A-28
242 Commands i A-28
2.5 Examples A-29
251 Evaluating an Expression A-29
252 Reading Target Memory A-30
253 Writing Into Target Memory A-31
254 Requesting Current File and Line Number A-32
255 Using CrossView Pro as Pure Server A-32
CROSSVIEW EXTENSION LANGUAGE (CXL) B-1
1 Introduction B-3
2 The Syntax of CXL B4
2.1 Variables B-6
2.2 Base TYPES ..o vt B-6
2.3 Compound Types B-7
2.4 Pointers B-7
2.5 Constants and Expressions B-8
2.6 OPErators vvi e B-8
2.7 Functionsciviiiiiiiiiiiii.. B-9
2.8 File Inclusion B-9
3 Predefined Functions B-10
3.1 Mathematical functions B-10

3.2 Array and String functions B-11

XV

=

Table of Contents

33 I[/O functions i B-11
3.4 Graph functions oo B-13
3.5 Miscellaneous functions B-17
REGISTER MANAGEMENT C-1
Introduction C-3

2 Fixed Register Set C-3
SOUND SUPPORT (MS-Windows) D-1
SIMULATOR Sim-1
1 Introduction i Sim-3

2 Executable Name Sim-3

3 Supported Features Sim-3
3.1 CycleCounter...............iiiiiiiii.. Sim—4
3.2 Profiling Sim-4

4 Simulator Configuration File Sim-5

5 Restrictions Sim-6
ON-CHIP DEBUG SUPPORT OCDS-1
1 Introduction i OCDS-3

2 Supported Hardware OCDS-3

3 Additional System Requirements OCDS-3

4 Restrictions OCDS—4

5 Configuring CrossView Pro OCDS-4

6 Infineon Board OCDS Interface Circuit OCDS—4
6.1 The Infineon JTAG connector OCDS-6
6.1.1 The connector Layout OCDS-6
6.1.2 Implementation Considerations OCDS-8

INDEX

Manual Purpose and Structure

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is aimed at users of the CrossView Pro debugger for the
TriCore. It assumes that you are familiar with programming the TriCore.

MANUAL STRUCTURE

Related Publications
Conventions Used In This Manual

CHAPTERS

1. Overview
Highlights specific CrossView Pro features and capabilities, and shows
how to compile code for debugging.

2. Software Installation
Describes how to install CrossView Pro on your system.

3. Command Language
Details the syntax of CrossView Pro’s command language.

4. Using CrossView Pro
Describes the basic methods of invoking, operating, and exiting
CrossView Pro.

5. Controlling Program Execution
Describes the various means of program execution.

6. Accessing Code and Data
Describes how to view and edit the variables in your source program.

7. Breakpoints and Assertions
Describes breakpoints and assertions.

8. Defining and Using Macros
Describes how to simplify a complicated procedure by creating a
“shorthand” macro which can be used to execute any sequence of
CrossView Pro or C language commands and expressions.

XVI

=

Manual Purpose and Structure

9. Command Recording & Playback
Describes the record and playback functions of CrossView Pro.

10.I/O Simulation
Describes how to simulate your input and output using File System
Simulation (FSS), File I/O (FIO) or Debug Instrument I/O (DIO).

11. Special Features
Describes special features of CrossView Pro, such as the Transparency
Mode, RTOS Aware Debugging, Coverage, Profiling and the
Background Mode.

12. Debugging Notes
Contains some notes about debugging in special situations.

13. Command Reference
An alphabetical list of all CrossView Pro commands. Consult this
chapter for specifics and the exact syntax of any CrossView Pro
command.

14. Error Messages
Contains CrossView Pro error messages and gives advice for correcting
them.

15. Glossary
Defines the most common terms used in embedded systems
debugging.

Manual Purpose and Structure XVl

APPENDICES

A. Interprocess Communication
Contains a description of the COM interface and the DDE interface.

B. CrossView Extension Language (CXL)
Contains a description of the syntax of CXL scripts.

C. Register Management
Contains a description of the registers used by CrossView Pro.

D. Sound Support (MS-Windows)
Describes how to add sound to CrossView Pro events under
MS-Windows.

ADDENDUM

Execution Environment

Contains information specific to your particular type of target system.

XVl

=

Manual Purpose and Structure

RELATED PUBLICATIONS

The C Programming Language (second edition) by B. Kernighan and
D. Ritchie (1988, Prentice Hall)

ANSI X3.159-1989 standard [ANS]]
ISO/IEC 9899:1999(E), Programming languages — C [ISO/IEC]

TriCore C++ Compiler User’s Manual
[TASKING, MA060-012-00-00]

TriCore C Compiler, Assembler, Linker User’s Manual
[TASKING, MA060-024-00-00]

TriCore C Compiler, Assembler, Linker Reference Manual
[TASKING, MB060-024-00-00)

TriCore 1 Unified Processor Core v1.3 Architecture Manual, Doc v1.3.3
[2002-09, Infineon|

TriCore2 Architecture Overview Handbook [2002, Infineon]
TriCore Embedded Application Binary Interface [2000, Infineon]

Manual Purpose and Structure

CONVENTIONS USED IN THIS MANUAL

Notation for syntax

The following notation is used to describe the syntax of command line

input:

bold Type this part of the syntax literally.

italics Substitute the italic word by an instance. For example:

Sfilename

means: type the name of a file in place of the word
filename.

{} Encloses a list from which you must choose an item.

[] Encloses items that are optional.

| Separates items in a list. Read it as OR.

You can repeat the preceding item zero or more times.

For example

command [option]... filename

This line could be written in plain English as: execute the command
command with the optional options option and with the file filename.

XIX

’X"/

Manual Purpose and Structure

Hllustrations

The following illustrations are used in this manual:

@ This is a note. It gives you extra information.

This is a warning. Read the information carefully.

@? This illustration indicates actions you can perform with the mouse.
This illustration indicates keyboard input.

This illustration can be read as “See also”. It contains a reference to
another command, option or section.

OVERVIEW

al TASKING [

d31dVHO

Overview

1.1 INTRODUCTION

This chapter highlights many of the features and capabilities of CrossView
Pro, including an Introduction to Source Level Debugging and the TriCore
Development Environment.

This chapter also contains the section Getting Started, which shows you
how to compile a program to work with the debugger.

1.2 CROSSVIEW PRO’S FEATURES

CrossView Pro is TASKING’s high—level language debugger. CrossView Pro
is a real-time, source-level debugger that lets you debug embedded
microprocessor systems at your highest level of productivity. Its powerful
capabilities include:

Multi-Window Graphical User Interface

C and Assembly level debugging

C Expression Evaluation including Function Calls
Breakpoints (both hardware and software)
Probe Points

Assertions (software data breakpoints)
C—trace, Instruction Trace

I/0O Simulation (I0S)

Data Monitoring

Single Stepping

Coverage

Profiling

Macros

Flexible Record & Playback Facilities
Real-Time Kernel Support

On-line context sensitive Help

Documentation

1-4 Chapter 1

=

Multi-Window Interface

This interface uses your host’s native windowing system, so that you
already know how to open, close and resize windows. With windows you
can keep track of information concerning registers, the stack, and
variables. CrossView Pro automatically updates each window whenever
execution stops.

You have great freedom in designing a suitable display. You can hide and
resize the various windows if you choose.

Statement Evaluation

You can enter C expressions, CrossView Pro commands or any
combination of the two for CrossView Pro to evaluate. Expression
evaluation is an ideal way to test subroutines by passing them sample
values and checking the results.

Breakpoints

Breakpoints halt program execution and return control to you. There are
several types of breakpoints: code, data, instruction count, cycle count,
timer and sequence.

Code breakpoints let you halt the program at critical junctures of program
execution and observe values of important variables.

You may place data breakpoints to determine when memory addresses are
read from, written to, or both. With data breakpoints, you can easily track
the use and misuse of variables.

An instruction count breakpoint halts the program after a specified number
of instructions have been executed; a cycle count breakpoint stops the
program after a number of CPU cycles; a timer breakpoint stops the
program after a number of micro seconds or ticks and sequence
breakpoints stop the program when a number of breakpoints are hit in a
specified sequence.

Data breakpoints, instruction count breakpoints, cycle count breakpoints
and timer breakpoints are not available for all execution environments,
please check the Addendum.

Overview

Probe Point Breakpoints

A breakpoint can be treated as a probe point. When a probe point
breakpoint is hit, the associated commands are executed and program
execution is continued. Probe points are used with File I/O simulation and
sequence breakpoints.

Assertions

A powerful assertion mechanism lets you catch hard-to—-find—errors. An
assertion is a command, or series of commands, executed after every line
of source code. You may use assertions to test for all sorts of error
conditions throughout the entire length of your program.

C-Trace

CrossView Pro has a separate window that displays the most recently
executed C statements or machine instructions. This feature uses the
execution environment’s trace buffer along with symbolic information
generated during compilation. This feature depends on the execution
environment.

I/0 Simulation (10S)

With I/0O simulation you can debug programs before the actual input and
output devices are present. CrossView Pro can read input data from the
keyboard or a file, or can send output to a window or a file. You can
view the data in several formats, including hexadecimal and character. You
can have an unlimited number of simulated I/O ports, which can be
associated with the screen and displayed in windows.

Data Monitoring
You may place variables and expressions in the Data window, where
CrossView Pro updates their values when execution stops.

Single Stepping

With CrossView Pro, you can single step through your code at source
level or at assembly level, into or over procedure calls. Running your
program one line at a time lets you check variables and program flow.

1-6 Chapter 1

=

Coverage

When a command such as StepInto or Continue executes the application,
CrossView Pro traces all memory access, i.e. memory read, memory write
and instruction fetch. Through code coverage you can find executed and
non-executed areas of the application program. Areas of unexecuted
code may exist because of programming errors or because of unnecessary
code. It may be that your program input, your test set, is incomplete; It
does not cover all paths in the program. Data coverage allows you to
verify which memory locations, i.e. which variables, are accessed during
program execution. Additionally, you can see stack and heap usage. The
availability of this feature depends on the execution environment.

Profiling

Profiling allows you to perform timing analysis on your software. Two
forms of profiling are implemented in CrossView Pro.

Function profiling, also called cumulative profiling, gives you timing
information about a particular function or set of functions. CrossView Pro
shows: the number of times a function is called, the time spent in the
function, the percentage of time spent in the function, and the
minimum/maximum/average time spent in the function. The timing results
include the time spent in functions called by the profiled function.

Code range profiling presents timing information about a consecutive
range of program instructions. CrossView Pro displays the time consumed
by each line (source or disassembly) in the Source Window. Next to this,
the Profile Report dialog shows the time spend in each function. The
timing results do not include the time consumed in functions called by the
profiled function.

The availability of profiling depends on the execution environment.
Function profiling can be supported if the execution environment provides
a clock that starts and stops whenever execution starts and stops. Code
range profiling heavily relies on special profiling features in the execution
environment. Normally code range profiling is only supported by
instruction set simulators.

Overview

Macros

Macros let you store and recall complex commands and expressions with a
minimal number of keystrokes. You can store macros in a "toolbox”,
making it possible to execute complex functions with the touch of a
mouse button. You can also place macros in command lists of breakpoints
and assertions. You can use flow control statements within macros, and
macros can call other macros, allowing you to construct arbitrarily
complex sequences. Macros can accept multiple parameters, be saved and
loaded from files and can even rename existing CrossView Pro commands.

Record & Playback

At any time, you can record the commands you type, and optionally their
output, to a file. You can also play back files of commands all at once or
in a single-step playback mode. These functions are helpful for setting up
standardized debugging tests or to save results for later study or
comparison.

Kernel Support

CrossView Pro supports RTOS (Real-Time Operating System) aware
debugging for various kernels. Since each kernel is different, the RTOS
aware features are not implemented in the CrossView Pro executable, but
in a library that will be loaded at run—-time by CrossView Pro. The amount
of windows and dialogs and their contents is kernel dependent.

On-Line Help
When you click on a Help button or when you press the F1 function key
in an active window, the CrossView Pro help system opens at the
appropriate section. From this point, you can also access the rest of the
help system.

Documentation

CrossView Pro has a comprehensive set of documentation for both new
and experienced users. The manual includes an installation guide,
description of debugging with CrossView Pro, error messages, and a
command reference section. The documentation tries to cover a wide
range of expertise, by making few assumptions about the technical
experience of the reader.

1-8 Chapter 1

=

1.3 SOURCE LEVEL DEBUGGING

CrossView Pro is a source level debugger. Source level means that
debugging works on the actual C code or assembly code. CrossView Pro
can deal with global and local variables that are both statically and
dynamically allocated variables. Therefore, it can deal with compiled
addresses of variables that move around the stack. CrossView Pro knows
the compiler’s addressing conventions for variables of any type.

The Debugging Environment

All debugging configurations follow a similar pattern. There is a host
system where the debugger runs, and a farget system (usually an
execution environment), where the program being debugged runs. There
may also be a probe that can plug into the actual hardware of the
embedded system being designed.

CrossView Pro provides a high-level interface between you, the user,
working at the host system and a program running at the target system
(execution environment). This means that you may issue commands that
refer directly to the variables, source files, and line numbers as they
appear in the source program. You can do this because CrossView Pro
uses symbol information generated during compilation to translate the
high-level commands that you type into a series of low level instructions
that the target system understands. Using Generic Debug Instrument (GDI)
calls towards a shared library for the simulator, or using a connection
between the host and target, CrossView Pro finds out information about
the state of the target program and then tells the target to perform the
requested actions.

A host-target arrangement can perform functions beyond the reach of
traditional software-based debuggers. Since the target contains the actual
chip, CrossView Pro can observe its operations without interfering. The
existence of CrossView Pro and the host is invisible to the target program.
This means that the program under debug runs exactly the same as the
final program will in a real embedded system (except for real-time
situations like timings).

Overview

With CrossView Pro, you may also take advantage of any advanced
capabilities of your target hardware through emulator mode (transparency
mode). In transparency mode you can communicate with the target as if
the host system were a terminal directly connected to the target. You can
enter and leave transparency mode freely without restarting the debugger
or the target system. CrossView Pro therefore does not interfere with the
normal operation of the target hardware. Thus the debugger is a powerful
accessory to the machine-level debugging that you might do with the
target system alone. The transparency mode is not available for all
execution environments.

1-10 Chapter 1

-

1.4 HOW CROSSVIEW PRO WORKS

Although it is not necessary to know how CrossView Pro performs its
debugging, you may be curious how CrossView Pro works.

Whenever you enter a debugger command, CrossView Pro obtains
information from or controls the execution environment by sending

appropriate commands over the host-target link. A typical session may go
something like this:

1. Highlight initval and click on the Show Expression button in the
Source Window.

E Source : demo.c M= E
= PIEED ERw QAR C 0 E B
LA
|51 jlﬂx1428 jlmain leource lines leourceIinestep j
int loopwvar: /% the loop counter *F
long Sum; /% will be 174sum of factorials from 0 teo 7 +/
char cvar; /% sample char wariable L

initwal = 17;

Awiell = recordwvar.a)

/% This loop has an upper limit which is too high. */
/% &z a result, initwal will get clobbered. L

for {loopwar = 0; loopwar <= §; ++loopwar)
{
| |

Figure 1-1: Show selected source expression

2. CrossView Pro converts this action into a command. Depending on
preferences you have set, the variable is shown in the Data Window or the
Expression Evaluation dialog is shown.

3. CrossView Pro consults the symbol table to deduce the type and address
of initval. Suppose initval is a variable of type int which lies at
absolute location 100.

4. The debugger forms a command asking the target system to read two
bytes starting at address 100 (the size of an int equals 2).

5. CrossView Pro then transmits the command to the target system and
receives the response.

Overview

6. CrossView Pro interprets the response, and for example determines that
initval equals 17.

7. CrossView Pro then displays initval=17 since it knows initval’s type.

Command: Crozs¥Yiew =] B
> s -]

maingds: if [(initwal > recordwar.a)
* 3

maingso: sum = 0;

> initwal

initwal = 17

%
%
initval

IE Execute | Halt |

L e fled

Figure 1-2: CrossView Pro Command Output

This is a simplified example, many CrossView Pro commands require

several complex transactions, but all take place without you being aware
of them.

1-12

=

Chapter 1

1.5 TRICORE PROGRAM DEVELOPMENT

The CrossView Pro debugger package is part of a toolchain that provides
an environment for modular program development and debugging. The
figure below shows the structure of the toolchain. The toolchain contains
the following programs:

cctc

ctc

astc

aspcp

Itc

artc

mktc

xfwtc

The control program which activates the C compiler,
assembler and/or linker depending on its input.

The TriCore C compiler. This is a dedicated TriCore C
compiler which translates a C source program into a highly
optimized assembly source file, using the TriCore assembly
language specification.

The TriCore assembler which produces a relocatable object
file from a given TriCore assembly file.

The PCP assembler which produces a relocatable object file
from a given PCP assembly file.

A linker combining objects and object libraries into one
relocatable object file and produces one absolute load file in
ELF/DWAREF 2 object format. This program can also produce
files in the Intel Hex format or Motorola S-record.

A librarian program, which can be used to create and
maintain object libraries.

A program builder which uses a set of dependency rules in a
'makefile’ to build only the parts of an application which are
out of date.

The CrossView Pro debugger using TriCore execution
environments.

Overview

C++ source file
.CC
|
C++ compiler

cptc
T
C source file
C source file .c Jie
(hand coded) } |
C compiler
ctc - - - - * error messages .err
T
assembly file
assembly file .asm .src
(hand coded) } |
assembler ——» listfile .1lst
astc - - - - ® error messages .ers
T
archiver ~—— relocatable object file
artc — .0

relocatable object library. a

relocatable linker object file .out _I

linker script file linker > linker map file .map
-1s1 It [- - - error messages .elk
relocatable linker object file .out J L . memory definition
file .mdf
Intel Hex ELF/DWARF 2 Motorola S-record IEEE-695
absolute object file apsolute object file absolute object file absolute object file
.hex .elf .sre .abs

!

CrossView Pro
debugger
xfwtc

!

TriCore execution
environment

Figure 1-3: TriCore development flow

For a full description of all available utility programs see the chapter Using
the Utilities in the TriCore C Compiler, Assembler, Linker User’s Manual.

1-14

-

Chapter 1

1.6 GETTING STARTED

1 I6I1

BEFORE STARTING

Before using CrossView Pro, there are several things that you must do:

Install the CrossView Pro software. Directions for your particular
system are found in the Software Installation chapter.

Configure your execution environment as described in the
Execution Environment addendum.

Compile the program that you want to debug. A brief description
of this process is outlined in the section Building Your Executable
later in this chapter.

For the purpose of getting you started quickly, we have supplied you with
a demo program that you can debug. The demo program is demo.elf.

1 I6I2

SETTING UP THE EXECUTION ENVIRONMENT

The following only applies to ROM monitor and emulator versions of
CrossView Pro.

In order for the host and execution environment to communicate, a proper
connection must exist between the two machines. Here are some
important considerations:

Use the correct kind of RS-232 cable. Note there are at least two
types of cables, null modem and direct. Consult the execution
environment’s manual for the correct type.

Make sure the execution environment is configured to communicate
with the host at the baud rate that CrossView Pro expects. Usually,
the baud rate is 9600, but this is not always the case.

Use the correct ports on both the execution environment and host.
Many machines have two ports. If you use a different port on the
host than the default (COM1 for PC), you will have to use a special
startup switch, =D. See the startup options of the Using CrossView
Pro chapter.

See the addendum for details on the connection to the execution
environment.

Overview

1.6.3 STARTING CROSSVIEW PRO

To invoke CrossView Pro, simply double—click on its icon. CrossView Pro
starts up and opens the command window, source window and other

windows.

Breakpoint

Toggle Local Toolbar

‘% CrossView Pro - Demo.abs

Main Toolbar

ZAEGE[E W

Ed Source - demo.c

= if (initval > recordvar.s)

e RECER E vwm AR & N 2
|4? jl 0x140a jlmain leource lingz leource line: step j -]
roid main (void)
i
int loopvar; /* the loop counter *f J
long Sum; /¥ will be 17+sum of factorials from O ta 7 */
char ovar; /% gample char wvariable L

A

Command: CrossYiew =10]

iF

/% stopped at the breakpoint we set. ﬂ
/% In the Source window,
/* statement to he executed.
/% by one C statement we can use the 's' cor

CrossView Pro alwar
To single ste)

WOV W WY

initval/n
initval = 0

<1

e
] b

b O /maini) [.\demo.cla7]
R
initvaldn
I Execute | Halt
| . /
Main Local Source Window
Status Bar Toolbars Status Bar

Figure 1-4: Command Window

1-16

Chapter 1

CrossView Pro can be passed the name of an execution (*.elf) file. This
can be done from a command line, but the native windowing system often
provides alternatives. Usually this involves dragging the program to be
debugged onto the CrossView Pro executable from the Windows Explorer
for Windows 95/98/XP/NT/2000, and dropping it there or associating
CrossView Pro to be the application to start when double—clicking an
.elf icon. CrossView Pro will start and load the symbol information from
that file.

1.6.3.1 CROSSVIEW PRO TARGET SETTINGS

You can specify specific CrossView Pro target settings in the Target Settings
dialog.
To open the Target Settings dialog:

e From the Target menu, select Settings...
The Target Settings dialog box appears as shown in figure 1-5.

Target Settings [2] x]

Target configuration

C:\targethetchsample?. cig
C:\targetietchzample3. cig

™ Show configuration tifes Browse... |
CPU type: Icpu‘] j
Erecufic enyirammert: I j
Configuration: I Simulatar j
D escriptior file: Ic: “targethetchtarget dec j Browse... |

Source directories:

L]

— Configure... |

"

Cancel |

Help |

Figure 1-5: CrossView Pro Target Seitings

Overview

You can set the following items in this dialog:

e Select a target configuration file (*.cfg) containing some target
specific configuration items. This file is optional. See the text below
for more information.

* Specify the source directories for CrossView Pro. Click on the
Configure... button to change the list of source directories.

Target Configuration

The available targets are described by the target configuration files (* .cfg
in the etc subdirectory). The target configuration files are text files and
can be edited with any text editor.

Empty lines, lines consisting of only white space are allowed. Comment
starts at an exclamation-sign (") and ends at the end of the line.

An information line has the following synopsis:

[! comment] field: field-value
Sfield one of the keywords described below
field-value the value assigned to the field

comment optional comment

The fields listed in the configuration file are:

Field Description

title The full name of the configuration. This
name will be displayed in the Target
configuration field of the Target |
Settings dialog.

debug instrument module The name of the Debug Instrument (using
GDI) used for debugging.

radm The name of the Debug Instrument (using
KDI) used for RTOS aware debugging.
(optional).

1-18

-

Chapter 1

@ Notes:

* Fields not required for the target can be omitted.

* CrossView Pro searches for the *.cfg files in the current directory and
in the etc directory.

1.6.3.2 CONFIGURING CROSSVIEW PRO

You may have to configure CrossView Pro to talk to the emulator or ROM
monitor. If you have a simulator version this step is not needed and the
associated menu item is grayed out. To configure CrossView Pro:

¢ From the Target menu, select Communication Setup...

The Communication Setup dialog box appears as shown in figure
1-6.

* Adjust the communication parameters (baud rate and I/O port) to
match your hardware configuration.

¢ Close the dialog box by clicking on the OK button.

* The settings in this dialog (and other dialogs) will be saved on
exiting CrossView Pro, when the Save desktop and target settings
check box in the Save tab of the Options dialog is set. This dialog
always appears on exiting CrossView Pro.

Select link type: — Serial Port Settings

~| | Part Im

Baud rate: m
Timeout factor: |1—

| | -Handshake
& Hondoff ¥ Exclusive access

 RTS/ACTS

& None

Help | 0K I Cancel

Figure 1-0: Setting up CrossView Pro Communications

Overview

1.6.3.3 LOADING SYMBOLIC DEBUG INFORMATION

You must tell CrossView Pro which program you want to debug. To do
this:

* From the File menu, select Load Symbolic Debug Info...

The Load Symbolic Debug Info dialog box appears, as shown in
figure 1-7.

* Type in the path and file name of the program that you want to
debug, or click on the Browse... button to bring up a file selection
dialog box. In our example we are using demo.elf. Note that in
most cases you will want to set the code bias field to 0x0000.

* Set the Download image too check box by clicking on it, if you
want to download the image of your absolute object file to the
target. You can decide to postpone downloading to the target. In
that case you can select Download Application... from the File
menu any time afterwards.

¢ Set the Reset target system check box if you want to reset the
target system to its initial state. You can decide to postpone resetting
the target. In that case you can select Reset Target System from
the Run menu afterwards.

Load S5ymbolic Debug Info EE

— Application

Application to debug: Idemo. elf ﬂ Browse... |
Code address bias: IDHDDDD

¥ Reset target spstem ™ Show load statistics ™ Break on exit
¥ Download image too ¥ FReset application [C++ name demangling
[~ Signal download ready ¥ Gota main

— Debug

™ Debug without symbolic debug file

— Option

[Eammunieatian Setup:.. Target Settings...

¥ Execute these settings at CrossVisw startup

Help | Load E—

Figure 1-7: Loading Symbolic Debug Information

1-20

Chapter 1

* Set the Goto main check box if you want to execute the startup
code. This automatically enables the Reset application check box.
You can decide to postpone going to the main function. In that
case you can execute a high-level single step afterwards.

* When you click on the Communication setup... button (if
available), the Communication Setup dialog box opens as shown in
figure 1-6. With the Target Settings... button you can open the
Target Settings dialog. Please check the information in these dialogs
before downloading an application.

* When you click on the Load button, the program’s symbol file will
be loaded into the debugger and, if you have set the Download
image too check box, the image of your absolute object file will be
downloaded.

» Clicking on Cancel ignores all actions.

CrossView Pro remembers all previously saved settings. In this case, the
Load Symbolic Debug Info dialog already contains the previously saved
configuration, so you only have to click the Load button to perform your
actions.

Compare Application

You can use the File | Compare Application... dialog to check if a file
matches the downloaded application. This can be useful when your
program has changed some of your code.

Overview

1.6.4 EXECUTING AN APPLICATION

To view your source while debugging, the Source Window must be open.
To open this window,

¢ From the View menu, select Source | Source lines

Before starting execution you have to reset the target system to its initial
state. The program counter, stack pointer and any other registers must be
set to their initial value. The easiest way to do this is:

* Set the Reset target system check box and the Goto main check
box in the Load Symbolic Debug Info dialog box. (See the previous
section) Goto main automatically enables the Reset application
check box.

If you have not checked these items:

e From the Run menu, select Reset Target System
* From the Run menu, select Reset Application

* Execute a high-level single step (either into or over) using the
toolbar in the Source Window (or F11/F10).

The first single step executes the startup code and stops at the first line of
code in main(). You should see your program’s source code.

Another way of getting there is:

e Set a breakpoint at the entry of in main() by clicking on a
breakpoint toggle at the left side of the text in the Source Window.
See figure 1-8.

¢ Start the application with Run | Reset Application and Run |
Run.

To set a breakpoint:

* Click on a breakpoint toggle (as shown in figure 1-8) to set or to
remove a breakpoint. A green colored toggle shows that no
breakpoint is set. A red colored toggle shows that a breakpoint is
installed. An orange colored toggle shows that an installed
breakpoint is disabled.

Due to compiler optimizations it is possible that a C statement does
not translate in any executable code. In this case you cannot set a
breakpoint at such a C statement. No breakpoint toggle is shown in
this case.

1-22

=

Chapter 1

E Source : demo.c [[O] x|
= e RIESED E v Q@ & O F E|
I 43 jl Ox1416 jlmain leource lines jl Source line step j
oid main (void)
{
int loopwar: /% the loop counter '-J
long Sum; A% will be 174+sum of factorials from 0 to| 7
char CVar; f% gample char variable
[Elw | O.000% initwal = 17:
E | o.000% if (initwval > recordwvar.a)
Er | o.ooo%
i -
1 | H o
Breakpoint Coverage Profiling Current Status
Toggles Markers Execution Position Bar

Figure 1-8: Getting Control

Now it is time to execute your program:
¢ From the Run menu, select Run

In the Source Window the current execution position (the statement at the
address identified by the current value of the program counter) is
higlighted in blue. As a result, when execution stops, the line you set a
breakpoint on is highlighted. You can now single step through your
program using the Step Into and Step Over buttons in the Source
Window. Or you may choose to execute the rest of the program (or at
least until the next breakpoint) with the Run button.

At any point you can interrupt the emulator and regain control by clicking
on the Halt button in either the Source Window or the Command
Window.

For more information on executing a program, see the chapter Controlling
Program Execution.

Overview

1.6.5 DEBUGGING AN APPLICATION

When debugging your application you probably want to see the calling
sequence of your program, and inspect the contents of variables and data
structures used within your program.

To see the calling sequence of your program the Stack Window must be
open. The stack window shows the functions that are currently on the
stack. To open the stack window,

¢ From the View menu, select Stack
To see the value of the local variables of a function,
¢ From the View menu, select Data | Watch Locals Window

‘¢ CrossView Pro - Demo.abs =] &2
File Target Edt Run EBreakpoints Dats Tools Settings Wiew Window Help

BlEL S m > D HI[ZEGEGE[Z02% wh =

M Source : demo.c M [=1E3
B RILESEN E ew Q& @ M E =
|48 lexMTB jlmain leDurce lines leource line: step j
roid main (woid)
{
int loopwar: /% the loop counter L J
lang sum; /% will bhe 17+4sum of factorials from 0 ta 7 */
char oVar; /* sample char wvariable +/
=
=]]
{
El oum = 0: All Local Variables M=l &=
G
! W wEES &0
4
—I—I— LOCAL loopvard/n @ <deads
Command: CrossView = =] = LOCAL sum/n : -1
;I LOCAL cwvar/n : <deads
> recordvar/n - recordvar/n @ struct rec = |
recordvar = struct rec_s { a = -1; -
&= -1 + h = 0x10Z8 "TASKING":
b = 0x1028 "TASKING"; o = 987654321;
© = 957654321; eolor = blus:
color = blue; 1 + recordvar
! =
| |] ;| Stack !EII!{
prst ;I E)
B N
recardvar/n ;I 0 maini) [.%demo.c:47]

Is Execute Halt

Figure 1-9: Watch variables

1-24

Chapter 1

To inspect the value of global variables and data structures,
* Double—click on the variable name in the Source Window.

Depending on preferences you have set, the variable is shown in the Data
Window as shown in figure 1-9 or the dialog displayed in figure 1-10 is
shown.

: Expression Evaluation EHE
Expressian: |rec:u:urdvan"n j Browse... |

— Optional dizplay format

Shyle: IN.;.[ma| vl Mumber of values: I Yalue size: IDefauIt vl

> recordvar/n ;I
recordvar = struct rec = {

a = -1;

b = 0x10Z8 "TASKING";

o o= 987E54321;
color = blue;
i

Help | Add watch Add Show

Figure 1-10: Expression evaluation

Pointers, structures and arrays displayed in the data window have a
compact and expanded form. The compact form for a structure is just
<struct>, while the expanded form shows all the fields. The compact
form of a pointer is the value of the pointer, while the expanded form
shows the pointed-to object. The compact form is indicated by putting a
'+ at the start of the display. (i.e., the object is expandable), while a -’
indicates the expanded form (i.e., the object is contractible). Nesting is
supported, so structures within structures can likewise be expanded, ad
infinitum.

To expand a pointer, structure or an array:

¢ Double—click on the '+’ in the Data Window

Overview

1.6.6 CROSSVIEW PRO OUTPUT

Nearly every CrossView Pro command can be given using the graphical
user interface. These commands and the debugger’s response is logged in
the Command Output Window which is the upper part of the Command
Window. Alternatively, CrossView Pro commands can be entered directly

(without using the menu system) in the command edit field of the
command window.

To open the Command Window:
* From the View menu, select Command | CrossView

Figure 1-11 shows an example of the Command Window. Commands can
be typed into the command edit field (bottom field) or selected from the
command history list (middle field) and edited then executed. The top
field is referred to as the Command Output Window. Each command,
echoed from the command edit field, is displayed with a "> prefix.
CrossView’s response to the command is displayed below the command.

CrossView Command CrossView Response Output Window

Command: Crozs¥Yiew [_ (O] <]

> 3 ! =
maingds: if [(initwal > recordwar.a)
]

maingsi: sum = 0;

» initwal

initwal = 17

%
%
initval

IE | Execute | Hailt |

Command Edit FieldJ Command History List —

Lo DAled

Figure 1-11: CrossView Pro Command Output

You can choose to clear the command edit field after executing a
command. From the File menu, select Options... and select the Desktop
tab. Enable the Clear command line after executing command check
box. You can use the clear command to clear the Output Window.

1-26

=

1.6.7

Chapter 1

EXITING CROSSVIEW PRO

To quit a debugging session:

From the File menu, select Exit or close the Command Window.

In the Options dialog that appears, select in the Save tab the
options you want to be saved for another debug session.

Click on the Exit button in the Options dialog.

If you selected one or more items in the Options dialog, your settings will
be saved in the initialization file xvw.ini. This file is located in the
startup directory.

Workspace files

If you have set the Save desktop and target settings check box in the
Save tab, CrossView Pro will create a workspace file (.cws) for each
debugged or loaded application. The settings will be restored in a
following debug session. If CrossView Pro cannot find a workspace file for
a loaded application it uses the default workspace file xvw.cws in the etc
directory.

A CrossView Pro workspace file contains:

Window positions and sizes

Local toolbars status

Main toolbar configuration

Monitored variables in Data windows

Memory window settings

Terminal window settings

Coverage and profiling display settings in the Source window
Color settings

Overview

1.6.8 WHAT YOU MAY HAVE DONE WRONG

Most problems in starting up CrossView Pro for a debugging session stem
from improperly setting up the execution environment or from an
improper connection between the host computer and the execution
environment. Some targets will require you to enter transparency mode to
set the execution environment for a debugging session. Check the notes
for your particular execution environment.

Here are some other common problems:

* Specifying the wrong device name when invoking the debugger.

* Specifying a baud rate different from the one the execution
environment is configured to expect.

* Not supplying power to the execution environment or an attached
probe.

e Using the wrong kind of RS-232 cable.

* Plugging the cable into an incorrect port on the execution
environment or host. Some target machines and hosts have several
ports.

¢ Installation of a device driver or resident application that uses the
same communications port on the host system.

e The port may already be in use by another user on some UNIX
hosts, or being allocated by a login process.

* Specifying no or an invalid CPU type with the —C option.

1-28 Chapter 1

=

1.6.9 BUILDING YOUR EXECUTABLE

The subdirectory xvw in the examples subdirectory contains a demo
program for the TriCore toolchain.

In order to debug your programs, you will have to compile, assemble, link
and locate them for debugging using the TASKING TriCore tools. You can
do this with one call to the control program or you can use EDE, the
Embedded Development Environment (which uses a project file) or you
can call the makefile from the command line.

1.6.9.1 USING EDE

EDE stands for "Embedded Development Environment” and is the
Windows oriented Integrated Development Environment you can use with
your TASKING toolchain to design and develop your application.

To use EDE on the demo program, located in the subdirectory xvw in the
examples subdirectory of the TriCore product tree, follow the steps
below.

A detailed description of the process creating the sample program
demo.elf is described below. This procedure is outlined as a guide for
you to build your own executables for debugging.

How to Start EDE

You can launch EDE by double-clicking on the EDE shortcut on your
desktop.

Elﬂ

The EDE screen provides you with a menu bar, a toolbar (command
buttons) and one or more windows (for example, for source files), a status
bar and numerous dialog boxes.

Overview

Project Options Compile Build Rebuild Debug On-line Manuals

51 TASKING EDE [Toolchain - C:\target\examples\demo\demo.pjt]
File Edit Seach Project Bulld Test Document Customize Tooks Window Help

|evs- osEgsma o] -H# 9
F'l-:-|E-:t [-]
C:\taigetienamplesidemo.psp

i8] demo (5 Files)

\

Project Window
Contains several
tabs for viewing T struct rec_s
information about
projects and other
files.

B C:\target\examples\demo\DEMO.C

#include <string.h>
#include <stdio.h>

#define BELL_CHAR

Document Windows
Used to view and edit files.

typedef enum color_e
. 1

red, yellow, blue

| type;

Output Window

Contains several tabs to display _:El

and manipulate results of EDE
operations. For example, to view
the results of builds or compiles. _

o |f. I'I';JLJD_]B‘_J File Find 4 Seach A Browse A Difference 4 Shell 4 Symbols

[[=@ s [|lnet1 [Coln

How to Select a Toolchain

EDE supports all the TASKING toolchains. When you first start EDE, the
correct toolchain of the product you purchased is selected and displayed
in the title of the EDE desktop window.

If you have more than one TASKING product installed and you want to
change toolchains, do the following:

1. From the Project menu, select Select Toolchain...

The Select Toolchain dialog appears.

1-30 Chapter 1

-

Select Toolchain

Product Folder:
|cchearget

Toolchainz: Cahcel

TASKING <toolchainy

Browsze...

Scan Dizk...

3§13

¥ Display 'Toolchain switched to ... message Delete

2. Select the toolchain you want. You can do this by clicking on a toolchain
in the Toolchains list box and click OK.

If no toolchains are present, use the Browse... or Scan Disk... button to
search for a toolchain directory. Use the Browse... button if you know the
installation directory of another TASKING product. Use the Scan Disk...
button to search for all TASKING products present on a specific drive.
Then return to step 2.

How to Open an Existing Project
Follow these steps to open an existing project:
1. From the Project menu, select Set Current —>.

2. Select the project file to open. For the demo program select the file
demo.pjt, located in the subdirectory xvw in the examples subdirectory
of the TriCore product tree. If you have used the defaults, the file
demo.pjt is in the directory c:\ctc\examples\xvw.

How to Load/Open Files

The next two steps are not needed for the demo program because the files
addone.asm and demo.c are already open. To load the file you want to
look at:

1. From the Project menu, select Load Files...

The Choose Project Files to Edit dialog appears.

Overview 1-31

Choose Project Files to Edit

Project Files: 1 of & zelected

C:Mbargethexampleshdemotiwelcome. bt akK
<t demohreadre: bt

" dermo. o
C:Mtargetiexampleshdemot.addone. asm
C:Mrargetherampleshdamat, s Slibharchatart asm

Cancel

Help

Irvert

dddy.

LClear

2. Choose the file(s) you want to open by clicking on it. You can select
multiple files by pressing the <Ctrl> or <Shift> key while you click on a
file. With the <Ctrl> key you can make single selections and with the
<Shift> key you can select everything from the first selected file to the file
you click on. Then click OK.

This launches the file(s) so you can edit it (them).

Check the directory paths

1. From the Project menu, select Directories....

The Directories dialog appears.

[X]

Directories

Executable Files Path:

|$[PHDDDIH]\hin Configure... |

Include Filez Path:

|$[F'F|DDDIF|]\in-:Iude Configure... |

Library Files Path:

|$[PHDDDIH]\Iih Configure... |

Output directary [instead of project directaory] -

I Browse... |
Cancel | Default |

Z

2. Check the directory paths for programs, include files and libraries. You can
add your own directories here, separated by semicolons.

1-32 Chapter 1

-

3. Click OK.

How to Build the Demo Application

The next step is to compile the file(s) together with its dependent files so
you can debug the application.

Steps 1 and 2 are optional. Follow these steps if you want to specify
additional build options such as to stop the build process on errors and to
keep temporary files that are generated during a build.

1. From the Build menu, select Options...
The Build Options dialog appears.

Build Options K3

— Build
W Use TASKIMG build and emor parser settings

¥ Save file[s) before starting a command

¥ Stop build process on emor
™ Keep temparany files that are generated during a build
™ Use additional make options:

™ Use estemal makefile (instead of 'demo.mak’] :

| Erawse).
™ Use absolute path names in gensrated makefile
I Include userdefined makefile in generated makefils:
I Erawse).
Output directory (instead of project directary] :
| Erowse...

Debug
’]7 “whamn if target file is not up-to-date when starting the debugger ‘

Cancel | Drefault
i

2. Make your changes and press the OK button.
3. From the Build menu, select Scan All Dependencies.

4. Click on the Execute 'Make’ command button. The following button is
the execute Make button which is located in the toolbar.

If there are any unsaved files, EDE will ask you in a separate dialog if you
want to save them before starting the build.

Overview

How to View the Results of a Build

Once the files have been processed you can inspect the generated
messages.

You can see which commands (and corresponding output captured) which
have been executed by the build process in the Build tab:

TASKING program builder vx.y rz Build nnn SN 00000000
Assembling addone.asm

Compiling and assembling demo.c

Assembling cstart.asm

Linking and Locating to demo.elf in ELF/DWARF 2 format

How to Start the CrossView Pro Debugger

Once the files have been compiled, assembled, linked, located and
formatted they can be executed by CrossView Pro.

To execute CrossView Pro:

1. Click on the Debug application button. The following button is the
Debug application button which is located in the toolbar.

&

CrossView Pro is launched. CrossView Pro will automatically download the
compiled file for debugging.

How to Start a New Project

When you first use EDE you need to setup a project space and add a new
project:

1. From the File menu, select New Project Space...
The Create a New Project Space dialog appears.

2. Give your project space a name and then click OK.
The Project Properties dialog box appears.

3. Click on the Add new project to project space button.
The Add New Project to Project Space dialog appears.

4. Give your project a name and then click OK.

1-34

Chapter 1

The Project Properties dialog box then appears for you to identify the files to
be added.

. Add all the files you want to be part of your project. Then press the OK

button. To add files, use one of the 3 methods described below.

Project Properties <]
2 <Default Settings> Directaries I Members I Toals I Ermars I Filters l
demo (1 Project) Praject: C:\target'exampleshdemo’.demo. pjt
% demao [0 Fileg|

[Files B =S

Add new file Add existing files
Scan existing files

* If you do not have any source files yet, click on the Add new file to
project button in the Project Properties dialog. Enter a new filename
and click OK.

* To add existing files to a project by specifying a file pattern click on
the Scan existing files into project button in the Project Properties
dialog. Select the directory that contains the files you want to add to
your project. Enter one or more file patterns separated by semicolons.
The button next to the Pattern field contains some predefined
patterns. Next click OK.

* To add existing files to a project by selecting individual files click on
the Add existing files to project button in the Project Properties
dialog. Select the directory that contains the files you want to add to
your project. Add the applicable files by double-clicking on them or by
selecting them and pressing the Open button.

The new project is now open.

. From the Project menu, select Load Files... to open the files you want on

your EDE desktop.

EDE automatically creates a makefile for the project. EDE updates the
makefile every time you modify your project.

1.6.9.2 USING THE CONTROL PROGRAM

A detailed description of the process creating the sample program
demo.elf is described below. This procedure is outlined as a guide for
you to build your own executables for debugging.

. Make the subdirectory xvw of the examples directory the current working

directory.

Overview

2. Be sure that the directory of the binaries is present in the PATH
environment variable.

3. Compile, assemble, link and locate the modules using one call to the
control program cctc:

cctc —g demo.c addone.asm —o demo.elf
The -g option enables symbolic debug information.
The -o option specifies the name of the output file.

The command in step 3 generates the linker map file demo.map and the
absolute output file demo.elf. The file demo.elf is in the ELF/DWARF 2
format, and can directly be used by CrossView Pro. No separate formatter
is needed.

Now you have created all the files necessary for debugging with
CrossView Pro using one call to the control program.

If you want to see how the control program calls the compiler, assembler,
and linker, you can use the =n option or =v option. The -n option only
displays the invocations without executing them. The —=v option also
executes them.

cctc —g demo.c addone.asm -o demo.elf -n

The control program shows the following command invocations without
executing them (UNIX output):

ctc —-g —o demo.src demo.c

astc —gsl —-o addone.o addone.asm

astc —gsl —-o demo.o demo.src

ltc —-o demo.elf —-ddefault.lsl —-dextmem.lsl —--map-file
addone.o demo.o -L/usr/local/ctc/lib/tcl -1lc -1lfp -1lrt

+ 4+ +

By default, the control program removes the intermediate output files
(demo.src, demo.o and addone.o in the example above) afterwards,
unless you specify the command line option -t
(——keep-temporary-files).

Of course, you will get the same result if you invoke the tools separately
using the same calling scheme as the control program.

As you can see, the control program automatically calls each tool with the
correct options and controls.

1-36 Chapter 1

=

1.6.9.3 USING THE MAKEFILE

The subdirectories in the examples directory each contain a makefile
which can be processed by mktc. Also each subdirectory contains a
readme. txt file with a description of how to build the example.

To build the demo example follow the steps below. This procedure is
outlined as a guide for you to build your own executables for debugging.

1. Make the subdirectory xvw of the examples directory the current working
directory.

This directory contains a makefile for building the demo example. It uses
the default mktc rules.

2. Be sure that the directory of the binaries is present in the PATH
environment variable.

3. Compile, assemble, link and locate the modules using one call to the
program builder mktc:

mktc
This command will build the example using the file makefile.

To see which commands are invoked by mktc without actually executing
them, type:

mktc -n

This command produces the following output:

TASKING TriCore VX-toolset program builder vxX.yrz Build nnn
Copyright years Altium BV Serial# 00000000
cctc —g -w —c demo.c

cctc —-Wa—-gs -w —c addone.asm

cctc —o demo.elf demo.o addone.o -w

The -g option in the makefile is used to instruct the C compiler to
generate symbolic debug information. This information makes an
application written in C much easier to debug.

To remove all generated files type:

mktc clean

SOFTWARE
INSTALLATION

al TASKING [

d31dVHO

Software Installation

2.1 INTRODUCTION

This chapter describes the procedure for the installation of the TASKING
CrossView Pro debugger for the TriCore on Windows, Linux and several
UNIX hosts.

2.2 NOTE ABOUT FILENAMES

Members of the CrossView Pro family of debuggers use the following
name convention for their executables:

xfwtc

2.3 INSTALLATION FOR WINDOWS

1.

2.

Start Windows (95/98/XP/NT/2000), if you have not already done so.
Insert the CD-ROM into the CD-ROM drive.

If the TASKING Showroom dialog box appears, proceed with Step 5.
Click the Start button and select Run...

In the dialog box type d:\setup (substitute the correct drive letter for
your CD-ROM drive) and click on the OK button.

The TASKING Showroom dialog box appears.
Select a product and click on the Install button.

Follow the instructions that appear on your screen.

You can find your serial number on the invoice, delivery note, or picking
slip delivered with the product.

Make sure that the directory containing the installed executable files is
present in the PATH environment variable, when you invoke the tools
from a command prompt.

License the software product as explained in section 2.8, Licensing
TASKING Products.

2-3

2-4

=

Chapter 2

2.4 INSTALLATION FOR LINUX

Each product on the CD-ROM is available as an RPM package, Debian
package and as a gzipped tar file. For each product the following files are
present:

SWproduct-version—-RPMrelease.i386.rpm
swproduct_version-release_1i386.deb
SWproduct-version.tar.gz

These three files contain exactly the same information, so you only have
to install one of them. When your Linux distribution supports RPM
packages, you can install the .rpm file. For a Debian based distribution,
you can use the .deb file. Otherwise, you can install the product from the
.tar.gz file.

2.4.1 RPM INSTALLATION

1.

In most situations you have to be "root” to install RPM packages, so either
login as “root”, or use the su command.

Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example /cdrom. See the Linux manual pages about mount
for details.

Go to the directory on which the CD-ROM is mounted:
cd /cdrom

To install or upgrade all products at once, issue the following command:
rpm -U SW*.rpm

This will install or upgrade all products in the default installation directory
/usr/local. Every RPM package will create a single directory in the
installation directory.

The RPM packages are 'relocatable’, so it is possible to select a different
installation directory with the ——prefix option. For instance when you
want to install the products in /opt, use the following command:

rpm -U ——prefix /opt SW*.rpm

Software Installation

&

For Red Hat 6.0 users: The ——prefix option does not work with RPM
version 3.0, included in the Red Hat 6.0 distribution. Please upgrade to
RPM verion 3.0.3 or higher, or use the .tar.gz file installation described
in the next section if you want to install in a non-standard directory.

Make sure that your path is set to include all of the executables you have
just installed.

X Windows is required to run CrossView Pro.

2.4.2 DEBIAN INSTALLATION

1.

Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root” or use the su command.

Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example /cdrom. See the Linux manual pages about mount
for details.

Go to the directory on which the CD-ROM is mounted:
cd /cdrom

To install or upgrade all products at once, issue the following command:
dpkg —i sw*.deb

This will install or upgrade all products in a subdirectory of the default
installation directory /usr/local.

Make sure that your path is set to include all of the executables you have
just installed.

X Windows is required to run CrossView Pro.

2-5

2-6

Chapter 2

2.4.3 TAR.GZ INSTALLATION

1.

Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root” or use the su command.

Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example /cdrom. See the Linux manual pages about mount
for details.

Go to the directory on which the CD-ROM is mounted:
cd /cdrom

To install the products from the .tar.gz files in the directory
/usr/local, issue the following command for each product:

tar xzf SWproduct-version.tar.gz —-C /usr/local

Every .tar.gz file creates a single directory in the directory where it is
extracted.

Make sure that your path is set to include all of the executables you have
just installed.

X Windows is required to run CrossView Pro.

Software Installation

2.5 INSTALLATION FOR UNIX HOSTS

1. Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root” or use the su command.

If you are a first time user decide where you want to install the debugger
(By default it will be installed in /usr/local).

2. Insert the CD-ROM into the CD-ROM drive and mount the CD-ROM on a
directory, for example /cdrom.

Be sure to use an ISO 9660 file system with Rock Ridge extensions
enabled. See the UNIX manual pages about mount for details.

3. Go to the directory on which the CD-ROM is mounted:
cd /cdrom
4. Run the installation script:
sh install
and follow the instructions appearing on your screen.

First a question appears about where to install the software. The default
answer is /usr/local. On certain sites you may want to select another
location.

On some hosts the installation script asks if you want to install SW000098,
the Flexible License Manager (FLEXIm). If you do not already have FLEXIm
on your system, you must install it; otherwise the product will not work on
those hosts. See section 2.8, Licensing TASKING Products.

If the script detects that the software has been installed before, the
following messages appear on the screen:

%* WARNING *
SWxxxxxX XxxX.xxxx already installed.
Do you want to REINSTALL? [y,n]

Answering n (no) to this question causes installation to abort and the
following message being displayed:

=> Installation stopped on user request <=

Chapter 2

Answering y (yes) to this question causes installation to continue. And the
final message will be:

Installation of SWxxxxxx xxxx.xxxx completed.

5. Make sure that the directory containing the installed executable files is
present in the PATH environment variable.

6. If you purchased a protected TASKING product, license the software
product as explained in section 2.8, Licensing TASKING Products.

X Windows is required to run CrossView Pro.

2.6 CONFIGURING THE X WINDOWS MOTIF
ENVIRONMENT

To run the Motif version of CrossView Pro on a Sun, you must define the
environment variable LD_LIBRARY_PATH to where the library file
libMrm.a resides. For example:

LD_LIBRARY_ PATH=/usr/dt/lib
export LD_LIBRARY_PATH

CrossView Pro uses a binary resource file for appearance-related
specifications for windows, menus, dialog boxes, and strings to be
accessed at run—time. The name of the resource file has the same name as
the executable but with .uid extension. Be sure that the .uid file is
present in one of the following directories:

e the current directory

* the directory specified by the UIDPATH environment variable

The environment variable UIDPATH specifies the path used by Motif to
locate the resource (.uid) file. If not set, it is set to a default value. The

resource file is installed in the same directory as the associated executable.
So, you should set UIDPATH as follows (Bourne shell syntax):

UIDPATH=path to uid/%U
export UIDPATH

Replace path_to_uid by the path to the directory in which the resource
file is installed. The %U is required.

For more details refer to MrmOpenHierarchy in the OSF/Motif
Programmer’s Reference manual.

Software Installation

2.7 USING X RESOURCES

X toolkit resources specify GUI object (widget) attributes. Resources are
specified in either the .Xdefaults file or in application class—specific
files.

The .xdefaults file is (typically) loaded into the X server at the start of
the session. Any changes take effect only in a new session, or after using
xrdb. Alternatively, application class resource files may be used.
Application resource files have the same name as the executable
CrossView Pro version they refer to (first letter NOT capitalized).
Application resource files must be present either in the directory specified
by the HOME environment variable, or in the app—defaults directory.
The app-defaults directory is typically located under /usr/1ib/X11.

X recognizes various environment variables for specifying paths to the
application resource files. For more information, consult the chapter on X
resources in O’Reilly’s X Toolkit Intrinsics Programming Manual and your
system documentation.

The X resource specification allows either global (loosely) bound
specifications (*foreground: black) or per-widget instance
specifications (*button.foreground: black).

The following list shows the relevant widgets used by the Motif version of
CrossView Pro:

Windows:
TOP-LEVEL - XmMainWindow => XmDrawingArea
CHILD — XmScrolledWindow => XmDrawingArea
Dialog:
MODAL — XmBulletinBoard
MODELESS — XmBulletinBoard
Menu:
MENUBAR — XmMenuShell

PULLDOWN — XmCascadeButton

2-10 Chapter 2

=

Controls:

CHECKBOX - XmToggleButton

RADIOBUTTON - XmToggleButton

TEXT — XmLabel

EDIT — XmText

LISTBOX — XmScrolledWindow => XmlList

SCROLLBAR — XmScrollBar

PUSHBUTTON — XmPushButton

LISTBUTTON — XmText & XmArrowButton &
XmScrolledWindow => XmList

LISTEDIT — XmText & XmArrowButton &
XmScrolledWindow => XmList

GROUPBOX — XmFrame => XmLabel

ICON — XmlLable with pixmap

FILESELECTION - XmFileSelectionBox

ERRORPOPUP - XmMessageBox

CrossView Pro repaints its windows in the default color as specified with
the Motif widget resource settings. It is possible to overrule this behavior
with a resource setting like: "*XmDrawingArea.background: blue”.

CrossView Pro uses a non proportional font in all of its windows. The font
size is selected using the "Desktop Setup dialog”. You can use the “font”
resource (*fontList on Motif) to select the font to be displayed in the
menubar and dialogs, it won't affect the font displayed in the CrossView
Pro windows.

The CrossView Pro stack and data windows are implemented using a
XmScrolledWindow widget on Motif.

The following list show the contents of an example app-defaults file
intended for Motif environments. Of course you may adjust the colors and
font to your preferences. Sample app—defaults files are delivered with
the product in the etc directory (app_def .mwm for Motif).

*fontList: 7x13bold
*foreground: black
*XmMainWindow.background: white
*XmScrolledWindow*background: white
*¥mDrawingArea.background: white
*¥mBulletinBoard.background: DarkSeaGreen
*XmToggleButton*background: gray

*XmLabel*background: gray

Software Installation

10.

11.

*XmText*background: white
*XmScrollBar*background: gray
*XmPushButton*background: gray
*XmFrame*background: SeaGreen
*XmArrowButton*background: gray
*XmForm.background: SeaGreen
*XmMenuShell*background: DarkSeaGreen
*XmCascadeButton*background: SeaGreen

If you encounter any problems due to incorrect resource settings, like
invisible text caused by identical text and background color, clear the
RESOURCE_MANAGER. Use the following procedure to clear the
RESOURCE_MANAGER:

Save a copy of the .Xdefaults file located in your home directory.
Install an empty .Xdefaults file.

Execute xrdb —all .Xdefaults to actually clear the
RESOURCE_MANAGER property.

Restart CrossView Pro and check if windows and dialogs are displayed
correctly.

Now you add the saved resources (one by one) back into the
.Xdefaults file and execute xrdb to install them in the server. Restart
CrossView Pro and check the influence of the new resource settings.
Adapt your saved resources when necessary.

2-12

=

Chapter 2

2.8 LICENSING TASKING PRODUCTS

TASKING products are protected with license management software
(FLEXIm). To use a TASKING product, you must install the license key
provided by TASKING for the type of license purchased.

You can run TASKING products with a node-locked license or with a
floating license. When you order a TASKING product determine which
type of license you need (UNIX products only have a floating license).

Node-locked license (PC only)

This license type locks the software to one specific PC so you can use the
product on that particular PC only.

Floating license

This license type manages the use of TASKING product licenses among
users at one site. This license type does not lock the software to one
specific PC or workstation but it requires a network. The software can then
be used on any computer in the network. The license specifies the
number of users who can use the software simultaneously. A system
allocating floating licenses is called a license server. A license manager
running on the license server keeps track of the number of users.

2.8.1 OBTAINING LICENSE INFORMATION

Before you can install a software license you must have a "License Key”
containing the license information for your software product. If you have
not received such a license key follow the steps below to obtain one.
Otherwise, you can install the license.

Windows

1.

Run the License Administrator during installation and follow the steps to
Request a license key from Altium by E-mail.

E-mail the license request to your local TASKING sales representative. The
license key will be sent to you by E-mail.

Software Installation

UNIX

1.

If you need a floating license, you must determine the hostid and
hostname of the computer where you want to use the license manager.
Also decide how many users will be using the product. See section 2.8.5,
How to Determine the Hostid and section 2.8.6, How to Determine the
Hostname.

When you order a TASKING product, provide the hostid, hostname and
number of users to your local TASKING sales representative. The license
key will be sent to you by E-mail.

2.8.2 INSTALLING NODE-LOCKED LICENSES

If you do not have received your license key, read section 2.8.1, Obtaining
License Information, before continuing.

Install the TASKING software product following the installation procedure
described in section 2.3, Installation for Windows.

Create a license file by importing a license key or create one manually:

Import a license key

During installation you will be asked to run the License Administrator.
Otherwise, start the License Administrator (licadmin.exe) manually.

In the License Administrator follow the steps to Import a license key
received from Altium by E-mail. The License Administrator creates a
license file for you.

Create a license file manually

&

If you prefer to create a license file manually, create a file called
"license.dat” in the c:\flex1lm directory, using an ASCII editor and
insert the license key information received by E-mail in this file. This file is
called the license file”. If the directory c:\flex1lm does not exist, create
the directory.

If you wish to install the license file in a different directory, see section
2.8.4, Modifying the License File Location.

2-14

—

&

Chapter 2

If you already have a license file, add the license key information to the
existing license file. If the license file already contains any SERVER lines,
you must use another license file. See section 2.8.4, Modifying the License
File Location, for additional information.

The software product and license file are now properly installed.

2.8.3 INSTALLING FLOATING LICENSES

If you do not have received your license key, read section 2.8.1, Obtaining
License Information, before continuing.

Install the TASKING software product following the installation procedure
described earlier in this chapter on each computer or workstation where
you will use the software product.

On each PC or workstation where you will use the TASKING software
product the location of a license file must be known, containing the
information of all licenses. Either create a local license file or point to a
license file on a server:

Add a licence key to a local license file

S

A local license file can reduce network traffic.

On Windows, you can follow the same steps to import a license key or
create a license file manually, as explained in the previous section with the
installation of a node-locked license.

On UNIX, you have to insert the license key manually in the license file.
The default location of the license file 1icense.dat is in directory
/usr/local/flexlm/licenses for UNIX.

If you wish to install the license file in a different directory, see section
2.8.4, Modifying the License File Location.

If you already have a license file, add the license key information to the
existing license file. If the license file already contains any SERVER lines,
make sure that the number of SERVER lines and their contents match,
otherwise you must use another license file. See section 2.8.4, Modifying
the License File Location, for additional information.

Software Installation

Point to a license file on the server

i+

Set the environment variable LM_LICENSE_FILE to "port@host”, where
bost and port come from the SERVER line in the license file. On Windows,
you can use the License Administrator to do this for you. In the License
Administrator follow the steps to Point to a FLEXIm License Server to
get your licenses.

If you already have installed FLEXIm v8.4 or higher (for example as part of
another product) you can skip this step and continue with step 4.
Otherwise, install SW000098, the Flexible License Manager (FLEXIm), on
the license server where you want to use the license manager.

It is not recommended to run a license manager on a Windows 95 or
Windows 98 machine. Use Windows XP, NT or 2000 instead, or use UNIX
or Linux.

If FLEXIm has already been installed as part of a non—-TASKING product
you have to make sure that the bin directory of the FLEXIm product
contains a copy of the Tasking daemon. This file is present on every
product CD that includes FLEXIm, in directory licensing.

On the license server also add the license key to the license file. Follow
the same instructions as with "Add a license key to a local license file” in
step 2.

See the FLEXIm PDF manual delivered with SW000098, which is present
on each TASKING product CD, for more information.

2-16

-

Chapter 2

2.8.4 MODIFYING THE LICENSE FILE LOCATION

+

The default location for the license file on Windows is:
c:\flexlm\license.dat

On UNIX this is:
/usr/local/flexlm/licenses/license.dat

If you want to use another name or directory for the license file, each user
must define the environment variable LM_LICENSE_FILE.

If you have more than one product using the FLEXIm license manager you
can specify multiple license files to the LM_LICENSE_FILE environment
variable by separating each pathname (/fpath) with a ’;’ (on UNIX also ’"):

Example Windows:
set LM _LICENSE_FILE=c:\flexlm\license.dat;c:\license.txt
Example UNIX:

setenv LM LICENSE_FILE
/usr/local/flexlm/licenses/license.dat:/myprod/license.txt

If the license file is not available on these hosts, you must set
LM_LICENSE_FILE to port@bost; where bost is the host name of the
system which runs the FLEXIm license manager and port is the TCP/IP port
number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting
with "SERVER”. The fourth field on this line specifies the TCP/IP port
number on which the license server listens. For example:

setenv LM LICENSE_FILE 7594Celliot

See the FLEXIm PDF manual delivered with SW000098, which is present
on each TASKING product CD, for detailed information.

Software Installation

2.8.5 HOW TO DETERMINE THE HOSTID

The hostid depends on the platform of the machine. Please use one of the
methods listed below to determine the hostid.

Platform Tool to retrieve hostid Example hostid

HP-UX lanscan 0000F0050185
(use the station address without
the leading '0x’)

Linux hostid 11ac5702
SunOS/Solaris | hostid 170a3472
Windows licadmin (License Administrator, | 0060084dfbe9

or use Imhostid)

Table 2—-1: Determine the bhostid

On Windows, the License Administrator (licadmin) helps you in the
process of obtaining your license key.

@ If you do not have the program licadmin you can download it from our

Web site at: http://www.tasking.com/support/flexlm/licadmin.zip . It is
also on every product CD that includes FLEXIm, in directory 1icensing.

2.8.6 HOW TO DETERMINE THE HOSTNAME

To retrieve the hostname of a machine, use one of the following methods.

Platform Method
UNIX hostname
Windows NT licadmin or:

Go to the Control Panel, open "Network”. In the
”Identification” tab look for "Computer Name”.

Windows XP/2000 | licadmin or:

Go to the Control Panel, open "System”. In the "Computer
Name” tab look for "Full computer name”.

Table 2-2: Determine the hostname

Chapter 2

2-18

NOILVTIVLSNI

COMMAND
LANGUAGE

al TASKING [

d31dVHO

Command Language

3.1 INTRODUCTION

The syntax and semantics of CrossView Pro’s command language is
discussed here. This language is mainly used to enter textual commands in
the command edit field of the Command Window. The mouse and menus
allow you to access most actions without knowing the command language,
although the command language is more powerful. The command
language is also used when evaluating expressions and in commands
associated with assertions, breakpoints and macros. For information about
specific CrossView Pro commands, refer to Chapter 13, Command
Reference.

3.2 CROSSVIEW PRO EXPRESSIONS

There are several methods that you can use to input an expression into
CrossView Pro:

It is possible to display both monitored and unmonitored expressions in
the Data Window. Monitored expressions are updated after every halt in
execution. Unmonitored expressions are just one-shot inspections of the
expressions value. Refer to section 4.6, CrossView Pro Windows for a
detailed description of the Data Window.

To evaluate a simple expression:

Double click on a variable in the Source window. The result of the
expression appears in the data window. Alternatively, depending on the
preferences you set in the Data Display Setup dialog, the expression
appears in the Evaluate Expression dialog. Click the Add Watch or

Add Show button to display the result of the expression in the Data
Window. Click the Evaluate button to display the result of the expression
in the output field of the Evaluate Expression dialog.

To evaluate a complex expression:

From the Data menu, select Evaluate Expression... and type in any C
expression in the Evaluate Expression dialog box. Optionally select a
display format. Click the Evaluate button.

Window followed by a return or click the Execute button.

3-3

Chapter 3

Expressions can be any length in most windows and dialog boxes;
CrossView Pro provides a horizontal scroll bar if an expression exceeds
the visible length of the entry field.

In CrossView Pro, C expressions may consist of a combination of numeric
constants, character constants, strings, variables, register names, C
operators, function names, function calls, typecasts and some CrossView
Pro-specific symbols. Each of these is described in the next sections.

Evaluation Precision

CrossView Pro evaluates expressions using the same data types and
associated precision as used by the target architecture when evaluating the
same expression.

3.3 CONSTANTS

CrossView Pro, like C, supports integer, floating point and character
constants.

In case the C compiler for your target supports non standard C basic types,
like for example the fractional type, use a type cast, (__fract)0.123, to
enter a constant of the required type.

Integers

Integers are numbers without decimal points. For example, CrossView Pro
will treat the following as integers:

5 9 23
The following number, however, are not treated as integers:
5.1 9.27 0.23

Negative integers, if they appear as the first item on a line, must have
parentheses around the number:

(=5)*4

This is to prevent confusion with CrossView Pro’s own — (minus sign)
command.

Command Language

&

In addition, CrossView Pro supports standard C octal, hexadecimal and
binary notation. You can specify a hexadecimal constant using a leading
Ox or a trailing H (or h). The first character must be a decimal digit, so it
may be necessary to prefix a hexadecimal number with the ’0’ character.
The hexadecimal representation for decimal 16 is:

0x10 or 10H

For the hexadecimal digits a through £ you can use either upper or lower
case. The following are all correct hexadecimal representations for decimal
43981:

Oxabcd 0xABCD 0abCdH 0AbcDh

You can specify a binary constant using a trailing B or Y (or b or y). The
following are all binary representations for decimal 5:

0101b 101y 00000101B

You can specify an octal constant using a leading ’0’. The octal
representation for 8 decimal is:

010

You can use an L to indicate a long integer constant. For example,
CrossView Pro will recognize the following as long integers:

oL 57L 0xffL

CrossView Pro uses the same ANSI C integral type promotion scheme as
the C compiler.

Floating Point

A floating point number requires a decimal point and at least one digit
before the decimal point. The following are valid examples of floating
point numbers:

12.34 5.6 7.89

In case the C compiler for your target supports non standard C basic types,
like for example the fractional type, use a type cast, (float)0. 3, to enter
a floating point constant of the required type.

Chapter 3

Exponential notation, such as 1.234e01, is not allowed. The following
are not valid floating point numbers:

.02 1.234e01 5
As with integers, bracket a negative number with parentheses:
(-54.321)

Expressions combining integers and floating point numbers will evaluate
to floating point values:

2.2 * 2

4.4
Character

Character constants are single characters or special constants that follow
the C syntax for special characters. Examples of valid character constants
include:

m’ rx ! I\nl

Character constants must be a single byte and are delimited by ' * (single
quotation marks). For instance:

$mychar="m’
Remember not to confuse character constants with strings. A character
constant is a single byte, in this example, the ASCII value of m.
Strings

Strings are delimited by ” " (double quotation marks). In C all strings end
with a null (zero) character. Strings are referenced by pointer, not by
value. This is standard C practice. In CrossView Pro, you may assign a
string literal to a variable which is of type char* (pointer to character):

Systring = “name”

Command Language

CrossView Pro supports the standard C character constants shown below:

Code ASCII Hex Function
\b BS 08 Backspace
\f FF ocC Formfeed
\n NL (LF) 0A Newline
\r CR 0D Carriage return
\t HT 09 Horizontal tab
AN\ \ 5C Back slash
\? ? 3F Question mark
\’ ’ 27 Single quote
\" " 22 Double quote
\ooo 3-digit octal number
\xhhh hexadecimal number

Table 3-1: C character codes

Trigraph sequences are not supported.

3.4 VARIABLES

CrossView Pro lets you use variables in the C expressions you type. You
may reference two classes of variables: variables defined in the source
code and special variables.

Variables defined in your source code fall into two categories: local
variables and global variables.

Storage Classes

Variables may be of any C storage class. The size of each class is target
dependent. Consult the C Compiler, Assembler, Linker User’s Manual for
specific sizes.

You may cast variables from one class to another:

(long) $mychar

3-8 Chapter 3

=

Local Variables

You define local variables within a function; their values are maintained on
the stack or in registers. When the program exits the function, you lose
local variable values. This means that you can only reference local
variables when their function is active on the stack.

Local variables of type static retain values between calls. Therefore, you
can reference static variables beyond their functions, but only if their
function is active on the stack.

CrossView Pro knows whether the compiler has allocated a local variable
on the stack or directly in a register and whether the register is currently
on the stack. The compiler may move some local variables into registers
when optimizing code.

If a part of your source code looks like this:

x =5
Yy =X

~e ~e

and you stopped the program after the assignment to x, and set x to
another value, this may not prevent the second statement from setting y to
5 due to "constant folding” optimizations performed by the compiler.

Global Variables

Global variables are defined outside every function and are not local to
any function. Global (non-static) variables are accessible at any point
during program execution, after the system startup code has been
executed.

Global variables can be defined static in a module. These variables can
only be accessed when a function in this module is active on the stack, or
when that file is in the Source Window using the e command.

Command Language

Specifying Variables in C expressions

The following table specifies how CrossView Pro treats different variables
in C expressions. The left column is the variable’s syntax in the expression,
the right column is the CrossView Pro semantics.

Variable Syntax CrossView Pro Behavior

variable CrossView Pro performs a scope search starting at
the current viewing position and proceeding outwards.
The debugger first checks locals, local statics and
parameters, followed by statics and globals explicitly
declared in the current file. Finally, globals in other
files are checked.

function#variable CrossView Pro searches for the first instance of
function. If found, the debugger uses the frame’s
address to perform a scope search for variable.
Variables are available only if the specified function is
active. That is, the stack frame for that function can be
found on the run-time stack.

numberitvariable The frame at stack level number is used by the
debugger for the scope search. The current function is
always at stack level 0. This format is very useful if
you are debugging a recursive function and there are
multiple instances of a variable on the stack.

:variable CrossView Pro searches for a global variable named
either variable or _variable, in that order.

S$variable CrossView Pro searches the list of special variables
for $variable.

Table 3-2: Variables in C expressions

Variables and Scoping Rules

A variable is in scope at any point in the program if it is visible to the C
source code. For instance, if you have a local variable initval declared
inmain(), and then step (or move the viewing position) into factorial,
initval will be out of scope. You can still find the value of initval by

typing:

main#initval

3-10

Chapter 3

In this case CrossView Pro will search the stack for the function main(),
then look outwards from that function for the first occurrence of initval
in scope and report its value. Note that main() must be active, that is,
program execution must have passed through main() and not yet
returned, in order for initval to have a value.

You can also use the Browse... button in the Expression Evaluation dialog
box. This dialog box appears when you click the New Expression button
in the toolbar or select Evaluate Expression... from the Data menu.

Special Variables

CrossView Pro maintains a set of variables that are separate from those
defined in your program being debugged. These special variables reside in
memory on the host computer, not on the target system. They contain the
values of the target processor’s registers, information about the debugger’s
status, and user—defined values. Special variables are case insensitive. Use
the opt command to display and set these variables (without using the
"$-sign).

The following is a list of the reserved special variables for CrossView Pro:

Reserved Variable | Description

$ARG(n) Contains the value of the nth int-sized argument of the
current function. Allows access to arguments of variable
argument list functions without knowing the name of the
argument.

$FILE Contains the name of the file that holds the current
viewing position.

$IN(function) Contains the value 1 if the current pc is inside the
specified function, otherwise 0.

SLINE Contains the line number of the current viewing position.
This variable is often used in assertions to monitor
program flow.

$PROCEDURE Contains the name of the procedure at the current
viewing position.
$ASMHEX Contains a string "ON” or "OFF”. The value "ON”

specifies that the disassembled code as displayed in the
assembly window will display hexadecimal opcodes.
Default is "OFF”.

Command Language

Reserved Variable

Description

$AUTOSRC

Contains a string "ON” or "OFF”. The value "ON”
specifies that the debugger will automatically switch
between the source window and the assembly window
display depending on the presence of symbolic debug
information at the current location. The value "OFF”
prevents the automatic window switching. Default is
"OFF”.

$CPU

Contains a string indicating the current CPU type.

$FP

Contains the value of the frame pointer.

$MIXEDASM

Contains a string "ON” or "OFF”. The value "ON”
specifies that the disassembled code as displayed in the
assembly window will be intermixed with the
corresponding source lines. The value "OFF”
suppresses this intermixing. Default is "ON”.

$MORE

Contains a string "ON” or "OFF”. The value "ON”
specifies that the more output pager is enabled. The
value "OFF” disables the more output pager. Default is
!!ONH.

$PC

Contains the value of the program counter.

$PIPELINE

Contains a string "ON” or "OFF”. The value "ON”
specifies that the pipeline should be displayed in the
assembly window. Default is "OFF”.

$register

Contains the value of the specified register.

$sSP

Contains the value of the stack pointer.

$SYMBOLS

Contains a string "ON” or "OFF” indicating if local
symbols and symbolic addresses (.. main:56+0x4)
or absolute addresses are present in disassembly.
Default is "ON”.

$SRCLINENRS

Contains a string "ON” or "OFF”. The value "ON”
specifies that line numbers should be printed in the
source window. The value "OFF” suppresses printing of
line numbers. Default is "OFF”.

3-12

Chapter 3

Reserved Variable | Description

$SRCMERGELIMIT | Contains the value for the source merge limit in the
assembly window, the number of source lines to be
intermixed in the assembly window. Value 0O indicates
that there is no limit. Default is 0.

$USE_MDF_FILE Contains a string "ON” or "OFF”. The value "ON”
specifies that an application specific memory definition
file must be processed before a new file is loaded and/or
downloaded to the target. The value "OFF” suppresses

processing of a memory definition file. Default is "OFF”.

Table 3-3: Reserved special variables

Registers

For CrossView Pro, a fixed set of registers is always available. You can add
TriCore derivative specific SFRs by changing a register definition file. See
appendix C, Register Management, for more information.

You can configure which (and in which order) registers must appear in the
register window in the Register Window Setup dialog (Settings | Register
Window Setup...).

It is possible to request the address of an SFR by using the address
operator &.

&$sp
Location of $SP is reg [SP]
Operand for ’'&’ incorrect

&Spsw
0x578218

In addition to the standard register special variables, CrossView Pro
supplies the special variables: $sp (the stack pointer), $pc (the program
counter) and $£p (the current frame pointer).

The values of Reserved special variables cannot be changed interactively
(i.e., on the CrossView Pro command line).

Command Language

User-defined Special Variables

During a debugging session, you may need some new variables for your
own debugging purposes, such as counting the number of times you
encounter a breakpoint. CrossView Pro allows you to create and use your
own special variables for this purpose. CrossView Pro does not allocate
space for these variables in target memory; it maintains them on the host
computer.

The names of these variables, which must begin with a $ (dollar sign), are
defined when they are first used. For instance:

$Scount = 5

defines a variable named $count of type int with a value of 5. Special
variables are of the same type as the last expression they were assigned.
For example:

$name="john”
then:
Sname=3*4

creates a special variable $name of type (char *). The second statement
creates a special symbol $name and assigns it the value of 12 of type int.

Special variables are just like any other variables, except you cannot
meaningfully take the address of them.

% See the startup options in Chapter 4, Using CrossView Pro.

3-14

=

Chapter 3

3.5 FORMATTING EXPRESSIONS

&

By default, CrossView Pro displays the value of an expression using the
appropriate format for the type of expression. CrossView Pro follows
several simple rules for displaying variables:

The defaults are: addresses appear in hexadecimal format,
characters as ASCII and integers as decimal.

There are four possible formats to show one integer value:
decimal, hexadecimal, octal, and ASCIL.

There are three different formats to display one floating point value:
decimal real, hexadecimal and fractional. If the absolute value is
either too big or too small (with too many non-significant fractional
zeroes), the debugger automatically converts the format to one with
fixed decimal point and exponent.

ASCII is the only format to display a string. Note that you can opt
for the array format. Unpredictable characters are output as \xhb,
where bb is a hexadecimal value. Control characters are output as
~C.

All the values in an array appear in the same format. You are free to
select this format from the available options.

If All the values of a structure appear in the same format. You are
free to select this format from the available options.

You can determine in which format a variable is displayed. Once the

format has been selected, however, you must enter values or change

values in the appropriate format. When editing is finished, the debugger

interprets all values in terms of the currently selected formats.

You may, however, tell CrossView Pro to display an expression in a

particular format other than the default format. The format code follows

the variable, in one of two ways:

The simplest method of specifying display formats is from the Evaluate

Expression dialog box. To access this dialog box:

From the Data menu, select Evaluate Expression...

In the Command Window, you can use several format codes shown in

the next table to specify the variable display. The format codes can be

entered as:

variable/format

Command Language

&

to display the variable in format format, or:
variable@format
to display the variable’s address in format format.
The structure of the formatting code is:
[count] style [size]

Count is the number of times to apply the format style style. Size indicates
the number of bytes to be formatted. Both count and size must be
numbers, although you may use ¢ (char), s (short), i (int), and 1 (long) as
shorthand for size. Legal integer format sizes are 1, 2, and 4; legal float
format sizes are 4 and 8.

Be sure not to confuse CrossView Pro format codes with C character
codes, e.g. \a. CrossView Pro uses a forward slash / not a backward slash

\.

Style | Description

a Print the specified number of characters of the character array; any
positive size is OK. Use the expression’s value as the address of the
first byte.

c Print a character; any positive size is OK; default size is sizeof(char).

D Print in decimal; needs NO size specifier; size is sizeof(long).

d Print in decimal; can have a size specifier; default size is

sizeof(expression).

E Print in “e” floating point notation; needs NO size specifier; default size
is sizeof(double).

e Print in “e” floating point notation; the size specifier can be sizeof(float)
or sizeof(double); default size is sizeof(expression).

F Print in “f” floating point notation; needs NO size specifier; default size
is sizeof(double).

f Print in “f” floating point notation; the size specifier can be sizeof(float)
or sizeof(double); default size is sizeof(expression).

G Print in “g” floating point notation; needs NO size specifier; default size

is sizeof(double).

3-16

Chapter 3

Style

Description

[7pell

Print in “g” floating point notation; the size specifier can be sizeof(float)
or sizeof(double); default size is sizeof(expression).

Print the function, source line, and disassembled instruction at the
address.

Print the disassembled instruction at address.

Print in the “natural” format, based on type; use it for printing variables
that have the same name as an CrossView Pro command.

Print in octal; needs NO size specifier; size is sizeof(long).

Print in octal; can have a size specifier; default size is
sizeof(expression).

Print the name of the function at the address.

Print the names of the file, function, and source line at the address.

Print in fixed-point accumulator format; needs NO size specifier; size
is sizeof(__laccum).

Print in fixed-point fractional format; the size specifier can be
sizeof(__sfract) or sizeof(__fract).

Print the specified number of characters of the string, using the
expression’s value as the address of a pointer to the first byte.
Equivalent to *expression/a. If no size is specified the entire string,
pointed to by expression, is printed (till nil-character).

Display the type of the indicated variable or function.

Print in unsigned decimal; needs NO size specifier; size is
sizeof(long).

Print in unsigned decimal; can have a size specifier; default size is
sizeof(expression).

Print in hexadecimal; needs NO size specifier; size is sizeof(long).

Print in hexadecimal; can have a size specifier; default size is
sizeof(expression).

Table 3-4: Format style codes

For example, typing:

initval/4xs

displays four, hexadecimal two-byte memory locations starting at the
address of initval.

Command Language

The following piece of C—code can be accessed in CrossView Pro using
the string format codes:

char text[] = "Sample\n”;

char *ptext = text;

text What is the address of this char array
text = 0x8200

text/a Print it as a string

text = ”"Sample”J”

ptext What is the contents of this pointer
string = 0x8200

ptext/s Print it as a string

string = ”Sample”J”

&ptext Where does ptext itself reside
0x8210

With format codes, you may view the contents of memory addresses on
the screen. For instance, to dump the contents of an absolute memory
address range, you must think of the address being a pointer. To show
(dump) the memory contents you use the C language indirection operator
*. Example:

*0x4000/2x4
0x4000 = 0x00DB0208 0x5A055498

This command displays in hexadecimal two long words at memory
location 0x4000 and beyond. Instead of using the size specifier in the
display format, you can force the address to be a pointer to unsigned
long by casting the value:

* (unsigned long *)0x4000/2x
0x4000 = 0x00DB0208 0x5A055498

To view the first four elements of the array table from the demo.c
program, type:

table/4d2
table = 1 1 2 6

This command displays in decimal the first four 2-byte values beginning at
the address of the array table.

3-17

3-18

=

Chapter 3

3.6 OPERATORS

Standard C Operators

&

CrossView Pro supports the standard C operators in the ANSI defined
order of precedence. The order of precedence determines which operators
execute first.

The semicolon character (;) separates commands on the same line. In this
way, you may type multiple commands on a single line. Comments
delimited by /* and */ are allowed; CrossView Pro simply ignores them.

Order of Precedence
(in descending order)

0 - .

! 7 ++ — + - * & (type) sizeof

* /] %

+ p—

<< >>

< <= > >=

== I=

&

I

&&

[

?: = 4= —= *= [= %= §= "= |= <<= >>=

Table 3-5: Order of precedence of standard C operators

The *, — and + operators appear twice since they exist as both unary and
binary operators and unary operators have higher precedence than binary.

Division is represented by // (two slashes) not / (one slash). This is to
avoid confusion with CrossView Pro’s format specifier syntax.

Command Language

Using Addresses

To specify an address, you may use the & operator. To determine the
address of initval, type:

&initval

If you try to use the & operator on a local variable in a register, CrossView

Pro issues an error message and tells you which register holds the variable.

3.7 SPECIAL EXPRESSIONS

String Commands

Whenever CrossView Pro encounters an expression consisting solely of a
string by itself, it simply echoes the string. For example:

"hello, world\n”
hello, world

Use this technique to place helpful debugging messages on breakpoints.
For example, setting the following breakpoint:

60 b {"now in for loop\n”; sum; C }

this cause CrossView Pro to echo the message now in for loop, to
display the value of sum in the Command Window, and to continue when
line 60 is encountered. You can also enter this breakpoint and the
associated commands via the Breakpoints dialog box, which you can open
by selecting the Breakpoints... menu item from the Breakpoints menu.

The Period Operand

As a shorthand, CrossView Pro supports a special operand, period ‘.’; that
stands for the value of the last expression CrossView Pro calculated. For
instance, in the following example, the period in the second command
equals the value 11, which is the result of the previous expression:

5+ 6
11
4 * .
44

3-20

&

Chapter 3

The period operand assumes the same size and format implied by the
specifier used to view the previous item. Thus if you look at a long as a
char, a subsequent ‘.’ is considered to be one byte. Use this technique to
alter specified pieces of a larger data item, such as the second highest byte
of a long, without altering the rest of the long. The period operand may
be used in any context valid for other variables.

‘.’ is the name of a location. When you use it, it is dereferenced like any
other name. If you want the address of something that is 30 bytes farther
on in memory, do not type .+30 as this takes the contents of dot and
adds 30 to it. Type instead &.+30 which adds 30 to the address of the
period operand.

3.8 CONDITIONAL EVALUATION

CrossView Pro supports the if construct. Use this construct in breakpoints
and assertions to alter program flow conditionally. For example, if you
reset the following breakpoint:

60 b {if (sum<=5931){C}{sum}}

CrossView Pro compares the value of sum with 5931 when the program
stops at line 60. If sum is less than or equal to 5931, CrossView Pro
continues. Otherwise, CrossView Pro displays the value of sum with 5931
when the program stops at line 60.

You can also use the expl ? exp2 : exp3 C ternary operator for conditional
expressions. For example:

$myvar = (56 > 2) ?2 1 : -1

assigns the value 1 to myvar.

Command Language 3-21

3.9 FUNCTIONS

In CrossView Pro expressions, you can include functions defined in the
program’s code.

@ Command line function calls are not supported for the TriCore.

You can call functions through the Call a Function dialog box. Note that
only the results of the function call are shown. You cannot enter
expressions in this field. If you want to use the results of the function call
in an expression, then type the expression into the Evaluate Expression
dialog box or type in the command into the Command Window (described
in the keyboard method below).

¢ From the Run menu, select Call a Function...
» List all functions by clicking the Browse... button.

* You can place parameters in the Parameters field of the Call a
Function dialog box, separated by commas, but without the usual
parentheses or select from the drop—down history list.

The Command Window receives the results of the function call.

Type in the expression containing a function call directly into the
Command Window.

To execute a function on the target type the function name and the
arguments as you would do in your C program. For example,

do _sub(2, 1) or: a = do_add(3,4)

3.10 CASE SENSITIVITY

The absolute file supplies the case sensitivity information for variable
names. It is initially case sensitive for the C language. You may toggle case
sensitivity by:

@? From the Edit menu, select Search String... to view the Search String
dialog box. This dialog contains the Case Sensitive check box.

Typing the (capital) Z command in the Command Window.

3-22 Chapter 3

LANGUAGE

USING
CROSSVIEW PRO

al TASKING [

d31dVHO

Using CrossView Pro

4.1 INTRODUCTION

This chapter and the following 8 chapters give you a comprehensive
picture of CrossView Pro’s features. In order to address the broadest range
of expertise, the contents range from introductory examples to the more
technical aspects and techniques of debugging with CrossView Pro. While
it is not necessary for you to read the chapters straight through, you may
find it especially helpful to do so. All of the examples are from the sample
program demo.c which comes with CrossView Pro. For a complete
description of the commands presented in this chapter, consult the
Command Reference chapter.

Each CrossView Pro command introduced in the text has a matching box
summarizing its syntax and semantics. The command description follows
these general rules:

Items in bold font are the actual CrossView Pro commands: save, set.
Items in éfalics are names for the things you should type: filename,
commands. In addition, the | symbol means or. For instance, screen |
filename means you can use the word ”screen” or a filename in the syntax.

4.2 USING THE CROSSVIEW PRO INTERFACE

This manual uses the word “Windows” to generically refer to the host
computer system’s windowing system. On IBM-PCs and compatibles, this
is equivalent to Microsoft Windows (95/98/XP, NT or 2000). On UNIX
workstations, this refers to the X Window System. Generally, this manual
makes no distinctions between the various windowing systems unless
needed to clarify the discussion.

This manual assumes you possess a basic familiarity with Windows
software. For this reason, discussion focuses on how CrossView Pro
works, rather than how to use the Window interface. For more information
on your Windows system, consult the Windows documentation provided
with your host system.

You can execute most CrossView Pro commands using either mouse or
textual commands. Mouse commands are executed by means of buttons
and pull-down menus in each of the separate CrossView Pro windows.
Text commands are typed at the prompt in the Command Window. In
most cases, there is no difference in functionality between mouse and text
equivalents.

4-4 Chapter 4

=

This manual discusses both methods of performing CrossView Pro
functions. For a quick-reference guide to all CrossView Pro commands,
refer to the Command Reference chapter.

4.3 STARTING CROSSVIEW PRO

Once an absolute file has been made it can be executed by CrossView
Pro. There are several ways to invoke CrossView Pro.
From EDE

To start CrossView Pro from EDE (the Embedded Development
Environment), click on the Debug application button. The following
button is the Debug application button which is located in the toolbar.

&

From the desktop

With MS-Windows you can start CrossView Pro through the Start menu.
Or in the Windows Explorer you can double-click on an absolute file if
the .elf extension is associated with the CrossView Pro executable.

@ On the PC, CrossView Pro is a Microsoft Windows application. As such,
you must invoke it from the Windows environment.

From the command line

To begin the debugging session, type the name of the CrossView Pro
debugger and optionally the name of the target program (absolute file).

xfwtc [absolute-file] [option]...

Using CrossView Pro

4.4 STARTUP OPTIONS

CrossView Pro allows you to specify several options when you invoke the
program. Type these startup options (or switches as they are sometimes
called) after the optional basename of the application. The basename can
also contain a path specification. In this case, CrossView Pro sets its
current directory to the specified path. A minus sign proceeds each option;
the options can appear in any order.

Note that some versions of CrossView Pro have different startup options
and procedures than the ones described here. Please consult the
Addendum (at the end of this manual), for precise information about
starting up CrossView Pro with your target hardware.

From EDE

You can select the execution environment, setup communication
parameters, specify record and playback files and set some maximum
values via the CrossView Pro entry of the Project | Project Options...
dialog.

From CrossView Pro

You can set many of CrossView Pro’s options by using the dialog boxes
called by the Target | Settings... and File | Options... menu items. You
can save the options in the xvw.ini file and they are automatically used
upon startup.

In Windows 95/98/XP, Windows NT 4.0 or Windows 2000 (or higher), add
startup options to the program’s property sheet:

* Right—click on the CrossView Pro shortcut icon, shown in your
program installation folder.

* Select Properties. The Program Item Properties dialog box
appears.

* Enter the startup options after the executable’s name in the Target
field of the shortcut.

@ Use menus to set options. After setting the options in the menus and

selecting the appropriate options in the Save Options dialog on exit,
CrossView Pro saves the settings in the file xvw.ini for future debug
sessions.

To start up CrossView Pro type:

xfwtc

4-6

Chapter 4

When your execution environment itself has a human-oriented ASCII
interface, you can use transparency mode with the =T option. In
transparency mode you can configure the execution environment’s
memory. Check the Addendum, the hardware—specific section of this
manual. In—circuit emulators generally require you to map the address
space, allocating memory ranges to the execution environment and/or the
target system. Fortunately, this generally does not mean you need to learn
your emulator’s command set, just a rote sequence of startup commands.
When your CrossView Pro version does not support transparency mode,
you do not need to configure the memory, and the =T option is not
needed.

If your target system supports serial communication and if the target
system is connected to a port other than the default port (see Chapter 1,
Overview, to determine the default port for your host), you can use the =D
option to specify the port name. The default baud rate is 9600. You may
use the =D option to specify the baud rate if the execution environment is
not the same as the default. For example:

xfwtc -D rs232,com2,19200

instructs CrossView Pro to use the COM2 port at 19200 baud. See your
execution environment in the Addendum of this manual for specific
communication information.

When you specify a startup option in CrossView Pro, the option overrules
the corresponding value in the current xvw. ini file.

There are many different options you can invoke when starting up
CrossView Pro. The listing below gives an overview of all startup options.

There are several startup options having to do with the recording and
playing back of CrossView Pro command files. See also Chapter 9,
Command Recording & Playback.

Using CrossView Pro

Startup Option

Description

-a number
-b number
-c number

-C cpu

-D device_type,opt1[,opt2]

-D rs232,port,speed

-D parallel,port

-D tep,host,port

Sets the maximum number of assertions (the
default is 100).

Sets the maximum number of code breakpoints
(the default is 200).

Sets the maximum number of instruction trace for
the trace buffer (the default is 32).

Forces CPU type selection. This option also
determines which register file (regcpu.def) will be
used. This option overrules the CPU type
selection in xvw.ini.

Selects a device and specifies device specific
options, such as communication port and baud
rate. The allowed combinations for your execution
environment are described in the manual
addendum for that specific execution environment.
The following combinations are possible:

Select RS-232 communication.

port For PC this is COM1, COM2, COMS3 or
COM4. A colon should not be added. For
UNIX this is the full path of the RS-232
device driver (e.g., /dev/tty01). By
default CrossView Pro uses the first
RS-232 port.

speed This is the baud rate used for the specified
port. The default is 9600.

Select parallel communication.

port For PC this is LPT1 or LPT2. Do not add a
colon. For UNIX this is the full path of the
parallel device driver. By default CrossView
Pro uses the first parallel port.

Select TCP/IP communication. On UNIX the
standard TCP/IP implementation is used. On
MS-Windows the WINSOCK . DLL implementation
is used.

host The name of the host to be accessed via
TCP/IP.

port The port number on host to be accessed.

4-7

4-8

Chapter 4

Startup Option

Description

-D dev,device-file

-D isa,io-port,address

f file
——fss_root_dir="path”
-G path

-L file

-n address
——orti=file

-p file
-P file

-r file
-R file
——radm=file

-RegServer
-RegServerS

Use a UNIX device driver as communication
channel. For RS-232 devices use the -D rs232
option, described above.

device-file
The full path of the UNIX device file.

Select communication channel to an (E)ISA
interface card in the PC.

io-port
PC 1/O port number or 1/0O channel used for
accessing the (E)ISA card.

address
The memory address used to access the
(E)ISA card.

Read command line options from file.
Specify root directory for File System Simulation.
Specify startup directory for CrossView Pro.

Has CrossView Pro download the image of the
absolute object file.

Keeps a log of CrossView-to-target
communications in a file. Not available for all
execution environments.

Informs CrossView Pro that the program was
loaded into memory at an address other than zero.

Specify the name of an OSEK/ORTI file for RTOS
aware debugging.

Starts playing back commands from file.

Starts playing back commands from file with
commands single step.

Starts recording commands in file.
Starts recording screen output in file.

Same as the radm field in the target configuration
file: specify the name of the Debug Instrument
(using KDI) used for RTOS aware debugging.

Register CrossView Pro as COM object.

Register CrossView Pro as COM object, without
message.

Using CrossView Pro

Startup Option

Description

-s number

—-single_instance
—-sync_on_halt[=on|off]

-tcfg file

——timeout=n_seconds

=T [file]

-UnregServer
-UnregServerS

-sd directory [;directory]...

Sets the maximum number of special variables
(variables independent of the program that
CrossView Pro provides for your use). The default
is 26.

Specifies the directories CrossView Pro should
search for source files. Relative paths are allowed.
When the N command is used to load a new
symbol file, the current directory is set to the
directory containing the symbol file and CrossView
Pro now searches for source files relative to this
directory. Directories must be separated by
semicolons.

Prevent multiple instances of CrossView Pro.

Turn synchronization (DSYNC and ISYNC
instructions) on or off when CrossView Pro halts
execution. When you use profiling or want
accurate cycle counting (for example with single
stepping), turn off the synchronization instructions.
The default is on.

Specify a target configuration file. This overrules
the filename specified in xvw.ini. See section
CrossView Pro Target Settings in the Overview
chapter.

Start CrossView Pro command line batch
operation mode and terminate after n_seconds.

Starts CrossView in transparency mode if present;
if file is given, commands in file are sent to the
execution environment.

Unregister CrossView Pro as COM object.

Unregister CrossView Pro as COM object, without
message.

Table 4-1: CrossView Pro Startup Options

4-9

4-10

-

4.4.1

Chapter 4

WHAT YOU MAY HAVE DONE WRONG

Most problems in starting up CrossView Pro for a debugging session stem
from improperly setting up the execution environment or from an
improper connection between the host computer and the execution
environment. Some execution environments require you to enter
transparency mode to set the execution environment for a debugging
session. Check the notes for your particular execution environment and
the Addendum of this manual.

Here are some other common problems:

Specifying the wrong device name when invoking the debugger.

Specifying a baud rate different from the one the execution
environment is configured to expect.

Not supplying power to the execution environment or an attached
probe.

Using the wrong kind of communication cable.

Plugging the cable into an incorrect port. Some target machines
have several ports.

Installation of a device driver or resident applications that use the
same communications port on the host system.

The port is already in use by another user or login process on some
UNIX hosts.

Specifying no or an invalid cpu type with the —C option.

Using CrossView Pro

4.5 THE CROSSVIEW PRO DESKTOP

The CrossView Pro desktop is the screen background in which all
windows, icons and dialog boxes appear (see figure 4-1). Under some
windowing systems, the desktop is itself a window that does not contain
all other CrossView Pro windows.

The desktop always has the Command Window opened or iconized.

Window Menu Bar Toolbar Local Status Bar

#:CrossYiew Pro - Demo.abs

File Target Edit Bun Breakpointz Data Toole Settings Mew ‘Window Help

BlE| 20 m » D PILECEGE[Z02 % W =

oo oomoe R
m e RETER E e QAR @ o [FE 2l
I 47 jl 0x1408 jl main dl Souice lines jl Source line step d —
t R [N N W %,
[N s coich Sting I3 P |
char c *
String: I j

El~ | o.o00% § initval

Direction ——————————
0.000% :'f (inity Up ' Down ™ Case Sensitive

0. 000% Sum =
Search I Cancel |

} Help |
Data

w wEAES &0

[Command; ... [EIEIET||: Stack 20| x|
L

|
Dialog Box J Main Status Bar
Scroll Bar —

L L Minimized Window
Breakpoint Toggles Local Toolbar

Figure 4-1: CrossView Pro Desktop

At the top of the desktop is the Menu Bar, which contains the menus
applicable to the currently active window. Below the menu bar is the main
Toolbar, from which you can execute commands to control program
execution as button functions. Except for the Command Window, the
desktop can contain other windows as well.

Along the bottom of the desktop there is a Main Status Bar. The status
bar displays messages such as short “help messages” when you move the
cursor over any button in any CrossView Pro window.

4-12

=

Chapter 4

Menus

Each CrossView Pro window may have a menu associated with it. Under
Microsoft Windows, the active window’s menu is displayed in the menu
bar of the desktop.

Depending on your execution environment some menu items are always
grayed out. For example, Communication Setup is grayed out if your
target is an instruction set simulator.

Windows

&

The debugger supports two types of windows: primary windows and
dialog boxes. Dialog boxes are the windows you access from a primary
window. For the remainder of this manual, the term “window” denotes a
primary window.

This manual also uses the term pop-up window. A pop—up window is a
primary window that contains supplemental information such as on-line
help.

CrossView Pro Windows are used to display information and to get user
input through either buttons, commands typed in input fields, or menu
selections. Windows may be moved around the desktop, sized, or
iconized. All windows can be opened from the View menu. The section
on CrossView Pro Windows provides more detail about each window.

A window is considered opened even if it is iconized (under Microsoft
Windows, this is called minimized). A window is considered closed if it
does not exist on the desktop in any form.

Dialog Boxes

Certain menu items or push buttons may call up a dialog box to complete
an action, display information, or get additional data. No other actions can
be performed until the dialog box is closed.

Using CrossView Pro

4.5.1 MENUS

Each window in CrossView Pro uses the menu as shown in figure 4-2.
The method of selection of a menu item varies depending on the
windowing system being used. See your Windowing System’s manual for
details of how to do this.

Each window has a hidden control menu (the icon on the top-left of the
window), to manipulate the window. The menu Close command in the
control menu closes the current window. Your implementation of the
windowing system may have additional features. See your documentation
for further details.

't; CrossYiew Pro - Demo._abs

Fil= Target Edit Breakpointz Data Toolz Settings Wiew Window Help
Bl El =l s Shift+F5 ||:: P Wy

Rezet Application

et Tagacen |
m» WI[LE Aun F5 @ @ M E

Run to Curzor F7

|4? j' Im J i b Eursar, ﬂlSource lines

Return from Function

Backgreund/iode r

/% the loop countep
Step Mode b
: DE o /% will be 17+sum g
tep Ower /% gample char wvar]
Step Into F1

| o.o0o0% Anirnate
[Fallla Funchen. .
FIr— o onns - hrar =0

Figure 4-2: CrossView Pro Menus

4-14

=

Chapter 4

4.5.1.1 LOCAL POPUP MENUS

On MS-Windows environments CrossView Pro supports local popup
menus. Local popup menus are invoked by clicking the right mouse
button. The menu contents is context sensitive. If the mouse pointer is on
top of the global (main) toolbar the Configure Toolbar dialog is shown. If
the mouse pointer is located in the MDI window (task window or
background) the View Menu is shown which allows you to open new
windows.

Within the Source Window four different local popup menus may appear.
If the cursor is within the display area of the window the Run Menu is
shown. The Run Menu contains commands associated with program
execution. If your cursor is at a breakpoint indicator, the Breakpoints
dialog is shown. If the cursor is on a code coverage marker then the local
popup menu contains commands to move the cursor to the next or
previous block of (not)covered statements. If your cursor is in the profile
column you can change the format of the timing figures. All other
windows have their own local popup menu. The exception to the rule is
the command window which does not have a local popup. See figure 4-3
for an example of the local popup menu of the Memory Window.

Fill...
Single Fill...
Lopy...
Search...

v Toolbar
Setup...

Figure 4-3: CrossView Pro Local Popup Menu (Memory Window)

4.5.2 WINDOW OPERATION

Windows can be opened, made active, and closed.

Opening Windows

The View menu of the menu bar lists all windows. Selecting a window
name from this list causes the window to open up. Selecting a window
that is already open brings that window to the front.

Using CrossView Pro

Selecting a Window

At any one time, a particular window is active. Most operations act (by
default) on the active window. The active window is distinguished by
highlighting the title bar. Only one window may be active at a time. There
are several ways to select a window (that is, make a window active).

* Open the window from the View menu. If the window is already
open it will be brought to the front.

* Click on the window’s border (or on any portion of the window in
some windowing systems). It will be brought to the front.

* Select the window name from the Window menu. The window will
be made active and is brought to the front. (This option is available
under Microsoft Windows only).

Closing a Window

Windows are closed by selecting Close from the Control menu, or by
clicking a Close button, as shown in figure 4-4. Selecting this item from
the Command Window will exit CrossView Pro.

Control Menu — Close Button

Elestare
tMove
Size
tininnize
td aimize

Cloze Cul+F4

MHext Ctrl+FE |

Jhdemo. o d7]

Figure 4-4: Closing a Window

4-15

4-16 Chapter 4

=

4.5.3 DIALOG BOXES

The debugger uses dialog boxes to acquire information needed to
complete a requested operation. The debugger also uses dialog boxes to
display information. If a button or menu item displays an ellipsis (...) after
its name, then there is an associated dialog box.

For example, the dialog box shown in figure 4-5 searches for a string.
This dialog box uses a list edit field to enter a search string, radio buttons
to select the search direction, a check box to specify case sensitivity and
push buttons to allow certain functions to be performed.

List Edit Field Check Box
Search String
String: I I j
Direction
’7 i lp = Down [Case Sensitive
Help | Search I Cancel
Radio Button- Push Buttons —

Figure 4-5: Dialog Box

Using CrossView Pro

4.5.4 CUSTOMIZING CROSSVIEW PRO

You can customize CrossView Pro’s visual appearance and operative
parameters to best suit your debugging environment.

Changing the Visual Appearance

Windows can be organized by resizing and moving them around the
desktop (see your Windowing System’s manual for details on how to do
this). All windows under Microsoft Windows have an additional Window
menu item. This menu allows the user to arrange all opened windows in
a tiled or cascaded format. In the tiled format, selected by Window | Tile,
all windows become the same size. All windows are the visible, the same
size and do not overlap. In the cascaded format, selected by Window |
Cascade, all open windows are changed to the same size and overlapped
in a cascade with a constant vertical and horizontal offset. Iconized
(minimized) windows can be automatically rearranged by selecting
Arrange Icons from the Window menu.

See the section Using X Resources in the chapter Software Installation for
details on changing the visual appearance of CrossView Pro under X
Windows.

Changing Operative Parameters

You can adjust the operative parameters for CrossView Pro using the
various menus in CrossView Pro.

In the Target menu you will find:

* Settings: Allows you to specify the execution environment and the
CPU type, and the source directories for CrossView Pro. The values
are processed at CrossView Pro startup before executing commands
entered in the Command Window or before the target is accessed as
a result of opening a window. So, first edit this dialog when you
start CrossView Pro. If you have not loaded a symbol file yet, you
do not have to restart CrossView Pro.

* Communication Setup: Allows you to set parameters for
communication between CrossView Pro and your target board.

4-18

=

Chapter 4

In the File | Options... dialog you will find:

Desktop: Allows you to specify color settings for the execution
position in the Source Window and the colors used in the Memory
Window to show how a memory location has been accessed by the
application program. You can also specify font sizes to be used in
output windows.

Toolbar: Allows you to configure the main toolbar to your personal
preferences.

In the Tools menu you will find:

Record, Playback, and Log: Allow you to set command recording
and playback options.

Toolbox Setup, and Macro Definitions: Allow you to define
macros, and assign them to a push button in the Toolbox.

In the Data menu you will find:

Data Display Setup: Allows you to specify how CrossView Pro
displays data. This dialog also determines if the Expression
Evaluation dialog box must be bypassed or not.

In the Settings menu you will find:

Source Window Setup: Allows you to specify the step mode,
symbolic disassembly, automatically switching between source lines
and disassembly source to be displayed in the Source Window and
display code coverage information.

Register Window Setup: Allows you to specify the registers that
appear in the Register Window. And you can set the display format
to hexadecimal or decimal.

Memory Window Setup: Allows you to specify the mode and size
of the data and the number of data rows and columns to be shown
in the Memory Window. It also allows you to automatically refresh
the Memory Window and to display data coverage information.

Data Analysis Window Setup: Allows you to configure the graph
display of a Data Analysis Window.

I/0 Simulation Setup: Allows you to specify the I/O streams to be
used in the Terminal Windows.

Using CrossView Pro

Terminal Window Setup: Allows you to specify the input and
output format of a Terminal Window. You can map linefeeds to
carriage-return linefeeds, wrap at the end of a line, specify buffered
input or specify that the window must be cleared at system reset
and program reset. You can also log the input and output data to a
file.

Background Mode Setup: Allows you to specify which windows
to automatically refresh when running in background mode. This
feature is only available if it is supported by your execution
environment.

Saving Changes on Exit

If you find yourself using a particular configuration, you may want to save
your configuration when you exit CrossView Pro:

From the File menu, select Exit or close the Command Window.

In the Save tab of the Options dialog that appears, select the
options you want to be saved for another debug session.

Click on the Exit button in the Options dialog.

CrossView Pro exits. If you selected one or more items in the Save tab of
the Options dialog your settings are saved in the initialization file
xvw.ini. This file is in the startup directory.

4.5.5

CROSSVIEW PRO MESSAGES

CrossView Pro communicates with you in a variety of ways. The
command window displays the results of commands. Important messages,
such as errors, appear in dialog boxes that pop up.

4-20 Chapter 4

=

4.6 CROSSVIEW PRO WINDOWS

The two prominent windows used in CrossView Pro are the Command
Window and the Source Window. From the Command Window you can
type CrossView Pro and emulator commands, and gain access to all other
windows. You can accomplish most global operations from either the
menu bar or the Command Window. Only from the Command Window
can you accomplish Single step playback. When you close the Command
Window, you exit CrossView Pro.

The Source Window focuses on the program being debugged. This
window controls most of the commonly-used execution operations, such
as breakpoints and searching functions.

Available Windows

You can open all CrossView Pro windows (except for the Data Analysis
windows) from the View menu by selecting the name of the window.
Selecting a window in this case brings the window to front and makes it
the active window. Available windows are:

* Command Window: Supports two modes: CrossView or Emulator.
Displays all CrossView Pro commands and responses or Emulator
commands and responses.

* Source Window: Controls the execution of the program and
displays the source file or disassembly.

* Register Window: Displays the current state of the processor’s
registers.

* Memory Window: Displays target memory and allows you to
change it.

* Data Window: Displays the values of data that are being
monitored.

* Data Analysis Window: Graphically displays signal data for
analysis.

* Stack Window: Displays the application’s stack trace.
¢ Trace Window: Displays the most recently executed lines.

¢ Terminal Windows: Can be used for I/O simulation of an
application.

Using CrossView Pro 4-21

Improving CrossView Pro Performance

CrossView Pro updates every window that is open (except for the Data
Analysis windows), even if it is iconized (minimized). Keeping a window
up to date usually involves extra communication with the emulator,
slowing CrossView Pro down. For instance, if the Register Window is
open, CrossView Pro asks the emulator to dump the contents of all
displayed registers after each single step. Thus it is a good idea to keep
only those windows open that you need.

4.6.1 COMMAND WINDOW

The Command Window allows you to:

e Enter CrossView Pro and emulator commands from the keyboard.
* View a history of CrossView Pro commands or emulator commands.

¢ View the result of CrossView Pro commands or emulator
commands.

* Execute playback files (in single step mode).

From the View menu you can specify if you want the Command Window
to be a CrossView Pro Command Window or an Emulator Command
Window. This way you can specify whether CrossView Pro interprets
commands or they go directly to the emulator.

Figure 4-6. shows the Command Window. You can type commands into
the command edit field (bottom field) or select them from the command
history list (middle field), edit and execute them. The command history
field displays previously entered commands. You can select and execute
one or more commands. The command history list provides you with a
clear, comfortable way to re-execute specific commands or sequences of
commands by preserving them in a scrollable list.

You can switch between the history list and the command edit field by
hitting the <Tab> key. Hitting the <Ese> key (escape) returns you to an
empty edit field.

The top field is the Command Output Window or the Emulator Output
Window, depending on the type of Command Window you choose. Each
command, echoed from the command edit field, appears with a > prefix.
CrossView Pro displays its response (or the emulator’s response if the
window is an Emulator Command Window) to the command immediately
following the command. You can use the clear command to clear this
window.

4-22

=

Chapter 4

CrossView Command CrossView Response Output Window

Command: Crozs¥Yiew [_ (O] <]

> 3 | =
waingds: if (initwal > recordwar.a)
x5

maingsi: sum = 0;

> initwal

initwal = 17

%
%
initval

it Execute Hailt
i

Command Edit FieldJ Command History List —

Le ALl

Figure 4-6: CrossView Pro Command Window

The Command Window also has two push buttons that provide rapid
access to frequently used actions. The Execute button executes the
current command (or sequence of commands if more than one command
is selected). Note that the <Enter> or <Return> key is equivalent. Use
the Halt button to interrupt commands executing in continuous mode, or
to stop the emulator. If you right—click on the border of the dialog, a quick
access menu opens with entries for searching and setting up.

The Command Window maintains a history of recently executed
commands. To re—-perform previously executed commands simply
double—click on it or select the command(s) from the command history list
in the Command Window and press the Execute button. By hitting the
<Tab> key, it is also possible to select one or more entries. Hitting <Tab>
or <Esec> will return you to the command edit field.

The maximum number of lines saved to the CrossView Pro command
buffer list is set during debugger startup. The default is 100 lines. To
change the default select Command Window Setup from the Settings
menu. This number can also be modified via a startup option. You do not
have to restart CrossView pro for these changes to take effect.

Using CrossView Pro 4-23

4.6.2 SOURCE WINDOW

The Source Window offers most of the debugging functions you will need
on a regular basis. It allows you to:
* View the source file (source lines, disassembly or both).
» Set and clear assertions (not in Toolbar).
* Set and clear breakpoints.
* Monitor and inspect variables.
» Search for strings, functions, lines, addresses.
* Control execution.
* (Call functions (not in Toolbar) and evaluate expressions.
e View code coverage information.
* View profiling/timing information.

An example of the source window is shown in figure 4-7.

B Source : demo.c H=] 3
B RIESED E o QO @ N F =
|49 jl Ox1416 jlmain leource lines leource line step j -
oid main (void)
s
int loopwar: /% the loop counter '-J
long Sum; f% will be 17+sum of factorials from O to| 7
char CVar; £ gample char wvariable
EIW | 0.000% initval = 17:
E[| 0.000% § if {(initwval > recordwvar.a)
E[| 0.000% sum = 0O;
¥ -
g | [
Breakpoint Coverage Profiling Current Status
Toggles Markers Execution Position Bar

Figure 4-7: CrossView Pro Source Window

You can specify the step mode, symbolic disassembly and source lines /
disassembly with the Source Window Setup dialog box (Settings | Source
Window Setup...) or with Run | Step Mode. Alteratively, you can use the
drop—down menus in the Source Window’s status bar.

4-24 Chapter 4

=

@ The default step modes are:

Source lines Window: Source line step
Disassembly Window: Instruction step
Source and Disassembly Window: mode of previous window!

(assumes the step mode of the previous Source Window setting)

The location of the cursor is also the viewing position. The line number
and address of the viewing position, appears at the top-left position of the
Source Window. This does NOT represent the current execution position
($pc). The current execution position appears in reverse or blue color.
The cursor appears as a dotted line.

On MS-Windows the so—called "quick watch” feature is supported. When
you position the mouse cursor over a variable or a function, a bubble help
box appears showing the value of the variable or the type information of
the function respectively.

A green colored toggle shows that no breakpoint is set. A red colored
toggle indicates an installed breakpoint. An orange colored toggle
indicates an installed but disabled breakpoint. If code coverage is enabled,
coverage markers appear to the right of the breakpoint toggles. If a
checkmark appears next to a line, it has been executed. If no checkmark
appears next to a line, it has not been executed.

The Source Window provides a local Toolbar containing the following
buttons, nearly all of which are shortcuts (using selected text) to
operations that you can perform via the menu bar:

Stop program or command

Run or continue execution (same as F5)

E N =

Run to cursor (same as F7)

+
Il

Step (over function calls)

]
Tunl

Step (into function calls)

Restart application

i | ¥

Find program counter (PC)

Using CrossView Pro 4-25

Show selected source expression
Watch selected source expression
Find symbol

Search for a text string

Repeat search for text string

Edit current source file

Edit breakpoint at cursor

%
)
Q
Q
&
@
L)

Display code coverage

Display profiling

You can toggle the appearance of this local toolbar by selecting Local
Toolbars | Source from the View menu.

Edit Source

To edit the current source file in the Source Window, select Edit | Edit
Source or press the Edit Source button. On MS-Windows the Codewright
editor will be called with the filename and line number of the file that is
currently in the debugger. on UNIX systems the xvwedit program will be
called with the filename and line number of the file that is currently in the
debugger.

The xvwedit program is a shell script. You can adapt it to your specific
requirements.

4-26 Chapter 4

=

4.6.3 REGISTER WINDOW

Figure 4-8 shows the Register Window. This window allows you to view
and edit register contents.

% Hegister _ [O] x|

C3P =0000 IF =1404 (=]
RO =1170 Rl =1348
Rz =84%55 R3 =FFFF
R4 =1548 R5 =0000
Ra =FFFF R7 =FFFF
k3 =FFFF B3 =FFFF
R10 =FFFF R1l1 =FFFF —
R1z =0000 R13 =0000
k14 =0000 R15 =FFFF
DPFPO=0000 DFP1=0001 ;I

Figure 4-8: CrossView Pro Register Window

@ Note that the contents of the Register Window for your particular target
may be different from the one shown in figure 4-8.

You can specify which register set definition appears in the Register
Window with the Register Window Setup dialog box (Settings | Register
Window Setup...). In this dialog you can also specify the display format
of values in the Register Window: hexadecimal or decimal.

CrossView Pro supports multiple Register Windows. Register Windows
either have the title "Register” or "Register — register set name”. The
"Register” title indicates the default register set.

In-situ editing allows you to change the registers contents directly by
clicking on the corresponding cell.

Using CrossView Pro 4-27

4.6.4 MEMORY WINDOW

The Memory Window is shown in figure 4-9. This window allows you to
view and edit the target memory.

Depending on the setting of the Automatically refresh check box in the
Memory Window Setup dialog, CrossView Pro updates the displayed
values every time the program is stopped or only updates the values by
user request. For example, by pressing the Update Memory Window
button located on the toolbar.

addressz + 0 +1

Q=0 OxF& 0x00
Ox2 OxC4d Oxla
04 0xF& 0x00 _I
14 0x04 000
05 0xF& 0x00
Oxa 0=03 0x00
0= 0xFa | 0x00

[

Figure 4-9: CrossView Pro Memory Window

To edit the target memory, click on a memory cell and type a new value.
To display another memory region: click on an address cell and type a
new address. CrossView Pro accepts input in symbolic format, so you can
enter expressions instead of just values.

CrossView Pro supports multiple instances of the Memory Window. If your
target supports multiple memory spaces, the Memory Window supports
them all. Refer to the section about memory space keywords to become
familiar with the memory space keywords and associated syntax your
target system uses.

4-28

Chapter 4

You can specify the way data appears in the Memory Window by opening
the Memory Window Setup dialog. From the Settings menu, select
Memory Window Setup... to open this dialog. The memory contents can
appear in many formats including ASCII character, hexadecimal, decimal,
signed, unsigned, and floating point formats. You can specify the size of
the memory window. You specify the number of memory cells that
appear within the window. The number of cells is fixed in the sense that if
you re-size the window the number of cells does not change.

Besides the current value of memory locations, the Memory Window also
displays whether memory locations have been accessed during program
execution. This is called ’data coverage’. An application program may read
from, write to, or fetch an instruction from a memory location. Of course
all combinations may be legal. Although writing data to a memory location
from which an instruction has been fetched is suspicious. All types of
accesss, read, write, fetch or combinations of these, can be shown using
different foreground and background colors. The color combination used
to show "rwx” access are specified in the Desktop Setup dialog. Change
the background color if instructions are fetched from a memory location,
and change the foreground color to show read and write access.

You can display data coverage information in the Memory Window by
clicking on the Coverage button in the Memory Window or by setting the
Display data/code coverage check box in the Memory Window Setup
dialog.

The Memory Window has the ability to highlight memory cells of which
the contents have been changed. Click on the Highlight Value Changes
button in the Memory Window to see the changed cells. With the Freeze
Highlight Reference Values button you can enter a new reference point
for highlighting. All the cells that have been changed since that reference
point are highlighted.

The Memory Window provides a local Toolbar containing the following
buttons:

E Fill memory

4 Fill single memory address
ﬁ Copy memory

E Find memory

Using CrossView Pro 4-29

Display data coverage
Highlight changed values

Set highlighted values as reference

Refresh memory window

You can toggle the appearance of this local toolbar by selecting Local
Toolbars | Memory from the View menu.

4.6.5 DATA WINDOW

The Data Window is shown in figure 4-10. This window allows you to
show the value of monitored expressions and variables.

The Data Window updates the values shown every time the program
stops, and after an o command.

It is possible to display both monitored and unmonitored data expressions
in the Data Window. CrossView Pro monitors and updates "WATCH”
expressions after every halt in execution, and marks them with the text
"WATCH” at the start of the display line in the Data Window. "SHOW”
expressions, on the other hand, are one-shot inspections of an
expression’s value, and CrossView Pro does not update them until you
click on the Update Selected Data Item button or Update Old Data
Items button. When a "SHOW?” expressions is no longer actual, it is
marked with the word “OLD”.

4-30

Chapter 4

Data _ O]]
w BwEHES OO

initwval/n @ 0
- WATCH recordvar/hn @ STruct rec_2 |
+ b = 0x1028 "TAREING™:
Cc = 937654321;
color = blue;
} recordwvar

Figure 4-10: CrossView Pro Data Window

To set the default display format of the data shown, select the proper
format in the Data | Data Display Setup... dialog.

To inspect the value of global variables and data structures, double—click
on the variable name in the Source Window. Depending on preferences
you set in the Data Display Setup dialog, the variable appears immediately
in the Data Window, see figure 4-10, or the Expression Evaluation dialog
appears first.

In-situ editing allows you to change the contents of everything in this
window by clicking the value you want to change.

If you have set the Display addresses check box in the Data Display
Setup dialog box the addresses of the variables are also shown.

Pointers, structures and arrays displayed in the data window have a
compact and expanded form. The compact form for a structure is just
<struct>, while the expanded form shows all the fields. The compact
form of a pointer is the value of the pointer, while the expanded form
shows the pointed—to object. Indicate the compact form by putting a ’+ at
the start of the display. (i.e., the object is expandable), and indicate the
expanded form with (i.e., the object is contractible). Nesting is supported,
so you can expand structures within structures ad infinitum.

Using CrossView Pro 4-31

To expand a pointer, structure or an array, double—click on the '+ in the
Data Window.

The Data Window provides a local Toolbar containing the following
buttons:

Show or watch a new expression

Toggle watch attribute of selected item “on” or ”off”
Reformat selected item

Update selected data item

Delete selected data item

Update old data items

Delete old data items

@@ @ B3 &

You can toggle the appearance of this local toolbar by selecting Local
Toolbars | Data from the View menu.

The auto-watch locals feature may be activated or deactivated. When
active, a selected Data Window becomes the "auto-watch” window, and
all local variables from the current top—of-stack frame appear in that Data
Window. The text “LOCAL” appears at the start of the display for variables
displayed in this manner. As the execution position changes, the
auto-watch window deletes and adds locals as necessary, so that the locals
on the current top—of stack frame always appear.

To see the value of the local variables of a function, Select Data | Watch
Locals Window from the View menu.

CrossView Pro supports multiple Data Windows. Data Windows either
have the title "Data Window #n” or "All Local Variables”. The "All Local
Variables” title indicates the auto—watch window if it exists (as explained
above).

4-32 Chapter 4

=

4.6.6 STACK WINDOW

The stack records the return addresses of all functions the application has
called, and CrossView Pro can use this information to reconstruct the path
to the current execution position. The Stack Window, shown in figure
4-11, displays the function calls on the stack with the values of the
parameters passed to them in an easily accessible and understandable
form.

The Stack Window can help you assess program execution and allows you
to view parameter values. The stack window allows you to:

¢ View the stack trace which includes information about function
names, parameter values, source line numbers and stack level.

* Easily switch to the call statement of a stack level by clicking on it
once.

Set temporary and permanent breakpoints at any level of the stack,
by double-clicking on the desired level.

maini) [.%demo.c:d7]

i

=

Figure 4-11: CrossView Pro Stack Window with Toolbar

Using CrossView Pro

The Stack Window provides a local Toolbar containing the following
buttons:

=| Set stack breakpoint after call to function
= Set stack breakpoint at function entry point

Show local variables in selected stack frame

“a'-‘g Watch local variables in selected stack frame

% Find call site

You can toggle the appearance of this local toolbar by selecting the Local
Toolbars | Stack from the View menu.

4.6.7 TRACE WINDOW

The Trace Window, shown in figure 4-12, allows you to:
» Display the most recently executed lines of code.

CrossView Pro automatically updates the Trace Window each time you halt
execution, as long as the window is open, allowing you to check the
progress and flow of your program throughout the debugging session.

The Trace Window is only supported if your execution environment
supports the trace facility.

Trace Source [_ (O]

-—— Comtinge —-—- ;'
demo. c:mainffsa: initwal = 17;

demo . c:mainfbs: if {(initwal > recordwar.al
demo. comainfs0: sum = 0;

demo. c:mainfeé: for {(loopvar = 0; loopwar

_
=l

Figure 4-12: CrossView Pro Trace Window

4-34 Chapter 4

=

4.6.8 TERMINAL WINDOW

The Terminal Windows, shown in figure 4-13, let you observe and test the
input and output of your program.

The CrossView Pro Terminal windows provide an interface to exchange
data with the application on the target. This I/O facility can be
implemented in various ways. Using standard I/O stream function calls like
printf() in your source, you can test I/O to and from the target system or
simulator.

The File System Simulation feature redirects I/O to a Terminal Window if
the filename FSS_window:window name is used in the "open” call,
window_name is the name of a Terminal Window.

A terminal window can be connected to multiple I/O streams of various
types. For example, streams 0, 1 and 2 can be mapped to one terminal
window. An I/O stream, however, can be mapped to one terminal window
only. Each terminal window must have a unique name.

Terminal: F55 output I =] 3
| -

Terminal: F55 input _ (O]]
| -

1| | AV

Figure 4-13: CrossView Pro Terminal Windows

Using CrossView Pro

You can specify the characteristics of the Terminal Window by opening the
Terminal Window Setup dialog. From the Settings menu, select Terminal
Window Setup... to open this dialog, or click with the right mouse button
in the Terminal Window to bring up a popup menu and select Setup....
You can specify the input and output format of the terminal window. The
input format can be a VT100-like terminal. The output format can be a
VT100 terminal, display control codes, decimal, octal or hexadecimal. You
can map linefeeds to carriage-return linefeeds, wrap at the end of a line,
specify buffered input or specify that the window must be cleared at
system reset and program reset. You can also log the input and output
data to a file.

The default size of a terminal window is 24 lines of 80 characters.
Everything that scrolls outside this window is lost. The visual window size
can be smaller (scroll-bars are shown). You can specify another size in the
Terminal Window Setup dialog.

Each terminal window has a local popup menu, which you can activate by
clicking the right mouse button.

Reszet
Clear

Reverze
v Local echo

Setup...

Figure 4-14: Terminal Window Local Popup Menu

Reset clears the contents of the terminal window and it also clears all
attributes set with escape sequences. A Clear just clears the contents of a
terminal window. Reverse changes the foreground and background colors
and Local echo enables echoing back of typed characters in a terminal
window. Setup... opens the Terminal Window Setup dialog.

You can connect an I/O stream to a terminal window in the Connections
tab of the Settings | I/O Simulation Setup... dialog box.

4-36 Chapter 4

=

4.6.9 DATA ANALYSIS WINDOW

CrossView Pro incorporates an advanced signal analysis interface designed
to enable developers to monitor signal data more critically and thoroughly.
This feature is useful when developing signal processing software for
application areas such as communication, wireless and image processing.

Contrary to the other CrossView Pro windows the Data Analysis window
(as shown in figure 4-15) is not opened from the View menu, but is
opened as result of processing a data analysis script (or from the Settings
menu). Most other CrossView Pro windows are updated whenever the
target application stops execution due to, for example, a breakpoint. The
Data Analysis window is only updated on user request. This is done
because a large set of data is shown in the Data Analysis window and this
set of data must be available and complete at the time the window is
updated. Therefore, the user normally constructs a complex breakpoint to
trigger the update of the Data Analysis window.

'#; Dutput freq domain =]
o Bl o (85, -16.0)

‘I l]

2']

3']

4']

5']

El]
20 410 60 80

Figure 4-15: CrossView Pro Data Analysis Window

The Data Analysis Window provides a local Toolbar containing the
following buttons:

ﬂ Zoom in horizontally

E Zoom out horizontally

Using CrossView Pro 4-37

Unzoom horizontally to normal (show all collected data)
Zoom in vertically
Zoom out vertically

Unzoom vertically to normal (show all collected data)

@ B @B

Update Data Analysis window

The graph displayed in the Data Analysis window is constructed by
processing a CXL script. Refer to the CXL syntax specification in Appendix
B, CrossView Extension Language (CXL), for details. TASKING provides
scripts for standard signal analysis such as FFT. However, the programmer
can write CXL scripts and process the data in the format he desires.

% See section 11.5, Data Analysis, for more details on data analysis.

4.6.10 POP-UP WINDOWS

Finally, two more windows can appear in certain situations:

Help Window: Activated with function key F1 or when a Help button is
pressed inside a dialog.

Toolbox: This window contains user defined buttons.

4-38

Chapter 4

4.7 CONTROL OPERATIONS FOR CROSSVIEW PRO

All control operations can take place in any CrossView Pro Window. You
can select and save startup options. You can record and play back
playback files. You can define macros and assign them a button in the
toolbox (allowing you to configure up 16 buttons).

4.7.1 ECHOING COMMANDS

The Command Window echoes every command given to CrossView Pro.
CrossView Pro translates most button actions and menu selections into the
CrossView Pro keyboard command equivalents. The Command Window
echoes the equivalent commands just as if you had typed them there.

4.7.2 MOUSE/MENU/COMMAND EQUIVALENTS

Actions in CrossView Pro are performed by using keyboard commands
typed into the Command Window, selecting a menu item, by clicking on a
push button and sometimes by direct manipulation of objects with the
mouse. Many actions can be accomplished several ways. For instance
there are three different ways to set a breakpoint. You can:

1. Use the line b command in the command entry field.

2. Click on a breakpoint toggle in the Source Window.

3. From the Breakpoints menu, select Breakpoints... to open up the

Breakpoints dialog box.

Using CrossView Pro

4.8 USING THE ON-LINE HELP

CrossView Pro has an extensive on-line help system to aid you. Help
topics cover all CrossView Pro Windows, commands, and dialog boxes.

4.8.1 ACCESSING ON-LINE HELP

You can access help in several ways:
1. Click the Help button on a dialog box

Opens the help system with information about how to perform the task or
about the meaning of the dialog.

2. Click on the question mark in the upper right corner of a dialog, then click
the element in the dialog you want help on.

A yellow box briefly explains the element you asked help on.
3. Select the Help | Help menu item or press the Fl-key.

Opens the help system with information about the active window.
4. Hover the mouse pointer over a toolbar button.

A yellow box shows the title of the button. A more complete description is
shown in the status bar at the bottom of the screen.

4.8.2 USING MS-WINDOWS HELP

You enter help at a topic that explains the current window or dialog. By
clicking on links, you can follow different paths. To return to your starting
point click the Back button or open the Options | Display History
Window and click on the node that you want to return to.

The Contents tab displays a list of main subjects. The Index tab displays
a list of keywords that relate to certain topics. When you click the Find
tab, you can search for a string pattern.

To save time, you can iconize the Help Window and maximize it when
necessary.

4-39

4-40

USING

Chapter 4

CONTROLLING
PROGRAM
EXECUTION

al TASKING [

d31dVHO

Controlling Program Execution

5.1 SOURCE POSITIONING

When you have the Source Window open and it displays a source file,
there are two points of reference to keep in mind: the execution position
and the viewing position.

The execution position refers to the line of source at the Program
Counter address. This line is always the next statement or instruction to be
executed. When you load a file into the Source Window, CrossView Pro
automatically displays the portion of the source code that contains the
execution position.

The viewing position (also called ’cursor’) is the line currently being
examined in the displayed source file. Since many Source Window
operations act on this line, you can think of the viewing position as the
‘current line’. For instance, if you set a breakpoint without specifying a line
number, CrossView Pro sets the breakpoint at the line marked by the
viewing position. Please note that it is the viewing position that appears to
the left of the Source Window (NOT the execution position!).

The execution position and the viewing position refer to the same line
when a source file is first loaded into the Source Window. You can then
change the viewing position, if you wish.

The execution position and the viewing position appear different to

distinguish them from the rest of the source code. The execution position
line appears in the execution position highlight colors, while the viewing
position appears as a broken-line frame, also called the carsor. Note that
a line containing a breakpoint appears in the breakpoint highlight colors.

A combination of execution position, cursor and breakpoint (all of which
are potentially active on the same line) appear accordingly.

5-4

=

Chapter 5

5.1.1 CHANGING THE VIEWING POSITION

When a program is active the viewing position is always visible in the
Source Window. You can change the viewing position to move throughout
the source file. Usually, whenever the execution position changes, the
viewing position automatically follows suit. But you may easily change the
viewing position without affecting the execution position.

@? To change the viewing position use any of the following possibilities:

* Use the vertical scroll bar to move a line or a page at a time. The
view point stays on the same line until it is no longer visible. It
then stays on the first or last line of the display, depending on the
direction of scrolling.

¢ Click on the desired, unmarked source line.

e From the Edit menu, select Find Line... to specify to which
particular line you wish to move.

In the upper-left corner of the Source Window, there are two text fields.
These fields show the line number of the current viewing position and the
address of the first machine instruction for that line. CrossView Pro
updates the Line and Address values each time the viewing position
changes.

You can change the viewing position to the first executable line of a
particular function with the € command. For instance:

e main

will make the first executable line of main () the current viewing position
and display it in the Source window. You may also use the stack depth as
an argument, if you place it before the e:

le

This will change the viewing position to stack depth 1, that is, the line that
called the current function.

FUNCTION: Change the viewing position.

COMMAND: stack e
e function

Controlling Program Execution

To change the viewing position to a specified address, you can use the ei
command. This command is useful for viewing some code in the assembly
window, without changing the program counter, since the execution
position is not changed.

FUNCTION: Change the viewing position to address.
COMMAND: address ei

5.1.2 CHANGING THE EXECUTION POSITION

There may be times when you want to start or resume execution at a
different line than the one marked by the current execution position.

Exercise caution when changing the execution position. Often each line of
C source code compiles into several machine language instructions.
Moving the program counter to a new address in the middle of a series of
related assembly instructions is sometimes risky. Moreover, even though
you change the program counter, registers and variables may not have the
expected values if you bypass parts of the code.

In the Source Window you can change the execution position to the
viewing position with the menu entry Run | Jump to Cursor. This menu
entry is disabled in Source file window mode to prevent problems by
skidding pieces of C code which are required to be executed. See also the
g and gi commands below.

When the program halts, you can change the execution position with the g
command in the Command Window. The g command moves the
execution position, but does not continue the program. To resume
execution from your new execution position, use the C command.

Although risky, the g command does have its uses, especially in
conjunction with breakpoints to patch code. Refer to the Breakpoints and
Assertions chapter for more information.

For example, to change the execution position from the current line, 54, to
line 62, enter:

g 62

5-5

5-6

Chapter 5

When you resume execution in this program, it is from line 62 instead of
line 54.

FUNCTION: Change the execution position to a specified C source
line

COMMAND: g line number

You can also change the execution position to a specified address directly,
although the same warnings apply. To do so, use the gi command. For
instance:

0x800 gi

FUNCTION: Change the execution position to address.
COMMAND: address gi

Of course, moving the program counter (gi command) is even more
potentially reckless than using the g command. Use both with caution
especially when debugging a program which has instructions re-ordered
due to optimizations.

To determine the address of a line of source, use the P command:

80 P
80:(0x1486): sum = sum + 1;

The hexadecimal number in parentheses is the instruction address for line
80.

FUNCTION: Print a source line and its instruction address.

COMMAND: line_number P

Controlling Program Execution

5.1.3 SYNCHRONIZING THE EXECUTION AND
VIEWING POSITIONS

Each time you stop execution, the position of the program counter (PC) is
visible in the source window. However, it may disappear from the window
when scrolling through the source or when you loaded a new program.
To find the program counter again:

Click on the Find PC button in the Source Window or select Find PC
from the Edit menu.

From the Command Window, use the L command.

The L Command

The L command is shorthand for 0 e. It synchronizes the viewing and the
execution positions, adjusting the viewing position if the two are different.
The L command never affects the execution position. The L command is
useful if you have changed your viewing position and do not remember
where your execution position is.

FUNCTION: Synchronize viewing and execution position.

COMMAND: L

5-7

5-8 Chapter 5

=

5.2 CONTROLLING PROGRAM EXECUTION

Using the mouse in the Source Window, you can direct the execution of
your source programs. Among your options are:

* Starting execution from the first instruction or from the current
execution position.

e Manually stopping execution whenever you want.

* Executing the program a single line at a time.

* Executing functions by calling them directly.

5.2.1 STARTING THE PROGRAM

To restart a program from its first instruction:

@? Click on the Restart program button in the Source Window.
or:

¢ From the Run menu, select Reset Application

¢ From the Run menu, select Run, or click on the Run/Continue
button.

@ This is NOT a target system reset. Refer to the rst command for
information about side effects that may be introduced due to a target
system reset.

After restarting a program, you can stop execution only by a breakpoint,
an assertion or a halt operation from the user.

FUNCTION: Reset program; run program.
COMMAND: R

Controlling Program Execution

5.2.2 HALTING AND CONTINUING EXECUTION

To stop or continue execution:

Click on the Halt button in the Source Window to stop execution. Click
on the Run/Continue button to resume execution.

From the Run menu selct Halt to stop execution. Select the Run menu
item to resume execution.

Use the C command or function key F5 to resume execution.

When you halt the program, all the active windows update automatically
to reflect the program'’s current status. For instance, if you have any
expressions monitored in the Data Window, their current value appears.

Note that when you use any of the above methods to stop the program,
CrossView Pro halts at the machine instruction that was on when
interrupted. While this is a convenient way to stop the program, it is
hardly an accurate one — you may stop execution in the middle of a C
source statement.

To stop a program at a precise line of C source code, set a breakpoint. For
more about breakpoints see the Breakpoints and Assertions chapter.

When continuing, CrossView Pro resumes execution as if the program had
never stopped.

FUNCTION: Continue execution from the current execution position.

COMMAND: C

5.2.3 SINGLE-STEP EXECUTION

When the program stops, you can continue execution, or you can step
through it one line or instruction at a time. This is called single-step
execution.

5-9

5-10

Chapter 5

Single-stepping is a valuable tool for debugging your programs. The effect
is to watch your programs run in stop motion. You can observe the values
of variables, registers, and the stack at a precise point in a program’s
execution. You can catch many potential bugs by watching a program run
line by line.

When you single step, CrossView Pro normally executes one line of your
source and advances to the next sequential line of the program. If you
single step to a line that contains a function call, however, you have two
options: step into the function or step over the function call.

Source Single-Step Into

There are several methods you can use to single step into:

Click on the Step Into button in the Source Window or select Step Into
from the Run menu.

Press function key F8 or type the s command in the Command Window.
You have the option of setting the number of lines you want to execute.
For example, to execute 2 lines of the program, type: 2 s.

FUNCTION: Step through a program one source line at a time.
COMMAND: number s

Stepping Into Functions

&

Stepping into a function means that CrossView Pro enters the function and
executes its prologue machine instructions, halting at the first C statement.
When you reach the end of the function, CrossView Pro brings you back
to the line after the function call and continues with the flow of the
program. The debugger changes the source code file displayed in the
Source Window, if necessary.

If you accidentally step into a function that you meant to step over, you
can select Return from Function from the Run menu to escape quickly.

For example, suppose you are at line 59 of a file, which contains a call to
the function factorial():

main#59: table[loopvar] = factorial(loopvar)

Controlling Program Execution

By performing one Step Into action, you can step into the source code for
factorial(). Your Execution and viewing position change to:

factorial#103: char locvar = 'X’;

CrossView Pro shows you the current function and line number and the C
source code for the current execution position.

Source Single-Step Over

To step over a statement or a function call:

Click on the Step Over button in the Source Window or select the Step
Over from the Run menu.

Press function key F10 or enter the S command in the Command Window.
You have the option of setting the number of lines you want the debugger
to execute. For example, to execute three lines of source, single stepping
over functions, enter: 3 S.

FUNCTION: Single step, but treat function calls as single statements.
COMMAND: number S

Stepping over Functions

Stepping over a function means that CrossView Pro treats function calls as
a single statements and advances to the next line in the source. This is a
useful operation if a function has already been debugged or if you do not
want to take the time to step through a function line by line.

For example, suppose you reach line 59 in demo.c, which calls the
function factorial(), as in the example above. If you give a Step Over
command, the execution position moves to line 60 of the source code in
the main() function immediately, without entering the source code for
factorial(). CrossView Pro has executed the function call as a single
statement.

5-12

Chapter 5

If you try to step over a function that contains a breakpoint or that calls
another function with a breakpoint, CrossView Pro halts at that breakpoint.
Once execution stops, the step over command is complete. Therefore, if
you resume execution by clicking on the Run button or with the C
command, you do not regain control at the entrance to the function with
the breakpoint. You can either single step through the rest of the function,
or select the Run | Return from Function menu item to return to the
line after the point of entry.

5.2.4 STEPPING THROUGH AT THE MACHINE LEVEL

While single stepping through code at the source level is informative, you
might need a lower level approach. CrossView Pro can step through a
program at the assembly language instruction level.

While more time—consuming than a source level step—through, an
instruction level step-through allows you to examine how your code has
been compiled. As you advance through the assembly instructions, notice
how CrossView Pro translates data addresses to variable names, and
correlates branch addresses to points in the source code. This makes it
much easier to follow the source at the instruction level.

@ The default step modes are:

Source lines Window: Source line step
Disassembly Window: Instruction step
Source and Disassembly Window: mode of previous window!

(assumes the step mode of the previous Source Window setting)

@? Mouse and menu actions:

* The Step Into and Step Over buttons, and Run | Step Over and
Run | Step Into menus can be set to step by instructions by
selecting Run | Step Mode | Instruction step from the menu bar.

» To change back to stepping by source lines, select Run | Step
Mode | Source line step.

* Another way to set the step mode is to select the Source line step
or Instruction step radio button in the Settings | Source
Window Setup dialog box.

Controlling Program Execution

To control this function from the Command Window, use the Si and si

&

commands. The Si and the si commands are analogous to the S and s
commands, Si will treat function calls (more precisely, jump to subroutine
instructions) as single statements, while si will enter the function.

FUNCTION: Single step at instruction level. Step into functions.
COMMAND: number si

FUNCTION: Single step at instruction level. Step over functions.
COMMAND: number Si

As an example of stepping through instruction level code, restart the
program. Then select Run | Step Mode | Instruction step. Once it
stops at the breakpoint you installed, advance execution one assembly
language instruction at a time by using the Step Over and Step Into
buttons. Or give the Si or si commands.

CrossView Pro will display disassembly of the next machine instruction
that forms part of the C code in the Command Output Window:

main#47+0x4: disassembled instruction

Different types of targets, of course, have different assembly code, so
debugging at the assembly level is hardware dependent.

Notice that a single C statement is usually compiled into several,
sometimes many, machine instructions.

CrossView Pro supports debugging on machine instruction level using the
Intermixed or Assembly mode of the Source Window.

5-14

=

Chapter 5

5.3 NOTES ABOUT PROGRAM EXECUTION

If you stop the program in a module without debug symbols, then an S or
s command attempts to step to a module with symbols. CrossView Pro
does this by searching the run-time stack for a return address in a module
with symbols, then setting a temporary breakpoint there, and running. This
process relies on two assumptions: that the stack layout is uniform, and
that each function eventually returns. In the unlikely event that these
assumptions are violated, the program may run away when you attempt to
single step.

5.4 SEARCHING THROUGH THE SOURCE WINDOW

CrossView Pro can search for addresses and functions in the entire
application and for line numbers, and strings in the current source file. A
string search starts from the current viewing position and "wraps around”
the end (or begin) of the current source file. The string search ends when
a matching string is found or when it returns to the starting point.

5.4.1 SEARCHING FOR A FUNCTION

There are several ways to find a function:

@2 Using the mouse:

From the Edit menu, select Find Symbol... to open the Find
Symbol dialog box. Select the function you are looking for.

* Click on the Find Symbol button in the Source Window to open
the Find Symbol dialog box.

» Select a function in the Stack Window (double—click) to show the
line that called it.

function name, or a stack position followed by e. For example:

e main Find the function main().
le Find the line that called the current function.

CrossView Pro searches through all the relevant source code files to find
the one containing the body of the function. The part of the file containing
the function appears in the Source Window.

Controlling Program Execution

5.4.2 SEARCHING FOR A STRING

CrossView Pro allows you to search for a particular string in the current
source file. CrossView Pro searches the Source Window from the current
viewing position. If it finds the string, it moves the viewing position to the
corresponding line. This does not affect the execution position.

To find a string:

Open the Search String dialog box by clicking on the Find Text String
button, or select Search String... from the Edit menu. Click on the Case
Sensitive check box to turn case sensitivity on or off.

You can also highlight a text fragment in the source code and click on the
Find Next Text String button to find that fragment again.

In the Command Window, use the / or ? commands. The / command
searches forwards and the ? command searches backwards. For example,
to find the string initval, enter:

/initval Search forward for the string “initval”

CrossView Pro’s searches "wrap around” beyond the top or bottom of the
file if necessary.

FUNCTION: Search forward for a string.
COMMAND: / string

FUNCTION: Search backward for a string.
COMMAND: ? string

If no string is supplied to the / or ? command, or if you hit carriage return,
or press the function key F3 or select the Search Next String from the
Edit menu item, CrossView Pro searches again for the last string
requested.

5-16 Chapter 5

=

5.4.3 JUMPING TO A SOURCE LINE

As mentioned earlier in the Changing the Viewing Position section, you
can use the scroll bar to scroll through the source code or use the arrow

keys or the + and - keys. To find a specific line, you can use one of
several methods:

@? From the Edit menu, select Find Line... to open the Find Line dialog box.

After you enter a line number (or select one from the history list) in this
dialog box and click on the Find button, CrossView Pro will change the
viewing position to the indicated line number. At the first use, the Find
Line dialog box contains no line number, but on subsequent invocations it
will show the line number you entered before.

Enter the line number on the command line.

ACCESSING CODE
AND DATA

al TASKING [

d31dVHO

Accessing Code and Data

6.1 INTRODUCTION

This chapter discusses topics related to viewing and editing the variables
in your source program and execution environment, including accessing
variables and registers, viewing and modifying the data space, using
monitors, viewing the source file, and disassembling code.

6.2 ACCESSING VARIABLES

&

This section describes how to view and edit your program variables using
the debugger. You can monitor data so that every time you stop the
program, CrossView Pro updates the current value.

The Data Window displays the values of variables and expressions. As
long as the this window is open, CrossView Pro automatically updates the
display for each monitored variable and expression each time the program
stops.

Uninitialized variables will not have meaningful values when you first start
the debugger, since your program’s startup code has not been executed.
Also note that global data is initialized at load time. Re-running a program
may produce unexpected results. To guarantee that global data is
initialized properly, download the program again.

6.2.1 VIEWING VARIABLES, STRUCTURES AND

ARRAYS

You may view variable values, and change them, from the Source Window
and the Command Window. CrossView Pro returns the variable in the
format var_name = value in the Command Window.

It is possible to display both monitored and unmonitored expressions in
the Data Window. After every halt in execution, CrossView Pro updates
monitored expressions. Unmonitored expressions are just one-shot
inspections of the expressions value. Refer to section 4.6, CrossView Pro
Windows for a detailed description of the Data Window.

To set the default display format of the data shown, select the proper
format in the Data | Data Display Setup... dialog.

6-3

6-4

=

Chapter 6

To show the contents of a variable or to show the type information of
a function:

Position the mouse cursor over a variable or a function in the Source
Window. A bubble help box appears showing the value of the variable or
the type information of the function, respectively.

To evaluate a simple expression:

Double—click on a variable in the Source window. The result of the
expression is shown in the Data Window. Alternatively, depending on the
preferences you set in the Data Display Setup dialog, the expression
appears in the Evaluate Expression dialog. Click the Add Watch or

Add Show button to display the result of the expression in the Data
Window. Click the Evaluate button to display the result of the expression
in the output field of the Evaluate Expression dialog.

To evaluate a complex expression:

From the Data menu, select Evaluate Expression... and type in any C
expression in the Evaluate Expression dialog box. Optionally select a
display format. Click the Evaluate button.

Type the expression into the command edit field of the Command
Window followed by a return or click the Execute button.

For example, to find the value of initval in demo.c type:
initval
and CrossView Pro will display:

initval = 17

FUNCTION: Display the value of a variable.
COMMAND: variable’s_name

@ For variables having the same name as an CrossView Pro command, use
/n as format style code.

Accessing Code and Data

@ Any expression that can be typed into the Command Window can also be

typed in the Expression field of the Expression Evaluation dialog box.
Throughout this discussion, expressions can be typed in either location,
depending on what is convenient.

Viewing Structures
You can also view structures.

By using any of the methods described above, you can print out the entire
structure. For example:

recordvar

and CrossView Pro prints out the structure of recordvar and values of
recordvar'’s fields in correct C notation:

recordvar = struct rec_s {

a = -1;
b = 0x1028 "TASKING”;
c = 987654321;

color = blue;
} recordvar

Displaying Individual Fields

Similarly, you can instruct the debugger to print the value of an individual
field.

In the Source Window, highlight recordvar.color and click the Show
Expression button. Or, in the Expression edit field of the Expression
Evaluation dialog box or in the Command Window, type the structure
name followed by a period and the field name. For instance, to see the
field color for the structure recordvar, enter:

recordvar.color Command
color = blue Output

Note that CrossView Pro returns the value in the form field name = value.
CrossView Pro also displays enumerated types correctly.

@ Variables will not have meaningful values when you first start CrossView
Pro, since your program’s startup code has not been executed.

6-6 Chapter 6

-

Displaying the Address of an Array

If you enter the name of an array in the Expression Evaluation dialog box
or in the Command Window, the debugger returns its address. For
instance, to find the address for the array table, select table from the
browse list in the dialog box or type the name in the Command Window:

table Command
table = 0x200 Output

Note that CrossView Pro returns the address in the form array name =
address.

The debugger can also display the address and value of an individual
element of an array. Enter the name of the array and the number of the
element in brackets. For instance, to find the address and value of the
third element of array table, enter:

table[3] Command
0x20C = 0 Output

Note that CrossView Pro returns the information in the form address =
value.

Displaying Character Pointers and Character Arrays

The following piece of C code can be accessed in CrossView Pro using the
string format codes:

char text[] = "Sample\n”;

char *ptext = text;

text What is the address of this char array
text = 0x8200

text/a Print it as a string

text = ”"Sample”J”

ptext What is the contents of this pointer
string = 0x8200

ptext/s Print it as a string

string = ”“Sample”J”

&ptext Where does ptext itself reside

0x8210

Accessing Code and Data

Sizing Structures
With structured variables, it is especially useful to know the size of a
variable.

In the Command Window, you can determine the size of a variable with
the sizeof () function. For instance, to determine the size of the structure
recordvar, enter:

sizeof (recordvar)
24

6.2.2 CHANGING VARIABLES

With CrossView Pro, you can not only view your variables, but change
them. This function allows you to easily test your code by single-stepping
through the program and assigning sample values to your variables. For
instance, to set the variable initval to 100, enter:

initval=100
and CrossView Pro confirms initval’s new value:
initval = 100

Note that CrossView Pro returns the values of variables with the syntax:
var_name = value, with any right-hand side expression evaluated to a
single value.

Changing variables in the Data Window

@? To change a variable in the Data Window, follow these steps:
¢ In the Data Window, double—click on the variable you wish to edit.
In-situ editing will be activated.
* Specify the new value in the edit control and hit the Enter key.
When in-situ editing is active, you can use the Tab key to move the edit

field to the next variable value or use the Shift+Tab key combination to
move the edit control to the previous variable.

6-7

6-8 Chapter 6

=

Assigning Structures

CrossView Pro also allows you to assign whole structures to one another.

You can use a simple equation to assign the structures. For instance, to
assign statrec to recordvar, enter:

statrec = recordvar

6.2.3 THE | COMMAND

CrossView Pro’s windows contain a great deal of information about the
current debugging session. Occasionally, however, you have a few closed
windows, or wish the information to appear in the Command window (for
instance, when you are recording output). Using the 1 (list) command, you
can find out all sorts of things about the current state of the debugger and
have the information appear in the Command window.

Arguments of the | Command

a assertions k kernel state data

b breakpoints m memory map (of application code sections)
d directory p procedures (functions)

f files (modules) r registers

g globals s special variables

For configurations that support real-time kernels the 1 k command can
have additional arguments. See the description of the 1 command in the
Command Reference for details.

You may for example view the contents of the registers:
lr

Or the list of procedures (that is, functions):
lp

a complete list of global variables:

lg

Accessing Code and Data

The 1 f command (list files) also shows the address where CrossView Pro
placed the first procedure in the module. If the module is a data module
then the address reflects the first item’s placement.

With all of these 1 commands you can specify a string:
1l g record

and CrossView Pro searches the globals for a match with the same initial
characters; in this case global variables that begin with record.

6-9

6-10 Chapter 6

=

6.3 EXPRESSIONS

6.3.1 EVALUATING EXPRESSIONS

CrossView Pro expressions use standard C syntax, semantics, and allow
special variables. You can calculate and show the values of expressions in
CrossView Pro by using a variety of methods:

It is possible to display both monitored and unmonitored expressions in
the Data Window. CrossView Pro updates monitored expressions after
every halt in execution. Unmonitored expressions are just one-shot
inspections of the expressions value. Refer to section 4.6, CrossView Pro
Windows for a detailed description of the Data Window.

To evaluate a simple expression:

Double—click on a variable in the Source window. The result of the
expression appears in the data window. Alternatively, depending on the
preferences you set in the Data Display Setup dialog, the expression
appears in the Evaluate Expression dialog. Click the Add Watch or

Add Show button to display the result of the expression in the Data
Window. Click the Evaluate button to display the result of the expression
in the output field of the Evaluate Expression dialog.

To evaluate a complex expression:

From the Data menu, select Evaluate Expression... and type in any C
expression in the Evaluate Expression dialog box. Optionally select a
display format. Click the Evaluate button.

CrossView Pro calculates the result and displays the value in the
appropriate format. For details about expression formats see the section
Formatting Expressions in the chapter CrossView Pro Command Language.

Type the expression in the Command Window.

Expressions can contain variable names as arguments. For instance, if the
variable initval has a value of 17 and you enter:

initval * 2
CrossView Pro displays:

34

Accessing Code and Data

The expression can contain names of variables, constants, function calls
with parameters, and so forth; anything that you can write directly at the
Command Window, you can use in the Evaluate Expression dialog box.
For more information on expressions and the CrossView Pro command
language, refer to the section CrossView Pro Expressions in the Command
Language chapter.

The Dot Operand

Using the dot shorthand ”.” can save you some typing. The dot stands for
the last value CrossView Pro displayed. For instance:

initval
initval = 17

Now you can use the value 17 in another expression by typing:

. * 2
34

The value is the result of the new expression.

Naturally, using the dot operand saves you from retyping complex
expressions.

6.3.2 MONITORING EXPRESSIONS

CrossView Pro allows you to monitor any variable or expression.
Monitoring means that the debugger evaluates a particular expression and
displays the result each time the program stops. If you are in window
mode, CrossView Pro displays the values of the monitored variables and
expressions in the Data window.

Monitor Set Up

To set up a monitor you can:

From the Data menu, select Evaluate Expression... or double-click on a
variable in the Source Window, or click on the Watch Expression button
to view the Expression Evaluation dialog box. From this dialog box, you
can enter an expression and monitor (watch) its value in the Data
Window. You can skip the Expression Evaluation dialog if you activate the
Bypass Expression Evaluation dialog check box in the Data Display
Setup dialog.

6-12

&

Chapter 6

Alternatively, click on the New Expression button in the Data Window.

The Data Window must be open to display the result. Otherwise
CrossView Pro does not monitor the expression. Therefore, CrossView Pro
opens the Data Window automatically when you choose to show or watch
an expression.

Type the m expression command in the Command Window.
To place the variable initval in the Data window type:
m initval

initval remains in the Data window. You may run the program, step
through it, and the display updates continually. Even if you are not in
window mode, CrossView Pro still displays the value of initval after
every CrossView command.

FUNCTION: Monitor an expression or variable.

COMMAND: m expression

Similarly, if you want twice the value of initval you could type:
m initval*2

And the expression initval*2 is monitored.

Monitored expressions are evaluated exactly as if you had typed them in
from the command line; therefore, if you are monitoring a variable, say R,
identical to an CrossView Pro command, use the /n format, in this
example R/n.

Momitor Delete

To remove a monitored expression you can:

Select the item in the Data Window and click on the Delete Selected Data
Item button from the Data Window, or select Data | Delete | Item.

To remove all expressions from the Data Window, select Data | Delete |
All

Type the number m d command in the Command Window.

Accessing Code and Data

To remove initval from your Data Window #1, type the number of the
expression (first item of the Data Window has number 0) and m d
(monitor delete):

Omd

and CrossView Pro removes initval (in this case, assuming it is the first
variable listed in the window) from the Data Window.

FUNCTION: Remove an expression from the Data Window
COMMAND: number md

Since local variables have no meaning beyond their range, CrossView Pro
issues error messages if you try to evaluate local variables beyond their
scope. Some variables also become invisible when the program call
another function. For instance, if you are in main (), monitoring sum, and
main() calls factorial(), the unqualified name sum is no longer
visible inside factorial(). You can get around this problem, however,
by monitoring main#sum instead.

6.3.3 FORMATTING DATA

When you display a particular variable, CrossView Pro displays it in the
format the symbolic debug information defines for it. You may, however,
easily specify another format using dialogues or keyboard commands. See
the section Formatting Expressions in the chapter CrossView Pro
Command Language.

Examples
To print the value of initval in hexadecimal format, enter
initval/x

Be sure not to confuse CrossView Pro format codes with C character
codes. CrossView Pro uses a / (forward slash) not a \ (backward slash).

6-14

Chapter 6

Don’t worry about trying to memorize the list, you probably won’t have
occasion to use all these formats. Notice, however, that the /t format code
give information about a particular value. For instance, if you wanted to
find out what the type of initval is, type:

initval/t
global long initval

You can also take more low-level actions, such as finding out which
function contains the hexadecimal address 0x100.

0x100/P
main

CrossView Pro tells you that address 0x100 is in the function main().

6.3.4 DISPLAYING MEMORY

CrossView Pro supports several methods to display memory contents. The
Memory Window provides a very user—friendly yet powerful way to
display the raw contents of the target memory.

Refer to section 4.6.4 for a description of the Memory Window.

Format codes also give you control over the number and size of multiple
pieces of data to display beginning at a particular address. The debugger
accepts format codes in the following form:

[count] style [size]

Count is the number of times to apply the format style style. Size indicates
the number of bytes to be formatted. Both count and size must be
numbers, although you may use ¢ (char), s (short), i (int), and 1 (long) as
shorthand for size. Legal integer format sizes are 1, 2, and 4; legal float
format sizes are 4 and 8.

For instance:
initval/4xs

displays four, hexadecimal two-byte memory locations starting at the
address of initval.

Accessing Code and Data

With format codes, you may view the contents of memory addresses on
the screen. For instance, to dump the contents of an absolute memory
address range, you must think of the address being a pointer. To show the
memory contents you use the C language indirection operator *. Example:

*0x4000/2x4
0x4000 = 0x00DB0208 0x5A055498

This command displays in hexadecimal two long words at memory
location 0x4000 and beyond. Instead of using the size specifier in the
display format, you can force the address to be a pointer to unsigned
long by casting the value:

* (unsigned long *)0x4000/2x
0x4000 = 0x00DB0208 0x5A055498

To view the first four elements of the array table from the demo.c
program, type:

table/4d2
table = 1 1 2 6

This command displays in decimal the first four 2-byte values beginning at
the address of the array table.

By typing the a space followed by a carriage return you can advance and
see the succeeding values in the same format:

[Enter]
0x11 = 24 120 720 5040

You may recognize that the array table contains the factorials for the
integers 0 through 7.

Displaying memory in this way is particularly effective when you have
two-dimensional arrays. In this case you can display each row by
specifying the appropriate count. For instance, if myarr is defined as int
myarr[5][8]:

myarr/8ds

displays the values for the eight elements in the first row of myarr. Typing
the carriage return repeatedly then display subsequent rows in the same
format.

6-16 Chapter 6

=

To scroll back in memory, type the * (caret) sign:

A

0x9 =1 1 2 6

FUNCTION: Display value(s) at previous memory location.
COMMAND: ~

6.3.5 DISPLAYING MEMORY ADDRESSES

The f command lets you specify in which notation CrossView Pro displays
memory addresses. It takes the same arguments as the printf () function
in C.

FUNCTION: Specify memory address notation.
COMMAND: f ["printf-style-format"]

For instance, if you wish to display all memory addresses in octal, type:
f L4 %o 4

Now all addresses appear in octal. To return to the default hexadecimal,
type:

f "%xn

Using the f command without an argument also returns to hexadecimal
address display.

Accessing Code and Data

6.4 DISPLAYING DISASSEMBLED INSTRUCTIONS

To show disassembled instructions:

From the View menu, select Source | Disassembly to open the
Disassembly Source Window.

Use the /i format switch to display disassembled code in the Command
Window.

By using an address and the /i format it is possible to display
disassembled code at any point. Suppose you wish to see how the
factorial() function has been compiled. One method would be to
examine the instructions displayed as you single step through a program at
the assembly language level. There is however a quicker method that does
not require you to execute the instructions. Type:

factorial/10i

This command displays the first ten assembly language instructions of
factorial(). Remember that in C a function’s name is also its address.
Thus factorial is the address of the function factorial().

Note that CrossView Pro keeps track of variable and function names for
you in the disassembled code. You can also disassemble from the current
execution position by using the program counter:

$pc/5i

This command disassembles five assembly language instructions from the
current execution line.

You can display disassembled code for any function:
main#56/71
disassembles seven instructions from line 56.

See also the ei command for displaying disassembly in a window.

Labels in Disassembly

To show labels in disassembly:

From the Settings menu, select the Source Window Setup... to open the
Source Window Setup dialog box and enable the Symbolic disassembly
check box.

6-18

Chapter 6

Turn the $symbols special variable "ON” by typing the following
command in the Command Window:

opt symbols=on

6.4.1 INTERMIXED SOURCE AND DISASSEMBLY

To show intermixed source and disassembly:

From the View menu, select Source | Source and Disassembly to open
the Source and Disassembly Window.

Use the /I format switch to display intermixed C and disassembled code
in the Command Window.

The /I format works exactly as the /i format, except CrossView Pro
intermixes the pseudo-assembly listing with the original C source. This
feature is often helpful in displaying long portions of code.

Auto Switch between Source and Disassembly

To automatically switch between source and disassembly window
depending on the presence of symbols:

From the Settings menu, select the Source Window Setup... to open the
Source Window Setup dialog box.
Enable the Show assembly when SDI is missing check box.

Turn the $autosrc special variable "ON” by typing the following
command in the Command Window:

opt autosrc=on

Accessing Code and Data

6.5 THE STACK

During debugging, you frequently find yourself lost or unable to pinpoint
your location through a series of function calls. The stack helps you with
the problem by recording the return addresses of all functions you have
passed through. CrossView Pro can use this information to reconstruct the
path to your current location.

The following diagram shows the structure of the stack.

stack
high memory
incoming
stack parameters
grows down P
saved registers on entry
local variables framesize
outgoing
parameters
< S y
low memory P
($sp)
during execution

Figure 6-1: Stack frame layout

6.5.1 HOW THE STACK IS ORGANIZED

The stack is used for local automatic variables, function parameters and
saved registers.

The stack size is defined in the linker control file (tc.i in directory etc)
with the macro USTACK, which results in a section called ustack.

The linker defined label __ 1c_ue_ustack refers to the top of the stack
area and is used in the file cstart.asm to initialize the user stack pointer
register.

6-20 Chapter 6

=

6.5.2 THE STACK WINDOW

The Stack Window shows the current contents of the stack after the
program has been stopped. This window helps you assess program
execution and allows you to view program values. You can also set
breakpoints for different stack levels from this window, as described in the
chapter Breakpoints and Assertions.

The Stack Window displays the following information for each stack level:

* The name of the function that was called
* All parameters specified to the function

¢ The line number in the source code from which the function was
called

Each stack level shown in the Stack Window is displayed with its level
number first. The levels are numbered sequentially from zero. That is, the
lowest/last pushed level in the function call graph is always assigned zero.

When you first see stack information, the lowest level appears against a
darker background than the other lines in the window. The marked line in
the Stack Window is the selected stack level, meaning that this line is
selected for window operations. You can change the selected stack level
by clicking on a different line.

Checking the Stack from the Command Window

The stack information is also accessible from the Command Window with
the t and T commands. The t command reconstructs the program’s calling
path. For instance, if you stepped into the function factorial() and
issue a t (trace) command:

t
CrossView Pro displays:

0 factorial(num=0) [demo.c:105]
1 main() [demo.c:59]

The numbers to the left indicate the depth of each function on the stack.
The function at the zero stack level is your current function. CrossView
Pro tells you the line number where the function was called
([demo.c:1ine_nr]) and the value of the argument passed
(num=value). With this information it is fairly easy to reconstruct your
calling path, and see what parameter values your functions have received.

Accessing Code and Data

FUNCTION: Trace stack to reconstruct program’s calling path.

COMMAND: t

There is a slight variation on the t command called the T command. The
two are identical, except that the T command also displays the local
variables for each function. For instance:

T
0 factorial(num=0) [demo.c:105]
locvar = ’'x’
1 main() [demo.c:59]
loopvar = 0
sum = 0
cvar = '\xff’

FUNCTION: Trace stack and display local variables.
COMMAND: T

6.5.3 LISTING LOCALS AND PARAMETERS OF A
FUNCTION

As mentioned in the previous section, CrossView Pro displays all
parameters of a function. You can view the local variables and parameters
of any single function active on the stack To do this:

@ Follow these steps:

* Open up the Expression Evaluation dialog box by clicking on the
New Expression button from the toolbar or selecting Evaluate
Expression... from the Data menu.

¢ (Click on the Browse... button.

In the Command Window, use the 1 (lowercase L) command.

For example, assuming you are still in factorial(), issue an 1
command:

1l factorial
num = 0
locvar = ’'x’

6-21

6-22 Chapter 6

=

You can accomplish the same task by specifying the stack depth instead of
a function name:

10

6.5.4 LOW-LEVEL VIEWING THE STACK

You can directly view the contents of the stack. Although CrossView Pro
provides several high level methods of tracing functions on the stack, you
can view its contents directly with the frame pointer special variable, $£p.
For instance, the command:

$fp[0]/4x1

displays the four one-byte values in hexadecimal to which the frame
pointer points. Notice that the stack frame is not really an array, but by
pretending it is, you can display the memory much as you did with the
table array. Refer to the Accessing Variables section in this chapter for
more information.

Accessing Code and Data

6.6 TRACE WINDOW

&

C level trace is not available for all execution environments. Please check
the Addendum for details.

The Trace Window displays the most recently executed lines of code each
time program execution stops. CrossView Pro automatically updates the
Trace Window each time execution halts, as long as the window is open.

For each executed line of code, the Trace Window displays:

* The name of the source file
* The name of the function
* The line number and corresponding source code

¢ The window shows all the code executed since the the last time the
program halted.

6.6.1 TRACE WINDOW SETUP

The Trace Window’s only function is to display the contents of the
emulator’s/ simulator’s trace buffer. The only operation you can perform in
this window that directly affects the contents is to set the maximum
number of instructions in the display.

To set the displaying limit, select Trace Setup... from the Settings menu.
You can change the maximum number of C-Trace machine instructions to
fetch from the execution environment’s trace buffer and the maximum
number of trace output lines in the Trace Window.

To view the most recently executed source statements from the Command
Window, use the ct command preceded by the number of machine
instructions you want to list. For example, to view the last source lines
corresponding to the last ten machine instructions, enter:

10 ct

FUNCTION: Display in the Command window the most recently
executed C statements.

COMMAND: number ct

6-23

6-24

=

Chapter 6

To activate the source level trace window:

From the View menu, select Trace | Source Level to view the Trace
Source Window.

You can view the last machine instructions executed with the ct i
command. For example:

15 ct i

displays the last 15 machine instructions in disassembled form in the
Command Window.

FUNCTION: Display the most recently executed machine
instructions.

COMMAND: number cti

To activate the instruction level trace window:

From the View menu, select Trace | Instruction Level to view the Trace
Instructions Window.

You can view a raw trace with the ct r command. For example:
20 ct r

displays the last 20 trace frames in the Command Window.

FUNCTION: Display a raw trace.
COMMAND: number ctr

To activate the raw trace window:

@ From the View menu, select Trace | Raw to view the Trace Raw Window.

Accessing Code and Data

6.7 REGISTER WINDOW

The Registers Window shows you the values of internal registers on your
target processor.

You can create multiple Register Windows and each Registers Window
contains the names and contents of all currently selected registers in the

selected register set definition. Values are displayed in hexadecimal format.

As long as the window is open, the debugger automatically updates the
values when the program stops.

To show the list of current registers and their contents in the Command
Window, enter the list registers command (1 r).

CrossView Pro also supplies the following special variables:

$sp stack pointer
$pc program counter
$fp current frame pointer

for all targets. For more information, refer to the Command Language
chapter.

6.7.1 REGISTER WINDOW SETUP

You can configure which register set definition with which (and in which
order) registers must be displayed in the Register Window; using the
Settings | Register Window Setup... dialog. Since you can have more
than one Register Window, the last active Register Window will be
configured when you select this menu item.

@2 To configure a Register Window follow these steps:

* Select a Register Window.

* From the Settings menu, select Register Window Setup... to view
the Register Window Setup dialog box.

The dialog will show the active register set definition and the list of
available and selected registers for this particular register set
definition.

6-25

6-26

Chapter 6

* You can create a new register set definition by entering an unique
register set definition name in the Name edit field and using the
Add button.

* You can delete a register set definition by selecting an item from the
defined register set definition list and using the Delete button. Note
that when you delete a register set definition, any Register Window
displaying a deleted register set will be closed.

* You can select a register set definition by selecting an item from the
defined register set definition list. The list of available and selected
registers will be updated according to the configuration of the
selected regisetr set definition.

Once you have selected a register set definition, follow these steps to
configure this register set definition:

* You can add registers to the list of selected registers by selecting
registers from the list of available registers by highlighting those
registers in the left list box and using the Add-> or Add All button
or by double—clicking on the register you want to add.

* You can remove registers from the list of selected registers by
highlighting those registers in the right list box and using the
Remove <- or Remove All button, or by double—clicking on the
register you want to remove.

* By using the Move Up and Move Down buttons you can change
the display order of the selected registers in the Register Window.

CrossView Pro automatically updates all Register Windows and places the
registers in each Register Window starting at the top-left position on one
line, wrapping to the next line if the next register does not fit.

6.7.2 EDITING REGISTERS

CrossView Pro lets you change the contents of registers in a simple and
direct manner.

@? Follow these steps:

¢ In the Register Window, click on the register value you wish to edit.
In-situ editing will be activated.

e Specify the new value in the edit control and hit the Enter key.

If the edited value is not acceptable, the debugger will emit an error
message and reset the old value.

Accessing Code and Data

When in-situ editing is active, you can use the Tab key to move the edit
field to the next register value or use the Shift+Tab key combination to
move the edit control to the previous register. Use the Esc key to cancel
in—situ editing. When a register is not in view the contents of the Register
Window will be updated automatically.

You can enter any expression in the Registers Window.

Registers which can be edited symbolically have a special marker just
before the register name. You can click on this marker to activate the
Assign Register Symbolically dialog.

To access registers from the Command Window, use the $ designation and
the register name in the format:

Sregister = value

6-27

Chapter 6

6-28

V1vd dNV 3d09

BREAKPOINTS AND
ASSERTIONS

al TASKING [

d31dVHO

Breakpoints and Assertions

You can use breakpoints to stop program execution at specified locations
and return control to the user. An assertion is a number of statements
executed by the debugger each time the target executes a program line.
Use assertions to track down bugs, the cause of which is very hard to find.

7.1 INTRODUCTION TO BREAKPOINTS

Breakpoints halt program execution and return control to you. There are
several types of breakpoints: code, data, instruction count, cycle count,
timer and sequence. A code breakpoint halts the program on a particular
statement or instruction; a data breakpoint stops the program when a
particular memory address (or range of addresses) is accessed; an
instruction count breakpoint halts the program after a specified number of
instructions have been executed; a cycle count breakpoint stops the
program after a number of CPU cycles; a timer breakpoint stops the
program after a number of micro seconds or ticks and sequence
breakpoints stop the program when a number of breakpoints are hit in a
specified sequence.

Data breakpoints, instruction count breakpoints, cycle count breakpoints
and timer breakpoints are not available for all execution environments,
please check the Addendum.

7.1.1 CODE BREAKPOINTS

A code breakpoint is set on a line in the code and makes the program
halt exactly before that line executes. When you define a code breakpoint,
you can include four elements:

* A count, which is the number of times the breakpoint must be
encountered before it stops the program (default is 1).

* A reset count, which is the value assigned to the count after the
program has stopped on a breakpoint (default is 1).

* A name, which is the symbolic name you can associate with a
breakpoint.

* A list of commands, which will be executed when the program hits
the breakpoint.

In the Source Window, a green colored toggle shows that no breakpoint is
set. A red colored toggle shows that a breakpoint is installed. An orange
colored toggle indicates an installed but disabled breakpoint.

7-3

7-4 Chapter 7

-

If coverage is enabled, coverage markers are present to the right of the
breakpoint toggles. An executed line is marked and not executed lines are

not marked.
M Source : demo.c M=l E
IS E =
|49 jIUHM'IB jlmain leource lines leourcelinestep j
roid main (void)
i
int loopwar: /% the loop counter '-J
long Sy f% will be 17+sum of factorials from O to| 7
char CVAar; /% sample char wvariable
Elw | 0.000% initval = 17:
El[| O.000% § if {initval » recordvar.a)
El[™ | 0.000% sum = 0;
| ;
4] | [
Breakpoint Coverage Profiling Current Status
Toggles Markers Execution Position Bar

Figure 7-1: Code Breakpoint

Permanent/Temporary Code Breakpoints

Code breakpoints can be: permanent or temporary. A permanent
breakpoint exists until explicitly deleted. A temporary breakpoint only
exists until it stops the program once.

Probe Points

A breakpoint can be treated as a probe point. When a probe point is hit,
the associated commands are executed and program execution is
continued. Probe points are used with File I/O simulation and sequence
breakpoints.

Breakpoints and Assertions

How CrossView Pro Sets Code Breakpoints

CrossView Pro depends on the symbol table for information about how
machine instructions map to lines of source. In general, the C compiler
issues line symbols at the start of each statement or line, whichever comes
first. This can lead to some surprising results. If you look carefully, you
can tell on which line CrossView Pro set the breakpoint, since CrossView
Pro tells you on which line the program stopped, a line that may be
different from the one you expected. To find out what happens if you
install a code breakpoint, use single stepping and watch the order in
which the source lines print out.

Multiple Statements on a Single Source Line

If you frequently include multiple statements on a single line in your
source code, you may have difficulties setting code breakpoints at certain
locations. For instance, suppose you have a source line containing:

a=20; b=1

Suppose you want to halt execution after the assignment to a and before
the one to b. A normal code breakpoint does not work here, because
execution stops at the first instruction of the source line. CrossView Pro
provides you with the capability of disassembling the code and inserting
breakpoints at the machine level. You can use the Assembly Source
Window or the Intermixed Source Window to spot the right location.

For more information on machine level breakpoints, see below.

Setting Breakpoints for Multi-line Statements

Code breakpoints have a special behavior for multiple-line statements,
such as a multiple-line if. In an if clause, a line symbol is generated at
the beginning of the list of conditions, and the other lines of the
conditions are generally associated with the first line of the clause. In an
if-then-else construct, the } character before the else is associated
with the branch-around to the end of the statement.

Consider the following example:

22: if ((a == b)&&
23: (¢ == d)) {
24: x = 2;

25: } else {

26: y = 3;

27: }

Chapter 7

If you try to set a code breakpoint at line 23, CrossView Pro sets the
breakpoint on the preceding statement. If you try to set a breakpoint on
line 22, CrossView Pro highlights line 23. If you set a breakpoint on line
25, it hits after the assignment to x, but before the jump to line 27. Notice
that it is not hit unless the if clause is true. In other words, a breakpoint
on line 25 is really a break on the }, not on the else {. The same
behavior applies when the else { statement is on the next source line.

Breakpoints and For Loops and While Loops

The code generated for a C ’for’ statement has three parts: the
initialization; the body of the loop; and the increment, test, and branch.
The initialization part and the increment, test, and branch are different
parts of code, but are both associated with the ’for’ statement itself. For
example consider:

99: for (i = 0; i < 9; i++) {
100: myfunction(i);
101: }

A breakpoint placed on line 99 will only be hit once, because it is hit at
the initialization code. The code for the increment, test, and branch is
associated with line 101, not 99, as you might expect.

The same applies to "while’ loops.

Breakpoints and Emulator Mode

Upon entering emulator mode, the debugger removes any breakpoints it
established in the target code. Removing breakpoints ensures that you can
access unmodified target code. When emulator mode ends, CrossView Pro
reestablishes breakpoints as necessary.

As long as you avoid the debugger’s own breakpoint trap, you may
establish arbitrary breakpoint conditions while in emulator mode. These
will not be removed by CrossView Pro and thus remain active, however,
after you exit emulator mode. If one of these breakpoints is hit during
normal debugging, CrossView Pro will issue a message such as:

Stopped on breakpoint not set by debugger.

Breakpoints and Assertions

System Startup Code

It is possible (for example, by using the si command) to debug system
level startup code that initializes the target environment. You should not
use any global variables in CrossView Pro expressions until the data area
has been initialized. CrossView Pro assertions and other CrossView Pro
commands that examine C variables may deliver erroneous information or
cause memory access errors if used before the C environment is
established.

7.1.2 DATA BREAKPOINTS

&

A data breakpoint instructs the execution environment to watch a
particular data address or address range and halt execution if the program
reads from or writes to that address. Data breakpoints are a powerful
feature for tracking the use, and possible misuse, of pointers, global
variables and memory mapped I/O ports.

Data breakpoints are not available for all execution environments, please
check the Addendum.

When setting a data breakpoint, you can specify whether the breakpoint
stops the program when data is read from, written to, or both.

Data breakpoints are implemented in hardware. As a consequence, the
number of allowable data breakpoints is limited by your execution
environment. A simulator does not have these restrictions. Refer to the
environment-specific Addendum for more information.

You may set a data breakpoint on a local variable, but only if the local
variable is active. CrossView Pro notifies you when program execution
passes beyond a local variable’s scope, and a breakpoint set on such a
variable is deleted automatically. Data breakpoints for static variables do
not have this restriction.

Note that any local variables placed in registers cannot be tracked with
data breakpoints. In this case, you must use an assertion. Refer to the
Assertions section later in this chapter for more information.

7-7

7-8

Chapter 7

7.1.3 LISTING AND JUMPING TO BREAKPOINTS

To see a listing of all of the currently defined breakpoints:

From the Breakpoints menu, select Breakpoints... to view the
Breakpoints dialog box.

If you select a code breakpoint, you can click on the Goto button to jump
to the location in the source code where the selected code breakpoint is
set.

In the Command Window, enter the 1 b or B commands. The list appears
in the Command Window.

For example entering the B command can result in:

B
0 ena CODE main (CODE:0x78) 2/2

The breakpoint’s number (used when deleting breakpoints) is listed first,
then if it is enabled or disabled, then its type: such as CODE for code
breakpoints and DATA for data breakpoints. Next, CrossView Pro lists the
function and/or address, its count and reset count, and finally any attached
commands enclosed by { and }.

FUNCTION: View all breakpoints in the Command window.
COMMAND: B

CrossView Pro decrements the count each time the breakpoint is hit.
When the breakpoint’s count reaches 0, CrossView Pro halts the program.

7.2 SETTING BREAKPOINTS

You may set a code or data breakpoint by:

¢ Using the mouse to open the Breakpoints dialog box.
* Using the mouse in the Source Window.

e Using the Stack Window.

* Using the command line in the Command Window.

Breakpoints and Assertions

When you set a new breakpoint using the mouse, without using the
Breakpoint dialog box, the type is always permanent, the count 1 and the
location corresponds to the current viewing position, if the Source
Window is open. These variables are described in more detail below.

Setting Breakpoints from the Menu

To set a breakpoint from the menu, select Breakpoints... from the
Breakpoints menu to view the Breakpoints dialog box. From this dialog
box, you can define several types of breakpoints.

@ To set a code break point at line number # of the C source, click the

Add > button and select Code Breakpoint.... Click the Break At...
button, choose a C module (for example demo.c) and click the OK
button. Now you can enter a line number to set the breakpoint at.

Click the Advanced button to get access to various types of breakpoints
and to additional breakpoint options.

Breakpoints 2] x]
All Code |Data I Instructionl Cycle I Timer I Sequencel Add »
Type | N@ ‘when | Access| Count| Taskld] Intemal Temp | Probe| Commands | Ea

CODE #0 0x1c18 14 FSS

Hemaye
Remove Al

Add Code Breakpoint HE
(| e]
Break At... | Idemo.cﬂSS
erences...

8 = Cancel |
Mame: I Help |
_ TaskiD: I d Advanced > |

Help [a]:4 | Cancel

Line:

Figure 7-2: Breakpoints dialog box

The last entry of the list is always empty. Select it to start defining a new
breakpoint.

Setting Breakpoints from the Source Window

You can set or remove a code breakpoint directly from the Source
Window by clicking on:

* The breakpoint toggle next to the source lines in the Source
Window.

7-9

7-10

Chapter 7

To set data breakpoints use the menu as described above.

Setting Breakpoints from the Stack Window

See the section Up-level Breakpoints later in this chapter.

Setting Breakpoints from the Command Window

+

You can set a code breakpoint from the Command Window using the
break code command or the b command, and set a data breakpoint using
the break data command. Several options are available after these
commands.

See the break command in the Command Reference for detailed
information.

For example, the following command sets a code breakpoint at the
address specified by function main:

break code main

To set a code breakpoint at a specific source line, you can enter a
breakpoint address in the form: filename#line after the break command,
or you can specify a line number, followed by the b command and any
commands you want to attach to the breakpoint. For example, to set a
code breakpoint at line 51 in your source, enter:

break demo.c#51
or
51 b

If you do not specify a line number, a breakpoint will be set at the current
viewing position.

FUNCTION: Set a code breakpoint.
COMMAND: break [code| address |[,option)...

FUNCTION: Set a code breakpoint.
COMMAND: (line_ number] b [commands)

Breakpoints and Assertions

To set a data breakpoint, you must specify the break data command,
followed by an address, followed by any commands you want to attach to
the breakpoint. There are three types of data breakpoints:

* A data read breakpoint to see if a variable is read from (break data
addpress, access_type=r command)

* A data write breakpoint to watch if a variable is written to (break
data address, access_type=w command)

* A data read or write breakpoint to check if a variable is either read
from or written to (break data address, access_type=rw
command)

For example, to set a data breakpoint to watch the lowest byte in memory
of the global variable initval, enter:

break data &initval, access_type=w

This command instructs CrossView Pro to set a data breakpoint that will
halt execution if the program writes to the lowest byte in memory of the
variable initval. Note that you have to specify the variable’s address,
otherwise the variable’s value is used.

FUNCTION: Set a data breakpoint.
COMMAND: break data address [option]...

7.2.1 DATA BREAKPOINTS OVER A RANGE OF
ADDRESSES

You can also use data breakpoints to watch a contiguous range of memory
addresses. As with standard data breakpoints, data breakpoints over a
range of addresses can be set to watch for reading, writing or both. To set
a data breakpoint of this type:

@2 Using mouse and menu:

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box.

* Select the data breakpoint you want to edit and click the Edit...
button, or click the Add > button and select Data Breakpoint...

* Specify a start address and click on the Advanced button.

7-12 Chapter 7

=

* Select one of the Type options: break on read, write, read or write.

e Specify a length or an end address. The end address is part of the
range (length is calculated from the end address and vice versa).

From the Command Window:

* Type break data address, end_addr=end_addyress, access_type=r
to set a data read breakpoint over a range.

* Type break dat